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Abstract

This thesis aims at providing a computation of the ”electrical” quadrupolar Love num-
ber for a quantum black hole by using the hydrogen model for its energy spectrum.
The ”electrical” quadrupolar Love number is a quantity that carries informations on the
physical deformation of a body under tidal forces, in the case of quantum black holes, it
carries information about the interior of the black hole, it is therefore considered impor-
tant since it might be a good target for measurement by future gravitational experiments
such as LISA.
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Chapter 1

Black holes in General Relativity

The discovery of the theory of general relativity by Albert Einstein led to various inter-
esting theoretical concepts and predictions that turned out to be observed in nature, one
of the notoriously most fascinating objects predicted by the theory is the ”black hole”, in
this chapter we will make a short review of tools of general relativity that are necessary
to theorize the existence of black holes from a purely a mathematical perspective. The
following introduction to General Relativity and black holes is based on [2, 3, 1]

1.1 Einstein’s field equations

Einstein’s field equations are the main result of the General Relativity theory, they
provide a mathematical description of gravity as a result of space-time being curved
by matter and energy. To understand these equations we begin with the fundamental
concept of the metric tensor, denoted as gµν . This tensor describes the infinitesimal
distances in space-time, as represented by the line element equation

ds2 = gµνdx
µdxν . (1.1)

It provides information on the curvature of space-time, that is how the distance between
two events changes in different regions of space-time, that is, the gµν encodes informations
about the curvature of a surface. In curved space-time, the paths of particles and light
beams are described by geodesics, the geodesic equation, which determines the shortest
path between two points in this curved space-time, is given by

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0. (1.2)

Here, Γλ
µν are the Christoffel symbols or the affine connection, which relate the metric

tensor to the derivatives of the metric, the affine connection is expressed as

Γλ
µν =

1

2
gλσ
(
∂gσµ
∂xν

+
∂gσν
∂xµ

− ∂gµν
∂xσ

)
. (1.3)
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The curvature of spacetime is described by the Riemann curvature tensor as

Rλ
µνσ =

∂Γλ
µν

∂xσ
−
∂Γλ

µσ

∂xν
+ Γρ

µνΓ
λ
σρ − Γρ

µσΓ
λ
νρ. (1.4)

The Ricci tensor, a contracted form of the Riemann tensor, is given by

Rµσ = Rν
µνσ, (1.5)

and the Ricci scalar, the trace of the Ricci tensor, is written as

R = gµνRµν . (1.6)

Finally, Einstein’s field equations, which are the ultimate result of General Relativity,
link the geometry of spacetime to the distribution of matter and energy in it. They are
expressed without the cosmological constant as

Gµν = 8πGTµν , (1.7)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor, and Tµν is the stress-energy tensor.

These equations encapsulate the essence of General Relativity and provide a mathemat-
ical description on how matter and energy influence the curvature of spacetime.

1.2 Black hole solutions

Einstein’s field equations have several important solutions, each corresponding to differ-
ent physical scenarios in the context of black holes and celestial bodies. Here, we list
three key solutions: the Schwarzschild metric, the Reissner-Nordström metric, and the
Kerr metric.

The Schwarzschild Metric

The Schwarzschild metric is the solution to Einstein’s Field Equations that describes the
gravitational field outside a spherical, non-rotating, and uncharged mass. It is given by
the equation:

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(1.8)

where dΩ2 represents the angular part of the metric. This metric has a singularity at
r = 0 and an event horizon at r = 2m
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The Reissner-Nordström Metric

The Reissner-Nordström metric extends the Schwarzschild solution to include a charged,
non-rotating spherical mass. It is expressed as:

ds2 =

(
1− 2m

r
− Q2

r2

)
dt2 −

(
1− 2m

r
− Q2

r2

)−1

dr2 + r2dΩ2, (1.9)

where Q is the electric charge of the mass. This metric features two horizons and a
singularity at the center.

The Kerr Metric

The Kerr metric describes the spacetime around a rotating mass. It is an axisymmetric
solution to Einstein’s field equations and is given by:

ds2 =

(
1− 2mr

ρ2

)
dt2−ρ

2

∆
dr2−ρ2dθ2+

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
sin2 θdϕ2+

4mra sin2 θ

ρ2
dϕdt,

(1.10)
where ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2, and a is the angular momentum per unit
mass. The Kerr metric features an event horizon, an ergosphere, and a ring singularity.
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Motivation for this work

In the framework of general relativity, black holes are described as entities featuring sin-
gularities, which represent mathematical anomalies indicative of the theory’s limitations.
These singularities, characterized by infinite quantities, reveal a fundamental inadequacy
within general relativity, as it falls short of accurately depicting phenomena at quantum
scales and under conditions of extreme energy—conditions, this highlights the essential
need for integrating quantum mechanics into our understanding of black holes. Quan-
tum mechanics, with its robust predictive power at small scales and high energies, offers
a complementary perspective that, when combined with general relativity, could signif-
icantly enhance our comprehension of black hole interiors and potentially resolve the
paradox of singularities marked by infinite quantities.

The pursuit of a unified theory that seamlessly blends general relativity (GR) and
quantum mechanics (QM) for the exploration of black holes does not necessarily demand
a fully developed framework, instead, as done in this thesis, perturbative methods may
suffice in bridging the gap between these two pillars of physics, enabling progress in
predictive accuracy and the study of black hole dynamics.

Empirical evidence plays a crucial role in testing theoretical predictions about the
nature of black holes, observations, particularly of black hole mergers, are invaluable.
These cosmic events, characterized by the interaction of tidal forces as black holes exert
gravitational influence upon one another, offer profound insights into the structure and
behavior of these enigmatic objects. In this context, Love numbers quantifiers of how a
body’s shape deforms in response to tidal forces emerge as critical tools for investigating
the internal mechanics of black holes, providing a window into their most elusive aspects.
The reason Love numbers are interesting is because they identically vanish for black
holes described by only general relativity, this doesnt happen when quantum mechanics
is introduced perturbatively, on top of that, there is a link between the model used to
describe the black hole interior and the value of the Love number, we will adopt a model
inspired by the hydrogen energy spectrum and will compute the Love number, showing
that it is indeed non zero.
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Chapter 2

Classical Love number

In this chapter we will follow the work of Ram Brustein and Yotam Sherf in ”Classical
Love numbers for quantum black holes” [6] integrating in the first and second section
informations from R. Brustein and A. J. M. Medved, ”Quantum hair of black holes out of
equilibrium” [7] and ”No-hair theorem for Black Holes in Astrophysical Environments”
[8] for giving a more broad perspective on the associated research on perturbed black
holes and their proprieties, in particular the article on quantum hair out of equilibrium
highlights the effect of these perturbations on Hawking radiation and the link between
what an external observer sees and what might be hidden inside the horizon at the heart
of the black hole, the paper on ”No hair” on the other hand provides a general relativity
proof that Love numbers vanish for perturbed classical black holes.

2.1 Perturbed black holes

In classical understanding, the horizon of a black hole (BH) is seen as entirely opaque,
obscuring any knowledge about its interior. Using quantum theory in equilibrium state,
the scenario remains largely unchanged, although Hawking radiation is emitted, its rate
of emission is incredibly slow, and it is mostly thermal, conveying minimal information
about the BH’s internal quantum state. The research in [7] however, shows a noticeable
difference when a quantum BH is perturbed, it is proposed that such a BH can pro-
duce ’supersized’ Hawking radiation, far more intense than that produced in equilibrium
leading to the emergence of a new type of quantum hair, allowing external observers to
discern the state and composition of the BH interior. Interestingly, this new hair’s fre-
quency and amplitude can be understood without resorting to new physical principles,
and it decays much slower than the Schwarzschild time scale. This phenomenon can
be detected through gravitational waves (and potentially other wave types) emissions,
especially after a BH experiences a significant energy surge, like during and right after
a BH merger (such conditions are also relevant in the discussion about Love numbers,

5



since such events lead to potential physical deformation). The presence of this new hair
is expected to be a universal feature of quantum BHs, independent of the model used,
these findings therefore shed new light on the understanding of BH and what they might
”hide” behind the horizon. Until recently, the traditional view of a black hole’s inte-
rior was generally accepted but the introduction of the firewall argument highlighted a
conflict between this classical view and the principles of quantum theory, leading to the
emergence of several non-traditional models proposing different internal structures for
black holes. Despite these developments, there is still no unanimous agreement in the
scientific community on an accurate description of a black hole’s interior. Some theories
even suggest the black hole interior should be conceptually removed from observable
space-time. In [10] is proposed that the black hole interior is composed of a dynamic
assembly of highly excited, interacting, long, closed strings, similar to a ’ball of string’
or a collapsed polymer .

The recent detection of gravitational waves (GWs) from black hole mergers has trans-
formed what was once a purely theoretical debate about the laws of quantum gravity into
a more concrete discussion, every new theory about the nature of black holes must now
be tested against these observational data. In addition to gravitational waves, there’s
also the potential of collecting the necessary data from electromagnetic waves and/or
neutrinos.

Implications of a proposed polymer model for the black hole interior suggests that
gravitational wave observations could serve as a tool to differentiate this model from
the classical black hole concept and other proposed models. In the polymer model of
the black hole interior, fluid modes coexist with the standard spacetime modes of a
black hole’s exterior, this results in their spectrum being an additive component to the
ringdown or quasinormal modes (QNMs) of a perturbed black hole, also, according to this
model, the black hole’s outer surface behaves similarly to a traditional black hole horizon
under certain conditions but remains partially opaque otherwise. As implied before, a
key aspect of this fluidlike description is the emergence of a new type of quantum hair,
this quantum hair is distinguished by emissions at lower frequencies and longer damping
times compared to the QNMs of a classical black hole, these characteristics are influenced
by various factors, including the Schwarzschild radius and the speed of light, with the
velocity of sound for the fluid mode being, of course, less than the speed of light. The
polymer model’s distinctive approach is attributed to the introduction of a new scale, the
string scale, which which has implications for the most experimentally accessible class
of modes within this model.

In the context of the polymer model’s fluidlike description of the black hole inte-
rior, an intriguing question would be about how internal fluid modes might couple with
emitted gravitational waves (GWs) or other types of waves as observed from an external
perspective arises. Let’s think about the problem: an external observer, while having
the option to disregard any knowledge about the black hole’s interior, is still required to
explain all observed phenomena within the framework of general relativity (GR) accord-
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ing to Stephen Hawking’s assertion that all conceivable data about a ’hidden’ surface,
limited by an observer’s information, are equally probable.

From this viewpoint, the black hole’s interior is primarily considered a theoretical
construct used to elucidate its radiation emissions, the underlying assumption is that
the black hole’s horizon acts as a barrier, distinguishing these emissions from what an
external observer can see. The focus is to demonstrate that external observers are likely
to interpret any disturbances in the fluid modes of the black hole as external spacetime
disturbances, rather than attributing them to the black hole’s interior. This approach
is crucial for connecting theoretical models of the black hole’s internal workings with
observable data from the outside.

Understanding the differing views on black holes requires recognizing that the ex-
ternal interpretation of fluid modes is as enigmatic as Hawking radiation itself, while
various theories connect Hawking radiation to processes like pair production and quan-
tum tunneling, insights into the black hole’s interior can only come from external, indirect
observations. Any theory explaining the Hawking effect is considered valid if it matches
what we know or might discover about black holes. There is surely an advantage in
thinking that Hawking radiation originates outside the black hole, this idea stems from
the notion that this radiation, like all matter, cannot move through and emerge from
the black hole’s horizon.

The argument put forward is that from an external viewpoint, the fluid modes within
black holes can be interpreted as ”supersized” Hawking emissions, emissions that differ
from standard emissions in that they represent large-amplitude coherent states involving
photons, gravitons, and similar particles, on top of that, just as with standard Hawking
radiation, these supersized modes are perceived to originate from the exterior spacetime
of the black hole.

This interpretation holds true for both regular and supersized modes, maintaining
consistency within the external perspective, the key factor here is the extent to which
the black hole has diverged from its state of equilibrium. The degree of this deviation
is directly influenced by the amount of energy injected into a specific mode, which in
turn determines the amplitude of the emission, thus, the nature and intensity of these
emissions are linked to the black hole’s dynamic state. Supersized Hawking radiation
emissions are rare because they require a significant energy input, usually absent in nor-
mal conditions, these large emissions are suppressed unless the black hole is significantly
disturbed, on the contrary, the spontaneous particle production rate near a black hole’s
horizon in equilibrium can be theoretically predicted, resembling the Schwinger mecha-
nism. This rate is highest for particles with energy levels typical of standard Hawking
emissions.

Therefore, supersized Hawking radiation is an extremely rare event in undisturbed
black holes, however, it could occur during the collision of two black holes in a binary
system, where the significant energy released could trigger these large emissions. Grav-
itational waves from such mergers might be the most promising, or possibly the only,
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way to observe supersized Hawking radiation.
Normally, black holes in equilibrium are known to have hair related to gauge fields

and their conserved charges. It’s a recognized fact that a perturbed black hole returns to
equilibrium by losing this non-gauge-symmetry hair, typically in an exponential manner.

The key idea here is that black holes diverging from general relativity (GR) pre-
dictions may have a different timescale for shedding this hair. This timescale would
differ from the familiar Schwarzschild or light-crossing times of black holes, even after
shedding this specific type of hair, a black hole would largely maintain its classical GR
characteristics, especially in aspects related to symmetry-associated hair.

External point of view

From the perspective of an external observer, only phenomena occurring on their side
of the black hole’s horizon are observable, this means that any form of radiation, be it
conventional or supersized Hawking radiation, is perceived as originating from outside the
horizon, When a black hole is near its equilibrium state, an external observer can employ
a specific observational approach, known as the ”horizon-locking gauge,” to analyze the
geometry near the horizon of the black hole, in this gauge, the equilibrium position of
the black hole’s outer surface, or its effective horizon, remains fixed at the Schwarzschild
radius, even under considerable perturbations.

Understanding an external observer’s perception of supersized quantum radiation
from a black hole necessitates examining how the black hole deviates from its equilibrium
state. A useful comparison can be drawn from classical physics, such as considering the
deformation of the horizon of a slowly rotating black hole due to external tidal forces,
this comparison aids in visualizing how significant alterations in a black hole’s condition
can produce noticeable effects, like the emission of supersized quantum radiation, from
an external standpoint.

The concept of horizon deformation in black holes, pivotal for comprehending exter-
nal views of supersized quantum radiation, was initially introduced by Hartle and later
expanded by O’Sullivan and Hughes. Their method involves imagining this deformation
by placing a distorted sphere in a three-dimensional, flat Euclidean space. The principal
idea here is to keep the sphere’s outer surface fixed and interpret its deformation in terms
of changes in the associated Ricci curvature. Alternatively, this deformation can be per-
ceived as the discrepancy between the location of the outer surface and the Schwarzschild
radius (RS). In this context, the Schwarzschild radius represents the degree to which the
internal fluid either protrudes from or withdraws into the fiducial horizon.

To assist in visualizing this concept, consider a black hole’s horizon undergoing a
static quadrupole deformation, this deformation changes the sphere’s shape in a manner
that scales with the strength of the perturbation, as described by the equation P2(θ) =
1
2
(3 cos2 θ − 1).
This equation represents the second Legendre polynomial in terms of the polar angle
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θ. More generally, the position and shape of the deformed horizon are expected to
oscillate over time, reflecting the dynamic interplay between the black hole’s interior
processes and how they are perceived by an observer outside the horizon.

Contrary to what might be expected, the deformed surface of a black hole can exhibit
both indentations and bulges, regardless of the direction of the external force causing
the perturbation, as depicted in certain illustrations (figure 2.1).

Figure 2.1: From [7] Visualization of a black hole’s horizon undergoing a scalar, dipole
and quadruple deformation respectively.

This analysis centers on areas where the black hole’s horizon shows inward curvature
or appears as if the internal matter of the black hole is protruding outward. This suggests
that a part of the black hole’s core may have been temporarily exposed to the external
spacetime continuum. From the perspective of an observer outside the black hole, such
an indentation in the horizon might be seen as the black hole absorbing negative energy.
This viewpoint is consistent with the established theory that explains the emission of
standard Hawking radiation.

However, the idea of a negative energy flow is mainly a theoretical tool for external
observers. Its purpose is to uphold the principle of energy conservation in scenarios where
positive energy is being emitted from the black hole. This concept, while theoretically
significant, is primarily used to reconcile observations and theories regarding energy
dynamics around black holes.

In the classical framework pertaining to tidal deformations of black holes’ horizons, an
emission of energy is generally linked exclusively with the superradiant modes inherent
to a rotating black hole. Regarding the emission of Hawking radiation from a polymer
black hole, both the emitted energy flux and its compensatory negative flux are ascribed
internally to a quantum mechanical phenomenon, this phenomenon encompasses the
disintegration of minuscule string loops from the black hole’s interior, which is densely
packed with strings. In the case of supersized Hawking radiation, it is hypothesized that
the pattern would be analogous, albeit involving a considerable segment of the string
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detaching in unison within a condensed timeframe.
From the internal perspective of the black hole, the relative deformation of the hori-

zon, denoted as ∆L/L, caused by a specific restoring force (considering, for instance, the
Ith force), is expressed by the ratio:

∆L

LI

∼ (∆E)I
E

=
pI
ρ

=
v2I
c2

(2.1)

In this equation, ∆L represents the change in the length scale of the horizon de-
formation, LI is the characteristic length scale of the Ith force, (∆E)I is the energy
change due to the Ith force, E is the total energy, pI is the pressure associated with
the Ith force, ρ is the density, vI is the velocity, and c is the speed of light. This ratio
quantifies the extent of the horizon’s deformation in response to various forces and is a
critical factor in understanding the internal dynamics of black holes. In this context, vI
represents the sound velocity for the Ith mode, pI is its pressure, and ρ ≈ MBH

R3
S

is the

total energy density, where MBH is the black hole mass. These relationships are derived
using standard thermodynamic principles that link stress with strain and the ratio of
pressure to energy density with sound velocity.

We can use Equation (2.1) to derive an expression for the redshift at the furthest
extent of the protruding fluid:

√
−gtt

∣∣∣∣
I

=

√
1− RS

rI
=

√
1− RS

RS(1 +
∆L
L
|I)

≈
√

∆L

L
|I , (2.2)

which implies that
√
−gtt

∣∣∣∣
I

≈ vI
c
. (2.3)

These estimates are crucial for determining the mode frequencies as observed from
outside the black hole and they help in verifying whether the observations made by an
external observer are consistent with those from an internal perspective.

It is important to note that these equations are not compatible with a relativistic
speed of sound vI = c, in such a scenario, the ratio ∆L/L cannot be small, indicating
that the limiting case of vI = c presents complications.

2.1.1 Hawking’s radiation

The energy change associated with Hawking radiation, denoted as (∆E)H , is approx-
imately equal to the Hawking temperature TH , which is inversely proportional to the
Schwarzschild radius RS. This relationship is expressed as:

(∆E)H ∼ TH =
1

RS

. (2.4)
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Considering the total energy E to be equivalent to the black hole mass MBH , we
have:

E =MBH . (2.5)

From this, it follows that the ratio of the energy change due to Hawking radiation to
the total energy is:

(∆E)H
E

∼ 1

RSMBH

=
1

SBH

, (2.6)

where SBH is the black hole entropy. The redshift at the location of the protruding fluid,
which is also the perceived source location for an external observer, is given by:

√
−gtt

∣∣∣∣
H

=

√
1

SBH

=
lP
RS

, (2.7)

where the subscript H indicates a property associated with Hawking radiation (e.g., TH
is the Hawking temperature), and lP is the Planck length.

This redshift value represents the location of the source of the radiation as perceived
by an external observer. When it comes to the frequency of the Hawking radiation mode
assigned by the external observer it is reasonable to attribute a wavelength of lP , the
Planck length. In considering a black hole (BH) in equilibrium, it’s understood that
there are essentially two relevant length scales: the Schwarzschild radius and the Planck
length. This equilibrium state is particularly pertinent for the emission of standard
Hawking radiation, this is because a large black hole emits radiation very slowly, and the
energy emitted in each instance is a minuscule fraction of the black hole’s total mass.

An external observer would deduce that a Hawking mode emitted by the black hole
has a source frequency of ωsource

(H) = c/lP . To determine the frequency as it would be
observed externally, this source frequency is redshifted and this redshifting process leads
to the expected outcome, where the external frequency of the Hawking mode, ωext

(H), is
equal to the Hawking temperature TH :

ωext
(H) = ωsource

(H)

√
−gtt

∣∣∣∣
H

= TH . (2.8)

From the perspective of the polymer model’s internal dynamics, the same value for
the Hawking temperature, denoted as TH , is achieved. According to this model, a small
loop of string, when it breaks away from longer loops within a bound state of interacting
and highly excited closed strings, possesses a certain probability of escaping. Calcula-
tions within this framework demonstrate that both the rate and energy of this emission
align with the Hawking temperature TH . This result indicates a coherence between
the external and internal perspectives in terms of understanding conventional Hawking
radiation.
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2.1.2 Supersized radiation

We shift our focus to a nonrelativistic fluid mode and its frequency as perceived by an
external observer. It is understood that the redshift at the location of the protruding
fluid, which is outside but near r = RS, is given by vI

c
. This prompts us to consider the

mode frequency at this ”source” location.
An external observer, unaware of the fluid’s existence, might misconstrue these non-

relativistic fluid modes as relativistic spacetime quasinormal modes (QNMs), at the
source, these QNMs would have a wavelength roughly equal to RS, as a result, one
would attribute a source frequency to them as follows:

ωsource
(I) =

c

RS

, (2.9)

leading to the inference that the external frequency is:

ωext
(I) = ωsource

(I)

√
−gtt

∣∣∣∣
I

=
vI
RS

, (2.10)

which aligns with the expectations. The primary distinction between the internal and
external perspectives is, therefore, one of interpretation.

From the viewpoint of an external observer, supersized Hawking radiation is consid-
ered relativistic with a frequency ωI = vI

RS
, it can therefore be deduced that the wave-

length of this radiation, observed at a considerable distance from the horizon, is λI =
RSc
vI

.
This conclusion is reinforced by the notion that the wavelength near the source should
approximate RS, and then experiences asymptotic redshifting to λI ≈ RSc

vI
.

Based on this, an external observer would infer a radial size of about RS for the
source. To comprehend the transmission cross-section for such long-wavelength modes
through a relatively smaller surface area A, the observer would consider the ratio A

λ2
I
.

For the scenario in question, this translates to
R2

S

λ2
I
= v2I .

Hence, we can conclude that the efficiency or coupling of emission is proportional to
v2I , implying that the energy in the emitted wave is scaled as:

(∆E)I ≈ EIv
2
I , (2.11)

This assumption rests on the premise that the majority of the mode’s energy is emitted
as coherent waves, as opposed to being dissipated as heat.

The damping time for any particular mode, τI , is intrinsically linked to the corre-
sponding relaxation time of the black hole. By examining the rate of change of energy,
dEI/dt, which is proportional to (∆E)I ≈ v2IEI , we find:

dEI/dt ∝ (∆E)I ≈ v2IEI , (2.12)
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indicating that the relaxation time scales inversely with v2I , as does the damping time
τI . This leads to the anticipated result:

τI ≈ RS/v
2
I , (2.13)

where the inclusion of RS is for dimensional consistency and acknowledges that the
Schwarzschild time is the only classically relevant time scale.

In conclusion, supersized Hawking radiation oscillates at a frequency ωI = vI/RS,
carries away energy (∆E)I = EIv

2
I (assuming EI ≈ MBH), and decays over a charac-

teristic time τI = RS/v
2
I , this contrasts with standard Hawking emissions, which have a

frequency ωH = 1/RS, an effective coupling v2H = 1 (comparable to ωI = vI/RS), and an
emitted energy of 1/RS, resulting in a decay time τH = RS/v

2
H = RS, as expected. We

now shift the attention to the strength of the coupling of fluid modes to external gravita-
tional waves (GWs), which is also a key factor, as it, along with (∆E)I, determines the
amplitude of the emitted GWs. The coupling strength can be estimated using Einstein’s
quadrupole formula:

hij ∼ 1

r
Q̈, (2.14)

which implies that for an external observer, the amplitude of the GWs, hIij, is approxi-
mated as:

hIij ∼ Q̈I ∼ (∆E)IR
2
Sω

2
I ∼ (EIv

2
I )(RSωI)

2 ∼ EIv
4
I , (2.15)

where the factor R2
S is attributed to the quadrupole moment of the emitting object, and

the dot notation represents a time derivative. The inclusion of two frequency factors is
due to the double time derivatives in the formula, which further suppresses the amplitude
of the emitted GWs.

From the viewpoint of the internal dynamics of a black hole, the lack of relativistic
fluid modes can be attributed to the polymer model being close to its equilibrium state
due to a conflict between two necessary boundary conditions for any fluid mode: the
requirement to vanish at the object’s center and to be outgoing at its surface, additionally,
the primary correction to the energy, ∆E/E, must be parametrically small, as indicated
by ∆E/E < 1, this leads to the conclusion that v2I/c

2 = ∆E/E < 1.
From an external viewpoint, the infeasibility of emitting such waves is evident when

examining the continuity of emission at vI = 1. Given that a sound velocity greater than
1 (vI > 1) is physically untenable, the amplitude of any hypothetical waves surpassing
light speed must be zero. By the principle of continuity, this leads to the conclusion that
the amplitude of waves at vI = 1 must also be zero.

To further clarify the continuity argument: a relativistic external mode could not
have experienced redshift, as this would imply its origin from a fluid mode with a sound
velocity surpassing the speed of light. For a hypothetical relativistic fluid mode, assume
ω = αc

RS
and λ = RS

α
, where α is a constant, approximately of order 1, to account for any

unconsidered numerical factors. If its wavelength is indeed RS

α
≈ RS, then the mode must

13



have originated near the horizon and thus undergone significant redshift. In contrast,
to avoid redshift, it would need to be generated far from the horizon with a wavelength
substantially greater than RS. Such a mode would be independent of the black hole’s
influence and, even if it were to exist, an external observer would not categorize it as part
of the black hole’s quasinormal mode (QNM) spectrum. This logic, however, does not
dispute the existence of standard relativistic spacetime QNMs, as these are a consequence
of waves in the external spacetime, not from internal fluid modes of the black hole.

It has been demonstrated that for an ultracompact object with a surface effectively
functioning as a black hole (BH) horizon, even if it’s not empty, its interior modes can
still interact with emitted gravitational waves (GWs), as well as other wave types like
electromagnetic waves and neutrinos. An external observer would interpret these interior
modes as enlarged Hawking emissions, seemingly originating just outside the horizon’s
equilibrium position. This perspective is applicable to both supersized and standard
Hawking radiation.

These insights, primarily derived from studying the polymer model of a black hole’s
interior are believed to be generalizable. They likely extend to any ultracompact object
that contains fluidlike matter and possesses an outer surface mimicking a BH horizon to
a certain degree.

This concept leads to the notion of a new type of black hole hair, which necessitates
a significantly extended period for shedding. The presence of such novel black hole hair
could be a fundamental characteristic of any black hole-like object containing substantial
matter. This could be the crucial element in unveiling the mysteries of what lies beyond
the horizon. The detection of gravitational waves from black hole mergers, which might
occur in the foreseeable future, could provide critical insights into this phenomenon.

2.1.3 No-hair theorems

The No-hair theorem posits that, absent external gravitational interactions, the geometry
of a static black hole space-time is described by the Schwarzschild metric. However, this
scenario is often not reflective of reality, as the prerequisites are seldom met. Typically, a
black hole is part of a binary system or possesses an accretion disk, ensuring the presence
of gravitational fields.

Nonetheless, the modified version of the no-hair theorem still holds true: The effect of
the deformed black hole on the multipole moments, which describe the gravitational field
near infinity and thus encompass all sources, is equivalent to that of a Schwarzschild black
hole, this results in the Love number being zero, indicating no distortion for an extended
object, and the absence of an induced multipole moment in the black hole. While these
conclusions were initially drawn within an approximate framework of General Relativity,
in [8] their validity is demonstrated in full General Relativity.

The No-hair theorem asserts that a static black hole is characterized by the Schwarzschild
metric. Such a black hole, though it requires one parameter, or ”hair”, to be defined —
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its mass M — is still considered ”bald”. For rotating black holes, an additional param-
eter, the spin, is necessary, but the essence of the theorem remains largely unchanged: a
limited number of characteristics suffice to describe the space-time geometry of a black
hole.

When applied to rotating black holes, the no-hair theorem stipulates that the quadrupole
moment of such a black hole is inherently determined by its mass and angular momentum,
therefore, the independent measurement of these three parameters can serve as a means
to evaluate alternative theories of gravity or to scrutinize the fundamental principles of
the no-hair theorem.

The no-hair theorem fundamentally posits that a black hole is an isolated entity, sug-
gesting that its surrounding spacetime is inherently flat and devoid of external influences.
Yet, this idealized condition often does not hold true in various astronomical situations,
where factors like accretion disks or binary partners contribute to the spacetime’s overall
multipole moment.

In situations involving external sources within the black hole’s vicinity, it experiences
distortions, leading to changes in the internal structure of its horizon. These changes can
be precisely evaluated using Love numbers of the first kind or by analyzing the multipole
moments of isolated horizons. Importantly, however, these distortions don’t necessar-
ily mean black holes lose their characteristic ’hairlessness’. While the total multipole
moments of spacetime observable from infinity are subject to change, these modifica-
tions arise solely from external sources, not from any inherent changes in the black holes
themselves. Thus, even when distorted, black holes maintain only a mass monopole,
effectively preserving their ”baldness”.

In an adiabatic regime, the black hole or neutron star is instantly distorted by the
external field of its companion, the system then gains additional axial symmetry along the
axis that connects the two components of the binary system. Under these circumstances,
the metric for distorted black holes is applicable. The characteristics of these distortions
are reflected in the gravitational waves emitted by spiraling binary systems, providing
insights into the equation of state of neutron stars.

These imprints can serve as experimental evidence to determine whether a member
of a binary system is a black hole, this method offers a direct way to confirm the presence
of black holes. If the existence of a black hole in a binary system is already confirmed
through other observations, like gamma-ray bursts observed at later stages of the inspi-
ral, then analyzing its distortions through gravitational wave measurements provides an
opportunity to test general relativity. This is done by applying the principles of the no-
hair theorem. The distortions of the black holes and neutron stars are characterized by
the Love numbers of first and second kind, hr and kr. Roughly speaking, the hr measure
the changes in the shape of the horizon or the neutron star and the kr measure the change
in the asymptotic multipole moments caused by the distortion due to an external source.
It was established using approximation methods that the kr vanish for four-dimensional
black holes, but the black hole case considered by Gurlebeck is solved analytically in full
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general relativity and, thus, it serves as a test for the various approximation schemes
usually employed. In the following it is used the geometric units, in which G = c = 1,
where c is the velocity of light and G Newton’s gravitational constant. The metric has
the signature (−1, 1, 1, 1). Greek indices run from 0 to 3 and Latin indices run from 1
to 3.

2.1.4 Distorted BH

The representation of the metric for static and axially symmetric spacetimes of a general
nature is achievable by using the Weyl metric, which is expressed as:

ds2 = e2k−2U(dρ2 + dζ2) +W 2e−2Udφ2 − e2Udt2 (2.16)

Within this framework, the functions U, k, and W, which depend on ρ and ζ, are
of high importance. The metric functions U and W can be defined in relation to the
spacelike Killing vector ηα and the timelike Killing vector ξα, as follows:

e2U = −ξαξα, W 2 = −ηαηαξβξβ. (2.17)

When the external influences are either static and axially symmetric or suitable for
a quasi-static analysis, the general metric in the proximity of a distorted black hole’s
horizon H was identified by Geroch and Hartle in the form resembling Eq. (2.16). Near
H, the assumption of a pure vacuum is made, which is a physically justifiable supposition
if the matter is quasi-static and adheres to the energy conditions. Accordingly, a surface
SH is defined, which encompasses H but excludes any additional sources. In cases where
SH is in close proximity to H, the metric functions, as delineated in Eq. (2.16), are
expressed in the region between SH and H as:

U = US + UD, k = kS + kSD, W = ρ. (2.18)

The function UD is influenced by external matter and satisfies the Laplace equation:(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂ζ2

)
UD = 0. (2.19)

In situations where UD is zero, the spacetime is indicative of a Schwarzschild black
hole. The computation of the function kSD is conducted through a line integral, depen-
dent on the combined values of UD + US. However, its explicit expression is not crucial
for subsequent discussions. The horizon of the distorted black hole is located along the
symmetry axis (ρ = 0, ζ ∈ [−M,M ]), similar to a Schwarzschild black hole. In standard
Weyl coordinates, the horizon is always at ρ = 0. These coordinates permit an adjust-
ment of the ζ axis. By exploiting this flexibility, the horizon is symmetrically aligned
with the ζ coordinate, meaning the ’north or south pole’ of the horizon is represented by
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ζN/S = ±M . At these extremities, UD is required to have equivalent values to avoid the
creation of struts, a simplification adopted for ease of analysis. For external matter that
exhibits reflection symmetry, such as accretion disks or jets, this requirement is typically
fulfilled.

The metric functions take on the form of Eq. (2.16) to (2.19) primarily in the prox-
imity of H. These equations are not representative of the asymptotic behavior or the
metric inside the external source, however, by employing source integrals, it is feasible to
infer the contributions of the distorted black hole to the asymptotic multipole moments.
This inference is possible even without a detailed description of the external sources,
which may include additional black holes, the only condition imposed is that the space-
time should be asymptotically flat and all external sources must be confined within a
certain region. This specified region should neither include H nor extend infinitely. The
boundary of this region is designated as Sext.

2.1.5 Source integrals

For distinguishing between the impacts of the black hole and external sources on the
asymptotic multipole moments, the application of source integrals is essential, these
integrals, recently formulated, facilitate the characterization of spacetime asymptotics,
encompassing the Geroch multipole moments, by means of quasilocal surface or volume
integrals. Such integrals are required to encircle or contain regions possessing a non-
zero stress-energy tensor. In this scenario, the emphasis is on the surface integrals, with
subsequent introduction of the relevant quantities.

Concerning the Weyl multipole moments U (r), the author defines them as the expan-
sion of U along the axis of symmetry extending towards infinity, explicitly:

U =
∞∑
r=0

U (r)

|ζ|r+1
(2.20)

The coordinate ζ is both geometrically and covariantly definable. It is recognized that
the Geroch multipole moments mr can be determined from the values of U (r) through
nonlinear algebraic relations. To derive mr, it is essential to have knowledge of U (k) for
all 0 ≤ k ≤ r. Thus, the primary focus is directed towards U (r). It is important to note
that the baseline for measuring the multipole moments is set by positioning ζN/S = ±M .

Additionally, the following functions are used

N
(r)
− (x, y) =

⌊ r
2⌋∑

k=0

2(−1)k+1r!x2k+1yr−2k

4k(k!)2(r − 2k)!

N
(r)
+ (x, y) =

⌊ r−1
2 ⌋∑

k=0

2(−1)k+1r!x2k+2yr−2k−1

4k(k!)2(r − 2k − 1)!(2k + 2)

(2.21)

17



It is straightforward to ascertain that these functions conform to the equations:

N
(r)
+,x −N

(r)
−,y = 0, N

(r)
+,y +N

(r)
−,x −

N
(r)
−

x
= 0. (2.22)

In this context, commas signify partial derivatives. The 1-form are here presented:

Zα = ϵαβγδW
,βW−1ηγξδ, (2.23)

with ϵαβγδ representing the spacetime volume form.
In a vacuum setting, the characteristics of Zα are clear, and it retains orthogonality

to hypersurfaces across spacetime. Considering that the pertinent surfaces,
SH and Sext, are situated either within the vacuum or at its boundary, the author

introduces a scalar Z satisfying Z,α = Zα. It is observed that in the standard Weyl
coordinates, Z is equivalent to ζ, assuming the integration constant is chosen correctly.

Under this established framework, the Weyl multipole moments are defined as:

U (r) =

∫
SH

η(r)a n̂a dSH +

∫
Sext

η(r)a n̂a dSext,

η(r)a =
1

8π

eU

W

(
N

(r)
− U,a −N

(r)
+,WZ,aU +N

(r)
+,ZW,aU

)
,

(2.24)

Here, n̂a symbolizes the unit normal vector directed outward from the surfaces SH

and Sext. The functions N
(r)
± are associated with (x, y), corresponding to (W,Z). The

expressions dSH and dSext denote the proper area elements for SH and Sext, respectively.
In vacuum conditions, canonical Weyl coordinates are chosen, which allow for W = ρ
and Z = ζ.

2.1.6 The induced multiple moment of disturbed BH

Using Eq. (2.24), the contributions from various sources to the asymptotic Weyl multi-
pole moments can be distinguished in a covariant manner. The first component of Eq.
(2.24), U

(r)
H , represents the influence from the distorted black hole. Conversely, the second

component, U
(r)
ext, relates to contributions from external sources, therefore, the resulting

multipole moment caused by a distorted black hole is defined as U
(r)
ind = U

(r)
H −U (r)

S , where

U
(r)
S denotes the Weyl multipole moments of an undistorted Schwarzschild black hole,

which align with the Newtonian multipole moments for a uniform density line mass. For
SH parameterized at constant angles ϕ, extending from the ”north pole” to the ”south
pole” (s ∈ [sN , sS] → (ρ(s), ζ(s), ϕ = const.)), the author calculates U

(r)
H by employing

Eq. (2.18):
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U
(r)
H =

1

4

∫ sS

sN

[
N

(r)
− (US + UD),n−(

N
(r)
+,WZ,n −N

(r)
+,ZW,n

)
(US + UD)

]
ds,

(2.25)

In this expression, f,n denotes the normal derivative, defined as −f,ρ d
ds
ζ(s)+f,ζ

d
ds
ρ(s).

To determine the multipole moments of a Schwarzschild black hole, one can reference Eq.
(2.25) and set UD = 0. For calculating the induced multipole moments, the Schwarzschild
contribution is simply subtracted from Eq. (2.25), yielding:

U
(r)
ind =

1

4

∫
sN

[
N

(r)
− UD,n −N

(r)
+,WZ,nUD+

N
(r)
+,ZW,nUD

]
ds.

(2.26)

Employing the divergence theorem and Eq. (2.19), U
(r)
ind can be rewritten:

U
(r)
ind =

1

8π

∫
VH

1

ρ

[
UD,ρ

(
N

(r)
−,ρ +N

(r)
+,ζ −

N
(r)
−

ρ

)
+

UD,ζ

(
N

(r)
−,ζ −N

(r)
+,ρ

)]
dVH,

(2.27)

This formulation is nullified according to the stipulations of Eq. (2.22). Here, VH
symbolizes the coordinate volume enclosed by SH and H within the canonical Weyl coor-
dinates. As a result, the induced multipole moments are effectively nullified, leading to
the deduction that the contributions of the distorted black hole to the asymptotic Weyl
multipole moments are analogous to those of a Schwarzschild black hole. By incorpo-
rating insights from additional research, these conclusions can be extended to Geroch’s
multipole moments, thus expanding the no-hair theorem’s applicability to include black
holes affected by external matter. It is pertinent to acknowledge that this external mat-
ter also contributes to the gravitational field, meaning that the aggregate asymptotic
multipole moments often differ from those of a pure Schwarzschild spacetime. This devi-
ation is particularly pronounced in binary black hole systems. In the discussed analysis,
the reference for the measurement of multipole moments is centered on one black hole,
treating the other as external matter. This approach results in additional contributions,
such as a non-zero quadrupole moment, to the overall multipole moments, as indicated
after Eq. (2.20).

The nonexistence of induced multipole moments implies that the second Love num-
bers kr are likewise zero, being directly proportional to U

(r)
ind. This finding aligns with

previously established research, highlighting that it is derived without any simplifica-
tions or linearizations, thus maintaining validity within the framework of full general
relativity. It seems appropriate to assume kr = 0 for slowly rotating black holes within
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binary systems, particularly when calculating gravitational radiation during the adia-
batic phase. It is important to note that the characteristic of kr = 0 is distinct to black
holes and does not extend to neutron stars. Nonetheless, the source integrals for the
Weyl multipole moments are meticulously constructed to calculate their kr, facilitating
the separation of contributions from various sources to the Weyl multipole moments in
a covariant approach under general relativity. This aspect significantly eases the compu-
tation of the source integrals in contexts involving black holes, as it suffices to determine
the mass of each black hole to establish all U

(r)
H .

If black holes rotate sufficiently slowly, this bears significant consequences in astro-
physics. On one hand, the determination of a black hole’s mass directly defines its
contribution to the multipole moments. In scenarios like binary systems involving a
black hole, or a black hole with an accretion disk, the black hole’s mass can be estimated
from the total mass of the system, which is derived from the motion of remote stars
and the mass of either the companion star or the disk. Once the black hole’s mass is
ascertained, all its associated multipole moments are effectively set. Any measurement of
the entire system’s multipole moments, for instance, the quadrupole moment, essentially
determines the quadrupole moment of the companion or the disk. On the other hand,
if it’s possible to measure the quadrupole moments of both the entire system and the
companion star or disk, then such observations offer a means to validate the principles
of general relativity.

2.1.7 The multiple moments of the horizon

Although the distorted black hole exhibits the same asymptotic multipole moments as a
Schwarzschild black hole, significant alterations are observed in its horizon geometry, this
becomes apparent when analyzing the covariantly defined horizon multipoles Mn. The
same principle was also independently applied using coordinate systems akin to those of
Schwarzschild, it was found that the multipole moments of the distorted horizon differ
from those of a standard Schwarzschild black hole. These differences were crucial in
developing a relativistic analogue to the first Love numbers for black holes, which, unlike
the second Love numbers, are non-zero.

Despite these changes in horizon geometry, the asymptotic multipole moments do not
reflect them, this paradoxical situation can be understood through a simple Newtonian
analogy. Consider a point mass: all its multipole moments, except for its mass, are null,
and its equipotential surfaces are spherical, introducing an additional gravitational field
from another point mass changes the equipotential surfaces, but the multipole moments
of the original mass, as calculated by Newtonian source integrals, remain the same.
This is attributed to the fact that a point particle, lacking internal structure, cannot
be distorted by external gravitational forces; hence, its source remains consistent. The
equipotential surfaces, similar to the distorted horizon, become non-spherical, however,
this changes if the body has internal structure, as with neutron stars. In such cases,
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an external gravitational field can deform both the matter distribution and the sources,
effects that are observable in the asymptotic multipole moments.

2.2 Parallelism with the electric polarizability prob-

lem

This section based on the perturbation theory chapter in Griffiths [4] introduces the
necessary elements of perturbation theory to understand the computations of the main
article.

2.2.1 Perturbation theory

Initially, we present the modified Hamiltonian as a composite of two distinct elements:

H = H0 + λH ′, (2.28)

where H ′ is identified as the perturbative component. We consider λ a small value,
expanding ψn and E as a series in terms of λ, we get

ψn = ψ0
n + λψ1

n + λ2ψ2
n + · · · ; En = E0

n + λE1
n + λ2E2

n + · · · , (2.29)

Here, E1
n is the first order correction to the nth eigenvalue, and ψ1

n is the first order
correction to the nth eigenfunction; the terms E2

n and ψ2
n represent the second-order

corrections, and the progression continues. Plugging equations (2.28), (2.29), and (2.30)
into

Hψn = Enψn, (2.30)

, we get (
H0 + λH ′) [ψ0

n + λψ1
n + λ2ψ2

n + · · ·
]

=
(
E0

n + λE1
n + λ2E2

n + · · ·
) [
ψ0
n + λψ1

n + λ2ψ2
n + · · ·

]
,

(2.31)

and by collecting terms with similar powers of λ, we obtain

H0ψ0
n + λ

(
H0ψ1

n +H ′ψ0
n

)
+ λ2

(
H0ψ2

n +H ′ψ1
n

)
+ · · ·

= E0
nψ

0
n + λ

(
E0

nψ
1
n + E1

nψ
0
n

)
+ λ2

(
E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n

)
+ · · · .

(2.32)

At first order (λ0), we encounter H0ψ0
n = E0

nψ
0
n, which is a familiar result and merely

reaffirms our initial equation. Moving to the first order (λ1),

H0ψ1
n +H ′ψ0

n = E0
nψ

1
n + E1

nψ
0
n. (2.33)

Proceeding to the second order (λ2),

H0ψ2
n +H ′ψ1

n = E0
nψ

2
n + E1

nψ
1
n + E2

nψ
0
n, (2.34)

and this pattern continues.
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2.2.2 First-Order Theory

Computing the inner product of our equation with ψ0
n (in other words, multiplying by

(ψ0
n)

∗
and integrating),〈

ψ0
n | H0ψ1

n

〉
+
〈
ψ0
n | H ′ψ0

n

〉
= E0

n

〈
ψ0
n | ψ1

n

〉
+ E1

n

〈
ψ0
n | ψ0

n

〉
(2.35)

Given that H0 is Hermitian, it follows that〈
ψ0
n | H0ψ1

n

〉
=
〈
H0ψ0

n | ψ1
n

〉
=
〈
E0

nψ
0
n | ψ1

n

〉
= E0

n

〈
ψ0
n | ψ1

n

〉
, (2.36)

which eliminates the first term on the right side. Additionally, ⟨ψ0
n | ψ0

n⟩ = 1, leading to

E1
n =

〈
ψ0
n |H ′|ψ0

n

〉
(2.37)

This presents the cornerstone of first-order perturbation theory; in practical terms,
it might be regarded as one of the most crucial equations in quantum mechanics. Es-
sentially, it conveys that the primary correction to energy is the expected value of the
perturbation in the original, undisturbed state.

The key to finding the first-order correction to the wave function lies in reinterpreting
our equation (2.33): (

H0 − E0
n

)
ψ1
n = −

(
H ′ − E1

n

)
ψ0
n. (2.38)

Here, the right side represents a known quantity, leading us to an inhomogeneous
differential equation for ψ1

n. Given that the unperturbed wave functions form a complete
set, we can express ψ1

n (or any other function) as their linear combination:

ψ1
n =

∑
m ̸=n

c(n)m ψ0
m (2.39)

(We exclude m = n in this summation because if ψ1
n satisfies our equation, so does

(ψ1
n + αψ0

n) for any constant α, allowing us to omit the ψ0
n term). Determining the

coefficients c
(n)
m is our objective, by incorporating this equation into our previous one

and utilizing the fact that ψ0
m satisfies the original Schrödinger equation, the following

relation can be established:∑
m ̸=n

(
E0

m − E0
n

)
c(n)m ψ0

m = −
(
H ′ − E1

n

)
ψ0
n. (2.40)

Upon computing the inner product with ψ0
l ,∑

m ̸=n

(
E0

m − E0
n

)
c(n)m

〈
ψ0
l | ψ0

m

〉
= −

〈
ψ0
l |H ′|ψ0

n

〉
+ E1

n

〈
ψ0
l | ψ0

n

〉
. (2.41)
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In cases where l = n, the left side amounts to zero, leading us back to our fundamental
equation; for l ̸= n, the result is(

E0
l − E0

n

)
c
(n)
l = −

〈
ψ0
l |H ′|ψ0

n

〉
, (2.42)

which can be rearranged as

c(n)m =
⟨ψ0

m |H ′|ψ0
n⟩

E0
n − E0

m

(2.43)

thus leading to the expression

ψ1
n =

∑
m̸=n

⟨ψ0
m |H ′|ψ0

n⟩
(E0

n − E0
m)

ψ0
m (2.44)

2.2.3 Second-Order Energies

Following the previous method, we compute the inner product of the second-order equa-
tion with ψ0

n :〈
ψ0
n | H0ψ2

n

〉
+
〈
ψ0
n | H ′ψ1

n

〉
= E0

n

〈
ψ0
n | ψ2

n

〉
+ E1

n

〈
ψ0
n | ψ1

n

〉
+ E2

n

〈
ψ0
n | ψ0

n

〉
(2.45)

Utilizing the Hermiticity of H0 again:〈
ψ0
n | H0ψ2

n

〉
=
〈
H0ψ0

n | ψ2
n

〉
= E0

n

〈
ψ0
n | ψ2

n

〉
, (2.46)

this negates the first term on the left with the first term on the right. Since ⟨ψ0
n | ψ0

n⟩ = 1,
we arrive at an equation for E2

n :

E2
n =

〈
ψ0
n |H ′|ψ1

n

〉
− E1

n

〈
ψ0
n | ψ1

n

〉
(2.47)

However, 〈
ψ0
n | ψ1

n

〉
=
∑
m ̸=n

c(n)m

〈
ψ0
n | ψ0

m

〉
= 0 (2.48)

leads us to

E2
n =

〈
ψ0
n |H ′|ψ1

n

〉
=
∑
m ̸=n

c(n)m

〈
ψ0
n |H ′|ψ0

m

〉
=
∑
m̸=n

⟨ψ0
m |H ′|ψ0

n⟩ ⟨ψ0
n |H ′|ψ0

m⟩
E0

n − E0
m

, (2.49)

and finally,

E2
n =

∑
m̸=n

|⟨ψ0
m |H ′|ψ0

n⟩|
2

E0
n − E0

m

(2.50)

This formula is effectively the same used for computing the polarizability of an atom
and the second Love number as presented in the next section, the only difference is that
in the next section the wavefunctions have the presence of the angular part manifested
with spherical harmonics.
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2.3 Classical Love number

In this section we follow the work of Ram Brustein and Yotam Sherf in [4] illustrating
the framework and the computation of the second Love number using a model based on
non-relativistic fluids.

The process of binary system inspiral involves mutual tidal interactions, causing
distortions in the spherical mass distribution of the system. These tidal responses are
measured using tidal Love numbers, which distinctly affect the gravitational wave (GW)
signals emitted. In the framework of general relativity (GR), it is established that black
holes (BHs) exhibit zero Love numbers, an outcome of the BH no-hair theorem exposed
in the last chapter.

The upcoming Laser Interferometer Space Antenna (LISA) observations of GWs from
binary BH mergers during their inspiral phase could serve as a means to investigate
the quantum characteristics of large-scale astrophysical BHs through the influence of
these characteristics on the GW signals. This premise hinges on the assertion that the
”electric” quadrupolar Love number, k2, is nonzero for a quantum black hole (QBH). This
nonzero value of k2, especially since it is the most significant among the dimensionless
Love numbers and contrasts with its zero value in classical GR BHs, presents a crucial
indicator for potential deviations from classical GR.

The primary focus is on determining the Love numbers for large astrophysical black
holes (BHs). In line with the Bohr correspondence principle, which is applicable to all
macroscopic objects, there should exist a quantum state corresponding to a classical BH,
irrespective of its size. This idea is captured by the term ”quantum black hole” (QBH),
which refers to the quantum state analogous to a classical BH. A QBH is described as an
ultracompact object with a horizon and a unique set of quantummechanical energy levels,
these levels can be seen as coherent states representing the macroscopic, semiclassical
excitations of the QBH. For example, in the polymer BH model, the interior matter of
a QBH is thought to behave like a fluid, capable of supporting pulsating modes similar
to those in a relativistic star.

Beyond the standard spacetime modes in the exterior, these fluid modes would also
be present, thereby requiring their inclusion in the spectrum of ringdown or quasinormal
modes of a perturbed BH. Each fluid mode, when stimulated, forms a high-amplitude,
high occupation number, coherent state of the interior matter, rather than a single
quantum excitation. In the ground state of a QBH, the external geometry closely matches
that of Schwarzschild geometry. However, an excited QBH shows deviations from its
General Relativity (GR) description, potentially allowing for its differentiation from a
classical counterpart in theory. This distinction is valid as long as the QBH is somewhat
out of its equilibrium state, in contrast to a GR BH, with the degree of deviation being
contingent on the energy input into each specific mode.

To differentiate between a QBH and a classical BH, one can observe them when
they are slightly out of equilibrium due to the external field of a binary companion.
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The classical BH lacks any features (bald), whereas the quantum BH exhibits quantum
characteristics (hair). Commonly, it’s believed that quantum effects in large astrophysical
BHs are minimal due to the very small ratio of the Planck length squared to typical
curvatures l2P/R

2
S. However, it’s argued that for QBHs, quantum effects are determined

by the extent of the quantum hair, which could be significantly larger. For instance, in
string theory, the dimensionless magnitude of this hair is proportional to the square of
the string coupling, g2s ≈ l2s/l

2
P , with ls being the string length. Generally, g2s is small

but comparable to other typical gauge couplings, roughly g2s ≈ 0.1.
In classical general relativity (GR), a black hole (BH) geometry does undergo de-

formation when exposed to an external perturbing field, this deformation howeveer, is
not due to a change in matter distribution but is represented by a variation in the
Gaussian curvature at the Schwarzschild radius, or equivalently, in the scalar curvature.
This deformation can be conceptualized by embedding the BH in a hypothetical two-
dimensional sphere, leading to the interpretation of deformation as a relative radial shift
at the Schwarzschild radius, nevertheless, this geometric deformation should not be mis-
taken for a tangible physical effect. For an observer near the BH, the horizon remains
at the Schwarzschild radius, If this were not the case, it would imply a nonzero Love
number. It has been elucidated that the geometrical deformations of classical BHs do
not translate into changes in their asymptotic multipole moments, thus resulting in an
identically zero Love number. The key takeaway is that a discernible imprint on the
object’s asymptotic moment necessitates a genuine physical matter deformation, or in
other words, an actual response of the state of the quantum black hole (QBH) to external
perturbations.

When addressing the significance of quantum hair for the calculation of k2, it is
important to emphasize that from the perspective of an external observer, the interior of
the ultracompact object influences the outcome solely through one boundary condition
(BC) applied to the external Einstein equations at the object’s surface. The second
BC is defined exclusively by the perturbing classical field at a significant distance from
the object, therefore the interior details of the object, including its composition, energy
density, or pressure, are encapsulated in this single BC, as the interior essentially becomes
integrated out of the equations (this connects to what was discussed in ”The external
point of view”). The Love number is calculated based on the ratio of these two BCs.
Thus, any information about the interior that is available to an outside observer is
conveyed through the Love number(s).

2.3.1 Quantum Love number review

Given the inaccessibility of the QBH’s interior to an external observer and the assumption
of strong internal gravitational coupling, the conventional approach of a semiclassical
geometric description using curved spacetime becomes untenable. However, the central
point concerning the QBH interior is the macroscopic nature of its excitations, which
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justifies the application of the Bohr correspondence principle. This principle suggests
that the excited spectrum of a QBH can be described using coherent states, corresponding
to semiclassical states that function analogously to an oscillating classical system. These
assumptions enable the discussion of the macroscopic excitations and energy spectrum
of a quantized black hole using a harmonic oscillator model.

To conceptualize this idea, the exotic matter within the QBH is envisaged as a fluid
capable of sustaining pulsating modes, akin to those found in a relativistic star. These
fluid modes exist alongside the standard spacetime modes in the exterior. The perturba-
tions are classified into fluid modes and spacetime modes. Due to the low sound speed
of the fluid modes and the compactness of the QBH, these modes are distinguished from
spacetime perturbations, as per the Cowling approximation.

To frame the calculation of the Love number for a quantum black hole (QBH), an
analogy can be drawn with the process of determining the polarizability of an atom.
Envision an atom in its fundamental state, represented by |Ψ0⟩, which is characterized
by specific quantum numbers |n; l;m⟩ = |1; 0; 0⟩. It is presumed that the expectation
value of the quantum dipole operator D̂i is null in this state. From a classical standpoint,
the dipole moment is defined as D⃗ =

∫
ρ(x⃗0)x⃗0dV0 = 0, where ρ denotes the atom’s

charge density. This conceptual framework aids in understanding the Love number’s
computation for QBH, using familiar quantum mechanical principles applied to atomic
structures.

When the atom is situated in a region with a nearly uniform electric field Ei, resulting
from a weak external potential Uext, the electric field can be expressed as Ei =

∂Uext

∂xi
. The

interaction between the atom and the external electric field, V̂int, is described in terms
of D̂i, specifically, V̂int = −EiD̂i. The induced dipole moment of the atom, perturbed by
this interaction and calculated using second-order time-independent perturbation theory,
is given by the standard formula, also shown before:

〈
Ψ0

∣∣∣D̂j

∣∣∣Ψ〉 = −Ei
∑

n̸=1,l,m

〈
1, 0, 0

∣∣∣D̂i

∣∣∣n, l,m〉〈n, l,m ∣∣∣D̂j

∣∣∣ 1, 0, 0〉
∆E1,n

, (2.51)

where ∆E1,n = E1 − En. In this scenario, symmetry dictates that l = 1 and m =
−1, 0, 1, with i = j. The atom’s linear response to the external electric field is represented
as ⟨Ψ0|D̂i|Ψ0⟩ = αEi, where α denotes the electric polarizability, given by

α =
∑

n̸=1,m±1,0,1

∣∣∣⟨1, 0, 0|D̂i|n, 1,m⟩
∣∣∣2

∆E1,n

. (2.52)

Drawing parallels to these principles, to obtain the Love numbers one needs to replace the
electric field and dipole moment with tidal fields and mass moments. For the quantum
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calculation, the inspiral phase of a binary system is considered, similar to the classical
computation. In this system, one companion is a QBH of mass MBH and radius RS =
2MBH , while the other is an external object of mass Mext orbiting at radius b. During
the early stages of inspiral, the QBH responds to the gradually changing tidal field
produced by its companion. For b ≫ RS, the Newtonian potential of the external
body, Uext = −Mext/|⃗b − x⃗|, can be expanded in the QBH’s local inertial frame as
Uext(t, x⃗) = Uext(0) +

1
2
∂2Uext

∂xi∂xj

∣∣
0
xixj + . . ..

Analogous to the case of electric polarizability, the interaction of the QBH with the
external field is quantified in terms of the mass moment expectation value, Q̂(l). These
operators are the quantum analogues of classical symmetric trace-free mass multipoles.
It is assumed that in the BH ground state, denoted as |Ψ0⟩, the expectation value of the
BH mass moment is zero, in accordance with the spherical symmetry and classical no-
hair properties, i.e., ⟨Ψ0|Q̂(l)|Ψ0⟩ = 0. Given the slow and weak nature of the external
potential, time-independent perturbation theory serves as an effective approximation.

In previous research, the correction to the ground state energy of a nonrotating
quantum black hole (QBH) due to the induced quadrupole was evaluated, Q̂ij, where the
Schwarzschild radius is RS. Recall that in the classical framework, Qij =

∫
ρ(t, x′)(x′ix

′
j−

1
3
r2δij)dV

′, with ρ representing the energy density. Analogous to the electric polarizabil-

ity calculation, the interaction energy is defined as V̂int = −1
2
EijQ̂ij, where Eij = ∂2Uext

∂xi∂xj .
The leading-order corrections to the QBH ground state quadrupole in second-order

time-independent perturbation theory are described by

⟨Ψ0|Q̂kl|Ψ0⟩ = Eij
∑

n>1,l,m

⟨Ψ0|Q̂ij|n, l,m⟩⟨n, l,m|Q̂kl|Ψ0⟩
|∆E1,n|

, (2.53)

where |∆E1,n| = En − E1. The ground state Ψ0 has a radial number denoted by n = 1,
thus the energy of the ground state is E1 = MBH. This is consistent with standard
treatments of second-order perturbation theory. The ”electric” quadrupolar Love number
is the proportionality coefficient between the induced electric quadruple moment and the
external tidal field,

⟨Ψ0|Q̂ij|Ψ0⟩ = −λ2Eij. (2.54)

Here, λ2 represents the dimensional quadrupolar Love number, and its dimensionless
form is commonly defined as k2 =

3
2
R−5λ2. It can be derived that

k2 = − 3

4R5

∑
n,−2<m<2

|⟨Ψ0|Q̂ij|n, 2,m⟩|2

|∆E1,n|
. (2.55)

2.4 Explicit internal solution for the metric

The response of a celestial body to a weak external tidal field is manifest in its induced
mass (electric) and current (magnetic) moments. The focus here is on the quadrupolar
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”electric” Love number k2. At a considerable distance, in the local asymptotic rest frame
of the star, the temporal component of the metric is given by:

gtt = −1 +
2M

r
− Eijxixj + 3

1

r5
Qijx

ixj

= −1 +
2M

r
− Eijxixj − 2k2

(
R

r

)5

Eijxixj,
(2.56)

where M and R are the mass and radius of the star, respectively. The dimensionless
tidal Love number k2 measures the linear response to the applied field. In the deviation
of gtt from the Schwarzschild metric, the first term describes the applied tidal field,
while the term proportional to k2 represents the induced trace-free quadrupole moment
Qij =

∫
d3x ρ(x)

(
xixj − 1

3
δijr

2
)
,

Qij = −2

3
k2R

5Eij. (2.57)

In a Newtonian framework, at large distances, gtt = − (1 + 2UN). Expanding the
Newtonian potential UN to the second order in the body’s local inertial frame gives

UN = −M
r

− 3

2r5
Qijx

ixj +
1

2
Eijxixj (2.58)

with Eij being the quadrupole moment of the external potential Eij = ∂2Uext

∂xi∂xj
. In the case

of an axisymmetric external potential, the tidal field is represented by Eijxixj = Er2Y20,
and similarly, the induced moment follows the same angular dependence, Qij = QY20.
Therefore, it follows that

UN = −M
r

− 3

2r3
QY20 +

1

2
Er2Y20, (2.59)

and

gtt = −1 +
2M

r
+ 3Q

1

r3
Y20 − Er2Y20,

= −1 +
2M

r
− 2k2R

5E 1

r3
Y20 − Er2Y20,

(2.60)

with

k2R
5 = −3

2

Q

E
. (2.61)

In [6] is then shown the calculation of the Love number k2, considering a perturbation

hµν about the Schwarzschild background g
(0)
µν , where g

(0)
µν = diag(−eν(r), eλ(r), r2, r2 sin2 θ),

and eν(r) = e−λ(r) = 1 − 2M/r. The perturbation hµν is decomposed into even-parity
and odd-parity parts, following the Regge-Wheeler gauge. Focusing on the l = 2,m = 0
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term, to linear order, when the external field is static (E = const.), the even-parity
perturbations can be expressed as

hµν = diag
(
eν(r)H0(r), e

λ(r)H2(r), r
2K(r), r2 sin2 θK(r)

)
Y20. (2.62)

Upon solving the perturbed Einstein equations outside the celestial body, it is found
that H0 = H2 ≡ H(r). This leads to the following perturbation equations:

H ′′ +
2x

x2 − 1
H ′ − 6x2 − 2

(x2 − 1)2
H = 0, (2.63)

K ′ −H ′ − 2

(x2 − 1)
H = 0,

K − 1

2
H ′ − 1

4

(
x+ 1

x− 1
+

3x+ 5

x+ 1

)
H = 0,

(2.64)

where x = r
M

− 1 and the prime denotes a derivative with respect to x.
The external solution of these perturbation equations is given by

Hext(x) = c1

[
x(5− 3x2)

x2 − 1
+

3

2
(x2 − 1) ln

(
x+ 1

x− 1

)]
+ 3c2(x

2 − 1),

(2.65)

Kext(x) = −c1
4 + 3x(x+ 3)

x+ 1
+

3

2
c1(x

2 + 2x− 1) ln

(
x+ 1

x− 1

)
+ 3c2(x

2 + 2x− 1),

(2.66)

and the perturbed background metric by

gtt = −
(
x− 1

x+ 1

)
(1 +HextY20) . (2.67)

The main focus is on cases where x − 1 = r
M

− 2 is significantly less than 1. For
subsequent analysis, Hext and Kext are expanded in this limit, resulting in:

Hext(x) =
c1

x− 1
− 3c1 ln

(
x− 1

2

)
+ 6c2(x− 1) +O(x− 1), (2.68)

thereby laying the groundwork for further investigation into the perturbative aspects of
the gravitational field around celestial bodies. Additionally, the expansion of Kext(x) in
the same limit is given by:

Kext(x) = −8c1 − 3c1 ln

(
x− 1

2

)
+ 6c2 +O(x− 1). (2.69)
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To facilitate the analysis, the coefficients of the expanded metric namely E and k2,
are related to the coefficients c1 and c2, as follows:

c1 = 40M2k2E (2.70)

and

c2 =
1

3
M2E , (2.71)

resulting in

k2 =
1

120

c1
c2
. (2.72)

The form of the external solution, as outlined in Eq. (2.65), is independent of the
interior characteristics, given that it represents a vacuum solution of the Einstein equa-
tions. The constant c2 is determined solely by the external field, thus the only implicit
dependence of Hext on the interior lies in the ratio c1/c2, or equivalently, in the value
of k2. Therefore, to completely define the form of the external metric perturbations, an
additional boundary condition on Hext needs to be established.

The standard method for calculating k2 for objects with known and defined interiors
is detailed in the relevant literature. This approach starts with specifying the internal
configuration of the perturbed body using its stress-energy-momentum tensor and an
equation of state. The perturbed Einstein equations within the interior are then solved
to find Hint. The conditions for Hint to be regular at the star’s center (r = 0) and for
the continuity of H and K at the star’s surface (r = R) lead to the determination of the
coefficients c1 and c2, and subsequently k2.

This method, which requires a full solution of the interior to calculate k2, provides
more information than necessary if the goal is simply to determine k2. Since only the
ratio of two numbers is essential for k2, any alternative method that can define this ratio
would be as effective as the conventional approach.

2.5 Spectrum of non-relativistic fluids

In the realm of astrophysical interactions, the entity under scrutiny, referred to as the
”primary,” is subjected to a weak periodic force exerted by its companion. Fluid modes
of ultracompact objects can be represented as a series of driven harmonic oscillators, each
with distinct frequencies. Within this effective model, the interior modes are perceived
by an asymptotic observer as nonrelativistic (NR) fluid modes, with an analysis akin to
that of classical Newtonian NR fluid modes.

Owing to the low sound speed and the compact nature of the quantum black hole
(QBH), fluid modes are effectively isolated from spacetime perturbations, this leads to
a division of the internal perturbation into two separate categories: the fluid modes and
the spacetime modes.
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The oscillating modes of the object are characterized by radial and spherical indices
n, l,m. Focusing particularly on tidal axisymmetric perturbations, the focus is on cases
where l = 2,m = 0. This involves formulating and solving the equations for the fluid’s
Lagrangian displacement vector, ξi, which correlates with Y20.

The total displacement vector of the system is expressed as the aggregate of contri-
butions from each radial mode:

ξi =
∑
n

anξ
i
n (2.73)

In this representation, the modes ξn are measured in units of length, rendering the
coefficients an dimensionless. In scenarios devoid of the driving force from a binary
companion, the fluid modes adhere to the Harmonic-oscillator equation:

än + ω2
nan = 0, (2.74)

where ωn denotes the frequency of the nth mode. The presence of an external tidal
potential modifies the equation of motion (EOM) for the internal fluid modes to that of
a driven harmonic oscillator: (

−ω2 + ω2
n

)
an =

EQn

MR2
. (2.75)

In this equation, ω represents the frequency of the external tidal field. The quadrupole
associated with the nth mode, Qn, is determined by the overlap integral

Qn = −
∫
d3r δρnr

2. (2.76)

The term δρn refers to the quadrupolar energy density perturbation linked with the
nth fluid mode, and ∆En is the corresponding total mass quadrupole moment. The
relationship is expressed as Qn = −γ∆EnR

2, with γ being a dimensionless number
approximately equal to unity.

Focusing on the m = 0 modes, the driving is essentially at zero frequency, where
ω = mΩ and Ω =

√
M/b3 is the orbital frequency. Thus, Eq. (2.75) simplifies to

ω2
nan =

EQn

MR2
. (2.77)

Generally, for m ̸= 0, the driving frequency can also be neglected since it is small
compared to the natural frequencies of the oscillator, Ω2 ≪ ω2

n, with ω2
n ∼ 1/R2, and

Ω2 = R/b3, while R3/b3 ≪ 1. The solution of Eq. (2.77) is given by

an = E Qn

Mω2
nR

2
. (2.78)
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The identification of the Love number is achieved by examining the asymptotic mo-
ments for a static observer at infinity, which are derived from the external metric per-
turbation equation (2.61), where Q =

∑
n anQn. By inserting E from Eq. (2.78) into Eq.

(2.61), one obtains:

k2nR
5 = −3

2

Qn

E
= −3

2

1

an

Q2
n

Mω2
nR

2
. (2.79)

This expression effectively links the Love number with the physical parameters of the
system, providing a clearer understanding of its relationship to the external tidal forces
and the internal dynamics of the object. From the decomposition of the asymptotic
moment k2 =

∑
n ank2n, the Love number is deduced as

k2 = −
∑
n

3

2R5

Q2
n

Mω2
nR

2
. (2.80)

Redefining the results in terms of the intrinsic energy spectrum of the driven system,
we define the intrinsic energy difference ∆Eint

n = Eint
n −M as

∆Eint
n =

1

2
Mω2

nR
2. (2.81)

It’s essential to note that the intrinsic energy difference ∆Eint
n is solely dependent on

the object’s intrinsic properties and is independent of the external driving field. This
concept is distinct from the energy ∆Einduced

n pumped into mode n by the external field,
expressed as

∆Einduced
n =

1

2
MR2ω2

na
2
n. (2.82)

Substituting an from Eq. (2.78) into Eq. (2.82) links ∆Einduced
n to the total work done

by the external tidal force:

∆Einduced =
∑
n

∆Einduced
n =

1

2

∑
n

EanQn =
1

2
EQ. (2.83)

Integrating Eq. (2.81) into Eq. (2.80), the final expression for the Love number is
obtained:

k2 = − 3

4R5

∑
n

Q2
n

∆Eint
n

. (2.84)

In scenarios where the sum is predominantly influenced by the lowest energy level
(n = 1), the Love number approximates to

k2 ≃ − 3

4R5

Q2
1

∆Eint
1

. (2.85)
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The parameterization of Qn can be achieved on dimensional grounds as

Qn = γn∆E
int
n R2, (2.86)

where γn is a dimensionless number reflecting the detailed functional form of the energy
density profile of the object. Consequently,

k2 = − 3

4R

∑
n

γ2n∆E
int
n . (2.87)

Generally, it is anticipated that γn diminishes rapidly as n increases, indicating that
higher-n modes possess more localized energy distributions and thus contribute less to
the overall sum.

Given that higher-n modes have more localized energy distributions and therefore
induce a smaller quadrupole moment, it is expected that the decrease in γn will counter-
balance the increase in En. Hence, the Love number approximately simplifies to

k2 ≃ − 3

4R
γ21∆E

int
1 . (2.88)

This relationship can be further simplified by considering ∆Eint
1 ∼Mω2

1R
2 and typi-

cally ω1 ∼ 1/R, leading to k2 ∼ γ21 .
In summary, calculating the Love number is akin to a classical linear response analysis

of a set of driven harmonic oscillators subjected to an external force, particularly in
scenarios where the intrinsic frequency of the oscillator significantly surpasses the driving
frequency.

In the quantum scenario, the approach remains similar, but the focus shifts to the
quadrupole moment of the interior modes as observed by a static observer at infinity.
This perspective does not explicitly rely on the Lagrangian displacement vector or the
Newtonian potential at the star’s surface. These elements are instead tools for achieving
a specific goal: establishing an additional boundary condition (BC) for the exterior
perturbation equations. This methodology forms a bridge to the quantum Love number
calculations and results within the semiclassical approximation framework. The critical
factors to be determined are the energy of the lowest-lying level and the quadrupole
moment associated with this level.

2.6 Relating the two methods for quantum black

holes

The Love number requires only a single boundary condition (BC) at the QBH’s surface.
The key physical assumptions for identifying this single BC are:
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1. Both general relativity (GR) black holes (BHs) and QBHs possess a horizon.

2. Absent external perturbations, QBHs are indistinguishable from GR BHs.

3. QBHs, unlike GR BHs, exhibit geometric deformations in response to external
perturbations, which manifest in their asymptotic moments. These changes in
state endow QBHs with ’hair’, resulting in a nonzero k2.

4. The external metric perturbation must vanish on the deformed horizon of QBHs,
just as in their classical counterparts.

5. The interior excited modes of the QBH are effectively modeled as a collection of
driven harmonic oscillators, contributing to the Love number. An exact solution
for Qn is model-dependent and can be parameterized by a dimensionless number
γ.

The theoretical constructs and assumptions used in this discussion lay the groundwork
for interpreting how quantum black holes (QBHs) react to external disturbances. This
approach aids in determining the Love number for QBHs, similar to classical systems
but with unique considerations due to their quantum characteristics.

To apply these ideas to a specific case, let’s examine the temporal aspect of the metric
disturbance near a QBH, symbolized as δgtt. We’re simplifying by not considering the
angular variation of this perturbation. The distance xB symbolizes the location on the
deformed surface of the QBH. We can then express the perturbation as follows:

−δgtt(xB) ≈ c1 + c2(xB − 1)2. (2.89)

When xB−1 is significantly smaller than 1, and defining ∆R as the difference R−2M
where ∆R/2M is very small, we get:

xB − 1 =
∆R

M
. (2.90)

This expression helps in understanding the metric perturbation near the boundary
of the QBH, which is vital for computing the QBH’s Love number.

This formulation provides a framework for understanding the behavior of the metric
perturbation near the QBH’s boundary, which is crucial for calculating the Love number
in the context of the QBH. To effectively apply the theoretical framework to quantum
black holes (QBHs), a single additional boundary condition (BC) must be defined for
the classical metric external to the QBH. This means determining an extra BC that Hext

must satisfy at the QBH’s deformed boundary. Based on the five assumptions previously
outlined, the following conditions are deduced:
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1. Assumption 1 indicates that for both classical and quantum BHs, in the case of
E = 0 (equivalently, c2 = 0), the value of xB for both BH types (xBBH and xBQBH)
equals 1, and gtt(xB) = 0. This aligns with assumption 4.

2. From assumption 2, it is inferred that both GR BHs and QBHs possess a hori-
zon and are indistinguishable in the absence of perturbations. However, under
assumption 3, for E ̸= 0, a physical deformation of the QBH is triggered, shifting
the surface to xB = 1+ δxB. The specific value of δxB is contingent on the QBH’s
spectrum.

3. Following assumption 1, for classical BHs, c1 = 0 and xBBH = 1, leading to δgttBH ∼
c2(xB − 1)2 = 0, and from Eq. (3.12), gttBH(x

B
BH) = 0. Assumption 4 suggests a

similar scenario for QBHs, where gtt(1 + δxB) = 0 with xB = 1+ δxB representing
the position of the deformed horizon.

These conditions provide a comprehensive set of criteria for the external metric of a
QBH, ensuring that the theoretical model is consistent with the physical properties and
behavior of both classical and quantum BHs.

The distinction between general relativity black holes (GR BHs) and quantum black
holes (QBHs) hinges on the boundary condition at the BH horizon. This boundary
condition eliminates the response terms (terms proportional to c1 in Eq. (2.68)) in GR
BHs, resulting in a vanishing Love number. For an observer near a classical BH, there
is no perceived deviation in the horizon position; it remains fixed at R = 2M , and the
external perturbation appears singular at this point. As per assumptions 3 and 4, the
horizon of a QBH does deform, therefore, the boundary conditions on this deformed
surface are regular, leading to a nonzero Love number.

Instead of imposing the condition gtt(1 + δxB) = 0, an equivalent condition is used:
δgtt(1) = −1

2
c1Y20. This approach is justified as follows: The fact that some points with

xB = 1 are technically within the original horizon does not impact this analysis, since
the focus is on the perturbed metric far from the QBH’s horizon. It’s important to note
that the classical metric is valid only outside the QBH horizon.

In a further examination, the expansion of Hext can be expressed as follows:

Hext(xB) =
c1

(xB − 1)
+O(xB − 1) = 120k2

c2
xB − 1

+O(xB − 1), (2.91)

As a result, we obtain:

δgtt(xB) = −1

2
c1 +O(xB − 1) = 5k2R

2E +O(xB − 1), (2.92)

The selection of the boundary condition (BC) is critical for defining the external
solution. Since E (or equivalently, c2) is specified by the BC at infinity, the fixation of
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δgtt(xB) is imperative to determine the value of c1. In this setting, assumptions 3 and 5
are applied to choose c1, aligning the value of k2 with the result from the fluid calculation
in Eq. (2.84):

c1 = −2δgtt(2M) =
15

2

E
(2M)3

∑
n

Q2
n

∆Eint
n

. (2.93)

This method ensures uniformity in the computed Love number across various approaches,
conforming to the existing theoretical structure.

Eq. (2.93) finalizes the comparison between the two classical methodologies for cal-
culating k2. It elucidates the relationship between the calculation of k2, based on the
spectrum of fluid modes, and the choice of boundary condition (BC) on the perturbed
relativistic Einstein equations, especially in the context of a quantum black hole (QBH).
If the lowest energy level significantly contributes to the sum, as expected, the approxi-
mation from Eq. (2.85) is applicable:

c1 = −2δgtt(RB) ≈ −15

2

E
(2M)3

Q2
1

∆Eint
1

. (2.94)

Furthermore, by merging Eqs. (2.67) and (2.91), we obtain:

−gt(xB) =
(
xB − 1

xB + 1

)(
1 +

c1
xB − 1

)
+O(xB − 1)2, (2.95)

and from the BC on the distorted surface qu(1+δxR) = 0, we infer that c1 = 1−xR. This
insight further solidifies the understanding of the QBH’s reaction to external disturbances
and the computation of k2, integrating the fluid mode spectrum with the relativistic
perturbation approach.

2.7 Comparison with the Quantum Love number

In the pursuit of comparing the classical and quantum calculations of the Love number
for a quantum black hole (QBH), it’s noteworthy to highlight the remarkable resemblance
between the classical Love number formula, as expressed in Eq. (2.84), and the quantum
Love number equation presented in Eq. (2.55). By correlating the expectation values in
the quantum equation with their classical counterparts, where ⟨Ψ0|Q̂ij|n, 2, 0⟩ = Qn and
the internal excited energy spectrum |∆E1,n| = ∆Eint

n , Eqs. (2.84) and (2.55) essentially
become equivalent.

The quadrupole matrix element in the quantum case is calculated through the inte-
gral: ∣∣∣⟨Ψ0|Q̂|n, 2, 0⟩

∣∣∣ = ∫ d3r δρ̃n,2(r)r
2Y20Ψn,2, (2.96)

36



where δρ̃n,2(r) represents the perturbed density, and Ψn,2 is the wave function of the nth
excited state with spherical indices 2, 0. This integral effectively bridges the quantum
mechanical representation of the quadrupole moment with its classical analog, underscor-
ing the deep connection between the classical and quantum approaches to calculating
the Love number of QBHs.

The observed correspondence between quantum and classical calculations of the Love
number is a direct embodiment of the Bohr correspondence principle. This principle
asserts that for macroscopic states with large quantum occupation numbers, the ex-
pectation values align with classical quantities. The states under consideration indeed
embody this principle, as they are associated with large occupation numbers. For a
quantum state with energy scaling as Mω2

nR
2, the occupation number N scales in pro-

portion to Nℏωn ∼ Mω2
nR

2, leading to N ∼ (ωnR)MR/ℏ ∼ (ωnR)SBH , where SBH is
the Bekenstein-Hawking entropy of the QBH. This implies that N ≫ 1, confirming the
large occupation numbers of these states.

Eq. (2.93) finalizes the comparison between the quantum and classical approaches for
calculating the Love number. It achieves this by clearly defining the additional boundary
condition (BC) necessary for the perturbation equations that determine the external
metric of a QBH. This inclusion ensures a comprehensive understanding and alignment
between the classical and quantum methodologies in assessing the Love number in the
context of QBHs.

In [6] a method for explicitly calculating k2 based on only partial knowledge of the
internal spectrum of an ultracompact object was shown. This object could be either a
classical ultracompact star, characterized by its nonrelativistic fluid modes, or a quan-
tum black hole (QBH), defined by its spectrum of excited states. The critical additional
boundary condition (BC), which encapsulates vital information about the QBH’s inte-
rior, is determined in relation to its spectrum. In both scenarios, k2 is predominantly
influenced by the first excited level or the lowest lying fluid mode and is proportional to
the relative excitation energy of this level, k2 ∼ ∆E/M . The proportionality coefficient
is dependent on further details, specifically the ratio of the quadrupole moment of the
excited level to its excitation energy ∆E.

Moreover, since the determination of k2 boils down to identifying the ratio of two
numbers, a detailed resolution of the interior is unnecessary. Information about the
interior is conveyed to an external observer through deformations on the QBH’s surface.
This information can effectively be ’integrated out’, leaving only one relevant BC.

The fact that k2 does not vanish for a QBH represents a deviation from the no-
hair property and underscores a fundamental distinction between black holes (BHs) and
QBHs. For classical BHs, geometric deformations do not impact their asymptotic mo-
ments. However, for QBHs, such deformations are significant and necessitate a physical
matter deformation, or equivalently, a physical response of the QBH to external pertur-
bations. This makes it possible for an external observer to detect these effects. This
emphasizes the importance of k2 as a crucial diagnostic tool for exploring the quantum
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aspects of black holes, highlighting its role in differentiating between classical BHs and
QBHs and in probing the deeper quantum nature of these astrophysical objects. The con-
currence between the classical and quantum approaches in calculating the Love number
k2 suggests that they are complementary methods for arriving at the same conclusion,
thereby reinforcing the credibility of each calculation. This alignment not only offers
a direct translation between quantum observables and classical general relativity (GR)
metrics but also aligns perfectly with the Bohr correspondence principle.

However, it’s important to distinguish the Love number characteristics of quantum
black holes (QBHs) from those of semiclassical objects like gravastars and wormholes.
Unlike QBHs, these semiclassical entities are not quantum in nature, lack an event
horizon, and their unperturbed surface is located at a finite distance from the theoretical
horizon, rather than at R = 2M . Additionally, the methodology to determine their Love
number is distinct, often relying on the assumption of an infinitely thin, rigid shell made
of hypothetical matter that violates both the weak and dominant energy conditions.
This shell is crucial to ensure continuity from the interior to the exterior solutions. The
Love number in these cases arises from the metric solution’s discontinuity, a purely
geometric trait, as opposed to the QBH Love number, which stems from interior matter
deformation or the interaction of its ground state with higher states due to external tidal
perturbations.
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Chapter 3

Quantum Love number

In this chapter we will follow the work in [9] calculating the quantum Love number by
using the Bohr correspondence principle, also discussed in the previous chapter.

In general, a weak external tidal field causes the emergence of small but non-zero mass
(electric) and current (magnetic) moments. According to the linear response theory, these
moments have a direct proportionality to the external tidal field. The most significant of
these induced moments is usually the mass quadrupole. This is related to the quadrupolar
tidal field Eab, with the relation

Qab = −2

3
k2R

5Eab. (3.1)

The variable k2 represents the dimensionless quadrupolar electric tidal Love number,
while R symbolizes the radius of the object in the inspiral phase.

The value of k2 is highly dependent on the compactness of the object, defined as C =
M/R. Particularly, as C nears a black hole (BH) value, C → 1/2, a universal reduction
in the Love number is observed, with it approaching zero as it reaches the BH limit.
This behavior aligns with the no-hair property of BHs discussed before. The fact that k2
vanishes completely for BHs and is the largest among the dimensionless Love numbers,
makes it an essential marker for identifying any departures from the classical theory of
general relativity (GR) as also discussed before.

According to the Bohr correspondence principle, a quantum state corresponds to a
classical BH, regardless of its size. The term “quantum black hole” (QBH) is used to
denote the quantum state matching a classical BH. This UCO has a horizon and also
features a discrete set of quantum mechanical energy levels. These levels can be inter-
preted as coherent states representing macroscopic, semiclassical QBH excitations. In
its fundamental state, a QBH’s external geometry is identical to Schwarzschild’s geom-
etry, however, an excited QBH displays variations from its GR depiction, potentially
distinguishing it from its classical counterpart in theory.

While a classical black hole (BH) is characterized by its lack of features, known as
”baldness”, a quantum black hole (QBH) exhibits hair. This quantum hair is entirely
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comprehensible to an external observer through the Bohr correspondence principle, this
principle suggests modifications in the near-horizon geometry without the need for in-
troducing new physical concepts. The quantum hair carries limited information, yet it
could reveal significant insights into some aspects of the QBH spectrum.

It is proposed that the Love numbers form a part of this quantum hair and could be
observable in principle, in particular, k2, the electric quadrupolar Love number, appears
to be the most promising candidate for detection. Quantum effects in large astrophysical
BHs are generally expected to be minimal, this expectation is based on the extremely
small ratio of the Planck length squared to the typical curvatures, l2P/R

2
S. However, it is

argued that for QBHs, the magnitude of quantum effects could be significantly greater.
In the study of General Relativity, the interior of a Black Hole (BH) is typically viewed

as void, except for a possible singular center. The emergence of the firewall hypothesis
significantly altered theories regarding Quantum Black Holes (QBHs), indicating a need
for a substantial reevaluation of existing perceptions. This hypothesis, as discussed in
the preceding chapter, challenges traditional views.

Neglecting the concept of remnant entities, two principal approaches have been pro-
posed to address the firewall conundrum. The first approach suggests that the horizon
vicinity is a vacuum, integrating unprecedented nonlocal physics to solve the information
paradox. In this view, the freedom degrees at a distance from the horizon are similar
to those within it. The singularity is often regarded as insignificant, presuming its res-
olution will not affect the spacetime framework near the horizon. The second approach
portrays BHs as non-singular structures that prevent gravitational collapse. In this sce-
nario, potent quantum forces distribute the singularity over a region analogous in size
to the horizon. This leads to a spectrum of excitations dictated by the horizon dimen-
sions, diverging from the Planck scale. This depiction of the BH interior necessitates a
radical deviation from semiclassical gravity and incorporates unconventional matter not
included in the standard model. Illustrations of this concept include Fuzzballs and the
polymer model as discussed before.

A precise formulation for both electric (polar) and magnetic (axial) Love numbers
(tensor) of QBHs, based on their spectral analysis was presented. The methodology
echoes the process used in calculating an atom’s polarizability through second-order time-
independent perturbation theory. It is shown that these Love numbers are particularly
influenced by the lowest energy state, meaning they do not vanish as the tidal field subtly
merges the first excited state with the base state.

3.1 Bohr’s correspondence principle

Before delving into the computation of quantum Love numbers, it is instructive to review
the analogous method used in calculating the polarizability of an atom. Imagine an atom
placed within a nearly uniform electric field, denoted as Ei, originating from a feeble
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external potential Uext, where Ei = −∂Uext

∂xi . The interaction of the atom with this field
is described by the dipole moment D =

∫
ρ(x′)x′dV ′, summed over the atom’s charge

distribution. This interaction is formulated as V̂int = −EiD̂i. By applying second-order
time-independent perturbation theory, the induced dipole moment in the affected atom is
derived. The atom’s linear response to the external field is illustrated as ⟨Ψ0|D̂i|Ψ⟩ = αEi,
where |Ψ0⟩ = |1, 0, 0⟩ is the fundamental state of the atom, and |Ψ⟩ is its first-order
modification, expressed as

|Ψ⟩ = |Ψ0⟩+
∑
n,l,m

|n, l,m⟩⟨1, 0, 0|V̂int|n, l,m⟩
∆E1,n

. (3.2)

In this equation, α symbolizes the electric polarizability, defined by

α =
∑

n,|m|≤1

|⟨Ψ0|D̂i|n, l = 1, |m| ≤ 1⟩|2

∆E1,n

. (3.3)

The symbols l and m denote the angular quantum numbers, n the radial quantum
number, and ∆E1,n = E1 −En the energy gap. For establishing the gravitational polar-
izability, or Love numbers, the electric field and dipole moment are replaced by the tidal
field, alongside the corresponding mass and current moments.

In a binary system’s early inspiral phase, we analyze a non-rotating quantum black
hole (QBH) with mass MBH and Schwarzschild radius RS, paired with a mass Mext

object, orbiting circularly at radius b. At the onset of the inspiral, the BH is exposed to
the slowly evolving tidal field from its companion. For b≫ RS, the Newtonian potential
Uext = −Mext/|⃗b− x⃗| in the vicinity of the BH can be expanded as

Uext(t, x⃗) = Uext(0) +
1

2

∂2Uext

∂xi∂xj

∣∣∣
0
xixj + · · · . (3.4)

The interaction of the QBH with the external field is characterized by the quantum
trace-free symmetric mass and current multipole moments, Q̂(l) and Ŝ(l), which are the
quantum analogs of classical multipoles. It is assumed that the expectation values of the
mass and current moments of the BH are zero in its ground state, in line with the angular
symmetry of the multipole operators and the classical no-hair theorems. Denoting the
ground state of the BH by |Ψ0⟩, we have ⟨Ψ0|Q̂(l)|Ψ0⟩ = 0 and ⟨Ψ0|Ŝ(l)|Ψ0⟩ = 0. Given
the slow variation of the external potential, we can consider using time independent
perturbation theory.

The primary correction to the black hole (BH) ground state quadrupole can be ex-
pressed as

⟨Ψ0|Q̂kl|Ψ⟩ = −Eij
∑

nr>1,|m|≤2

⟨Ψ0|Q̂ij|nr, 2,m⟩⟨nr, 2,m|Q̂kl|Ψ0⟩
∆E1,nr

, (3.5)
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where ∆E1,nr = E1 − Enr . The ground state Ψ0 is characterized by the radial number
nr = 1, thus the energy of the ground state is E1 =MBH.

1

2
⟨Ψ0|Q̂ij|Ψ⟩ = −λ2Eij. (3.6)

Here, λ2 represents the dimensional quadrupolar Love number. The dimensionless
Love number k2 is conventionally defined as k2 =

3
2
R−5λ2. From Eq. (3.5), we have

k2 = − 3

2R5

∑
nr>1,|m|<2

1

2

|⟨Ψ0|Q̂ij|nr, 2,m⟩|2

|∆E1,nr |
. (3.7)

Equation (3.7) establishes that, in general, a quantum mechanical object will possess
a nonzero quadrupolar Love number, which is dependent exclusively on the object’s
quantum state and its energy spectrum. The negative value of k2 is indicative of the fact
that a black hole’s (BH’s) energy increases as its radius expands.

The general formulae for higher-l electric and magnetic quantum Love tensors can
be derived by replicating the steps that led to Eq. (3.5). The expression for the electric
Love tensor is given by:

kEl = −
∑

nr>1,l,|m|≤l

1

R2l+1

(2l − 1)!!

2(l − 2)!

1

l!

|⟨Ψ0|Q̂(l)|nr, l,m⟩|2

∆E1,nr

(3.8)

kBl = −
∑

n>1,l,|m|≤l

1

R2l+1

(l + 1)(2l − 1)!!

6(l − 2)!l!

∣∣∣〈Ψ0

∣∣∣Ŝ(l)
∣∣∣nr, l,m

〉∣∣∣2
∆E1,nr

. (3.9)

3.1.1 ”Electric” quadrupolar Love number

The foundation for evaluating k2 is based on Eq. (3.7). The external quadrupole tidal
field aligns with the spherical harmonic Y20 due to the symmetry of the inspiral trajectory.
The induced quadrupole mirrors this angular dependency, leading to the equation:

k2 = − 3

4R5

∑
nr

|⟨Ψ0|Q̂|nr, 2, 0⟩|2

|∆E1,nr |
. (3.10)

To calculate k2, the discrete quantum spectrum of the QBH must be determined. Ideally,
this requires solving quantum gravity equations to find the BH’s spectrum. In some
models, this is achievable, and is indeed the purpose of the thesis to do so, particularly
in a model with energy spectrum as that of the hydrogen atom. In the case examined by
the paper discussed in this chapter however, the corresponding classical wave equation is
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solved, followed by the application of the Bohr correspondence principle. Initial estimates
of k2 are based on scaling arguments, which are then substantiated by calculations.

The energy spectrum of macroscopic QBH excitations, in a coherent state, follows
the classical relationship |∆E1,nr | ∼ MBHω

2
nr
R2, where ωnr is the frequency of mode

|nr, 2, 0⟩. The scaling of the quadrupole operator’s matrix element is |⟨Ψ0|Q̂|nr, 2, 0⟩| ∼
|∆E1,nr |R2 ∼MBHω

2
nr
R4. Hence, each term in the sum in Eq. (3.10) scales as:

1

R5

|⟨Ψ0|Q̂|nr, 2, 0⟩|2

|∆E1,nr |
∼ |∆E1,nr |

R
∼ |∆E1,nr |

MBH

∼ ω2
nr
R2. (3.11)

This semiclassical approach is validated by observing that the excited energy levels’ occu-
pation numbers N scale as Nℏωnr ∼MBHω

2
nr
R2, so N ∼ (ωnrR)SBH ≫ 1. Furthermore,

both scaling arguments and explicit computations indicate that the contributions to k2
in Eq. (3.10) from states beyond the first excited state are minor, allowing for an ap-
proximation of the sum over nr by the first excited state’s contribution. This pattern is
typical in many quantum systems.

Moreover, since all terms in the sum are positive, the approximate value of the
magnitude of k2 tends to be an underestimate. It is then reasonable to approximate the
sum by considering only the contribution from the first excited state. Combining the
two scaling arguments, we arrive at an estimate for k2:

k2 = − 3

4R5

∣∣∣〈Ψ0|Q̂|2, 2, 0
〉∣∣∣2

|∆E1,2|
∼ −|∆E1,2|

MBH

∼ −ω2
2R

2 (3.12)

We now shift our focus to a detailed evaluation of k2, aiming to determine the nu-
merical factor of order unity in Eq. (3.12). It’s important to note that the estimate in
Eq. (3.12) holds true regardless of the specific model used. The model we examine here
is chosen for its simplicity and the ability to analytically calculate numerical factors.
This model will later be used to parameterize the Love number in terms of the single
parameter g2 and assess its detectability based on the estimate in Eq. (3.12).

Given the strong coupling of gravity within a black hole’s (BH’s) interior, a semi-
classical geometric description using curved spacetime is not feasible. Instead, gravity is
represented as an inertial force in flat space, an approach permitted by Einstein’s equiv-
alence principle. The specific nature of the interior excitations is deemed irrelevant,
as is the distinction between the two gravitational descriptions. The key factor is that
these excitations are macroscopic, horizon-scale, justifying the application of the Bohr
principle.

The internal structure of the quantum black hole (QBH) can be conceptually viewed
as a fluid supporting pulsating modes, similar to those in a relativistic star. These fluid
modes coexist with the standard spacetime modes of the exterior. The perturbations
are categorized into two types: fluid modes and spacetime modes. Due to their low
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sound velocity and the QBH’s compactness, the fluid modes are effectively isolated from
spacetime perturbations, as per the Cowling approximation.

For boundary conditions (BCs), spherical symmetry dictates fully reflecting BCs at
the QBH’s center. The QBH also possesses an outer surface that mimics a classical BH
horizon in the classical limit. Here, the internal fluid modes are decoupled from the exte-
rior, leading to the conclusion that a perfectly reflecting outer surface is the appropriate
BC. In scenarios where quantum effects are minimal, the outer surface becomes partially
transparent, leading to imperfect reflection. However, quantitative analysis shows that
both BCs yield almost identical spectra. Given the simplicity of analysis with the former
BC, it is chosen for the outer surface to determine the spectrum of normal modes, rather
than quasinormal modes.

We deduce that the classical equation to be solved is the Laplace equation, ∇⃗2Ψ2(r) =
0, with the general boundary condition (BC) Ψ2|r=0 = 0, and Ψ0,2|r=R = 0. The solution
to the Laplace equation is given by

Ψ2(r) = N2j2(qr)Y20(θ, ϕ), (3.13)

where j2 is the spherical Bessel function, Y20 is the (real) spherical harmonic function with
l = 2, m = 0, and N2 is a normalization factor, which will be determined subsequently.

The normalization factor will be ascertained later. In this scenario, the boundary
condition (BC) permits only discrete values for the magnitude of the wave number q,

J ′
l (qR) = 0, (3.14)

which is closely approximated by

qnr =

(
nr −

1

2

)
π

R
, nr = 3, 4, . . . , (3.15)

except for nr = 2, where the value is slightly lower,

q2 = 1.06
π

R
. (3.16)

Condition (3.15) can also be interpreted as a reflection of the Bohr quantization condition
in the corresponding quantum black hole (QBH). Replacing P with ℏq, we obtain

PR = ℏπ
(
nr −

1

2

)
. (3.17)

Our next step is to compute |∆E1,2| and |⟨Ψ0|Q̂|Ψ2, 2, 0⟩| using the solution Ψ2,2 =
N2,2j2(q2r)Y2,0 with the aforementioned wave number. Initially, considering the classical
waves are non-relativistic,

|∆E1,2| =
1

2
MBHω

2
0R

2 =
1

2
MBHq

2
2R

2. (3.18)
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Here, we introduce a parametrized dispersion relation ω2
0 = g2q22, where g

2 ≪ 1 is the
key parameter determining the energy of the first excited level in our model.

To assess the expectation value |⟨Ψ0|Q̂|Ψ2, 2, 0⟩| as in Eq. (3.12), a more detailed
calculation is required. Initially, we need the general expression for the excitation energies
for nr ≥ 3, The excitation energy for each mode is given by

|∆E1,nr | =
1

2
g2MBHπ

2

(
nr −

1

2

)2

, (3.19)

where we have incorporated any additional nr-independent factors into g
2 and assumed

that the dispersion relation holds true for all modes. The excitation energy must be
significantly smaller than the BH mass, |∆E1,nr | ≪MBH.

To continue, the classical counterpart of the matrix element |⟨Ψ0|Q̂|2, 2, 0⟩| is repre-
sented by

|⟨Ψ0|Q̂|2, 2, 0⟩| ↔
∫
r2dr dΩ2∆ρ2,2(r) r

2Y20Ψ2,2. (3.20)

The evaluation of this quantity entails the computation of the effective energy density
within the first excited state, ∆p2(r), by means of the following comparative analysis.
Initially,

|∆E1,n| =
∫
r2dr∆p2(r). (3.21)

Conversely, when considering the lowest order in g2, the energy |∆E1,n| shows a direct
proportionality to ω2

n,

|∆E1,nr | =
∫
r2drdΩ2 |Ψ2,nr |

2 ω2
nr

= |N2,nr |
2

∫ R

0

r2drj22

(
ωnr

g
r

)
ω2
nr
, (3.22)

where the authors have utilized specified equations and completed the angular integra-
tion. In comparing the two stated forms of |∆E1,n|, it is determined that

∆ρ(r)2,nr(r) =
|∆E1,nr |
I2,nr

j22

(
ωnr

g
r

)
(3.23)

and

|N2,nr |
2 =

|∆E1,nr |
ω2
nr
I2,nr

(3.24)

where

I2,nr =
R3

π3
(
nr − 1

2

)3 ∫ π(nr− 1
2)

0

y2dyj22(y) (3.25)
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The substitution of the prior equation into a preceding expression yields:∣∣∣〈Ψ0|Q̂|nr, 2, 0
〉∣∣∣↔ ∫

r2drdΩ2
|∆E1,nr |
I2,nr

j32

(
ωnr

g
r

)
(Y20)

2

= |∆E1,nr | N2,nr

I4,nr

I2,nr

,

(3.26)

where

I4,nr =
R5

π5
(
nr − 1

2

)5 ∫ π(nr− 1
2)

0

dyy4j32(y) (3.27)

In the analysis that follows, the sum of terms with n ≥ 3 is derived from a previous
equation as ∑

nr=3

|∆E1,nr |
2

ω2
nr

I24,nr

I32,nr

=
1

4
g2M2

BHR
3
∑
nr=3

π

(
nr −

1

2

)(
Ĩ4,nr

)2 (
Ĩ2,nr

)−3

,

(3.28)

where the energy spectrum and the integral I2,n =
∫ R

0
y2dyj20(y), which linearly scales

with π(n− 1
2
), and I4,n, approximately constant, are considered. The authors note that

even and odd powers of the spherical Bessel function scale differently, resulting in a sum
scale of 1/(n − 1

2
)2, where the terms associated with odd n are markedly smaller than

those with even n. The dominant term is for n = 2, and the subsequent significant term
is for n = 4, which is roughly one-fifth the magnitude of the former.

With the known values of |∆E1,2| and
∣∣∣〈Ψ0|Q̂|2, 2, 0

〉∣∣∣, their substitution into an

earlier equation yields

k2 = − 3

16

1

q2R

M2
BH

R2

J̃2
4

J̃3
2

ω2
2R

2

= − 3

16
q2R

M2
BH

R2

J̃2
4

J̃3
2

g2,

(3.29)

Taking into account analytically evaluated integrals j2 and j4, and by setting MBH/R =
1/2, the derived final results are

k2 = −0.09g2R2 = −0.18
|∆E1,2|
MBH

= −0.09g2. (3.30)

Proceeding with the anticipated scaling of k2 as ω2
2R

2, the computed k2 value are
to be compared to those characterizing other compact objects. It is observed that for
neutron stars, k2 is not only positive but also significantly greater in magnitude than
the computed value. In the context of exotic UCOs, previous studies have indicated a
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universal logarithmic dependence. These studies posited modifications at the UCO outer
surface, R = 2M(1 + ϵ), leading to the conclusion that k2 ∼ 1/| ln ϵ| and is negative.
Furthermore, the real part of the frequency for spacetime modes associated with UCOs,
specifically for the n = 2 mode, is ω2,UCO ∼ 1/| ln ϵ|. Within the framework of the Black
Hole area quantization model, the frequency ωn is defined as αn/16πR, with α being a
dimensionless coefficient, typically of order unity. Applying the semiclassical analysis, it
is found that

k2 ≈
3

16

( α
8π

)2
. (3.31)
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Chapter 4

The Hydrogen Model of the Black
Hole

In this chapter we will follow the work of professor Casadio Roberto in ”A quantum
bound on compactness” [5] showing a model of the interior of a black hole consisting
of dust particles, this model shares the same energy level structure as the hydrogen
atom making it a reasonable candidate for the further computation of the ”electric”
quadrupolar Love number discussed earlier, that is, it provides a quantum theory of the
energy spectrum for a direct computation of the quadrupolar Love number instead of
relying on the Bohr correspondence principle. We will modify the model by adding an
angular component to it making it eligible for computing the k2 Love number with the
formula presented earlier.

4.0.1 A brief overview on minisuperspaces

Minisuperspace is a concept in quantum cosmology that simplifies the study of the uni-
verse’s structure at a quantum level. In this context, the Friedman-Lemâıtre metric, a
solution to Einstein’s field equations in a homogeneous and isotropic universe, is often
used as an example. The metric is given by:

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

]
, (4.1)

where a(t) is the scale factor and k represents the curvature of space. This approach
reduces the infinite degrees of freedom in the full superspace to a finite, manageable
number by focusing on a subset of metrics and matter fields configurations. This sim-
plification makes the complex Wheeler-DeWitt equation, which describes the quantum
state of the entire universe, more tractable [11, 12]. The minisuperspace models often
consider only homogeneous and isotropic metrics, thus ignoring spatial inhomogeneities
and anisotropies, which are essential in the early universe but can be neglected at larger
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scales. The idea is to capture the most significant features of the universe’s quantum
behavior while avoiding the computational infeasibility of a full quantum gravity treat-
ment. Minisuperspace models have been instrumental in exploring various aspects of
quantum cosmology, such as singularity resolution, quantum potentials, and the early
universe dynamics [13, 14].

4.0.2 Hydrogen model for gravitational collapse

The concept that quantum gravity might address the singularity predicted by General
Relativity during gravitational collapse has been frequently discussed. This analysis
examines a basic quantum model of a dust ball in gravitational collapse. Under these
conditions, where gravity is the only force acting on the dust, the dust ball’s areal radius
R follows a radial geodesic in the external Schwarzschild spacetime. This spacetime is
represented by the metric

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2dΩ2, (4.2)

where M stands for the Arnowitt–Deser–Misner (ADM) mass of the dust.
Drawing an analogy with quantum mechanics in a hydrogen atom, where the elec-

tron’s position relative to the nucleus is quantized, this study quantizes the radius R
of the dust ball. Hence, the radial geodesic equation evolves into a time-independent
Schrödinger equation, similar to a particle in a Newtonian potential. Notably, quan-
tum states with widths much smaller than the gravitational radius RH = 2GNM are
considered physically implausible. This parallels how quantum mechanics resolves the
classical ultraviolet (UV) catastrophe in a hydrogen atom. However, this model distinc-
tively introduces a lower bound on the energy spectrum determined by the mass M , a
feature absent in the Newtonian model. This suggests that the quantum properties of
black holes as extended entities might be due to the non-linear nature of gravitational
interactions, as depicted in General Relativity.

Let’s now focus on a self-gravitating dust ball characterized by radius R and ADM
mass M . Within General Relativity’s framework, the dust ball’s surface is constrained
to follow a radial geodesic in the Schwarzschild spacetime. Its areal radius, denoted as
R = R(τ), must conform to the equation(

dR

dτ

)2

+ 1− 2GNM

R
=

E2

M2
, (4.3)

where τ represents the proper time and E < M denotes the conserved energy of a
bounded trajectory. This equation can be rephrased as

H ≡ P 2

2M
− GNM

2

R
=
M

2

(
E2

M2
− 1

)
≡ E, (4.4)
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with P = M dR
dτ

being the momentum. Eq. (4.4) is akin to the energy conservation
equation in Newtonian physics, serving as the mass-shell condition for the dust ball and
reflecting the Hamiltonian constraint in General Relativity for dust.

A simple quantization method can be applied to the above equation, introducing the
momentum operator P̂ = −iℏ ∂

∂R
. This implies that the ball’s radius R is subject to an

uncertainty principle, derived from the canonical commutator, stated as

[R̂, P̂ ] = iℏ ⇒ ∆R∆P ≳ ℏ = ℓpmp (4.5)

where ∆O is defined as

√
⟨Ô2⟩ − ⟨Ô⟩2 for Ô = R̂ or P̂ . Expectation values are de-

termined over wavefunctions ψ = ψ(R) that fulfill Ĥψ = Eψ, the time-independent
Schrödinger equation for a gravitational (Newtonian) atom. The energy spectrum fea-
tures eigenstates

Ψn ≃

√
M9

πn5ℓ3pm
9
p

e
− M3r

nm3ℓpL1
n−1

(
2M3r

nm3
pℓp

)
. (4.6)

where n ≥ 1 is an integer, and Ln−1
1 are the generalized Laguerre polynomials (for zero

angular momentum). The corresponding eigenvalues are

En
M

≃ −G
2
NM

4

2ℏ2n2
= − 1

2n2

(
M

mp

)4

=
1

2

(
E2

n

M2
− 1

)
(4.7)

and it is deduced that

Rn ≡ ⟨Ψn|R|Ψn⟩ ≃
ℏ2n2

GNM3
= n2ℓp

(mp

M

)3
. (4.8)

Initially, it might seem that the spectrum includes states ψn with infinitesimally narrow
widths, particularly for macroscopic objects like stars, where M ≫ mp. The ground
state R1 could be approximated by

ℓp (mp/M)3 ≪ ℓp

The ground state energy density is of the order

M/R3
1 ∼

(
M10/m9

p

)
ℓ−3
p

, which, while extremely high, does not reach the infinite energy density characteristic
of classical singularities.

When Equation (4.7) is evaluated, it gives a bound:

0 ≤ E2
n

M2
≈ 1− 1

n2

(
M

mp

)4

(4.9)
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which is essentially equivalent to

E ≥ −M
2

(4.10)

as per Equation (4.4). From this, it is deduced that acceptable quantum states,
denoted by n, must fulfill the condition

n ≥ NM ≈
(
M

mp

)2

(4.11)

This leads to the conclusion that

Rn ≥ RNM ≈ RH (4.12)

This boundary condition implies the upper bound

GNM

Rn

≲ 1 (4.13)

highlighting a significant constraint on the system.
Furthermore, the lower bounds for the Hamiltonian eigenvalues are established as

En ≥ ENM
≈ −M

2
(4.14)

which corresponds in turn to
E2

n ≥ E2
NM

≈ 0 (4.15)

In the context of a semiclassical state representing a collapsing dust ball, such a state
must be expressed as a superposition of states n with n ≥ NM . Given the quantum
bound mentioned earlier (Eq. 4.13), this implies that for any dust ball, the compactness
parameter GNM

R
should be approximately 1 or less. It’s crucial to emphasize that this

result is an approximation, valid up to a factor of the order of one. More precise estimates
might be possible with more comprehensive and realistic models, though it seems unlikely
that these refinements would significantly reduce the minimum size from a fraction of
RH to the Planck length scale ℓp.

The current model, termed the ’minisuperspace’ description, only incorporates the
observable R. Therefore, from the wavefunction ψ = ψ(R), one can deduce information
such as the expectation value of R and the probability that the dust ball resides within
its gravitational radius, expressed as

P (R ≤ RH) ≡
∫ RH

0

P (R)dR = 4π

∫ RH

0

|ψ(R)|2R2dR, (4.16)

This probability can be interpreted as the likelihood of the dust ball being a black
hole, assuming the mass M is a fixed parameter.
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Specifically, for the ground state, the wavefunction is given by

Ψ = ΨNM
≃
√

mp

πℓ3pM
e
− Mr

mpℓpL1
M2

m2
p
−1

(
2Mr

mpℓp

)
(4.17)

This wavefunction is crucial for understanding the quantum mechanical properties of the
self-gravitating dust ball, particularly in the context of gravitational collapse and black
hole formation.

For small values of the ADM mass M , significantly less than the Planck mass mp,
the probability density P exhibits a pronounced peak just below the gravitational radius
RH .

Figure 4.1: Illustration of the probability density P = P (R). Panel (a) shows the
ground state (n = NM = M2

m2
p
) with solid and dashed lines indicating the regions inside

and outside the gravitational radius RH = 2GNM , respectively. Panel (b) depicts the
first excited state (n = NM + 1) represented by a dotted line. From [5].

where PNM
(R ≤ RH) closely approaches unity:

PNM
(R ≤ RH) ≈ 1. (4.18)

Furthermore, the peak’s width is inversely proportional to the mass M :

∆RNM
∼ RNM

NM

∼ ℓp
mp

M
(4.19)
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This narrowness in ∆RNM
suggests that the radius for a significantly massive dust

ball behaves analogously to a classical radius.
The first excited state tends to converge towards the ground state as M increases,

implying that the probability Pn(R ≤ RH) approaches unity for states where n ≥ NM .
This suggests that sizable astrophysical black holes of a given mass M might not be
necessarily in the ground state n = NM . In particular, when n ≥ NM , the increment of
the Hamiltonian H, as defined earlier, can be approximated as:

δH ≡ |En+1 − En| ≃ mp
mp

M
(4.20)

Therefore δH ∼ mp (∆RNM
/ℓp) ≪ mp for objects with M ≫ mp

Moreover the energy differential δE between adjacent quantum states is on the order
of the Planck mass:

δE ≈ mp. (4.21)

In this investigation, the General Relativistic approach to gravity is shown to establish
an upper limit on the compactness of a quantum theoretical dust ball. This bound
is a consequence of the nonlinearity inherent in General Relativity, distinct from the
Newtonian theory where the entire spectrum of states n ≥ 1 would be considered valid.
The compactness limit thus emerges from these relativistic considerations.

In the realm of quantum mechanics, when applied to gravitational scenarios, con-
clusions similar to those of General Relativity are reached. Particularly noteworthy are
findings regarding the probability of a black hole’s formation and the uncertainty in its
radius. The ground state of a self-gravitating object, modeled as an extended many-body
system, has a significant occupation number, which can lead to thermal population of
the first excited states, reminiscent of Hawking radiation.

This approach also aligns with the scaling relations used in the corpuscular description
of black holes. The state of minimum energy correlates with a principal quantum number
indicative of the number of soft gravitons in a coherent state, which in turn is linked to
the quantization of the black hole’s ADM mass. The typical energy of particles emitted
during Hawking evaporation is related to the depletion of the quantum state of gravity,
as described in this corpuscular picture.

Further, the wavefunction ψNM
= ψNG

is identified as the ”non-perturbative ground
state” for massive self-gravitating objects, closely resembling a classical black hole, this
is consistent with the idea that a static gravitational field is entirely determined by its
source and lacks independent degrees of freedom in a static system. The significant de-
viation of the quantum state of a macroscopic self-gravitating system from the quantum
gravity vacuum state is quantitatively represented by the relationship NM ∼ NG ∼M2.
The emergence of this ground state when the ADM energy follows (4.11) indicates a
form of classicalization, contributing to the ultraviolet self-completeness of gravity.

While the quantum states corresponding to classical singularities appear to be ab-
sent from the spectrum, determining a more precise maximum compactness value is
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crucial for understanding quantum deviations from the Schwarzschild geometry. An ex-
plicit description of the exterior spacetime and its interaction with signals detectable by
our instruments is needed for practical applications. The potential quantum deviations
caused by the finite size of the self-gravitating system suggest a need for a more unified
description of the quantum states of collapsing objects and the quantum gravitational
potential.

4.0.3 Perturbed solution

we will slightly modify the model previously presented by generalizing its solution to
a rotating model containing spherical harmonics by means of an approximation, we
will infact renormalize the wavefunction presented previously making it eligible for the
computation of the quadrupolar Love number discussed in the chapter ”Quantum Love
number”.

We start with the wave function ψn,l(r, θ) given by:

ψn,l(r, θ) =

√
(2M3/(nm3

plp))
3(n− l − 1)!

2n(n+ l)!

(
2rM3

nm3
plp

)l

exp

(
− M3r

nm3
plp

)
L
(2l+1)
n−l−1

(
2rM3

nm3
plp

)
Yl,0(θ, ϕ)

(4.22)
This expression can be obtained by normalizing the ansatz:

ψ̃n,l(r, θ) ∼
(
2rM3

nm3
plp

)l

exp

(
− M3r

nm3
plp

)
L
(2l+1)
n−l−1

(
2rM3

nm3
plp

)
Yl,0(θ, ϕ) (4.23)

what was done was adding a term (equal to the argument of the Laguerre as it
happens for the hydrogen atom solution) elevated to the quantum number l, it can
indeed be shown that by taking l=0 the results coincide how it is expected to happen.

Ψn ≃

√
M9

πn5ℓ3pm
9
p

e
− M3r

nm3
pℓpL1

n−1

(
2M3r

nm3
pℓp

)
(4.24)

The matrix element we are interested in calculating is:

⟨ψn,0,0|Q̂|ψn′,2,m⟩ =
∫
R∗

n,0(r)Rn′,2(r)r
4dr

∫
Y ∗
0,0(θ, ϕ)Y2,m(θ, ϕ)Y2,m(θ, ϕ) sin(θ)dθdϕ.

(4.25)
In light of the orthogonality relations for spherical harmonics, as expressed by the equa-
tion ∫ 2π

0

∫ π

0

Y m
ℓ (θ, ϕ)Y m′∗

ℓ′ (θ, ϕ) sin θ dθ dϕ = δℓℓ′δmm′ , (4.26)

it becomes necessary to define Q̂ = r2Y20(θ, ϕ). This choice ensures that Q̂ is its own
complex conjugate, a condition stemming from the non-existence of an eimϕ component,
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and guarantees a non-zero integral when involving spherical harmonics. This formulation
simplifies the problem to evaluating ⟨n, 0|r2|n′, 2⟩.

To compute the matrix element ⟨n, 0|r2|n′, 2⟩, we focus on the radial part of the wave

function. By substituting t = M3r
m3

plp
and dr =

m3
plp

M3 dt, we arrive at the integral:

⟨n, 0|r2|n′, 2⟩ = C

∫ ∞

0

t6e−t( 1
n
+ 1

n′ )L
(1)
n−1

(
2t

n

)
L
(5)
n′−3

(
2t

n′

)
dt (4.27)

where C is given by:

C =

(
m3

plp

M3

)5(
2

n′

)2(
2M3

m3
plp

)3
√

1

n3n′3
(n− 1)!(n′ − 3)!

4nn′n!(n′ + 2)!
(4.28)

Computing the integral (computation method and code in the appendix) yields

k2 = −4.77285410× 10311p4mp16

M17R5
(4.29)

The computation is done assuming a ground state with n reasonably high although
not realistically high for computational reasons.
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Chapter 5

Conclusions

In this thesis, we explored the quantum dynamics of black holes, with a particular focus
on paving the way for further exploration through the lens of the quadrupolar Love
number. Drawing upon the foundational theories and methodologies presented in the
works of Ram Brustein and Yotam Sherf, we adopted a perturbative approach rooted
in quantum mechanics. This approach was further refined by incorporating a complete
quantum model for the energy spectrum of quantum black holes (QBHs), inspired by
the well-studied hydrogen atom. This choice was motivated by the use of this model in
[5] but also by its simplicity and the depth of existing research on its dynamics, allowing
for an elegant application to the quantum description of black holes.

The formulation developed and exposed in this thesis for calculating the Love number
has yielded a formula that enables, at least theoretically, the analytical determination of
this critical quantity. The computational challenges posed by the high principal quantum
number inherent in the model did not deter us from achieving a reasonable estimation
of k2 by considering a reasonably high number for the ground state. Consistent with
findings from the literature, our results also indicated that the Love number for QBHs is
negative, reinforcing the notion that quantum mechanical effects play a significant role
in the physical characteristics of black holes.

This work considered the implications of existing research, particularly the insightful
revelations about QBHs. We noted that unlike classical black holes, which adhere to
the no-hair theorem and exhibit vanishing Love numbers, QBHs manifest non-zero Love
numbers. This distinction underscores a fundamental quantum mechanical influence on
the black hole’s response to external perturbations, offering a window into their internal
dynamics, moreover, the methodological advancements allowing for the Love number’s
calculation based on partial knowledge of the internal spectrum represent a significant
leap forward, providing a streamlined approach to probing the quantum aspects of black
holes.

The exploration however acknowledged the inherent limitations of its methodologi-
cal choices, especially the approximation made in determining the wavefunction. The
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reliance on perturbed solutions based on the minisuperspace model discussed based on
the Schwartzschild metric, while practical, suggests a simplified view that might miss
the intricacies captured by a more thorough treatment, such as one that incorporates
the effects of rotation from the beginning, for example using a model based on the Kerr
metric.

In synthesizing the findings from the articles reviewed and the research conducted,
this thesis contributes to a deeper understanding of black holes from both a quantum
mechanical and gravitational perspective. The negative Love numbers obtained for QBHs
not only challenge traditional views established by the no-hair theorem but also highlight
the nuanced interplay between quantum mechanics and general relativity in describing
these astrophysical objects. The realization that Love numbers can serve as a diagnostic
tool for differentiating between classical and quantum black holes opens new avenues for
future experimental and theoretical work, particularly in the context of detecting these
effects through forthcoming astronomical observations such as LISA.

Looking forward, the thesis underscores the need for and potential of developing
more sophisticated models that can more accurately capture the spectrum of QBHs.
Such advancements are crucial for unraveling the quantum gravitational dynamics of
black holes.
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Appendix A

The constants for the integral are identified as follows:

• α = 7

• a = 2
n

• b = 2
n′

• p = 1
n′ +

1
n

• m = n− 1

• n = n′ − 3

• λ = 1

• β = 5

Using the integral formula http://functions.wolfram.com/05.08.21.0009.01 , we sub-
stitute these constants to obtain an expression involving Pochhammer symbols:∫ ∞

0

t(α−1)LaguerreL[m,λ, at]LaguerreL[n, β, bt]

e(pt)
dt

=
(Γ[α](λ+ 1)m(β + 1)n)

(pα(m!n!))

×
m∑
j=0

[
((−m)j(α)j)

((λ+ 1)jj!)

(
a

p

)j

×
n∑

k=0

[
((−n)k(α + j)k)

((β + 1)kk!)

(
b

p

)k
]]

(A.1)

Where the Pochhammer symbol is defined as:
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(x)n ≡ Γ(x+ n)

Γ(x)
= x(x+ 1) · · · (x+ n− 1) (A.2)

Substituting the identified constants (α = 7, a = 2
n
, b = 2

n′ , p = 1
n′ +

1
n
, m = n − 1,

n = n′ − 3, λ = 1, β = 5), the expression becomes:

=
(Γ[7](2)n−1(6)n′−3)((

1
n′ +

1
n

)7
((n− 1)!(n′ − 3)!)

)
×

n−1∑
j=0

[
((1− n)j(7)j)

((2)jj!)

( 2
n

1
n′ +

1
n

)j

×
n′−3∑
k=0

[
((3− n′)k(7 + j)k)

((6)kk!)

( 2
n′

1
n′ +

1
n

)k
]] (A.3)

Further simplifying the prefactor of the expression, we obtain:

6 ·
(

nn′

n+ n′

)7

· n · n′ · (n′2 − 1) · (n′2 − 4) (A.4)

The remaining part of the expression, involving the sums, is then:

n−1∑
j=0

[
((1− n)j(7)j)

((2)jj!)

( 2
n

1
n′ +

1
n

)j

×
n′−3∑
k=0

[
((3− n′)k(7 + j)k)

((6)kk!)

( 2
n′

1
n′ +

1
n

)k
]] (A.5)

This formula provides an algebraic result for the integral of interest, providing there-
fore in principle an analytic result for the computation of the Love number k2, and makes
it possible to achieve in practice with Mathematica.

What is missing is the expression of the energy eigenvalues, which can be taken
directly from ”A quantum bound on compactness” since the energy eigenvalues for an
hydrogen atom solution do not depend on angular quantum numbers:

En
M

≃ −G
2
NM

4

2ℏ2n2
= − 1

2n2

(
M

mp

)4

=
1

2

(
E2

n

M2
− 1

)
(A.6)

We also have the condition:

0 ≤ E2
n

M2
≃ 1− 1

n2

(
M

mp

)4

(A.7)

which gives:
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n ≥ NM ≃
(
M

mp

)2

(A.8)

This gives then an idea of the order of magnitude of n, further for limitation of
compute power we will assume a reasonably high value for n to make a computation for
the k2 Love number instead of using directly the formula that relates it to the mass of
the black hole.

Here is a computation of the k2 Love number for n = 1000 (assumed ground state),
n′ = 1001, n′ = 1002, n′ = 1003

using the formula:

k2 = − 3

4R5

∑
nr

∣∣∣〈Ψ0|Q̂|nr, 2, 0
〉∣∣∣2

|∆E1,nr |
(A.9)

The sum will be performed by summing up the terms obtained by computing the
argument of the sum for the respective n’ values keeping n constant since considered
ground state, an additional 1

4π
was added to the multiplying constant to account for the

integral of the angular part of the wavefunction.
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In [48] := (*Constants*)n = 1000;

mp = Symbol["mp"]; (*Keeping mp,lp,and M as symbolic variables*)

lp = Symbol["lp"];

M = Symbol["M"];

R = Symbol["R"]; (*R is also a symbolic variable*)

(*Function to compute finalResult and deltaE for a given nPrime*)

computeResults[nPrime_] := Module[{const, firstPart, secondPart, finalResult, deltaE},

(*Computation of const*)const = (mp^3 * lp / M^3)^5 *

(2 / nPrime)^2 * (2 * M^3 / (mp^3 * lp))^3 * Sqrt[1 / (n^3 * nPrime^3) *

((n - 1)! * (nPrime - 3)!) / (4 * n * nPrime * n! * (nPrime + 2)!)];

(*First Part of the Expression*)firstPart =

6 * (n * nPrime / (n + nPrime))^7 * n * nPrime * (nPrime^2 - 1) * (nPrime^2 - 4);

(*Second Part of the Expression*)

secondPart = Sum[((Pochhammer[1 - n, j] * Pochhammer[7, j]) / (Pochhammer[2, j] * j!)) *

((2 / n) / (1 / nPrime + 1 / n))^j *

Sum[((Pochhammer[3 - nPrime, k] * Pochhammer[7 + j, k]) / (Pochhammer[6, k] * k!)) *

((2 / nPrime) / (1 / nPrime + 1 / n))^k, {k, 0, nPrime - 3}], {j, 0, n - 1}];

(*Final Result*)finalResult = Simplify[const * firstPart * secondPart];

(*Calculation of deltaE*)

deltaE = Abs[1 / (2 * n^2) - 1 / (2 * nPrime^2)] * (M^5 / mp^4);

(*Return both finalResult and deltaE*){finalResult, deltaE}];

(*Computing results for nPrime=1001,1002,1003*)

{finalResult1, deltaE1} = N[computeResults[1001], 10];

{finalResult2, deltaE2} = N[computeResults[1002], 10];

{finalResult3, deltaE3} = N[computeResults[1003], 10];

(*Computing k2*)

k2 = -3 / (4 * R^5) * 1 / (4 * Pi) * ((finalResult1^2) / deltaE1 +

(finalResult2^2) / deltaE2 + (finalResult3^2) / deltaE3);

(*Output k2 in a readable format*)

N[k2, 10]

Out[58]=

-
4.77285410 × 1031 lp4 mp16

M17 R5
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