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Abstract

The control of dynamic systems is a highly complex discipline largely due to
the non-linearity of the processes involved. Over time, numerous methodologies
have been proposed to achieve efficient control, often relying on approximating
models or linearizations, which, while effective, are quite distant from direct
real-world control. This project aims to implement a new methodology that
is increasingly gaining traction today, namely the use of neural networks for
problem-solving. While dynamics that are difficult to model with standard
mathematical interpretations will still be approximated in their behavior, the
approach shifts towards approximators whose internal logic more closely resem-
bles their highly nonlinear nature incredibly increasing the possibilities. This
is due to their ability to automatically organize internal logic through learn-
ing, with inner relationships between neurons. Despite demonstrating their
efficiency, these networks are still heavily studied to understand why they are
organized in these ways.

In particular, radial basis function networks will be used, which are slightly
different from all the others and are among the best approximators of linear
and non-linear functions. This new control methodology will be based on a
composite approach, leveraging information on estimations about the states
and trajectory errors plus the implementation of a disturbance observer to tailor
more the control on the different sources of disturbance. It will be applied to a
simulation model of a UAV currently in the design and development phase by
Sky Eye Systems, a company specialized in the production of military drones,
which already boasts certifications that are difficult to obtain in the aerospace
industry.
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Glossary

• UAV = Unmanned Aerial Vehicle.

• V TOL = Vertical Take-Off and Landing.

• FW = Fixed Wing.

• COG = Center Of Gravity.

• Body centered frame of reference = Frame of reference centered in the
center of gravity of the body, the x-direction is directed to the nose of
the aircraft, the y-direction is directed to the right wing, the z-component
is perpendicular to the plane that contains the x and y direction and is
directed downward.

• NED frame of reference = Fixed frame that contains three orthogonal
axes in which the x-axis points to true North, the z-axis points towards
the interior of the Earth and the y-axis completes the right-handed system
pointing East, and the center is positioned on the earth’s surface at the
start of the flight.

• F̄b =

 Fx

Fy

Fz


b

= Forces in Body frame coordinates.

• ˙̄Vb =

 V̇x
V̇y
V̇z


b

= Accelerations in the body frame coordinates.

• ˙̄Ve =

 V̇x
V̇y
V̇z


e

= Accelerations in the inertial frame coordinates.

• ˙̄Vb =

 Vx
Vy
Vz


b

= Velocity in the body frame coordinates.

• V̄e =

 Vx
Vy
Vz


e

= Velocity in the inertial frame coordinates.

• X̄ =

 x
y
z

 = Position in the inertial frame coordinates.
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• m = Mass of the UAV.

• I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 = Inertia matrix of the UAV.

• M̄b =

 L
M
N


b

= Moments in the body frame coordinates.

• ˙̄ω =

 ṗ
q̇
ṙ

= Rate of change of body fixed angular velocity.

• ω̄ =

 p
q
r

= Body fixed angular velocity.

• ˙̄E =

 ϕ̇

θ̇

ψ̇

= Rate of change of Euler angles.

• Ē =

 ϕ
θ
ψ

= Euler angles.

• J1 =

 cos(ψ)cos(θ) sin(ϕ)sin(θ)cos(ψ)− cos(ϕ)sin(ψ) cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ)
cos(θ)sin(ψ) sin(ϕ)sin(θ)sin(ψ) + cos(ϕ)cos(ψ) cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ)

−sin(θ) sin(ϕ)cos(θ) cos(ϕ)cos(θ)


J1 = Re

b = Rotating matrix from Body fixed frame to NED frame.

• δa = Commanded angle for the aileron moving surface.

• δe = Commanded angle for the elevator moving surface.

• δr = Commanded angle for the rudder moving surface.

• δth = This term could have two different meanings depending on the
context: it could be an infinitesimal increment or it could be the command
throttle of the relative actuator.

• Ws = Wingspan of the UAV.

• MAC = Dynamic chord of the UAV.

• α = AoA = Angle of attack of the wing.

• ESC = Electronic Speed Controller.

• Rα =

 cos(α) 0 sin(α)
0 1 0

−sin(α) 0 cos(α)

 = Rotation matrix between the reference

frame of the wing and the body frame.

• IAE = Integral Time-weighted Absolute Error index.
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Chapter 1

Sky Eye Systems S.r.l.

The thesis project is carried out in collaboration with Sky Eye Systems S.r.l.
This company develops small tactical UAS weighing between 25 kg and 150
kg for civil and military applications, according to STANAG 4703, SAE.AER.
P-2-6-7, DO 178C, MIL-F-8785C norms.

1.1 X-VTOL

The novel controller would be applied to the new X-VTOL 3.6. A small un-
manned aerial vehicle (UAV) with a combined weight of approximately 50 Kg,
including the drone and payload, would execute vertical take-off and landing
using the rotor component and transition into a fixed-wing mode during the
checkpoint phase. The intended purpose, as specified by the company’s guide-
lines, is primarily for surveillance missions, equipped with radar and cameras,
or for the delivery of critical parcels. This UAV capitalizes on its ability to
operate in confined spaces for take-off and landing, as well as the endurance
and efficiency of fixed-wing flight.

Figure 1.1: X-VTOL rendering
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Figure 1.2: X-VTOL rendering, upper view

Figure 1.3: X-VTOL rendering, lateral view

Figure 1.4: X-VTOL rendering, frontal view
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Chapter 2

Simulation model

The controller has been developed as part of the thesis work and operates on a
highly accurate drone simulator. The simulator closely replicates various aspects
of the real drone, such as aerodynamics, engine models, and sensor configura-
tions. Specifically, the controller focuses on the rotor mode that works during
take-off and landing, while the FW component utilizes a previously developed
control system. This decision has been taken as a consequence of certification
challenges associated with implementing neural networks or novel approaches
for FW. Due to proprietary information restrictions, only necessary or summa-
rized data is provided in this paper. The controller is developed using Simulink
and utilizes an ode-8 solver with a fixed time-step of 0.0025 s. The chosen
time step balances the dynamics that can be observed and studied with the
computational resources required for the simulation.

2.1 General scheme

Figure 2.1: General scheme

In Figure 2.1, the general architecture of the simulator is depicted, which com-
prises multiple sections. This modular organization is commonly adopted in
engineering practices to ensure cleanliness and ease of use. Each section is ded-
icated to a specific task, as evident from the example, the sensor section (green
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box) encompasses all the sensor models or the VTOL block (light blue box)
encompasses the model of the four rotors.

2.2 Multibody block

Figure 2.2: 6 DOF block

We start with the primary element representing, to a certain extent, the dynamic
characteristics of the drone: the six degrees of freedom block. The dynamics of
the aircraft can be represented by six differential equations: three derived from
dynamics governing translations in space, and three derived from kinematics
governing rotations in space, henceforth we will refer to them respectively as
translational dynamics and rotational dynamics. This component receives forces
and moments as inputs and computes the acceleration, as well as the acceleration
about the Euler angles. It also integrates the velocity in the body frames or
the angular velocity, among other functions. Equations are the general, second-
order differential system [3]:

• Translational dynamic

F̄b = m(V̇b + ω̄ ∧ Vb) (2.1)
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Figure 2.3: Translational dynamic block

• Rotational dynamics
M̄b = I ˙̄ω + ω̄ ∧ (Iω̄) (2.2)

Figure 2.4: Rotational dynamic block

Using them we can obtain all the information about velocity, position, changes
between reference systems etc, etc. In this subsystem, there are also some blocks
that process information given by the actuators, or generally speaking, compute
all the forces and moments acting on the body. The contributions can be divided
into three parts:
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• Gravitational contribution: It is modeled the gravitational force rotated
in the body frame instantaneously through the matrix J1.

Fg = JT
1

 0
0
mg

 (2.3)

Figure 2.5: Gravity forces

• VTOL contributions: In this block, the forces and moments undergo
proper rotation. Specifically, the calculation includes the counter-rotational
components for moments and accounts for the moments resulting from dis-
tances from the COG.

– Forces

TV TOL =

4∑
i=1

 0
0
Ti

 (2.4)

– Moments

Mtransposed =

 −bcos(β) − bcos(β) bcos(β) bcos(β)
bsin(β) − bsin(β) bsin(β) − bsin(β)

0 0 0 0



T1
T2
T3
T4


(2.5)

Mreaction =

 0
0

M1 −M2 −M3 +M4

 (2.6)

MV TOL =Mtransposed +Mreaction (2.7)

Where Ti and Mi are respectively the thrusts and the moments gen-
erated by the i-th propeller, b is the distance between the center of
the propeller and the COG, β is the angle between the arm of the
rotor and the y-direction of the fixed body frame, the sign convention
is according to the contribution due to the mutual position and sense
of rotation of every propeller.
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Figure 2.6: Schematic view of the drone with the rotation directions of the
rotors

Rotor n° sgn(Mx) sgn(My) sgn(Mz)

1 - + +
2 - - -
3 + + -
4 + - +

Table 2.1: Moment contribution due to an infinitesimal increment δth on the
i-th rotor

• Moving surfaces and structure contributions: Sky Eye conducted a sig-
nificant test campaign to analyze the aerodynamic characteristics of the
model. The forces (Cx, Cy, Cz) and moments (Cl, Cm, Cn) coefficients are
crucial parameters that were thoroughly investigated. These coefficients
are computed by aggregating five different contributions, each obtained
from a lookup table containing experimental data. Notably, two of these
contributions are primarily dependent on the trim:

– Structure contribution: it is a function of the angle of attack and the
Euler rate of change.

– β contribution: function of the sideslip angle.

11



Figure 2.7: Structure of the block that computes aerodynamic coefficients

Figure 2.8: Aerodynamic contribution of the structure

The remaining three factors encompass the influence of the dynamic sur-
faces responsible of the aircraft control during forward flight. These factors
are dependent on the respective control commands, namely δa, δe, and δr,
as well as on the angle of attack. Special attention must be emphasized
as the aerodynamic drag and lift produced by the wing are inherently
included within the calculated coefficients of the elevator. It is crucial
to note that these factors persist even if the angle of attack or elevator
deflection angle (δe) are both zero.

Hereunder, the equations to obtain the actual values of the forces and moments
rotated in the body frame are reported:

• F̄ aerodynamic
b = 1

2ρ|V |2WsR
T
α

 −Cx

Cy

−Cz



12



• M̄aerodynamic
b = 1

2ρ|V |2RT
α

 Ws Cl

MAC Cm

Ws Cn


2.3 Sensors block

Figure 2.9: Sensors Block

In the depicted diagram shown in figure 2.9, all the sensors currently operating
on the UAV are simulated. Given the limited availability of information and
the necessity to filter it, caution has been exercised to incorporate only the
accessible data in the controller and excluded any surplus information that could
be obtained from the 6-DOF system, or to compute them analytically whenever
required. For instance, the VTOL controller requires the actual thrust value,
which is not obtainable without adding an additional sensor. Thus, alternative
methods are employed to overcome this issue.
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2.4 Control block

Figure 2.10: Control Block

In figure 2.10 we can see the general scheme of the control block. On the left
side, there is the high-level block and on the right side, there is the low-level.

2.4.1 High-Level control

Figure 2.11: High level control particular

Figure 2.11 is an example of a small part of the high-level control block, in partic-
ular, it gives references to both VTOL and FW during the VTOL phase. This is
the core of the control part of the UAV, which is made with the StateF low tool
supplied by Matlab. This is a way of working based on a state-machine logic.
The UAV has a series of states (for example, landing phase, waypoint follow-
ing, etc): depending on the actual position with respect to the waypoint given
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by the mission, the control switches between these states which corresponds to
different outputs given to the low-level control part.

Figure 2.12: Waypoints block

The mission to be executed by the UAV is defined by the block shown in
Figure 2.12. Each unique block contains specific waypoints that assign posi-
tions or velocities to be reached, providing information to the high-level control
module.

2.4.2 Low-level control

The low-level control subsystem is partitioned into two sections: one responsible
for controlling the FW portion, which manages the main rotor on the rear,
control surfaces, and front electric motor; the other section comprising the novel
control mechanism developed for the VTOL part gives reference throttles to the
four rotors. The FW control mechanism adopts a widely used standard concept
known as cascade PIDs, which processes information obtained from sensors,
while the desired references are provided by the high-level control module. This
FW control section has already been calibrated using a particle swarm algorithm
available in Matlab [1].
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Figure 2.13: Particular of the low-level control-Moving surfaces control

On the other hand, further discussion on the VTOL controller will be pro-
vided later, but, in general, it receives input from the high-level control module
and provides reference signals to the four actuators.

2.5 VTOL block

Figure 2.14: VTOL actuators block

Within this block, components parallel to the rotation axis are extracted, since
it enables the possibility to simulate pitched or tilted rotors set up, alongside
modeling of the actuators. The UAV features four propellers for the VTOL
segment, as depicted in Figure 2.6, which also illustrates the rotation direc-
tion of the blades. Each actuator comprises a battery, an electric motor, and
a propeller, with the outputs being thrusts and moments generated by each
propeller.
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• The battery model is an integral aspect of the thesis, as it involves con-
structing a discharge model based on test data obtained from discharging
a real battery at various constant currents. This process results in the
creation of an interpolant surface from the obtained curve. The model
utilizes LIPO batteries configured with 2 banks in parallel of 6 cells in
series, with a maximum voltage of 50.4 V. The model employs 2D lookup
tables, wherein the instantaneous state of charge and the actual current
flow, normalized by the nominal current per cell in parallel, serve as inputs,
while the output provides the actual voltage.

Figure 2.15: Battery model

• The electric motors currently employed in the model are of the Brushless
type. These motors are also utilized in Section 2.6 for the frontal propeller,
albeit with varying sizes. Generally, they are modeled using the following
system of two differential equations:

Lİm +RIm +Keωm = V (2.8)

KtIm = Jmω̇m +Kdωm − Text (2.9)

In the provided equations, Im represents the current, R denotes the in-
ternal resistance of the motor, L signifies the inductance, V indicates the
voltage, Jm represents the inertia of the motor in addition to the inertia
of the rotor, and Kt, Kd, and Ke denote constants either provided by the
manufacturer or computed utilizing real test data. This model accepts as
input the actual voltage delivered by the battery and the throttle com-
manded by the control system as this motor is voltage-controlled. The
output corresponds to the angular velocity of the shaft. Since a motor of
this type needs an ESC this is modeled through a transfer function:

δV

δu
=

1

0.166s+ 1
(2.10)

Figure 2.16: Brushless electric motor model
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• The thrust and moments produced by the propellers are derived from
experimental tests and manufacturer-provided datasheets. The VTOL
blades have dimensions of 24x13 [inch] and typically provide a thrust of
300 N in hovering conditions at the maximum power. Additionally, a
scaling factor due to the advance ratio, J, is incorporated into the model;

J =
TAS

RPM
60 D

(2.11)

RPM [ roundsmin ] is the angular velocity of the electric motor shaft connected
to the propeller and D [m] is the propeller diameter. The thrust, T [N ],
and the torque, M [Nm], are computed:

T = D4ρω2Ct(J, ω) (2.12)

M =
D5ω3ρCp(ω)

ω[ rads ]
(2.13)

Where ρ [Kg
m3 ] is the actual air density and the Ct [], thrust coefficient and

Cp [], power coefficient that are stored in look-up tables.

Figure 2.17: Propeller model

2.6 Motors group block

This block encompasses the modeling of motors utilized for the fixed-wing seg-
ment. The frontal motor is modeled similarly to the electric one employed in
the UAV. Sky Eye sought to assess the impact of employing a counter-rotating
motor during the transition from fixed-wing to VTOL, aiming to decelerate the
UAV with negative thrust. Conversely, the combustion engine serves as the
primary source of thrust in the fixed-wing mode. It comprises four components:
the engine itself, a generator, a gearbox, and a propeller. Additionally, the
generator powers add-ons such as cameras, infrared (IR) equipment, or other
necessary components for the application, receive power from the engine.
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Figure 2.18: Combustion engine model
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Chapter 3

VTOL Controller

The challenges posed by nonlinearity in dynamic systems are well recognized,
presenting inherent obstacles to the implementation of effective control strate-
gies. Presently, the predominant control systems effectively deployed rely on
PID logic, as regulations and certification standards exhibit reluctance towards
adopting new strategies in real-world applications. The aim of this thesis is
to introduce a novel approach for addressing nonlinearity by utilizing neural
networks for estimation. Additionally, the thesis aims to propose a controller
designed for the previously described near-real simulator, specifically targeting
control of the VTOL component. This approach was chosen because the use
of innovative methodologies for this flight segment is more likely to achieve
certifications.

3.1 Problem formulation

Figure 3.1: VTOL controller which includes the tuning parameters scheduling,
the inner loop and the outer loop

The entire control system is based on the assumption that the aircraft could be
modeled with a second-order system in the form:

..
χ= F (χ, u) +B(χ) + ∆(χ, u) +D(t) (3.1)

In this context, we denote χ as the system states, u as the inputs, and ∆
as a term addressing nonlinearity arising from unmodeled dynamics or model
inaccuracies. Additionally, D represents uncertainties that vary with time, such
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as disturbances originating from wind. This categorization into two sources
of errors requiring estimation stems from the need to simplify the modeling of
neural networks. Designing neural networks with time-dependent characteristics
is challenging, as achieving convergence with time-dependent weight matrices
or structures is cumbersome. In particular we can identify two subsystems: one
that refers to the rotational dynamics:

..

Ē= Frot(χ, u) +Brot(χ)u+∆(χ, u) +D(t) (3.2)

The second subsystem instead refers to the translational dynamics:

˙̄
bV = Ftrans(χ, u) +Btrans(χ)u+∆(χ, u) +D(t) (3.3)

Collectively, these elements form a system of six nonlinear equations, but
this method could be applied to every dynamic system. The structure of these
equations is presented in Appendix A for the F (χ) and B(χ) parts, specializing
them for this case.

The VTOL controller functions as an autopilot, tasked with guiding the air-
craft to follow references provided by the high-level control system or trajectory
commands issued by the operator. Its output comprises throttle commands or
the thrusts needed.

The main structure of the controller is depicted in Picture 3.1. It consists
of an Outer Loop responsible for position control, where references in xd1 =
[xd yd]

T are transformed into references of x̄d2 = [ϕd θd], used in the inner
loop, which governs faster variables, with references denoted as xd2 = [x̄d2 ψd

zd][2][12].

3.2 Outer loop

Figure 3.2: Outer loop of the VTOL controller

The outer loop implies a simple inversion law to compute the references [4].

Starting from F = m
..

X̄, we obtain that:

J1

 0
0∑4

i=1 Ti

 = m

 ..
x
..
y
..
z

 (3.4)

Taking the first two components of this equation:[
cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ)
cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ)

] 4∑
i=1

Ti = m

[ ..
x
..
y

]
(3.5)
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With some mathematical passages:[
cos(ϕd)sin(θd)
sin(ϕd)

]
= −

∑4
i=1 Ti
m

[
cos(ψ) sin(ψ)
sin(ψ) −cos(ψ)

] [ ..
xd
..
yd

]
(3.6)

As evident from the schematic representation 3.2, this section employs sev-
eral PID controllers that account for errors arising from trajectory and velocity
discrepancies. Within this loop, computations are performed to determine the
desired first and second derivatives with respect to x̄2d, as they are essential for
the inner loop operations. The mathematical expressions derived from the time
differentiation of equations 3.6 are presented:

ϕ̇d =
m∑4
i=1 Ti

yiiid

cos(ϕd)
(3.7)

θ̇d = (− m∑4
i=1 Ti

xiiid + ϕ̇dsin(ϕd)sin(θd))
1

cos(ϕd)cos(θd)
(3.8)

..

ϕd= (
m∑4
i=1 Ti

yivd + ϕ̇2dsin(ϕd))
1

cos(ϕd)
(3.9)

..

θd= (
m∑4
i=1 Ti

....
x d −

..

ϕd sin(ϕd)sin(θd)− ϕ̇2dcos(ϕd)sin(θd)−

−2ϕ̇dθ̇dsin(ϕd)cos(θd)− θ̇2dcos(ϕd)sin(θd))
1

−cos(ϕd)cos(θd)

(3.10)

3.3 Inner Loop

This section constitutes the foundational aspect of the research, employing
various mathematical tools and methodologies to develop a robust controller.
Within this chapter, we will provide a concise overview of essential mathematical
fundamentals and the overall structure utilized in the development process.

Figure 3.3: Inner loop of the VTOL controller
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3.3.1 Radial Basis Functions

The decision to utilize Radial Basis Function Neural Networks (RBFNN), hence-
forth referred to as RBFNN, arises from the requirement to procure a swift and
dependable approximator for nonlinear contribution functions [5]. These neural
networks emerged as a solution to the imperative of simulating the process-
ing capabilities of biological systems. RBFNNs acquire knowledge directly from
data, making their training process considerably less arduous compared to other
renowned neural networks. The typical structure of an RBFNN neuron is as
follows:

Figure 3.4: Single RBF neuron

They possess a unique structure compared to other well-known neural net-
work architectures, notably the simple perceptron. In picture 3.4, a single neu-
ron is presented for simplicity, although it is straightforward to extend to a
complete network, with the general scheme presented later. Upon examination,
two main distinctions from conventional neural networks emerge: inputs are
not directly multiplied by weights and added to the bias; rather, is computed
the distance from the weights and then multiplied by the bias. Consequently,
the actual input for the first layer is (In subscript indicates to which layer the
formula belongs):

n1 = ||p− w||1b1 (3.11)

Many types of transfer functions could be chosen, in this particular case gaussian
3.5 is utilized:

a = e−n2

(3.12)

Figure 3.5: Gaussian transfer function

Traducing in a simpler way the weight is the center of the Gaussian instead
the bias is the scaling factor for the input. On the other end, the second layer,
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called linear as well, is standard:

a2 =W 2a1 + b2 (3.13)

Generalizing to a network, each set of inputs is subtracted from the row of
weights, which becomes the center of different Gaussians, scaled by the biases.
Consequently, RBFNNs comprise two layers, and the training algorithm pri-
marily focuses on determining the optimal number of neurons, the positions of
the centers, and the spread for Gaussian transfer functions. Implementing an
RBFNN in the control system involves utilizing the Feedback Error Learning
technique, simplifying the controller significantly. The NNs contribute to sta-
bility, supported by Lyapunov theory[8]. To further enhance stability, a distur-
bance observer coupled with a state observer is employed, reflecting a composite
learning methodology approach.

3.3.2 State observer

The primary role of a state observer [6] is to deduce variables that otherwise are
unmeasurable, serving a multitude of applications. Initially, it was discovered
that a more precise estimation could be achieved by integrating more accurate
information into the observer. This encompasses understanding noise and dis-
turbances, which are characterized by deterministic, differential, polynomial,
bounded, and stochastic descriptions, in this case, these informations comes
from the disturbance observer and the neural network. In this controller, a
Luenberg observer, in the input-output-based observer (IOBO) formulation, is
implemented. It could be summarized as follows:

ẋ = Ax+Bu
y = Cx

(3.14)

IOBO : (u, y,A,B,C) → (x̂) (3.15)

˙̂x = Ax̂+Bu+ L(y − Cx̂) (3.16)

Given that the estimate is circulated back through the estimator, it is fre-
quently referred to as a Closed Loop Observer. The primary advantage of the
IOBO lies in its capability to utilize both input and output data, along with
plant information, to minimize noise and phase lag without requiring knowledge
of initial conditions.

3.3.3 Control algorithm

Recalling the affine form of the dynamic system, presented in Appendix A we
can see that we have to consider only a reduced system and not all the six
differential equations. In particular in the inner loop the F (χ) vector and the
B(χ) matrix are composed of the complete structure of rotational dynamics and
the third row of translational dynamics. We define the trajectory tracking error
as:

e = x2 − xd2 (3.17)

A filtered tracking error is introduced and its first derivative:

s = ė+ λe+ λ1

∫
edt (3.18)
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ṡ =
..
e +λė+ λ1e (3.19)

Upon examination of s, we observe its resemblance to the structure of a PID
controller and we can consider it a generalization thereof. Here, λ and λ1 are
square matrices that serve as tuning parameters. It is imperative that these
matrices must be definite positive but not necessarily diagonal. Introducing off-
trace elements in λ and λ1 induces a form of coupling between the dynamics,
inherently amplifying the challenges associated with tuning. Introducing the
observed state x̂2 and defining the estimation error as:

ed = x̂2 − x2 (3.20)

It is possible to introduce a filtered estimation error and its first derivative:

sd = ėd + λed + λ1

∫
eddt (3.21)

ṡd =
..
ed +λėd + λ1ed (3.22)

Since ∆ is not known is approximated with the RBFNN and could be formulated
as:

∆ =W ∗Tµ(χ) + ϵ (3.23)

W ∗ is the optimal weight matrix, µ is the vector of basis functions and ϵ is
the approximation bounded error, as ||ϵ|| ≤ ϵmax. We define the variables with
the hat as the approximations of the respective variable, for example for ∆ the
approximation made by the NN is:

∆̂ = ŴTµ(χ, u) (3.24)

In this controller is adopted the methodology of normalizing the inputs, so every
input variable is divided by the maximum value that could assume, knowing the
general mission properties. The state observer is introduced by implementing
the following state space model:

.̂.
x = F (χ) +B(χ)u+ ∆̂(χ, u) + D̂(t)− k1sd − λėd − λ1ed (3.25)

D̂ is the approximation, computed by the disturbance observer lately presented:

D̂(t) = D(t) + ϵ (3.26)

With all the previous information we could construct the control command:

u = B(χ)−1[
..
xd −λė− λ1e− k1s− F (χ)− ∆̂− D̂] (3.27)

Some considerations must be made:

• Typically, aircrafts with a single rotor are considered under-actuated sys-
tems since dim(u) < dim(x), where x represents the states controlled in
the inner loop. However, in the case of a quadrotor employing this type of
control, the system becomes squared. With four controlled variables x2 =
[ϕ θ ψ z] and four inputs u = [T1 T2 T3 T4], we have dim(x2) = dim(u).
This presents an advantage as B(χ) results in a square matrix. Conse-
quently, there are fewer complications if dynamic inversion were to be
chosen as a possible approach. However, dynamic inversion is not selected
at this moment, since we want a condition where the basic information
are known.

25



• F (χ) and B(χ), in this scenario, have been linearized under near-hovering
conditions. This represents the worst-case scenario, as it provides mini-
mal insight into the system, except for basic information such as mass and
inertia matrices, which are readily available once the drone’s design is fi-
nalized. This decision places a heavier burden on the RFBNN, as it must
approximate numerous nonlinearities. However, the effectiveness of re-
jecting these nonlinearities will be evaluated. The choice of near-hovering
conditions over pure hovering was made to preserve all relationships and
couplings between variables that would be lost in pure hovering. The
linearization conditions are outlined below:

ϕ = 0.1
θ = 0.1

ϕ̇ = 0.1

θ̇ = 0.1

ψ̇ = 0.1

(3.28)

To obtain some information about the updating law of the NN we must study
the stability of the system. But before some relationships are needed, so start-
ing from the first derivative of the tracking error 3.19 and substituting the
commanded input 3.27 we obtain:

ṡ =
..
x − ..

xd +λė+ λ1e (3.29)

ṡ = F (χ) +B(χ)u+∆+D− ..
xd +λė+ λ1e (3.30)

ṡ = F (χ) +B(χ)[B(χ)−1(
..
xd −λė− λ1e− k1s− F (χ)− ∆̂− D̂)]+

+∆+D− ..
xd +λė+ λ1e

(3.31)

ṡ = −(k1s+ ∆̄ + D̄) (3.32)

Where D̄ = D̂ −D and W̄ = Ŵ −W has been defined. Instead for the filtered
estimation error similarly:

ṡd =
..
ed +λėd + λ1ed (3.33)

ṡd =
.̂.
x− ..

x +λėd + λ1ed (3.34)

ṡd = F (χ) +B(χ)u+ ∆̂(χ, u) + D̂(t)− k1sd − λėd − λ1ed−
−(F (χ) +B(χ)u+∆(χ, u) +D(t)) + λėd + λ1ed

(3.35)

ṡd = −(k1sd − ∆̄− D̄) (3.36)

The instrument adopted to study stability is a Lyanupov function (appendix B
reports some information about Lyanupov stability theory) formulated as:

V =
1

2
[sT k2s+ sTd k3sd + D̄T D̄ + tr(W̄TΓW̄ )] (3.37)

Where k2, k3 positive definite matrices, Γ learning rate of the NN ( is a parame-
ter that determines how fast NN learns from input). The first derivative of 3.37
is:

V̇ = k2s
T (−k1s− W̄Tµ− D̄) + k3s

T
d (−ksd + W̄Tµ+ D̄)+

+tr(W̄TΓ−1 ˙̄W ) + D̄T (
˙̂
D − Ḋ)

(3.38)
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With Making the assumption ˙̄W =
˙̂
W could be proven the uniform stability

condition guaranteed by the two sequent updating laws:

˙̂
W = Γ[µ(k2s

T − k3s
T
d )− σW Ŵ ] (3.39)

˙̂
D = (k2s− k3sd)− k4(ṡd + k1sd) (3.40)

The term σwŴ represents the so-called σ-modification [7], this therm in-
troduces inertia so the weight is influenced by the value of the previous com-
puted, this technique enables significant robustness and speed of adaptation
of the weights of the neural networks, preventing uncontrolled growth with-
out bounds. Below is the code to implement an RBFNN with the previously
proposed updating law:

function [Delta 2,W dot cap] = fcn(chi,s,sd,Gamma 2,k2,k3,W cap)

U max=[chi max];
U norm=([chi]./U max)';

center=-1+2*rand(50,8);
[n,¬]=size(center);mu=zeros(n,1);
center=center';
width=1.2+4*rand(1,50);
for i=1:n

mu(i)=exp(-norm(U norm-center(1:end,i))ˆ2/width(i));
end
W dot cap=Gamma 2*(mu*(k2*s-k3*sd)');
Delta 2=W cap'*mu;

Using equation 3.36, we can eliminate the need to compute ṡd, in the disturbance
observer formula 3.40 as follows:

ṡd + k1sd = W̄Tµ+ D̄ (3.41)

˙̂
D = (k2s− k3sd)− k4(W̄

Tµ+ D̄) (3.42)

A minor observation regarding the reference model is warranted, as the com-
mand provided by this model to the 6-DOF block is a thrust, assuming linearity
in the dependency of moments on this input. However, this assumption does
not always hold true, and only an actuator model can provide accurate values.
The actuator model requires a command in throttle, which is derived by nor-
malizing the thrust command by the maximum achievable value (e.g., 300N)
and the maximum voltage supplied by the battery to the electric motor.

3.3.4 Particle swarm algorithm

The control system requires numerous tuning parameters to function effectively.
From one perspective, this provides the operator with extensive control over the
process being regulated. However, finding a tuning combination that ensures the
proper functioning of the control system can be quite challenging. It has been
observed during numerous tests that the tuning parameters must be adjusted
according to the given references. Different parameter values are required if
the references are fixed angles or a continuous trajectory. A brief overview is
provided on the parameters within the system and their respective influences:
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• λ = Influences the contribution of the proportional term of the filtered
variable.

• λ1 = Influences the contribution of the integral term of the filtered vari-
able.

• k1 = In general, governs the contribution of the filtered variable s inside
the control law and is needed for stability.

• k2 = In general, governs the contribution of the filtered variable s to the
updating laws of the disturbance observer and the neural network and is
needed for stability.

• k3 = In general, governs the contribution of the filtered variable sd to the
updating laws of the disturbance observer and the neural network and is
needed for stability.

• k4 = In general, governs the contribution of the term ∆̂+D̂ in the updating
law of the disturbance observer and is needed for stability.

• Tuning parameters about the PIDs inside the outer loop, they contribute
to the various derivative, proportional, and integral contributions

• Γ = Learning rate of the RNBFNN.

• σw = σ modification term.

The last two tuning parameters, along with the number of neurons, are
crucial for ensuring the proper behavior of the RBFNN. It is acknowledged that
the primary influence on the behavior of ed stems from the k-th terms. Thus,
effective tuning should aim to minimize these terms, ensuring the disturbance
observer functions appropriately, instead the tracking error is more influenced
by the lambdas therms.

Tuning all these parameters simultaneously can be a laborious task due
to the numerous variables involved. Therefore, an optimization technique is
chosen to streamline this process. The main aspects of the Particle Swarm
Optimization (PSO) algorithm are outlined below, along with the code utilized.
It is noteworthy that an handwritten code is preferred over built-in code for
implementation.

Theory

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm that
functions within a population-based framework, drawing inspiration from the
intelligent collective behaviors observed in certain animal groups such as bird
flocks or fish schools. PSO simulates the social behaviors exhibited by various
animals, including insects, herds, birds, and fish. These swarms demonstrate
cooperative behaviors aimed at locating food sources, with individual members
dynamically adjusting their search patterns based on their own learning expe-
riences and those of other swarm members. By studying the behaviors of social
animals within the context of artificial life theory, researchers aim to develop
strategies for constructing artificial swarms capable of efficient problem-solving.

Several fundamental principles are considered, as referenced in [10]:
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1. Proximity: the swarm should be able to carry out simple space and time
computations.

2. Quality: the swarm should be able to sense the quality change in the
environment and respond to it.

3. Diverse response: the swarm should not limit its way to get the resources
in a narrow scope.

4. Stability: the swarm should not change its behavior mode with every
environmental change.

5. Adaptability: the swarm should change its behavior mode when this
change is worthy.

In Particle Swarm Optimization (PSO), particles possess the capability to
dynamically adjust their positions and velocities in response to environmental
changes, thereby fulfilling the requirements for proximity and quality. More-
over, the PSO swarm operates without constraining its movement, instead con-
tinuously exploring the feasible solution space in pursuit of the optimal solu-
tion. Particles within the PSO system maintain a consistent movement pattern
within the search space while also adapting their movement mode to accommo-
date environmental changes. Consequently, particle swarm systems adhere to
the aforementioned five principles.

The PSO algorithm constitutes a searching process based on swarm intelli-
gence, wherein each entity is termed a particle. Defined as a potential solution
within the D-dimensional search space, each particle can store information re-
garding both the optimal positions of the entire swarm and its own, alongside
its velocity. During each generation, the collective information of particles is
amalgamated to adjust the velocity of each dimension, facilitating the computa-
tion of the particle’s new position. Particles undergo continuous state changes
within the multi-dimensional search space until achieve an equilibrium, an opti-
mal state, or surpass computational limits. The introduction of objective func-
tions establishes a unique linkage among the various dimensions of the problem
space. Numerous empirical studies have demonstrated the effectiveness of this
algorithm as an optimization tool.

Algorithm

The main flowchart is presented:
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Figure 3.6: PSO flowchart

PSO can be described as follows: assume that swarm size is N , each position
and velocity particle’s vector in D-dimensional space are respectively:

Xi = (x1i , x
2
i ,−, xdi ,−, xDi ) (3.43)

,
Vi = (v1i , v

2
i ,−, vdi ,−, vDi ) (3.44)

Individual’s optimal position vector is;

Pi = (p1i , p
2
i ,−, pdi ,−, pDi ) (3.45)

Swarm’s optimal position, the optimal position that any individual in this swarm
has experienced) is represented as

Pg = (p1g, p
2
g,−, pdg,−, pDg ) (3.46)

Considering the minimizing problem as an example, updating formula of the
individual’s optimal position is:

pdi,t+1 =

[
xdi,t+1 if f(Xi,t+1) < f(Pi, t)
pdi,t otherwise

(3.47)

The swarm’s optimal position is that of all the individuals optimal positions.
Update formula of velocity and position is denoted as respectively, using the
inertia term,ω formulation:

vdi,t+1 = ωvdi,t + c1rand(pdi,t − xdi,t) + c2rand(pdg,t − xdi,t) (3.48)

In the PSO algorithm, two distinct versions exist: the global version and the
local version. In the global version, particles track two extremes: their own
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optimal position (pbest) and the optimal position of the entire swarm (gbest).
Conversely, in the local version, particles, in addition to tracking their own
optimal position (pbest), monitor the optimal positions of all particles within
their topological neighborhood, termed nbest.

Examining the velocity update formula from a sociological perspective re-
veals its components. The first component reflects the influence of the particle’s
previous velocity, indicating the particle’s confidence in its current movement
state and its inertial movement based on its existing velocity. This component
is governed by the inertia weight parameter, denoted as ω.

The second component is contingent upon the distance between the particle’s
current position and its own optimal position, referred to as the ”cognitive” item.
This component signifies the particle’s independent decision-making process, or
cognitive behavior, stemming from its individual experiences. The parameter
associated with this component is termed the cognitive learning factor, denoted
as c1.

The third component is dependent on the distance between the particle’s
current position and the global (or local) optimal position within the swarm,
referred to as the ”social” factor. This component represents the information
sharing and cooperation among particles, wherein a particle’s movement is in-
fluenced by the experiences of others within the swarm. This aspect simulates
the movement of a particle influenced by the collective knowledge of the swarm,
and it is governed by the social learning factor parameter, denoted as c2 (also
known as the social acceleration factor). The choices about the parameters
could be found in [10] where some values are suggested. ITAE index is chosen
as the objective function, but many others are possible:

ITAE =

∫ t=+∞

t=0

t|e| (3.49)

This index is proven to optimize a smooth response of the system without sat-
urating the actuators, measures the increased error in the system that results
in a good underdamped system, and adds a weight that penalizes errors that
occur later [11]. Appendix C presents the script used in Matlab.
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Chapter 4

Results

The principal outcomes of this thesis endeavor are presented in the following.
The outcomes can be bifurcated into two primary segments. The initial segment
features a simplified simulator wherein the UAV exclusively utilizes the VTOL
component to exhibit resilience against wind perturbations, a critical concern
highlighted by Sky Eye for scrutiny and mitigation. Subsequently, the second
segment entails the comprehensive simulator, showcasing the deployment of a
novel controller onto an aircraft tasked with executing missions involving both
VTOL and fixed-wing flight operations. The wind model remains excluded
from the comprehensive simulator due to limitations of the incumbent fixed-
wing controller in handling such disturbances.

4.1 Performance analysis of the controller ap-
plied to a simplified model

The primary aspect overlooked in this simulator, apart from its exclusive uti-
lization of the VTOL component, is the absence of the actuator model. Conse-
quently, the commands issued to the 6-degrees-of-freedom (6-DOF) representa-
tion, which essentially embodies the aircraft’s dynamics under external forces,
solely pertain to the commanded thrusts. All other factors, including nonlin-
earities such as aerodynamic forces, remain accounted for, ensuring a highly
accurate approximation of the aircraft’s real dynamic behavior. The trajectory
commanded closely mirrors what the VTOL would pursue during an actual mis-
sion, as take-off is modeled accordingly. Here is presented the mission in terms
of coordinates and commanded heading angle:

xd = 0

yd = 0

zd = 30e−t/10 − 30;

ψd = 0;

(4.1)

Where t is the time. A brief note is warranted regarding the controller’s re-
quirements, which extend to the fourth-order derivatives of the commanded
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trajectories. While these derivatives are not explicitly provided here, they can
be readily derived through straightforward mathematical methods, given their
selection as continuous functions of time. Additionally, a remark is necessary
regarding the z-component, wherein the commanded trajectory must be nega-
tive in this instance, aligning with the reference system. The moving surfaces
are maintained undisturbed considering δa = 0, δe = 0 and δr = 0 but since
the aerodynamic forces and moments are also functions of other variables their
contributions are not zero, and their behavior is presented as an example since
their contributions depends on the actual trim:

Figure 4.1: Aerodynamic moments[Nm]

Figure 4.2: Aerodynamic forces[N]

The aircraft operates under challenging conditions due to the presence of
wind, which is characterized using a stochastic model. In practice, the modeled
wind is generated using a white noise block, which is then adjusted by a transfer
function that alters its time constant, normalized by its standard deviation, and
scaled by the selected power:
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Figure 4.3: Aerodynamic forces[N]

Disturbances are summed up to all the accelerations, in addition, is tested
also a vertical wind shear condition (an abrupt vertical acceleration, directed
downward, modeled with a trapezoidal curve) in the z-direction, easily recog-
nizable as the red line in image 4.5. Hereunder is presented instead the trends
over time of the winds applied in each component.

Figure 4.4: Wind disturbances about the Euler angles accelerations

34



Figure 4.5: Wind disturbances about the position accelerations

The following pictures represent the trajectories performed by the aircraft
under disturbances, blue lines, and commanded trajectories, yellow lines (careful
attention must be paid to the scale of the graphs):

Figure 4.6: x-component trajectories
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Figure 4.7: y-component trajectories

Figure 4.8: z-component trajectories

Figure 4.9: ϕ-component trajectories
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Figure 4.10: θ-component trajectories

Figure 4.11: ψ-component trajectories

A commendable performance of the aircraft is observed, as it adeptly tracks
the commanded trajectories with remarkable accuracy, despite operating under
challenging conditions, also under a really particular disturbance as the wind
shear at t = 5s that could be noticed how the system not only not collapse
but react really well. Meticulous parameter tuning yields enhanced aircraft
behavior. It is worth noting that this simulator does not employ parameter
optimization procedures.

4.2 Performance analysis of the controller ap-
plied to the simulation model

This represents the comprehensive controller capable of operating in both VTOL
and FW conditions, incorporating a model for the actuators. Parameter schedul-
ing was indispensable to achieve a smooth trajectory since take-off and landing
phases are such distinct maneuvers. Both parameter sets were obtained through
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a Particle Swarm Optimization (PSO) procedure. The following are the seven
waypoints that the aircraft must reach, as the high-level controller autonomously
manages the landing and take-off maneuvers references:

n° xd yd zd

1 3000 0 200
2 6000 3000 300
3 8000 6000 200
4 8500 7000 200
5 9000 8000 100
6 9500 9000 100
7 11000 10000 0

The entire mission is reported:

Figure 4.12: Complete mission in 3D environment

Take off

Figure 4.13: Take off and transition performed

The take-off maneuver involves a vertical ascent to an altitude of 35 m, followed
by the transition phase characterized by a gradual acceleration towards the first
checkpoint direction. As depicted in image 4.13, this operation requires 4 sec-
onds to complete, i.e. to reach the altitude for the transition. Notably, the air-
craft demonstrates exemplary tracking of the vertical and stationary trajectory
with respect to the x and y axes. Compared to the previous controller, which re-
quired 11 seconds for the same task, the current controller exhibits significantly
improved efficiency. During the transition phase, the most critical one, it is
observed that about the z-component 4.8, the aircraft maintains stability about
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the constant altitude of 35 m. However, in the y-direction (blue line), a slight
overshoot during the transition, compared to the characteristic mission lengths,
is noted. This deviation stems from the references commanded by the state
flow, which are relatively inflexible to the operational requirements. Overall,
while this block demonstrates satisfactory performance, it also presents certain
limitations. Consequently, further investigation into alternative methodologies
is warranted to enhance its capabilities. As previously mentioned, the model
was assessed without wind, as it was determined that wind disturbances could
only be effectively mitigated during the take-off phase. It is unrealistic to as-
sume that wind solely affects a single phase of the flight. Nevertheless, a take-off
scenario with wind disturbances is proposed to showcase the controller’s capa-
bilities within the comprehensive simulation model. This demonstration aims
to further highlight the controller’s effectiveness in handling various operational
conditions.:

Figure 4.14: Take off and transition performed in the presence of wind

Landing

The most critical phase is the landing process, which demands considerable
time investment to determine optimal references and parameters. Moreover,
the Particle Swarm Optimization, both handwritten and built-in in Matlab,
encountered significant challenges in identifying a suitable parameter set. How-
ever, through persistent efforts, an acceptable parameter set was eventually
obtained. The transition is performed at a constant altitude and consists of
a gradual deceleration (the entire control system governs it adjusting the trim
and the throttles combining both FW and VTOL). Regarding altitude, it is
observed that at t = 560 4.16, the aircraft experiences an elevation increase.
Upon examining the executed phases, it becomes apparent that this elevation
surge coincides with the initiation of VTOL operations and the commencement
of the transition phase.

Figure 4.15: Increase in altitude due to transition from FW to VTOL
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Subsequently, during a phase characterized by velocity reduction, the landing
process initiates. Although not entirely seamless, the landing procedure proves
efficient. This efficiency is attributed to the maintenance of the xd = 11000,
picture 4.17, and yy = 10000, picture4.18, components, which remain relatively
constant in proximity to the commanded position combined with a smooth
descent.

Figure 4.16: z trajectory during landing

Figure 4.17: x trajectory during landing

Figure 4.18: y trajectory during landing

It has also been requested to examine the impact of a counter-rotating motor,
specifically the electric one located at the front, which effectively generates a
negative thrust, albeit with a slight compromise in aerodynamic efficiency. Its
operational logic is relatively straightforward: during the transition phase from
fixed-wing flight to landing, it operates with a stationary throttle, in particular
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during the testing campaign, it has been recognized an upper limit of δth = 0.5.
We could see from the following pictures that the aircraft needs less time to do
the transition and landing phases,aproximately 15 s lesss, with mostly the same
performances about the vertical descent, the error increase but the trajectory
is maintained, further developments are needed:

Figure 4.19: x trajectory during landing with breaking rotor

Figure 4.20: y trajectory during landing with breaking rotor

Figure 4.21: z trajectory during landing with breaking rotor
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Chapter 5

Conclusions and future
developments

As demonstrated in the previous chapter, the primary objective of developing
and implementing an advanced controller for the VTOL segment within the
complete simulation model has been achieved. This controller has exhibited
reliability in trajectory tracking and disturbance rejection, showcasing optimal
performance. However, there is room for enhancement through the adoption
of a more sophisticated methodology for generating references. The counter-
rotating rotor works since we can recognize a faster reduction in velocity, this
implies less discharge of the VTOL batteries, is an immature technology, but
with a good perspective.

Numerous aspects require further improvement: a primary focus could in-
volve implementing a technique to adaptively update the tuning parameters of
the outer loop. This could be achieved through methodologies such as fuzzy logic
or by introducing a new outer loop based on approaches akin to those utilized in
the inner loop. Regarding the inner loop, exploration of various learning tech-
niques and assessing their performance differences, such as reinforced learning
algorithms, presents a viable avenue for development. Additionally, attention
could be directed towards enhancing the High-level controller segment, as the
current employment of Stateflow appears to lack flexibility and poses challenges
in proper tuning. An alternative approach could involve integrating a neural
network that autonomously determines the different phases and references.
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Chapter 6

Appendix

6.1 Appendix A

REFERENCE MODEL
For the reference model, the 6 degree of freedom equations of motion are used.
We will approach the two main separated subsystems, and how to identify the
main components of each one.

6.1.1 Rotational dynamics

M̄b = I ˙̄ω + ω̄ ∧ (Iω̄) (6.1)

They are the same of the ones used in 2.2, and the same would be for the
translational dynamics, but the main differences would be that we will specialize
changing the frame of reference and obtaining different forms in particular for
the B component. Instead of the body’s fixed angular velocity is necessary to
express it in the Euler rate of change form. The transformation between the
two is the sequent:

ω̄ = JĒ (6.2)

Where the matrix J is equal to:

J =

 1 0 −sin(θ)
0 cos(ϕ) sin(ϕ)cos(θ)
0 −sin(ϕ) cos(ϕ)cos(θ)

 (6.3)

But we need also the transformation about the accelerations about the euler
angles that is obtained deriving 6.2, in matrix form:

˙̄ω = J
..

Ē +L (6.4)

Where L is a column vector:

L =

 −cos(θ)θ̇ψ̇
−sin(ϕ)ϕ̇θ̇ − sin(θ)sin(ϕ)θ̇ψ̇ + cos(ϕ)cos(θ)ϕ̇ψ̇

−cos(ϕ)ϕ̇θ̇ − sin(ϕ)cos(θ)ϕ̇ψ̇ − cos(ϕ)sin(θ)θ̇ψ̇

 (6.5)

43



Through some mathematics passages and substituting the previously obtained
relationship in equation 6.2, the final requested form is presented with the main
passages:

I ˙̄ω = M̄b − ω̄ ∧ Iω̄
˙̄ω = I−1(M̄b − ω̄ ∧ Iω̄)
J

..

Ē +L = I−1(M̄b − JĒ ∧ IJĒ)

J
..

Ē= I−1(M̄b − JĒ ∧ IJĒ)− L
..

Ē= J−1(I−1(M̄b − JĒ ∧ IJĒ)− L)

(6.6)

Where:

• F (χ)rot = −J−1(I−1(JĒ ∧ IJĒ) + L)

• B(χ, u)rot = J−1I−1M̄b

In particular B(χ, u)rot, the same for the rotational part would be done, must be
obtained in matrix form, instead of F (χ) that could remain in a column vector
form, however, the commanded variables are not the moments and we need
to search some connections with the thrusts. Looking at the steady values we
found out out that there is a linear dependence, with k a constant experimentally
obtained so:

Mi = kTi i = 1, 2, 3, 4 (6.7)

Recalling matrix 2.7 and subsituting the previous relationship:

M̄b =

 −bcos(β) − bcos(β) bcos(β) bcos(β)
bsin(β) − bsin(β) bsin(β) − bsin(β)

k − k − k k



T1
T2
T3
T4

 (6.8)

M̄b = NT̄ (6.9)

In the end we obtain:
B(χ, u)rot = J−1I−1NT̄ (6.10)

With the requested matrix ft the control system:

B(χ)rot = J−1I−1N (6.11)

6.1.2 Translational dynamics

A quite similar process could be done for the translational dynamics so we start
from the equation 2.1:

F̄b = m(V̇b + ω̄ ∧ Vb) (6.12)

After we making the conversion to Euler angles we will rearrange the equation
in the following way:

F̄b = m(V̇b + ω̄ ∧ Vb)
V̇b =

1
m F̄b − ω̄ ∧ Vb

V̇b =
1
m F̄b − JĒ ∧ Vb

(6.13)

We find effortlessly F (χ)trans:

F (χ)trans = −JĒ ∧ Vb (6.14)
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And with a little of mathematics:

B(χ, u) =

 0 0 0 0
0 0 0 0

− 1
m − 1

m − 1
m − 1

m



T1
T2
T3
T4

 = B(χ)transT̄ (6.15)

6.2 Appendix B

LYANUPOV STABILITY THEOREM
The necessity of studying the stability of a nonlinear system poses a significant
challenge for engineering purposes, as unstable systems are unuseful in practice.
Various approaches proposed by Lyapunov can be considered: the first, known
as the indirect method, involves linearization leading to transfer functions, SISO
systems (where SISO stands for single input single output), etc. However, this
method only yields local stability with small stability regions, which may not be
suitable for certain cases. The direct method, employed in this work, addresses
the stabilization of nonlinear systems directly.

The general concept is that if the total energy continuously dissipates, the
system will eventually reach a stable state and remain there. This involves two
main steps: firstly, selecting a suitable scalar function known as the Lyapunov
function, and secondly, evaluating the first derivative of this function along the
system trajectory. If this derivative is negative, the energy of the system is also
decreasing, indicating stability.

Thus far, we will refer to a nonlinear system in the form:

ẋ = f(x, t) for t ≥ 0
x(t0) = x0 for t0 ≥ 0

(6.16)

where x ∈ ℜn, f is a continuous nonlinear function that satisfies the standard
condition of existence and uniqueness of solution, t ∈ ℜ+. A nonlinear system
is called autonomous if is not dependent on time explicitly. So could be written
in the form:

ẋ = f(x) (6.17)

Another term for this concept is a time-invariant system. Selecting a specific
state x∗ defines an equilibrium point of the system if f(x∗) = 0. Intuitively,
an equilibrium point is deemed locally stable if all solutions originating near
x∗ (indicating initial conditions within a neighborhood of x∗) remain bounded
over time near x∗. The equilibrium point x∗ is considered locally asymptotically
stable if x∗ is locally stable and, additionally, all solutions starting near x∗ tend
towards x∗ as t→ ∞. Let’s introduce some theorems to elucidate the Lyapunov
direct method:

Definition 1 (Lipchitz condition for metric spaces ). Given two metric spaces
(X, dx) and (Y, dy) where dx denotes the metric on the set X and dy the metric
on the set Y , a function f : X → Y is called Lipchitz continuous if there exists
a real constant K ≥ 0, such that, for all x2 and x1 in X:

dy(f(x1), f(x2)) ≤ Kdx(x1, x2) (6.18)
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where K is referred to as a Lipchitz constant for the function f . We can refer
to f as to be K − Lipchitz.

Definition 2 (Lipchitz condition for normed spaces). A function f :Ω ⊆ ℜn

→ ℜm is Lipchitz on Ω if and only if there exists a costant K ≤ 0 such that,
∀x1, x2 ∈ Ω, x1 ̸= x2:

dy(f(x1), f(x2))

dx(x1, x2)
≤ K (6.19)

Theorem 1 (Lyanupov direct method stability theorem). Let x = 0 be an
equilibrium point for the time-invariant system ẋ = f(x), where f : U → ℜn is
locally Lipchitz, U ⊂ ℜn a domain that contains the origin. Let V : U → ℜ be
a continuously differentiable, positive definite function in U :

1. if V̇ (x) is negative semidefinite, then x = 0 is a stable equilibrium point.

2. if V̇ (x) is negative definite, then x = 0 is an asymptotically stable equilib-
rium point.

In both cases above, V is called a Lyanupov function. Moreover, if the con-
dition holds for all x ∈ ℜn and ||x||→∞ implies that V (x) → ∞, then x = 0
is globally stable in case 1 and globally asymptotic stable in case 2. Proofs are
omitted. The Lyapunov approach is a useful method since it allows to assess
the stability of equilibrium points of a system without solving the differential
equations that describe the system. However, there is no generally applicable
method for finding Lyapunov functions. Trial and error and mathematical/-
physical insight are often used. Uniform stability is a concept that guarantees
that the equilibrium point is not losing stability.

Theorem 2 (Uniform stability). Let x = 0 be an equilibrium point for a dy-
namic system nonautonomous and U ⊂ ℜ a domain containing it. Let V : U×
[0,∞] → ℜ be a continuously differentiable function that satisfies:

W1(x) ≤ V (x, t) ≤W2(x) (6.20)

V̇ (x, t) =
∂V

∂t
+
∂V

∂x
f(x, t) ≤ −W3(x) (6.21)

for all t ≥ t0, x ϵ U , where W1(x),W2(x) and W3(x) are continuous positive
definite functions on U. Then, x = 0 is uniformly asymptotically stable and V is
called a Lyapunov function. Furthermore, if W3(x) = 0 then x = 0 is uniformly
stable.

Corollary 1 (Sufficient condition for global uniform asymptotic stability for
nonlinear autonomous system). Suppose that the assumptions of Theorem 2
hold for all x ∈ ℜn and W1(x) → ∞ for ||x|| → ∞ , then x = 0 is globally
uniformly asymptotically stable.

Corollary 2 (Sufficient condition for global exponential stability for non au-
tonomous system). Suppose that the assumptions of theorem 2 are replaced by:

c1||x||q ≤ V (x, t) ≤ c2||x||q (6.22)

V̇ ≤ −c3||x||q (6.23)

For some positive constants c1, c2, c3 and q. Then x = 0 is exponentially
stable. Furthermore, if the assumptions are satisfied for all x ϵ ℜn, then x = 0
is globally exponentially stable.
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From Theorem 2, the function V is required to be dominated by a time-
invariant function W2(x) This means that V is decrescent. Therefore, sufficient
conditions for uniform stability and uniform asymptotic stability are achieved if
there is a continuously differentiable, positive definite, and decrescent function
V that satisfies the condition (10). We can also conclude that the origin is
uniformly stable if V̇ is negative semi-definite. If V̇ is negative definite then the
equilibrium point is uniformly asymptotically stable

6.3 Appendix C

PARTICLE SWARM OPTIMIZATION ALGORITHM

function out=PSOf(problem,params)

%% Problem Definition

CostFunction = problem.CostFunction; % Cost Function

nVar = problem.nVar; % Problem Dimension
VarSize=[1 nVar];

VarMin = problem.VarMin; % Min Value
VarMax = problem.VarMax; % Max Value

%% PSO parameter

MaxIt= params.MaxIt; % Maximum number ...
of iteration

nPop = params.nPop; % Population Size

w = params.w; % Inertia Moment
wdamp = params.wdamp; % Damping ratio of ...

Inertia Coefficient
c1 = params.c1; % Personal ...

Acceleration Coefficient
c2 = params.c2; % Social ...

Acceleration Coefficient

%% Inizializzazione PSO

% Particle template
empty particle.Position=[];
empty particle.Velocity=[];
empty particle.Cost=[];
empty particle.Best.Position=[];
empty particle.Best.Cost=[];

% Create Population Array
particle=repmat(empty particle,nPop,1);

% Initialize Global Best
GlobalBest.Cost = inf;

% Initialize Population member
for i=1:nPop
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% Generate Random Solution
particle(i).Position=unifrnd(VarMin,VarMax,VarSize);

% Initialize Velocity
particle(i).Velocity=zeros(VarSize);

% Evaluation
particle(i).Cost= CostFunction(particle(i).Position);

% Update Personal Best
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;

% Update Global Best
if particle(i).Best.Cost < GlobalBest.Cost

GlobalBest=particle(i).Best;
end

end

% Array to Hold Best Cost Value on Each Iteration
BestCosts = zeros (MaxIt,1);

%% Main Loop of PSO
it=0;
while it<(MaxIt) && GlobalBest.Cost>10ˆ-4

it=it+1;
for i=1:nPop

% Update Velocity
particle(i).Velocity = w * particle(i).Velocity...

+ c1 * rand(VarSize) .* ...
(particle(i).Best.Position - ...
particle(i).Position)...

+ c2 * rand(VarSize) .* ...
(GlobalBest.Position - ...
particle(i).Position);

% Update Position
particle(i).Position = particle(i).Position + ...

particle(i).Velocity;

% Evaluation
particle(i).Cost = CostFunction(particle(i).Position);

% Update Personal best
if particle(i).Cost < particle(i).Best.Cost

particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost;

% Update Global Best
if particle(i).Best.Cost < GlobalBest.Cost

GlobalBest=particle(i).Best;
end

end

end
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% Store the best Cost Value
BestCosts(it) = GlobalBest.Cost;

%Display Iteration information
disp([' Iteration ' num2str(it) ': Best Cost= ' ...

num2str(BestCosts(it))]);

%Damping Inertia Coefficient
w= w*wdamp;

end

out.pop = particle;
out.BestSol = GlobalBest;
out.BestCosts =BestCosts;

end
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