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Abstract

Most of the efforts in unifying general relativity and quantum mechanics come out with
two consequences: the presence of a minimum length scale and the non-locality of the
spacetime at small scale. The qmetric, or minimum length metric, is a bitensor (it em-
bodies non-locality) acting as a renormalized metric tensor with a minimum length built
in: at large scale it approximates the classical metric tensor while the more we approach
small scales the more the effects of the presence of a minimum length are relevant. After
a review of the general description we construct the qmetric explicitly for Euclidean space
and Minkowski spacetime, studying what happens to the area and volume elements of a
geodesic congruence cross section. The relevant result is the presence of an irreducible
minimum area for the cross section of a geodesic congruence emanating from a point:
we can give a notion of a transverse area around any event of the spacetime upholding
past results in literature. We exploit this result in the context of black hole horizon
area variation, in the approximation such that the flat description can be used locally,
showing that the qmetric proves that the presence of a minimum length brings with it a
minimum step of area variation, i.e. a quantum of area.
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Notations and conventions

During the entire thesis, unless specified, we set c = 1 but we keep G and ℏ.

We use a mostly positive metric signature g = (−,+,+, . . . ,+) to describe a generic
D dimensional spacetime.

We use Latin indices to express spacetime indices running from 0 to D − 1 while Greek
indices for the purely spatial indices running from 1 to D − 1.
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Introduction

Modern theoretical physics of fundamental interactions is built on two great pillars whose
aim is to try to describe at best the four known fundamental interactions: electromag-
netism, the weak and strong nuclear force and gravity. Gravity is well described by the
Einstein’s theory of general relativity (GR) while the others find an elegant description
in the framework of the Standard Model (SM) which is a theory written in the language
of quantum field theory (QFT), the most fundamental expression of quantum mechanics
(QM). Despite the great success of GR and the SM in the description of the fundamental
interactions of Nature they happen to not talk very well to each other. In fact GR is a
classical theory: constructed in a geometrical language, this theory describes the gravita-
tional field as the curvature of the spacetime, regarded as a Lorentzian manifold, and the
role of dynamical variable of the theory is played by the spacetime metric tensor. The
Einstein’s field equations relate the spacetime curvature to the matter/energy content
present in the spacetime:

Rab −
1

2
Rgab = 8πGTab (1)

making clear that “Space-time tells matter how to move; matter tells space-time how to
curve”(cit. Wheeler). Problems arise when one tries to quantize GR: it turns out that
one ends up with a non-renormalizable theory [1]. Several attempts have been made in
order to unify GR and QM in a satisfactory way: Loop Quantum gravity, string the-
ory, asymptotic safeness, supergravity and many others. Despite the differences among
them, many of the quantum gravity formulations agree on the fact that the quantum
structure of spacetime is characterized by the presence of a zero-point length [2] due to
intrinsic quantum uncertainty: this minimal length, which is of the order of the Planck
scale, would act as a universal regulator in quantum field theories and could avoid the
formation of spacetime singularities [3]. There are also evidences on the non-local nature
of quantum gravity [4]: locality seems to be inevitably unsustainable when we try to de-
scribe gravity at small scales [5]. In sight of these two hints of the quantum properties of
spacetime, namely the existence of a minimum length and the unavoidable non-locality
at small scales, we might try to describe the spacetime incorporating these properties in
our mathematical account of it. The actual spacetime should be done this way after all,
exhibiting these features in the smallest scales. In order to do so we need a non-local
object which reduces to the classical local metric tensor at large scales, while the more
we approach a description of the small scale structure of the spacetime, the more the
presence of a minimum length becomes relevant. Such an object is called qmetric (quasi
metric or quantum metric or minimum-length metric): it is a bitensor, i.e. a tensorial
function of two events of spacetime embodying non-locality, defined in a way such that
we can not localize with infinite accuracy an event of the spacetime as an effect of the
presence of a minimum length [6].

Known results from the use of the qmetric are:

• The qmetric modified Einstein-Hilbert Lagrangian, namely the Ricci scalar com-
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puted by means of the qmetric, is actually the entropy density of the spacetime
which can be seen as a relic of the quantum nature of the spacetime [7]. In partic-
ular it was shown that for a pair of null separated events the qmetric Ricci scalar
becomes the flux of the heat crossing null horizons getting automatically horizon
thermodynamics and opening an intriguing connection to the emergent gravity
paradigm [8, 9].

• It can avoid spacetime singularities by a modification of the Raychaudhuri equa-
tion[10]

• it shows that minimum length spacetimes are effectively 2-dimensional at the
Planck scale [11];

• the appearance of the notion of a minimum area around any event of the spacetime
given by the coincidence limit of the cross section’s area of time/space-like [12] and
null [13] geodesic congruence emanating from a event.

In this work, after a general review of the qmetric description, we explicitly describe the
Minkowski spacetime with the qmetric studying the volume and area elements and we
try to exploit it to evaluate the variations of area of black hole horizons.

In Chapter 1 we introduce the mathematical framework we need to construct the
qmetric, namely the theory of bitensors and the notion of equigeodesic surfaces.

In chapter 2 we review the construction of the qmetric in a general spacetime both
for space/time-like and null-like separeted events.

In chapter 3 we explicitly construct the qmetric model for flat spaces, namely for
the Euclidean space and Minkowski spacetime, studying their geometrical properties,
showing the presence of the notion of a minimum transversal area.

In chapter 4 we address the problem of the variation of the area of black hole horizons
applying locally the results of chapter 3 showing that the qmetric description proves that
the presence of a minimum length brings with it a minimum step of area variation, i.e.
a quantum of area.
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Chapter 1

Bitensors

In this chapter we deal with the construction and study of particular objects called
bitensors, which will play a central role in the construction of the qmetric. A bitensor is
a tensorial function of two points of spacetime[14]: a base point x′ and a field point x to
which we assign respectively primed indexes a′, b′, etc., and unprimed indexes a, b, etc. We
briefly review the formalism of such mathematical object and in particular we introduce
two biscalars which are essential for our purposes (they are also interesting in their own):
the Synge’s world function and the Van Vleck’s determinant.

1.1 Synge’s world function and geodesic distance
Let x′ a point (base point) of a D-dimensional spacetime M equipped with a metric
tensor gab. We consider the point x (field point) in the normal convex neighbourhood of
x′ which is the set of points linked to x′ by a unique geodesic. The geodesics segment β
linking x and x′ is described by zµ(λ) where λ is an affine parameter of the geodesic that
ranges from λ0 and λ1 such that z(λ0) = x′ and z(λ1) = x. Given an arbitrary point
z ∈ β we assign to it unprimed indexes a, b, etc. We define the tangent vector to β in
the point z as

ta =
dza

dλ
(1.1)

which satisfies the geodesic equation

tatb;a = ta∇at
b = 0. (1.2)

where ∇a is the covariant derivative constructed with the spacetime metric gab. The
situation is illustrated in Figure 1.1.

We define the Synge’s world function as a scalar function both of x and x′ in the
following way [14, 15]

Ω(x, x′) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gab(z)t
atb dλ (1.3)

where the integral is performed along the geodesic segment β. By virtue of eq.(1.2) the
quantity ϵ ≡ gab(z)t

atb is constant along β. Thus numerically Ω(x, x′) = ϵ(∆λ)2/2. We
can compare the Synge’s world function with the squared geodesic distance between x
and x′, namely the spacetime distance computed along the geodesic segment β given by
[16]

σ2(x, x′) =

(∫ x

x′

√
gabdxadxb

)2

=

(∫ λ1

λ0

√
gabtatbdλ

)2

= ϵ (∆λ)2 (1.4)
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Figure 1.1: The base point x′, the field point x, and the geodesic segment β that links
them. The geodesic is described by parametric relations za(λ) and = ta = dza/dλ is its
tangent vector.

showing that Ω(x, x′) is nothing but the half squared geodesic distance between the two
points x, x′:

Ω(x, x′) =
1

2
σ2(x, x′) (1.5)

In particular if we are dealing with timelike geodesics we can choose the proper time τ
as affine parameter and we would have σ2 = −(∆τ)2 while choosing the proper distance
l as affine parameter for spacelike geodesics we would have σ2 = (∆l)2. If the geodesic
is null then we would have identically Ω = σ2 = 0.

1.1.1 Differentiation

Given Ω(x, x′) defined as in eq.(1.3) (but the following procedure can be applied to treat
generic biscalar functions) we can differentiate it with respect both to x and to x′. We
indicate with primed indeces derivation w.r.t. x′ and with unprimed indeces derivation
w.r.t. x as well. For example we can have

Ωa =
∂Ω

∂xa
= Ω,a (1.6)

Ωa′ =
∂Ω

∂x′a
= Ω,a′ (1.7)

We have that Ωa is a 1-rank tensor with respect to tensorial operations carried out in
x and a scalar with respect to the ones in x′. In analogy Ωa′ is a 1-rank tensor with
respect to tensorial operations carried out in x′ and a scalar with respect to the ones in
x. Iterating this procedure we can construct:

Ωab = ∇bΩa = Ωa;b (1.8)
Ωab′ = ∇b′Ωa = Ωa;b′ = Ωa,b′ (1.9)
Ωa′b = ∇bΩa′ = Ωa′;b = Ωa′,b (1.10)
Ωa′b′ = ∇b′Ωa′ = Ωa′;b′ (1.11)

where Ωab is a 2-rank tensor in x and a scalar in x′, Ωαβ′ which is a 1-rank tensor both in
x and in x′ and so on. From the properties of partial and covariant derivatives we have
the following symmetries:

Ωab = ∇bΩa = ∂b∂aΩ− Γc
ba∂cΩ = ∂a∂bΩ− Γc

ab∂cΩ = ∇a∂bΩ = Ωba (1.12)
Ωab′ = ∇b′Ωa = ∂b′∂aΩ = ∂a∂b′Ω = Ωb′a (1.13)

and similarly we could prove that Ωa′b′ = Ωb′a′ and Ωa′b = Ωba′ .
We can now explicitly compute Ωa. In order to do so we need to evaluate δxΩ =
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Ω(x + δx, x′) − Ω(x, x′) which tell us how the Synge’s world function varies when the
field point x moves. Under the shift δx the segment β is shifted to the unique geodesic
segment β + δβ linking x + δx to x′, parameterized by za(λ) + δza(λ) with the affine
parameter λ rescaled such that it still runs from λ0 to λ1. Notice that δz(λ0) = 0 and
δz(λ1) = δx. Expanding Ω(x+ δx, x′) at the first order in the variations we get

δxΩ = ∆λ

∫ λ1

λ0

dλ

(
gabż

aδżb +
1

2
gab,cż

ażbδzc
)

(1.14)

where ∆λ = λ1 − λ0, the overdot indicates differentiation w.r.t. λ and the metric and
its derivatives are evaluated on β. We can integrate by parts the first term:

gabżδż
b =

d

dλ

(
gabż

aδzb
)
− gabz̈

aδzb − gab,cż
ażcδzb (1.15)

and (1.14) becomes after a suitable relabelling of indeces

δxΩ = ∆λ
[
gabż

aδzb
]λ1

λ0
−∆λ

∫ λ1

λ0

dλ

[
gabz̈

b +

(
gab,c −

1

2
gcb,a

)
żbżc

]
δza (1.16)

With some algebraic passages it can be shown the integrand is equivalent to gab(żcżb;c)
which is vanishing because of eq.(1.2). Thus we have :

δxΩ = ∆λgabż
aδxb = ∆λgabt

aδxb (1.17)

hence
Ωa(x, x

′) =
δxΩ

δxa
= ∆λgab(x)t

b(x) = ta∆λ (1.18)

We see that for any points z ∈ β the vector Ωa(z, x′) = (λ − λ0)t
a can be thought as a

rescaled tangent vector. A similar computation leads to:

Ωa′(x, x
′) = −∆λgab(x

′)tb(x′) = −ta∆λ (1.19)

It is interesting to compute the norm ΩaΩ
a = (∆λ)2tata = (∆λ)2ϵ which we can rewrite

as:
gab(x)∂aΩ∂bΩ = 2Ω (1.20)

and similarly
gab(x′)∂a′Ω∂b′Ω = 2Ω (1.21)

We can recast eq.(1.20) in terms of the geodesic distance σ2:

gab∂aσ
2∂bσ

2 = 4σ2. (1.22)

A second differentiation of eq.(1.20) brings to

Ωa
bΩ

b = Ωa
bΩ

b = Ωa (1.23)

which is the geodesic equation in a non-affine parametrization.

1.1.2 Geodesic structure

The study of the geodesic structure of a spacetime is particularly instructive since from
the geodesic behaviour we can study the motion of freely falling probes, the causality
structure of the spacetime and the possible presence of spacetime singularities [17]. The
study of the geodesic structure is also relevant for the qmetric description. In particular
we are interested to study the congruence of geodesics emanating from the base point x′.
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Timelike/Spacelike geodesics

We choose to parametrize the timelike/spacelike geodesics with an affine parameter which
corresponds to the physical geodesic distance, namely proper time or proper length, so
that in this case we can rewrite the form of the unit vector tangent to a geodesic from
eq.(1.18) as:

ua =
∂aσ2

2
√
ϵσ2

(1.24)

with ϵ = −1,+1 respectively for timelike and spacelike geodesics. We introduce now the
concept of equi-geodesic surfaces. An equi-geodesic (hyper)surface Σx′(ϵl2) is defined as
the set of points at a given constant geodesic distance σ2 = ϵl2 from the base point x′:

Σx′(ϵl2) =
{
x|ϵσ2(x, x′) = ϵ2Ω(x, x′) = l2, l > 0

}
(1.25)

These hypersurfaces are orthogonal to the flow of geodesic emanating from x′ since the
normal na to Σx′(ϵl2) in the point x is proportional to the tangent vector ua to the
geodesic passing through x[17]:

na(x) ∝ ∂aσ
2(x, x′) ∝ ua(x) (1.26)

If we want the normal vector to have a unit norm then we can identify na = ua. We can
define the induced (D-1) metric hαβ on the equigeodesic surface restricting the coordinate
displacement on Σ[18]:

ds2|Σ = gabdx
adxb|Σ = gab

(
∂xa

∂yα

)(
∂xb

∂yβ

)
dyαdyβ ≡ hαβdy

αdyβ (1.27)

where {yα} are (D-1) coordinates on the equigeodesic surface. Alternatively we can
define the transverse metric to the tangent vector ua in the following way:

hab = gab − ϵuaub (1.28)

which is orthogonal to ua since:

uahab = uagab − ϵuaubu
a = ub − ub = 0 (1.29)

It happens that hab and hαβ carry the same informations. In fact since the unit normal
is identified by the geodesic tangent vector we have:

na
∂xa

∂yα
dyα = ua

∂xa

∂yα
dyα = 0 (1.30)

and we can write

hαβ = hab
∂xa

∂yα
∂xb

∂yβ
dyαdyβ (1.31)

The intrinsic and extrinsic geometry of these hypersurfaces are described respectively by
the Ricci scalar RΣ computed via the transverse metric on Σx′(ϵl2) hypersurface and by
the extrinsic curvature Kab. The extrinsic curvature is given by

Kab = ∇aub =
∇a∇bΩ− ϵuaub√

2ϵΩ
(1.32)

We can compute the geodesics expansion in the affine parametrization as the trace of
extrinsic curvature:

K = Ka
a =

∇a∇aΩ− 1√
2ϵΩ

(1.33)
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Null geodesics

The case of a null geodesic congruence is slighty different from the previous one. In this
case the vector ∂aσ2 is a null vector and we can’t use the geodesic distance σ2 as an
affine parameter since σ2 = 0 all along a null geodesic and it fails to distinguish different
points along it. We assume the null geodesics are parametrized by some affine parameter
λ and the null tangent vector to the geodesics is

la =
dxa

dλ
(1.34)

If we try to determine the transverse metric as before, i.e. as hab = gab+ lalb, we will fail
since in this case lahab = lb ̸= 0. In order to consistently define a transverse metric we
need to define an arbitrary second null vector ma such that mala = −1. In this way we
define the transverse metric as:

hab = gab + lamb +malb (1.35)

such that lahab = mahab = 0, i.e. is orthogonal both to la and ma. Taking the trace
we find haa = D − 2 and hach

c
b = hab showing that hab is effectively (D − 2)-dimensional.

Since the arbitrariness of ma the transverse metric is not unique and it depends on ma.
However it turns out that quantities computed via the transverse metric are independent
from the choice of the second null vector [17]. The null equigeodesic hypersurface with
respect to the base point x′ is defined as the set of points x satisfying σ2(x, x′) = 0, i.e.
that are null separated from x′. Thus the null equigeodesic hypersurface coincides with
the null cones (future and past) centered in x′. We let the null normal to the null cone
to be ka = −∂aσ2 = −2∂aΩ. We know that ∂aΩ obeys a geodesic equation, thus the null
normal is proportional to the null tangent vector to the geodesics: ka ∝ la. As we can
arbitrarly rescale a null vector we can identify ka = la.

Canonical observer and null affine parameters

In order to select a particular affine parameter with a physical meaning we must introduce
an observer with a timelike 4-velocity V a: any null affine parametrization λ gives us a
measure of distance along the null geodesic as measured by a particular timelike observer
at a certain point x of the geodesic[13, 19]. We attach a canonical observer in the point
x′ with a four velocity V a such that V ala = −1 and we let it to be parallel transported
along the null geodesic. We define implicitly our affine parameter λ as [19]

1

2
∂aσ

2 = λla (1.36)

and we can write
λ = −V a1

2
∂aσ

2 (1.37)

From V a and la we can construct the second null vector ma = V a − (1/2)la such that:

1. maVa = −1/2

2. mala = −1

Then we can define the parameter ν such that ma = dxa

dν

11



1.1.3 Coincidence limit

We now introduce the coincidence limit procedure which allow us to investigate the
bitensors behaviour in the limit x tends to x′. We use the following notation for the
coincidence limit of a generic bitensor T...(x, x′) [14]:

[T...(x, x
′)] ≡ lim

x→x′
T...(x, x

′) = T...(x
′) (1.38)

where T...(x′) is now a tensor in x′. We assume that the coincidence limit is a unique
tensorial function of the base point x′, independent of the direction in which the limit
is taken. Strictly speaking if the limit is computed by letting λ1 → λ0 on a precise
geodesic segment β the result is independent of the geodesic choice. Considering the
world function, from eq.(1.3), eq.(1.18) and eq.(1.19) we have:

[Ω] = [Ωa] = [Ωa′ ] = 0 (1.39)

We can rewrite eq.(1.23) once we use eq.(1.18) as

(gab − Ωab)t
b = 0 (1.40)

From the assumption that the coincidence limit must be independent from the direction
in which is computed, namely ta, we get:

[Ωab] = ga′b′ ≡ gab(x
′) (1.41)

and we also have ga′b′ = [Ωa′b′ ] = − [Ωa′b] = − [Ωab′ ]. We can continue to differentiate
the world function and compute all the coincidence limits using Synge’s rule (see [14]).
We have the following interesting result:

[Ωabcd] = −1

3
(Ra′c′b′d′ +Ra′d′b′c′) (1.42)

where it appears the Riemann tensor. Since we can reconstruct geometrical entities
via coincidence limit of (differentiation of) the Synge’s world function it is natural to
ask how much information about the spacetime geometry is in the world function or,
alternatively, in the geodesic distance.

1.1.4 Reconstruction of the spacetime

We saw in the previous section that via coincidence limit of the world function we can
determine the metric tensor and also the Riemann tensor. We can express the world
function as an expansion near coincidence (see appendix B) as [16]:

Ωa′b′ = gab(x
′)− 1

3
Racbd(x

′)Ωc′Ωd′ + o(RΩ) (1.43)

We can see that in the expansion of the world function we find both the metric tensor
and the curvature tensor. Therefore the metric tensor and the world function carry the
same amount of information about the spacetime geometry. Classical gravity is well
described by the ten independent components of the local metric tensor but it could
also be described by the biscalar Synge’s world function or equivalently by the geodesic
distance. However the description in terms of the metric tensor is much simpler than the
other: it’s not easy to identify the conditions that a biscalar must fulfill to be a geodesic
distance. Moreover trying to write the Einstein-Hilbert action principle in terms of the
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world function would involve fourth order derivatives [16]. Thus a classical description of
gravity in terms of the geodesic distance would be unnecessarily complicated. However
a description based on such biscalars might be the natural way to follow in order to try
to describe spacetime at very small distances, where the notion of local tensor might
breaks down if quantum gravity effects are non-local. Moreover working directly with
the geodesic distance it would be natural to implement a minimum length in spacetime
imposing a modification of the bitensor behaviour at small distances. This way of pro-
ceeding is part of the idea that physics should deal with measurements: the notion of
spacetime must arise from measurements: the outcomes of measurements can be de-
scribed in terms of biscalars (geodesic distance, Green functions...) and from them we
should be able to reconstruct a notion of spacetime metric [20].

1.2 Parallel propagator
We introduce now a bitensor Πa

a′ called parallel propagator which allow us to parallel
transport vectors from the point x to the point x′ along the geodesic segment linking
them [14]. Let be Aa′ ≡ Aa(x′) a vector in the tangent space of the point x′. We can
decompose such a vector in the tetrad frame in the point x′ (see appendix A):

Aa′ = Aa(x′) = Aα(x′)eaα(x
′) ≡ Aαea

′

α (1.44)

Aα = Aa′eαa′ (1.45)

where both Latin and Greek indexes run from 0 to D − 1 and Latin indexes are raised
and lowered with the background metric gab while Greek ones are raised and lowered
with the Minkowski metric ηαβ. We can parallel transport this vector from x′ to a point
x along a geodesic segment. Parallel transport means that the tetrad frame componens
Aα are kept constant. Thus we can expand the parallel transported vector in the point
x as:

Aa = Aa(x) = Aαeaα(x) ≡ Aαeaα (1.46)
Aα = Aaeαa (1.47)

Since Aα must be kept constant from x′ to x we can rewrite:

Aa = Aαeaα = Aa′eαa′e
a
α (1.48)

from which we define the parallel propagator as

Πa
a′ ≡ eaαe

α
a′ (1.49)

and we finally can write the vector at the point x in terms of the components of the
vector in the point x′:

Aa = Πa
a′A

a′ (1.50)

We can introduce the inverse parallel propagator Πa′
a since

Πa′

aΠ
b
a′ = eαae

a′

αe
b
βe

β
a′ = δ a′

a δba′ = δ b
a (1.51)

Πa′

aΠ
a
b′ = eαae

a′

αe
a
βe

β
b′ = δ a′

a δab′ = δ b′

a′ (1.52)

The action of the parallel propagator can be extended on (bi)tensors of arbitrary rank:
we have the occurrence of one parallel propagator for each tensorial index. We can
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compute the coincidence limit of the parallel propagator leading to [Πa
b′ ] = δa

′

b′ . We can
also determin the determinant of the parallel propagator. We first notice that:

gab(x) = ηαβeaα(x)e
b
β(x) → det

{
g−1
}
= − det{e}2 (1.53)

and similarly

gab(x′) = ηαβeaα(x
′)ebβ(x

′) → det
{
g′−1

}
= − det{e′}2 (1.54)

Since we have that Πa
a′ = eaαe

α
a′ we can compute

det{Π} = det{e} det{e′}−1
=

√
− detg−1√
− detg′−1

=

√
− detg′

√
− detg

(1.55)

det
{
Π−1

}
= det{e′} det{e}−1 =

√
− detg′−1√
− detg−1

=

√
− detg√
− detg′ (1.56)

1.3 Van Vleck determinant
A very important biscalar function is the Van Vleck determinant (VVD). It appears in a
large number of physics fields [19]: it plays a fundamental role in WKB approximation of
quantum time evolution operator and Green functions, in the adiabatic approximation
of heat kernel, in the one loop approximation of functional integrals, in the theory of
caustics in geometrical optics and in focusing and de-focusing of geodesics in spacetime.
For our purposes we need to restrict our attention to the role of the VVD in the de-
scription of geodesic flows. In this specific field we can give the following definition [19]:
given a base point x′ and a field point x in the normal convex neighbourhood of x′ in
a D-dimensional spacetime M equipped with a metric tensor gab we define the VVD
∆(x, x′) as

∆(x, x′) = (−1)D−1det |Ωab′(x, x
′)|√

g(x)g(x′)
(1.57)

where g(x) and g(x′) are the metric determinant evaluated respectively in x and x′ and
Ωab′ = ∇b′∇aΩ where Ω = Ω(x, x′) is the Synge’s world function between x′ and x. This
definition turns out to be equivalent to [14]:

∆(x, x′) = det
[
∆a′

b′

]
(1.58)

where ∆a′

b′ = −Πa′
aΩ

a
b′ .

1.3.1 Equalities

The Van Vleck determinant satisfies a number of equations which will be useful later on.
The first we mention is the following:

∇a [∆(x, x′)Ωa] =
1

2
∇a

[
∆(x, x′)∂aσ2

]
= D∆(x, x′) (1.59)

where Ωa = ∇aΩ(x, x′) is the derivative of the Synge’s world function with respect to x.

Proof. Starting from

Ω =
1

2
ΩcΩc (1.60)
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we can differentiate twice to find

Ωa = ΩcΩca (1.61)
Ωab′ = Ωc

b′Ωca + ΩcΩcab′ (1.62)

So we have that
∆a′

b′ = −Πa′

aΩ
a
b′ = −Πa′

a [Ω
c
b′Ω

a
c + ΩcΩa

b′c] (1.63)

Now we can substitute Ωc
b′ = −Πc

c′∆
c′

b′ and we get

∆a′

b′ = Πa′

aΠ
c
c′∆

c′

b′Ω
a
c +Πa′

aΩc∇c
(
Πa

a′∆
a′

b′

)
(1.64)

We introduce (∆−1)
a′

b′ such that ∆a′

b′ (∆
−1)

b′

c′ = δa
′

c′ and we can write

δa
′

b′ = Πa′

aΠ
b
b′Ω

a
b + Ωc

(
∆−1

)c′
b′
∇c
(
∆a′

c′

)
(1.65)

Taking the trace we find

D = ∇aΩ
a + Ωc

(
∆−1

)c′
a′
∇c
(
∆a′

c′

)
(1.66)

We see that in the second term we have Tr (∆−1δ∆) = δ det∆ and we can write:

D = ∇aΩ
a + Ωa∇a ln∆ (1.67)

which is indeed equivalent to eq.(1.59).

We can now provide an expression for the expansion of the VVD near coincidence.
First of all by definition we have:

∆a′

b′ = δa
′

b′ +
1

6
Ra′

c′b′d′Ω
c′Ωd′ + o(Ω3) (1.68)

from the expansion of Ωab′ (see appendix B). Thus at coincidence we have
[
∆a′

b′

]
= δa

′

b′ .
Moreover, near coincidence, we can use the approximation [14] det |1 + a| = 1+ Tr[a] +
o(a2) to get the expansion of the Van Vleck determinant in x′

∆ = 1 +
1

6
Ra′b′Ω

a′Ωb′ + o(Ω3) (1.69)

with Rab the Ricci tensor, showing at coincidence [∆] = 1.

1.3.2 Physical interpretation

Time/Space-like separations

For timelike/spacelike separation between x′ and x we can rewrite eq.(1.59) in the fol-
lowing way, recalling eq.(1.24), as

∇a

[
∆2

√
ϵσ2ua

]
= 2D∆ (1.70)

and we find √
ϵσ2ua∇a∆+∆+∆

√
ϵσ2∇au

a = D∆ (1.71)
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Choosing s =
√
ϵσ2 as the affine parameter for the geodesic we find the differential

equation:

ua∇a∆ =

[
D − 1

s
−∇au

a

]
∆ (1.72)

Recalling that Ua∇aG = d
ds
G for any scalar function and that θ ≡ ∇au

a is the expansion
of the geodesic congruence emanating from x′[17] we have:

1

∆

d∆(s)

ds
=

[
D − 1

s
− θ

]
(1.73)

with the initial condition ∆(s = 0) = 1 (i.e. at coincidence). A direct integration gives:

ln∆(x, x′) =

∫ s(x)

0

[
D − 1

s
− θ

]
ds =

∫ s(x)

0

[
θflat − θ

]
ds (1.74)

where we recognize θflat = (D − 1)/s as the expansion of a spacelike/timelike geodesic
congruence in flat spacetime emanating from the base point x′ [17]. Given in this form,
the Van Vleck determinant gives us information about the ratio between the geodesic
trajectories density of the geodesic congruence emanating from the point x′ in the point
x of a given spacetime and the density one would have in the flat spacetime [19]. In
particular if ∆ > 1 the geodesics are expanding less rapidly than in the flat case, while
if ∆ < 1 they are expanding more rapidly.

Null separations

We can do the same considerations also for null separation between x′ and x. In this
case thins are little trickier since ∂aσ2 is a null vector and σ2 = 0 for any null separated
points. In order to proceed with the computation we need to consider a point y near the
null geodesic γ but not on it, i.e. y is time or space separated from x′, and then take
the limit y → x ∈ γ [5, 13]. Following the construction of section 1.1.2 we let the null
geodesic be parameterized by an affine parameter λ and we let la be the null tangent
vector to the geodesic. Picking up a canonical observer with four velocity V a we define
the second null vector ma = V a− la/2 = dxa/dν. We select the point y as a point outside
γ reachable from x ∈ γ through a null geodesic segment γ′ whose tangent null vector is
ma and we suitably fix ν(x) = 0. We can now decompose the gradient of the squared
geodesic distance as [19]:

∂aσ2(x, x′)x=y = 2λla(y) + 2νma(y) (1.75)

where la(y) and ma(y) are parallel transported from x to y along γ′. Thus we have:(
∇a∂

aσ2
)
x=y

= 2 (λ∇al
a + ν∇am

a + la∂aλ+ma∂aν)x=y =

= 2 (λ∇al
a + ν∇am

a + 2)x=y (1.76)

where we used the fact that la∂aλ = ma∂aν = 1 by construction. In the limit y → x we
have ν → 0 thus:

∇a∂
aσ2(x, x′) = 2 (λ∇al

a + 2) (1.77)

Therefore we can write:

∇a

[
∆∂aσ2

]
= ∂aσ2∇a∆+∆∇a∂

aσ2 = (1.78)
= 2λla∇a∆+ 2∆λ∇al

a + 4∆ (1.79)
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Inserting this in eq.(1.59) we find:

la∇a∆ =

[
D − 2

λ
−∇al

a

]
∆ (1.80)

which is the null version of the equation (1.72). Solving the differential equation we get
the solution:

ln∆(x, x′) =

∫ λ(x)

0

[
D − 2

λ
− θ

]
dλ =

∫ λ(x)

0

[
θ̂flat − θ̂

]
dλ (1.81)

which is the null form of eq.(1.74) with θ̂ = ∇al
a the expansion of the null geodesic

congruence emanating from x′ in a given spacetime and θ̂flat = (D− 2)/λ the expansion
we would have in the Minkowski spacetime.

Propagator in curved spacetime

The VVD is also relevant in quantum field theory in curved spacetime: in fact in any
arbitrary spacetime of D dimensions the leading singular structure of the two points
function associated to the d’Alambertian operator □ is given by the Hadamard form [21,
22]

G(x, x′) =

√
∆

(ϵσ2)
D−2
2

(1 + smooth therms) (1.82)

thus ∆ must carry information about how curvature of spacetime affects the propagation
of quantum fields.

1.3.3 Maximally symmetric spaces

The VVD is known in exact form for D-dimensional maximally symmetric spacetimes.
The trivial cases are the Euclidean space and the Minkowski spacetime where a direct
computation from the definition gives ∆(x, x′) = 1 for all pairs of points x and x′. For
the spherical space and the De Sitter spacetime with curvature radius a it is given by
[23]:

∆(σ2)−
1

D−1 =
sin
(√

ϵσ2/a
)

√
ϵσ2/a

(1.83)

while for the hyperbolic space and the Anti De Sitter spacetime it is given by [24]

∆(σ2)−
1

D−1 =
sinh

(√
ϵσ2/a

)
√
ϵσ2/a

(1.84)
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Chapter 2

The Quantum Metric

In this chapter we fully construct the qmetric for a generic spacetime. As we will see
the geodesic distance/Synge’s world function and the Van Vleck determinant introduced
in the previous chapter are the main ingredients of this description. At the end of the
chapter it is reported one of the most important results of the qmetric description which
is the bridge with the so-called emergent gravity paradigm: the effective Ricci scalar
constructed with the qmetric seems to enforce such paradigm.

2.1 Motivations for a minimum length
The present fundamental physics is dominated by the presence of three fundamental con-
stants of nature. Since Newton proposed his theory of gravitation the Newton constant
G governs the laws of gravity. In the XIX century with the formulation of Maxwell’s
equations the speed of light c began to have more and more importance until it was
recognized as a universal constant by the theory of Special Relativity. Moreover in 1900
Planck introduced the (reduced) Planck constant ℏ which rules Quantum Mechanics.
Combining together this three fundamental constants we can define the so called Planck
units of mass, space and time [25]:

MP =

√
ℏc
G

≃ 1.2× 1019 GeV (2.1)

LP =

√
ℏG
c3

≃ 10−33 cm (2.2)

tP =

√
ℏG
c5

≃ ×10−43s (2.3)

This values identify the scale at which it is expected that the quantum nature of gravity
plays a predominant role. There are several arguments which identify the length scale LP

as the minimum length scale we can actually probe : string theory (ST) and loop quantum
gravity (LQG) admit the existence of a minimum length and so do other approaches
to quantum gravity as asymptotically safety gravity and non-commutative geometry
scenarios [25]. There is also a number of thoughts experiments which suggest the presence
of a minimum measurable length such as the Heisenberg microscope [26] or measurement
of black hole horizon area [27].
From now on we assume the existence of a minimum length scale L0 which acts as a
limit on the accuracy with we can actually localize events in spacetime. We assume that
L0 is of order of the Planck length LP , namely

L0 = kLP with k ∼ O(1) (2.4)
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but it can actually be much larger. We can start to implement such a minimum length in
our description of spacetime directly modifying the Lorentz invariant squared geodesic
distance σ2(x, x′) between spacetime events, which is two times the Synge’s world func-
tion Ω(x, x′) defined in (1.3) : in this way we do not need to rely on a specific quantum
gravity theory and we can stay as generic as possible. Moreover working with Lorentz-
invariant quantities implies that the notions we can derive using them can also share
this invariance. A minimal length scale L0 can be implemented for timelike/spacelike
separated events with the following substitution:

σ2(x, x′) −→ SL(σ
2) such that SL(0) = ±L2

0 ̸= 0 (2.5)

where SL(σ
2) is a generic modified geodesic distance function that remains finite in the

coincidence limit x → x′. This means that we can’t localize spacetime events with an
accuracy better than L0: clearly we are breaking a basic axiom of any metric spaces,
i.e. σ2(x, x) = 0. Thus we expect that at energy scales at which the quantum nature
of gravity/spacetime has an important role, spacetime itself is no more described by a
classical metric tensor. The general prescription is that equigeodesic surfaces of a given
nature (timelike, spacelike or lightlike) determined by a spacetime metric are mapped
in equigeodesic surfaces of the same nature according to the qmetric. From (2.5) we
clearly see that the light cone from x′ is a discontinuty surface for the modified geodesic
distance SL(σ

2) [5]: the construction of the qmetric for null separated events it is not so
straightforward and deserve a separated treatment.

2.2 Construction of the qmetric: timelike/spacelike in-
tervals

We saw in section 1.1.4 that we can reconstruct spacetime geometry by means of the
coincidence limits of differentiation of the Synge’s world function. With the introduction
of a minimal length clearly the coincidence limit will be affected and we can use this fact
to define the effective quantum metric.
We consider two events x and x′ whose spacetime separation can be spacelike or timelike
in a D-dimensional spacetime. This means that if ua is the unit vector tangent to the
unique geodesic segment linking the two points we have uaua = ϵ where ϵ = −1,+1
respectively for timelike and spacelike intervals. In order to formally define the quantum
metric qab(x, x′) we need two mathematical inputs [28]:

1. Geodesic distances must be modified in order to stay finite in the coincidence limit.
This is summarized by the replacement σ2(x, x′) → SL(σ

2) such that SL(0) =
ϵL2

0 ̸= 0. The precise structure of SL(σ
2) must be determined by a complete

theory of quantum gravity and so we need to be the most general as we can.

2. The modified d’Alembertian operator □̃ obtained from the qmetric must yields to
a modification of two-point functions (Green functions), ruling how perturbations
do propagate (then causality). In all maximally symmetric spactimes we want that
the classical Green function G(x, x′) = G(σ2) is mapped to the modified function
G̃(x, x′) = G̃(σ2) = G(SL(σ

2)). This would correspond to the fact that minimal
length in spacetime distances would act as a universal regulator in UV divergences
which affect quantum field theory. Moreover this is also a most natural prescription
in order to have a metric description in the q-space which is analogous to the metric
description in ordinary space, this allowing in a sense to forget that in the qmetric
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space we are coming from a ordinary space. It is clear that this of point (2) can
be requested only for maximally symmetric spaces. In generic spaces we can not
insist on this because as long as the curvature scale becomes comparable to L0

we can expect effects related to this dependent on the direction. As a matter of
fact however, this natural request for maximally symmetric spaces is enough to
fix completely the qmetric we associate to generic spacetimes. Indeed the latter
simply have necessarily some further terms in the solutions to the wave equation
with respect to the maximally symmetric ones, these additional terms expressing
the interplay between L0 and curvature length, differential in direction.

To implement the first point we must start from a modification of (1.22):

gab(x)∂aσ
2∂bσ

2 = 4σ2 −→ qab∂aSL∂bSL = 4SL (2.6)

In this sense the qmetric qab is that "metric" which gives SL as a squared geodesic
distance. As we said we don’t want to fix exactly the function SL, we only require that:

(i) Minimal length condition : SL(0) = ϵL2
0

(ii) Identity condition : SL0=0(σ
2) = σ2

We ask for a qmetric bitensor qab = qab(x, x
′) which acts as a rank 2 tensor at field point

x. The general form can be written as [3]:

qab = Agab − ϵBuaub (2.7)

where ϵ = uaua, ua = gabu
b and A,B are functions of x, x′ to be determined. The

corresponding contra-variant form can be deduced imposing δab = qacqcb :

qab = A−1gab + ϵQuaub = A−1hab + ϵ(Q+ A−1)uaub (2.8)

where Q is such that B = QA/(A−1+Q) and hab = gab−ϵuaub is the transverse metric to
ua as defined in eq.(1.28) at the point x. Clearly, the function in parenthesis in the last
term must diverge in the coincidence limit, if we want to hope that eq.(2.5) be satisfied.
This ansatz is motivated by the fact that the qmetric must be a symmetric 2-rank bitensor
depending on the metric tensor gab and on the vector tangent to the geodesic segment
ua. Thinking in classical terms, given two metrics related by an expression such eq.(2.7)
we say the two metrics are disformally coupled : a detailed study of the relations between
metrics disformally coupled and a prescription on how to compute geometrical entities
according to a metric in terms of geometrical entities according to a disformally coupled
metric can be found in [29].
To determine α ≡ A−1+Q we substitute in (2.6) the ansatz for the qmetric (2.8) getting(

A−1gab + ϵQuaub
)
∂aSL∂bSL = 4SL

A−1gab∂aSL∂bSL + ϵQuaub∂aSL∂bSL = 4SL

A−1gab∂aσ
2∂bσ

2

(
dSL

d(σ2)

)2

+ ϵQuaub∂aσ
2∂bσ

2

(
dSL

d(σ2)

)2

= 4SL

4A−1gabΩaΩb

(
dSL

d(σ2)

)2

+ 4ϵQ
Ωa

√
2ϵΩ

Ωb

√
2ϵΩ

ΩaΩb

(
dSL

d(σ2)

)2

= 4SL

2A−1Ω

(
dSL

d(σ2)

)2

+ 2QΩ

(
dSL

d(σ2)

)2

= SL

(A−1 +Q)σ2

(
dSL

d(σ2)

)2

= SL

20



from which we have:
α ≡ (A−1 +Q) =

1

σ2

SL

S ′2
L

(2.9)

where a prime index means differentiation w.r.t. σ2. We see that as long as we require
that SL/S

′2
L is finite at coincidence, the function α is divergent in the coincidence limit

as it should. At this point we have:

qab = A−1hab + ϵ

(
1

σ2

SL

S
′2
L

)
uaub (2.10)

The requirement of the modification of the Green functions will fix completely the qmetric
determining the value of A[28]. In order to do so we need to compute the modified
covariant d’Alembertian for the qmetric. A direct application of the matrix determinant
lemma1 to the q metric in the form (2.7) gives:

det(q) = det(Ag)×
(
1− ϵBA−1gabuaub

)
=

= AD det(g)×
(
1− B

A

)
where we used the fact that gabuaub = ϵ and ϵ2 = 1. Knowing that B = QA2

1+QA
, α =

A−1 +Q and redefining now q = det(q) and g = det(g) we get

q = ADg

(
1− Q

Q+ A−1

)
=
AD−1

α
g (2.11)

Using this one could compute □̃ = 1√
−q
∂a(

√
−qqab∂b), finding the result (see appendix

C.1):

□̃ = A−1

[
□g +

D − 3

2
gab∂a(lnA)∂b + ϵ/∂(lnA)/∂

]
+

+ ϵQ

[(
∇au

a +
D − 1

2
/∂ lnA

)
/∂ + /∂

2
]
+
√
ϵσ2α′/∂ (2.12)

where /∂ = ua∂a and ∇a is the covariant derivative constructed from the background
metric. We consider maximally symmetric spaces in which we have a simplified form
both for the ordinary d’Alembertian and the qmetric D’Alembertian(see appendix C.2):

□g = 4σ2
{
∂2σ2 + ∂σ2

[
ln
[(
ϵσ2
)D

2 ∆−1
]]
∂σ2

}
(2.13)

□̃ = 4ασ2
{
∂2σ2 + ∂σ2

[
ln
[(
ϵσ2
)D

2 ∆−1
√
αA

D−1
2

]]
∂σ2

}
(2.14)

where ∆ = ∆(x, x′) is the Van Vleck determinant defined in eq.(1.57). At this point we
can impose the condition on Green functions. In particular we require that the modified
Green function G̃(σ2) = G(S(σ2)) in the point x is solution to □̃G̃ = 0 when □G = 0,
with G computed in the point x̃ at a geodesic distance σ2 = S from x′ according to the
metric (for simplicity we write SL as S).
First of all we evaluate □G at the point x̃ at a distance σ2 = S from x′ and we impose
(□G)σ2=S = 0. Starting from eq.(2.13) we make the following substitutions:

σ2 → S

∆ → ∆̃

1det(M+uvt) = det(M)×(1+vtM−1u) with M being an invertible matrix and u,v column vectors
and uvt is the outer product[7].
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where ∆̃ = ∆(x̃, x′). So we have:

□gG(σ
2)σ2=S = 4S

{
∂2σ2 + ∂σ2

[
ln
[
(ϵσ2)

D
2 ∆−1

]]
σ2=S

∂σ2

}
G(σ2)σ2=S = (2.15)

= 4S
{
∂2S + ∂S

[
ln
[
(ϵS)

D
2 ∆̃−1

]]
∂S

}
G(S) = □gG(S) (2.16)

Using the chain rule (prime index means differentiation w.r.t. σ2) we can write:

∂S =
1

S ′∂σ2 (2.17)

∂2S = ∂S

(
1

S ′∂σ2

)
=

=
1

(S ′)2

(
∂2σ2 −

S ′′

S ′ ∂σ2

)
=

1

(S ′)2
[
∂2σ2 − ∂σ2(ln (S ′))∂σ2

]
(2.18)

Putting all together we find

□gG(S) =
4S

(S ′)2

[
∂2σ2 + ∂σ2

(
ln

(ϵS)
D
2

S ′∆̃

)
∂σ2

]
G(S) (2.19)

Having □gG(S) = 0 is equivalent to have

∂2σ2G(S) = ∂σ2

(
ln

S ′∆̃

(ϵS)
D
2

)
∂σ2G(S) (2.20)

Now we evaluate □̃G̃(σ2) according to the qmetric at the point x and we impose the
conditon □̃G̃(σ2) = 0 when □G(S) = 0. Using eq.(2.14) we have:

□̃G̃(σ2) = □̃G(S) = 4ασ2
{
∂2σ2 + ∂σ2

[
ln
(
(ϵσ2)

D
2 ∆−1

√
αA

D−1
2

)]
∂σ2

}
G(S) (2.21)

Having □̃G̃(σ2) = 0 is equivalent to have

∂2σ2G(S) + ∂σ2

[
ln
(
(ϵσ2)

D
2 ∆−1

√
αA

D−1
2

)]
∂σ2G(S) = 0 (2.22)

Requiring this is true when □G(S) = 0 we can use eq.(2.20) and write:

∂σ2 ln

(
(ϵσ2)

D
2 ∆−1

√
αA

D−1
2

S ′∆̃

(ϵS)
D
2

)
= 0 (2.23)

which using the expression for α given by eq.(2.9) becomes

∂σ2 ln

(
∆̃

∆
A

D−1
2

(σ2)
D−1
2

S
D−1
2

)
=
D − 1

2

d

dσ2
ln

 A

S/σ2

(
∆̃

∆

) 2
D−1

 = 0 (2.24)

whose solution is given by

A =
SL

σ2

(
∆

∆̃

) 2
D−1

(2.25)
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where the constant of integration is fixed by the condition A = 1 when SL0=0(σ
2) = σ2.

Thus we can write the complete form of the qmetric form timelike/spacelike separated
events as:

qab =
SL

σ2

(
∆

∆̃

) 2
D−1

gab + ϵ

[
σ2S

′2
L

SL

− SL

σ2

(
∆

∆̃

) 2
D−1

]
uaub (2.26)

qab =
σ2

SL

(
∆̃

∆

) 2
D−1

gab + ϵ

 SL

σ2S
′2
L

− σ2

SL

(
∆̃

∆

) 2
D−1

uaub (2.27)

We notice that the qmetric has a singular behaviour in the limit σ2 → 0 while in the limit
L0 → 0 (large separations) it reduces to qab(x, x′) → gab(x). In contrast with ordinary
classical spacetime where given a point x we can uniquely assign a value for the local
metric tensor gab(x) here we can’t uniquely assign the value of the qmetric in the point
x. In fact we need to specify also the base point x′ in order to fix the value qab(x, x′):
in the point x we have many different values for qab(x, x′) depending on the choice of
the base point x′. The qmetric is explicitly a non-local object: indeed non-locality is
required if we want to allow the existance of a minimum length scale since in a local
spacetime geodesic distances are always vanishing in the coincidence limit.
We can interpret the qmetric a a renormalized metric in the sense that it is an effective
metric incorporating some of non-perturbative effects of quantum gravity at Planck scales
[11].

2.3 Construction of the qmetric: the null case
We saw how to construct the qmetric for points separated by timelike/spacelike geodesic
intervals. The generalization to null-separated points is not straightforward: given that
we want to map geodesics obtained by the metric to q-geodesics of the same nature
how can we maintain the existence of a minimum length in the null case where the
geodesic distance modification reads as σ2 = 0 → S = 0? In order to proceed we need to
think about the role of affine parameters for null geodesics. While for timelike geodesics
we can always choose the proper time as an affine parameter this is not true for null
geodesics since we can’t define a physical proper time for lightlike probes. However
we can still choose the null affine parameters with a physical meaning: any null affine
parametrization λ gives us a measure of distance along the geodesic measured by an
observer at a certain point x of the geodesic and parallel transported along the geodesic
itself [13, 19] as argued in section 1.1.2. Given a classical metric gab and two points
x and x′ on a null geodesic γ parametrized by the affine parameter λ we expect that
the introduction of a minimum length L0 will induce the mapping λ → λ̃(λ) such that
λ̃(x)− λ̃(x′) = L0 when λ(x)− λ(x′) = 0 i.e. when x→ x′. This is the null counterpart
of the requirement of the modification of the geodesic distance in the timelike/spacelike
case. In general we require:

1. λ̃(x) = λ(x) when L0 = 0

2. λ̃(x)− λ̃(x′) = L0 when x→ x′

In addition also in the null case we require the modification of the green function as-
sociated to the d’Alembertian which again reads as G̃(σ2) = G(SL) in all maximally
symmetric spacetimes. However this is not a trivial requirement since on the light cone
the green function G(σ2) is singular. We will see how to deal with this issue. Now we
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see how to set the framework to derive the null qmetric form.
We consider a null geodesic γ passing through x′ parameterized by the affine parameter
λ such that la = dxa

dλ
is the null tangent vector to γ. We attach a canonical observer

in x′ with a four velocity V a such that V ala = −1. In this way λ is that particular
affine parameter that select a particular frame in which λ itself can be considered as a
distance on the null geodesic [19]. From V a and la we can construct a second null vector
ma = V a − (1/2)la such that:

1. maVa = −1/2

2. mala = −1

all along γ. The vector ma is observer dependent since it depends on the vector V a. The
ansatz for the null qmetric reads as:

qab = Aλgab +
(
Aλ − α−1

λ

)
(lamb +malb) (2.28)

qab = A−1
λ gab +

(
A−1

λ − αλ

) (
lamb +malb

)
(2.29)

where Latin indices are raised and lowered with the classical metric gab. We need to fix
the two biscalars αλ and Aλ which requires computations a little trickier than in the
time/space-like case.

2.3.1 The null qmetric: fixing αλ

In order to fix αλ we start from defining a modified geodesic equation. Let

l̃a =
dxa

dλ̃
=
dλ

dλ̃
la (2.30)

the q-geodesic null tangent vector. We require this modified tangent vector satisfies a
geodesic equation according to the qmetric with λ̃ acting as an affine parameter, namely:

l̃a∇̃al̃
b = 0 (2.31)

where ∇̃a is the covariant derivative constructed from the qmetric (we will call it q-
covariant derivative). In particular we have:

∇̃al̃
b = ∂al̃

b + Γ̃b
acl̃

c (2.32)

and
∇̃al̃b = ∂al̃b − Γ̃c

abl̃c (2.33)

where l̃c is given by:

l̃c = qacl̃
a =

dλ

dλ̃
qacl

a =
dλ

dλ̃

[
Aλlc +

(
Aλ − α−1

λ

)
lcmal

a
]
=

=
dλ

dλ̃

1

αλ

lc (2.34)

We define the q-connection Γ̃b
ac from the qmetric through the same algebraic relations

that link the classical connection to the classical metric:

Γ̃b
ac =

1

2
qbl (∂aqlc + ∂cqal − ∂lqac) (2.35)
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which can be rewritten as [29]:

Γ̃b
ac = Γb

ac +
1

2
qbl (∇aqlc +∇cqal −∇lqac) (2.36)

where Γb
ac and ∇a are respectively the affine connection and the covariant derivative

associated to the metric gab. The modified geodesic equation then can be written as:

l̃a∇̃al̃c =
dλ

dλ̃
la∇̃a

(
dλ

dλ̃

1

αλ

lc

)
= 0 (2.37)

We need to evaluate the q-covariant derivative of the quantity inside the round brackets:

∇̃a

(
dλ

dλ̃

1

αλ

lc

)
= ∇a

(
dλ

dλ̃

1

αλ

lc

)
− 1

2
qbl (∇aqlc +∇cqal −∇lqac)

dλ

dλ̃

1

αλ

lb =

=
dλ

dλ̃

1

αλ

∇alc + lc∂a

(
dλ

dλ̃

1

αλ

)
− 1

2
qbl (∇aqlc +∇cqal −∇lqac) l̃b =

=
dλ

dλ̃

1

αλ

∇alc + lc∂a

(
dλ

dλ̃

1

αλ

)
− 1

2
l̃l (∇aqlc +∇cqal −∇lqac) (2.38)

Inserting this last expression in eq.(2.37) we get:(
dλ

dλ̃

)2
1

αλ

la∇alc +

(
dλ

dλ̃

)
la∂a

(
dλ

dλ̃

1

αλ

)
− 1

2

dλ

dλ̃
lal̃l (∇aqlc +∇cqal −∇lqac) = 0 (2.39)

We notice the first term vanishes since la∇alc = 0 is the classical geodesic equation
satisfied by construction by the tangent vector la with affine parameter λ. In the second
term we have the directional derivative la∂a = d/dλ so we can rewrite:(

dλ

dλ̃

)
d

dλ

(
dλ

dλ̃

1

αλ

)
− 1

2

(
dλ

dλ̃

)2

lall (∇aqlc +∇cqal −∇lqac) = 0 (2.40)

We notice that by symmetry:

lall (∇aqlc −∇lqac) = 0 (2.41)

Now we need:

lall∇cqal = ∇c

[
Agal +

(
Aλ − α−1

λ

)
(laml +mall)

]
=

= lala∇cA+∇c

(
Aλ − α−1

λ

) (
lalamll

l + lamalll
l
)
+ (2.42)

+
(
Aλ − α−1

λ

)
lall∇c (laml +mall) =

=
(
Aλ − α−1

λ

)
lall (ml∇cla + la∇cml +ma∇cll + ll∇cma) =

= −2
(
Aλ − α−1

λ

)
la∇cla (2.43)

Inserting this in eq.(2.40) we find:(
dλ

dλ̃

)
d

dλ

(
dλ

dλ̃

1

αλ

)
+

(
dλ

dλ̃

)2 (
Aλ − α−1

λ

)
la∇cla = 0 (2.44)

Finally we notice that:

la∇cla = ∇c (l
ala)− la∇cla (2.45)

la∇cla = 0 (2.46)
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and we end up with the following differential equation:(
dλ

dλ̃

)
d

dλ

(
dλ

dλ̃

1

αλ

)
= 0 (2.47)

wich once we require that dλ/dλ̃ ̸= 0 it is solved by:

αλ = C

(
dλ̃

dλ

)−1

(2.48)

The integration constant C is fixed by requiring qab → gab when λ→ ∞ i.e. in the limit
L0 → 0. This can happen only if Aλ → 1 and (Aλ − α−1

λ ) → 0 thus we need αλ → 1
which is possible only if C = 1 since in this limit λ̃→ λ.

2.3.2 The null qmetric: fixing Aλ

In the time/space-like case the biscalar function A in eq.(2.25) has been fixed requiring
that the modified green function G̃(σ2) = G(S(σ2)) satisfies the equation □̃G̃ = 0 when
□G(S) = 0. In the null case we need to take a slightly different path since on the light
cone the green function G(σ2) is singular and we can’t perform the same straightforward
computations done for the timelike/spacelike case. The key point is to evaluate □G at
a point y near the null geodesic γ but not on it, i.e. y is time or space separated from
x′, and then take the limit y → x ∈ γ as we have done in section 1.3.2
The first step is to determine a suitable expression for the d’Alembertian □. Considering
maximally symmetric spaces in which the green function (and any biscalar) is strictly a
function only of σ2 we can write:

□G(σ2) = ∇a(∇aG) = ∇a

(
∂aσ2 dG

dσ2

)
=

= ∇a

(
∂aσ2

) dG
dσ2

+ ∂aσ2∂aσ
2 d2G

d(σ2)2
(2.49)

On the null geodesic we clearly have ∂aσ2∂aσ
2 = 4σ2 = 0 so we have:

□G(σ2) = ∇a

(
∂aσ2

) dG
dσ2

(2.50)

when y → x ∈ γ. We found in eq.(1.77) that for null separated events we have:

∇a∂
aσ2(x, x′) = 2 (λ∇al

a + 2) (2.51)

therefore we can write a suitable expression for the standard d’Alembertian along null
geodesic affinely parametrized by λ in maximally symmetric spaces:

□G(σ2) = (4 + 2λ∇al
a)

d

dσ2
G(σ2) (2.52)

Passing from classical metric gab to the qmetric qab we are mapping λ → λ̃(λ) and
σ2 → S(σ2) meaning that:

la → l̃a =
dλ

dλ̃
la (2.53)

G(σ2) → G̃(σ2) = G(S(σ2)) (2.54)

□ → □̃ = ∇̃a∇̃a (2.55)
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where the q-covariant derivative ∇̃a is defined as in eq.(2.32) and in eq.(2.33). Since
the null geodesic according to the metric is mapped to a null geodesic according to the
qmetric we can rewrite the eq.(2.52) for the qmetric d’Alembertian as:

□̃G̃(σ2) =
(
4 + 2λ̃∇̃al̃

a
) d

dS
G̃(σ2) =

(
4 + 2λ̃∇̃al̃

a
)(dG(σ2)

dσ2

)
σ2=S

(2.56)

From the relation in eq.(2.36) we get:

∇̃al̃
a = ∇al̃

a +
1

2
qak (∇aqkb +∇bqak −∇kqab) l̃

b =

= ∇a

(
dλ

dλ̃
la
)
+

1

2

(
dλ

dλ̃

)
qaklb∇bqak (2.57)

Inserting in the second term the null qmetric ansatz expressed in eq.(2.28) and eq.(2.29)
we find:

qaklb∇bqak = (D − 2)
d

dλ
lnAλ − 2

d

dλ
lnαλ (2.58)

Using the form of αλ given by eq.(2.48) we have

∇̃al̃
a =

dλ

dλ̃
∇al

a +
d

dλ

(
dλ

dλ̃

)
+

1

2

dλ

dλ̃

[
(D − 2)

d

dλ
lnAλ − 2

d

dλ
lnαλ

]
=

=
dλ

dλ̃

[
∇al

a +
D − 2

2

d

dλ
lnAλ

]
(2.59)

Going back to eq.(2.56) we get:

□̃G̃(σ2) =

[
4 + 2λ̃

dλ

dλ̃
∇al

a + λ̃(D − 2)
dλ

dλ̃

d

dλ
lnAλ

](
dG(σ2)

dσ2

)
σ2=S

(2.60)

In the classical framework we were dealing with the base point x′, the field point x ∈ γ at
an affine distance λ from x′ and an auxiliary point y at a finite squared geodesic distance
σ2(y, x′) from x′. Passing to the qmetric we can think in terms of an active interpretation
of the mapping λ→ λ̃: the point x is mapped to the point x̃ at an affine distance λ̃ from
x′ while the auxiliary point y is mapped to the point ỹ at a modified geodesic distance
S(σ2(y, x′)) from the base point x′. Thus we require the following: the modified green
function G̃(σ2) = G(S(σ2)) satisfies □̃G̃ = 0 at the point x ∈ γ when G(σ2) satisfies
□G = 0 at the point x̃. In order to evaluate □G in x̃ we need to start from the point ỹ
and then take the limit ỹ → x̃. Following the same computations as before we find:

□G(σ2)x=x̃ = [4 + 2 (λ∇al
a)x=x̃]

d

dσ2
G(σ2)x=x̃ =

[
4 + 2λ̃ (∇al

a)x=x̃

] d

dσ2
G(σ2)x=x̃

(2.61)
If G(σ2) is solution of □G = 0 in x̃ it means that:

4 + 2λ̃ (∇al
a)x=x̃ = 0 (2.62)

Requiring that G̃ is solution of □̃G̃ in the point x it means that:

4 + 2λ̃
dλ

dλ̃
∇al

a + λ̃(D − 2)
dλ

dλ̃

d

dλ
lnAλ = 0 (2.63)

Inserting eq.(2.62) in eq.(2.63) we get:

2λ̃
dλ

dλ̃
∇al

a − 2λ̃ (∇al
a)x=x̃ + λ̃(D − 2)

dλ

dλ̃

d

dλ
lnAλ = 0 (2.64)
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Using eq.(1.80) we are able to write the geodesic expansion ∇al
a in terms of the Van

Vleck determinant ∆:

∇al
a =

D − 2

λ
+

d

dλ
ln∆−1 (2.65)

(∇al
a)x=x̃ =

D − 2

λ̃
+

d

dλ̃
ln ∆̃−1 (2.66)

where ∆ = ∆(x, x′) and ∆̃ = ∆(x̃, x′). Inserting back to the equation(2.64):

2

λ
+

2

D − 2

d

dλ
ln∆−1 − dλ̃

dλ

2

λ̃
+

2

D − 2

d

dλ
ln ∆̃ +

d

dλ
lnAλ = 0

hence
d

dλ

λ2
λ̃2

(
∆̃

∆

) 2
D−2

Aλ

 = 0 (2.67)

This is solved by

Aλ = C
λ̃2

λ2

(
∆̃

∆

)− 2
D−2

(2.68)

where the integration constant C is fixed to be C = 1 requiring that Aλ → 1 when
L0 → 0.

2.3.3 The null qmetric: final form

We have fixed our null qmetric parameters to be

αλ =
1

dλ̃/dλ
(2.69)

Aλ =
λ̃2

λ2

(
∆

∆̃

) 2
D−2

(2.70)

fixing the form of the qmetric for points separeted by null geodesic intervals. Thus the
final form of the null qmetric reads as:

qab =
λ̃2

λ2

(
∆

∆̃

) 2
D−2

gab −

[
dλ̃

dλ
− λ̃2

λ2

(
∆

∆̃

) 2
D−2

]
(lamb +malb) (2.71)

2.4 Considerations and remarks on Lorentz covariance
We fixed the form for the qmetric between two points both for timelike/spacelike and null
separations. We can compare the two forms obtained. In the non-null case we started
directly by a modification of the geodesic distance σ2 → Sl(σ

2) obtaining

α =
1

σ2

S

S ′2 . (2.72)

We can also find the form of α by mapping the affine parameter of the classical geodesic
s =

√
ϵσ2 to the q-affine parameter s̃ =

√
ϵSl(σ2 finding that

α =
1

(ds̃/ds)2
(2.73)
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which is in a form directly comparable with

αλ =
1

dλ̃/λ
(2.74)

for null separations. We can also rewrite the bifunction A given by (2.25)

A =
s̃2

s2

(
∆

∆̃

) 2
d−1

(2.75)

and compare it to

Aλ =
λ̃2

λ2

(
∆

∆̃

) 2
d−2

(2.76)

for null separations. We can resume the qmetric final form:

qab =
s̃2

s2

(
∆

∆̃

) 2
d−1

gab + ϵ

[(
ds̃

ds

)2

− s̃2

s2

(
∆

∆̃

) 2
d−1

]
uaub (2.77)

for timelike/spacelike separations while in the null case we have:

qab =
λ̃2

λ2

(
∆

∆̃

) 2
d−2

gab −

[
dλ̃

dλ
− λ̃2

λ2

(
∆

∆̃

) 2
d−2

]
(lamb +malb) (2.78)

The main difference is that the null qmetric depends on the vector ma which can be
identified once we assign an observer in the point x′, while in the time-/space-like case
the qmetric is observer independent. This happens because given two non-null separated
points their geodesic separation is uniquely determined while, for null separated events,
all we have is their affine interval which is Lorentz invariant but is determined up to a
constant. Thus we need to select an observer to fix this ambiguity. The fact that the
null qmetric needs to specify an observer may naively make think that we are breaking
Lorentz invariance. In the timelike/spacelike case the qmetric has been constructed by
requiring the modification σ2 → SL(σ

2). Since the squared geodesic distance σ2 is a
biscalar and as such is a Lorentz invariant quantity we are introducing the minimum
length L0 in a Lorentz invariant way. The modification σ2 → SL will be the same in
every frame of reference. In the null case things are little more subtle: the null qmetric
is not only a non-local object but it is also sensitive to the selection of an observer, i.e.
a local frame. What happens is that Lorentz invariance is preserved in the sense that
whichever local observer we assign at point x′ she will invariably find that same metric
structure in the qmetric, in particular with L0 being the qmetric coincidence limit value
of the affine parameter taken to be time or distance according to the observer [5].

2.5 A connection to the Emergent Gravity paradigm
A key aspect that emerges when one tries to combine gravity and the quantum theory
is the horizon thermality [30]. This was first noticed with the discovery of the Hawking
radiation [31] and the Unruh effect [32]. The former describes the presence of a late
time black body radiation in a spacetime with collapsing matter forming a black hole
whose event horizon is assigned a temperature of TH = ℏk/2π, where k is the surface
gravity of the black hole. The latter shows that an uniformly accelerated observer with
constant magnitude of acceleration a in Minkowski spacetime describes the vacuum state
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of a quantum field as a thermal bath of temperature TU = ℏa/2π. Further developments
showed that any null surfaces acting as horizons for a class of observers are endowed
with termodynamical properties, namely temperature and entropy. The identification
of the entropy associated to an horizon is due to Bekenstein [33] who assigned an en-
tropy of SH = A/(4L2

P ) to an horizon of area A. The fact that a theory like General
Relativity which has a purely geometrical construction gives rise to thermodynamical
properties it make one doubt if there is a deeper connection between geometry and ther-
modynamics. Jacobson [34] showed that Einstein fields equation can be interpreted as an
equation of state for the spacetime: imposing that in every local Rindler frame the laws
of thermodynamic hold in presence of an horizon endowed with Unruh temperature and
Bekenstein entropy one is able to derive the General Relativity fields equations. In this
view it seems that General Relativity might arise as an emergent theory of an underlying
more fundamental theory, just like fluidodynamics arises from the statistical mechanics
of a large number of particles/molecules. We can’t say nothing about these hypothetical
micro degress of freedom of spacetime, only a complete theory of quantum gravity can
clarify this issue. The paradigm which incorporates this view is the so called emergent
gravity paradigm. It was shown that the Einstein fields equation can be derived through
a thermodynamic variational principle [35]. Instead of varying the metric field in the
Einstein-Hilbert action, the fields equation can be obtained from an entropy functional

S ∝ Rabn
anb + total divergence (2.79)

in which it is varied the vector field na, which is an arbitrary vector of constant norm
(note that in this case we are dealing with pure gravity, if we want to deal also with
the matter we need to add terms involving Tabnanb). We see how the qmetric justifies
this entropy functional with a bottom-up approach. In fact we can ask how the qmetric
would modify the Einstein-Hilbert (EH) lagrangian in a qmetric effective lagrangian. We
know that the EH lagrangian is given by [17] (ignoring GHY counterterms)

LEH = R (2.80)

where R is the Ricci scalar. Therefore we want to compute the form of the effective Ricci
scalar via the qmetric.

2.5.1 The Ricci Biscalar

The first step we need to do is to compute the Ricci Biscalar R̃(x, x′) associated to
the qmetric. Basically this object plays the same role of the Ricci scalar associated to
the metric: is the simplest curvature invariant associated to any spacetime. We can
compute it from the qmetric qab with the same algebraic relation that relates R to the
background metric gab, but it is simpler to compute it via relations between geometrical
quantities associated to disformally coupled metrics [28](see appendix D). Considering
space/time-like separated events we have:

R̃(x, x′) = A−1R(x′) + ϵ(α− A−1)ξd − ϵαξc (2.81)

with

ξd = 2Rabu
aub +KabK

ab −K2 = ϵ(R−RΣ) (2.82)

ξc = ϵ[2(D − 1)A− 1
2□A

1
2+

+ (D − 1)(d− 4)A−1(∇
√
A)2] + (K + (D − 1)ua∇a ln

√
A)ub∇b lnαA (2.83)
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Using the explicit forms for the bifunction A,α after a lenghty computation we can find
[28]:

R̃(x, x′) =

[
σ2

SL

(
∆

∆̃

)−2/(D−1)

RΣ − (D − 1)(D − 2)

SL

+ 4(D + 1)
d ln ∆̃

dSL

]
︸ ︷︷ ︸

Q0

− SL

ϵσ2S
′2
L

[
KabK

ab − 1

D − 1
K2

]
︸ ︷︷ ︸

QK

+4SL

− D

D − 1

(
d ln ∆̃

dSL

)2

+ 2

(
d2 ln ∆̃

dS2
L

)
︸ ︷︷ ︸

Q∆

(2.84)

This is an exact result, in the sense that no Taylor expansions have been used: this
expression holds the key to understand non-perturbative effects of a zero point length[10].
We notice that the Ricci biscalar is completely determined by the geodesic structure of
the spacetime, namely by the intrinsic curvature RΣ, the extrinsic curvature Kab and
the Van Vleck determinant ∆. We also have that the Ricci biscalar reduces to the usual
Ricci scalar in the L0 → 0 limit.

2.5.2 The effective Ricci scalar

Once we have the expression for the Ricci biscalar we can construct a q-Ricci scalar R̃(x′)
in the point x′ by means of the coincidence limit:

R̃(x′) =
[
R̃(x, x′)

]
= lim

x→x′
R̃(x, x′) = lim

σ2→0
R̃(x, x′) (2.85)

In order to be able to compute this limit we must rely on Taylor expansion of several
quantities appearing in the expression of R̃(x, x′) (see appendix E), so we need to consider
a spacetime neighbourhood which is smooth enough. We notice that in (2.84) there are
three distinct terms Q0, QK and Q∆ We see separately how to evaluate their coincidence
limits. For the Q0 limit using Taylor expansion We have that:[

d

dSL

ln ∆̃

]
=

[
1

∆̃

d∆̃

dSL

]
=

[
1

∆(SL)

d∆(SL)

dSL

]
=

=

[
1

1 + o(SL)

d

dSL

(
1 +

1

6
ϵSLRabu

aub + o(S
3
2
L )

)]
=

[
1

1 + o(SL)

1

6
ϵRabu

aub + o(S
1
2
L )

]
=

=
1

1 + o(L2
0)

1

6
ϵRa′b′u

a′ub
′
+ o(L0) =

1

6
ϵRa′b′u

a′ub
′
+ o(L0) (2.86)

where primed indeces means that the tensorial quantities are in the tangent space of the
point x′. We alredy know that [∆(σ2)] = 1, we can also compute:[

∆̃
]
= [∆(SL)] =

[
1 +

1

6
ϵSLRabu

aub + o
(
S

3
2
L

)]
= 1 +

1

6
ϵL2

0Ra′b′u
a′ub

′
+ o(L3

0) (2.87)
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and we see that
[
∆̃
]
= ∆(σ2 = L2

0). Using the expansion of RΣ we have:[
σ2

SL

(
∆

∆̃

) −2
(D−1)

RΣ−

]
=

=

[
σ2

SL

(
∆

∆̃

) −2
(D−1)

(
(D − 1)(D − 2)

σ2
+R− 2ϵ(D + 1)

3
Rabu

aub + o(σ)

)]
=

=

[
(D − 1)(D − 2)

SL

(
∆

∆̃

) −2
(D−1)

+ o(σ)

]
=

(D − 1)(D − 2)

ϵL2
0

∆(L0)
2

D−1 (2.88)

Hence we have:

[Q0] = 4(D + 1)ϵ
1

6
Ra′b′u

a′ub
′
+ ϵ

(D − 1)(D − 2)

L2
0

(
∆(L0)

2
D−1 − 1

)
+ o(L0) (2.89)

The QK term provides only o(L2
0) terms (see expansion in E) as well as Q∆ since it

appears an overall factor SL which at coincidence is ϵL2
0. Thus we have:

R̃(x′) = 4(D + 1)ϵ
1

6
Ra′b′u

a′ub
′
+ ϵ

(D − 1)(D − 2)

L2
0

(
∆(L0)

2
D−1 − 1

)
+ o(L0) (2.90)

The effective Ricci scalar would be given by the limit L0 → 0 of the q-Ricci scalar.
The problematic part seems to be the second term of the above expression since a direct
computation of the limite gives an undefined form. We can take advantage of de l’Hopital
rule to get:

lim
L0→0

∆(L0)
2

D−1 − 1

L2
0

= lim
L0→0

d∆(L0)
2

D−1

dL2
0

=
1

3(D − 1)
ϵRa′b′u

a′ub
′

(2.91)

from which we find that

Reff (x
′) = lim

L0→0
R̃(x′) = ϵ

1

6
(4(D + 1) + 2(D − 2))Ra′b′u

a′ub
′
= ϵDRa′b′u

a′ub
′

(2.92)

which fixes the form of the effective Ricci scalar. At this point if we want to define an
effective Lagrangian we would get:

Leff (x) = ϵDRabu
aub (2.93)

which is exactly, up to a constant, the entropy functional of the emergent gravity
paradigm. Thus the qmetric description seems to give a natural basis for the emergent
gravity paradigm. If the gravity is truly an emergent phenomenum then the quantiza-
tion of the Einstein fields equation would not be the right way to construct a theory of
quantum gravity.
The computation of the Ricci biscalar R̃(x, x′) can be generalized to null separations [9].
In this case, after computing the coincidence limit and the L0 → 0 limit, the effective
Lagrangian would read as [9]:

Leff (x) = lim
L0→0

lim
x→x′

R̃(x, x′) = (D − 1)Rabl
alb (2.94)

where la is the null vector tangent to the null geodesic linking x′ → x. In this case the
null effective Lagrangian is proportional to the heat flux crossing the null surface normal
to la bringing with it the thermodynamics of horizons for free.
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Chapter 3

Flat spaces

In this chapter we study the geodesic structure and we construct the qmetric for flat
spaces both in the Riemannian case (Euclidean space) and in the Lorentzian case (Minkowski
spacetime).

3.1 Euclidean space
We consider a D-dimensional euclidean space RD endowed with a positive definite metric
which in cartesian coordinates reads as

ds2 = δabdx
adxb =

D−1∑
i=0

(
dxi
)2 (3.1)

where δab is the Kronecker delta. We select the origin as our base point x′ = 0 and we
study the structure of geodesics passing through it.

3.1.1 Geodesic structure

In the Euclidean space (where space and time coordinates are treated on an equal footing)
geodesics are straight lines and there are no differences between space-/time-/null-like
cases. We consider geodesic passing through the origin x′ = 0, namely radial geodesics.
Given any point x in the Euclidean space there is one and only one geodesic linking x to
the origin [36]. In cartesian coordinates the geodesic distance between x and the origin
is given by:

σ2(x) ≡ σ2(x, 0) =
D−1∑
i=0

(
xi
)2 (3.2)

and we can express the unit tangent vector to the geodesic in the point x as

ua(x) =
∂aσ

2(x)

2
√
σ2(x)

. (3.3)

We can now take advantage of the spherical symmetry of RD to perform a coordinate
transformation of the form

{xa} −→ {σ, yi} (3.4)

where {yi} are D − 1 coordinates in the subspace orthogonal to the σ direction. We
can give an explicit construction for the D = 4 case. In R4 we perform the following
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coordinate transformation [37]:

x0 = σ cosψ (3.5)
x1 = σ sinψ sin θ cosϕ (3.6)
x2 = σ sinψ sin θ sinϕ (3.7)
x3 = σ sinψ cos θ (3.8)

where ψ, θ ∈ [0, π].ϕ ∈ [0, 2π] [37]. A direct computation verifies this change of co-
ordinates is compatible with eq.(3.2). Computing the differentials and substituting in
the line element given by eq.(3.1) we find the line element expressed in the new set of
coordinates:

ds2 = dσ2 + σ2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

)]
= dσ2 + σ2dΩ2

3 (3.9)

where dΩ2
3 is the line element on a unit 3-sphere, [37]. We can generalize to D-dimensions

and we find:
ds2 = dσ2 + σ2dΩ2

D−1 (3.10)

where dΩ2
D−1 is the line element on a unit (D-1)-sphere. In such a set of coordinates we

can express the metric determinant as
√
δ = σD−1 × [Angular terms] (3.11)

and in D = 4 we explicitly have
√
δ = σ3 sin2 ψ sin θ (3.12)

We can see from the line element (3.10) that we can decompose the metric into a longi-
tudinal part and a transverse part with respect to the direction of the σ coordinate.

3.1.2 Equigeodesic hypersurfaces

We now investigate the structure of the Equigeodesic-hypersurfaces in the space RD. We
recall that an equigeodesic hypersurface Σx′(l2) is defined as the set of points which are
at a given fixed squared geodesic distance l2 from the base point x′. In our case we are
considering

Σ0(l
2) = {x ∈ RD|σ2(x, 0) = l2, l > 0, l = const} (3.13)

hence we can write the constraint that generate these hypersurfaces:

f(x) ≡ σ2(x)− l2 = 0 (3.14)

and we see that Σ0(l
2) is in every point orthogonal to the unit tangent vector to the

geodesic passing through that point since the unit normal is given by ua itself. We find
that the induced metric on the equigeodesic hypersurface is given by

ds2|Σ = hαβdy
αdyβ = l2dΩ2

D−1 (3.15)

and its square root determinant reads as:
√
h = lD−1 × [Angular terms] (3.16)

Explicitly in the case D = 4 we have

ds2|Σ = l2dΩ2
3 = l2

[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

)]
(3.17)

√
h = l3 sin2 ψ sin θ (3.18)
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3.1.3 Area and Volume

We now introduce the notion of area and volume around a point. We select a point
x ∈ Σ0(l

2). This point is identified by the D − 1 coordinates yi on the hypersurface
and we can arbitrarly set yi(x) = 0 fo i = 1, . . . , D − 1. We can notice that since there
is one and only one geodesic connecting every point of this surface to the origin, the
coordinates yi uniquely select equivalently a geodesic, namely the one passing through
x. We can compute the differential area element in x as [17]

dA =
√
hdD−1y = lD−1dΩD−1 (3.19)

where ΩD−1 is the differential of the solid angle in D− 1 dimensions. In the explicit case
of D = 4 we get:

dA(x) = l3 sin2 ψ sin θdψdθdϕ (3.20)

We can see in the coincidence limit l2 = σ2 → 0 the area element vanishes. We can also
provide a notion of volume around the point x[17]:

dV =
√
δdDx = lD−1dldΩD−1 (3.21)

which in the D = 4 case reads as

dV = σ3 sin2 ψ sin θdψdθdϕdσ (3.22)

and we would need to integrate the variable σ between, say, l − ϵ ≡ l− and l + ϵ ≡ l+.
In the coincidence limit the volume would go to zero since every points of the geodesic
collapse in the origini and so l− → 0 and l+ → 0.
Note that in the euclidean case we can also talk about area and volume around the base
point surrounded by a given Σ0(l

2). In fact if we integrate the area element over the
total solid angle we get

A0(l) = l3
∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ π

0

dψ sin2 ψ = 2π2l3 (3.23)

while for the volume we need also to integrate σ between 0 and l:

V0(l) =

∫ l

0

dσσ3

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ π

0

dψ sin2 ψ =
π2

2
l4 (3.24)

and we notice in coincidence limit A0(0) = V0(0) = 0.

3.2 q-Euclidean space
We are now ready to implement a minimum length scale L0 in the euclidean space
through the modification of the squared geodesic distance:

σ2(x) → SL(σ
2) such that SL(0) = L2

0 (3.25)

leading to the construction of a q-Euclidean space. We keep the framework of the previous
section in which we set the origin to be the base point x′. We consider a point x whose
classical squared geodesic distance is given by σ2(x) and the unit tangent vector to
the geodesic passing through the x point is given by ua(x) = ∂aσ

2/(2σ). We want to
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construct the qmetric in the point x with respect to the origin as base point. We recall
the general form of the qmetric:

qab = Agab + ϵ
(
α−1 − A

)
uaub (3.26)

where

A =
SL

σ2

(
∆

∆̃

) 2
D−1

(3.27)

α =
1

σ2

SL

S ′2
L

(3.28)

in which ∆ = ∆(x, x′) is the Van Vleck determinant (∆̃ = ∆(x̃, x′) such that σ2(x̃, x′) =
SL(σ

2(x, x′))) and a prime index means differentiation with respect to σ2. In the case of
an Euclidean space we have always ϵ = +1, ∆ = ∆̃ = 1 and gab = δab and we can write:

qab =
SL

σ2
δab +

(
σ2

SL

S ′2
L − SL

σ2

)
uaub. (3.29)

We can directly compute the modified line element ds̃2 in the following way:

ds̃2 = qabdx
adxb = Aδabdx

adxb +
(
α−1 − A

)
uaubdx

adxb =

= Ads2 +
(
α−1 − A

) 1

4σ2

∂σ2

∂xa
dxa

∂σ2

∂xb
dxb =

= A

[
ds2 − 1

2σ
d(σ2)

1

2σ
d(σ2)

]
+ α−1 1

2σ
d(σ2)

1

2σ
d(σ2) =

= A
(
ds2 − dσ2

)
+ α−1dσ2 = A

(
dσ2 + σ2dΩ2

D−1 − dσ2
)
+ α−1dσ2 =

= α−1dσ2 + Aσ2dΩ2
D−1 =

σ2

SL

S ′2
L dσ

2 +
SL

σ2
σ2dΩ2

D−1 =

= σ2

(
1√
SL

dSL

dσ2

)2

dσ2 + SLdΩ
2
D−1 =

(
σ√
SL

dSL

dσ

dσ

dσ2

)2

dσ2 + SLdΩ
2
D−1 =

=

(
σ√
SL

dSL

dσ

1

2σ

)2

dσ2 + SLdΩ
2
D−1 =

(
1

2
√
SL

dSL

dσ

)2

dσ2 + SLdΩ
2
D−1 =

=

(
d
√
SL

dσ

)2

dσ2 + SLdΩ
2
D−1 =

d
√
SL

dσ
dσ
d
√
SL

dσ
dσ + SLdΩ

2
D−1

and we finally get the q-line element for the q-Euclidean space:

ds̃2 = d
√
SL

2
++SLdΩ

2
D−1 (3.30)

3.2.1 Interpretation

What does the q-line element (3.30) tell us? First of all we can notice that we can simply
obtain the q-line element of the q-Euclidean space by directly substituting σ →

√
SL in

the classical Euclidean line element. The line element is still of the form

ds2 = dρ2 + ρ2γαβ(y)dy
αdyβ (3.31)

where ρ is the physical (longitudinal) distance from the base point and hαβ = ρ2γαβ
is the transverse metric telling us we are still describing a flat space. However we are
describing a flat space with all the points at a classical squared geodesic distance σ2 < L0

from the base point removed: we actually have a "hole" of radius L0 around the origin
since we can probe "points" at least at a distance SL ≥ L2

0.
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3.2.2 Area and volume

We can now evaluate how the introduction of a minimum length affects the construction
of areas and volumes. The relevant effects are encapsulated in the modification of the
determinants square roots appearing in the formaulas for the volume and area elements.
The equigeodesic surfaces are now defined as the set of points at a given fixed modified
geodesic distance SL = SL(σ

2 = l2) We can define the q-area and q-volume elements as
in the usual case:

dΣ̃ =
√
h̃dD−1y (3.32)

dṼ =
√
qdDx (3.33)

where h̃ is the determinant of the modified induced metric on the equigeodesic hyper-
surface and q is the determinant of the qmetric. We already know that

√
q =

A
D−1
2

√
α

√
g (3.34)

while we have that
h̃αβ = Ahαβ (3.35)

from which we find √
h̃ = A

D−1
2

√
h (3.36)

Thus the modified area and volume elements read as

dΣ̃ = A
D−1
2 dΣ =

(√
SL

l

)D−1

lD−1dΩD−1 =
(√

SL

)D−1

dΩD−1 (3.37)

dṼ =
A

D−1
2

√
α
dV =

(√
SL

σ

)D−1
σ√
SL

S ′
Lσ

D−1dσdΩD−1 =
1

2

√
SL

D−2
dSLdΩD−1 (3.38)

We can study what happens in the coincidence limit. With regard to the area element
we have

lim
l2→0

dΣ̃ = LD−1
0 dΩD−1 (3.39)

meaning that the area element stays finite in the coincidence limit. In fact with a
minimum length we have a "minimum equigeodesic hypersurface" around the base point.
In [11] this procedure is used to associate an area to the base point x′ (in our case the
origin) as the area of this minimal equigeodesic hypersurface. If we integrate over the
entire solid angle:

Ã0 = LD−1
0 ΩD−1 (3.40)

which in the case D = 4 is given by

Ã0 = 2π2L3
0 (3.41)

which is the area of the entire minimal equigeodesic surface. Anyways these area elements
are orthogonal to the geodesic congruence.
Regarding the volume we can either compute the volume of the entire geodesic ball
around the base point or the volume around a point on the equigeodesic surface. For the
entire ball we need to integrate SL(σ

2) between SL(0) and SL(l
2) namely

Ṽ0(l) =
1

2

∫ SL(l
2)

SL(0)

dSL (SL)
D−2
2

∫
dΩD−1 =

ΩD−1

D

[
SL(l

2)D/2 − SL(0)
D/2
]

(3.42)
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which using the fact that SL(0) = L2
0 we have

Ṽ0(l) =
ΩD−1

D

[
SL(l

2)D/2 − LD
0

]
(3.43)

which goes to zero in the coincidence limit as can be seen in fig.3.1.
If we want to evaluate the volume around a point x ∈ Σ0(SL(l

2)) we need to integrate
over an arbitrary portion of solid angle and the SL variable must be integrated between
SL(l

2
−) and SL(l

2
+) with SL(l

2
−) < SL(l

2) < SL(l
2
+). We would have:

Ṽ (x) =
∆Ω

D

[
SL(l

2
+)

D/2 − SL(l
2
−)

D/2
]

(3.44)

which also vanishes in the coincidence limit since SL(l
2
+) → SL(0) = L2

0 as well as
SL(l

2
−) → SL(0) = L2

0. Despite the presence of a minimum length, the volume still
vanishes in the coincidence limit highlighting the non triviality of having a finite area in
the same limit.

Figure 3.1: Hole in the euclidean space around the base-point x’ = 0

3.2.3 Dimensional reduction

A common result of several approaches to quantum gravity is the hint that at Planck scale
the space(time) becomes effectively two dimensional [38]. We expect that the qmetric
description of the spacetime can reproduce such a result since the qmetric provides an
effective description of the space up to the minimum length scale, incorporating quantum
gravity effects. Indeed it is the case. We can define the number of effective dimensions
[11, 38] as

Deff = D +
d

d log(l)

[
log

(
Ṽ (l)

V (l)

)]
(3.45)

where we considering the volumes of geodesic balls in q-Euclidean and Euclidean spaces.
We have that:

Ṽ (l)

V (l)
=
SL(l

2)D/2 − LD
0

lD
(3.46)

of which we need to compute

d

d log(l)

[
log

(
Ṽ (l)

V (l)

)]
= l

d

dl

[
log

(
Ṽ (l)

V (l)

)]
=

= l
lD

SL(l2)D/2 − LD
0

[
− D

lD+1

(
SL(l

2)D/2 − LD
0

)
+

1

lD

(
D

2
S

D−2
2

L

dSL

dl

)]
=

= −D +
D

2
l

S
D−2
2

L

SL(l2)D/2 − LD
0

dSL

dl
= −D +Dl2

S
D−2
2

L

SL(l2)D/2 − LD
0

dSL

dl2
.
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Figure 3.2: Number of effective dimensions in function of x = l
L0

for the choice SL(l
2) =

l2 + L2
0 in a 4-dimensional Euclidean space.

Inserting this result in eq.(3.45) we find that the numbers of effective dimensions is given
by

Deff = Dl2
S

D−2
2

L

SL(l2)D/2 − LD
0

dSL

dl2
(3.47)

and it is sensitive to the behaviour of the modified squared geodesic distance SL. Using
the simplest choice [11] SL(l

2) = l2 + L2
0 in a D = 4 Euclidean space we find

Deff = 4l2
l2 + L2

0

(l2 + L2
0)

2 − L4
0

= 4
l2 + L2

0

l2 + 2L2
0

= 4
1 + (l/L0)

2

2 + (l/L0)
2 . (3.48)

At large distances (L0 → 0) we have Deff = 4 while at a very short scale (l2 → 0) we
find Deff = 2 proving that a flat Euclidean space endowed with a minimum length is
effectively two-dimensional at small scales as shown in fig.(3.2).

3.3 Minkowski spacetime
We are now ready to discuss the case of a flat Lorentzian space. We consider a D-
dimesional Minkowski spacetime R1,D−1 whose spacetime metric in cartesian coordinates
is given by:

ds2 = ηabdx
adxb = −

(
dx0
)2

+
D−1∑
i=1

(
dxi
)2 (3.49)

We select the origin as our base point x′ = 0 and we study the geodesic emanating from
it. In Minkowski spacetime geodesics are simply straight lines, so we need to consider
straight line passing through the origin. Considering a point x on one of such geodesics
the squared geodesic distance from the origin reads as:

σ2(x) ≡ σ2(x, 0) = −
(
x0
)2

+
D−1∑
i=1

(
xi
)2 (3.50)
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We can classify the geodesic according to their nature: if σ2 < 0 we have a timelike
geodesics (physical paths followed by free probes) while if σ2 > 0 the geodesic is spacelike
(unphysical paths). The case in which σ2 = 0 refers to null-like/light-like geodesics (paths
followed by free massless objects such free photons/light rays). In the case σ2(x) ̸= 0 we
have that the unit tangent vector to the geodesic in the point x is given by

ua(x) =
∂aσ

2(x)

2
√
ϵσ2(x)

(3.51)

where ϵ = −1,+1 respectively for timelike and spacelike geodesics.

3.3.1 Time-like geodesics

Timelike geodesics lie within the past lightcone and future lightcone of the origin. we
can define the proper time along a timelike geodesic as:

τ 2(x) = −σ2(x) (3.52)

where τ(x) is the proper time measured by an observer moving along the given geodesic
in the point x. We have τ > 0 for x0 > 0 and τ < 0 for x0 < 0. Restricting to the case
of D = 4 we have that:

ds2 = −
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2 (3.53)

σ2(x) = −
(
x0
)2

+
(
x1
)2

+
(
x2
)2

+
(
x3
)2

= −τ 2(x) (3.54)

We now define equigeodesic hypersurfaces Σ(τ) = {x ∈ R1,3|σ2 = −τ 2Σ = const}: they
are described by two-sheet hyperboloid ( see fig 3.3), one in the upper half of Minkowski
space and one in the lower part. Every points in such hypersurface are caracterized by
the same proper time τΣ. We can introduce coordinates adapted to such hypersurfaces.
In particular for the upper sheet of hyperboloid we can perform the following coordinate
transformation:

x0 = τ cosh (α) (3.55)
x1 = τ sinh (α) sin(θ) cos(ϕ) (3.56)
x2 = τ sinh (α) sin(θ) sin(ϕ) (3.57)
x3 = τ sinh (α) cos(θ) (3.58)

where θ ∈ [0, π], ϕ ∈ [0, 2π] are the usual spherical angular coordinates. In order to
understand the meaning and the regime of the α coordinate we define:

r2 ≡ (x1)2 + (x2)2 + (x3)2 = τ 2 sinh2(α) −→ r = τ sinh(α) (3.59)

where r is the radial coordinate in the purely spatial euclidean space R3. Since we must
have r > 0 we need to impose α ∈ [0,∞[ in order to have sinh(α) ≥ 0. Moreover we also
have

r

x0
= tanh(α) −→ α = tanh−1

( r
x0

)
(3.60)

showing that α is equal to the rapidity β ≡ tanh−1(v/c) in units where the speed of light
c is set to c = 1: thus α coordinate selects all the timelike geodesic passing through the
origin (it does not select a unique geodesic due to the spherical symmetry of Minkowski
space) along which a probe is moving at a speed v = r/x0 = tanh−1(α) with respect to
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(a) Examples of timelike geodesics in a D=2 Minkowski
spacetime (in black). In blue it is shown an example
of equigeodesic surface. The lightcone is shown in red.
Note x0 = t and x1 = x.

(b) Visualization of a two-sheet hy-
perboloid in D = 3

Figure 3.3: Timelike geodesics

a stationary frame located in the origin. In such a set of coordinates the line element
reads as

ds2 = −dτ 2 + τ 2dα2 + τ 2 sinh2(α)dΩ2 = −dτ 2 + τ 2
(
dα2 + sinh2(α)dΩ2

)
(3.61)

where dΩ2 = dθ2 + sin2(θ)dϕ2 is the squared line element on a unit 2-sphere. In this
coordinates system the metric determinant is given by:

η ≡ det(η) = −τ 6Σ sinh6(α) sin2(θ) (3.62)

Restricting our displacements on a equigeodesic hypersurface Σ(τΣ) we get the induced
metric to the hypersurface:

ds2|Σ = hαβdy
αdyβ = τ 2Σ

(
dα2 + sinh2(α)dΩ2

)
(3.63)

which is also orthogonal in every point to the vector tangent to the geodesic passing
through that point. We notice that the induced metric has explicitly a hyperbolic nature
[39]. The determinant of the induced metric reads as:

h ≡ det(h) = τ 6Σ sinh6(α) sin2(θ) (3.64)

From the induced metric we can also compute the differential of the hypersurface area
element on Σ around a point x ∈ Σ

dΣ =
√
hd3y = τ 3Σ sinh3 (α)dα sin(θ)dθdϕ = τ 3Σ sinh3 (α)dαdΩ (3.65)

If we perform the coincidence limit x → 0 we have that σ2 = −τ 2Σ → 0 and the hyper-
surface area element vanishes:

lim
x→0

dΣ = lim
τ2Σ→0

dΣ = 0 (3.66)

We can also compute the 4-volume element around a point x ∈ Σ by computing:

dV =
√
−ηd4x = τ 3 sinh3 (α)dτdα sin(θ)dθdϕ = τ 3 sinh3 (α)dτdαdΩ (3.67)
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(a) Examples of spacelike geodesics in a D=2
Minkowski spacetime (in black). In blue it is shown
an example of equigeodesic surface. The lightcone is
shown in red. Note x0 = t and x1 = x.

(b) Visualization of a one-sheet hy-
perboloid in D = 3

Figure 3.4: Spacelike geodesics

and also in this case in the coincidence limit we have a vanishing 4-volume element:

lim
x→0

dV = lim
τ2→0

dV = 0 (3.68)

Unlike the Euclidean case it doesn’t make much sense to talk about areas and volumes
around the origin since an integration over all values of α gives a divergent result both
for the area and the volume.
The description in the lower half of Minkowski spacetime is the same as the one just
carried on with the only difference given by the fact that the proper time τ is negative
and thus α ∈]−∞, 0] in order to have a positive radial coordinate.

3.3.2 Space-like geodesics

Space-like geodesics lie outside the lightcones centered in the origin. In this case we can
define the proper length l(x) in the following way:

l(x) =
√
σ2(x) (3.69)

where l(x) > 0 is the proper distance from the origin along a spacelike geodesic in the
point x. Restricting to the case D = 4 we have:

ds2 = −
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+ (dx3)
2 (3.70)

σ2(x) = −
(
x0
)2

+
(
x1
)2

+
(
x2
)2

+
(
x3
)2

= l2(x) (3.71)

We see that equigeodesic hypersurfaces Σ(l) = {x ∈ R1,3|σ2 = l2Σ = const} are given by
a one-sheet three dimensional hyperboloid as shown in fig.(3.4)). Every point on Σ(lΣ)
are at a spatial proper distance lΣ from the origin. Following the same step previously
done for the time-like case we perform the following coordinate transformations:

x0 = l sinh (α) (3.72)
x1 = l cosh (α) sin(θ) cos(ϕ) (3.73)
x2 = l cosh (α) sin(θ) sin(ϕ) (3.74)
x3 = l cosh (α) cos(θ) (3.75)
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where θ ∈ [0, π], ϕ ∈ [0, 2π] are the usual spherical angular coordinates. We can define
the radial coordinate r in the 3-dimensional spatial euclidean space:

r2 ≡ (x1)2 + (x2)2 + (x3)2 = l2 cosh2(α) −→ r = l cosh(α) (3.76)

and we see that r is always positive independently on the values of α which in this case
is given by:

α = tanh−1

(
x0

r

)
(3.77)

and runs from −∞ to +∞. We can rewrite the Minkowski line element in this coordinate
system and we find:

ds2 = dl2 − l2dα2 + l2 cosh2(α)dΩ2 (3.78)

where dΩ2 = dθ2 + sin2(θ)dϕ2 is the squared line element os a unit 2-sphere. In this
coordinates system the metric determinant is given by:

η ≡ det(η) = −l6 cosh6(α) sin2(θ) (3.79)

Restricting our displacements on a equigeodesic hypersurface Σ(lΣ) we get the induced
metric to the hypersurface:

ds2|Σ = hαβdy
αdyβ = l2Σ

(
−dα2 + cosh2(α)dΩ2

)
(3.80)

which is also orthogonal in every point to the vector tangent to the geodesic passing
through that point. The determinant of the induced metric reads as:

h ≡ det(h) = l6Σ cosh6(α) sin2(θ) (3.81)

From the induced metric we can also compute the differential of the hypersurface area
element on Σ around a point x ∈ Σ

dΣ =
√
hd3y = l3Σ cosh3 (α)dα sin(θ)dθdϕ = l3Σ cosh3 (α)dαdΩ (3.82)

If we perform the coincidence limit x→ 0 we have that σ2 = l2Σ → 0 and the hypersurface
area element vanishes:

lim
x→0

dΣ = lim
l2Σ→0

dΣ = 0 (3.83)

We can also compute the 4-volume element around a point x ∈ Σ by computing:

dV =
√
−ηd4x = l3 cosh3 (α)dldα sin(θ)dθdϕ = l3 cosh3 (α)dldαdΩ (3.84)

and also in this case in the coincidence limit we have a vanishing 4-volume element:

lim
x→0

dV = lim
l2→0

dV = 0 (3.85)

3.3.3 Null geodesics

The treatment of null geodesics is not so straightforward. All along the null geodesics
we have:

σ2(x) = 0 (3.86)

which defines the lightcones (past and future) centered in the origin. Since the geodesics
distance is invariantly zero all along the null paths it fails to distinguish different points
and it can’t be used as an affine parameter as in the previous cases. Moreover ∂aσ2 is a
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null vector and it must be proportional to the null tangent vector. In order to select a
particular affine parameter with a physical meaning we must introduce an obsever with
a timelike 4-velocity V a: any null affine parametrization λ gives us a measure of distance
along the null geodesic as measured by a particular timelike observer at a certain point x
of the geodesic[13, 19]. We attach a canonical observer in the origin with a four velocity
V a such that V ala = −1. Following what we have done in section 1.1.2 we have:

1

2
∂aσ

2 = λla (3.87)

and we can write
λ = −V a1

2
∂aσ

2 (3.88)

From V a and la we can construct a second null vector ma = V a − (1/2)la such that:

1. maVa = −1/2

2. mala = −1

This second vector must be used with la to determine the metric transverse to the
direction of the geodesic [17]:

hab = gab + lamb +malb (3.89)

which is effectively D− 2 dimensional since it is subject to the orthogonality constraints
habl

a = 0 and habma = 0. It may seems that the transverse metric is not unique since it
depends on the choice of V a: indeed it is true, but physical quantities computed through
hab turns out to be independent from the auxiliary null vector ma[17]. We can now
introduce null coordinates u and v such that:

la = −∂au (3.90)

ma = −1

2
∂av (3.91)

Example in D = 4

Consider in four dimensions in {t, x, y, z} coordinates a future directed null geodesic
along x direction. A point p on such a geodesic is at a squared geodesic distance:

σ2(p) = −t2 + x2 + y2 + z2 = 0 (3.92)

from the origin. We select a stationary observer in x = y = z = 0 with 4-velocity
V a = (1, 0, 0, 0). So we find:

λ = t (3.93)

la =
(
−1,

x

t
, 0, 0

)
(3.94)

hence imposing the null condition lal
a = 0 we get x2 = t2 hence la = (1,±1, 0, 0). The

second null vector ma is given by ma = (1/2,∓1/2, 0, 0) and the null coordinates are
given by u = t− x and v = t+ x. Thus vector la is tangent to u = const surfaces (light
rays moving towards increasing values of x coordinate) while ma is tangent to v = const
surfaces (light rays moving towards decreasing values of x coordinate). We can rewrite
the Minkowski line element in {u, v, y, z} coordinates and we get

ds2 = −dudv + dy2 + dz2 (3.95)
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from which we can read the transverse metric and the metric induced on the light cone
Γ

ds2|Γ = dy2 + dz2 (3.96)

explicitly showing a 2-dimensional induced metric. We can again take advantage of the
spherical symmetry in the purely spatial 3D Euclidean case by using {t, r.θ, ϕ} coordi-
nates and study radial geodesics in any direction. In this case geodesic distance is given
by

σ2 = −t2 + r2 = 0 (3.97)

and the lightcones (generated by all future and past radial null geodesics) are described
by t − r = 0 (future cone) and t + r = 0 (past cone). We now have that an arbitrary
radial null geodesic is parametrized by :

la =
(
−1,

x

r
, ,
y

r
, ,
z

r

)
= (−1, sin θ cosϕ, sin θ sinϕ, cos θ) = −∂a(t− r) (3.98)

and the auxiliary vector with respect to a stationary observer

ma =
1

2
(−1,− sin θ cosϕ,− sin θ sinϕ,− cos θ) = −1

2
∂a(t+ r) (3.99)

from which we define the null coordinates as u = t − r and v = t + r. Using that
2λ = −V a∂aσ

2 we get λ = t. For radial null geodesic out-going from the origin u = 0
hence r = t = λ while for in-going radial null geodesic v = 0 hence t = λ = −r. The
metric in null coordinates reads as

ds2 = −dudv + r2dΩ2 = −dudv + λ2dΩ2 (3.100)

with dΩ2 being the squared line element on a unit 2-sphere.
We want to provide an expression for the metric in terms of the affine parameters of the
geodesics tangent respectively to la and ma. We know from section 1.1.2 that we have:

la =
dxa

dλ
la = −∂au (3.101)

ma =
dxa

dν
ma = −1

2
∂av (3.102)

lama = −1 (3.103)

Using eq.(3.103)we can find the following identities:

1 =
du

du
=
dxa

du
∂au = −dx

a

du
la → ma =

dxa

du
(3.104)

1 =
dv

dv
=
dxa

dv
∂av = −2

dxa

dv
ma → la = 2

dxa

dv
(3.105)

from which we can infer that du = dν and dλ = dv/2. Therefore we can write the metric
in the form:

ds2 = −2dλdν + λ2dΩ2 (3.106)

The induced transverse metric on the lightcone is given by

ds2 = λ2dΩ2 (3.107)

which can be used to compute the transverse area element around a point on the light
cone at an affine distance λ from the origin:

dΣ = λ2dΩ (3.108)

with dΩ = sin θdθdϕ.
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3.4 q-Minkowski spacetime
We now study how to construct the qmetric for a D = 4 Minkowski spacetime. The
starting point is the substitution of the squared geodesic distance by an arbitrary func-
tion:

σ2(x) → SL(σ
2(x)) such that SL(0) = ±L2

0 (3.109)

preserving the nature of the spacetime interval between the point considered and the
origin.

3.4.1 Time-like intervals

Consider the point x on a timelike geodesic segment which links x to the origin at a
classical squared geodesic distance σ2(x).The timelike unit vector tangent to the geodesic
is given by ua = ∂aσ

2/
(
2
√
−σ2

)
. Recall that for timelike separated events the qmetric

reads as
qab = Agab −

(
α−1 − A

)
uaub (3.110)

where A and αare respectively given by eq.(3.27)and eq.(3.28). In the case of Minkowkski
spacetime we have:

gab = ηab (3.111)

A =
SL

σ2
(3.112)

α =
1

σ2

SL

S ′2
L

(3.113)

where a prime means derivative with respect to σ2. The construction of the modified line
element follows the same algebraic passages done in the euclidean case, with particular
attention to the presence of various minus signs appearing: keep in mind that SL < 0
through the entire derivation. We also use the fact that for timelike geodesics τ 2 =
−σ2 > 0:

ds̃2 = qabdx
adxb = Aηabdx

adxb −
(
α−1 − A

)
uaubdx

adxb =

= Ads2 −
(
α−1 − A

) 1

4τ 2
∂τ 2

∂xa
dxa

∂τ 2

∂xb
dxb =

= A

[
ds2 +

1

2τ
d(τ 2)

1

2τ
d(τ 2)

]
− α−1 1

2τ
d(τ 2)

1

2τ
d(τ 2) =

= A
(
ds2 + dτ 2

)
− α−1dτ 2 =

= A
(
−dτ 2 + τ 2dα2 + τ 2 sinh2(α)dΩ2 + dτ 2

)
− α−1dτ 2 =

= −α−1dτ 2 + A
(
τ 2dα2 + τ 2 sinh2(α)dΩ2

)
=

= −−τ 2

SL

S ′2
L dτ

2 +
SL

−τ 2
τ 2
(
dα2 + sinh2(α)dΩ2

)
=

= −τ 2
(

1√
−SL

dSL

dσ2

)2

dτ 2 − SL

(
dα2 + sinh2(α)dΩ2

)
=

= −
(

τ√
−SL

dSL

dτ

dτ

dσ2

)2

dτ 2 − SL

(
dα2 + sinh2(α)dΩ2

)
=

= −
(
− τ√

−SL

dSL

dτ

1

2τ

)2

dτ 2 − SL

(
dα2 + sinh2(α)dΩ2

)
=
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= −
(
− 1

2
√
−SL

dSL

dτ

)2

dτ 2 − SL

(
dα2 + sinh2(α)dΩ2

)
=

= −
(
d
√
−SL

dτ

)2

dτ 2 − SL

(
dα2 + sinh2(α)dΩ2

)
=

= −d
√
−SL

dτ
dτ
d
√
−SL

dτ
dτ − SL

(
dα2 + sinh2(α)dΩ2

)
from which we have

ds̃2 = −d
√

−SL

2
− SL

(
dα2 + sinh2(α)dΩ2

)
(3.114)

which, if we introduce a modified proper time function τ̃ 2 = −SL; can be rewritten as

ds̃2 = −dτ̃ 2 + τ̃ 2
(
dα2 + sinh2(α)dΩ2

)
. (3.115)

As in the euclidean case we are still describing a flat spacetime but with the points
at a classical geodesic distance σ2(x) < −L2

0 removed. (see fig. 3.5a).

3.4.2 Space-like intervals

We can perform the same steps for a point x on a space-like geodesic. In this case we
have σ2(x) = l2(x) > 0 and the unit spacelike vector tangent to the geodesic segment is
given by ua = ∂al

2/2l. The qmetric for spacelike separated events reads as

qab = Agab +
(
α−1 − A

)
uaub (3.116)

from which we can compute the modified squared line element

ds̃2 = qabdx
adxb = Aηabdx

adxb +
(
α−1 − A

)
uaubdx

adxb =

= Ads2 +
(
α−1 − A

) 1

4l2
∂l2

∂xa
dxa

∂l2

∂xb
dxb =

= A

[
ds2 − 1

2l
d(l2)

1

2l
d(l2)

]
+ α−1 1

2l
d(l2)

1

2l
d(l2) =

= A
(
ds2 − dl2

)
+ α−1dl2 =

= A
(
dl2 − l2dα2 + l2 cosh2(α)dΩ2 − dl2

)
+ α−1dl2 =

= α−1dl2 + A
(
−l2dα2 + l2 cosh2(α)dΩ2

)
=

=
l2

SL

S ′2
L dl

2 +
SL

l2
l2
(
−dα2 + cosh2(α)dΩ2

)
=

= l2
(

1√
SL

dSL

dσ2

)2

dl2 + SL

(
−dα2 + cosh2(α)dΩ2

)
=

=

(
l√
SL

dSL

dl

dl

dσ2

)2

dl2 + SL

(
−dα2 + cosh2(α)dΩ2

)
=

=

(
l√
SL

dSL

dl

1

2l

)2

dl2 + SL

(
−dα2 + cosh2(α)dΩ2

)
=

=

(
1

2
√
SL

dSL

dl

)2

dl2 + SL

(
−dα2 + cosh2(α)dΩ2

)
=

=

(
d
√
SL

dl

)2

dl2 + SL

(
−dα2 + cosh2(α)dΩ2

)
=
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=
d
√
SL

dl
dl
d
√
SL

dl
dl + SL

(
−dα2 + cosh2(α)dΩ2

)
from which we have

ds̃2 = d
√
SL

2
+ SL

(
−dα2 + cosh2(α)dΩ2

)
(3.117)

which, if we introduce a modified proper length function l̃2 = SL; can be rewritten as

ds̃2 = dl̃2 + l̃2
(
−dα2 + cosh2(α)dΩ2

)
. (3.118)

which tells us that we are still describing a flat space but with points at a geodesic
distance 0 < σ2 < L2

0 removed (see fig 3.5b).

Maximal acceleration

The modification of the spacelike squared geodesic distance gives us also a hint for the
possible presence of a maximal value for the acceleration in the Minkowski spacetime.
There are several theories which contemplate the possibility of having a finite proper
maximal acceleration for an accelerating probe [40]. This fact is related to the presence
of a minimal length scale[41]. The qmetric description of Minkowski spacetime allows the
following arguments. The introduction of the modified squared geodesic distance SL for
spacelike separated events reveals the presence of a "minimal equigeodesic hypersurface"
at a distance SL = +L2

0 from the origin. An uniformly accelerated observer along ,for
example, x direction in Minkowski space follows hyperbolic paths. In particular if it is
accelerating with a constant acceleration k she follows the path (in inertial coordinates
{t, x, y, z} [42]

x2 − t2 =
1

k2
(3.119)

describing an hyperbolic path asymptotically to the light cones t = x in the future and
t = −x in the past. This also represents the equigeodesic surface at a distance 1/k2 and
if this distance must be bounded from below:

1

k2
> L2

0 → k2 <
1

L2
0

(3.120)

showing we have an upper limit for the magnitude of the proper acceleration.

(a) Points removed for timelike geodesics. (b) Points removed for spacelike geodesics.

Figure 3.5: Spacetime regions removed
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3.4.3 Null-like intervals

We now consider a point p identified by the inertial coordinates (t, x, y, z) on the future
light cone Γ centered in the origin where we attach a freely moving observer with 4-
velocity V a = (1, 0, 0, 0) in the local frame. Using the construction of the section (3.3.3)
we have :

la =
(
1,
x

r
,
y

r
,
z

r

)
(3.121)

ma =
1

2

(
1,−x

r
,−y

r
,−z

r

)
(3.122)

where r2 = x2 + y2 + z2, la is the null tangent vector to the null geodesic linking the
origin to the point p and ma = V a − la/2 is the auxiliary null vector. We also have
shown we can parameterize the null geodesic with the affine null parameter λ = t = r
and we can use the null coordinates u = t − r and v = t + r such that la = −∂au and
ma = −∂av/2. We assume λ(p) = λp > 0 and λ(0) = λ0 = 0. In order to construct the
qmetric in the point p with respect to the origin we start from a modification of the null
affine parameter:

λ(p) → λ̃(λp) ≡ λ̃p such that lim
p→0

(
λ̃p − λ̃0

)
= L0 (3.123)

providing a finite affine parameter distance in the coincidence limit. We recall from
eq.(2.71) the qmetric general form for null separated events:

qab = Aλgab +
(
Aλ − α−1

λ

)
(lamb +malb) (3.124)

where

Aλ =
λ̃2

λ2

(
∆

∆̃

) 2
d−2

(3.125)

αλ =
1

dλ̃/dλ
(3.126)

in which ∆(∆̃) is the Van Vleck determinant evaluated in the point p (p̃ identified by
λp̃ = λ̃p). In Minkowski spacetime we simply have gab = ηab, ∆ = ∆̃ = 1. We can thus
evaluate the modified squared line element for null separated events:

ds̃2 = qabdx
adxb = Aληabdx

adxb +
(
Aλ − α−1

λ

)
(lamb +malb) dx

adxb =

= Aλds
2 +

1

2

(
Aλ − α−1

λ

)
(∂au∂bv + ∂av∂bu) dx

adxb =

= Aλ

(
−dudv + λ2dΩ2

)
+
(
Aλ − α−1

λ

)
dudv =

= −α−1
λ dudv + Aλλ

2dΩ2 =

= −

(
dλ̃

dλ

)
dudv + λ̃2dΩ2.

We now search for an expression of the null qmetric involving the q-affine parameters of
the q-geodesics according to the qmetric. We know that by construction a null geodesic
in ordinary spacetime is still a null geodesic in the qmetric description: what change are
the affine parameters. Recalling equations (2.30) and (2.34) with the expression of αλ

given by eq:(3.126) we have that the modified tangent vector l̃a is given by:

l̃a =
dxa

dλ̃
=
dλ

dλ̃
la = αλl

a (3.127)
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l̃a =
dλ

dλ̃
α−1
λ la =

dλ

dλ̃

dλ̃

dλ
la = la (3.128)

We now impose that the normalization given by equation (3.103) is valid also for the
modified null tangent vectors with respect to the scalar product constructed from the
qmetric:

qabl̃
am̃b = l̃am̃a = −1 (3.129)

where m̃a is given by:

m̃a =
dxa

dν̃
(3.130)

From the normalization condition we can find that:

1 =
dν̃

dν̃
=
dxa

dν̃
∂aν̃ = m̃a∂aν̃ → qabl̃

b = l̃a = la = −∂aν̃ = −∂au (3.131)

hence we have du = dν̃. From the relation of eq.(3.105) we see that:

dv = 2dλ (3.132)

dλ̃

dλ
dv = 2

dλ̃

dλ
dλ = 2dλ̃ (3.133)

from which we can rewrite the explicit form of the null qmetric for the Minkowski space-
time as

ds̃2 = −2dλ̃dν̃ + λ̃2dΩ2 (3.134)

Since we are considering a point on a null geodesic from the origin we already know that
the longitudinal part of the metric vanishes since we are describing displacements along
u = const or v = const trajectories. What matters to us is the 2-dim. transversal part of
the metric which characterize the structure of the 2-dim. space transversal to the light
cone:

ds2Γ = λ̃2dΩ2 (3.135)

whose determinant is given by √
hΓ = λ̃2 sin θ. (3.136)

3.4.4 Areas and volumes

We now investigate the effect of the introduction of the qmetric description in the
Minkowski spacetime on the volume and area elements. We separately treat the three
different spacetime separations.

Time-like separations

In the case of time-like separations the equigeodesic hypersurface is represented by a
two-sheet hyperboloid of points at the same proper time distance τΣ from the origin.
Considering the upper sheet, we select a point x on the hypersurface at a distance τΣ.
This point is identified by the triplet (αx, θx, ϕx). Using spherical symmetry we’re free
to rotate our frame to select θx = ϕx = 0.The induced metric on the hypersurface is

ds̃2|Σ = τ̃ 2Σ
(
dα2 + sinh2 αdΩ2

)
. (3.137)

The area element around the point x is given by:

dΣ̃ = τ̃ 3Σ sinh2(α)dαdΩ (3.138)
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which can be integrated over all the solid angle and an arbitrary finite range of α namely
from α− to α+ such that α− < αx < α+ getting

Σ̃(x, α−, α+) = 4πτ̃ 3Σ

∫ α+

α−

dα sinh2(α) (3.139)

which remains finite in the coincidence limit since τ 2Σ → L2
0. Thus

lim
τΣ→0

Σ̃(x, α−, α+) = 4πL3
0

∫ α+

α−

dα sinh2(α) (3.140)

since in the coincidence limit the transversal coordinates are kept constant.
Regarding the volume element we have

dṼ = τ̃ 3 sinh2 αdτ̃dαdΩ (3.141)

which additionaly must be integrated between τ̃− and τ̃+ with τ̃− < τ̃Σ < τ̃+ giving

Ṽ (x, α−, α+, τ̃−, τ̃+) = π
(
τ̃ 4+ − τ̃ 4−

) ∫ α+

α−

dα sinh2 α (3.142)

and vanishes in the coincidence limit since τ̃+ → L0 and τ̃− → L0.

Space-like separations

The spacelike case is pretty similar to the timelike one. We have the induced metric

ds̃2|Σ = l̃2Σ
(
−dα2 + cosh2 αdΩ2

)
(3.143)

from which we can compute
dΣ̃ = l̃3Σ cosh2 αdαdΩ (3.144)

and
dṼ = l̃3 sinh2 αdτ̃dαdΩ (3.145)

which can be integrated to give

Σ̃(x, α−, α+) = 4πl̃3Σ

∫ α+

α−

dα cosh2(α) (3.146)

Ṽ (x, α−, α+, l̃−, l̃+) = π
(
l̃4+ − l̃4−

)∫ α+

α−

dα cosh2 α (3.147)

whose coincidence limits are given by

lim
lΣ→0

Σ̃(x, α−, α+) = 4πL3
0

∫ α+

α−

dα cosh2(α) (3.148)

lim
l→0

Ṽ (x, α−, α+, l̃−, l̃+) = 0 (3.149)

showing again a finite transversal area and a vanishing volume in the coincidence limit.
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Null-like separation

In the case of a null separations the metric induced on the lightcone Γ is

ds̃2|Γ = λ̃2dΩ2 (3.150)

which can be used to compute areas elements in the point p ∈ Γ

dΣ̃Γ(p) = λ̃2pdΩ (3.151)

and after an integration over the solid angle we would have

Σ̃Γ(p) = 4πλ̃2p. (3.152)

In the coincidence limit we must have λ̃p − λ̃0 → L0 and since we set λ̃0 = 0 we end up
with λ̃p → L0 and

lim
p→0

Σ̃Γ(p) = 4πL2
0 (3.153)

which gives us a 2-dimensional minimum cross-sectional area around a point.

3.4.5 Dimensional reduction

Both in the timelike and spacelike case we can do the same computation of the section
3.2.3 and we find that also a Minkowski space-time endowed with a minimum length
is effectively two-dimensional at very short scale length. In fact both for spacelike and
timelike volume elements we have in D-dimensions

Ṽ

V
=

(ϵSL)
D/2 − LD

0

(ϵσ2)D/2
(3.154)

with ϵ = −1,+1 respectively in the time-like and space-like case. We can compute

Deff = D +
d

d log
(√

ϵσ2
) [log( Ṽ (l)

V (l)

)]
(3.155)

getting the same result for the euclidean case

Deff = D (ϵσ)2
(ϵSL)

D−2
2

(ϵSL)
D/2 − LD

0

dSL

dσ2
(3.156)

which gives the known result in the special case D = 4 and SL = σ2 + ϵL2
0:

Deff = 4σ2 ϵσ2 + L2
0

(ϵσ2 + L2
0)

2 − L4
0

= 4
ϵσ2 + L2

0

ϵσ2 + 2L2
0

= 4
1 +

(√
ϵσ2/L0

)2
2 +

(√
ϵσ2/L0

)2 . (3.157)

showing that for L0 → 0 we have Deff = 4 whilefor σ2 → 0 we have Deff = 2.
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Chapter 4

Horizons area variation

We can apply the quantum metric construction to the following problem: given a generic
null surface in the spacetime, what happen to the area of such a surface when a quantity of
mass/energy crosses it? In principle we can think of this surface as a generic null surface
in a generic spacetime. We know in flat spacetime a generic null surfaces can act as a
horizon for a particular class of observers, Rindler observers, hiding regions of spacetime
to them. Similar circumstances are obtained if we consider a small-enough patch of black
hole horizon and an observer just hovering outside it. We can then allow matter/energy to
fall in it. In particular we would like to determine if there is a minimum area variation for
the black hole horizon according to the qmetric construction. This would be a signature
of a quantum nature of gravity and might be probed in gravitational wave (GW) physics,
since area quantization can leave imprints on GW signals from a pair of merging black
holes possibly detectable in next generation (3G) of gravitational wave detectors [43].

4.1 Is Black Hole Horizon area quantized?
The first proposal of a quantization of the black hole horizon area is due to Bekenstein
and Mukhanov[44, 45]. They argued that the area A of the event horizon of a black hole
is quantized in units of the Planck area L2

P :

A = αL2
PN (4.1)

where N is an integer and α is a dimensionless coefficient. Following the Sommerfeld’s
quantization rules of the very early quantum mechanics based on adiabatic invariants,
this first suggestion was motivated by the observation that the area of black holes horizon
acts as an adiabatic invariant [46]. However there is still no general agreement on the
value of the proportionality constant. Very early Bekenstein suggested

∆Amin = 8πL2
P (4.2)

while after, based on statistical physics consideration, Bekenstein and Mukhanov pro-
posed

∆Amin = 4 ln kL2
P (4.3)

where k is an integer > 1. They argued for a value k = 2 while Hod [46] proposed a
value of k = 3. Maggiore’s argument based on quasinormal modes lead to the original
proposal α = 8π. Moreover Area Quantization is expected in Loop Quantum Gravity
(LQG) [47] in which the minimum area variation is given by

∆Amin = 4π
√
3γL2

P (4.4)
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where γ is still a free parameter, the so called Barbero-Imirzi parameter, whose value is
not yet accurately fixed. We can see, although there are several arguments in favor of
horizon area quantization, there is no general agreement about the value of the quantum
of area.

4.2 qmetric description
In section (3.4.4) we showed that the cross-sectional (D-2)-area of a null geodesic con-
gruence emanating from a base point x′ is non vanishing in the coincidence limit:

A0 = 4πL2
0. (4.5)

We now ask if the qmetric description allows us to talk about discrete variation of a null
horizon area. In this we take an operational standpoint, that is we consider spacetime
as a collection of coincidence events between physical particles. The variation of area we
consider is thus that connected to the crossing of the horizon (with some photons going
along its null generators) by a particle. We consider a lump of matter/energy falling
along a geodesic towards the centre of a Schwarzschild black hole of mass M. We can
express the spacetime metric in Schwarzschild coordinates {t, r, θ, ϕ} as [17]:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (4.6)

where 2GM ≡ RH is the radial coordinate position of the event horizon. We can consider
a small enough patch of the horizon such that we can approximate it as a flat null
surface and we consider some matter/energy crossing it (see fig. 4.1). We describe

Figure 4.1: Matter/energy crossing the horizon.

this process in the matter/energy rest frame. Considering a small enough portion of
spacetime, at leading order we can neglect curvature effects (which are second order
in the displacements) and we are allowed to use locally the Minkowski metric. In this
frame the lump of matter /energy is at rest while, considering the horizon as a null
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(a) Matter rest frame (b) Null geodesic linking the horizon to the
matter/energy lump

Figure 4.2: Matter frame

surface made of radially outgoing photons, the horizon is moving towards the infalling
matter at the speed of light as depicted in fig 4.2a. Each photon of the horizon is moving
along outgoing null geodesic. In order to construct the qmetric description we need to
fix a spacetime event which will be the base point P0 for our description. We fix the
base point to be the event "The horizon reaches the lump of matter/energy" and we can
choose some coordinates in the matter frame such that P0 corresponds to the origin of
the frame. We also choose these coordinates such that the horizon is moving in only
one direction. We denote such coordinates as {t, x, y, z} and we let the horizon moving
towards increasing values of x. The base point is thus given by:

P0 = (0, 0, 0, 0) (4.7)

We now consider the unique null geodesic segment linking the lump of matter with the
horizon which is orthogonal to the horizon itself. We parameterize this null geodesic
with an affine parameter λ which in the matter rest frame acquires the meaning of a
spatial/time distance from the base point P0 as shown in section 3.3.3 and fig. 4.2b. In
particular in this situation the null vector tangent to the null geodesic is given by

la =
dxa

dλ
= (1, 1, 0, 0) (4.8)

and we have that the points on the null geodesic segment are parametrized by λ = t = x
for λ < 0. In such a construction the base point is individuated by λP0 ≡ λ0 = 0. We
identify the field point p as the event: "The horizon is in the position x = λp at the time
t = λp (with λp < 0)" thus:

p = (λp, λp, 0, 0) with λp < 0 (4.9)

The more the horizon is approaching the matter lump, the more λp approaches λ0 = 0
and we can see that the coincidence limit p→ P0 is given by letting λp → 0. After that
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Figure 4.3: Classicl description in the matter frame.

Figure 4.4: Spacetime diagram in t-x plane.

the horizon passes through the matter (the matter has just fallen inside) as shown in
fig.(4.3) and fig.(4.4).

How the introduction of the qmetric changes this description? In order to understand
that we need to consider the congruence of null geodesics that are pointing towards the
base point P0 and we consider the (D − 2)−surface made by points at the same affine
distance from P0, namely ∆λ = λp − λ0 = λp as in fig. 4.5. Basically in D = 4 we have
a spherical surface around P0 of radius λp whose area is given by

A(λp) = 4πλ2p (4.10)

As the horizon approaches the origin this spherical surfaces shrinks until λp → λ0 = 0
and we have at crossing A0 = 0. Using the qmetric the description is different. With the
introduction of the null qmetric we have the modification λ→ λ̃ such that as λ̃p → λ̃0 we
have

∣∣∣λ̃p − λ̃0

∣∣∣ = |λp| = L0 (we use the absolute value since we are considering negative
values for λp).
As long as λp >> L0 we approximately have λp ≃ λ̃p. The more we approach the
coincidence limit the more λp and λ̃p are different as discussed in section 2.3. Thus
at coincidence we have |λ̃p| → L0. In this way around the base point P0 we have an
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Figure 4.5: In red the 2-surface at the same affine distance from P0.

Figure 4.6: qmetric description. In dashed line the classical position of horizon, in solid
line the position according to the qmetric.

irreducible transversal area coming out from the coincidence limit procedure and its value
is given by Ã0 = 4πL2

0 as shown in section 3.4.4.
Therefore we are now able to assign two notions of area around the event P0. In

fact we have the area element given by an integration on the horizon patch that we are
considering around the crossing point and the area element arising from the coincidence
limit. Both the areas are irreducible: the Horizon area can only grows by means of
the second laws of Black Hole (thermo-)dynamics (ignoring evaporation due to Hawking
radiation) and the area A0 on the equi-affine distant surface is irreducible according to
the qmetric model. Thus this two areas must be added together leading to a minimal
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horizon area incrementation of:
∆Amin = 4πL2

0 (4.11)

showing that an effective description of a minimal length spacetime brings with it a
minimum step of area variation.
At coincidence we can consider the black hole in a perturbed state: the black hole
geometry is perturbed by the presence of the additional area associated to the crossing
event. Therefore in order to satisfies the no-hair theorem the black hole must to relax
to the unperturbed state with a spherical horizon of final area A′ ≥ A+Amin if the area
increment associated to the amount of the crossing matter/energy is enough to satisfies
the bound. If this is not the case then the black hole must settles down to the initial state
of horizon area A and the matter/energy can’t be absorbed and possibly it is scattered
by the horizon.

4.3 Consistency of the result
We can check the consistency of our result with a heuristic derivation coming from
fundamental physical principles in addition with the requirement of a minimum length.
We know General Relativity predicts the fact that a stationary observer hovering outside
the horizon can’t see anything passing through the horizon, due to time dilation and
gravitational redshift. In the near horizon approximation this situation is equivalent to
the one of an accelerating observer in Minkowski spacetime: the black hole horizon is
substituted now by a Rindler Horizon. We can study what happens to a patch of this
horizon when some matter/energy crosses it in the inertial frame. We can do this by
means of horizons mechanical laws [48, 49].
Let’s consider a uniformly accelerated observer with constant magnitude of acceleration
k in Minkowski spacetime who is instantaneously co-moving with the inertial frame
{t, x, y, z} at the instant (t = 0, x = xk = 1/k, 0, 0). The null surface H defined by
x− t = 0 acts as a future horizon for the accelerated observer. This surface is generated
by the null vector la defined as:

la =
dxa

dv
(4.12)

where v is the null coordinate defined by v = (x+ t)/2 which acts as an affine parameter
for the vector la:

la∇al
b = 0. (4.13)

The vector la is both tangent and normal to the horizon H. Now we consider a finite
patch of the horizon Σ0 at v = 0 and we parallel transport it along la direction to
v = ∞. If there’s no matter/energy crossing the horizon the area of this finite portion of
horizon remains constant. In fact such an area can be thought of as the cross sectional
area of a collimated light beam which is fired from the origin of the inertial frame along
the x-direction. Since the beam will travel freely towards v = ∞ its expansion will
always be vanishing as depicted in fig.4.7. Things are different if at some time, say at
v = vi, some energy/matter begins to cross the Horizon. We indicate with vf the time
when the crossing is complete. In this case the gravitational field of the energy/matter
bends the light resulting in a focusing of the light rays of the light beam. In this case
the cross sectional area at infinity would certainly be smaller than the initial value.
Moreover in this case such light beam would not be a piece of the Rindler Horizon
anymore and we can’t use it to study the variation of the horizon. In order to have a
constant asympotically area we need to start with a initially de-focusing light beam with
a fine-tuned initially expansion such that after the matter crossing the light beam will be
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Figure 4.7: constant area.

collimated and it will be a patch of the new Rindler horizon. In other words, as shown
in fig. 4.8 we need to consider a light beam that: for 0 < v < vi it is expanding, for
vi < v < vf it is focused by the energy/matter crossing and for v > vf it is collimated
and its area is constant.

Figure 4.8: increasing area.

These are exactly the same circumstances happening for a small-enough Black Hole
horizon patch: when a lump of matter/energy crosses the horizon the photons in the
neighbourhood of the crossing point are focused. The new horizon patch then is obtained
by light rays starting just outside the horizon with a fine tuned positive expansion such
that they are collimated after the matter crossing. By equivalence principle we can study
the area variation for a Rindler horizon patch in the Minkowski spacetime: this would
be equivalent to the circumstances we are interested in, namely the area variation of a
small enough black hole horizon patch.
We can quantitatively study the difference in the cross section area induced by the
gravitational perturbation given by the crossing object. Let be Tab the energy momentum
tensor of the crossing energy/matter, with boundary condition Tab = 0 as v → ∞. We
can relate the expansion of the light beam to the energy momentum tensor by means of
the Raychaudhuri equation. In fact we have [17]:

dθ

dv
= −1

2
θ2 − σabσ

ab + ωabω
ab −Rabl

alb (4.14)

where θ is the beam expansion, σab is the shear tensor, ωab is the twist and Rab is the
Ricci tensor. Since the beam is tangent to la which is surface orthogonal the twist is
vanishing due to Frobenius theorem[17, 18]. We assume the contributions of θ2 and σ2

ab

are negligible. Using Einstein fields equation contracted with null vectors we have:

Rab −
1

2
gabR = 8πGTab → Rabl

alb = 8πGTabl
alb (4.15)
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hence
dθ

dv
= −8πGTabl

alb (4.16)

The expansion gives us a measure of the fractional rate of change of the cross sectional
area along a null congruence [17]:

θ =
1

δA

dδA

dv
(4.17)

Using the fact that at infinity the expansion of our light beam must be vanishing we can
write

θ(v) = −
∫ ∞

v

dv′
dθ(v′)

dv′
= 8πG

∫ ∞

v

dv′Tabl
alb (4.18)

At this point we can write

1

δA

dδA

dv
= 8πG

∫ ∞

v

dv′Tabl
alb (4.19)

and integrating with respect to dv we get

δA(v)− δA0 = 8πGδA(v)

∫ v

0

dv′′
∫ ∞

v′′
dv′Tabl

alb (4.20)

where A0 is the area of the initial cross section portion Σ0 at time v = 0 and A(v) is the
area of the evolved cross section Σ(v) at time v. We can approximate at first order in G
in the right hand side of the equation by replacing δA(v) with δA0 = dxdy. Integrating
over the finite cross sectional portion Σ we have:

A(v)− A0 = 8πG

∫
Σ

dydz

∫ v

0

dv′′
∫ ∞

v′′
dv′Tabl

alb (4.21)

We are interested in the difference ∆A = A∞ − A0 where A∞ = A(v → ∞) is the area
of the asympotical cross sectional finite portion Σ∞. We can notice that in absence of
a gravitational perturbation Tab = 0 the area of Σ stays constant as expected. In the
presence of a non vanishing energy momentum tensor we have

∆A = 8πG

∫
Σ

dydz

∫ ∞

0

dv′′
∫ ∞

v′′
dv′Tab(v

′)lalb (4.22)

Exchanging the integrals
∫∞
0
dv′′

∫∞
v′′
dv′ =

∫∞
0
dv′
∫ v′

0
dv′′ we get

∆A = 8πG

∫
Σ

dydz

∫ ∞

0

dvvTab(v, y, z)l
alb (4.23)

The integrals in the RHS turns out to have a key physical meaning. In fact let be ξa the
vector tangent to the orbit of the accelerated observer. This is also the Killing vector
associated to the Lorentz boosts. The combination Ja = Tabξ

b is the conserved energy
momentum current measured by the accelerated observer. Integrating such current over
the surface Σ we get the total energy flux crossing the Rindler Horizon:

∆Q =

∫
Σ

JadΣ
a =

∫
Σ

dydz

∫ ∞

0

dvTabl
aξb (4.24)

Asympotically the vector ξb assumes the form ξb = kvlb where k is the observer acceler-
ation and we can write:

∆Q =

∫
Σ

dydz

∫ ∞

0

dvTabl
albvk (4.25)
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Figure 4.9: Object of energy ∆Q crossing the Rindler horizon

and we recognize its presence in eq.(4.23) and we finally have

∆A = 8πG
∆Q

k
= 8πG∆Qxk. (4.26)

We now consider that a physical object of energy ∆Q is dropped by the accelerated
observer when she is instantaneously at rest in the inertial frame, thus at t = 0 and
x = xk as shown in fig.4.9. This object would cross the horizon at a time v0 = xk. There
is no reason why the area variation of eq.(4.26) should be bounded from below from a
classical point of view. However we can ask what happens if we introduce an uncertainty
∆x in the knowledge of the position of the object at time t = 0. We reasonably assume
∆x < xk since we want to be sure at t = 0 the object is not beyond the horizon. As
shown in figure 4.10 this uncertainty is reflected in an uncertainty in the crossing time ∆t
which can be assumed to be ∆t < xk as well. We can now evoke Heisenberg uncertainty
relation involving time and energy uncertainties:

∆E∆t ≥ ℏ
2

(4.27)

hence
∆E ≥ ℏ

2∆t
≥ ℏ

2xk
(4.28)

Inserting this relation in eq.(4.26) assuming that ∆Q ≥ ∆E we find

∆A ≥ 8πG
ℏ
2xk

xk = 4πGℏ = 4πL2
P (4.29)

and identifying L0 = LP we reproduce the result of the previous section.
The heuristic derivation of the discrete variation for the area of the horizon is independent
from the mass/energy of the object crossing the horizon. However energy conservation
implies that the crossing object must have an energy δm which is greater than the
threshold value to which would correspond to the minimal allowed area variation. In fact
let be M the mass of a black hole absorbing some energy δm. The initial Schwarzschild
radius is given by RH = 2GM and the area of the event horizon is A = 4πR2

H =
16πG2M2. The final area A′ after the absorption must be greater than:

A′ ≥ A+∆Amin (4.30)
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Figure 4.10: Introduction of uncertainty ∆x is reflected in an uncertainty ∆t

After the absorption the final mass of the black hole isM ′ =M+δm to which corresponds
a Schwarzschild radius of R′

H = 2GM ′ = 2G(M+δm) and a horizon area of A′ = 4πR′2
H =

16πG2(M + δm)2. Therefore we can write:

16πG2(M + δm)2 ≥ 16πG2M2 + 4πL2
0 (4.31)

16πG2M2 + 32πG2Mδm+ 16πG2δm2 ≥ 16πG2M2 + 4πL2
0 (4.32)

δm2 + 2Mδm− L2
0

4G2
≥ 0 (4.33)

from which we have

δm ≥ −M +

√
M2 +

L2
0

4G2
(4.34)

that in the approximation M >> L2
0/4G

2 becomes

δm ≥ L2
0

8G2M
(4.35)

If we identify L0 = LP =
√
Gℏ we can write:

δm ≥ M2
P

8M
≡ m0 (4.36)

where m0 is the minimum energy that can be absorbed by a black hole of mass M .
Moreover the (reduced) Compton length associated to m0 is given by

λ0 =
ℏ
m0

=
8Mℏ
M2

P

= 8MG (4.37)

We can see the ratio between λ0 and the Schwarzschild radius of the black hole is general
and independent from the mass M :

λ0
RH

= 4 (4.38)

highlighting the fact than in the small mass regime we have the Compton length λc
greater than the Schwarzschild radius, possibly explaining why such tiny masses can’t be
absorbed. Moreover this would also explain why in the heuristic derivation we don’t see
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the mass threshold unless invoking the conservation of energy: in the small mass regime,
having λc > RH we are outside the validity of our approximation since eq.(4.28) implies
λc < xk < RH in the near horizon approximation.
It would be instructive to compute the mass threshold for a black hole of a solar mass.
Being M ∼ 1030kg and MP ∼ 10−8kg we find:

m0 =
M2

P

8M
∼ 10−46kg ∼ 10−11eV (4.39)

We can also ask what mass a black hole must have in order to admit a minimum ab-
sorbable mass of m0 = 1eV ∼ 10−36kg:

M =
M2

P

8m0

∼ 1035 × 10−16kg = 1019kg (4.40)
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Chapter 5

Conclusions and outlook

In this thesis we described the qmetric or minimum-length metric which is proposed as
a way to implement the existence of a limiting length in the metric description of space-
time, the latter being a fundamental prediction of the union of General Relativity with
the fundamental tenets of Quantum Mechanics, introducing an unavoidable non-locality
in the description of the spacetime at small scales.
The qmetric is constructed in terms of tensorial quantities involving two spacetime events,
namely bitensors, among which the squared geodesic distance plays a key role. Using
bitensors seems to be the natural, or perhaps even obligatory, path to follow in order to
take into account the non-locality of spacetime in the regime at which we can not neglect
quantum gravity effects.

After an introduction to bitensors in chapter 1, we reviewed the construction of the
qmetric for generic spacetimes in chapter 2. We also showed the important results re-
garding the effective Ricci scalar computed by means of qmetric which reproduces the
entropy functional of the emergent gravity paradigm in section 2.5. In chapter 3 we ex-
plicitly constructed the qmetric for Euclidean space and for Minkowski spacetime with
particular attention to the Area and Volume elements. Indeed in the qmetric descrip-
tion of a D-dimensional Minkowski/Euclidean space we showed that in the coincidence
limit the D-dimensional volume computed on the equigeodesic surface vanishes while the
(D − 1) area element associated to the cross section of timelike/spacelike geodesics and
the (D − 2) area associated to the cross section of a null congruence remain finite.

In chapter 4 we used the results of chapter 3 to investigate what happens if we try
to construct a qmetric description with respect to an event on a black hole horizon in
the approximation of considering a small-enough patch of the horizon, allowing us to
use the Minkowski metric. The qmetric predicts the existence of a discrete step in the
variation of the black hole horizon area and we can actually compute it in terms of the
minimum length L0. Considering a small-enough neighbourhood of spacetime around a
free falling object we showed that we can give two notions of area around a point on the
event horizon. The first notion is the one associated to the point as being part of the
horizon: we know that this area cannot decrease, this corresponding to the second law of
black hole mechanics. The second notion arises when we perform the coincidence limit
procedure using the qmetric when the given object hits the horizon: in this case there
is an irreducible area appearing in the orthogonal direction due to the presence of the
minimum length L0. At the spacetime event "the free falling object crosses the horizon"
it is assigned an irreducible area, the limit area coming from the qmetric description,
which is added to the area of the horizon patch in which the event is located. Therefore
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horizon area can not grow less than the quantity:

∆Amin = 4πL2
0 (5.1)

This would have an intriguing consequence: only masses, or energy quanta, greater than
a certain threshold (the one that would correspond to the minimum area variation)
could cross the horizon and being absorbed by the black hole; the others would undergo
a scattering process. This could have interesting implications in the expected signals of
gravitational waves coming from merging black holes.

As a check, we also tried a back-on-the-envelope, heuristic understanding of these re-
sults in terms of first-principle physics without resorting to the full machinery of the
qmetric. For a Schwarzschild black hole we considered observers hovering, static in the
metric, just outside the horizon. We know we can treat them as Rindler observers in
Minkowski spacetime and we studied the area variation of a patch of Rindler horizon by
means of horizons mechanical laws. We found that imposing uncertainty relations we
have a minimum area increment given by:

∆Amin = 4πL2
P (5.2)

If we identify L0 = LP this leads to ∆Amin = 4πL2
0 enforcing the qmetric result.

The heuristic derivation attests the qmetric prediction of a minimum area variation.
It can be interesting to study the horizon mechanical law entirely within a full qmetric
description starting from the modified Raychaudhury equation [10].

In this thesis our focus has been the study of the qmetric in Minkowski spacetime.
The qmetric description clearly can be used in any general spacetime without any sort
of symmetry. A natural continuation of the present study might be however to consider
it first in the other maximally-symmetric spacetimes, i.e. general spacetimes for which
the two point function depends on two events only through the quadratic interval be-
tween them, namely de Sitter and anti-de Sitter spacetimes. A further step might be
the consideration of FLRW spacetimes; there are hints already of a resolution of the
cosmological singularity (and of singularities in general) in the qmetric [10].

As mentioned, the existence of a minimal horizon area variation can have impact on
gravitational wave signals. In particular this can be studied in the context of black hole
quasi normal modes, whose signal would display some delayed echoes in case some in-
falling energy could be diffused by the horizon instead of being absorbed. .

Another tempting development can be the construction of a quantum field theory on
a qmetric background and the study of scattering amplitudes according to the qmetric
description.
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Appendix A

Tetrads

We introduce an orthonormal basis, tetrad, of the tangent space in the point z ∈ β, i.e.
on the geodesic segment linking x to x′, eaα(z) with both indeces a, α running from 0 to
D − 1:

eaαe
b
βgab = ηαβ (A.1)

where ηab = diag(−1, 1, 1, . . . , 1) is the Minkowski metric which it is used to raise and
lower greek indeces. We also assume that the tetrad is parallely transported along the
geodesic:

tb∇be
a
α = 0 (A.2)

We have the completeness relation:

gab = ηαβeaαe
b
β (A.3)

We define the dual tetrad as:
eαa = ηαβgabe

b
β (A.4)

and the completenss relation takes the form:

gab = ηαβe
α
ae

β
b (A.5)

It’s easy to check that

eαae
a
β = δαβ (A.6)

eαae
b
α = δab (A.7)
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Appendix B

Expansion of bitensors near
coincidence

We want to express a bitensor Bα′β′(x, x′) near coincidence as an expansion in terms of
Ωα′ :

Ba′b′(x, x
′) = Aa′b′ + Aa′b′c′′Ω

c′ +
1

2
Aa′b′c′d′Ω

c′Ωd′ + . . . (B.1)

where all A... are in this case tensorial functions in x′. They can be determined via
coincidence limits[14]:

Aa′b′ = [Ba′b′ ]

Aa′b′c′ = [Ba′b′;c′ ]− Aa′b′;c′

Aa′b′c′d′ = [Ba′b′;c′;d′ ]− Aa′b′;c′;d′ − Aa′b′c′;d′ − Aa′b′cd′′;c′

For example we have:

Ωa′b′ = ga′b′ −
1

3
Ra′c′b′d′Ω

c′Ωd′ + . . .

Ωab′ = Πa′

a

(
ga′b′ −

1

6
Ra′c′b′d′Ω

c′Ωd′
)
+ . . . (B.2)

Ωa′b = −Πb′

b

(
ga′b′ +

1

6
Ra′c′b′d′Ω

c′Ωd′
)
+ . . .

Ωab = Πa′

aΠ
b′

b

(
ga′b′ −

1

3
Ra′c′b′d′Ω

c′Ωd′
)
+ . . .

where Πa′
a is the parallel propagator defined in section 1.2.
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Appendix C

Evaluation of qmetric d’Alembertian

C.1 General case
Let’s see the computations to obtain eq.(2.12) from the definition

□̃ =
1√
−q

∂a(
√
−qqab∂b) (C.1)

Let be:

√
−q = A

D−1
2

√
α

√
−g ≡ ξ

√
−g (C.2)

Inserting the qmetric form given by eq.(2.8):

□̃ =
1

ξ
√
−g

∂a
[
ξ
√
−gA−1gab∂b

]
+

ϵ

ξ
√
−g

∂a
[
ξ
√
−gQuaub∂b

]
≡ □̃1 + □̃2 (C.3)

For the first term we have:

□̃1 =
1√
−g

∂a
[√

−gA−1gab∂b
]
+
∂aξ

ξ
A−1gab∂b =

= A−1 1√
−g

∂a
[√

−ggab∂b
]
+ gab∂aA

−1∂b +
∂aξ

ξ
A−1gab∂b (C.4)

The first two terms can be rewritten as:

A−1 1√
−g

∂a
[√

−ggab∂b
]
= A−1□g (C.5)

gab∂a
(
A−1

)
∂b = −gabA−2∂a (A) ∂b = −A−1gab∂a (lnA) ∂b (C.6)

For the third term we need to evaluate:

1

ξ
∂aξ =

D − 1

2
A−1∂aA− 1

2α

∂α

∂A
∂aA =

=
D − 1

2
∂a lnA− 1

2
∂a lnα (C.7)

Putting all together we get:

□̃1 = A−1

[
□g +

D − 3

2
gab∂a (lnA) ∂b

]
− 1

2
A−1gab∂a (lnα) ∂b (C.8)
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Now we can compute □̃2:

□̃2 =
ϵ

ξ
√
−g

∂a
[
ξ
√
−gQuaub∂b

]
(C.9)

Using ub∂b ≡ /∂:

□̃2 =
ϵ√
−g

∂a
[
Q
√
−gua/∂

]
+ ϵ

∂aξ

ξ
Qua/∂ (C.10)

The first term reads as:

ϵ√
−g

∂a
[
Q
√
−gua/∂

]
= ϵ∂aQu

a/∂ + ϵQ∂au
a/∂ + ϵQua

1√
−g

∂a
√
−g/∂ + ϵQ/∂

2 (C.11)

Knowing that:
1√
−g

∂a
√
−g = Γb

ba (C.12)

we can write
ϵ√
−g

∂a
[
Q
√
−gua/∂

]
= ϵQ

[
∇au

a/∂ + /∂
2
]
+ ϵ/∂Q/∂ (C.13)

For the second term in (C.10) we have:

ϵ
∂aξ

ξ
Qua/∂ = ϵQ/∂A

D − 1

2
A−1/∂ − 1

2α
ϵQ/∂α/∂ =

= ϵQ
D − 1

2
/∂ lnA/∂ − 1

2
ϵQ/∂ lnα/∂ (C.14)

Thus:

□̃2 = ϵQ

[(
∇au

a +
d− 1

2
/∂ lnA

)
/∂ + /∂

2
]
+ ϵ/∂Q/∂ − 1

2
ϵQ/∂ lnα/∂ (C.15)

Recalling that α = A−1 +Q for the last two terms:

ϵ/∂Q/∂ = ϵ/∂(α− A−1)/∂ = ϵ/∂α/∂ + ϵA−1/∂ lnA/∂ (C.16)
1

2α
ϵQ/∂α/∂ =

ϵ

2
/∂α/∂ − ϵA−1

2
/∂ lnα/∂ (C.17)

So we get:

□̃2 = ϵQ

[(
∇au

a +
D − 1

2
/∂ lnA

)
/∂ + /∂

2
]
+
ϵ

2
/∂α/∂ +

ϵA−1

2
/∂ lnα/∂ + ϵA−1/∂ lnA/∂

(C.18)

Using the following identities (recalling 1.24):

∂aα =
∂α

∂σ2

∂σ2

∂xa
=

∂α

∂σ2
2
√
ϵσ2ua (C.19)

/∂α = α′2ϵ
√
ϵσ2 (C.20)

we clearly have
ϵ

2
/∂α/∂ = α′

√
ϵσ2/∂ (C.21)
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Putting □̃1 and □̃2 together we get:

□̃ = A−1

[
□g +

D − 3

2
gab∂a (lnA) ∂b + ϵ/∂ (lnA) /∂

]
+

+ ϵQ

[(
∇au

a +
D − 1

2
/∂ lnA

)
/∂ + /∂

2
]
+
√
ϵσ2α′/∂+

+
ϵA−1

2
/∂ (lnα) /∂ − A−1

2
gab∂a (lnα) ∂b (C.22)

We find our result since the last two terms turn out to be equal. In fact:

gab∂a(lnα)∂b = gab(lnα)′2
√
ϵσ2ua∂b = (lnα)′2

√
ϵσ2/∂ = ϵ/∂(lnα)/∂ (C.23)

as shown before.

C.2 Maximally symmetric spaces
We can find a simpler form for the qmetric d’Alembertian in D-dimensional maximally
symmetric spaces where all quantities are functions only of σ2.
Let’s start from the form of the standard operator □g = ∇a∇a. We consider a scalar
test function G = G(σ2) and we apply the □g operator on it :

□gG = ∇a∇aG = ∇a∂
aG = ∇a

(
∂aσ2 d

dσ2
G

)
=

= ∇a

(
∂aσ2

) d

dσ2
G+ ∂aσ2∂a

d

dσ2
G =

=

(
2D + ∂aσ2∂aσ

2 d

dσ2
ln∆−1

)
d

dσ2
G+ 4σ2 d2

d(σ2)2
G =

= 4σ2

[(
D

2σ2
+

d

dσ2
ln∆−1

)
d

dσ2
+

d2

d(σ2)2

]
G

where we used the fact that

∇a∂
aσ2 = 2D − 1

∆
∂aσ2∇a∆ = 2D + 4σ2 d

dσ2
ln∆−1 (C.24)

coming from the following identity proved in section 1.3.1

∇a

[
∆∂aσ2

]
= 2D∆ (C.25)

We can write for timelike/spacelike separations:

D

2σ2
=

d

dσ2
ln (ϵσ2)

D
2 (C.26)

We finally get:
□g = 4σ2

(
∂2σ2 + ∂σ2 ln

[(
ϵσ2
)D

2 ∆−1
]
∂σ2

)
(C.27)

where we used a shorthand notation for the derivatives.
Now we need to work out the qmetric terms. we find that:

√
ϵσ2α′/∂ = 2ασ2 [lnα]′

d

dσ2

70



gab∂a lnA∂b = 4σ2 [lnA]′
d

dσ2

ϵ/∂ lnA/∂ = 4σ2 [lnA]′
d

dσ2

ϵ/∂
2
= ϵua∂a

(
ub∂b

)
= 4σ2

(
d2

d(σ2)2
+

1

2σ2

d

dσ2

)
=

= 4σ2

[
d2

d(σ2)2
+

d

dσ2

(
ln (ϵσ2)

1
2

) d

dσ2

]
ϵ∇au

a/∂ = 4σ2

[
D − 1

2σ2
+

d

dσ2

(
ln∆−1

)] d

dσ2
=

= 4σ2 d

dσ2

[
ln
(
(ϵσ2)

D−1
2 ∆−1

)] d

dσ2

We see that ϵ/∂2 + ϵ∇au
a/∂ = □g. Inserting all this terms in eq.(2.12) we find

□̃ = α□g + 2ασ2
[
lnαAD−1

]′ ∂

∂σ2
(C.28)

which using the standard d’Alembertian form in maximally symmetric spaces found
before becomes

□̃ = 4ασ2
[
∂2σ2 + ∂σ2 ln

[(
ϵσ2
)D

2 ∆−1
√
αA

D−1
2

]
∂σ2

]
(C.29)
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Appendix D

Relations between geometrical
quantities belonging to disformally
coupled metrics

Consider two metrics gab, g̃ab on a given D dimensional manifold. We say that they are
disformally coupled if they are related in the following way[29]:

g̃ab = Agab − ϵBuaub (D.1)

where ua is of the form eq(1.24) and ua = gabu
b. In [29] are derived in details a number of

relations between geometrical quantities belonging to disformally coupled metrics which
are important in the derivation of quantity associated to the qmetric. In particular:

h̃ab = Ahab induced metric on orthogonal surfaces Σ to uα (D.2)

R̃Σ = A−1RΣ Induced Ricci scalar on Σ (D.3)

K̃ab = A
√
α
[
Kab + (uk∇k ln

√
A)hab

]
(D.4)

K̃ =
√
α
[
K + (D − 1)ua∇a ln

√
A
]

(D.5)

Using Gauss-Codazzi equations we can reconstruct R̃ [29]:

R̃ = R̃Σ − ϵ
(
K̃2 + K̃abK̃

ab
)
− 2ϵUa∇̃aK̃ + 2ϵ∇̃aã

a (D.6)

where Ua =
√
αua and ãa = U b∇̃bU

a. After some algebra one get the form given in eq.(
2.81).

72



Appendix E

Useful Taylor expansions

Here are reported taylor expansions of geometrical quantity needed in the computation
of the coincidence limit of the Ricci biscalar. Consider two points x, x′ linked by a
timelike/spacelike geodesic parametrized by λ =

√
ϵσ2 whose tangent vector is:

uα =
∇ασ

2

2
√
ϵσ2

(E.1)

where σ2 is the squared geodesic distance. The extrinsic curvature of the surface orthog-
onal to ua is given by:

Kab = ∇aub =
∇a∇b(σ

2/2)− ϵuaub√
ϵσ2

(E.2)

The key expansion is the following [28]:

∇a∇b(σ
2/2) = gab −

λ2

3
ξab +

λ3

12
uk∇kξab −

λ4

60

(
ukul∇k∇lξab +

4

3
ξcaξ

c
b

)
+ o(λ5) (E.3)

where ξab = Rakblu
kul. From this expansion it follows that in D dimensions[28]:

∆ = 1 +
1

6
λ2Rabu

aub + o(λ3) (E.4)

Kab =
1

λ
hab −

1

3
λξab +

1

12
λ2uk∇kξab −

1

60
λ3Fab + o(λ4) (E.5)

K =
D − 1

λ
− 1

3
λξ +

1

12
λ2uk∇kξ −

1

60
λ3F + o(λ4) (E.6)

RΣ =
ϵ(D − 1)(D − 2)

λ2
+R− 2ϵ(D + 1)

3
ξ + o(λ) (E.7)

where Fab = ukul∇k∇lξab +
4
3
ξacξ

c
b . From the expansions above we can construct the

following expression:

K2
ab − ηK2 = (1− η(D − 1))

[
D − 1

λ2
− 2

3
ξ +

1

6
λuk∇kξ −

1

30
λ2
(
ukul∇k∇lξ −

4

3
ξ2ab

)]
+
1

9
λ2
(
ξ2ab − ηξ2

)
+ o(λ3)

We notice that in the limit λ → 0 the above quantity is zero only if η = 1
D−1

. This is
indeed the case when the coincidence limit of the Ricci biscalar is taken providing a non
divergent result.
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