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UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

CAMPUS DI CESENA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

BENCHMARKING MATERIALIZED
VIEWS OF SQL-BASED STREAM

PROCESSING SYSTEMS

Tesi in

Big Data

Relatore

Prof. GALLINUCCI ENRICO

Presentata da

PARRINELLO ANGELO

ANNO ACCADEMICO 2022–2023

Quarta Sessione di Laurea



ii



Keywords

Stream Processing System

Materialized View

Big Data

Benchmarking

Apache Flink

Materialize

ksqlDB

Apache Kafka

Nexmark

iii



iv



Abstract

With the growing importance of real-time analytics, streaming processing systems

are becoming an essential tool; in particular, the paradigm of the materialized view

is gaining traction due to its simplicity and power. Moreover, a standard bench-

mark for these systems is still missing, although multiple benchmarks have been

proposed for the more general field of stream processing. Many tools can support

this kind of processing, both well-established and newer to the scene with different

feature sets and technical choices. The goal of this thesis is to thoroughly evaluate

and compare these tools in order to gain a deep understanding of their perfor-

mances, characteristics, and limits. The competitors considered in this evaluation

are Flink, Materialize, and ksqlDB (previously KSQL). Multiple aspects will be

evaluated, from more abstract ones such as architecture, features, and technical

choices to more concrete ones revolving around performance, scalability, and ease

of use. This thesis proposes a baseline analysis of the three systems aim to ex-

ploit the advantages and disadvantages of each system and provide a comparison

between them. As a starting point, we will use the Nexmark benchmark, which is

a relatively simple and uncharted benchmark for stream processing systems.
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Chapter 1

Introduction

In response to the increasing demand for fast, reliable and scalable data processing,

the field of stream processing systems has seen a surge in popularity. The tradi-

tional paradigm of batch processing, where data is collected and processed in large

chunks, is no longer sufficient for many use cases. In contrast, stream processing is

a processing model that aims to compute data on-the-fly, as it arrives, and creates

a continuous stream of results. This model is particularly well-suited for appli-

cations that require low-latency processing, such as fraud detection, monitoring,

and real-time analytics. Many widely popular frameworks like Apache Flink [15]

or Apache Spark [121] have been developed to support enterprises in this kind of

processing. While most of these tools have first implemented a core API in Java

or Scala, newer systems mostly focus on providing abstractions for running SQL

queries. SQL is a standard language for performing data analysis and is widely

used in the industry from all those personas most interested in data processing,

such as data engineers, data scientists, and business analysts. In this context, sys-

tems like ksqlDB [65] or Materialize [21] are increasingly used to provide a more

user-friendly interface to the stream processing model. One of the main concepts

that these systems support is the materialized view. Contrary to the traditional

view, which is a virtual table that is not stored physically, a materialized view is a

physical copy of the data, which is updated periodically. The development of new

systems and paradigms in this area has brought challenges to the testing of these
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big data systems. First, the lack of a standard benchmark for stream processing

systems has made it difficult to compare the performance of different systems.

Second, the variety of tools available makes it difficult to choose the right one for

a specific use case. Finally, the complexity of the systems leads to a challenging

metrics selection process, as well as the need for a standardized way to evaluate

the performance of these systems. How to reasonably compare and evaluate the

performance of stream processing systems has become a new direction of research

in the field of big data systems.

This thesis aims to take an initial step toward addressing the challenges of testing

stream processing systems that support materialized views utilizing SQL queries.

To this end, we start by identifying the main challenges in testing these systems

and the current state of the art in benchmarking stream processing systems. We

then propose a benchmark for testing stream processing systems that support ma-

terialized views using SQL queries. The benchmark will be based on the Nexmark

[69] benchmark, which already provides a set of queries, specific to streaming op-

erations. We will extend the benchmark to include three systems that support

materialized views using SQL queries: ksqlDB, Materialize, and Apache Flink.

We will then evaluate the performance and qualitative properties of these systems

using the proposed benchmark. Finally, we will discuss the results and conclude

the performance of these systems.

The thesis is structured as follows. In Chapter 2, we provide an overview of the

state of the art in stream processing systems and a summary of the theoretical

background. In Chapter 3, we present the current state of the art in benchmark-

ing stream processing systems, the challenges in testing these systems, and the

benchmark on which the baseline of our work is based. In Chapter 4, we describe

the implementation of the benchmark and the technologies used. In Chapter 5, we

present and discuss the results of the comparison. Finally, in Chapter 6 we draw

conclusions and discuss future work.
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Chapter 2

Stream Processing System

A stream processing system is a distributed system that allows the processing of

data in motion, that natively supports requirements such as scalability, fault toler-

ance, and extensibility [3]. Due to its nature, in the last years, stream processing

systems have become more and more popular, and companies have started to use

them to process data as soon as they are gathered, to have a real-time view of the

business. This behavior is the main difference between streaming and batch sys-

tems: the latter does not allow the handling of a continuous flow of data. Many are

the challenges that a stream process engine should address. One of the biggest is

the capability to act stateful operations. Since real-time streaming is theoretically

unbounded, a system of this kind must process information on-the-fly (involving a

narrow memory). Nowadays, we can go beyond traditional analytics by leveraging

the internal mechanisms of these engines. Indeed, one of the biggest advantages

of stream processing systems is the ability to generate a streaming materialized

view (i.e. the results of a continuous query) [4] that can be used to feed other

applications or to trigger some actions.

After a brief introduction to what stream processing systems are, the chapter will

introduce research on the current state of the art, produced during the first phase

of the project (candidate systems selection), and it will conclude with a descrip-

tion of the three systems that we have chosen for our benchmark: Apache Flink,

ksqlDB, and Materialize.
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2.1 State of the art

Streaming big data architecture is typically composed of two main layers: the

message queuing layer and the stream processing layer. The first one is responsi-

ble for ingesting data from different sources, maintaining them, and serving the

information to the other systems such as the stream processing layer. Often,

these systems are called message brokers and they are used to decouple the data

producers from the data consumers. Starting from the 00s, many message brokers

have been developed. The first ones were centralized systems, such as ActiveMQ

[181] and RabbitMQ [182], but with the advent of cloud computing, distributed

systems have become more and more popular. Nowadays, some of the most

used message brokers are Apache Kafka [66], and Apache Flume [183]. In this

thesis, we will use Apache Kafka as a message broker. Kafka is an open-source

distributed event streaming platform, which is able to handle real-time data

streams. It provides a scalable and fault-tolerant architecture as well as huge

integration capabilities, at the cost of a more complex setup and steeper learning

curve. However, the message broker is not the focus of this work, so we will not

go into details, leaving aside technical aspects and architectural choices. We will

focus on the second layer, the stream processing layer.

The concept of stream processing systems (from now we will refer to them as

SPSs) is now well known and both open and closed solutions, are available. Many

big actors in the market have developed their own SPS, such as IBM with IBM

Streams[5] and Google with Cloud Dataflow [6], but virtually all cloud vendors

have their solution. As stated in [7], this concept is not new and it has been

around starting from the 90s. Through the years, the focus on these products

has changed. In the beginning, the main goal was to provide a system that could

handle a continuous flow of data. We assist in the creation of prototypes such as

TelegraphCQ [9], NiagaraCQ [10], and Aurora [11]. These models highly inspired

the first wave of commercial SPS, for instance, IBM System S [12] and Oracle

CQL/CEP [13], which aims to support streaming window queries and complex

event processing (CEP).

Then, cloud computing and the introduction of MapReduce [8] have changed
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the way we process data. The focus has shifted towards the scale-out ability,

so distributed and fault-tolerant systems, but we also witness the development

of projects that could facilitate the creation of User-Defined Functions (UDF) -

based programming models, supporting the widely used MapReduce paradigm.

Throughout this period, many big-data streaming architectures have been

proposed, such as the Lambda Architecture [51] and the Kappa Architecture

[52]. Both of them are based on the idea of handling batch and stream business

problems, but the former uses two separate layers to manage different types of

processing, while the latter uses a single layer to manage both batch and stream

processing.

Another important turning point in this second season, was the introduction of

the Google Dataflow Model [18], which is a unified model for batch and stream

processing (now incorporated in Google Cloud Dataflow [6]). The idea behind

this concept is to provide a single programming model, for both batch/stream

processing and un/bounded stream of data, that can easily deal with massive

out-of-order streams. Furthermore, this approach is engine and language agnos-

tics, as showed by Apache Beam [19], which is an open-source implementation

of the Dataflow Model. All these features have been further developed by many

open-source projects, such as Apache Storm [14], Apache Spark [17], Apache

Flink [15] and Apache Kafka Stream [16], which are still extremely popular and

have introduced new paradigms such as processing guarantees (i.e. exactly-once

processing), reconfiguration (i.e. adding new workers to a running computation),

state management(i.e. capturing all the changes in the state of a computation),

and SQL support.

The third wave of SPS is the one that we are currently living in. The market

is concentrating on incorporating data streaming with either cloud services and

serverless applications or edge computing and specialized hardware [7]. On the

other hand, we observe the foundation of new streaming database systems (also

cloud-based), such as Materialize [21] and Bytewax [195] (both based on Timely

Dataflow), Arroyo [23], and RisingWave [24], which tend to fully support SQL or

new lightweight systems, such as Portals [22], Faust [62], and Quix [196].
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While new systems are being developed, new features for the existing ones are

being introduced. Internal state management is one of the most important

aspects of the last decade of SPS. Although those mechanisms have reached a

certain grade of maturity, most of the time they are being used as a black box.

Indeed, either the user cannot interact with the internal state of the system or

the only way to do it is through a complicated process. S-Query [25] points out

the importance of exposing the internal state of an SPS to external applications

as a materialized view. The authors show how this prototype introduces minimal

overhead in the tested systems (primarily Hazelcast [26] but also on Flink has

been proposed) while providing a way to access the information stored in the

system for debugging, monitoring, and analytics purposes.

Figure 2.1, which is a variant of that showed in [7], illustrates the evolution of the

SPS through the years, underlying the main features introduced in each wave.

Figure 2.1: Evolution of stream processing systems

Along with the plethora of SPS, three of them have attracted our attention:

Apache Flink, ksqlDB, and Materialize. Apache Flink and ksqlDB are two of the

most popular open-source SPS, while Materialize is a new entry that was released
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in 2020. To better comprehend the current landscape of SPS, we have chosen

to benchmark these three systems: Flink is a well-established SPS that has been

around for a while, ksqlDB is quite new but the technology under the hood is not

(is built on top of Apache Kafka Stream engine [27]) and Materialize is one of

the most promising new SPS. In the next sections, we will introduce these three

systems, highlighting their main features and the differences between them.
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2.2 Background

Dataflow programming model

The dataflow model [18], represents a streaming computation as a logical directed

graph G = (V,E), where vertices in V are operators and edges in E denote data

streams. After the deployment, the logical graph begins a physical execution plan,

G′ = (V ′, E ′), which maps operators to provisioned workers (i.e. threads). The

vertices in V ′ are called tasks or instances of a logical operator in V and edges in

E ′ physical data channels. Tasks are usually scheduled once and have extended

durations. Each task belongs to a single worker, and each worker can execute

one or more tasks, whether they are owned by the same or different operators.

The internal mechanism of the assignment is system-specific. It is computed at

deployment time and remains constant during the whole execution unless a recon-

figuration occurs. In most of the cases, the execution is data-parallel, meaning that

all the tasks of an operator perform the same logic on disjoint partitions of the

input stream. Then, an operator must communicate with the tasks of upstream

and downstream operators through messages.

The dataflow programming model is a programming paradigm that models a pro-

gram as a directed graph of the data flowing between operations. Essentially,

dataflow programming involves defining your program as autonomous components

that respond to the presence of input data and specify the relationships and con-

nections among these components. A dataflow program can be represented as a

direct graph where the nodes are the components/operators and the edges are the

connections between them.

What nowadays happens in a large number of SPS is that the dataflow model is

used as a programming model. In other words, the system offers the possibility to

the user to compose applications in several languages (i.e. Java, Python, SQL, etc.)

and then it will be translated into a dataflow graph by the underlying engine that

will also distribute the computation across the cluster and subsequently run the

transformed application over incoming data streams. A graphical representation

of the dataflow programming model is shown in Figure 2.2.
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Figure 2.2: Dataflow programming model example [20].

Delivering Guarantees

During a critical situation, such as a failure, the system could have lost, or dupli-

cated some events. There are three kinds of guarantees that a stream processing

system can provide: at-most-once, at-least-once, and exactly-once. The first one is

the weakest guarantee, meaning that the system can lose some events, the system

will not try to recover the data nor check whether the events have been processed

or not. The second guarantee is slightly stronger than the previous one, meaning

that the system will not lose any event but it could process some of them more

than once: it will be an engineer’s responsibility to handle the duplicates. The

last one is the strongest possibility and it means that the system will not lose

any event and will process each event exactly once [59]. What is important to

say about EOS (Exactly-Once semantic), is that does not deduplicate messages

created by an application (i.e. producer) or an external source. So, for example, if

the client code produces duplicate messages, it is a problem of the client code, not

of the EOS and so, it will not remove those events. What EOS does is to ensure

that all the messages produced and consumed by the same producer/consumer are
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marked as committed atomically (i.e. ensure that all the messages are processed

and delivered correctly) or aborted (i.e. ensure that no message is processed and

delivered).

Event Time and Processing Time

Within the domain of stream processing, there are two main definitions of time:

� Event Time: it is the time at which the event occurred on the source device

[6]. This time is usually melted into the event itself and we can extract

it as event timestamp. Ideally, the processing of the events based on the

timestamp would yield deterministic results regardless of the order or when

the events arrive. But in reality, event time processing will include some

latency waiting for late events to arrive. Thus, we can only apply a heuristic

method to deal with late events, such as waiting for a certain amount of time

before closing a window. Most of the time the event time-based processing

will eventually produce the correct results, but it is not guaranteed. For

instance, assuming that all the events have arrived and in the context of an

hourly event time window, all records with event timestamps within that

hour will be included, regardless of the order of their arrival or when they

undergo processing.

� Processing/Wall-clock Time: it is the time at which the entire processing

of an event occurs [6]. When a pipeline is working with the processing time,

all the time-based operators will use the system clock of the machine that is

executing the operation. For example, if we have a window of 10 minutes,

and the application starts at 12:03, the first window will contain all the

events that have arrived between 12:03 and 12:10, the further one between

12:10 and 12:20, and so on. While this approach is simple and provides the

best performance and lowest latency as well, it is not reliable in terms of

determinism due to factors like varying arrival rates of records, differences

in processing speeds between system operators, and the impact of outages.
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An important (and pragmatic) take-home message is that none of the two ap-

proaches is better than the other. Indeed, the choice of the time model depends

on the use case and the requirements of the application and, sometimes, it is pos-

sible to use both of them in order to ensure the correctness of the results and the

responsiveness of the system [44]. As a rule of thumb, we can say that event time

is generally preferred because it is consistent, and working with it should produce

deterministic results even though working with processing time is faster and eas-

ier.

In an ideal world, the event time and the processing time would be the same.

However, the reality is that the skew between the two times is not even zero but a

variable function, depending on several factors such as network latency, software

delays, and so on. If we try to plot the difference between the two times, we will

obtain a graph like the one in Figure 2.3.

Figure 2.3: Skew Time Difference from [45]. The X-axis represents the complete-

ness event time and the Y-axis the progress of the processing time.

In the figure above, the X-axis represents the completeness of the event time

(i.e. time X is the point in event time where all data with event times preceding X

have been recorded or observed) and the Y-axis is the progress of the processing

time. The black dashed line shows the ideal case where the processing and event

time are the same. The red line represents the actual skew between the two times.

To visually calculate the skew, we can take the horizontal distance between these
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two lines: the greater the distance, the greater the skew. In other words, the

skew is the latency resulting from the processing pipeline. The concept of the

skew is important because introduces some challenges in analyzing unbounded

data streams. Instead of relying on either event time or processing time and their

respective drawbacks, we should use systems that can handle the complex and

uncertain nature of this information, supporting data retracting and data updates

[45].

Windowing

The most common approach for an unbounded stream of data is windowing. The

technique of windowing is to divide a data source (either bounded or unbounded)

into a finite number of sets, called windows, based on certain temporal constraints.

Along with the idea of windowing, we have the concept of triggers, which is a

mechanism proposed in [18] to determine when a window is ready to be processed.

There are three main different windowing patterns (Figure 2.4 tries to sum up

them):

� Fixed/Tumbling Windows: in this case, the windows do not overlap and

slice up time into chunks of fixed length [46]. The most common use of

this pattern is with an aligned window that starts at regular intervals (i.e.

every 5 minutes) and processes all the events that fall in that time frame.

The main pros of this technique is that we ensure consistency but we need

to pay attention to the uneven distribution of the workload. In unaligned

windows, the interval may vary for different parts of data, usually based on

some criteria like a key. While by this approach we can solve the problem of

uneven distribution, we surely introduce some complexity in the system.

� Sliding Windows: in this case, we have two parameters that define the

window’s behavior: the window size (i.e. the length of the window) and the

slide interval (i.e. the frequency at which the window operation is performed)

[46]. For example, we would like to compute every thirty seconds the number

of cars passed in the last minute. What emerges from this example is that if
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the period of the slide interval is smaller than the window size, the windows

will overlap. Thus, if the period is equal to the window size, we will have a

tumbling window. As with the previous mechanism we can have aligned and

unaligned windows, with the latter that is mostly used in real-world cases.

� Session Windows: in this case, the windows are created dynamically and

the sessions are composed of events that are separated by a gap of inactivity

(i.e. timeout) [46]. They are useful when we want to group events that

are related to each other by certain criteria (i.e. user session). The main

difference with the previous two patterns is that the windows are not aligned

(indeed, they are the standard unaligned windows) to a certain point in time,

but they are created on the fly.

Figure 2.4: The three main Windowing Patterns [45]. These three strategies show

the differences between aligned (i.e. all the datasets are processed at the same

time) and unaligned (i.e. subsets are processed at different times) windows.

The concept of windowing is widely applied both in the processing by pro-

cessing time and event time. In the first case, a system will buffer the data into

windows until the processing time reaches the end of the window. For example,

if we have a 5-minute window, a system will buffer the data until the processing

time reaches the end of the 5-minute window and then will process the data. The

three main benefits of this approach are the low overall complexity of a system,

determining the window completion is easy, and inferring information about the

health or the status of a source is straightforward. On the other hand, the main

drawback is that if the incoming data have a timestamp framed in itself, those
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data shall arrive in time-order to reflect the reality. As stated before, this is not

always the case.

In the second case, a system will mirror what happened in the real world. Hy-

pothetically, this approach is the best one because it is the most accurate yet

not exempt from drawbacks. Since a system has to handle late events, it needs

to buffer the data. It must be mentioned that persistent storage is one of the

cheapest resources in a data center and many operators could work incrementally

(i.e. sum), so the cost of buffering could be mitigated. However, the problem of

determining when a window is complete is not trivial but we can deal with it.

Watermarks

Many challenges have arisen from the introduction of time in stream processing.

One of the most fascinating is the managing of window completeness. As explained

before, we cannot know when all the events have arrived, especially when process-

ing events on their event time. What we should do is define a heuristic that allows

us to determine when a window can be considered complete. A popular heuristic

method is called watermark.

The concept of using watermarks in streaming processing systems was introduced

by Google in [47] and [18]. A watermark can be defined as a metric that signals

the completeness of streaming progress. To put this in easier words, a watermark

with a value of X means that all the input data with event times less than X have

been processed [48]. By saying that, we are assuming that events are at most X

minutes out of order. Earlier events are still possible, but they are not expected.

If they do occur, they violate our assumption that the stream is no more than X

minutes out of order and such events will be considered late. Depending on what

we are doing, late events might be either ignored or not. Through the watermarks,

it is possible to measure the progress in event time. The watermark bundle is in-

cluded in the stream and piggybacks the timestamp t, as illustrated in Figure 2.5.

In the figure 2.5 we assume that the stream is composed of ordered events and

watermarks flowing inline. But the watermarks are crucial particularly when the

stream is out-of-order. In this case, once a watermark anchor reaches an operator,
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the operator will increase its own event time clock to the watermark’s value.

Figure 2.5: Watermark mechanism [49]

Persistent, Push and Pull Queries

Within the domain of stream processing, there are three types of possible queries:

persistent, push, and pull.

� Persistent Queries: these kinds of queries are server-side and extremely

common in stream processing systems. They continuously update them-

selves as soon as new data arrives. The term ”persistent”, indicates that

the query will run indefinitely and remain active as new data arrives. The

results of these queries need to be stored in a persistent and durable storage,

making them resilient to failures, and ready to be used by other queries or

applications.

� Push Queries: these are a form of client-side queries, that follows the

Publish-Subscribe pattern [76]. In this case, the client subscribes to a query

and receives the results as soon as they are available, in a real-time fashion

[74]. Contrary to the persistent queries, the push queries are not stored in

durable storage, but they are sent directly to the client.

� Pull Queries: pull queries try to mimic the behavior of a traditional

database synchronous control flow[75]. The client sends a query to the server

and receives the results as soon as they are available. Thus, the client is re-

sponsible for polling the server for new results and thus, it will receive the

results currently available.

Figure 2.6 shows the differences between the three types of queries.

A materialized view is an object that stores the result of a precomputed query in
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a persistent, physical form. It serves as a precomputed snapshot of data, allowing

for faster query performance by avoiding the need to repeatedly compute complex

or resource-intensive queries. In this sense, a materialized view has to save some

results in a reliable memory, so it is typically the result of a persistent query, while

the push and pull queries are used to interrogate the system.

Figure 2.6: During an interrogation through SQL, in a stream processing system

we can find three types of queries.
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2.3 Apache Flink

Apache Flink [15] is an open-source stream processing (and batch) engine that

was initially developed as a research project by a group of German universities

[28]. The project, named Stratosphere and started in 2011, had to create a new

generation of Big Data Analytics platform that could overcome the limitations of

the existing ones. In 2014, the project was renamed Apache Flink and it became

a top-level project of the Apache Software Foundation.

Overview

Figure 2.7: Apache Flink logo

Flink’s core is a distributed streaming data-flow engine written in Java and Scala

[29]. Its engine is attempting to tackle some challenges such as reducing complexity

through declarative languages and parallel in-memory and out-of-core algorithms

[30]. Moreover, Flink supports a query optimizer that automatically improves the

programs, leaving the engineer free to focus on the business logic. Its runtime

system supports high-throughput and low-latency data processing applications

[31], with a feather-light fault-tolerant algorithm [32]. As shown in Figure 2.8,

Flink is composed of four layers [33]:

� Stateful Stream Processing: this is the lowest layer of abstraction that

Flink offers. Withing this block, the user can process events from one or

more streams realizing complex operations.

� DataStream/DataSet API: most of the time, the user does not need to

interact with the previous layer. However, the user is free to use that low-
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level mechanism through this API that embeds the stateful stream processing

layer. In addition, this API offers a set of common operations for data

processing (i.e. map, filter, join, windows, etc.) both bounded (DataSet)

and unbounded (DataStream). This API is available in Java, Scala, and

Python.

� Table API: this layer is built on top of the DataStream/DataSet API as a

declarative DSL. The main concept behind this API is the table, which is a

structured view of a stream or a batch of data. Although this API does not

allow as much expressivity as the previous one, it is easier to use and more

concise. Another pro of this layer is the possibility to easily translate tables

in datastream/dataset objects and vice versa. You can use this API in Java,

Scala, Python, and SQL.

� SQL: this is the highest layer of abstraction that Flink offers. The SQL

abstraction interoperates with the Table API, in the same way as we would

expected: the user can write SQL queries that run against tables/streams.

Figure 2.8: Apache Flink layers of abstraction [33]

Stateful Stream Processing

Flink’s State

There are many reasons for Flink’s success, but one of the most important is the

ability to perform stateful stream processing. First of all, we need to understand

what is a state in a stream processing system. In a typical data flow, many of the

operations are stateless, meaning that those operators transform the input at one
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individual event at a time. On the other hand, stateful operators need to keep

track of the previous events to produce the output [34]. For instance, a stateful

operator could be a window that aggregates the events that fall in a certain time

frame. Let us consider an application that is looking for a specific pattern in a

stream of events. In this case, the system needs to keep track of the previous

events to understand if the pattern is present in the stream. By the use of a state,

Flink can reach fault tolerance, scalability, and consistency.

Checkpoints and Savepoints

The state of a Flink’s operator or function is a critical piece of information that

needs to be stored in a fault-tolerant way. To achieve this goal, Flink provides two

mechanisms: checkpoints and savepoints. A checkpoint is a consistent snapshot of

the state of the application at a certain point in time whereby Flink might recover

the state and positions in the input streams in case of failure [35]. During the life-

time of an application, Flink periodically takes checkpoints (in an asynchronous

way) that must be stored in a persistent storage system (i.e. HDFS, S3, etc.)

called state backend. Flink already provides some out-of-the-box state backends,

for instance, an embedded RocksDB [149] one or the default filesystem one.

A savepoint creates a representation of the execution state of a job, via the check-

pointing facility [36]. Hence, you can trigger manually a savepoint and then use

it, for example, to stop and resume or to update a job. Theoretically, a savepoint

is a special type of checkpoint, yet with different meanings [37]. The purpose of a

checkpoint is to provide a safe recovery method after an unexpected failure. The

whole checkpoints’ lifecycle is automatically managed by Flink, and since are often

created, they are lightweight. On the contrary, savepoints are typically planned

(i.e. before updating a job) and more expensive to create. Moreover, Flink does

not take care of whatsoever savepoints’ lifecycle (i.e. creation or deletion), so the

software engineer has to handle it.

As stated before, the backbone of Flink’s fault tolerance engine is checkpointing.

The model [32] is deeply inspired by the Chandy-Lamport algorithm [41], which

is a distributed algorithm that allows the creation of a consistent snapshot of a
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distributed system. With the term barrier, we refer to a special type of event that

is injected into the data stream and that triggers the checkpointing mechanism

[42], as shown in Figure 2.9.

Figure 2.9: Apache Flink Stream Barriers [42]

The barriers are propagated through the data stream and when an operator

receives a barrier, it stops processing new events and starts to finalize the current

ones. When all the operators have received the barrier, the checkpoint is considered

completed. When an operator has multiple input streams, it waits for all the

barriers to arrive before finalizing (i.e. writes the state to the state backends) the

events. This mechanism is called aligned checkpointing. Flink also allows the use

of unaligned checkpointing, which is a more relaxed version of the previous one

[43]. In this case, the barriers go through the stream as fast as possible, at the

cost of increasing I/O operations.

Keyed and Operator State

States in Flink can assume two main different forms: keyed and operator. In

the domain of stream processing, the data are usually associated with keys, and

many operations are performed on a per-key basis. Flink supports a key-value

processing paradigm, through an embedded key-value store, enabling efficient state

management [38]. Furthermore, the keys are used to partition the data across the

parallel instances of the operators. Ensuring these keys match means the state

can be kept local, leading to in-memory caching and speeding up disk access. But

this process is as powerful as dangerous: if your key space is very large or not well-

distributed, you can end up with a skewed workload or a huge state that cannot
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be stored in memory. However, there are some workarounds to this problem, such

as using a hash function to distribute the keys across the parallel instances of the

operators or implementing a time-to-live (TTL) setting. The keyed state is further

divided into groups, named key-groups, which are the unit of parallelism (i.e. the

number of parallel instances of the operator). In Figure 2.10, we can see how the

keyed state is partitioned across the parallel instances of the operator.

Figure 2.10: Apache Flink Keyed State mechanism [38]

On the other hand, the operator state is a state that is not associated with

keys and it is bound to a single parallel instance of an operator [39]. Although the

usual stateful Flink application does not require the use of the operator state, it

can be useful in some cases, for instance when you do not have a key to partition

the data. Since version 1.5.0, Flink has extended the concept of operator state,

introducing the broadcast state. This new type of state is a special type of operator

state that is broadcasted to all the parallel instances of the operator [40]. This

mechanism is useful when you need to enrich the data with some information that

is not part of the stream. A use case could be when you have a low-throughput

stream (i.e. a stream that contains configuration updates) and a high-throughput

stream (i.e. a stream that contains data to be processed). Via this broadcasting

trick, it is easier to send to all the parallel instances the updates required and

consequentially update the processing logic for the high-throughput stream.
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Flink Guarantees

Flink supports all three delivery guarantees, with a major focus on the strongest

one: exactly-once guarantee. Indeed, Flink can provide that guarantee even in

the presence of failures. Despite that, this does not mean that each event will

be put on trial only once, it means that every event will affect the state of the

system only once. The checkpointing mechanism is the key to this guarantee. A

distinguished speech must be made for the achievement of exactly one end-to-end

delivery. To reach this kind of constraint, every event from the sources has to

influence the state of the sinks exactly once. Unfortunately, this is not always

possible. To provide exactly-once end-to-end delivery it must be guaranteed that:

the sources must be replayable (i.e. the events must be stored in a persistent

storage), and the sinks must be idempotent (i.e. the result of applying a function

multiple times is the same as applying it once). From the Flink side, it already

supplies some out-of-the-box connectors for both sources and sinks that are

replayable and idempotent, respectively [60].

In a typical Flink application, we have data sources, data pipelines, and data

sinks. A failure can occur in any of these three components. Flink provides a

mechanism (i.e. checkpointing) to recover from a failure providing consistent

views across three important things: the internal compute state (i.e. the state of

a windowed operation), the external transaction identifiers (i.e. which part of the

stream I have already processed), and the offset (i.e. track the progress of the

consumer from the source). What checkpointing does is to apply the Two Phase

Commit (2PC) protocol. In brief, the 2PC protocol is a distributed algorithm

that coordinates all the processes involved in a distributed transaction to reach a

consensus. Then, Flink extended it in an asynchronous way [184]. In this sense,

Flink is the transaction coordinator so it will decide when to commit or abort the

transaction.
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Timely Stream Processing

Whenever an operation during a Flink’s processing pipeline requires the use of

time, that processing is called timely stream processing. Among the most common

operations that engage the concept of time, we can find time series analysis, event

time processing, and windowing.

Time in Flink

Flink supports both of the two main notions of time, including a third one called

ingestion time. The ingestion time is the moment when the event arrives in the

processing pipeline [61] or in other words, the time when the event is ingested by

the source Flink’s operator. However, to be sure that a result is reproducible, the

concept of event time is the most suitable one. In this way, we ensure that the

result will depend on when the events actually occurred and not when they were

processed by the system. From the Flink 1.12 version, the event time is the default

one, but the user can still use different time notions.

Indistinctly from the time notion used, Flink supports data updates and retraction.

The mechanism of the watermark is useful in order to support these operations

and many others. These watermarks are generated directly from the sources and

automatically forwarded through the distributed data flow. By default, Flink

will look at the timestamp embedded in each message to generate watermarks.

To define the watermark value, Flink analyzes the maximum timestamp of the

events seen so far. Then, it subtracts a certain amount of time, the out-of-order

estimation assumed before. The result is the watermark value for that specific

source. This case can be expanded to multiple sources, that are flowing into a

single operator, by taking the minimum watermark value among the sources. To

better explain this concept, let us consider the example in Figure 2.11. In this

example, we have multiple sources (and so multiple levels of parallelism) that are

flowing into a single window operator. Each source belongs to a Kafka partition,

and for each partition, a watermark has been emitted (i.e. P2 1:30). The final

watermark value for the window operator is the minimum watermark value among
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the sources, which will help the operator to resolve when to produce a result.

Figure 2.11: Apache Flink Watermark example [50]

Flink’s watermark structure is highly related to windowing capabilities, which

are one of the main mechanisms to perform time-based operations. Flink supports

all the types of windowing mechanisms enumerated in Section 2.2. In addition,

Flink features a very expressive windowing API, which allows the user to handle

those events that arrive late (i.e. after the watermark has passed the end of the

window) and usually are dropped, through a way called side output [130].

Architecture

Flink can operate as a local or distributed system. In the first case, the system

can run as a standalone cluster (i.e. a single JVM) or as a library (i.e. embedded

in a JVM application). In the second case, Flink can integrate with popular

cluster resource managers like Hadoop YARN and Kubernetes or even run as

a standalone cluster likewise in the first case. In Figure 2.12, we can see the

architecture of a Flink cluster.
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Figure 2.12: Apache Flink Architecture [53].

The implementation of Flink’s distributed runtime is based on Akka [58] a

framework for building distributed, message-driven applications [56]. The toolkit

provides a high-level abstraction of the actor model [57] where all the components

of the system are actors and they communicate with each other via messages.

With this in mind, we can locate three main actors in Flink’s architecture: the

Client, the JobManager, and the TaskManager. However, the Client is not directly

part of the runtime cluster but it is used to prepare and send the dataflow to the

JobManager. The architectural pattern followed by Flink is the master-worker

one, where the JobManager is the master and the TaskManager are the workers.

JobManager

The JobManager coordinates the distributed execution of the data flow (from now

we will refer to a submitted data flow as a job). Amongst its tasks, we can find task

scheduling, failure recovery, coordinating checkpoints, and resource management.

In a Flink cluster there always must be one active JobManager, which is the

JobManager Leader. Flink delivers high availability (i.e. will continue executing

the ongoing jobs) by having multiple JobManager instances in the cluster, where

one of them is the leader and the others are the standby ones. In those cases, the

standby JobManagers are responsible for monitoring the leader and taking over

its role in case of failure. The JobManager is composed of:
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� JobMaster: this component is in charge of taking care of a single execution

of a JobGraph. A JobGraph is created when submitting a job and represents

the job itself via a directed acyclic graph (DAG), with the operators as nodes

and the datastreams as edges [54]. Flink can administrate multiple jobs at

the same time, generating a JobMaster for each of them.

� Dispatcher: it is the component that receives the dataflow from the client

and then summons a new JobMaster for each submitted job.

� ResourceManager: govern the resources of the cluster is a task of the

ResourceManager. Notably, it manages task slots, which are the atomic part

of resource scheduling in a Flink cluster [55].

TaskManager

The TaskManager, which is basically a JVM process, operates as a worker in

the cluster and it is responsible for executing the tasks of a dataflow as well as

exchanging data streams with other TaskManagers. A task is a unit of work

in Flink that composes the job, called sub-task when processing a partition

of a datastream. One task encapsulates exactly one parallel instance of an

operator and hence, each task is executed by one thread. Without at least one

TaskManager, the JobManager cannot execute any job.
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2.4 ksqlDB

Confluent [64] defines ksqlDB (ex KSQL [63]) as a database purpose-built for stream

processing applications [65]. Basically, ksqlDB is a stream processing engine that

is built on top of Apache Kafka [66] and Kafka Streams [16], and offers a SQL-like

language to query the data streams (instead of using Java or Scala). The project

was started in 2017 by Confluent and it was released in 2018.

Overview

Figure 2.13: ksqlDB logo

ksqlDB is a distributed, scalable, fault-tolerant, and real-time SQL engine that

allows the user to query the data streams and craft materialized views over

those streams. This system, like Flink, lets the user the possibility to acquire

data from different sources (i.e. Kafka, Kinesis, etc.) and then process them in

real-time. However, ksqlDB tries to simplify the process of stream processing

by offering an environment where the user can manipulate the data (i.e. ETL

operations), without writing a single line of code. This advantage is given by the

SQL-like language that ksqlDB offers. Processing data through SQL is beneficial

for both technical and non-technical users. For instance, an analyst who has to

create a report could easily use ksqlDB to analyze in real-time a specific piece of

information that is needed.

ksqlDB seeks to serve also as a storage layer, by its Kafka backbone. The

dependency on the latter is a double-edged sword: on the one hand, it is a great

advantage because Kafka is a battle-tested system, on the other hand, it is a

disadvantage because the user is forced to use Kafka as a middleware message
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broker. In other words, ksqlDB is not purely standalone but runs natively of Kafka.

Dual Streaming Model

ksqlDB and Kafka Streams are based on the same streaming model, which is called

Dual Streaming Model [67]. Formally, ksqlDB defines a stream’s record as a tuple

of ⟨o, t, k, v⟩ ∈ N0 × N0 × DV × DV , where the o is the offset of the record in the

stream (i.e. the number of records that precede it), the t is the timestamp of the

record and the payload is composed of a k key and a v value, within the domain

of the data types DK and DV , respectively. The values could be of multiple types

even also a composite data type.

Let the datastream be S = (r0, r1, r2, . . .) with ri ∧ ri.o = i. Every single record

inside the stream must respect the same schema S = DV ×DV , which defines how

the data is structured. A data stream S with schema S is denoted as S[S].

Let’s now consider the following example depicted in Figure 2.14.

Figure 2.14: Data stream example from [67] with five records.

The stream S is composed of five records, each one with a different offset. The

respective domains of key and value are DK = {A,B} and DV = Q. The records

are ordered by the offset, but not by the timestamp. For instance, the record r3 is

described as r3 = ⟨3, 6,A, 8.9⟩.
The logical order is extrapolated by the offsets of the records, while the physical

order is from the timestamps of the records. Considering r and r′ two records

of the stream S, we can say that r is before r′ in the logical order if and only if

rt < r′t ∨ (rt = r′t ∧ ro < r′o).

On the other hand, the physical order (i.e. records appended to the stream), may
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not always align with their intended logical order, as illustrated in Figure 2.14.

This inconsistency often arises due to factors such as imperfect clock synchroniza-

tion, network delays, or data buffering, especially in distributed applications, as

explained also in one of the previous sections 2.3. Streams that exhibit this out-

of-order characteristic are referred to as unordered streams, distinguishing them

from ordered streams.

The challenges introduced by the inconsistency between the physical and logi-

cal order may affect the computation of an operator state and output stream.

Specifically, the latency of computing the output stream is dominated by the char-

acteristics of the data stream rather than the semantic and implementation of the

operator. These challenges have been addressed by the ksqlDB team along with

the University of Berlin [67] and the result is the Dual Streaming Model, which

includes the concepts of a table, a table changelog stream, and a record stream. The

model proposes a continuous update of operator results, allowing for the handling

of out-of-order records without increasing latency: updating an out-of-order event

is as expensive as updating an in-order event because both are a key-value lookup

in a hash table.

It presents a static view of the operator result as a table, continuously updated

for each processed input record, and a dynamic view as a table changelog stream,

consisting of record updates to a table (Figure 2.15).

Figure 2.15: Table and (Table Changelog) Stream Duality from [67].

To sum up, the Dual Streaming Model separates the treatment of data arriving

out of order from concerns about latency. This creates a design space (Figure 2.16)

that allows users to navigate a balance between processing cost, acceptable latency,

and the completeness of results. This result offers an alternative solution to other
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models such as watermarks [68] or buffering-and-reordering [70].

Figure 2.16: Design space of Dual Streaming Model from [71].

Domain Elements

Streams and Tables in ksqlDB

What we have seen so far is the theoretical background of the Dual Streaming

Model. The next step is to understand how ksqlDB implements this model.

Figure 2.17: ksqlDB stack from [72].

As stated before, ksqlDB relies on Kafka (see Figure 2.17), which is a dis-

tributed streaming platform. One of the main components of Kafka is the topic,

which is a category/feed name to which records are published, a set of key/value

bytes. The DSL on top of Kafka for streaming purposes is Kafka Streams. Two of

the main abstractions of this library are the KStream and the KTable. A KStream
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is a stream of records, unbounded and continuously updated (i.e. a stream of

events), while a KTable is a table that is continuously updated, basically a mate-

rialized view. Over these two abstractions, ksqlDB defines the concepts of stream

and table.

In ksqlDB, a stream is a Kafka topic (i.e. it is partitioned and replicated across the

cluster), an immutable, append-only collection of records. In addition, a stream

has a data schema that defines the structure of the data contained in the stream

[67]. Whereas a stream is an immutable, append-only collection of records, a ta-

ble is a mutable, continuously updated collection of records. By contrast with a

stream, a table shows the current value for each key (i.e. the last record arrived

into the stream for that key).

In Figure 2.18, we can see the difference between a stream and a table.

Figure 2.18: ksqlDB Stream and Table [65]

Querying Streams and Tables

ksqlDB offers a SQL-like language to query the data streams and craft materialized

views over those streams. ksqlDB’s SQL grammar [79] is based on the SQL-

92 standard, with some extensions to support streaming semantics. Streaming

features like persistent queries, leverage Kafka topics as the underlying storage

layer. This means that the results of these queries are stored in a Kafka topic,

inheriting the same properties of the topic (i.e. partitioning, replication, etc.). In

particular, DDL statements (i.e. CREATE STREAM/TABLE) are used to add,
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remove, or modify streams and tables. On the other hand, DML statements (i.e.

SELECT, INSERT INTO, etc.) are used to query the data streams and craft

materialized views over those streams. Since most of the time, the user needs to

both create and query streams/tables, ksqlDB offers two operations for creating

and querying a stream or a table called CSAS (Create Stream As Select) and CTAS

(Create Table As Select). These two statements occupy both the roles of DDL and

DML statements because they perform an operation over the metadata layer, like

adding a new table, and over the data layer, by creating a new object from existing

records.

Architecture

ksqlDB Components

ksqlDB is composed of two main components: the ksqlDB Server and the ksqlDB

Client. The ksqlDB Server is what ties the critical parts together: it contains the

ksqlDB engine and the REST API. Then, the ksqlDB Client is the interface that

allows the user to interact with the server. The user has only one way to apply to

the server, particularly to the engine, and it is through the REST API. The REST

API is typically used by the ksqlDB CLI and the ksqlDB UI.

� ksqlDB Engine: the core of this system, processes the SQL queries and state-

ments. The engine, employing the DSL offered by the SQL-like language

translates the logic into a Kafka Streams application. Afterward, the en-

gine deploys the applications against the other ksqlDB server and the Kafka

cluster. One engine belongs to one ksqlDB server.

� REST Interface: this component is in charge of receiving the requests from

the clients and then forwarding them to the ksqlDB engine. The REST API

is the only way to interact with the ksqlDB server.

� ksqlDB CLI : ksqlDB provides a command-line interface (CLI) that connects

the user/client to the server. Via the CLI, it is possible to define the appli-

cation logic, such as creating streams and tables, and then deploy them to
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the server.

� ksqlDB UI : the UI is a web-based interface that allows the user to interact

with the ksqlDB server. It is a graphical alternative to the CLI, directly

integrated into the Confluent Control Center.

Figure 2.19 shows the components of ksqlDB and how they interact with each

other.

Figure 2.19: ksqlDB Architecture [77].

Query Lifecycle

Once a query/statement is submitted to ksqlDB, will start a flow (analyzed in

Figure 2.20) that will allow the user to manage the application.

1. You create a stream or table above an existing Kafka topic, via a DDL

statement. Each server has its internal memory (called metastore) that keeps

track of the streams and tables created.

2. Now that the stream/table is created, you can express your business logic

by using an SQL query, via a DML statement.

3. Now the engine has to translate the query into a Kafka Streams applica-

tion. By doing so, the engine uses a parser (ANTLR [78]), which creates an

abstract syntax tree (AST) from the query.
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4. The resulting AST is suddenly used to create the logical plan of the query.

The logical plan is a tree of operators that represent the query’s logic.

5. The last step involves the creation of the physical plan, which is a Kafka

Stream application. Starting from the logical plan, the engine traverses the

nodes and emits the corresponding API calls. Often, the process ends with a

persistent query that writes continuously to its output topic until the query

is terminated.

Figure 2.20: ksqlDB Query Lifecycle [77].

Scaling Workloads and Fault Tolerance

You can scale the workload of a ksqlDB application by adding more servers to the

cluster (i.e. horizontal scaling) or by adding more resources to the existing servers

(i.e. vertical scaling). In both cases, ksqlDB will automatically redistribute the

workload without losing any data.

Like Kafka Streams, ksqlDB can well-scale horizontally when resources are allo-

cated and Kafka topics have an adequate number of partitions to enhance par-

allelism. For instance, if you have a topic with 10 partitions, you can achieve a

maximum parallelism of 10. Continuing with this example, the query in question

will be executed by (at most) 10 threads concurrently. If you want to increase the

parallelism, it is necessary to augment the number of partitions of the undergoing
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topic otherwise, if we have more threads than partitions, the extra threads will be

idle.

Under the hood, ksqlDB can distribute the workload across multiple servers using

the service id configuration. This field is used as an identification for the ksqlDB

server and it is used to specify which server belongs to which ksqlDB cluster. When

a new server tries to join a cluster, it must have the same ID as the other servers.

Once this condition is satisfied, the new server will join the cluster and they will

start to split the tasks. The mechanism that controls this aspect of ksqlDB, is the

same as Kafka client’s one. In Kafka, the actor that consumes data (i.e. Kafka

Consumer) has two ways to read data from partitions. We can either assign a con-

sumer to a partition or it can join a consumer group. A consumer group is a set

of consumers (i.e. a daemon that continuously processes data) that work together

to consume a topic, under the same ID. Since ksqlDB is based on Kafka, it uses

the same abstraction to achieve scale-out. The ability to continuously balance the

workload, as soon as a new server joins/leaves the cluster is called dynamic load

balancing [82].

When a DDL statement is submitted to the server, the metastore is updated and

then every new statement is enqueued into a Kafka topic, called command topic.

It is important to underline the fact that when a client submits a DDL statement,

it is sent only to the server linked to that client. Hence, the command topic is

used to propagate the statement to the other servers and remain in sync. From

this specific, we deduct that every node, even the new ones, in a ksqlDB cluster,

must have the same view of the current stream/table. The ksqlDB’s protocol for

ensuring the same view of the streams/tables across the cluster has three main

concepts. Firstly, considers the command topic as the source of truth and includes

all the statements that must be executed by the servers to stay up-to-date. Then,

the statements are validated before being produced to the command topic. Finally,

because of the possibility of race conditions (i.e. two servers that try to write to

the command topic at the same time), servers are isolated allowing only one server

at a time to validate and produce statements to the command topic. Once again

Kafka has been used to solve this problem, by using the transactions [81] feature.
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In a nutshell, the transactions are designed to ensure the atomicity and consistency

of message production and consumption across multiple partitions or topics.

So far, we have seen that ksqlDB is tightly integrated with Kafka, and its fault

tolerance is closely tied to Kafka’s durability and replication features. As we have

seen before, a ksqlDB server is part of a consumer group and it consumes data

from a Kafka topic. These consumers tell Kafka which messages they have read,

by committing their offsets (i.e. the position of the last record read). In order to

do so, in case of failure, the broker can command consumers where to resume the

processing. However, during stateful operations, it is relevant to keep track of the

state of the application (i.e. during an average aggregation). For instance, let us

consider the case of a materialized view. For every new incoming row, ksqlDB will

update the view and emit the row to a changelog topic (i.e. a topic that contains

the history of the changes). Kafka Streams has already implemented this type of

operation using a key/value store (RocksDB, which also Flink uses) that contains

all the valuable information about the materialized view, in this case. When a

server stops working, the new server will take over the changelog topic and will

copy the data into its own key/value store. Thus, the new server will be able to

resume the processing from the last committed offset. This style of fault tolerance

is often called cold recovery [80]. With this kind of recovery, ksqlDB can optimize

the recovery time using the concept of compacted topic [159]. In this way, a Kafka

topic is configured to keep only the last record for each key and will not grow

indefinitely.
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2.5 Materialize

Materialize is a distributed SQL database built on streaming internals. In a sim-

ilar manner to ksqlDB, this streaming datawarehouse [85] has been built for view

maintenance (i.e. materialized view) and you can use SQL to build stream pro-

cessing capabilities. The project saw the light for the first time in early 2020 as a

single binary [83] that you could run on a single node. Nowadays, the binary has

evolved into a cloud-native platform [84] with built-in horizontal scalability.

Overview

Materialize is a streaming data warehouse built on the principles of interoperabil-

ity and consistency.

Materialize lets you perform complex computations over streaming data using the

PostgreSQL language, giving you the declarativity of a SQL data warehouse, in

an almost real-time fashion, abstracting away the complexity of the underlying

streaming services. To address this, Materialize needs to be connected to the

sources of data you want to query. Subsequently, you can define materialized

views using the PostgreSQL syntax. These views could be seen as queries that

you want to repeatedly perform. Finally, you can operate over these views always

with SQL. Once you have defined the views, Materialize will continuously update

them as new data arrives. The name “streaming data warehouse” derives from the

fact that Materialize reflects data that was originally written elsewhere. Although

Materialize supports INSERT statement (in a limited way [97]), it is not designed

to be a system of record, like an OLTP database. Materialize relies on external

sources to provide data that are already ordered, for example from Apache Kafka,

AWS Kinesis, or local files.

Views are the main concept of Materialize. In classical SQL databases, views are a

way to create a named reference for a SELECT statement, making it easier to use

complex queries. In most systems, this is essentially a workaround for executing

the underlying SELECT statement without providing performance benefits. The

goal of Materialize is to provide a way to maintain views in a streaming context,
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without the need to recompute the view every time the data changes, overcoming

the limitations of traditional databases (i.e. limitations in terms of refresh rate

and supported syntax). The method designed by Materialize engineers to achieve

this goal is to leverage a powerful computational framework known as Differential

Dataflow [88].

This framework allows Materialize to react to changes in the data, and incremen-

tally update the views. Differential Dataflow is a Rust library that provides a

way to express incremental computation in a timely dataflow system. Indeed, the

Differential Dataflow library is built on top of Timely Dataflow [87], a powerful

stateful stream processing framework.

Timely Dataflow is a distributed stream processing framework, which enables the

definition of dataflow graphs of arbitrary stateful operators that receive inputs

and produce outputs. This framework takes care of scheduling, message-passing,

scaling, and advancing operators’ progress as the data changes. Despite timely

dataflow being a powerful framework, it does not provide a way to express incre-

mental computation: for this reason, it has been implemented on top of, a library

that extends the capabilities of Timely Dataflow. One of the most important Dif-

ferential Dataflow’s key design decisions is to send only data differences, making

it highly efficient. It reacts to changes, handles bursts of data, and conserves re-

sources when there are no changes. This approach enables support for arbitrary

updates and deletes in input streams.

The data structure used by Differential Dataflow is called arrangement [98]. After

the user has defined the views through SQL, Materialize will transform it into a

Differential Dataflow graph. As data flows in from the sources, the Differential

Dataflow graph will be updated, and the views will be maintained. Then, at the

moment of the user’s request, Materialize will serve the results directly from the

dataflow’s arrangements, decreasing the latency.
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Figure 2.21: Mechanism overview of Materialize’s materialized views [96]

In the Figure above 2.21, we can see a high-level overview of Materialize’s

mechanism for maintaining materialized views. In this example, we have only one

source, that continuously sends data, and a view, that encapsulates the data flow

and its arrangement.

Timely Dataflow

Timely Dataflow is a low-latency cyclic dataflow computational model, firstly in-

troduced in [86], from internal research in Microsoft, and then implemented in

[87], in Rust. The main goal of Timely Dataflow is to provide a way to express

those kinds of computations in a declarative way, without worrying about the

parallelization and distribution of the computation. This programming model

is mainly designed for distributed and parallel data processing. As reported by

[89], this dataflow could be a suitable solution for computations that can be par-

allelized/scaled (either multiple threads in a single node or multiple nodes in a

cluster), and you have a stream of data that needs to be processed as soon as they

arrive. Hypothetically, this project aims to be the solution for expressing anything

that can be parallelized. However, have some limitations especially when you do

not have to move data around [89].

What distinguishes Timely Dataflow from other dataflow models is the ability to

express much more complex computations (i.e. iterative computations, dataflow

with cycles), and a different approach to the dataflow execution strategy. This

methodology proposes to slice the dataflow up so that all workers have a view of

the entire dataflow graph and each worker is responsible for a proportional fraction

of each of the operators in the graph. In this way, workers share responsibility and

even the resources of the system.
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This concept is graphically represented in Figure 2.22.

Figure 2.22: Sharing responsibility principle in Timely Dataflow graph. As it is

possible to see, each worker has the same view of the dataflow graph, and some

workers need to communicate with each other to complete the computation.

There are two critical concepts in this architecture: timestamps and dataflow,

that bring together lead to the concept of progress. While the first two notions have

already been discussed, the last concept, progress is the ability to reason about

the completeness of the computation, using both timestamps and the dataflow

paradigm. In Timely Dataflow, what provides the correctness of the computation

is the progress tracking protocol [86].

Progress Tracking Protocol

Similarly to the watermarks, the progress tracking protocol is a way to track the

progress of the computation. A Timely Dataflow computation can be described as

a graph of operators, linked by channels. In a system (it could be also a cluster),

each worker runs an instance of the entire dataflow graph. Every instance of an

operator is in charge of a subset of the data under processing. Workers operate au-

tonomously and solely exchange information through message queues, essentially

functioning as communicating sequential processes [90]. Each worker alternately

executes the progress tracking protocol and the operator’s processing logic.

Pointstamps are the mechanism used to uniquely identify and timestamp data in

a dataflow system. It is identified as the tuple ⟨l, t⟩ where l is a location in the

dataflow and t is a timestamp.
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An operator has a variable number of input and output ports, which are locations.

Typically, the operator receives data through its input ports (target locations),

performs some processing, and produces data through its output ports (source lo-

cations). A dataflow channel is an edge from a source to a target. Internal operator

connections are edges from a target to a source, which are additionally described

by one or more summaries: the minimal increment to timestamps applied to data

processed by the operator. Throughout the processing of a dataflow graph, all the

instances must be informed of which timestamps they may still receive from their

incoming channels, to determine when they have a complete view of data associ-

ated with a certain timestamp. The progress tracking protocol tracks the system’s

pointstamps and summarizes them to one frontier per operator port. A frontier

is a lower bound on the pointstamp that may appear at the operator instance in-

puts. Progress tracking computes frontiers in two steps. A distributed component

exchanges pointstamp changes to construct an approximate, conservative view of

all the pointstamps present in the system. Workers use this global view to locally

propagate changes on the dataflow graph and update the frontiers at the operator

input ports. The combined protocol asynchronously executes these two compo-

nents [91].

Different from Flink, which continually asks operators if their output contains

certain timestamps (check whether their output contains events with timestamps

up to a certain watermark), this method reduces the amount of communication

between the system and operators.

Differential Dataflow

On top of Timely Dataflow, Materialize has built Differential Dataflow [88]. Dif-

ferential Dataflow was first created to address the problem of incremental com-

putation in a (timely) dataflow system. As we have seen in the previous section,

Timely Dataflow is a powerful computational model. However, it does not pro-

vide a way to express incremental computation. Differential Dataflow is a way to

express incremental computation in a timely dataflow system. It provides a frame-

work that specifically focuses on handling incremental updates to data, minimizing
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the amount of recomputation needed. Differential Dataflow has been designed to

work within scenarios where data changes are frequent, and it is required to update

results based on these changes. The changes are depicted as multisets of records

that store information in terms of ⟨data, time,multiplicity⟩ where data is the data

itself, time is the timestamp, and multiplicity is the number of copies. For exam-

ple, if we have a record ⟨1, 2, 3⟩, it means that we have three copies of the record 1

at time 2. The value of multiplicity could be negative, which means that we have

to remove the record from the system. This triple-indexed structure is called ar-

rangements [98], and they are used to maintain an intermediate state in memory,

grouping key-value pairs for optimal use by data consumers. Arrangements can be

shared among views, significantly enhancing the efficiency of a collection of views.

This in-memory data structure, the arrange, accepts an immutable block of data

as input and compacts them.

Architecture

Materialize’s first architecture was a single binary that you could run on a single

node. This first version comprehended the SQL client shell, the Materialize dae-

mon, and the source connectors. Figure 2.23 shows the architecture of the first

version of Materialize.

Figure 2.23: Materialize architecture [92]

Starting from the SQL Shell client, you can send SQL queries to the Materialize

daemon, defining sources and views. Although not as powerful as the SQL Shell

client, there are various library clients to interact with Materialize, such as a Java
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client libray [93]. The sources are the data sources that you want to ingest into the

system. Then, in Figure 2.24, we can see the internal structure of the Materialize

daemon.

Figure 2.24: Materialize architecture zoom [92]

The interactivity layer is provided by psql, which runs on the client side and uses

the PostgreSQL wire protocol (pgwire) to communicate with the running daemon.

After the statement has been enqueued in the command queue, a sql thread parses

the statement and transforms the definition into a differential dataflow graph by

the query engine. The dataflow, that represents the query plan, is then sent to the

dataflow layer, which is responsible for executing the query. The dataflow layer

is composed of two main components: the Differential Dataflow layer and the

Timely Dataflow layer. Those two layers are responsible for the actual execution

of the query. In particular, as soon as the data arrives, the Differential workers

will decide whether to process the new data or not, and if so, they will update the

maintained views.

The collection that is maintained by the Materialize dataflow layer, is a multiset

of records that store information in terms of ⟨data, time, diff⟩ where data is the

record update, time is the logical timestamp of the update, and diff is the change

in the number of copies of the record (i.e. -1 for a deletion, 0 for no change, and

1 for an insertion).

The data can be quickly accessed by means of an arrangement. In this situation,

the collections are indexed data to present the sequence of changes ⟨time, diff⟩
that the collection has undergone.
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State Storage

A crucial component of a streaming platform is the state storage engine. In brief,

it is an engine responsible for managing and storing the state of computations. A

state is any relevant information that needs to be retained and accessed through

time during the processing. For instance, in a stream of user events, the state

could be the number of events per user. Having a storage system of this kind is the

default choice for state management in streaming systems. However, Materialize

has a different approach, and one of the main differences between Materialize and

the other two SPSs resides here.

Materialize does not have a state storage system. In particular, does not use

RocksDB [149] as a state storage engine, as Flink and Kafka Streams (so, ksqlDB)

do. RocksDB uses a log-structured merge-tree (LSM-tree) [141] as the underlying

data structure. It supports strong isolation guarantees when performing reads and

writes, and does so during multiple concurrent readers and writers while continuing

to create (and compacting) the LSM with additional (background) threads [151].

Even though Flink allows slot sharing [150] (meaning that one core may hold

an entire pipeline of the job), Flink and ksqlDB resource management permits

dividing the available CPU cores to operators and sharding streams across a cluster

of cores. By contrast, at a glance, this minimizes data exchange between cores.

Materialize shares cores differently. Each core in a Timely Dataflow has a whole

copy of the dataflow plan, and each core has a copy of every operator (as depicted

in Figure 2.22). This, In contrast, timely dataflow cores are shared differently,

intentionally to minimize cross-core data movement at the cost of an increasing

engineering complexity on the cooperative scheduling of the cores.

Thus, Materialize has to use all the available cores to process the data and schedule

the operators. For this reason, it is not possible to use RocksDB as a state storage

engine. Indeed, the compaction phase of RocksDB would be an issue since it would

require additional background threads, and the dataflow model of Materialize does

not allow this, which means compaction happens in the foreground [152].

Differential Dataflow leverages a custom LSM-like operator called arrange. While

what the arranges are, has already been discussed in 2.5, the main point here is
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that the arranges are sharded among the workers and scheduled cooperatively like

any other operator in the dataflow, but with the trade-off of not being durable

[153]. To address the persistency issue, it has already been shown that Flink uses

the checkpoint mechanism, on the other hand, ksqlDB recreates the entire state

from the changelog topic (although it can optimize this process with compacted

topics [158]). The solution addressed by Materialize to implement persistence is to

write the raw streams to append-only files (and then replicated) [152], an approach

favorable to Materialize’s dataflow model and the principle of separating compute

from storage [154].

Materialize Cloud

In the last quarter of 2022, Materialize announced the cloud version of the platform

[84]. The cloud version is a fully managed service that provides a way to run

Materialize in the cloud. The main goal of this version is to provide a way to scale

the platform horizontally, without worrying about the infrastructure. Since the

binary version, which included all the necessary for running a Materialize node,

the cloud version has been split into three main components: the adapter, the

compute, and the storage (as shown in Figure 2.25).

Figure 2.25: Materialize cloud architecture

� Adapter: the adapter layer is still where the user interacts with the system.
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Likewise the binary version, the user can interact with the system employing

the SQL Shell client.

� Compute: the compute layer is where the core of Materialize cloud is. It

transforms and arranges timestamped inputs, allowing horizontal scaling. It

is independent from the storage layer, and thus it can be scaled indepen-

dently. Moreover, this layer introduces a new concept, called cluster that is

an independent pool of compute resources, including a standalone dataflow

process. For instance, you can have a production cluster and a development

cluster, both for different reasons, that will not interfere with each other (i.e.

they do not compete for resources). Another property of this ”cluster” is

that it is fault-tolerant, by increasing the number of replication factors of

the underlying data. Finally, you can upscale and downscale the cluster,

depending on the workload in a zero-downtime fashion.

� Storage: the storage layer is where you pull in the data, it is responsible

for data ingestion (the ownership of the data is taken) and data storing (in a

compacted form). Along with the responsibilities of the storage layer, there

is also to provide a way to durably record the data source that flows in

and apply durably timestamps to those data. Each source inside this layer is

independent of the others, and it is responsible for its data (in practice, these

are stored in Amazon S3 Storage with their Kubernetes pods). This will be

the source-of-truth for Materialize and its users. Ingestion occurs even if the

above layer Compute is busy, or inactive.

In all three layers, the interaction always involves a virtual time, that provides

consistency guarantees. Materialize cloud furnished strict serializability [94] guar-

antees, which means that the system provides the same guarantees as a single-

threaded system, through the virtual time: which timestamps all the data up-

dates that flows through the system and ensures consistency within transactions.

As stated in the bullet list above, the storage layer is responsible for assigning

virtual timestamps to the data [95].

In the figure below 2.26, we can see how the cloud version is presented to the user.
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Figure 2.26: Materialize cloud user interface.
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Chapter 3

Benchmark

With the term benchmark we usually refer to standard tools that allow the evalua-

tion and comparison of different systems, following a set of rules and metrics such

as performance, scalability, reliability, etc [1]. Both the qualitative and quantita-

tive aspects of a system can be evaluated through a benchmark. Even though we

cannot properly measure, for example, the usability or the maturity of a system,

we can still evaluate the time needed to perform a certain task or the number of

errors encountered during the development of a specific operation. Especially if

it is a company that wants to graduate a new product, it is important to have

a benchmark, and then a set of results, that takes account of all the aspects -

in particular those that are not directly related to the performance of the system

but can still affect the overall quality of the product. In this way, the company

can have a clear idea of the strengths and weaknesses of its product, and can also

compare it with the competitors.

Some of the key characteristics of a benchmark [2], which have been mostly fol-

lowed during the realization of this work, are the following:

� Repeatability: the benchmark must be repeatable so that it can be exe-

cuted multiple times and in different environments, and the results must be

consistent.

� Usability: important to avoid as much as possible the barrier of entry, so

that the benchmark can be used by a wide range of users.
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� Relevance: either we make a benchmark for a specific class of consumers or

we make it for a general purpose, the results must be relevant for the target.

This chapter aims to describe the benchmark used in this work to evaluate

the three stream processing systems. We will start by describing the state of the

art, and then we will introduce the chosen benchmark itself.

3.1 State of the art

Traditionally, workloads and benchmarks have been designed for Online Trans-

action Processing (OLTP) and Online Analytical Processing (OLAP) systems

or a combination of both. While OLTP systems focus on day-to-day operations

handling a large number of daily transactions (i.e. a system for an online

bookstore), OLAP systems are used to analyze large amounts of data to support

strategic decision-making (i.e. a system for reporting the total sales of each book

genre for the past year, broken down by quarter, to identify trends and plan

inventory). The growing importance of OLTP and OLAP systems has led to the

development of a large number of benchmarks for these systems. Particularly, the

Transaction Processing Performance Council (TPC) [106] has developed two of

the most popular benchmarks for OLTP and OLAP systems: TPC-C [100] and

TPC-H [99]. Then, the lack of hybrid benchmarks has led to the development of

CH-benCHmark [102], which combines both OLTP and OLAP workloads.

On the other hand, we found a lack of standard tools to evaluate and compare

stream processing systems. Although the popularity of stream processing systems

has grown in recent years, there are only a few benchmarks for these systems.

Linear Road [103] is one of the most popular benchmarks for stream processing

systems. It has been the first benchmark for stream processing systems. The

benchmark models a toll collection system for a metropolitan area with multiple

expressways. The benchmark defines four queries that are used to evaluate

the performance of the system. However, one of the queries explained in the

benchmark paper is skipped due to complexity. The metric measured is the
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latency of the system. The benchmark involved two stream processing systems:

Aurora and STREAM.

StreamBench [104] proposes a benchmark suite with 7 microbenchmarks (it means

7 queries) on 4 different synthetic workload suites generated from real-time we-

blogs and network traffic. The evaluation is based on three metrics (throughput,

latency, and fault tolerance) over Storm and Spark. Even though the benchmark

covers a wide range of applications, it does not provide queries with complex

typical stream processing operations such as windowing. StreamBench uses

Apache Kafka as a message broker for decoupling data generation and processing.

Nexmark is a benchmark suite for queries over continuous data streams. While

an initial draft was proposed in [69], the benchmark was later revised and

implemented with Apache Beam [101] and from an internal team at Alibaba [108].

However, in the original paper, no implementation or evaluation is provided,

although the authors defined two metrics based on throughput and latency.

The benchmark aims to evaluate the processing speed and accuracy of the stream

processing system under test. The benchmark defines 8 queries for 8 different use

cases.

Another extremely popular benchmark, that simulates an advertisement appli-

cation, is the Yahoo Streaming Benchmark [109]. Similarly to StreamBench,

this benchmark uses Apache Kafka as a message broker. Born as an informal

benchmark, it has been taken into account by many companies and research

groups. The values measured are the throughput and the latency of Storm, Spark,

and Flink. However, the benchmark has shown some inconsistencies [110] as well

as a lack of horizontal analysis: presenting only a single query in the domain of

advertisement.

In [111] it is presented a first benchmark proposal (Open Stream Processing

Benchmark) which included Kafka Streams, Spark, and Flink. Very close to other

previous benchmarks, it defines 4 workloads and uses Apache Kafka as a message

broker. The benchmark evaluated how the resources are used by the system

under test as well as the throughput and the latency. The benchmark’s domain is

between traffic and IoT. Nevertheless, the benchmark covers only partial aspects
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of stream processing systems.

DSPBench [112] offers 15 different scenarios and leaves the possibility to imple-

ment new platforms on that benchmark through a common API with the support

of (a little) documentation. This work also provides a good mix of generated

and real data. Likewise, the previous benchmark, DSPBench calculates the

throughput, the latency, and the resource utilization, furthermore, its backbone

is Apache Kafka. The benchmark has been tested on Storm and Spark.

While many benchmarks found in the literature are horizontal (meaning that

they are not designed for a specific system or a specific aspect), we found a

benchmark called SparkBench [113] that is specific to Apache Spark. It is a

framework-specific benchmark that includes four types of applications, but only

one streaming-oriented. The main goal of this benchmark is to evaluate the

performance of Apache Spark and fine-tune the system. The fine-tuning is done

also by measuring the throughput of Spark under a stream of ML-like data.

In CEPBen[114] more focus is given to the complex event processing systems.

The benchmark evaluates the latency of the whole processing pipeline and the

degree of complexity of CEP operations such as filtering and pattern matching,

during the processing of random synthetic data. The system under test is Esper

[176] and the benchmark defines three different cases while the throughput is

measured.

Then, we have RIoTBench [120], a benchmark for IoT stream processing systems.

The suite defines 27 Internet of Things tasks that can be assembled to create

micro-benchmarks. Although the project is powerful and interesting (the API

has been designed to be extensible), the current evaluation is limited to a single

platform (Apache Storm) and the tasks are strongly related to the IoT domain.

Even though the benchmark tested only Storm, the authors proposed different

metrics along with the throughput and the latency: jitter and resource utilization.

Finally, ESPBench [122] is a benchmark for evaluating distributed stream

processing systems in the enterprise context, specifically in fields like Industry 4.0

and the Internet of Things. ESPBench covers a wide range of functionalities of

SPSs and provides a set of 5 queries that can be used to evaluate the performance

52



of the system under test. Yet, the benchmark has only one metric (latency) even

though has been tested on Flink, Spark, and Hazelcast Jet.

Along with these benchmarks, we found other projects that are not properly

benchmarks but are strictly related to the topic. NAMB [119] and SPBench [123]

are two frameworks for generating benchmarks for stream processing systems.

NAMB, which means Not-only-A-Micro-Benchmark, is a benchmark suite for

stream processing systems designed for generating generic application prototypes.

Employing the definition of a simple .yaml file, NAMB can generate the code for

testing a specific platform under different scenarios. Despite this, the benchmark

is not maintained anymore and the documentation as well as the codebase is not so

clear and fresh [117]. On the other hand, SPBench is a framework for generating

custom benchmarks for stream processing systems. The goal of SPBench is to

simplify the process for programmers to develop parallel code and generate a

tailored version for benchmarking stream processing. Since many SPSs leverage

the concept of Key-Value stores, Gadget [124] wants to evaluate the performance

of these systems extremely useful for stateful operations.

In the table 3.1 we summarize the main characteristics of the benchmarks found

in the literature.
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Benchmark Queries Message Broker Domain Horizontal Metrics SPSs

Linear Road 4 - Traffic ✓ Latency Aurora, STREAM

StreamBench 7 Kafka Weblogs, Network ✓

Throughput,

Latency,

Fault tolerance

Storm, Spark

Nexmark 8 - Auctions ✓ Throughput, Latency -

Yahoo Streaming 1 Kafka Advertisement ✗ Throughput, Latency
Storm,

Spark, Flink

Open Stream

Processing
4 Kafka Traffic, IoT ✗

Throughput,

Latency,

Resource utilization

Kafka Streams,

Spark, Flink

DSPBench 15 Kafka Finance, Social ✓

Throughput,

Latency,

Resource utilization

Storm, Spark

SparkBench 1 - ML ✗ Throughput Spark

CEPBen 3 -
Random Synthetic

Events
✗ Throughput Esper

RIoTBench 27 - IoT ✓

Throughput,

Latency,

Jitter,

Resource utilization

Storm

ESPBench 5 - Industry 4.0, IoT ✓ Latency
Flink, Spark,

Hazelcast Jet

Table 3.1: Comparison of the benchmarks found in the literature. The table refers

to the content of the papers. The Nexmark row is highlighted because it is the

benchmark used in this work.

Between the benchmarks that we have analyzed in the section before, we have

chosen Nexmark [69] as the benchmark to use in our evaluation.

Throughout the phase of benchmark selection, it has been discovered that a spe-

cific benchmark for SPSs which is able to cover all the aspects of the domain and

meanwhile is widely recognized by the community does not exist. So, after gath-

ering insights from all the benchmarks, we have decided to choose Nexmark as the

benchmark reference for these reasons:

� All the benchmarks tested Apache Flink and other common stream process-

ing systems that were always the same ones. We wanted to test something

different.

� A few of them cover multiple stream processing operations such as window-

ing. Nexmark shows a good variety of queries.

54



� The whole plethora of benchmarks is not so much documented or does not

provide a real guide.

� Almost no one gives the possibility to add new platforms, nor presents a

common API for the implementation of new platforms, or has designed the

benchmark to be extensible. Since Nexmark offers fewer functionalities than

other benchmarks, it is easier to implement new platforms.

� A relatively unexplored benchmark in the existing literature. No one has

used Nexmark to evaluate the performance of a stream processing system.

� There had to be a system-agnostic platform for the whole evaluation process.

However, it could be useful to use a message broker (i.e. Apache Kafka) for

decoupling data generation from the system under test. This means using

the same data generator for all the systems.

� The system must already have a good codebase of where to start. Our initial

intention was to implement the benchmark from scratch, but we realized

that it would have taken too much time. A Nexmark implementation from

Alibaba [108] was found and used as a starting point.

� All the benchmarks are no longer maintained except Nexmark. At the time

of writing, the last commit was 5 months ago.

� As much standard as possible. This includes the use of standard and well-

established technologies but also being as close as possible to TPC levels.

One of the goals of Nexmark is to be a standard TPC-DS benchmark for

SPSs [128].

� If possible, the codebase should include at least one of the underlying tech-

nologies that we want to test. The repo used as a starting point for the

implementation of Nexmark includes Apache Flink.
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3.2 Nexmark

The benchmark [69] extends the XMark benchmark [125] to the streaming do-

main, so is intended for systems that execute queries over continuous data streams.

XMark is a standard benchmark for XML databases. It is a synthetic benchmark

that generates XML data and queries over it. The revisited version of XMark,

Nexmark, is a benchmark for stream processing systems and includes the data

model (also other data formats can be used) for streams of an online auction sys-

tem and provides a set of queries to be executed over those streams.

The team that developed Nexmark, started the project in the first years of the

2000s. The first releases of the benchmark are still available on [126]. However,

the project has been abandoned for a long time. Meanwhile, the community has

developed other Nexmark projects that are still maintained and improved. Two

versions of the benchmark are popular: the Nexmark benchmark suite developed

in Apache Beam [101] and the Nexmark implementation developed by Alibaba

[108].

Apache Beam [107] is an open-source unified programming model to define and

execute data processing pipelines, including batch and streaming processing. The

Nexmark-Beam benchmark suite implements all the data streams necessary to run

the benchmark as well as the queries. The benchmark can be executed using any

of the supported runners, such as Apache Flink and Apache Spark. The Beam

version introduced more queries than the original ones, expanding the query set

from 8 to 13.

The Nexmark implementation developed by Alibaba [108], the one used in this

work, is a Java implementation of the benchmark. The repository includes the

data generator, the queries, and the data model. Similar to the Beam version, the

Alibaba team added further queries: 8 original queries, 5 queries from the Beam

version, and 9 new queries.
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Scenario

The scenario adopted for the evaluation is that of the original paper, which is an

online auction system (e.g. eBay). Hundreds of auctions for different items are

likely happening at any given (and the same) time. New people are registering to

the system, bidding on items, and selling items. Overall, the real-time nature of

this domain allows the user to test a wide range of queries and operations.

The scenario presents three kinds of data streams passing through the system:

auctions, bids, and people. Figure 3.1 shows a representation of the scenario.

Figure 3.1: Nexmark Scenario.

The online auction system allows bidders to make bids on items put up for

auction by sellers. The system has two main actors: a seller and a bidder. The

flowchart shows that a seller can create an auction selling an item. Bidders can

then bid on the item/auction by making a bid. The diagram also shows that

multiple bidders can bid on the same item.

Metrics

In the context of benchmarking, metrics are used to perform a quantitative measure

of a particular characteristic of a system. Metrics are a critical component of a
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benchmark since they provide a standard way to evaluate and compare different

subjects.

As we have seen before, over the years, many metrics have been proposed to

evaluate many aspects of an SPS. In the case of Nexmark, the authors of the

original paper [69] suggested two metrics to evaluate the performance of the SPSs

under test. The first metric is the Input Stream Rate, which measures how fast

the system can process the input data (i.e. throughput). The second metric is

the Output Matching, which calculates a sort of processing delay introduced by

the system (i.e. latency). Ideally, the system should process the data as fast as it

arrives, introducing zero processing delay. This supposition is not realistic since

all the systems need some time to perform operations over a stream of data. Let’s

consider the following query:� �
1 SELECT bid.price

2 FROM bid

3 WHERE bid.itemid = 5192;� �
Listing 3.1: Example query.

In a context of a continuos flow of data, the query will produce a price, that

increases over time, every time a new bid is made on that specific item. The

stream of price p1, p2, p3, ..., pn will come into the system at time t1, t2, t3, ..., tn.

Then, the system will introduce a delay d1, d2, d3, ..., dn, meaning that the system

will furnish a result for the price pi at time ti+di. However, at the time ti the price

will be pi−1, meaning that there is a difference between the ideal price and the

actual price. Figure 3.2 shows a representation of the Output Matching metric.

The solid line represents the ideal system, while the dashed line represents the

actual system. The area between the two lines represents the Output Matching

metric normalized by the time.
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Figure 3.2: Output Matching metric for the example query.

Although the theoretical definition of these metrics is clear, their practical

implementation is not. The original paper does not provide any information on

how to calculate these metrics, especially the Output Matching metric. In this case,

the authors insist on the fact that the metric needs an output difference function

(that returns 0 if the result is expected and 1 otherwise) not better specified.

The only information furnished is that in their experiments, an approximation of

the Output Matching metric has been used. This approximated metric, measures

how long it takes for a relevant tuple to go through the system. While the definition

of this second manipulated metric is clearer, it is still too opaque.

By contrast, Nexmark’s Alibaba implementation [108] focused on the measuring

of resource consumption. In particular, the authors wanted to calculate the CPU

usage, during the execution of the queries, and the time needed to process the input

data. To measure the first metric, the benchmark extract the CPU usage from

every single worker node, consolidating this information in a reporter to provide a

summary.

Queries

Nexmark authors define a new class of query called Stream-In, Stream-Out queries.

These queries are continuous queries that take a stream as input, perform some

data operations, and produce a stream as output. The constant flow of data that
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characterizes these queries is perfect for testing the performance of an SPS during

the execution of a materialized view.

The benchmark defines 8 queries, with the last 4 being the most interesting ones

since they are the ones that use windowing. Although the project [108] proposes

more queries, some are from Apache Beam [101] and others have been implemented

by the authors of the project themselves, to cover more scenarios. However, in this

work, we have decided to use the original queries proposed in the paper [69].

Although all the queries are defined by the authors as Stream-In, Stream-Out

queries, we can newly classify them into two sub-categories: monitoring and an-

alytics. The first category includes queries that monitor the system and report a

piece of specific information about the current state of the system; this class in-

cludes the first three queries. Meanwhile, the analytics queries are used to extract

and analyze data from the system; this class includes the last five queries.

The queries used are practically the same as the ones proposed in the original pa-

per. The only difference is that they have been adapted to the schema used in the

implementation of the benchmark. The meaning of the queries is the same. The

queries are presented using the meta SQL-like language proposed in the original

paper, but they have been translated into SQL for each system-specific implemen-

tation. Each query will create a materialized view that will be used to answer the

query.
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Query 1 - Currency Conversion

The goal of this query is to test the parse speed of the system. Indeed, what this

query does is parse the input stream and convert the price of the bid from dollars

to euros. DOLTOEUR is a meta function that takes a price in dollars and returns

the price in euros. The query is shown in Listing 3.2.

� �
1 SELECT

2 auction ,

3 bidder ,

4 DOLTOEUR(price) AS euroPrice ,

5 entryTime ,

6 extra

7 FROM bids;� �
Listing 3.2: Nexmark query 1.

Query 2 - Selection

This query aims to test the selection speed of the system. The query filters all the

items with a specific ID. The query is shown in Listing 3.3.� �
1 SELECT auction , price

2 FROM bids

3 WHERE auction = 1007 OR auction = 1020

4 OR auction = 2001 OR auction = 2019 OR auction = 2087;� �
Listing 3.3: Nexmark query 2.

Query 3 - Local Item Suggestion

The third query wants to test the join functionality. The motivation behind this

query is to suggest to the users other items that might be of interest to them,

based on a particular category of items that are on sale near them. To obtain this

result, the query joins the auctions with the people and filters the auctions based

on the category and the location of the person. The original query filtered only
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people who lived in Oregon (OR), in this case, the query filters also people who

live in Idaho (ID) and California (CA). The query is shown in Listing 3.4.� �
1 SELECT P.name , P.city , P.state , A.id

2 FROM auctions AS A

3 JOIN people AS P ON A.seller = P.id

4 WHERE A.category = 10

5 AND (P.state = ’OR’ OR P.state = ’ID’

6 OR P.state = ’CA’);� �
Listing 3.4: Nexmark query 3.

Query 4 - Average Price for a Category

With this query, the authors want to test the aggregation functionality of the

system. The query computes the average price of all the items sold in a specific

category. The original query had an entity called ”closed auctions” that was used

to store all the auctions that had already expired. Since the schema used in this

work does not have this entity, the authors introduced a subquery that computes

the maximum price of each auction and then computes the average price of all the

auctions in a specific category. The query is shown in Listing 3.5.� �
1 SELECT Q.category , AVG(Q.final)

2 FROM (SELECT MAX(B.price) AS final , A.category

3 FROM auctions A, bids B

4 WHERE A.id = B.auction

5 AND B.entryTime BETWEEN A.entryTime AND

6 A.expirationTime

7 GROUP BY A.id, A.category) AS Q

8 GROUP BY Q.category;� �
Listing 3.5: Nexmark query 4.

62



Query 5 - Hot Items

For testing a time-based window, the authors propose this query. The original

query selects the item with the most bids in the past one-hour time period and

shows the result every minute. To make things a bit more dynamic and easier to

test, shorter windows have been proposed. Further, the query has been modified

and now shows the auctions (the item is included with the auction entity) with

the most bids in the last period. The query is shown in Listing 3.6.� �
1 SELECT A.auction

2 FROM auctions AS A [RANGE 10 SECONDS PRECEDING]

3 WHERE (SELECT COUNT(auctions.auction)

4 FROM auctions [PARTITION BY auctions.auction

5 RANGE 10 SECONDS PRECEDING ])

6 >= ALL (SELECT COUNT(auctions.auction)

7 FROM bid [PARTITION BY auctions.auction

8 RANGE 10 SECONDS PRECEDING ]);� �
Listing 3.6: Nexmark query 5.

Query 6 - Average Selling Price by Seller

Query 6 finds, for each seller, the average selling price for their last 10 auctions.

The query is shown in Listing 3.7.� �
1 SELECT A.sellerId , AVG(B.price)

2 FROM auctions AS A, bids AS B

3 WHERE A.id = B.auction

4 AND B.entryTime BETWEEN A.entryTime AND

5 A.expirationTime

6 GROUP BY A.sellerId 10 ROWS PRECEDING;� �
Listing 3.7: Nexmark query 6.

Query 7 - Highest Bid

The original query 7 calculates the highest bids at the last minute. In the version

employed, there will be used a shorter window (10 seconds) to help make testing

easier. The term FIXEDRANGE is used to indicate that the window should be

evaluated every 10 seconds instead of over a sliding 10-second window. The query

is shown in Listing 3.8.
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� �
1 SELECT B.auction , B.price

2 FROM bids AS B

3 WHERE B.price = (SELECT MAX(B1.price)

4 FROM bids AS B1 [FIXEDRANGE 10 SECONDS PRECEDING ]);� �
Listing 3.8: Nexmark query 7.

Query 8 - Monitor New Users

The last query selects all the users who have registered in the system and then

created an auction in the last period. The original Nexmark Query8 monitors the

new users in the last 12 hours, updated every 12 hours. To make things a bit more

dynamic and easier to test a shorter window (10 seconds) has been proposed. The

query is shown in Listing 3.9.� �
1 SELECT P.id , P.name

2 FROM people AS P [RANGE 10 SECONDS PRECEDING],

3 auctions AS A [RANGE 10 SECONDS PRECEDING]

4 WHERE P.id = A.seller;� �
Listing 3.9: Nexmark query 8.

The table 3.2 shows a summary evaluation of the queries’ properties, cardinal-

ity, and typology.

Query Type Output Cardinality Window

1 Monitoring 92 000 000 No

2 Monitoring 46 No

3 Monitoring 595 539 No

4 Analytics 670 No

5 Analytics 69 Yes

6 Analytics 1 369 574 Yes

7 Analytics 13 Yes

8 Analytics 830 418 Yes

Table 3.2: Nexmark queries summary.
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The cardinality is the number of events that the query will output during the

execution. This number is derived from an initial test of 100 million events with

the configuration used throughout the tests. Must be considered that, while the

number of events that the data generator will produce is exact, the query outputs

will be slightly different due to a random component of the data generator and

the input configuration submitted to the generator. This means that the output

cardinality is not exact and can vary from run to run. However, taking into

account this configuration, the cardinality is a good approximation of the number

of events that the queries will produce running multiple times the generation of

the events.
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Chapter 4

Implementation

4.1 Technologies and Development Guidelines

In order to develop good-quality software, best practices and guidelines should

be followed. Particularly, since this project is developed within the context of

the Agile Lab, the guidelines proposed by them [105] as well as the tools, were

followed. The software design guidelines defined by the company trace the vast

majority of the best practices set out in the literature. In this section, we will

describe the most important choices, in terms of tools and best practices, that

were followed during the development of the project.

Code Formatting and Analysis

Code formatting and analysis are important aspects of software development.

They help to improve the readability of the code and to detect possible errors.

To support the development process, it is possible to use tools that automatically

format the code and detect possible errors.

For the formatting and the analysis of the code, the tool used is Checkstyle [116], a

development tool capable of automatically checking the Java code for adherence to

a predefined set of rules. Most of the rules are based on [115], a generic Checkstyle

configuration that covers a broad range of coding style aspects.
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Whereas for the static analysis of the code, Spotbugs (ex- FindBugs) [118] is used.

This tool leverages static analysis to look for bugs in Java code.

TDD approach

Test-driven development (TDD) is a software development process that relies on

the principles of test-first development. The idea behind this approach is to write a

test before writing the code that should satisfy the test. More in detail, the process

is composed of three steps. During the first one phase, ”red phase”, you write a

test that fails (it must fail because the functionality is not implemented yet); then,

during the second phase, the ”green phase”, you write the minimum amount of

code to pass the test; finally, during the third phase, the ”refactor phase”, you

refactor the code to improve its design. This cycling process, red-green-refactor,

is repeated until you are not satisfied with the code. This process increases the

quality of the code and reduces the number of bugs or time spent on debugging.

The test cases are written using JUnit [127], a testing framework for Java and the

JVM. Furthermore, since the project involves the use of containerized applications,

Testcontainers [129] has been used to write integration tests. This library provides

lightweight instances of common services or anything else that can run in a Docker

container, supporting JUnit tests, and allowing to write integration tests without

needing to maintain a large number of cumbersome stubs, or mock objects.

Logging

The mechanism of logging is important to monitor the execution of the appli-

cation, and a good use of it can help to increase verifiability, observability, and

debuggability of the system.

The stack used in this case is SLF4J [131] with the Log4J setup. The first one

is an API designed for giving generic access to many logging frameworks, the sec-

ond one is a logging component that does the actual logging. Particularly, SLF4J

defines five levels of logging (from lowest severity to highest):

� TRACE: finest-grained informational events;
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� DEBUG: fine-grained informational events that are most useful to debug

an application;

� INFO: generic informational messages that highlight the progress of the

application at a coarse-grained level;

� WARN: potentially harmful situations;

� ERROR: error events that might still allow the application to continue

running.

Monitoring

With the term monitoring, we refer to the process of collecting critical metrics

about an application. It is particularly important since it helps to ensure that

everything is working as expected and to detect possible errors. Monitoring can

be done in two different ways: agent and agentless. An agent is a piece of soft-

ware that runs on the same machine as the application and collects the metrics;

the metrics are then sent to a monitoring server or an external service. On the

other hand, an agentless approach is based on the use of an external service that

collects the metrics, without the need to install an agent on the machine where

the application is running.

For this project, monitoring has covered a crucial role since it was necessary to

monitor the performance of the applications. The agent approach has been cho-

sen since it allows the collection of native metrics. The stack used is composed of

Prometheus [139] with Grafana [132], and JMX [133] for the monitoring of ksqlDB

and Materialize, whilst the monitoring of Flink has been done using its REST API.

For what concerns the monitoring of Materialize and Flink, the internal dashboard

of each system has also been used. Furthermore, JMX alone was tested for metrics

management, but it was not used in the final version of the project, due to the

lack of maintaining the historical data of ksqlDB’s metrics.

Prometheus is an open-source monitoring system that can scrape target services

with periodicity and store the metrics in a time-series database. It is often com-
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bined with Grafana, a multi-platform open-source analytics and interactive vi-

sualization web application. Grafana allows to query, visualize, alert on, and

understand metrics once they are stored.

DevOps techniques

DevOps is a set of principles and practices that aims to improve the collaboration

between the development and operations teams. The main goal of DevOps is to

shorten the systems development life cycle while delivering features, fixes, and

updates frequently. Enhancing code quality, maintaining organizational structure,

advocating for rigorous testing, and automatizing repetitive tasks are some of the

benefits of DevOps.

Version Control Administration

Version control is a system that manages changes to a project’s code over time.

It allows to track every modification made to the codebase, and it is particularly

useful when working in a team since it is a distributed system and improves the

collaboration between developers.

The correct administration of a codebase was made with a distributed version

control system called Git [138]. The hosting service of the project’s repository

is GitLab [134], a web-based DevOps lifecycle tool that provides a Git-repository

manager. The workflow used is the Feature Branch Workflow [137], to isolate

the development of new features and reduce errors. The main idea behind this

workflow is to create a new branch for each new feature and to merge it into

the main branch when the feature is completed. Contrary to the famous Gitflow

Workflow [136], this workflow does not have two main branches, but only one, the

master branch. Figure 4.1 shows the workflow employed in this project.
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Figure 4.1: Feature Branch Workflow.

Moreover, the Conventional Commits [135] specification has been used to en-

force a standard for commit messages. This specification defines a set of rules

for creating an explicit commit history, which makes it easier to write auto-

mated tools on top of it. The commit message should be structured as follows:

<type>[optional scope]: <description>. The type describes the kind of

change that this commit is providing (i.e. feat, fix, docs), the scope is op-

tional and describes the part of the codebase that has been changed, and the

description is a short description of the changes.

Build Automation

The term Build Automation, refers to the process of automating the tasks required

to build and distribute software. Fundamental part of the software development

process because it helps to reduce the time spent on repetitive tasks and to improve

the quality of the software. Along with the tasks that a build automation tool can

perform, we found: dependency management, compiling source code, packaging

the compiled code into a deployable format, running automated tests, and deploy-

ing the software to production.

One of the most established build automation tools is Gradle [142]. Gradle, which

has been adopted in this work, is an open-source build automation tool extremely

popular in the JVM ecosystem, even though it can be used with other languages.

One of the strengths of Gradle is the management of dependency. On one hand, it
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permits the management of the dependencies of the project (i.e. libraries, frame-

works) simply: you only have to specify the dependency in the build.gradle file

and Gradle will download it for you. On the other hand, can manage the depen-

dencies of the build tool itself, thanks to the Gradle Wrapper [148], which is the

recommended way to execute any Gradle build. The Gradle Wrapper is essen-

tially a program that downloads the correct Gradle distribution, defined within a

configuration file.

Continuous Integration

The software development practice of Continuous Integration (CI) involves the

integration of changes in source code into a shared repository frequently. Through

the CI process, it is possible to detect and address bugs quicker, improve software

quality, automatically run tests, and build the software. Most of the time, this

mechanism is integrated with a third-party service that automatically builds and

tests, and many other tasks, the codebase every time a change is pushed to the

repository.

From the beginning of the project, the CI process has been integrated with the

version control system. Since the service used for the hosting of the repository is

GitLab, the CI process has been implemented using GitLab CI [145]. To construct

your CI pipeline, you must create a .gitlab-ci.yml file in the root directory of

the repository. This file contains the configuration of your workflow (pipeline),

made up of jobs and stages. A job executes a specific task, such as running tests,

while a stage is a group of jobs (i.e. build, test, deploy). The Gitlab Runner [147]

is the main component of Gitlab CI architecture and it is responsible for running

the jobs in the pipeline. Runners can work either locally or in a specific container.

Another important piece of Gitlab CI is the Gitlab CI Component [146]. These

components offer the possibility to reuse a single pipeline configuration unit.

Containerization

Containerization is a software deployment process that bundles an application’s

code with all the files and libraries it needs to run on any infrastructure. The com-
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ponent that makes this possible is called container. The concept of the container

is similar to that of a virtual machine, but it is more lightweight, portable, and,

most importantly, includes all the environments needed to run a single applica-

tion. There is only one dependency for the container to run on a host machine,

the container engine. The container engine is a software capable of running and

managing containers. Another relevant aspect of containerization is the container

image. The container image is a file that includes all the dependencies and what

is needed to run the application. The container engine uses the image to create a

running instance of the container.

The containerization technology used in this project is Docker [144]. Docker is

a container engine able to run containers on most common operating systems in

a relatively simple way. To create a new (Docker) image (and consequently a

container), you have to write a Dockerfile, a script that aims to automate the

creation of the image, defining step-by-step what is needed to run the application.

Although Docker offers the possibility to create containers starting from a single

personalized image, it is not the best solution when you have to manage a large

number of containers. In this case, it is better to use an orchestration tool, such as

Docker Compose [143], which allows you to define and run multi-container Docker

applications. Likely the Dockerfile, to (un)deploy several containers, you have

to write a single declarative file, called docker-compose.yml, that specifies which

containers should be created, how, whether they should be linked to each other,

and so on.

4.2 Data modelling

The data model that we decided to use is the one of the Alibaba implementation

of Nexmark [108], which is slightly different from the original one proposed in [69].

In particular, the original schema had more entities, such as an item entity and

category, that could be collected from the auction entity since they do not add

any new information.

The schema is composed of three entities: Auction, Bid, and Person. The Auction
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entity represents a submission of a seller to sell an item. This object is likely used

to store information about the seller, the item being auctioned, the opening bid,

the reserve price, and auction start and end times. The Bid entity represents an

entered bid on an auction from a buyer (person). This object has information

about the details of the bid, such as the price and the URL, and also the reference

to the auction and the person who made the bid. The Person entity represents a

person who is either selling or bidding on an auction. This object has information

about the person, such as name and email address. The entry time represents the

time when the person registered to the system. The whole data model has been

designed to be as close as possible to the original one in a Java environment.

Figure 4.2: Nexmark Data Model.
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4.3 Data generator

The data generation process is a crucial part of the benchmark since it is necessary

to generate a large amount of data to test the performance of the system. The

data generator follows the structure of the data model, involving a generator for

each entity, as shown in Figure 4.3.

Figure 4.3: Nexmark Data Generator Main Class Diagram.

The main generator is the NexmarkGenerator, which is responsible for gen-

erating the whole dataset. The dataset is not predefined, but it is generated

on the fly, according to the parameters passed to the generator, through the

GeneratorConfig class. The GeneratorConfig class is a simple class that con-

tains the parameters needed to generate the dataset. Some relevant parameters are

the proportions of the entities in the dataset (i.e. 50% of the dataset is composed

of auctions, 25% of bids, and 25% of persons), the number of events to generate,

and the base time from which the events are generated (usually the system’s cur-

rent time). Based on the configuration imposed by the user, the generator can

create a dataset with many different characteristics. For example, it is possible

to define what is the possibility that a person creates an auction in a short time

interval, or the number of out-of-order events.

What compose the principal generator are the generators of the entities. There are

three generators, one for each entity, and each one is responsible for generating the

corresponding entity (i.e. the AuctionGenerator generates the Auction entity).

The NexmarkGenerator allows the user to define the parallelism degree of the gen-

erator itself. What happens behind the scenes is that the generator is split into

multiple sub-generators, each one responsible for generating a part of the dataset.

Along with the generator, also the GeneratorConfig is split into multiple sub-
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configurations, each one containing the parameters needed to generate a part of

the dataset. This approach allows the generator to be scalable and to generate a

large amount of data in a short time. However, the parallelism degree is limited

by the number of cores of the machine where the generator is running or the par-

allelism level of the cluster where the generator is deployed.

The temporal analysis that the data generator allows for its events, spaces between

four dimensions: the event timestamp, the adjusted timestamp, the watermark, and

the wallclock timestamp. In other words, each event has four timestamps associated

with it. The event timestamp is the timestamp of the event when it is generated

and it is monotonic. The adjusted timestamp is the timestamp of the event when

it is generated, but, depending on some configuration parameters may have jitter

(it is used to simulate out-of-order events). Then, we have the watermark, which

takes into account the jitter in the event timestamp, and the simulated wallclock

timestamp.

4.4 Pipelines Stack

The architecture of the project is composed of five main components, each of them

with a specific role in the end-to-end data processing and monitoring workflow.

The five components are:

1. Data source: is responsible for generating the dataset and it is composed of

the combination of the Nexmark data generator and a Flink job that streams

the data to the storage.

� Nexmark data generator: the data generator that creates the

dataset;

� Flink job: a Flink streaming job is responsible for streaming the data

to the storage layer, facilitating the process of the data ingestion.

2. Data storage: The data storage is the component that stores the data and

shares it with the other components. This layer is made up of a Kafka cluster,

the well-known distributed streaming platform and message broker. Kafka’s
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fault-tolerant and scalable nature ensures reliability; apart from that, Kafka

granting the possibility of decoupling the data source from the stream pro-

cessing engine, allowing the data source to be independent from the stream

processing engine. Many other similar solutions have involved the use of

Kafka as the data storage layer [104] [109] [111];

3. Data processing: this level is the key component of the architecture since

it is responsible for processing the data and generating the results. This

portion of the architecture is composed of the already mentioned stream

processing engines: ksqlDB, Flink, and Materialize.

4. Monitoring: the monitoring layer tracks the performance of the applica-

tions.

� Prometheus: monitoring toolkit that collects metrics from a source

and stores them in a time-series way;

� Grafana: analytics and interactive visualization application; it is a big

help to query, visualize, and understand metrics once gathered;

� JMX: Java Management Extensions is a Java technology that supplies

tools for managing and monitoring applications.

� Flink REST API: the REST API of Flink is used to monitor the

performance of the Flink application;

5. State storage: responsible for storing the state of the stateful operations

within the architecture. This layer is composed of RocksDB, a persistent key-

value store for fast storage. The design of this storage system (RocksDB was

primarily born for OLTP applications [155] [157]), has allowed the system

itself to be largely used for streaming applications.
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Figure 4.4 depicts the architecture of the work done.

Figure 4.4: Benchmark Architecture.

Inside the architecture of the project, there are three different pipelines, one

for each stream processing engine. Each pipeline is composed of all the five com-

ponents described above. All the scenarios involve the same data source and the

same data storage.

Flink Pipeline

The Flink-specific pipeline is composed of the Flink cluster, which executes the

stream processing, RocksDB, which stores the state of the stateful operations,

and the Flink REST API, which is used to monitor the performance of the Flink

application. The pipeline is depicted in Figure 4.5.

Figure 4.5: Flink pipeline Architecture.
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RocksDB has been chosen as the state storage system for Flink because has a

better performance during long window operations and with jobs with very large

states [156]. Moreover, preliminary tests have shown that the default state storage

system of Flink, which saves data as objects on the Java heap, is not suitable for

the scenarios of this project [160] [161]. Vice versa, RocksDB is an off-heap state

backend and uses storage.

Regarding the monitoring, the internal REST API of Flink has been used to

monitor the performance. Furthermore, also the Flink web-based interface has

been used to monitor the performance of the application and the state of the

running job.

ksqlDB Pipeline

The end-to-end path of the ksqlDB pipeline is composed of the ksqlDB cluster, in

charge of data processing, and the Prometheus and Grafana tools used to monitor

the progression of the application. Likely the Flink pipeline, the state storage

system used is RocksDB. The pipeline is depicted in Figure 4.6.

Figure 4.6: ksqlDB pipeline Architecture.

Initially, the monitoring of ksqlDB was done using the JMX metrics alone.

However, this approach was not sustainable since the metrics disappeared after

a certain amount of time after the end of the task. To avoid to craft a custom
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solution to store the metrics, the Prometheus-and-Grafana stack has been used,

with a JMX-Prometheus Java agent [175]. This approach allows the creation of

dashboards on the metrics and a proper understanding of the execution of the

application.

The state storage system used is RocksDB, the same used for Flink. The reason

behind this choice is that RocksDB is the default state storage system of ksqlDB,

and did not raise any particular problem during preliminary tests.

Materialize Pipeline

Finally, the Materialize pipeline is composed of the Materialize in-cloud solution,

assuming the role of the stream processing engine, and the just-seen mix of Grafana

and Prometheus, to analyze the status of the task. The pipeline is depicted in

Figure 4.7.

Figure 4.7: Materialize pipeline Architecture.

Materialize allows the alerting, setting threshold, and monitoring of the perfor-

mance of the application. To do so, it is possible either via the internal dashboard

or an external service such as Datadog [140] or Grafana. Eventually, both the

internal solution and the combo with Grafana and Prometheus have been tested.

As regard the internal solution, has been chosen since it is straightforward to use

and is already integrated with Materialize letting you monitor the performance of

the application without the need to install any additional software.

As stated in 2.5 Materialize uses a different approach to storing the internal state

of the activities and, to sum up, this is due to its internal dataflow model. Thus,

the state storage is not included in the pipeline since it is internal to Materialize.
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Chapter 5

Test

This chapter describes the test system and the results of the tests, created to evalu-

ate the performance of the SPSs under analysis. Both quantitative and qualitative

results are presented.

Two main quantitative tests were performed: the first one aimed to evaluate the

performance of all the SPSs under test, while the second one wanted to comprehend

the behavior of the most promising system with a higher computational power.

5.1 Quantitative results

Test Architecture

The whole test system architecture is founded on Amazon Web Services (AWS)

[162]. AWS is a comprehensive cloud computing platform provided by Amazon,

that furnishes a mixture of Iaas (i.e. Amazon EC2 [163]), PaaS (i.e. Amazon

Lambda [164]), and SaaS (i.e. Amazon WorkMail [165]) services. AWS provides

a wide range of services, from storage to computing power with a pay-as-you-go

pricing model. What concerns the test of Materialize, the already cloud service

offered by the company itself was used. The test system architecture is shown in

Figure 5.1.
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Figure 5.1: Architecture of the test system.

Amazon EC2 Cluster

Flink and ksqlDB were deployed on EC2 instances. EC2 is a service that provides

resizable computing capacity in the cloud. The ease of use and the flexibility of

the service allow to quickly scale the resourcing capacity depending on the needs.

Two different EC2 instances were used: for the first class of tests, 4 machines;

then, only for the most promising system (considering both the qualitative and
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quantitative analysis), 11 machines. For both tests, the architecture followed the

same pattern: master-slave. Thus, in the first case, there were 3 slaves and 1 mas-

ter, while in the second case, there were 10 slaves and 1 master. The master was

used to run the Flink JobManager, ksqlDB Bash client and the monitoring tools.

The slaves were used to run the Flink TaskManagers and the ksqlDB servers. This

means that the same number of workers have been used for both testing Flink and

ksqlDB. All the machines were in the same VPC (Virtual Private Cloud) [168] and

could communicate freely with each other due to a passwordless SSH authentica-

tion method.

The dimensioning of these instances was made after a preliminary test with a mini

cluster configuration and then scaled. This test wanted to evaluate the perfor-

mance of the system with a small amount of data and to find the right dimension

of the cluster. Eventually, this evaluation showed that the initial dimension was

not enough (we started from a t2.small type) and at least a m5a.large type was

needed, to run all the components required while having a good performance.

Moreover, the size of the cluster had to consider also the dimension of the Materi-

alize cloud service, which leverages a vertical scaling approach. Thus, the instances

of the cluster used were a m5a.2xlarge type, which has 8 vCPUs and 32 GB of

RAM. The OS mounted was Linux Ubuntu 22.04 LTS, which is one of the most

used OS for cloud computing. Each machine was equipped with a 100 GB EBS

[166] volume, which is a block storage service that provides storage to use with

EC2 instances. The system has been deployed in the eu-central-1 region, which

is the Frankfurt region. The Flink’s version used was 1.17.1 and the ksqlDB’s

version used was 0.29.0. Whereas the Grafana’s version used was 10.1.1 and the

Prometheus’s version used was 2.47.0. The table below 5.1 resumes what has been

said on the EC2 instances so far.
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Category Configuration

EC2 Instance

Type m5a.2xlarge

# of instances 4 (3+1) / 11 (10+1)

vCPU 8

RAM 32 GB

Storage 100 GB EBS

Environment

OS Linux Ubuntu 22.04 LTS

Region eu-central-1

Software Versions

Flink 1.17.1

ksqlDB 0.29.0

Grafana 10.1.1

Prometheus 2.47.0

Table 5.1: EC2 instances configuration

Some of Flink’s configuration parameters are shown in the table below 5.2.

Parameter Value

Memory Configuration

taskmanager.memory.process.size 28g

jobmanager.memory.process.size 24g

Task Management

taskmanager.numberOfTaskSlots 8

parallelism.default 8

State Management

state.backend rocksdb

state.backend.incremental true

state.checkpointing.interval 180000

execution.checkpointing.mode EXACTLY ONCE

Table 5.2: Flink configuration parameters
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Flink allows the definition of most of these parameters either directly in code

within your Flink job, via the flink-conf.yaml file, or through the command line

when submitting the job to the cluster. The first method overrides the other ones.

This means that if a parameter is defined in the code (or takes the parameters in

input from the command line), it will be used instead of the one defined in the

configuration file.

In Flink’s configuration, the state volume is saved on the local disk of the machine.

This is not the best solution, because if the machine fails the state is lost. In a

production environment, it is better to use persistent storage like HDFS [174] or

Amazon S3 [167].

The parameters define that per each TaskManager 8 task slots are available (the

same number of vCPUs), so the parallelism is set to 8. Overall, the cluster has

24 task slots (8 * 3) available, leading to a total parallelism of 24. This decision

implies that to avoid idle tasks, the number of partitions of the input topics must

be a multiple of 24. The same reasoning is in the second case, where the number

of machines in the cluster is raised.

ksqlDB lets you define the ksql server’s configuration parameters in the

ksql-server.properties. Several of the parameters used are shown in the table

below 5.3.

Category Configuration

ksqlDB Configuration Parameters

ksql.logging.processing.topic.auto.create true

ksql.logging.processing.stream.auto true

ksql.streams.replication.factor 3

ksql.streams.producer.acks all

ksql.internal.topic.replicas 3

ksql.internal.topic.min.insync.replicas 2

ksql.streams.num.standby.replicas 2

ksql.query.pull.enable.standby.reads true

Table 5.3: ksqlDB configuration parameters
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For better fault tolerance, the replication factor of the internal topics is set

to 3. This means that each partition of the internal topics is replicated 3 times,

across the cluster, but the cluster must have at least 3 brokers. Some other pa-

rameters concern the behavior of the ksqlDB cluster under failure. For example,

the ksql.streams.num.standby.replicas parameter defines the number of hot-

standby replicas of the internal state to maintain. Setting this parameter to a

value greater than 1 has two distinct advantages. Firstly, we will minimize the

downtime of the ksqlDB cluster in case of failure. Secondly, if the parameter

ksql.query.pull.enable.standby.reads is set to true, the standby replicas can

continue to serve pull queries while the primary replicas are unavailable.

Contrary to Flink, ksqlDB lets you define the number of partitions and replicas,

of the underlying topic of a stream/table, directly on the query.

Amazon MSK Cluster

The Kafka cluster was deployed on Amazon MSK [170] (Amazon Managed Stream-

ing for Apache Kafka). MSK is a fully managed service for Apache Kafka that

helps to provision Kafka clusters without having to manage the infrastructure.

The generated cluster was located in the same region and VPC of the EC2 cluster.

The cluster was composed of 3 brokers, the default number of brokers for an MSK

cluster which ensures high availability. Furthermore, each broker was located in a

different availability zone (so three different subnets in the same VPC), to ensure

that the cluster was resilient to the failure of a single availability zone. The broker

type used was kafka.m5.large, which has 2 vCPUs and 8 GB of RAM. This version

can handle up to 1000 partitions per broker, which is more than enough for the

tests. The amount of storage used was 200 GB, which was enough to keep all the

data generated during the tests. The version of Kafka applied was the 3.5.1, which

is one of the latest and most recommended versions.

Access management is one of the most important aspects of a cloud system. It

is necessary to grant access to the cluster only to the components that need it.

In this case, the EC2 cluster needed to access the Kafka cluster to send and read

data from it. To grant access to the cluster’s topics, an IAM policy [171] was
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created. Afterward, the policy was attached to an IAM role [169] created for the

EC2 cluster. This role was then attached to the EC2 instances. The policy was

configured to allow the EC2 cluster to perform all the actions on the Kafka cluster.

Lastly, the Materialize cluster needed to access the Kafka cluster too. However,

the Materialize cluster was not located in the same VPC of the EC2 cluster. So,

this machine accessed the Kafka cluster through a SASL/SCRAM [172] [173] au-

thentication method. This method involves the use of a username and a password,

and a symmetric key is used to authenticate the client. SCRAM uses a secured

hashing algorithm (i.e. SHA-256) and does not share credentials in plaintext over

the network (TLS encryption is used).

The table below 5.4 resumes what has been said on the MSK cluster so far, in-

cluding some of the configuration parameters of the Kafka cluster inside the MSK

cluster.

Category Configuration

MSK Cluster Configuration

MSK Broker type kafka.m5.large

# of brokers 3

# of availability zones 3

Max # of partitions 1000

vCPU 2

RAM 8 GB

Storage 200 GB

Region eu-central-1

Kafka version 3.5.1

MSK Configuration Parameters

auto.create.topics.enable true

default.replication.factor 3

min.insync.replicas 2

num.partitions 24

Table 5.4: MSK configuration
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Materialize Cloud Service

In like manner to the dimensioning study of the EC2 and MSK clusters, a pre-

liminary study was done to understand the dimensioning of the Materialize cloud

service. Again, the study was focused on the the necessity to respect the guidelines

of the resources required by each system, the willingness to test the systems in as

realistic environment as possible, the company’s budgeting available, and both

the EC2 cluster and the Materialize one had to have similar resources. This was

a challenging task because Materialize only leverages a vertical scaling approach,

differently from the other systems. So, it was necessary to consider this aspect too.

This last requirement was perhaps the most difficult one between the four factors.

In fact, on the Materialize documentation, there are only the dimensions available

(e.g. S, M, L, XL, etc.) but it is not clear how many resources each dimension

corresponds to. Eventually, the resources associated with each dimension were

understood and the Figure 5.2 shows the dimensioning of the Materialize cloud

service.

Figure 5.2: Available resources for each dimension of the Materialize cloud service.

Here is a brief explanation of each column of the table:

� size: is the nominal size of the Materialize cluster;

� processes: the number of processes in the cluster;

� workers: the number of Timely Dataflow workers per process;

� cpu nano cores: the CPU allocation per process, in billionths of a vCPU

core;

88



� memory bytes: the RAM allocation per process, in bytes;

� disk bytes: the disk allocation per process, in bytes;

� credits per hour: the number of compute credits consumed per hour.

The cluster consumes credits at a rate proportional to its size. To obtain the

final costs, the total number of consumed credits must be multiplied by a cost

factor, which varies depending on the region where the cluster is located [177].

For the tests, the region was the same as the EC2 and MSK clusters.

After carefully considering the four factors, the Materialize cluster was sized to be

a M dimension. This decision was made since it was a good compromise between

all the factors and preliminary tests showed that it was enough to run the queries.

Metrics and Workload Employed

Section 3.2 formally describes the metrics of the benchmark. However, the sec-

ond metric described in the baseline paper [69] was too vague to be implemented.

Moreover, the Output Matching metric needs to support a form of latency mea-

surement, which is not a straightforward task. Latency measures the required time

from a record entering the system to some results produced after some actions per-

formed on the record. This may be challenging to support without modifying the

original queries.

Despite concentrating the evaluation, also, on resource consumption is a good idea

[108] we did not dig into this direction. The reasons are multiple, from time con-

straints to the willingness to not expand too much the project’s scope.

Thus, the metrics utilized in this thesis are the Throughput, measured in bytes/sec-

ond and row/second, and the Duration of the processing of the queries, measured

in seconds. The throughput is determined by the number of bytes/rows consumed

by the system per second. The duration is the time passed from the submission

of the query to the system to the end of the processing of the query.

This decision was also made after confronting the metrics used in the state of the
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art. Almost all the solutions used a throughput metric. Instead, the duration as

a single metric was used only in [108], which is the starting project. Traditionally,

DBMS benchmarks measure the length of time to execute a query. Ideally, we

could not apply this scheme to data stream query systems, since the input is con-

tinuous and theoretically the queries never end. However, in this case, the queries

have a finite input, so we can measure the duration of the query.

While these two metrics are a good compromise between the complexity of the

implementation and the information provided, this choice of metrics gives us the

possibility to opt for a less common set of metrics, resulting in a unique perspec-

tive.

The workload used for the tests is shown in the table below 5.5.

Property Name Value

Event Generated 100M

Event Generated per second ∼ 200 000

Bid proportion 92%

Auction proportion 6%

Person proportion 2%

Out of order events No

Window size 10 seconds

Window slide 2 seconds

Table 5.5: Workload used for the tests

Local tests have shown that the generator can produce more than 1M events

per second. However, the bottleneck is the Kafka cluster, the network, and the

overhead of the Flink job. Due to this, the data source implemented in a Flink

Job and the real environment was able to produce roughly 200,000 events per

second.
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Preliminary Assessment

Before starting the tests, a preliminary assessment was done to understand some

aspects of the systems under test. This assessment was done for multiple reasons.

First, to understand the behavior of the systems under test with a small amount

of data and seek the right configuration parameters for each system. Second, to

ensure the quality of the translated queries. Third, we wanted to evaluate some

qualitative aspects of the systems (i.e. the ease of use, the documentation, the

quality of the Java client, etc.). While the last reason will be explored in the next

section 5.2, the first two reasons are explained here.

Firstly, we needed to choose the best way to handle the partitioning strategies. So

far, only the number of partitions of the input topics was considered. Nevertheless,

the partitioning strategy is a crucial aspect of the performance of the system. The

partitioning strategy is the way the data are assigned to the partitions of the

input topics. Kafka provides three main paths: the key-based partitioning, the

partition-number-based, and to create a custom partitioner [178]. The first way is

the most common and it is based on the key of the record. We need to specify a

key for each record during the serialization phase and, after the value is hashed,

a partition will be assigned to the record. The second possibility is to specify the

partition number directly. If neither the key nor the partition number is specified,

the record will be assigned to a random partition in a round-robin fashion. Finally,

the last way is to create a custom partitioner, which is the most flexible way but

also the most complex one. The last way was not considered since it was not

necessary for the tests, it was totally out of the scope of the thesis: it would

have required a lot of time to implement and test it. So, unless it was strictly

necessary (i.e. Kafka was a huge bottleneck for the tests), the first two ways

were considered. The key-based partitioning provides many advantages among

which automatic load balancing but less control over the partitioning; vice-versa,

the partition-number-based provides more control over the partitioning but less

automatic load balancing. After analyzing the queries, it was clear that the key-

based partitioning was the best choice. Indeed, the queries were based on the ID

of the events, so it was natural to use the ID as the key of the record. This way,
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all the events with the same ID will be assigned to the same partition, avoiding

an increasing number of shuffles. In addition, the automatic load balancing was a

great advantage that affected our choice.

The second aspect was the translation of the queries. The queries were translated

in all the SPSs under test. This task was done manually since there was not found

any tool capable of translating each query in its respective SQL dialects. During

this phase, some well-known issue was found, in almost all the SPSs. The queries

were tested with a small amount of data, in a local environment, to ensure the

correctness of the translation.

Here below a table 5.6 shows the translation of the queries in the SPSs under test.

The queries are the same as the ones described in the section 3.2, but reproduced

with the SQL slang of each SPS.

Query Name Summary Flink ksqlDB Materialize

q1 Currency Conversion
Convert each bid value

from dollars to euros.
✓ ✓ ✓

q2 Selection
Find bids with specific auction

ids and show their bid price.
✓ ✓ ✓

q3 Local Item Suggestion
Who is selling in OR, ID, or CA

in category 10, and for what auction ids?
✓ ✓ ✓

q4 Average Price for a Category
Select the average of the winning

bid prices for all auctions in each category.
✓ ✓ ✓

q5 Hot Items
Which auctions have seen the most

bids in the last period?
✓ ✗

(Not supported

due to [180])
✓

q6 Avg Selling Price by Seller

What is the average selling

price per seller for their last 10

closed auctions.

✗
(Not supported

due to [179])
✓ ✓

q7 Highest Bid
Select the bids with the highest

bid price in the last period.
✓ ✓ ✓

q8 Monitor New Users

Select people who have entered the

system and created auctions in the

last period.

✓ ✓ ✓

Table 5.6: Comparison of the queries’ support by Flink, ksqlDB, and Materialize.

The last preliminary test was to understand whether to create the Nexmark

generator using directly the Kafka Producer API [178] or Flink API. Both the

solutions have pros and cons. Either way, generators implement a checkpointing

mechanism and have been tested in a local environment in exactly once end-to-end

scenario. The producer Kafka is more flexible and can be used with any system,
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but it is more complex to implement and presents more boilerplate code than

the other solution. On the other hand, the Flink API is more integrated with

the Flink system and is easier to implement, even though not suitable for every

business case and you need to depend on Flink. The quantitative test wanted

to test speed, throughput, profiling (with VisualJVM) and resource utilization

(with JMX) during the generation of 10 million events. However, this was not

necessary since the test showed that the Kafka producer did not create all the

events, while the Flink API did, due to an error in the configuration of the

Kafka producer, related to disconnection problems. No further tests were done

to better understand the nature of the error. We believe that this would have

been an out-of-scope task. Finally, the Flink API was chosen because of its better

integration with the Flink system and its suitability for our goals.

Result Analysis

Two main tests were performed: the first one aimed to evaluate the performance of

all the SPSs under test, while the second one wanted to comprehend the behavior

of the most promising system with a higher computational power and how the

system behaves when scaled up.

The first test was aimed to evaluate the performance of all the SPSs so far presented

under the conditions described in the sections before. In each plot (figure 5.3) we

have reported in the x-axis the queries’ names, and in the y-axis the duration, the

throughput in bytes, and the throughput in rows, respectively. Each system is

represented by a different color, repeated in each plot and each query.

Since duration and throughput are inversely proportional, where the duration is

lower, the throughput is higher, and vice-versa. The results show that Flink and

ksqlDB have similar performance except for the 4th and 7th queries, where Flink

has a better performance. Materialize, in general, has a better performance than

the other two systems. While ksqlDB can push its throughput, in terms of rows,

similarly to Materialize when facing monitoring queries, gives way to Materialize

and Flink in analytical queries. A huge difference, in terms of duration, is shown
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in the 4th, 6th, and 7th materialized views, where it is clear that ksqlDB has

a worse performance, where the duration is even 10 times higher than the other

two systems. Flink’s result shows that is the most balanced system, with a good

performance in all the queries, but the most promising system, in these terms, is

Materialize.

Materialize outperforms the other two systems in almost all the queries and all the

metrics. However, the qualitative results, which are shown in section 5.2, will give

us a more complete view of the systems under test. Taking into account the results

of these tests and the qualitative results, we decided to deep dive into the Flink

system, which shows the best compromise between quantitative and qualitative

results. Furthermore, since Materialize was the best-performing system in the

first test with a great margin, we decided to increase Flink’s resources. This

was done to assess how much a well-established system must improve to surpass

the performance of a new system and to gauge the scalability of the system’s

performance.

In the second scenario, Flink was tested with a higher computational power and

compared to the first test. The plots in figure 5.3 clearly show that the goal of

the second test was achieved. In almost all the queries and all the metrics, the

performance of Flink has overcome the performance of Materialize or demonstrated

a significantly more balanced comparison. With a particular focus on the last 4

queries (except the 6th), the analytical ones with the highest complexity, the

performance of Flink is better than the performance of Materialize. It is interesting

to note that to exceed the performance of Materialize, it was necessary to add

more than 2 times the computational power, highlighting the resource-intensive

nature of optimizing Flink’s performance. Adding more computational power to

the system may enhance its performance, this leads to increased operational costs

and management overhead.

The results of both two tests are shown in the figure 5.3.
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Figure 5.3: Quantitative test results. Both two different versions of Flink are

depicted. 95



As expected, the results show that the performance of Flink has improved.

We can see that the duration of the queries has decreased, and the throughput

has increased, reaching peaks of improvement of more than 200%. The results

show that the performance of Flink is scalable, and it is possible to improve the

performance of the system by adding more computational power. However, the

improvement is not strictly linear, and the performance of the system is not pro-

portional to the computational power. This is a common behavior of distributed

systems and stream processing applications, and it is typically due to the overhead

of the communication between the nodes of the cluster or due to the skewed dis-

tribution of the key attributes used to group the input tuples. Figure 5.4 depicts

the percentage of Flink improvement from the first to the second test.
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Figure 5.4: Comparison between the results of the first and second tests of Flink.
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Query tuning

Query tuning is the process of improving the performance of a query by modifying

its structure or the way it is executed. The goal of query tuning is to reduce the

duration of the query and increase the throughput.

Since query optimization is a complex and time-consuming task, we decided to tune

the queries in case of extremely high duration or low throughput. This was the

case with ksqlDB. After the completion of Flink’s tests, it was the turn of ksqlDB.

From the result of the first query, we noticed that the duration was extremely high

compared to Flink. Thus, we decided to tune the query. After some tests, we

found that the biggest problem was the multiple deserialization for each query.

Data are pulled out from the Kafka topics in a serialized format (i.e. JSON),

and then they are deserialized in a structured format, during the execution of

the query. This process was repeated for each event in each query and produced

a huge overhead. To solve this problem, we decided to deserialize all the data

before introducing them into the queries. This way, the data were deserialized

only once, concentrating on a single phase the overhead of the deserialization and

the crafting of virtual stream/tables of ksqlDB, and the queries were able to work

with the de-structured data. The query refactor is shown in the listing 5.1.
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� �
1 CREATE OR REPLACE STREAM nexmark_q1

2 WITH(KAFKA_TOPIC=’RESULT_QUERY1 ’, FORMAT=’JSON’) AS

3 SELECT

4 actualEvent ->actualEvent ->auction AS auction ,

5 actualEvent ->actualEvent ->bidder AS bidder ,

6 actualEvent ->actualEvent ->price * 0.908 AS price ,

7 actualEvent ->actualEvent ->entryTime AS entryTime ,

8 actualEvent ->actualEvent ->extra AS extra

9 FROM bids

10 EMIT CHANGES;� �
Listing 5.1: Before Refactor� �

1 CREATE OR REPLACE STREAM nexmark_q1

2 WITH(KAFKA_TOPIC=’RESULT_QUERY1 ’, FORMAT=’JSON’) AS

3 SELECT

4 auction AS auction ,

5 bidder AS bidder ,

6 price * 0.908 AS price ,

7 entryTime AS entryTime ,

8 extra AS extra

9 FROM bids

10 EMIT CHANGES;� �
Listing 5.2: After Refactor

Listing 5.1: Example of ksqlDB query refactor.

Before completing the refactor, we tested again the performance of the first

query and the results are shown in the table below 5.7.

Metric Before After Improvement

Duration 3632s 325s -91%

Throughput (bytes) 10.4MB/s 70.4MB/s 577%

Throughput (rows) 25.33K/s 283K/s 1017%

Table 5.7: Results of the first query of ksqlDB before and after the refactor.
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5.2 Qualitative results

The qualitative analysis was done to understand the intrinsic characteristics of

the systems under test. The analysis focuses on certain aspects crucial for Agile

Lab.

The table below 5.8 summarizes the results of the qualitative analysis. Then, the

results are explained in the following sections.

Aspect Flink ksqlDB Materialize

Exactly-Once Semantics
Supports out-of-the-box

with checkpointing

Supports with

configuration

Supports towards sinks by default

(with Kafka/Redpanda)

Ease of Use

Smooth development process,

well-documented,
active community

Development process more

viscous, good documentation
but sometimes misleading,

useful docker-compose for testing

Most problematic development

process, documentation broad

but not clear/complete,
guides need improvement

SQL Dialect
Wide range of functions/operators

specific to stream processing

Limited set of functions/operators,

better integration with Kafka

Offers a wide range of

analytical functions/operators
but problematic with windowing

and complex queries

Learning Curve
Steeper learning curve initially,

smoother with experience
Gentler learning curve, intuitive interface

Gentlest learning curve initially,

steeper with complex tasks

Java Client Mature and complete Good starting point, needs improvement
Leverages PostgreSQL JDBC driver

no specific Java API
UDFs are not supported

Table 5.8: Summary of Qualitative Analysis

Exactly-Once Semantics

The first aspect was the exactly-once semantics. Due to the customers of Agile Lab,

it is crucial that the systems under test support exactly-once semantics. However,

the current state of the test does not fully support this requirement. Indeed,

to test the exactly-once semantics, we should have tested the systems under a

failure scenario, which was not possible at the moment. Nevertheless, we wanted

to test the support of this feature. While the theoretical part of the exactly-once

semantics has already been covered, we will focus on the practical part.

The first system to be tested was Flink. Flink supports exactly-once semantics

out of the box, and it is one of the most mature systems in this sense. Flink can

thus guarantee the consistency of the job as long as the checkpointing mechanism

is enabled, without worrying about the coding complexity of the application. So,
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the only thing to do is to enable and configure the checkpointing mechanism. Even

though Flink does not enable by default the checkpointing mechanism, it is possible

to enable it programmatically. An example of how to enable the checkpointing

mechanism is shown in the listing 5.2.� �
1 env.enableCheckpointing (180 _000);

2 env.getCheckpointConfig ()

3 .setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

4 env.getCheckpointConfig ()

5 .setMinPauseBetweenCheckpoints (1000);

6 env.getCheckpointConfig ()

7 .setCheckpointTimeout (180 _000);

8 env.getCheckpointConfig ()

9 .setTolerableCheckpointFailureNumber (0);

10 env.getCheckpointConfig ()

11 .setMaxConcurrentCheckpoints (1);

12 // Must restart a job from a checkpoint to avoid duplicate events

13 env.getCheckpointConfig ()

14 .setExternalizedCheckpointCleanup(CheckpointConfig

15 .ExternalizedCheckpointCleanup

16 .RETAIN_ON_CANCELLATION);� �
Listing 5.2: Example of how to enable the checkpointing mechanism in Flink.

Through Flink, it has been necessary to implement a custom source that im-

plements the possibility of recovering from a failure. In other words, the source

had to implement the CheckpointedFunction interface. The Nexmark generator

Flink source implements two methods (listing 5.3):

� �
1 void snapshotState(FunctionSnapshotContext context) throws Exception;

2 void initializeState(FunctionInitializationContext context) throws Exception;� �
Listing 5.3: Methods of the CheckpointedFunction interface.

Whenever a checkpoint is triggered, the snapshotState method is called.

Whereas, when the job is started or restarted, the initializeState method is

called.

The second system to be analyzed was ksqlDB. As we have already seen, ksqlDB

highly depends on Kafka and Kafka Streams. And, since Kafka Streams supports

both exactly-once and at-least-once semantics, ksqlDB supports them too. It

101



supports it using topics and transactions as stated in 2.4. Even though at-least-

once semantics are the default, it is possible to enable the exactly-once semantics.

All is need to do is to set the processing.guarantee="exactly once v2" in the

ksqlDB server configuration. Both the processing and sinking will be guaranteed

to be exactly-once. What distinguishes ksqlDB from Flink, is that all is perfectly

integrated with Kafka, so it is not necessary to implement a custom source or

sink because you control the full ecosystem. Whilst in Flink you might have

to integrate more systems. For example, if you are joining two streams from

two different sources, you have to ensure that both sources support exactly-once

semantics so Flink must ensure that this will be an exactly-once operation.

As with the other systems, Materialize supports exactly-once semantics. At

the time of writing, Materialize supports exactly-once semantics towards sinks,

with Kafka and Redpanda [185] by default. To achieve exactly-once semantics,

Materialize uses an additional topic that is shared among the sinks connected to

that specific Kafka cluster. Materialize primarily focuses on ensuring consistency

in data streaming systems [186]. While it emphasizes the importance of accurate

and coherent results, it explicitly mentions achieving exactly-once guarantees,

only for those systems.

So far, we have seen that all three systems support exactly-once semantics.

However, the exactly-one processing semantics is not the only thing to consider.

To achieve a real end-to-end exactly-once semantics, it is necessary to support it

throughout the entire pipeline. So not only the processing section must ensure

that, but also the source and the sink. For instance, using Kafka as a message

broker, it is necessary to configure it to have at least a replication factor of 3, to

adapt the maximum timeout of a transaction as required from the business case,

and so on. But also on the consumer side, the downstream consumer must read

only committed data and the processing of the data must be idempotent.

Although the systems under test support exactly-once semantics, it is important

to notice the pros and cons of each system. Flink supports most flexibility and

control over the exactly-once semantics and could require little to a big effort to

implement. It mostly depends on what the business case requires. Moreover, has a
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lot of compatibility with other systems, so it is possible to integrate it with a lot of

systems maintaining the delivery guarantees required. ksqlDB supports almost by

default exactly-once semantics and is perfectly integrated with Kafka: as always

this is a double-edged sword. Ultimately, Materialize supports this semantic

automatically, but, likely ksqlDB, this option is strictly related to the use of Kafka.

Ease of Use

In this section, we will analyze the ease of use of the systems under test. What we

take into account in this evaluation is the viscosity of the development process,

the quality of the documentation/community, the opacity of the SQL dialect,

and the learning curve. The analysis considers the project as a whole, from the

development to the deployment, from the point of view of a beginner in the field

of SPSs.

In this context, we define the viscosity of the development process as the resistance

to the development of the system. The viscosity is high when the development

process is slow, and the system is hard to develop due also to environmental

issues. With Flink, the entire development process was smooth and fast. Starting

from the development and the testing in local of the job, to the deployment

on the cluster, everything was well documented and easy to do. Moreover, the

community is very active. On the other hand, a mature system like Flink has

many features and configurations that could be overwhelming for a beginner.

Especially for the initial setup of the cluster, it is necessary to have a good

understanding of the system and its possible configurations. Plus, using Flink

with Kafka, is a must-have to understand Kafka and how to integrate it with

Flink. I believe that all these drawbacks can be easily overcome with a good

study of the system, and all the errors that someone may encounter, could be

supported by online resources. ksqlDB in this sense is less mature than Flink,

and the development process was more viscous. The documentation is good but

sometimes can be misleading. However, the testing phase was helped by multiple

possibilities to run ksqlDB tools. Especially the docker-compose file provided by
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Confluent was very useful for testing the system in a local environment. Some

delays were encountered during the Java client development, due to the lack

of documentation and the absence of a ready-to-use Testcontainer for ksqlDB.

Then, the deployment on the cluster was not as smooth as Flink, and it was

less straightforward than expected. Especially during the configuration phase

of the networking and monitoring, some issues were encountered. One of the

main scripts of the ksqlDB server (ksql-run-class), does not accept correctly

some environment variables related to the exposition of the metrics defined in

the ksql-server.properties and, to workaround this issue, it was necessary to

modify the script manually. A similar issue was reported in [192], so I suppose

that this is a common issue related to the setup of environmental variables in

ksqlDB. A GitHub issue needs to be opened to report this problem. Materialize,

from this point of view, is the less mature system. The development process

was the most problematic. The documentation is broad but not sufficiently clear

and complete, and sometimes wrong. In particular, the connection phase with

the MSK cluster was difficult due to multiple problems in the guide that the

Materialize team provided. At the time of writing, the guide is a work in progress,

and the team is working to improve it and make it better over time, aiming

to make the development process more frustration-free. Regardless of these

challenges with configuration and connectivity, both ksqlDB and Materialize offer

a good trade-off between the viscosity of the development process and the quality

of the documentation/community but not as good as Flink. This allows one to

reach a good level of understanding of the system in a short time and establish a

data pipeline for processing efficiently.

The opacity of the SQL dialect is the difficulty of understanding the SQL dialect

of the system. The opacity of the SQL dialect is high when the SQL dialect is

hard to understand and use. The differences between the SQL dialects of the

systems are more evident when the queries are complex. All three dialects follow

the SQL standard [193] so the base syntax is the same. However, the differences

are in the extensions and the optimizations that each system offers, considering

the nature of the system. Flink, for example, offers a wide range of functions
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and operators that are not present in the other systems and that are specifically

designed for stream processing, with a focus on windowing operations. This leads

to an easy and intuitive development of the queries, even those complex. ksqlDB,

instead, offers a more limited set of functions and operators, but with better

integration with the Kafka ecosystem (i.e. topic and partition management) and

provides greater support to pull queries. Materialize, instead, offers a wide of

analytical functions and operators with a specialization on temporal filters. It

is the system with the least powerful SQL dialect. The graphical comparison

between the queries is omitted for brevity, but it is possible to find those in the

repository of the thesis [194]. The queries in Flink are more understandable and

more readable than the other systems, and easier to develop and maintain. On

the other hand, the queries in ksqlDB and Materialize are less readable and more

complex. This is due to the lack of some windowing operations and the lack of

optimization that requires a workaround to achieve the same result. For example,

in those queries (especially in ksqlDB’s queries), we can find multiple definitions

of stream and table in the same query, which makes the query less readable and

more complex. Moreover, during the translation phase of Materialize’s queries,

we had to ask for help from the Materialize team to understand the best way to

translate the queries. Thanks to their help, we were able to understand the best

way to translate the queries otherwise we would have encountered many problems

and eventually we would have had to give up the translation. The nature of the

query in ksqlDB explains the minor efficiency of the system in the quantitative

tests. An example of the verbosity of the queries in ksqlDB is shown in the listing

5.4.
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� �
1 CREATE

2 OR REPLACE TABLE subnexmark1_q7 WITH(KAFKA_TOPIC=’SUB_RESULT1_QUERY7 ’, FORMAT=’JSON’) AS

3 SELECT TIMESTAMPTOSTRING(WINDOWSTART , ’yyyy -MM-dd HH:mm:ss’) AS window_start ,

4 TIMESTAMPTOSTRING(WINDOWEND , ’yyyy -MM-dd HH:mm:ss’) AS window_end ,

5 MAX(price) AS highest_bid ,

6 auction

7 FROM bids

8 WINDOW TUMBLING (SIZE 10 SECONDS)

9 GROUP BY auction

10 EMIT CHANGES;

11

12 CREATE

13 OR REPLACE STREAM IF NOT EXISTS subnexmark1_q7_stream (window_start VARCHAR , window_end VARCHAR , highest_bid

BIGINT) WITH (KAFKA_TOPIC=’SUB_RESULT1_QUERY7 ’, VALUE_FORMAT=’JSON’);

14

15 CREATE

16 OR REPLACE TABLE subnexmark2_q7 WITH(KAFKA_TOPIC=’SUB_RESULT2_QUERY7 ’, FORMAT=’JSON’) AS

17 SELECT window_start ,

18 window_end ,

19 TOPK(highest_bid , 1) AS highest_bid

20 FROM subnexmark1_q7_stream

21 GROUP BY window_start , window_end EMIT CHANGES;

22

23 CREATE

24 OR REPLACE STREAM IF NOT EXISTS subnexmark2_q7_stream (highest_bid ARRAY <BIGINT >) WITH (KAFKA_TOPIC=’

SUB_RESULT2_QUERY7 ’, VALUE_FORMAT=’JSON’);

25

26 CREATE

27 OR REPLACE STREAM nexmark_q7 WITH(KAFKA_TOPIC=’RESULT_QUERY7 ’, FORMAT=’JSON’) AS

28 SELECT B.auction ,

29 B.price ,

30 B.entryTime ,

31 B.bidder ,

32 B.extra

33 FROM bids AS B

34 INNER JOIN subnexmark2_q7_stream AS S WITHIN 1 HOURS GRACE PERIOD 15 MINUTES

35 ON B.price = S.highest_bid [1]

36 EMIT CHANGES;� �
Listing 5.4: Example of verbosity in a ksqlDB query.

The learning curve associated with Flink can initially become a significant

obstacle for newcomers due to the breadth of topics one needs to know before

developing a Flink application. The initial phase demands a significant invest-

ment of time and effort to comprehend its architecture, programming model, and

ecosystem. However, as developers delve deeper and gain hands-on experience,

this curve tends to smooth out, with proficiency gradually increasing over time

and this time investment paying off in the long run especially when dealing with

complex tasks. In contrast, platforms like ksqlDB and Materialize offer a gentler

learning curve, particularly when you have to manage straightforward queries.

Their intuitive interfaces (i.e. SQL-like syntax) and simplified workflows (i.e.
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abstract the complexity of the underlying systems) make it easier for beginner

developers to get started and quickly achieve basic functionality. However, as

the complexity of queries grows, also the learning curve associated with these

platforms increases. Thus, the learning path for each platform evolves based on

the complexity of the tasks that need to be accomplished.

Java Clients comparison

The third aspect was the comparison of the Java clients of the systems under test.

Even though the Java client is not the only way to interact with the systems, and

much more effort was put into the interaction through the SQL dialects, it is still

an important aspect to consider.

Initially, the idea was to test the Scala capabilities of these systems. However,

only Flink supports this language and it is deprecated from [187]. So, we decided

to switch to the Java language.

We chose Java as the main language for testing the clients for mainly two reasons.

First of all, Java is one of the most used languages in the world. Secondly, Java

is the only language supported by all three systems. While Flink supports also

Python and Materialize supports a lot more languages (essentially if a PostgreSQL

client/tool exists, can communicate with Materialize [188]), ksqlDB only supports

Java.

The tests wanted to understand the quality and the depth of the Java clients.

Initially one of the goals was also to test the support of the user-defined functions

(UDFs), but eventually, this was not possible. This was due to a time constraint

and the fact that the UDFs are not supported by all the systems. Flink and

ksqlDB support UDFs, while Materialize does not [189] (and it seems that it is

not in the roadmap).

Flink not only supports connectivity with Java, but it also provides all the nec-

essary tools to develop a streaming application through it. With Java in Flink,

is possible to manage the lifecycle of the application, from the deployment to the

monitoring. The Java client is well documented and the community is very active.
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It is important to notice that Flink supported from the beginning Java language

and it is obvious that the Java client support is wider.

ksqlDB offers a lightweight Java client, that wraps the REST API and offers an

alternative to using the REST API. The client enables many operations, such as

creating streams and tables, running push and pull queries or even listing the avail-

able topics in the Kafka cluster. A Client class accepts a ClientOptions object,

which is used to configure the client. From this class, which is the main entry point

of the client, you can use the API asynchronously or synchronously. To consume

records asynchronously, you can implement the Reactive Stream [190] subscriber

interface. The interface Subscriber<T> is a simple interface that models what

to do with the data in different situations (i.e. when the data is received, when

the data is completed, when an error occurs). Even though the client is not well

documented and still unripe under many aspects, it is a good starting point, and

combined with the REST API and the CLI, it is a powerful tool. Below a simple

example of how to use the ksqlDB Java client is shown in the listing 5.5.� �
1 // connect to the ksqlDB server

2 ClientOptions options = ClientOptions.create ()

3 .setHost(this.ksqlDBHost)

4 .setPort(this.ksqlDBPort);

5 Client client = Client.create(options);

6 .

7 .

8 // create all the streams/tables and wait for the result

9 client.executeStatement(createBidType).join();

10 .

11 .

12 // asynchronously consume the records

13 CompletableFuture <StreamedQueryResult > streamQuery =

14 client.streamQuery("SELECT * FROM bids LIMIT 10;");

15 // create a subscriber

16 NexmarkSubscriber subscriber = new NexmarkSubscriber ();

17 streamQuery

18 .thenAccept(streamedQueryResult -> {

19 streamedQueryResult.subscribe(subscriber);

20 })

21 .exceptionally(e -> {

22 throw new RuntimeException(e);

23 });� �
Listing 5.5: Essential example of how to use the ksqlDB Java client.

As said before ksqlDB, supports also the crafting of UDFs in Java; however,
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this functionality was not tested.

Materialize offers a Java client that is a wrapper around the PostgreSQL JDBC

driver. Materialize client leverage the PostgreSQL JDBC Driver [191] allowing

Java programs to connect to a PostgreSQL database using standard, database-

independent Java code. Materialize does not extend the PostgreSQL JDBC

driver, and it offers documentation on how to use it.

Overall, only the Flink-Java functionalities are mature and complete, offering a

wide range of possibilities. Notwithstanding, the ksqlDB Java client is a good

choice for those who want to use ksqlDB in a Java environment, it needs to

be improved and expanded. Materialize, instead, does not offer a specific Java

API but only encourages to use of the appropriate driver. Again, we want to

emphasize that ksqlDB and Materialize were born as SQL-first systems, so the

Java client is not the main focus of the systems, but a qualitative analysis of the

Java clients was necessary to enhance the picture of the systems under test.
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Chapter 6

Conclusions

The work presented in this thesis has been focused on a comparison between three

different stream processing systems, Apache Flink, ksqlDB and Materialize, in the

context of materialized views crafted through SQL queries. The comparison has

used a dual approach: a quantitative comparison, based on the performance of

the systems, and a qualitative comparison, based on the features of the systems.

The quantitative comparison has been carried out by means of a benchmark,

which has been developed as part of this thesis. The benchmark uses a baseline

benchmark as a starting point, Nexmark, and has been extended to support

the three systems. In order to provide extensibility, the benchmark provides a

modular generator that can be used to generate different workloads. However,

the benchmark is still in its early stages and there is still a lot of work to be done

to make it a complete tool. The quantitative trial has shown that Materialize is

the fastest system in terms of throughput and duration of the queries, followed by

Flink and ksqlDB. The qualitative test showed that, taking into account that is

also the oldest system, Flink is the most complete and flexible system. Although

Flink requires more effort to be set up, it can lead to full integration with other

systems and can be used in a wide range of use cases. Moreover, the SQL support

of Flink is more complete than the one of ksqlDB and Materialize. ksqlDB offers

a SQL interface for defining stream processing in SQL instead of coding with Java

or Scala (Java and SQL cannot be mixed in the same application, only defining
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UDF functions in Java). It is a perfect choice when a stream processing based

on Kafka need to be done, it is necessary to set up a system quickly and the

work does not require complex processing. Materialize is one of the new entries

in the stream processing domain, powered by new concepts. It is very fast and

easy to set up, especially employing the cloud version. The integration with other

systems and some other shortcomings is a bit immature but it is a very promising

system and it is worth keeping an eye on it. Yet, the results are not enough to

draw a conclusion about the best system, as the systems have different features

and are designed for different use cases. The choice of the system depends on the

specific use case and the requirements of the user, even if the performance is an

important factor to consider.

6.1 Future work

Regardless of the results obtained, there is still a lot of work to be done to make

the benchmark a complete tool. The following is a list of possible future work to

be done on the project:

� The generator supports different workloads, and could be very useful to test

the systems in different scenarios. For example, further research could be

conducted to test the systems with peak and burst data.

� The benchmark could include more tools specific to the systems that can

be easily integrated with other systems. For example, the benchmark could

include a validator to check the correctness of the results, and a metrics

exporter to export the metrics of the systems to a monitoring system.

� The project does not currently utilize UDF functions, but considering their

importance in stream processing systems, extending the benchmark to in-

clude UDFs could be valuable. To achieve this, define clear objectives, choose

a variety of UDFs for testing, and assess their performance in systems that

support them.
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� The benchmark could be extended to support more metrics, such as the

latency of the system. Still, this is a tough task, as explained in the previous

sections.

� Currently, the generator produces each time a different set of data, and

the results of the systems are not reproducible. The benchmark could be

extended to support a seed as input to the generator so that the results of

the systems are reproducible.

� As we noticed during the development of the benchmark, the fluidity of

a development process is very important. Indeed, during local testing of

ksqlDB, we noticed that the system could include a Testcontainer to speed

up the development process. Despite this is not a feature of the benchmark,

it is a very important feature to be included in ksqlDB as well as to improve

the Java client.

� The comparison between the Kafka producer generator and the Flink gener-

ator is stranded due to a connection issue in the Kafka producer generator.

A deeper analysis should be done between these two solutions to better un-

derstand the performance of these two generators. This analysis should be

based on speed, throughput, profiling, and resource utilization. This may

include a deepening of the internal metrics of Flink [197].
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