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Introduction

This thesis, titled ”Machine Learning Techniques for Analysis of Biochemical Data,” repre-
sents a preliminary research step within a larger project aiming to quantify lactate in blood
samples using non-invasive sensors integrated into diagnostic machinery used in extracorpo-
real flows to support artificial organs. This approach suggests the use of technologies such as
optical spectral analysis, NIR, and MIR, deemed likely to succeed in this context.
The primary objective of this research is to address the long-term challenge of monitoring
lactate concentration in the blood. Initially, predictive multivariate analysis systems, a subset
of Machine Learning that does not use neural networks, will be tested on spectra acquired
through a spectrophotometer. This approach, specifically designed for quantitative biological
analysis, focuses on the accurate measurement of lactate, even in the presence of disturbance
variables. Creating a Machine Learning model is a crucial tool to achieve the goal of monitor-
ing lactate concentration in the blood over the long term, providing precise predictions based
on biochemical spectra acquired through the spectrophotometer.
Initially, the research explored the behavior of the main components present in the blood, con-
sidering their spectrum in the visible, NIR, and MIR ranges. A specific chapter was dedicated
to studying various blood components such as CO2, hemoglobin, and oxygen to understand
their behavior in the areas of interest.
Subsequently, Machine Learning techniques were further explored, ranging from Multiple
Linear Regression (MLR) to latent variable modeling, with a particular focus on Principal
Component Analysis (PCA), Principal Component Regression (PCR), and especially Partial
Least Squares (PLS). The latter was identified as crucial for the type of dataset addressed,
allowing the handling of the complexity of biochemical analyses.
The experimental phase is divided into two distinctive parts: the first focused on quantitative
analysis using dyes, and the second dedicated to exploring lactate concentrations in cell cul-
tures.
In the initial part of the experiment, samples containing Red Alizarin at various concentra-
tions were analyzed, dissolved in a water solution, resulting in a predictive model based on the
acquired spectra. The same approach was subsequently applied to samples containing Presto-
Blue. Later, a third experiment was conducted using samples with variable concentrations of
water, Alizarin, and PrestoBlue. This additional phase was designed to assess the model’s
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ability to handle complex mixtures of substances and verify its robustness in more realistic
scenarios. The analysis of the results from this third experiment contributed to consolidating
the model’s effectiveness in addressing more complex and heterogeneous situations.
Following that, the same Machine Learning technique was applied to identify lactate concen-
trations in cell cultures. The extension of the Machine Learning technique’s application to
biological samples represents a significant step in exploring its effectiveness in realistic con-
texts. Initially, a preliminary test was conducted with nine biological samples, followed by a
larger and more articulated experiment with 54 samples. This phase was designed to evaluate
the model’s ability to adapt to more complex samples, typical of real situations where sub-
stance concentrations can vary more dynamically and heterogeneously. This step serves as a
preliminary phase for subsequent experiments to be conducted on blood samples.
Both parts of the experiment contributed positively, highlighting the versatility and effective-
ness of the proposed model.
The complete set of these experimental phases provides a robust and fundamental foundation
for the future development of the project. It is crucial to emphasize that this thesis represents
only the beginning of a broader and more ambitious journey. The future goal is to develop
an advanced application capable of directly measuring lactate concentration in blood spectra.
This next step implies a more complex challenge and a more specific application of the model,
opening the way to new research frontiers and contributing significantly to the development
of innovative approaches in the field of biochemical analysis based on machine learning tech-
niques and spectroscopy.



Chapter 1

Fundamentals of Spectroscopy:
UV/Visible, Near Infrared (NIR), and
Mid Infrared (MIR)

1.1 General introduction

Spectroscopy is a fundamental discipline in many scientific fields, offering a detailed anal-
ysis of the interactions between light and matter. This chapter explores three fundamental
spectroscopic technologies: UV-Visible spectroscopy, Near-Infrared (NIR) spectroscopy, and
Mid-Infrared (MIR) spectroscopy. For our specific application, these three spectroscopic tech-
niques are of paramount importance. Each of these technologies possesses unique character-
istics and diverse applications, making them essential tools in various scientific disciplines.
UV-Visible spectroscopy is based on the measurement of the absorption or transmission of UV
or visible light by a sample. This technique provides valuable information about the compo-
sition of the sample and is widely used in areas such as quantitative analysis, pharmaceutical
research, and environmental monitoring.
NIR spectroscopy extends into the near-infrared range of the electromagnetic spectrum, of-
fering a detailed analysis of molecular vibrations. This technology is particularly useful for
the study of biomolecules such as DNA and proteins, in addition to finding applications in
environmental analysis and the characterization of nanostructured materials.
MIR spectroscopy, operating in the mid-infrared range, focuses on fundamental molecular vi-
brations, enabling precise identification of chemical functionalities in samples. Despite some
limitations, such as the need to prepare samples in the form of powders or thin films, MIR
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spectroscopy remains a powerful tool in chemistry, pharmaceuticals, and biological research.
This chapter will delve into the operating principles, key applications, and distinctive charac-
teristics of each of these spectroscopic technologies, highlighting their advantages and limi-
tations. The goal is to provide a comprehensive overview of spectroscopic technologies and
underscore their importance in various scientific fields.

1.2 Physical Principles of Spectroscopy

Light can be thought of as particles of energy moving through space, exhibiting wave-like
properties. This representation suggests that the energy associated with a beam of light is not
uniformly distributed along the electric and magnetic fields of the wave but is concentrated in
discrete packets known as photons. The duality that emerges indicates that light exhibits both
particle and wave behaviors.
Phenomena related to the propagation of light, such as interference, diffraction, and refraction,
find clearer explanations through the adoption of the wave theory of electromagnetic radiation.
However, to better understand how light interacts with matter in processes like absorption and
emission spectroscopy, it’s important to recognize that light behaves like particles. This du-
ality isn’t exclusive to light; even fundamental particles of matter, such as electrons, protons,
and neutrons, exhibit wave-like behaviors.
The wave properties of electromagnetic radiation are described in terms of frequency, wave-
length, and amplitude. Frequency (ν), typically measured in Hertz (Hz), is the number of
complete cycles of a wave passing through a given point in one second. It is the reciprocal
of the period (p), the time needed for successive wave maxima to pass through a fixed point.
Wavelength (λ) is the distance between successive maxima on any wave. Spectroscopic data
are sometimes reported in terms of frequency or reciprocal wavelengths in units of cm−1,
commonly encountered in IR spectroscopy.
The wavelength and frequency are related by the following equation:

νλ = c

where c is the speed of light in a vacuum. If, however, we consider a material medium, the
propagation speed (vi) of an electromagnetic wave in a specific medium ”i” can be calculated
using the formula:

vi = νλi
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where ν is the frequency of the wave, and λi is its length in the i-th material medium.
The frequency of an electromagnetic wave is intrinsically tied to the radiation source, remain-
ing constant along its path. However, the propagation speed can undergo slight variations
depending on the medium, causing proportional changes in the wavelength of the radiation.
The amplitude of the wave, indicative of the magnitude of the electric vector at the wave max-
ima, plays a crucial role in defining the radiant power and radiant intensity of a radiation beam
as they are proportional to the square of the amplitude of the associated waves. Electromag-
netic waves consist of oscillating magnetic and electric fields, in phase with each other and
perpendicular to the direction of wave propagation.

Wave Fronts, In-Phase Waves, and Interference in Electromagnetic Wave Propagation

The propagation of electromagnetic waves unveils interesting phenomena, including interfer-
ence, a crucial aspect for fully understanding the characteristics of light waves. To thoroughly
explore interference, it is necessary to adopt an unequivocal approach that embraces the wave
nature of light. From this perspective, fundamental concepts such as wave fronts, wave trains,
and rays emerge, playing an indispensable role in our comprehension of luminous phenomena.
However, to fully comprehend the complexity of interference, it is essential to also consider
the corpuscular nature of light, manifested through the existence of photons.
The propagation of electromagnetic waves is often described in terms of wave fronts or wave
trains. A wave front represents the locus of a set of points, all in phase, and can be visualized
as a concentric ring for a point source of light. When the observation is sufficiently far from
the source, wave fronts can also represent planes of light, making the curved surface appear
planar. The connection between consecutive wave fronts can be illustrated by connecting
maxima, minima, or both. A series of wave fronts, all in-phase, are referred to as a wave
train or long wave, and can also be represented by a series of light rays, which depict the
path of photons, thereby referencing the corpuscular nature of light.
This concept of in-phase waves is fundamental in interference, a phenomenon where two or
more overlapping waves generate a resulting wave with an amplitude determined by the al-
gebraic sum of the individual waves. Constructive interference occurs when the waves are in
phase, while destructive interference happens when they are out of phase by 180°. In spec-
troscopy, these notions are crucial for interpreting diffraction data and designing instruments
that involve the dispersion or selection of radiation, such as monochromators and interference
filters. Understanding the wave-particle duality of light, manifested in photons, contributes to
explaining luminous phenomena and provides a comprehensive approach to describing elec-
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tromagnetic waves.
The particulate interaction of light adds an intriguing layer to our scientific narrative. Pho-
tons, discrete packets of energy, exhibit wave behavior during their motion through space.
This wave-particle duality becomes evident in the equation linking the energy (E) of a photon
to the frequency (ν) of the associated wave:

E = h · ν

Here, E represents the energy of a photon, h is Planck’s constant, and ν is the frequency of the
associated wave. This equation underscores a crucial aspect: in monochromatic light—electromagnetic
radiation comprising waves with a single frequency and wavelength—all photons possess
equivalent energy. Furthermore, similar to how the frequency of a wave remains a constant
determined by the radiation source, the energy of associated photons remains invariant.
Delving into the brightness of monochromatic light, its characterization in terms of the partic-
ulate nature of light involves the interplay of photon flux and energy per photon. Photon flux
refers to the number of photons crossing a unit area perpendicular to the beam per unit time.
Consequently, altering the brightness of a monochromatic light beam necessitates a change in
photon flux. In spectroscopy, terms such as ”brightness” are typically avoided, and there is a
preference for using expressions like radiant power (P ) or radiant intensity (I) to denote the
quantity of radiant energy impacting a specific area per unit time.

Electromagnetic Spectrum

Spectroscopy, a powerful analytical technique, relies on the fundamental principles governing
the interaction between matter and electromagnetic radiation. This interaction occurs within
the broader framework of the electromagnetic spectrum, which encompasses a vast range of
wavelengths and frequencies.
The electromagnetic spectrum represents the set of all possible frequencies of electromagnetic
radiation. The entire spectrum is divided into different regions based on the wavelengths.
Looking at the image 1.1, we can see that the electromagnetic spectrum is characterised by
a wide range of wavelengths and frequencies, from high-energy gamma rays to the gentle
ripples of radio waves. For my research, Infrared radiation (IR) is of particular interest, as
well as UV/Visible radiation.
Infrared radiation (IR) is characterised by a wavelength longer than the visible range and
shorter than radio waves, i.e. a wavelength between 700 nm and 1 mm (band infrared).
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Figure 1.1: Electromagnetic spectrum

Infrared Radiation can be further subdivided into three categories:

• Near infrared (NIR), which includes electromagnetic radiation with wavelengths be-
tween 800− 2500nm (13000− 4000cm−1)

• Mid infrared (MIR), which includes electromagnetic radiation with wavelengths be-
tween 2500nm− 25µm (4000− 400cm−1)

• Far infrared (FIR), which includes electromagnetic radiation with wavelengths between
25− 500µm (400− 5cm−1)

NIR has the shortest wavelength with higher wave-numbers, while FIR has the longest wave-
length with lower wave-numbers.

Quantization of Energy Levels in Spectroscopy

The fundamental comprehension of spectroscopy hinges on the quantization of energy levels
within atoms and molecules. This quantization, arising from the wave-particle duality of mat-
ter, assigns distinct and discrete energy values to electronic, vibrational, and rotational states.
In atoms, electronic energy levels, depicted as orbits and subshells, govern the potential en-
ergy of electrons. Only specific energy levels are allowed for atomic electrons, resulting in a
series of quantized electronic states. The transitions between these states, triggered by the ab-
sorption or emission of photons, form the basis for electronic spectroscopy, providing insights
into the composition and structure of substances.
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Molecules, with their additional vibrational and rotational degrees of freedom, present a more
intricate energy landscape. Vibrational energy levels, associated with atomic motion within a
molecule, are quantized, contributing to the complexity of the potential energy diagram. Sim-
ilarly, rotational energy levels, representing the rotation of molecules around their centers of
gravity, introduce another layer of quantization. The energy differences between these levels,
analogous to the energy of specific photons, become pivotal in techniques such as microwave
spectroscopy.
The quantized nature of energy levels introduces the concept of spectroscopic fingerprints.
Each species possesses a unique set of energy spacings, allowing spectroscopists to identify
and characterize substances based on their distinct energy signatures. Techniques such as ab-
sorption and emission spectroscopy leverage these quantized energy transitions to unravel the
composition, structure, and behavior of matter.
Understanding the quantization of energy levels is fundamental for interpreting spectroscopic
data, guiding the design of experiments, and extracting meaningful information about the
intricate nature of atoms and molecules. As we embark on an in-depth exploration of spec-
troscopy principles, instrumentation, and applications, the elucidation of UV/Visible, NIR,
and MIR spectroscopy awaits, providing a comprehensive understanding of their underlying
physical principles and practical utility.

Energy-level transition

Understanding the interaction between electromagnetic radiation and matter entails a detailed
exploration of absorption and emission processes. These processes, regulated by the quantized
energy levels of atoms and molecules, give rise to distinct energy level transitions forming the
basis of spectroscopic analyses.
In the absorption process, atoms or molecules absorb photons, transitioning them from lower
energy states to more excited states. This discrete transition is quantitatively matched to the
energy content of the incident photons, resulting in characteristic absorption spectra. The ab-
sorptivity of a compound, a wavelength-dependent constant, defines the relationship between
concentration and measured absorbance.
Molecular transitions induced by absorption encompass electronic, vibrational, and rotational
changes, with simultaneous transitions contributing to broader peaks in spectra. The absorp-
tion spectrum becomes a fingerprint, revealing the relative absorptivity of photons with differ-
ent energies. On the other side, emission involves the release of energy in the form of photons
when excited molecules return to the ground state. The relaxation processes, often involving
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Figure 1.2: The absorption of energy in the form of electromagnetic radiation causes the transition from a lower
to a higher energy level. When the molecule returns to the fundamental energy level, it releases an amount
equivalent to the difference between the two energy levels.

collisions with other molecules, lead to the dissipation of excess energy as heat. In specific
cases, molecules emit photons through fluorescence or phosphorescence, providing additional
insights into their dynamics.
Fluorescence, a subset of emission, unfolds when molecules emit lower-energy, longer-wavelength
photons during vibrational relaxation. The emitted photons mirror the energy difference be-
tween the lowest vibrational level of the excited state and the ground state. This phenomenon
contributes to the broader peaks observed in fluorescence spectra.
Understanding these energy level transitions, both in absorption and emission, unravels the
dynamic behavior of atoms and molecules during spectroscopic analyses. The rapid relax-
ation processes, driven by the tendency to minimize internal energy, ensure that, under normal
conditions, the population of molecules in the ground state remains essentially unchanged.

Quantitative Absorption Spectroscopy and Lambert-Beer Law Through-
out the Spectrum

Quantitative absorption spectroscopy, grounded in the principles of the Lambert-Beer Law,
serves as a versatile analytical tool across the electromagnetic spectrum. The primary aim is
to determine the concentration of an analyte within a sample solution by quantifying the light
absorption during its traversal through the sample.
In practice, the sample solution is confined within an absorption cell and exposed to radia-
tion of specific wavelength. The comparison of the radiation passing through the sample to a
reference sample facilitates the estimation of analyte concentration. The fundamental process
involves the absorption of photons by the analyte, resulting in a decrease in radiant power as
the radiation passes through the solution.
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The relationship between incident and exiting beam powers finds expression in terms of trans-
mittance (T ) or absorbance (A). While transmittance intuitively represents the fraction of ab-
sorbed light, absorbance emerges as a more practical parameter directly proportional to the
concentration of the absorbing species. This relationship is articulated through Beer’s Law, a
cornerstone of quantitative spectroscopy:

A = ε · b · c

Here, A is absorbance, ε is the absorptivity (or molar absorption coefficient), b is the path-
length through the solution, and c is the concentration of the absorbing species. The signif-
icance of absorbance lies in its direct proportionality to concentration under suitable condi-
tions. The practical measurement of absorbance in a laboratory setting closely aligns with the

Figure 1.3: Attenuation of Radiation in an Absorbing Solution [35]

following formulation:

A = log

(
Psolvent

Panalyte solution

)
≈ log

(
P0

P

)
(1.1)

Here, Psolvent represents the radiant power of the beam exiting the cell containing the solvent
(blank), and Panalyte solution signifies the radiant power of the beam exiting the cell containing
the analyte solution. The ratio P0

P
encapsulates the essence of absorbance, emphasizing the

impact of the analyte on the transmitted radiation. This formulation enables a practical and
quantitative assessment of analyte concentration, providing valuable insights in various spec-
troscopic applications.
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1.3 UV/Visible Spectroscopy

UV/Visible spectroscopy plays a pivotal role in the field of analytical techniques, providing
valuable information about the absorption characteristics of atoms and molecules. This robust
spectroscopic method focuses on the interaction of matter with ultraviolet (UV) and visible
light, elucidating intricate details of molecular composition. The absorption and transmission
of light at specific wavelengths offer profound insights into the electronic structure of species,
facilitating the identification and quantification of substances. In this section, we examine the
fundamental principles and applications of UV/Visible spectroscopy, highlighting its signifi-
cance as a potent tool across various scientific disciplines.

1.3.1 Spectroscopic Principles and Common Methodologies for NIR, MIR,
and UV/Visible: From Calibration to Model Validation

Within the scope of our research, quantifying substance concentrations involves employing
chemometric models, emphasizing their application in spectroscopy. These are mathematical
models obtained using samples of the same product or class of products. The analysis of the
obtained data, particularly the process of finding a possible correlation between the spectrum’s
characteristics and the substance under study, takes a considerable amount of time. Once the
instrument’s spectrum has been plotted, a pre-processing procedure is carried out, in which,
if necessary, baseline subtractions are performed to reduce the effect of substances present
in the sample but not of interest for our investigations. However, it’s crucial to handle these
procedures carefully, as they can introduce additional noise that deteriorates data quality, re-
quiring a balanced approach.
Furthermore, dealing with outliers is essential, as they can either be potentially harmful to our
purpose or very useful. Therefore, it is important to conduct a proper check before proceeding
with the creation of a calibration model.
Developing such a model involves calculating a regression equation based on the spectra and
all available information about the molecule. For linear calibration, multiple linear regression
(MLR), principal component regression (PCR), and partial least squares (PLS) are typically
used. In all these methods, parameters such as factors, loadings, and scores are evaluated.
The number of factors is relevant because if there are too many, the model has high vari-
ability in classification, resulting in an extremely complex model and, very often, prediction
errors. Conversely, too few factors can lead to underfitting, resulting in high classification
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discrepancy and potential omission of important information. Scores are used to check the
homogeneity of the samples, while loadings are used to understand how the variables are
weighted within the space described by the principal components.
Having completed these steps, the validation phase involves checking if the created model is
correct. The samples are divided into two groups: the test set and the training set. A leave-
one-out procedure is then applied, where one sample is used for calibration while the others
are used to study the model.
This methodology proves essential for our thesis, enabling the measurement of substance con-
centrations by analyzing the unique spectra they yield.

1.3.2 Instrumental Aspects of UV/Visible Spectroscopy

This section delves into the essential instrumental components of UV/Visible spectroscopy
with a focus on the technological foundations that drive this analytical technique. It covers
the practical aspects, from detailing light sources to the strategic selection of wavelengths
and the intricacies of detection mechanisms. The goal is to provide a comprehensive under-
standing of the technical intricacies that impact the precision and effectiveness of UV/Visible
spectroscopic analyses.

Figure 1.4: Illustration of the Key Components in a Basic Single-Beam UV-Vis Absorption Spectrophotometer
Setup [35]

Figure 1.5: Schematic representation of a UV/Visible spectrometer [31]



15

Light Source

Light possesses energy that is inversely proportional to its wavelength. Shorter wavelengths
correspond to higher energy, while longer wavelengths carry less energy. The absorption of
light occurs when a specific amount of energy promotes electrons in a substance to a higher en-
ergy state, resulting in detectable absorption signals. Different bonding environments within
a substance require varying amounts of energy to induce this transition, leading to absorption
at distinct wavelengths.
The visible light spectrum, perceivable by humans, ranges from approximately 380 nm (vio-
let) to 780 nm (red). UV light, with wavelengths shorter than visible light, extends to about
100 nm. Describing light in terms of its wavelength is crucial in UV-Vis spectroscopy, en-
abling the analysis and identification of substances by pinpointing specific wavelengths asso-
ciated with maximum absorbance. This spectroscopic technique proves invaluable in various
applications, as discussed in the subsequent sections.
In UV-Vis spectroscopy, a thorough understanding of its components and processes is es-
sential for accurate and insightful analyses. The choice of a suitable light source, often a
xenon lamp emitting across both UV and visible ranges, is pivotal. For visible light, tung-

sten filament lamp are commonly employed. These lamps emit radiation across the visible
spectrum, covering wavelengths from 350 to 2,500 nm. Additionally, tungsten filament lamps
find utility in near-infrared spectroscopy applications due to their ability to emit radiation
in the relevant wavelength range. On the other hand, for UV light applications, deuterium

electrical-discharge lamps serve as the predominant radiation source. These lamps generate
a continuous spectrum of radiation, ranging approximately from 160 nm to 375 nm in the UV
range. It is noteworthy that deuterium lamps utilize quartz windows, and to maintain optimal
performance, they should be paired with quartz sample holders. This precaution is essential
because conventional glass tends to absorb radiation below 350 nm, affecting the accuracy
and reliability of UV measurements.

Wavelength Selection

Precise wavelength selection is paramount in UV/Visible spectroscopy, requiring the use of
tools like monochromators and filters to specify wavelengths accurately.
A standard monochromator comprises entrance and exit slits, concave mirrors, and a dispers-
ing element, typically a grating. Polychromatic light enters through the entrance slit and is
focused by a concave mirror. Subsequently, it undergoes dispersion, separating radiation into
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different wavelengths. A subsequent concave mirror reflects the dispersed radiation along
the focal plane, emitting radiation through the exit slit. The resulting radiation encompasses
a narrow wavelength range, approximately centered on the specified wavelength. The term
”bandwidth” defines the size of the wavelength range passing through the exit slit, character-
izing the emitted radiation.
Monochromators, particularly those employing diffraction gratings, offer versatility in wave-
length selection. Filters are often combined with monochromators to further refine wavelength
specificity. This precision is vital for accurate measurements and improving the signal-to-
noise ratio in spectroscopic data.
Moving to sample analysis, the selected wavelength passes through the sample, and a refer-
ence or ”blank sample” measurement is imperative for accurate results. Understanding the
materials used is crucial; for instance, plastic cuvettes are unsuitable for UV absorption stud-
ies, necessitating quartz sample holders for UV examination.

Detection

Detection, the next step, involves converting light into an electronic signal using detectors.
Photomultiplier tubes (PMTs) and semiconductor-based devices like photodiodes and charge-
coupled devices (CCDs) are common detectors. PMTs excel at detecting low light levels,
while semiconductor-based detectors operate by allowing an electric current proportional to
light intensity to pass through.
Finally, UV-Vis spectroscopy data is presented graphically, typically as absorbance against
wavelength. Beer–Lambert’s law is applied for concentration determination. This law es-
tablishes a quantitative relationship, especially valuable when a linear correlation exists with
standard solutions. In summary, comprehending these components and processes empow-
ers researchers to leverage UV-Vis spectroscopy as a potent analytical tool for characterizing
substances based on their absorbance properties.

Application

UV/Visible spectroscopy finds diverse applications across various scientific disciplines due
to its versatile capabilities. One primary application is in the field of chemistry, where it
is extensively used for quantitative analysis. UV/Vis spectroscopy aids in determining the
concentration of a substance in a solution by leveraging Beer-Lambert’s law. This makes it
valuable in pharmaceuticals, environmental monitoring, and quality control processes across
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industries.
In the life sciences, UV/Vis spectroscopy plays a crucial role in biomolecule analysis. Re-
searchers utilize it to study nucleic acids (DNA, RNA) and proteins, as these biomolecules
exhibit characteristic absorption bands in the UV region. This is particularly essential in
molecular biology, where understanding the structure and concentration of biological macro-
molecules is fundamental.
In environmental science, UV/Vis spectroscopy is employed for monitoring water quality.
The technique helps identify and quantify pollutants in water samples, contributing to the as-
sessment of environmental impact and the development of remediation strategies.
Furthermore, UV/Vis spectroscopy is pivotal in material science, specifically in the character-
ization of nanomaterials. Researchers use it to study the electronic transitions and properties
of nanoparticles, offering insights into their behavior and potential applications in various
technologies.
In the pharmaceutical industry, UV/Vis spectroscopy is applied to analyze drug formulations,
ensuring the quality and consistency of pharmaceutical products. The technique assists in
monitoring the stability of drugs and detecting impurities, supporting the development of safe
and effective medications.
Overall, UV/Visible spectroscopy’s broad range of applications underscores its significance as
a powerful analytical tool with implications spanning chemistry, life sciences, environmental
science, material science, and pharmaceuticals.

1.3.3 Advantages and Limitations

UV-Vis spectroscopy offers several advantages that contribute to its widespread use. Firstly,
it is non-destructive, allowing for sample reuse or further processing and analysis. The tech-
nique provides quick measurements, seamlessly integrating into experimental protocols. Its
user-friendly instruments require minimal training, and data analysis is generally straightfor-
ward, requiring minimal processing. Moreover, the affordability of acquiring and operating
UV-Vis spectrophotometers makes them accessible to many laboratories.
However, like any method, UV-Vis spectroscopy has its limitations. Stray light, arising from
imperfections in wavelength selectors or environmental factors, can lead to measurement er-
rors. Light scattering, often induced by suspended solids or bubbles in the sample, may result
in irreproducible outcomes. Interference from multiple absorbing species, such as different
chlorophylls in a sample, requires careful separation for accurate quantitative analysis. Ge-
ometrical considerations, particularly misalignment of components like the sample-holding
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cuvette, can yield inaccurate and irreproducible results. Thus, proper instrument alignment
and basic user training are essential to avoid misuse and ensure reliable outcomes.

1.4 Infrared Spectroscopy

Infrared spectroscopy (IR) is a powerful analytical technique that exploits the interactions
between light and matter to provide detailed information about the chemical composition of
substances. This methodology relies on the ability of molecules to absorb specific frequencies
of infrared radiation, allowing for the identification and analysis of chemical bonds present
in samples. The broad application of IR spectroscopy ranges from the characterization of
organic and inorganic compounds to the determination of complex molecular structures.
For our research purposes, we will specifically focus on Near-Infrared (NIR) and Mid-Infrared
(MIR) spectroscopy. These specialized branches of IR spectroscopy offer unique insights into
molecular vibrations, making them invaluable tools for studying biomolecules, nanostructured
materials, and various chemical compositions. Our exploration will delve into the operating
principles, key applications, and distinctive characteristics of NIR and MIR spectroscopy,
highlighting their relevance in our scientific investigations.

1.4.1 Near Infrared (NIR) Spectroscopy

Quantitative analysis of biomedical samples often leverages measurements in the near-infrared
(NIR) spectral region, typically ranging from 0.7 to 2.5 µm (700 to 2500 nm). This spectral
range is widely favored for such analyses compared to mid-infrared measurements in the
biomedical field. Various commercial instruments are available for conducting compositional
analyses of biomedical samples using near-IR spectroscopy. An important advantage of near-
IR spectroscopy in the biomedical context is its capacity to directly assess the composition of
solid biological samples, employing techniques like diffuse reflection.

Physical Principles

In the realm of spectroscopic analysis, Near-Infrared (NIR) spectroscopy stands out for its
unique principles governing the interaction between radiation and solid surfaces. When radi-
ation impinges on a sample surface, a portion undergoes specular reflection, which provides
limited information about the sample. Specularly reflected radiation is often redirected back
toward the energy source. In contrast, another portion penetrates the sample surface, under-
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going diffuse reflection. This diffusely reflected radiation exits the sample at random angles,
covering 180°. During this process, chemical constituents within the sample can absorb radia-
tion, contributing to the information encoded in the diffusely reflected radiation. The absorbed
energy at specific wavelengths indicates the chemical composition of the sample.
The size and shape of sample particles influence the amount of radiation that penetrates and
exits the sample surface. Therefore, it is necessary to reduce solid materials into fine and uni-
form particles or apply mathematical corrections during instrument calibration to compensate
for these effects.
In the NIR region, absorption bands primarily consist of overtones and combinations, result-
ing in weak intensity absorptions. This characteristic proves advantageous as the observed
absorption bands predominantly arise from functional groups containing hydrogen atoms at-
tached to carbon, nitrogen, or oxygen—common in major biomedical constituents. The broad
and overlapping nature of absorption bands in the near-IR region, while complex, is valuable
for quantitative analysis.
Notably, the near-IR spectra of various biomedical constituents exhibit broad and overlap-
ping absorption bands. The dominance of water-related -OH groups, evident in the spectra
of tissues, is still prominent in samples with varying compositions. Distinct absorption bands
arising from biomolecules contribute to the complexity of the spectra. The NIR spectroscopy
principles are grounded in the analysis of these absorption bands, providing a robust founda-
tion for the quantitative assessment of sample composition.
The NIR spectrum is without a doubt the most natural and richest resource of information
on the anharmonicity of the vibration of molecules. The absorption of the NIR transition
gradually decreases progressively towards higher tones and higher order combinations. The
coexistence of different bands, such as the first, second, and third tones, is a great advantage.
The low intensity of the bands allows molecules to be placed in a solution with a much wider
range of possible concentrations, guaranteeing the possibility of more in-depth investigations
on intermolecular interactions.
In the NIR region, the bands generated by the vibrations of molecules, such as C H, O H,
and N H, are very elaborate. Some types of bands undergo enhancement in their intensity.
The bands due to non-associated species are usually much more intense than those belonging
to aggregates of molecules. NIR band heights often carry valuable information.
The specificity of the vibrational effects in the NIR, profoundly different from those found
in the MIR spectra, creates a large amount of independent spectral information, essential for
physical chemistry. However, NIR spectral analysis is subject to ambiguities due to overlaps,
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Figure 1.6: Regions of NIR in respect of the functional groups involved

anharmonicity, and the omnipresence of coexisting effects, resulting in convoluted spectral
variations. Similar reasons have also been an obstacle in analytical NIRS. The complexity of
spectra has necessitated the use of spectral pre-treatment and advanced data analysis methods,
such as two-dimensional correlation spectroscopy (2D-COS).
The low absorption of NIR radiation is also added to the advantages described above. This
feature allows for application for hyperspectral imaging purposes. The deep penetration of
NIR light is crucial, allowing for effective in-depth investigation of the sample, a fact that
finds wide application in biophysical and biomedical studies.
To perform quantitative and qualitative measurements, the system must have access to dif-
ferent chemometric models, representing the analyte being tested. These are mathematical
models obtained using samples of the same product or class of products. The analysis of the
obtained data, particularly the process of finding a possible correlation between the spectrum’s
characteristics and the substance under study, takes a considerable amount of time. Once the
instrument’s spectrum has been plotted, a pre-processing procedure is carried out, in which,
if necessary, baseline subtractions are performed to reduce the effect of substances present
in the sample but not of interest for our investigations. However, it’s crucial to handle these
procedures carefully, as they can introduce additional noise that deteriorates data quality, re-
quiring a balanced approach.
Furthermore, dealing with outliers is essential, as they can either be potentially harmful to our
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purpose or very useful. Therefore, it is important to conduct a proper check before proceeding
with the creation of a calibration model.
The creation of such a model involves calculating a regression equation based on the NIR
spectra and all the information already available about the molecule to be analyzed. For lin-
ear calibration, multiple linear regression (MLR), principal component regression (PCR), and
partial least squares (PLS) are typically used. In all these methods, parameters such as fac-
tors, loadings, and scores are evaluated. The number of factors is relevant because if there are
too many, the model has high variability in classification, resulting in an extremely complex
model and, very often, prediction errors. Conversely, too few factors can lead to underfitting,
resulting in high classification discrepancy and potential omission of important information.
Scores are used to check the homogeneity of the samples, while loadings are used to under-
stand how the variables are weighted within the space described by the principal components.
Having completed these steps, the validation phase involves checking if the created model is
correct. The samples are divided into two groups: the test set and the training set. A leave-
one-out procedure is then applied, where one sample is used for calibration while the others
are used to study the model.

Instrumentation

The instrumentation we use to perform NIR spectroscopy consists of several components as
illustrated in the figure.
Specifically, we can find:

• Light Source: A single polychromatic source is generally used for NIR spectroscopy. It
has an inert solid, usually tungsten (a halogen lamp or a deuterium lambada), which ra-
diates uniformly in the IR spectral range. In the instrument, we are considering we have
as a light source a Halogen Lamp of the AvaLight series that composes a wavelength
range from 400 to 2500nm.

• Monochromator or Spectrometer: A monochromator or spectrometer is used to disperse
the incoming NIR light into its various wavelengths (or frequencies). This component
allows for the selection of specific wavelengths or bands of interest. The spectroscope
features a specify NIR grating. Unlike discrete wavelength spectroscopes, this instru-
ment is definitely much more flexible in terms of application.

• Detector: The detector measures the intensity of the NIR light after it has passed through
the sample. Common detectors include photodiodes or charge-coupled devices (CCDs).
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Figure 1.7: Principal features of NIR spectroscopy equipment [6]

The detector converts the NIR signal into an electrical signal for further analysis. In our
instrument, we have InGaAs detector with 2 stage TEC, which consists of InGaAs is
a semiconductor material commonly used for infrared photodetectors. It is sensitive to
infrared light in the range of about 0.9 to 2.6 micrometers (µm). A TEC is a solid-state
cooling device that uses the Peltier effect to transfer heat from one side (the cold side)
of the device to the other side (the hot side). In the context of an InGaAs detector, a two-
stage TEC is used to maintain the detector at a stable, low temperature, which is crucial
for reducing noise and improving sensitivity. The two-stage TEC typically consists of
two thermoelectric modules stacked together to achieve greater cooling efficiency.

For my research, a crucial step involved evaluating various devices to select the one most
suitable for the intended application. After careful consideration, we opted for the AvaSpec-
NIR-2.5-HSC-EVO NIRLine Near-infrared Fiber Optic Spectrometer.
Two configurations are available which differ in the number of pixels of the detector array. In
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fact, there is a version with 256 pixels and one with 512, the difference is essentially in terms
of resolution, which is better with a higher number of pixels.
NIRLine provides leading-edge performance for dispersive NIR instruments with toroidal fo-
cusing mirrors and dynamic dark correction (DDC) for enhanced stability. The NIRLine is
comprised of both thermoelectrically cooled and uncooled instruments.They present thermo-
electric, Peltier-cooled InGaAs detectors which support cooling down to-25°C against ambi-
ent. The InGaAs array are optimal for measurements with wavelengths in the 900− 2500nm

range, suitable for different applications. The detector consists of a charge amplifier array
with CMOS transistors, a shift register, and a timing generator. For InGaAs detectors, the
dynamic range is limited by dark noise. In our case, since we will be using a device with an
extended range between 2.0 and 2.5 µm, all are equipped with 2-stage thermoelectric cooling
(TEC) to reduce dark noise.
There are two different modes are available: high-sensitivity (HS) and low-noise (LN). The
default setting is the HS mode, which provides a better signal at a shorter integration time.
The other mode of operation, the LN mode, provides a better S/N (signal-to-noise) perfor-
mance. Sensitivity, S/N, dark noise and dynamic range are given as HS and LN values. To

Figure 1.8: AvaSpec-NIR-2.5-HSC-EVO NIRLine Near-infrared Fiber Optic Spectrometer

make the choice of the device we had to make considerations at the Signal Noise Ratio (SNR)
level, in particular for our application we will take into consideration the data relating to the
Low Noise (LN) configuration.
A further characteristic that was requested from us is that the measurement is carried out with
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a full scale of 0 - 10 mmol/L and with an uncertainty of ± 0.1.
Initially, however, we want to do some tests with an uncertainty of ±1 and see if we can obtain
results already with these values.
In order to understand which of the tools proposed to us was the most suitable, we made some
evaluations taking as reference some data obtained through a previous study presented by the
article ”In-silico investigation towards the non-invasive optical detection of blood lactate”

[11].
From the graphs present in the article, we were able to see that the instrument must be able to
have a sensitivity in the order of magnitude of 0.0005 in terms of assorbance.
The SNR which is reported in the spectrometer’s technical data sheet is equal to 5000 : 1, this
means that we are able to detect variations in the order of magnitude of 0.0002, compliant
with the specifications that we considered during the testing phase.
Particularly interesting is the fact that the information reported on the instrument’s technical
data sheet relating to the SNR was obtained considering the smallest integration time equal
to 20 µs. Theoretically, by increasing the integration time I also increase the quantity of in-
formation acquired by the instrument, therefore allowing us to obtain good results, consistent
with the specifications, even with a smaller uncertainty.

Advantages and Limitations

In general, IR spectroscopy has several advantages including:

• The analysed samples do not require any specific pretreatment, such as the addition of
a radioactive dye, so that analysis is practically in real-time; in addition, data obtained
by the NIRS method have greater reproducibility;

• Absence of thermal noise;

• Non-invasive and non-destructive technique;

• The results are comparable in terms of accuracy to those obtain through other analytical
techniques.

• It has a high scanning speed. In just a few seconds, it is possible to obtain all the
necessary information for the entire frequency range.

• The infrared spectrometer has a very high resolution, especially the Fourier transform
spectrometer (FTIR).
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• It has a wide range of applications in both qualitative and quantitative analysis, so it can
be used to analyse almost any organic compound.

Also, with NIR analysis the most useful features are contained in the overtones of the spec-
trum, or combinations of them, which are much more significant than the fundamental com-
ponents found in the other two infrared ranges.
The absorbance obtained in the NIR region is very small, consequently I can consider that it
increases as the concentration of the substance in the sample increases, and it is possible to
evaluate it without having to dilute or add additional reagents in the tube.
NIRS is not a standalone technology, so for each substance and each component you want
to analyze, you need to undergo the entire calibration process. This is all to ensure greater
reliability of the predictions that will be made.
Despite this, through sophisticated chemometric procedures, we can obtain truly meaningful
results for substance quantification and qualitative analysis.

1.4.2 Mid Infrared (MIR) Spectroscopy

Mid Infrared (MIR) Spectroscopy, operating within the wavelength range of approximately
2.5–15, µm (4000–650 cm−1), serves as a pivotal analytical technique. In this spectral region,
fundamental absorptions play a crucial role, especially in the study of organic compounds.
The absorption bands in Mid-IR spectroscopy are intricately linked to the vibrational modes of
specific functional groups. The precise positioning and intensity of these bands offer valuable
insights into the energy of the bonds, their local environment, and their concentration within
the matrix. Such characteristics make Mid Infrared spectroscopy an ideal choice for a wide
range of applications, spanning both qualitative and quantitative analyses.

Instrumentation

MIR spectroscopy is a commonly used device in laboratory for quantitative and qualitative
measurements of samples in all states of aggregation, and, additionally, it doesn’t cause any
damage to specimens.
The MIR spectral band ranges from 2500 nm to 25000 nm, allowing the study of the insight
of the structure of molecules and enabling quantification of concentration.
Since the 1880s, it has been possible to record the MIR spectra of a number of simple organic
compounds through the use of a bolometer as a detector. The analysis and investigation of the
relationship between MIR spectra and molecular structures began in the 20th century, but it
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was not until after World War II that MIR spectroscopy rapidly developed. This was due to
the introduction of new technologies such as highly sensitive thermocouples and high-quality
prisms.
A further step forward was taken in the 1970s when Fourier Transform (FT) spectroscopy
was introduced in the field of MIR, leading to a real revolution. This technology allows for
high accuracy in determining the wavelength and the corresponding intensity peak, as well as
showing high spectral resolution.
Major technological advancements in moder MIR spectroscopy are attributed to MIR light
source technology. The most common MIR spectrometers use thermal emitters, which are
infrared light sources that emit a broad spectrum of IR light from 1000 to 20000 nm depend-
ing upon the operating temperature of the device. Constructed from materials exhibiting high
electrical resistivity, these devices proficiently transform electrical energy into thermal energy.
The resulting radiation possesses distinctive characteristics influenced by factors such as the
optical emissivity of the emitter material, the supplied electrical current, and the emitter’s
surface area and temperature. Achieving enhanced performance necessitates a substantial el-
evation in temperature.
The thermal emitter, a venerable light source, has experienced rapid evolution in the past
century, particularly driven by advancements in detectors and methodological approaches.
Recognized for its blackbody-like emission, the thermal source offers a spectral coverage
well-suited for a wide range of MIR spectroscopy applications. Despite its historical signif-
icance, thermal emitters do come with limitations, notably their inadequate brightness, also
known as spectral radiance. This limitation directly impacts the spectral power incident on the
surface unit of the sample being analyzed. Consequently, the reduced path length that light
must traverse between the source and the matter complicates the study of a larger number of
molecules.
To overcome the major limitations of thermal emitters, lasers are introduced as an advanced,
high-brightness light source. In particular, we have a brightness that is several orders of mag-
nitude higher than that of the thermal emitter. The main problem is that lasers are almost
monochromatic, so they need a wide adaptation to be used for MIR spectroscopy.
A pivotal advancement in the realm of Mid-Infrared (MIR) spectroscopy lies in the adoption
of Quantum Cascade Lasers (QCL) as light sources. This innovation boasts a multitude of
advantages, including robustness, operational stability at ambient temperatures, compact di-
mensions, and the unique capability of extending spectrum coverage. The latter is achieved
by seamlessly integrating multiple chips to create a unified emitter, effectively spanning the
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entire MIR range. The widespread adoption of QCLs has revolutionized MIR spectroscopy
systems, enabling highly sensitive measurements that were previously unattainable. This tech-
nology unlocks access to fundamental and potent absorption bands, marking a significant leap
forward compared to other laser systems currently in use.
Nowadays, new technologies are being developed to increase the brightness of the source, the
spectral resolution and accuracy. Among these we have those based on the use of frequency-
comb laser in dual-comb and those based on the use of supercontinuum laser sources.
The latter are special laser that present a wide and continuous spectrum. This very broad spec-
trum is due to the presence of a process called supercontinuum generation process which
converts laser light into light with a very wide spectral bandwidth, i.e. an extremely broad
continuous optical spectrum. Spectral broadening is usually achieved by propagating light
pulses through a strongly nonlinear device.[40]
MID supercontinuum laser sources represent a valid element that can fill the gap between
QLCs and standard thermal emitters.
The fundamental components for creating a spectroscopy system include detectors. The main
requirements for them are high quantum efficiency and ideally tailorable absorption band
gaps.[23] Of the various types of detectors available, our attention focused on those made
from lead selinide (PbSe).
PbSe detectors extend into the MIR, covering a wavelength range from 1 to 5 µm. It uses the
photoconductive effect, which is the basis of how photoresistors work. These are radiation-
sensitive transducers made of semiconductor materials, such as, in our case, lead selenide.
When the sensitive surface of the photoresistor is exposed to radiation, the absorbed energy
causes covalent bonds to break and gap-electron pairs to increase. Consequently, exposure to
infrared radiation causes the resistance in the active area to decrease as a function of radiation
intensity.
Photoresistors cannot operate in photovoltaic mode as they do not generate a photocurrent
themselves and, in addition, always require a bias voltage for detector operations. Another
key feature is that they behave like a resistor and not a diode, so they have no p-n junction, no
junction capacitance and no polarity.
PbSe detectors are subject to pink noise, which results from the presence of a series of charge
carrier traps. This tends to decrease as the modulation frequency increases. This type of pho-
toresistor can operate at a high modulation frequency due to a very low time constant of 4 µs.
As a result, the associated pink noise can be attenuated. In general, PbSe detectors are also
subject to 1/f noise, i.e. flicker noise.
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In the construction of our MIR spectroscope system, the choice of a suitable detector is piv-
otal. After a thorough analysis of commercially available detectors, the lead selinide (PbSe)
detectors emerged as viable options. Laser Components offers various models, including the
PB45, PB50, and PB55 series detectors. These detectors serve diverse applications, spanning
medical gas analysis (e.g., CO2 measurement), industrial and automotive emission measure-
ment, as well as moisture and hydrocarbon measurement.
Among the available options, the PB45 detector aligns most closely with our requirements
based on the specifications outlined in the datasheet. With a spectral range of 1 to 4.7 µm, the
PB45 operates at room temperature, featuring a 20% cut-off at 4.7 µm and an impressive de-
tectivity (D*) exceeding 1010. This makes it an optimal choice for our application, especially
considering our need to operate at room temperature.
While the PB50 and PB55 series detectors are cooled versions designed for operation at low
temperatures (-20°C to -35°C and -45°C to -55°C, respectively), offering enhanced perfor-
mance and a wavelength shift to 5.2 µm, these advantages are not necessary for our specific
application. Given that our spectroscope operates at room temperature, the PB45 stands out
as the most suitable choice. Furthermore, its spectral range aligns well with the characteristic
peaks of the substance of interest—lactate. The figure below 1.9 illustrates the PB45 series,
showcasing its uncooled design.

Figure 1.9: Uncooled Lead-Selinide detector PB45 Series

Applications

Mid-Infrared (MIR) spectroscopy, recognized for its diverse applications, plays a pivotal role
in biomedical research. This spectroscopic technique monitors the interaction of functional
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groups in chemical molecules with infrared light, resulting in predictable vibrations that pro-
vide a unique ”fingerprint” characteristic of the chemical substances present in biological
samples. In the mid-IR region, spectra exhibit well-resolved bands assigned to functional
groups within biomolecules, enabling structural characterization. The intensity of these bands
correlates with the concentration of specific biomolecular components, allowing for both qual-
itative and quantitative analyses.
In biomedical applications, mid-IR spectroscopy proves valuable for gaining insights into the
composition of biological samples. The unique spectral profiles generated by biomolecules,
such as lipids, proteins, and carbohydrates, enable the identification of specific functional
groups in unknown substances. Comparison of mid-IR spectra to standard spectra in ref-
erence databases facilitates the identification of chemical compounds in complex biological
samples.
Mid-IR spectroscopy in biomedical research benefits from multivariate statistical analysis
techniques, commonly known as chemometrics, to extract meaningful information from spec-
tra. These techniques are crucial for the classification and quantitative analysis of multiple
components in biological samples. Instrument calibration is essential for ensuring accurate
results, and chemometric techniques play a key role in this calibration process.
The application of mid-IR spectroscopy in biomedical research extends to various areas, in-
cluding the analysis of biological tissues, fluids, and other complex matrices. The ability
to simultaneously analyze multiple components makes mid-IR spectroscopy a powerful tool
for researchers seeking comprehensive insights into the molecular composition of biologi-
cal samples. This versatility positions mid-IR spectroscopy as a valuable asset in advancing
our understanding of biomolecular interactions and contributing to advancements in medical
research and diagnostics.

Advantages and Limitations

One of the primary strengths of mid-infrared (MIR) spectroscopy lies in its capacity to fur-
nish intricate details regarding the molecular composition of a sample. Operating within the
mid-infrared segment of the electromagnetic spectrum, this technique delves into the funda-
mental molecular vibrations of atoms within the sample, facilitating the precise identification
of chemical bonds and molecular functionalities. Such precision renders MIR spectroscopy
particularly advantageous in diverse fields, including chemistry, pharmaceuticals, and biolog-
ical research.
Another noteworthy benefit of MIR spectroscopy is the expeditious nature of its analyses. The
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technique enables the swift acquisition of spectra, making it conducive to seamless integration
into experimental protocols and the handling of a substantial volume of samples.
However, MIR spectroscopy is not without its limitations. One significant challenge is its re-
stricted ability to penetrate opaque or excessively thick samples. The absorption or scattering
of mid-infrared light by dense materials diminishes the efficacy of the technique in specific
experimental scenarios.
In addition to the discussed limitations, one prominent drawback emphasized in the literature
is the incapability of MIR spectroscopy to be utilized for concentration analyses of substances
within the bloodstream. This is attributed to the fact that mid-infrared waves are unable to
penetrate the skin, let alone the walls of blood vessels. As a result, the application of MIR
spectroscopy is restricted when attempting to conduct analyses related to the concentration of
substances circulating in the blood.
Additionally, the necessity to prepare samples in the form of powder or thin films for certain
analyses poses operational challenges. This preparatory step demands additional time and
may impact the representativeness of the sample compared to its real-world conditions.
In conclusion, despite these specific drawbacks, mid-infrared spectroscopy stands as a valu-
able and advanced analytical technique for molecular analysis, leveraging its strengths in
delivering precise chemical information and facilitating rapid analyses.

1.5 Conclusion

In conclusion, this first chapter has provided a comprehensive introduction to the fundamen-
tal principles and applications of spectroscopy, spanning the domains of UV/Visible, Near
Infrared (NIR), and Mid Infrared (MIR). We embarked on this journey by laying the ground-
work for understanding the physical principles that govern these spectroscopic techniques.
The exploration of UV/Visible spectroscopy elucidated its spectroscopic principles, common
methodologies, instrumental aspects, and the inherent advantages and limitations. This foun-
dational knowledge sets the stage for the subsequent chapters, where we will delve deeper
into the specific applications and advanced techniques within UV/Visible spectroscopy.
Transitioning into the infrared spectrum, the chapter unfolded the unique capabilities of both
Near Infrared (NIR) and Mid Infrared (MIR) spectroscopies. The versatility of NIR spec-
troscopy, especially in biomedical applications, and the molecular insights provided by MIR
spectroscopy were highlighted. These insights will serve as a springboard for our detailed
investigations in the following chapters.



Chapter 2

Substances Detectable in Blood

The spectroscopic analysis of substances present in blood plays a crucial role in our research
aimed at lactate detection. This chapter explores the fundamental interactions between light
and key blood components, focusing specifically on carbon dioxide, oxygen, and hemoglobin.
The choice to investigate the behavior of these substances is motivated by their physiological
relevance and their impact on spectroscopy in the infrared range, which has proven particu-
larly promising for our purposes. Through a detailed analysis of the spectral responses of each
substance, we aim to understand their peculiarities and interconnections, laying the ground-
work for an accurate and specific assessment of lactate in the context of blood.

2.1 Overview of Analyzable Substances

In the complex network of the human circulatory system, the composition of blood serves
as a profound reflection of the body’s physiological intricacies. This chapter embarks on an
exploration of three pivotal substances coursing through our veins – Carbon Dioxide (CO2),
Oxygen, and Hemoglobin.
Beyond their status as mere components, these substances embody critical indicators of respi-
ratory function, metabolic activity, and oxygen transport, casting a unique light on the body’s
overall health. However, our journey doesn’t stop at mere understanding; it extends into the
realm of cutting-edge instrumentation that fuels the precise detection of these substances in
blood. The subsequent sections meticulously dissect the state of the art in instrumentation,
unraveling the methodologies that underpin the detection of CO2, oxygen, and Hemoglobin.
Characteristic absorptions of functional groups are cataloged in tables known as correlation
tables. These tables furnish a list of characteristic infrared absorptions for different types of
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bonds and functional groups. The absorption intensity is categorized into three levels: strong
(s), medium (m), and weak (w). The infrared spectrum comprises two regions:

• The functional groups of the molecule are found in the region between 2500 nm and
6667 nm of the IR spectrum.

• The fingerprint region, above 6667nm, contains absorptions of complicated vibrations,
unique to each molecule. A database with recorded infrared spectra of known organic
molecules facilitates the comparison of spectra produced for unknown compounds.

In our study, we focus on the area of Extracorporeal Circulation, leveraging detailed documen-
tation on the company’s technology park. This documentation outlines measured parameters,
their ranges, and the methods employed, particularly those measured with infrared technol-
ogy: saturation, hemoglobin, and temperature. Of additional clinical interest are parameters
like lactate concentration, which our research seeks to identify and detect using suitable tech-
nology. Moreover, our investigation deepens in the forthcoming chapter, centering specifically
on lactate—an element of paramount significance serving as the central theme of this master
thesis. The subsequent section delves into the complexities of lactate, unveiling its importance
in physiological processes and examining specialized techniques devoted to its accurate de-
tection. This cohesive journey ensures a comprehensive grasp of both analyzable substances
and the instrumental advancements propelling our comprehension of the circulatory system.

2.1.1 Carbon Dioxide (CO2)

Metabolic reactions, such as cellular respiration, take place within the cells that constitute the
tissues of internal organs. This intricate process involves the combustion of nutrients obtained
from digestion, breaking them down into simple molecules to yield energy available to the
cell in the form of ATP—the primary energy currency of cells. From these vital reactions,
essential for the correct functioning of the organism, carbon dioxide is produced and must be
efficiently eliminated from the body.
At the muscular level, the production of carbon dioxide is not only very high and variable but
also requires constant elimination through pulmonary ventilation. This respiratory process is
vital for efficient gas exchange, ensuring the removal of carbon dioxide and replenishment of
oxygen.
Once produced by cellular metabolism, CO2 rapidly diffuses from the cells into the arterial
blood, which perfuses the tissues. Notably, carbon dioxide lacks a specific carrier and is
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transported in the form of dissolved gas, carbamino compounds, and bicarbonate ions in both
plasma and red blood cells. These three modes of transport are reversible and intricately bal-
anced, although they do not handle the same quantities.
The regulation of carbon dioxide levels is crucial for maintaining homeostasis within the body.
Disruptions in this balance can have clinical implications and may be associated with certain
medical conditions. Therefore, understanding the dynamic processes involved in carbon diox-
ide production, transport, and elimination is not only fundamental to respiratory physiology
but also holds significance in the broader context of maintaining overall health and well-being.

State of the Art in CO2 Detection Techniques

The state of the art in technologies for detecting the concentration of carbon dioxide (CO2)
in blood is predominantly characterized by the use of optical sensors, with a prevalent focus
on infrared-based methodologies. These techniques leverage Lambert Beer’s law to calculate
analyte concentrations, with incident light falling within the mid-infrared (MIR) range, typ-
ically between 3000 and 8000nm. Notably, the primary absorption peak for carbon dioxide
occurs at 4250nm.
The instrumental setup for these detection systems includes an emitter, available in two con-
figurations: one emitting broadband light, necessitating additional components like a filter
for radiation selection, and the other utilizing a Light Emitting Diode (LED) with a narrow
spectrum. The photodetector , typically made with an epitaxial layer of InAsPb on an InAs
substrate, completes the system. The coupling of the LED and photodetector eliminates the
need for mechanical modulators and interference filters, resulting in a less complex sensor
design.
In the biomedical field, two configurations of optical sensors are prominent for CO2 detec-
tion: Main-Stream and Side-Stream approaches. The Main-Stream approach directly mea-
sures CO2 concentration in the gas flow duct, while the Side-Stream approach diverts the gas
flow into a specialized chamber for measurement.
A noteworthy advancement in this domain is the sensor developed in 2020, as detailed in the
article “Development of CO2 Sensor for Extracorporeal Life Support Application” created by
Bellancini et al. is also based on a similar principle.
This Main-Stream type sensor adheres to European legislation’s accuracy specifications and
is designed to measure carbon dioxide concentration in the exhaust gases of an oxygenator
membrane during extracorporeal procedures.
The sensor comprises two main portions: one measuring the gas flow applied to the mem-
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Figure 2.1: Schematic representation of the sensor [5]

brane and the other quantifying the concentration of carbon dioxide extracted from the pa-
tient’s body. To mitigate the condensation of water vapor and preserve data quality, a heating
module is incorporated. Despite the known influence of temperature on sensor operation, an
algorithm is employed to establish a relationship between signal and temperature, enhancing
sensor sensitivity.
The sensor comprises two main portions: one measuring the gas flow applied to the mem-
brane and the other quantifying the concentration of carbon dioxide extracted from the pa-
tient’s body. To mitigate the condensation of water vapor and preserve data quality, a heating
module is incorporated. Despite the known influence of temperature on sensor operation, an
algorithm is employed to establish a relationship between signal and temperature, enhancing
sensor sensitivity.
Results obtained from this sensor align with European regulations, particularly ISO standards,
making it suitable for the examined clinical applications. The schematic representation of the
sensor is depicted in 2.1, showcasing its design and functionality.

2.1.2 Oxygen and Hemoglobin

Oxygen plays a crucial role in our bodies, being consumed along with glucose in cells for the
oxidation process that generates the energy necessary for cellular functioning. The metabolic
process shares similarities with combustion, resulting in waste products such as carbon diox-
ide.
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Through the respiratory system, we ensure a continuous and proper supply of oxygen, simul-
taneously expelling carbon dioxide through exhalation. To reach cells, oxygen is transported
within the bloodstream by erythrocytes, or red blood cells. These cells uptake oxygen in the
pulmonary alveoli, transport it to various anatomical districts, exchange it for carbon diox-
ide, and return to the heart and lungs through the veins for the release of carbon dioxide.
Red blood cells contain hemoglobin, a globular protein capable of transporting four oxygen
molecules at once. Oxygen saturation is a vital blood index, expressing the percentage of sat-

Figure 2.2: Oxygen Dissociative Curve

urated hemoglobin compared to the total hemoglobin. This parameter allows the detection of
hypoxemic conditions. When an oxygen molecule binds to one of hemoglobin’s four binding
sites, the affinity of the remaining three binding sites significantly increases, generally causing
oxygen to preferentially bind to hemoglobin with at least one site already occupied.
This leads to the creation of the Oxygen Dissociative Curve (Figure 2.2), which exhibits a sig-
moidal pattern. The curve illustrates the intricate relationship between hemoglobin saturation
with oxygen (SO2) and the partial pressure of oxygen (PO2). Its sigmoidal shape signifies
positive cooperativity in the binding of oxygen molecules to hemoglobin’s heme group, al-
lowing successive binding until a saturation plateau is reached.
Key features of the curve include the Bohr effect, where factors like PCO2 and pH influence
its position. A left shift, indicating higher oxygen affinity, occurs under conditions such as
decreased PCO2, increased pH, and lowered temperature. Conversely, a right shift, reflecting
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lower oxygen affinity, is associated with increased PCO2, decreased pH, and elevated tem-
perature. These shifts play a pivotal role in oxygen unloading in metabolically active tissues,
highlighting the adaptive nature of hemoglobin.
Additionally, the influence of 2,3-diphosphoglycerate (2,3-DPG) and carbon monoxide (CO)
on the curve is noteworthy. Under hypoxic conditions, an increase in 2,3-DPG concentration
promotes oxygen unloading, while CO binding causes a left shift, indicating higher oxygen
affinity but reducing the blood’s absolute oxygen-carrying capacity. The oxygen-hemoglobin
dissociation curve proves fundamental in comprehending the intricacies of oxygen transport
in blood, emphasizing hemoglobin’s adaptability under diverse physiological and pathological
conditions. This adaptability results in faster loading of oxygen molecules in environments
with high concentrations, such as lung alveoli, and more readily dissociates in deficient envi-
ronments, like in metabolically active tissues.
Finally, the structure of hemoglobin consists of 4 polypeptide subunits, namely 2 α chains and
2 β chains, and on each of them is a heme group, which contains an iron ion responsible for
interaction with oxygen. This bond is a reversible bond, since the interaction is very weak.
They exist in two distinct configurations:

• Taut (T): deoxygenated, which is a configuration with low affinity for oxygen that pro-
motes the release of those present;

• Relaxed (R): oxygenated, which is a configuration that has high affinity for oxygen and
promotes binding to other oxygen molecules if there are binding sites still available.

Figure 2.3: a) Quaternary structure of Hemoglobin. b) Structure of oxygenated Hemoglobin (magenta) super-
imposed on the structure of deoxygenated Hemoglobin (blue). [1]
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These two configurations have the characteristic of exhibiting different electromagnetic ab-
sorption and consequently different light emission.

State of the Art in Detection Techniques

Pulse Oximeter

The measurement of saturation is based precisely on this characteristic, and to measure it, one
uses the oximeter or pulse oximeter, which is a transcutaneous electromedical device.
There are two possible configurations: transmittance device and reflectance device. The latter
are little used especially in clinical settings because they show low reliability, while transmit-
tance devices are the most widely used.
The transmittance device configuration consists of an electronic processor and a pair of light-
emitting diodes (LEDs) placed in front of a photodiode. Between these two components is
the translucent part of the patient’s body, which is usually a finger or earlobe. One LED is
red with a wavelength of 660 nm and the other is infrared with a wavelength of 940 nm.
The need for two different LEDs is related to the absorption properties of the two different

Figure 2.4: Absorption spectrum of the two configurations of hemoglobin

configurations of hemoglobin, since:

• Oxygenated hemoglobin absorbs more infrared light and allows more red light to pass
through;
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• Deoxygenated hemoglobin absorbs more red light and allows more infrared light to pass
through.

LEDs are not always on, but rather follow their own on-off cycle. The amount of light that is
not absorbed is measured. These signals tend to fluctuate because of the very nature of arterial
blood flow.
All this happens because blood is fed at high velocity into the aorta and pulmonary artery only
for a short interval of time, namely that which coincides with the opening of the semilunar
valves during ventricular systole; therefore, the input is intermittent and, as a result, the flow
is accelerated in the first part of the cardiac cycle and decelerated in the last phase.
At first glance, the intermittency might cast some doubt on the effective blood supply to all
internal organs, however, the high pressure to which the arterial walls are subjected stretches
the elastic fibers of the blood vessel, accumulating elastic energy that will be returned by com-
pressing the blood and ensuring flow.

Figure 2.5: Block diagram of the Pulse Oximeter[26]

To calculate saturation, the processor will evaluate the ratio of red light measurement to
infrared light measurement, that is, it measures the ratio of oxygenated to deoxygenated
hemoglobin. The ratio will then be converted to saturation using a table that is based on
Lambert-Beer’s law.
In recent years, the use of this device has increased exponentially due to the COVID-19 pan-
demic.

Optical sensor

The concentration of haemoglobin in blood is another very important parameter that is cur-
rently measured using various methods. The most common non-invasive methods are based
on using spectrophotometry to analyse the absorption of light and subsequently calculate the
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concentration of the molecule by applying the Lambert-Beer law. One such system is pro-
posed in the article ’Optical Sensor System for Hemoglobin Measurement’ by Doshi et al
[17]. The system is based on the pulse photometric measurement method, the principle be-
hind which is very similar to that of the pulse oximeter.
The device consists of a portion, which is placed on the tip of the finger, that emits infrared
signals through an LED, which pass through the skin and blood vessel walls. As with the

Figure 2.6: Block diagram of hemoblobin sensor [17]

pulse oximeter, it is considered that oxygenated and deoxygenated haemoglobin absorb dif-
ferent wavelengths (960nm and 660nm). The transmitted light in the area of interest is mea-
sured through the use of a transimpedence amplifier photodiode. The output of this detector
increases linearly with increasing light intensity. The signal obtained is normalised and the
ratio between the pulsating and non-pulsating component of the red and IR signal is calculated
to determine the haemoglobin concentration using the Lambert-Beer law.
Signal acquisition by this method is totally non-invasive. The sensors assembled in this re-
search are fully integrated in wearable finger clips. It is a continuous process that may, how-
ever, show some fluctuations related to the heartbeat and the configuration of the blood circu-
lation.



Chapter 3

In-Depth Examination of Lactate

This chapter initiates a comprehensive exploration of lactate, delving into its chemical struc-
ture and fundamental physiological properties. As a monocarboxylic acid, lactate holds a
pivotal position in cellular metabolism. Its chiral carbon center introduces nuances that sig-
nificantly impact its behavior within biological systems. Understanding these structural intri-
cacies lays the groundwork for unraveling lactate’s diverse roles in vital biological processes.
At its core, lactate plays a central role in energy metabolism, actively participating in glycol-
ysis and the Cori cycle. This chapter navigates through the involvement of lactate in these
fundamental pathways, shedding light on its contributions to cellular respiration. Beyond its
metabolic functions, the examination extends to the physiological effects of lactate on tissues
and cells. It serves as a signaling molecule, influencing cellular pH and redox balance, thereby
affecting broader cellular functions.
The metabolic interplay of lactate unfolds further, emphasizing its interactions with other key
components in cellular pathways. This exploration sets the stage for subsequent discussions
on lactate’s involvement in gluconeogenesis and its role in maintaining metabolic equilibrium.
The chapter concludes by underscoring the significance of accurate lactate measurement, po-
sitioning it as a valuable biomarker in assessing cellular stress and overall metabolic health.

3.1 Chemical Structure of Lactate

3.1.1 Molecular Composition

Lactate, also known as lactic acid, exhibits a molecular composition represented by the chem-
ical formula C3H6O3. This formula signifies the presence of three carbon atoms, six hydrogen

40
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Figure 3.1: Structural formula of L-lactate

atoms, and three oxygen atoms in each molecule of lactate. It is classified as a carboxylic acid
due to its carboxyl group, which consists of a carbon atom double-bonded to an oxygen atom
and single-bonded to a hydroxyl group.

3.1.2 Isomeric Configuration

Lactate exists in two primary stereoisomeric configurations: L-lactate and D-lactate. The pre-
fix ”L” denotes the levorotatory or left-handed form, while ”D” represents the dextrorotatory
or right-handed form. In biological systems, L-lactate is the predominant isomer, and it plays
a crucial role in various metabolic processes, particularly during anaerobic metabolism.

3.1.3 Structural and Functional Properties

The structural formula of L-lactate, CH3CHOHCOOH, intricately portrays its carboxylic
acid and hydroxyl functional groups. This configuration underscores the compound’s signif-
icance in biological systems, particularly within muscle cells during anaerobic metabolism.
Lactate assumes a central role in essential metabolic pathways such as the Cori cycle, glu-
coneogenesis, and energy metabolism. Functionally, lactate serves as a crucial intermediate
in the conversion of pyruvate during anaerobic respiration, functioning both as a metabolic
byproduct and an energy substrate. Its dynamic equilibrium with pyruvate is indispensable
for maintaining cellular homeostasis and contributing to overall energy balance.
Comprehending the molecular composition, isomeric configuration, and structural and func-
tional properties of lactate is imperative for unraveling its intricate roles in various physio-
logical processes, offering valuable insights into its implications in health and disease. The
accompanying structural formula visually represents the molecular arrangement, enhancing
our understanding of L-lactate’s pivotal contributions to cellular metabolism and homeosta-
sis.
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3.2 Physiological Properties and Significance

3.2.1 Role of Lactate in Biological Processes

The role of lactate in biological processes is multifaceted, particularly under conditions of
oxygen deficiency, high-intensity exercise, or recruitment of non-oxidative muscle fibers. In
these scenarios, a substantial and continuous accumulation of lactic acid is observed both in
the muscles engaged in exercise and in the bloodstream.
Clinically, lactate serves as a crucial prognostic indicator due to its proportional relationship
with the presence of oxygen in tissues. Lactic acid, with a chemical formula of C3H6O3, is a
chiral molecule with two enantiomers, and the L-(+)-lactic acid is predominant in metabolic
cycles. At physiological pH, lactic acid readily dissociates into H+ and lactate ions. The
figure 3.2 illustrates the relationship between lactic acid and lactate, emphasizing that lactate
is the conjugate base of lactic acid. Lactic acid plays a vital role in human energy processes,

Figure 3.2: Lactate is the conjugate base of Lactic acid

particularly within the lactacid anaerobic system. This system is activated during activities
requiring strength and endurance for around one minute.
In this system, ATP is produced anaerobically from glycogen, leading to the production of
pyruvic acid, which is further converted into lactic acid. During prolonged exertion, lactate
accumulates, lowering the pH and causing acidosis. The body eliminates lactate through var-
ious mechanisms, including conversion to glycogen, conversion to protein, and oxidation to
carbon dioxide and water.
In a clinical context, lactate concentrations provide valuable insights. Under resting condi-
tions, a healthy subject typically ranges between 0.5 and 1.5 mmol/L. During physical activ-
ity, this range extends to 12-25 mmol/L.
In critical care, an increase in lactate concentration is a symptom of an imbalance in lactate
production and removal. A lactate concentration of less than 2 mmol/L is considered nor-
mal and should remain around a value of 0.7 mmol/L, whereas in a healthy individual, under
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physical exertion, the range shifts between 11 and 25 mmol/L. In the case of an individual
registering a value above 4 mmol/L at rest, this could be a red flag, as it could underlie health
problems such as myocardial infarction, heart attack and collapse of the blood circulation.
Understanding these measures is crucial for diagnosis, and they should be carried out with
robust and very rapid methods.
There are three distinct ways to eliminate lactic acid from our bodies:

• Through sweat and urine;

• Conversion to glycogen through the Cori cycle, which converts lactic acid to glycogen
or glucose in the liver and kidneys, or to pure glycogen in muscles;

• Conversion to protein;

• Oxidation to carbon dioxide and water.

3.2.2 Interaction with Energetic Metabolism

Lactic acid plays a pivotal role in human energy processes, particularly within the lactacid
anaerobic system. This system is activated under conditions of oxygen deficiency, sustained
high-intensity exercise, or recruitment of non-oxidative muscle fibers. During activities de-
manding strength and endurance for approximately one minute, the body relies on the lactacid
anaerobic system.
In this system, ATP is produced anaerobically from glycogen, stored in skeletal muscle and
the liver. The subsequent hydrolysis of glycogen to glucose facilitates intense muscle activity
but for a limited period. The process of ATP production is oxygen-independent, leading to the
production of pyruvic acid, which is further converted into lactic acid.
Lactate, the conjugate base of lactic acid, becomes a central player in energy metabolism, con-
tributing to essential metabolic pathways such as the Cori cycle, gluconeogenesis, and overall
energy balance. Its dynamic equilibrium with pyruvate is crucial for cellular homeostasis.
During prolonged exertion, lactate accumulates in muscles and blood, influencing the pH and
causing acidosis. The body employs various mechanisms, such as conversion to glycogen,
conversion to protein, and oxidation to carbon dioxide and water, to eliminate lactate.

3.2.3 Physiological Effects in Tissues and Cells

Lactate emerges as a multifaceted player, extending its influence beyond the conventional
perception as a metabolic byproduct. This chapter delves into the profound physiological



44

effects of lactate on tissues and cells, illuminating its dynamic role in cellular function and
adaptation. Lactate, often relegated to the status of a metabolic waste, reveals itself as a vital
metabolic signaling molecule, orchestrating adaptive responses to shifts in energy demands,
oxygen availability, and metabolic states. Beyond its conventional role, lactate serves as an al-
ternative energy substrate during intense cellular activities, contributing to the delicate balance
of cellular energy homeostasis. The nuanced contributions of lactate encompass pH regula-
tion, redox balance maintenance, and intricate cellular signaling, impacting gene expression,
proliferation, and differentiation.
Furthermore, recent insights indicate that lactate plays a role in immunomodulation, influenc-
ing inflammatory responses and the function of immune cells. Cells and tissues demonstrate
adaptive responses to varying lactate levels, leading to changes in gene expression and cellular
processes. The intricate physiological effects of lactate are becoming increasingly apparent,
revealing its crucial involvement in cellular homeostasis, metabolic adaptation, and the nu-
anced orchestration of cellular responses to diverse environmental stimuli.
This aligns with findings from the article ”Lactate metabolism in human health and disease”

by Li et al. (2022), published in Signal Transduction and Targeted Therapy. The article likely
delves into the comprehensive understanding of lactate metabolism, providing valuable in-
sights into its multifaceted roles, particularly in the context of inflammatory responses and
overall human health. The inflammatory response, as discussed in the article, encompasses
various acute and chronic diseases affecting almost all organs. In addition to participating in
inflammatory injury and immune energy metabolism, lactate accumulation triggers the acti-
vation of cellular signaling pathways regulating inflammatory progression and tumor immune
tolerance. Importantly, these regulatory effects are distinct from lactate’s ability to acidify
the cellular environment. While acute inflammation is considered a host defense mechanism,
unrestrained activation can lead to tissue necrosis and prolonged disease. Recent studies have
affirmed that lactate exerts an inhibitory effect on acute inflammation, as illustrated in the
figure 3.3.

3.3 Metabolic Cycles Associated with Lactate

Metabolic cycles associated with lactate encompass a paradigm shift from the conventional
belief that the L-enantiomer of the lactate anion, once thought to be linked to oxygen defi-
ciency in contracting skeletal muscle, is now recognized to form under fully aerobic condi-
tions. This utilization of L-lactate persists across various cells, tissues, organs, and at the
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Figure 3.3: Lactate is implicated in the pathogenesis of diverse diseases, exerting regulatory effects on the
cardiovascular system, respiratory system, digestive system, urinary system, and various other health conditions.
Its significance extends to clinical applications, where lactate serves a pivotal role in the diagnosis and prognosis
of different diseases. [28]

whole-body level, while the atypical D-enantiomer in mammalian metabolism carries docu-
mented adverse effects. Serving as both an inevitable byproduct and a substrate for mitochon-
drial respiration in mammalian systems, L-lactate establishes a vital link between glycolytic
and aerobic pathways, challenging previous notions of lactate as a mere metabolic waste prod-
uct and contributor to fatigue.
Instead, lactate emerges as the primary messenger in a sophisticated feedback loop system,
as proposed by the Lactate Shuttle Hypothesis. This hypothesis posits that the connection be-
tween cells generating lactate and those utilizing or signaling with lactate can transcend com-
partmental barriers, occurring within and between cells, tissues, and organs. Challenges to
adenosine triphosphate (ATP) supply prompt lactate production, initiating immediate, short-
term, and long-term cellular adaptations to maintain ATP homeostasis. While recent reviews
have covered the physiology and biochemistry of this topic, it is essential to consider newly
emerging information, particularly regarding the role of lactate shuttling in metabolic signal-
ing, to fully grasp the intricacies of metabolic cycles associated with lactate.

In various mammalian model systems, including humans, lactate metabolism plays three cru-
cial roles at the whole-body level. Firstly, it serves as a major energy source. Secondly, lactate
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Figure 3.4: Illustration of the Lactate Shuttle, portraying the various functions of lactate in transporting oxidative
and gluconeogenic substrates, along with its involvement in cellular signaling. [8]

is a primary precursor for gluconeogenesis. Thirdly, lactate acts as a signaling molecule, func-
tioning in autocrine, paracrine, and endocrine-like ways, earning the designation of a ”lac-
tormone.” Lactate exchanges within and among cells are categorized as ”Intracellular” and
”Cell-Cell” lactate shuttles, highlighting its roles in delivering oxidative and gluconeogenic
substrates and serving as a signaling molecule. Examples include exchanges between cytosol
and mitochondria and between cytosol and peroxisomes. Cell-Cell Lactate Shuttles involve
exchanges between different muscle fibers, as well as between working skeletal muscle and
various organs such as the heart, brain, liver, and kidneys, and between astrocytes and neurons.
These shuttles are often driven by concentration or pH gradients, or redox states. Importantly,
various body compartments and systems, such as the interstitial space, vasculature, and circu-
lation, contribute to lactate shuttling in vivo. [8]

3.3.1 Glycolysis

The glycolysis represents the primary metabolic pathway through which most organisms
break down glucose molecules to produce energy. This process was fundamental for early life
on Earth as it occurred in the absence of oxygen, an element not available during that time.
Glycolysis, indeed, does not require oxygen and plays a crucial role in anaerobic metabolic
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processes.
From a chemical perspective, glycolysis is a partial oxidation of glucose occurring in the cell’s
cytoplasm. Starting with six carbon atoms, two molecules of pyruvic acid, characterized by
three carbon atoms, are obtained. Compounds such as adenosine triphosphate (ATP), adeno-
sine diphosphate (ADP), and adenosine monophosphate (AMP) are involved in the process,
responsible for transferring and storing phosphate groups. Coenzymes like nicotinamide ade-
nine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2) par-
ticipate in the redox reactions of metabolic intermediates. Additionally, coenzyme A is re-
sponsible for storing and transferring acetyl groups.
Glycolysis takes place in the cytoplasm of all cells, but its energy yield is limited, representing
only 6% of the energy a cell can derive from a glucose molecule. Under aerobic conditions, the
pyruvate and NADH generated during glycolysis are transferred to the mitochondria, where
cellular respiration is completed with a significant energy gain.
However, under anaerobic conditions, some cells and unicellular organisms convert glycolysis
products through a fermentation process, as additional ATP molecules are not generated. Gly-
colysis proceeds through 10 reactions catalyzed by specific enzymes, producing metabolic
intermediates in the form of a phosphoryl ester, organic molecules preventing the products
from crossing the cell membrane due to the negative charge provided by the phosphate group.
The main oxidizing agent is NAD+, and for each glucose molecule oxidized to pyruvate, two
ATP molecules are produced.

Glucose + 2 NAD+ + 2 ADP + 2 HPO−2
4

Glycolysis−−−−−→ 2 Pyruvate + 2 ATP + 2 NADH + 2 H2O

The resulting pyruvate does not accumulate but undergoes one of three possible enzyme-
catalyzed reactions, depending on oxygenation status and cell type. These reactions include
reduction to lactate (lactic acid fermentation), reduction to ethanol (alcoholic fermentation),
and oxidation and decarboxylation to Acetyl-CoA.
A key to understanding the biochemical logic of two of the three possible fates of pyruvate is
to consider that it is produced from glucose oxidation through glycolysis. As glycolysis con-
stantly requires NADH replenishment, two metabolic pathways utilize pyruvate to regenerate
NAD+ under anaerobic conditions.
Lactic acid fermentation, of particular interest in research, is the main pathway for NAD+ re-
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generation under anaerobic conditions and is catalyzed by the enzyme lactate dehydrogenase.

Pyruvate + NADH +H3O
+ + 2 HPO−2

4
−−−−−−−−−−−⇀↽−−−−−−−−−−−

Lactate dehydrogenase
Lactate +NAD+ +H2O

Under conditions of oxygen deficiency in muscles or during intense physical activity, there
is a substantial and continuous accumulation of lactate in muscle tissues and bloodstream.
Exhaustion occurs when the blood lactate concentration reaches critical levels, around 8-15
mmol/L. During the dissociation of lactic acid into lactate, the ion H+ is formed, managed
by the body’s buffering systems such as hemoglobin and bicarbonate. These responses, how-
ever, lead to physiological consequences, such as shifting the oxygen-hemoglobin dissociation
curve and influencing lung gas exchange due to bicarbonate buffering of the H+ ion.
It is essential to note that these buffering systems have limits, both temporally and quantita-
tively, and persisting under these conditions can lead to a decrease in pH in muscle tissues
and blood. When muscle pH reaches acidic levels, the activity of key glycolysis enzymes is
inhibited, providing a self-protective mechanism against excessive acidification of body flu-
ids. Under physiological conditions, muscle pH is around 7.05, and during intense physical
activity, it can decrease to 6.5.

3.3.2 Cori Cycle

Lactate, produced in the muscles through anaerobic glycolysis during physical exertion be-
yond the anaerobic threshold, plays a crucial role in the recovery process. During this phase,
lactate diffuses from the muscles into the bloodstream and is transported to the liver.
The key enzyme involved in this process is lactate dehydrogenase, which catalyzes the con-
version of lactate to pyruvate in the liver. Subsequently, pyruvate is converted into glucose
through hepatic gluconeogenesis. This process enables the liver to generate new glucose from
the lactate derived from the muscles.
The glucose produced in the liver can be released into the bloodstream through the action
of the hepatic enzyme known as glucose-6-phosphatase. Once in the bloodstream, glucose
can be recaptured by the muscles, where it is used to replenish glycogen stores. The ability
to convert lactate into glucose in the liver is crucial for maintaining a continuous supply of
glucose during and after intense physical exercise.
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Figure 3.5: Cori Cycle schematic representation

3.4 Importance of Lactate Measurement

The measurement of L-lactate levels in blood is a crucial parameter in various fields, providing
valuable insights into physiological and pathological processes. Normally ranging from 0.5 to
2.2 mmol/L, L-lactate levels can significantly increase, reaching 12-25 mmol/L during intense
physical activity. However, the body efficiently restores these elevated levels to normal within
5-10 minutes through hepatic metabolism and lactate-to-pyruvate conversion. Prolonged hy-
perlactatemia, indicative of tissue lactate hyperproduction or utilization system pathology, is
associated with a negative prognosis for patient outcomes. In intensive care units, dynamic
measurements of lactate levels serve as crucial indicators, assessing the severity of patient
conditions and predicting the likelihood of shock, collapse, and mortality.
Beyond medical applications, lactate measurements play a pivotal role in diverse industries. In
the dairy sector, monitoring lactic fermentation processes and assessing the quality of finished
products are common practices. Distinguishing between D- and L-lactate aids in identifying
fermentation processes in food products, with D-lactate acting as an indicator of bacterial
contamination in packaged meat, fish, and fruit juices. Additionally, D-lactate detection is
relevant in dentistry for assessing bacterial contributions to carious cavities. In the wine in-
dustry, lactate monitoring informs the evaluation of malate-lactate fermentation processes.
Several biosensors have been developed for lactate determination, contributing to the assess-
ment of water contamination levels in silo sewage. This multifaceted importance of lactate
measurement underscores its significance across diverse sectors. [27]
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3.4.1 State of Art of the technology

The biggest problem we have in measuring lactate concentration at present is that we do not
have noninvasive devices available that allow continuous measurement in clinical practice.
The state of the art consists exclusively of devices that can perform intermittent measure-
ments through the Arterial Blood Gas Analyser (ABG), which is a gold standard for these
measurements. This method of analysis is also very expensive, invasive, as they require a
large amount of blood (100-200 µL), and complex to perform, so much so that skilled nurses
are required. Consequently, there is a need for studies and research to find a possible solution
to this unmet clinical need.
Research in recent years has moved more toward ex vivo and in vivo electrochemical sensing
systems. The ex vivo monitoring systems are used in conjunction with subcutaneous or ultra-
filtration probes, while the in vivo ones involve subcutaneous implantation and directly mea-
sure blood lactate concentration. The problem with this category of biosensors is essentially
that they are invasive, since they are implanted, do not allow for reproducible measurements
and require sample preparation.
Some studies conducted in recent years are trying to create a wearable, noninvasive device to
go and detect lactate in sweat, which is one of the means by which the body eliminates the
excess metabolite. In the article ” Wearable Sensor System for Detection of Lactate in Sweat”

[15] a demonstration case is reported in which an organic electrochemical transistor is used,
which, however, shows a limited range of sensitivity at concentrations below 1mM.
As a result, research has been directed toward new horizons, specifically, the use of spec-
troscopy in conjunction with multivariate analysis. In particular, we want to focus on the
prospects that the use of NIRS in the determination of lactate concentration opens up.
As early as the late 1990s, several studies had shown that NIRS could detect lactate in human
plasma and amniotic fluid. The problem is that if our goal is to detect lactate in blood, we
must also consider the effects erythrocytes may have on absorption and scattering. One of the
most recent approaches proposed is that of 2020, reported in the article ’Identification and

Quantitative Determination of Lactate Using Optical Spectroscopy-Towards a Noninvasive

Tool for Early Recognition of Sepsis’ by Budidha et al. [10]. The experiment proposes, first
of all, to explore the optical properties of lactate in a solute very similar in constitution and
properties to blood, but with a smaller amount of adsorbents and a wider physiological range,
i.e. between 0 and 20 mmol/L. In this way, we are able to try to isolate the variations in the
spectrum as a function of the lactate concentration in the fluid from the other chromophores.
The solute proposed in several studies is phosphate-buffered saline (PBS).
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Thirty-seven samples with different sodium lactate (NaLac) concentrations in the range of 0
-20 mmol/L are examined. Temperature and pH are kept constant in order to avoid artifacts
in the spectrum.
To validate the procedure, samples containing very high concentrations of NaLac (100−200−
300 − 400 − 500 − 600mmol/L) are also taken, so that the peaks of interest are enhanced.
Two spectrometers are used:

1. One for Visible/UV (regions between 300 - 860 nm) and for NIR (800-1800 nm);

2. The other for MIR (1800-2600 nm).

Using this instrumentation, they carried out spectral measurements on all thirty-seven sam-
ples.
A pre-processing procedure is then performed in which the spectrum obtained from the sam-
ple with a concentration of 0 mmol/L is subtracted from all the others. This procedure ensures
that all the effects that the PBS components generate on the spectrum are eliminated, leaving
only the information relating to lactate. In this way, they isolate the peaks due to NaLac.
To enhance the small variations in the spectrum caused by the lactate alteration, they apply
the Robust Linear Multiplicative Scatter Correction algorithm. The spectrum is then filtered
and processed to remove the effects of high-frequency instrument noise and all outliers are
removed. The same procedure is also used for high concentration samples used for validation.
PLS is used to try to extract lactate data from the samples and separate them from water,
sodium and potassium. To calculate the most suitable number of latent variables I use PRESS.
The PLS model is created with a leave-one-out procedure.
In the UV/Visible spectrum, the peaks are mainly due to absorption of the PBS solute molecules,
not the lactate. These are all peaks due to O-H bonds, not characteristic of the molecule.
In contrast, NIR is mainly absorbed by O-H and C-H bonds, the latter being very present in
organic molecules such as lactate. After pre-processing the source spectrum, i.e., subtracting
the spectrum obtained from the sample with 0 mmol/L NaLac concentration, bands related
to C-H bonding occur at 1215nm, 1730nm, 1684nm, 2299nm and 2259nm. But changes
in absorbance of these bands in the spectrum, caused by changes in NaLac concentration,
are hardly visible. Hence, it becomes essential to conduct a ”leave-one-out” PLS analysis.
These observations show that the best absorbance peak occurs between 2100-2400 nm. Fur-
thermore, to create the PLS model they chose to use eight latent variables (obtained by eval-
uating the PRESS parameter). From this model we obtained the results that R2 = 0.976 and
RMSECV = 0.89mmol/L. These values are very good and in particular the RMSECV is
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Figure 3.6: Relationship between the NaLac concentration predicted by the PLS model with NIR radiation and
the reference NaLac concentration of thirty-seven samples. [10]

lower and therefore better than the one measured for the UV/Visible range.
This indicates that although the close correlation of data at very low lactate concentrations is
not evident, it is easy to distinguish changes approaching 1 mmol/L lactate in PBS solutions
(as per specification).
Absorption in the MIR is linked to the typical bonds of organic compounds. There are two
portions of the spectrum in the IR, namely the region from 2500 nm to 6667 nm called the
functional group region, or diagnostic region, which provides information on the presence of
certain functional groups, and the region from 6667 nm to 25000 nm it is called ”fingerprint”
and is characteristic of each individual compound. In the latter, in our case we see several
overlapping absorbances, so although this band is highly specific for the compounds, these
overlaps create quite a few difficulties and it is preferable not to use it. The diagnostic region,
however, is more interesting. We have peaks at 3166nm, 3347nm, 3413nm and 3506nm, as-
sociated with the C = O, −OH and CH3 bonds typical of the lactic acid molecule. Due to
the complexity of the MIR spectrum, the linearity between absorbance and concentration is
no longer visible, as can also be observed from measurements on samples with high lactate
concentrations. However, the PLS model with 8 latent variables works very well and leads to
results such as: R2 = 0.992 and RMSECV = 0.495mmol/L. The accuracy here is compa-
rable to that of the gold standard of these measurements, the arterial blood gas analyzer, which
shows an accuracy of < 0.5mmol/L over a physiological range of 1.0− 10mmol/L. There-
fore, the MIR as a radiation range is certainly better, however it has a significant problem.
MIR cannot be used if you want to measure blood lactate concentration through a wearable
device, since the radiation cannot penetrate the skin and blood vessel walls, while NIR can.
In our case, therefore, given that the device that must measure the radiation must be installed
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Figure 3.7: Relationship between the NaLac concentration predicted by the PLS model with MIR radiation and
the reference NaLac concentration of thirty-seven samples.[10]

in a position where it is directly in contact with the blood, both could be used.
Despite of the peaks that we are able to observe in NIR range, by consulting further documen-
tation, we have been able to establish that there were interesting peaks also in MIR range. As
a result, we decided to take a closer look at technology used to conduct spectroscopic analyses
in the MIR range. We want to analyse their main differences.
Through a thorough literature review, we identified research that combines spectroscopy with
machine learning algorithms to develop diagnostic devices for assessing lactate concentration.
In particular, the article ’Machine Learning-Assisted Raman Spectroscopy for pH and Lactate

Sensing in Body Fluids’ by Olaetxea et al. ([32]) explored the application of Raman spec-
troscopy, demonstrating its promising utility in the medical context.
This methodology is ideal for such analyses, as it has the ability to provide high molecular
selectivity despite being a non-invasive method. Furthermore, thanks to numerous studies
previously conducted, Raman spectroscopy is considered to be adequately developed to per-
form measurements of physiological parameters for both rapid ex vivo biomedical analyses
and continuous in vivo monitoring.
Despite the evident challenges in interpreting spectra, attributed to weak signals, biomolecule
fluorescence, and overlapping spectral features of different sample components, it has been
observed that integrating Raman spectroscopy with appropriate data preprocessing methods
and Machine Learning algorithms allows for extracting crucial information to create predic-
tive models applicable to new datasets. Unfortunately, we are not yet able to meet clinical
requirements for the quantification of complex mediums like body fluids.
The proposed approach holds significant potential for improving the diagnosis of conditions
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related to pH and lactate, such as hypoxia and sepsis, contributing to the understanding and
accurate monitoring of physiological parameters in complex biological samples.
Throughout this study, analyses were conducted both in vitro and ex vivo using Raman spec-
troscopy. Initial measurements were performed on aqueous solutions, demonstrating the
method’s validity with pH variations (from 6.80 to 7.60) and lactate concentrations. Sub-
sequently, blood and plasma samples from domestic pigs were analyzed using a customized
Raman spectroscopy system.
A crucial step in analyzing Raman spectra from biological samples is preprocessing, given
the heterogeneous nature of the samples. In this study, spectra were limited between 5882 nm
(MIR region) and 33333 nm (FIR region) and preprocessed in MATLAB. Raw spectra un-
derwent sixth-order extended multiplicative signal correction to eliminate additive and mul-
tiplicative noise, along with a normalization procedure to remove interferences. Occasional
noises were treated with the median of consecutive spectra, and a Savitzky-Golay filter was
applied for smoothing. Finally, asymmetric least squares were used to subtract the smoothed
background created by biomolecule fluorescence.
Subsequently, multivariate analysis was applied. An issue with Raman spectroscopy is the
generation of a high number of variables, potentially leading to overfitting and rendering the
model unusable with new datasets. Therefore, dimensionality reduction techniques such as
Principal Component Analysis (PCA) and Partial Least Squares (PLS) were employed, as de-
tailed in the next chapter of this thesis. PCA facilitates the visualization and interpretation of
spectral data, while PLS is used to formulate predictive regression models correlating spectral
variability with pH and lactate concentration in samples.
Performance analysis of predictive models is divided into two phases: the first involves con-
structing and calibrating the model, and the second entails validation. To mitigate overfitting
and optimize the model, the leave-one-out cross-validation method is adopted. Two parame-
ters, the Root Mean Squared Error of Prediction (RMSEP) and the coefficient of determination
R2, are employed to measure the quality of the predictive model. This entire procedure is ex-
ecuted in MATLAB.
For our purpose, we are particularly interested in analyzing the results obtained in lactate anal-
ysis. Three different experiments were conducted: the first with lactate in an aqueous solution
to exclude complex medium effects, the second in blood, and the third in plasma.
In the first experiment, a PLS regression predictive model was constructed on preprocessed
spectra of 60 samples, divided into 48 for the calibration set and 12 for the validation set.
The model was calibrated through RMSECV, and the optimal number of latent vectors was
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determined according to the Wold criterion or ”Q² Wold criterion.” The Wold Q² is based on
the difference between the explained variance of the model and the unexplained variance. A
higher value of this parameter indicates a better model, as it explains more variance in the
response data. The model was then tested on unknown samples, providing a very low RM-
SEP of 0.32 mM and an R2 of 0.99, confirming the excellent performance of the model, as
illustrated in Figure 3.8. In the second experiment, the model was developed using 32 sam-

Figure 3.8: Results obtained with the PLS regression model for the detection of lactate concentration in Aqueous
Solution [32]

ples of domestic pig blood, divided into 24 for calibration and 8 for validation. The predictive
capacity of the model when applied to unknown data was measured once again through the
parameters RMSEP and R2, assuming values of 1.25 mM and 0.96, respectively. (Figure 3.9)
3.8. In this case, an analysis of the regression coefficients (Figure 3.10) was also performed,
revealing two crucial concepts: spectral variation is primarily correlated with lactate concen-
trations, identifying its characteristic Raman bands; however, other spectral bands not related
to lactate influence the model. To understand the origin of these spectral bands, an electro-
chemical analysis was conducted on four blood samples with varying lactate concentrations
over two time periods. The results show that changes in clinical parameters over time can
contribute to spectral effects. Additionally, the effects of prolonged use of high-power lasers
causing hemoglobin denaturation were considered. All these considerations are essential for
the accurate interpretation of results, emphasizing the importance of experimental condition
control. 3.8.
Finally, the measurement of lactate concentration in blood plasma was performed. (Fig-
ure 3.11) The obtained model is much more robust, presenting an RMSEP of 0.51 mM.
Through these various experiments, it was observed that blood, especially hemoglobin, is
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Figure 3.9: Results obtained with the PLS regression model for the detection of lactate concentration in domestic
pig blood [32]

Figure 3.10: Model regression coefficients [32]

extremely sensitive to measurement conditions, adding uncontrollable variability to the pre-
dictive model. In conclusion, the articles ”Identification and Quantitative Determination of
Lactate Using Optical Spectroscopy towards a Non-invasive Tool for Early Recognition of
Sepsis” and ”Machine Learning-Assisted Raman Spectroscopy for pH and Lactate Sensing
in Body Fluids” have further strengthened our belief that applying PLS as a Machine Learn-
ing algorithm to create a model capable of predicting lactate concentration through spectrum
acquisition represents the optimal solution to this challenge.
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Figure 3.11: Results obtained with the PLS regression model for the detection of lactate concentration in domes-
tic pig blood [32]



Chapter 4

Mathematical Models for the Prediction
of Biochemical Substance Concentrations

This chapter delves into the pivotal role of latent variable modeling in predicting concen-
trations of biochemical substances from spectra. ”Latent variable modeling” proves indis-
pensable in overcoming challenges posed by complex spectral data and decoding intricate
molecular interactions.
Latent variables serve as a crucial link between direct spectral measurements and the sought-
after information on biochemical concentrations. Their ability to reveal concealed features in
data becomes especially pertinent when dealing with the intricacies of mixed samples, where
spectral overlap complicates direct differentiation.
Through latent variable modeling, we extract meaningful insights and unveil concealed pat-
terns in spectral data, providing a clearer representation of the relationships between spectra
and biochemical concentrations. This goes beyond the visible surface of spectra, expanding
latent dimensions to heighten the accuracy and sensitivity of our predictive model.
The chapter underscores the significance of latent variable modeling in predicting biochemical
concentrations, with a specific focus on its application in our research. The analysis empha-
sizes how the inclusion of latent variables has deepened interpretative insights and improved
predictive accuracy, thus significantly contributing to the success of our scientific inquiry.
Within the same context, the chapter concentrates on a comprehensive analysis of mathemat-
ical models for predicting concentrations of biochemical substances. While briefly exploring
Multiple Linear Regression (MLR), Principal Component Analysis (PCA), and Partial Least

Squares Regression (PCR), our primary focus lies on Partial Least Squares Regression
(PLS). This choice stems from the demonstrated effectiveness of PLS in our practical ap-

58



59

plications, particularly in the precise prediction of substance concentrations in mixed samples
based on their spectra. Through a focused analysis of PLS, we will explore its fundamental as-
pects, highlighting its distinct advantages over alternative models in our specific biochemical
application.

4.1 Exploring Dataset Configurations: From Classic Tools
to Contemporary Complexities

During the development period of manufacturing and chemical engineering industries be-
tween the ’20s and ’50s, data collected from processes were limited to a few columns, ob-
tained through manual measurements incurring considerable costs. ”Classic” tools used in-
cluded scatter plots, time-series plots, and multiple linear regression (MLR) models based on
least squares.
The representation of each dataset occurs through a matrix, where each row contains an obser-
vation or sample, and each column represents a specific variable or attribute associated with
each observation or sample.
During that era, datasets often had more rows than columns, as adding new columns involved
high expenses and time. The selection of columns to measure was carefully considered to
avoid unnecessary duplications.
However, while these datasets met the requirements for using ”classic” tools, modern datasets
exhibit more varied configurations, with a significant number of columns for each observa-
tion. If we consider a dataset with N rows and K columns, we can identify different types of
datasets:

1. Both N and K small: This case is typical of complex and expensive measurements,
generally analyzed using ”classic” methods.

2. N small but K large: This situation is common in laboratory instrumentation, es-
pecially in spectroscopy. Instruments provide spectral responses at numerous wave-
lengths, represented in a matrix. The main challenge is managing K > N , making the
application of ordinary linear regression models difficult. Selecting relevant columns re-
quires an advanced approach, such as latent structure projection, to effectively address
data non-independence.

3. N large and K small: Modern chemical refineries generate vast amounts of data, with
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numerous observations per second on a high number of variables. Analyzing such data
requires advanced approaches.

4. N and K approximately equal: In situations where the number of variables approx-
imately matches the number of observations, we get quadrangular matrices. These pe-
culiar situations can influence data analysis.

5. Matrices X and Y : This configuration occurs when we want to predict one or more
variables from a group of other variables, common in linear regressions.

6. Three-dimensional and higher-dimensional datasets: With the increased use of new
technologies, three-dimensional and higher-dimensional datasets have become com-
mon. They require sophisticated analytical approaches to handle the additional com-
plexity of extra dimensions.

7. Batch datasets: In batch systems, typical in high-value industries, we combine data
describing batch preparation (matrix Z) with constant data during the batch duration
(matrix X) and the final product properties (matrix Y ).

8. Data Fusion: Data fusion involves collecting and utilizing data from various sources,
such as near-infrared probes, offering integrated analysis.

These various dataset configurations highlight the importance of considering the size of N
and K, with particular emphasis on the case where N is small and K is large, a situation
addressed in the current study.

4.2 Critical Challenges with Engineering Data: Size, Inde-
pendence, Noise, and Other Considerations

Data analysis in engineering encounters several challenges, primarily related to the size of
the data, lack of independence, low signal-to-noise ratio, the non-causal nature of data, and
measurement errors, not to mention the presence of missing data.
Data Size: A distinctive feature of the datasets in question is their vast size in terms of rows
and columns, primarily due to the increasing affordability of data acquisition and storage.
Managing a high number of columns, especially when exceeding 10, becomes complex, re-
quiring specialized tools to simplify the analysis.
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Lack of Independence: The modern complexity of datasets is reflected in the lack of data in-
dependence, complicating the application of models such as multiple linear regression (MLR),
where the (X ′X) matrix becomes singular with strongly dependent data. Selecting a reduced
number of columns may make the data more independent, but this process is often cumber-
some and risky.
Low Signal-to-Noise Ratio: Engineering systems, aiming for stability, produce data with
minimal signals and high noise. Even though the recording is high-frequency, much infor-
mation is discarded by computer systems. Finding meaningful signals in this sea of data is a
considerable challenge.
Non-Causal Data: The nature of happenstance data limits the ability to establish cause-and-
effect relationships. However, correlation models can provide valuable insights, and causality
verification can be subsequently performed through randomly designed experiments.
Errors in Data: Conventional tools often operate under the assumption of error-free data,
while many measurements in engineering systems have errors, often significant. A more flex-
ible approach is needed to handle this reality.
Missing Data: The frequent presence of missing data requires methodologies that go beyond
simply eliminating rows or columns, avoiding the loss of crucial information.
In conclusion, addressing these challenges requires advanced methodologies like latent vari-
able methods, capable of rapidly handling large amounts of data, addressing missing data,
considering higher dimensions, and ensuring flexibility compared to traditional assumptions.

4.3 Multiple Linear Regression (MLR) Model

4.3.1 Mathematical Foundations

Linear Regression serves as a fundamental tool for elucidating the relationship between the
dependent variable y and the independent variable x through the regression equation:

ŷi = β0 + β1Xi, i = 1, 2, 3, ..., n (4.1)

Expanding upon this, Multiple Linear Regression (MLR) extends the paradigm to scenarios
involving two or more independent variables. Multiple linear regression shares the same
assumptions as simple linear regression, including:

1. Uniformity of Variance (Homoscedasticity): The magnitude of prediction errors re-
mains relatively constant across different values of the independent variable.
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2. Independence of Observations: Data points are collected using statistically sound
sampling methods, ensuring no concealed relationships among variables.

3. Multicollinearity Check: In multiple linear regression, it’s crucial to examine potential
correlations among independent variables. If two variables display a high correlation
(r2 >∼ 0.6), only one should be included in the regression model.

4. Normal Distribution: The data adheres to a normal distribution.

5. Linearity: The relationship between the independent and dependent variables can be
adequately represented by a straight line, avoiding curves or groupings.

For a system with k variables, the MLR equation takes the form:

ŷi = β0 + β1Xi1 + β2Xi2 + ...+ βkXik, i = 1, 2, 3, ..., n (4.2)

Herein, Y embodies the dependent variable, X1, X2, ..., Xn denote independent variables,
β0 represents the y-intercept, and β1, β2, ..., βn signify regression coefficients denoting the
change in Y for a one-unit alteration in the corresponding independent variable while keeping
others constant.
Expressing equation (4.2) in matrix form, we have:

Ŷ = β0 +Xβ (4.3)

In practical applications, MLR is employed to determine the plane that best fits the data.
Although models with more than two independent variables exhibit increased structural com-
plexity, MLR techniques remain applicable. In the preprocessing phase, mean-centering of
the x and y vectors is undertaken, enabling the omission of the model’s intercept term β0.
MLR analysis leverages the method of least squares to estimate the regression coefficients βi.
The objective is to minimize the discrepancy between the model’s output Ŷi and the actual
value of Y , with the disparities incorporated into the error vector e. The least square objective
function is formulated as:

f(β) = eT e = (y −Xβ)T (y −Xβ) = yTy − 2yTXβ + βXTXβ (4.4)

By taking the partial derivative with respect to the entries β and equating the result to a vector
of zeros, we establish that:

β = (XTX)−1XTy (4.5)
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Despite its efficacy, MLR is not without limitations. Assumptions such as the absence of
measurement errors in the variables and the inability to handle missing data pose challenges.
The method encounters issues with strongly correlated columns in X , assumes noise-free X ,
and lacks the capacity to address missing values in X . Moreover, the requirement for N > K

can be impractical in certain scenarios, leading to sub-optimal predictions and necessitating
variable selection.

4.3.2 Model Operation and Application Domains

The operational foundation of the Multiple Linear Regression (MLR) model lies in its ability
to capture the intricate relationships between a dependent variable and multiple independent
variables. This model extends the principles of simple linear regression to accommodate the
complexities of real-world scenarios where two or more predictors influence the outcome.
In practical terms, MLR excels in determining the best-fitting plane for a given dataset, mak-
ing it a valuable tool in fields such as statistics, economics, and various scientific disciplines.
The application domains of MLR span diverse industries, where it is employed for tasks rang-
ing from predicting stock prices and economic trends to analyzing experimental data in sci-
entific research.

4.3.3 Pros and Cons

While Multiple Linear Regression (MLR) offers valuable insights and predictive capabili-
ties, it is crucial to acknowledge its strengths and limitations. The method’s strengths lie in
its simplicity, interpretability, and efficiency in capturing linear relationships between multi-
ple variables. MLR is particularly adept at revealing the impact of individual predictors on
the dependent variable, providing a comprehensive understanding of the system under study.
However, the limitations of MLR are notable.
Assumptions such as the absence of measurement errors and the necessity for noise-free data
can limit its applicability in real-world scenarios. Challenges arise when dealing with strongly
correlated independent variables, and the method’s inability to handle missing data poses con-
straints. Additionally, the requirement for a higher number of observations (N > K) may be
impractical in certain situations, necessitating careful consideration and potentially leading to
suboptimal predictions. Despite these limitations, MLR remains a foundational tool in statis-
tical modeling, offering valuable insights when applied judiciously in appropriate contexts.
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4.4 Latent Variable Modeling

4.4.1 Concept of Latent Variables

The concept of a latent variable refers to a quantity that is not directly observable or measur-
able but can be deduced or inferred through the observation of other measurable variables. In
other words, it is a variable that influences observed data but cannot be directly observed or
measured independently.
Latent variables find extensive use in various fields, including statistics, psychology, machine
learning, and data modeling. In the context of statistical modeling, latent variables are often
introduced to represent abstract or hidden concepts that cannot be directly measured. In ma-
chine learning models, latent variables are frequently employed to represent hidden or abstract
features in the data, enabling the capture of complex relationships between input and output
variables.
Conceptually, a latent variable is an abstract construct that cannot be directly measured, such
as an individual’s overall health. In this context, physical measurements like blood pressure,
cholesterol level, weight, and other quantities are used to assess overall health. The latent
variable, therefore, represents the underlying phenomenon that cannot be directly observed
but is correlated with the measurements taken.
Mathematically, a latent variable can be expressed as a linear combination of observable
variables, weighted by appropriate coefficients. If we consider a set of observable variables
X1, X2, . . . , XK , a latent variable T can be represented as T =

∑K
i=1 Xi ·pi, where pi denotes

the weights associated with each observable variable. This formulation allows the synthesis of
information contained in observable variables by constructing a latent variable that captures
the common essence of the data.
From a geometric perspective, the analysis of latent variables can be visualized in a multidi-
mensional space, where observable variables are represented as vectors. The latent variable
can be interpreted as a combination of these dimensions, highlighting the correlation and co-
herence in the data.
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4.5 Principal Component Analysis (PCA) Model

4.5.1 Mathematical Foundations

Principal Component Analysis (PCA) is a fundamental technique in multivariate statistics,
primarily employed to streamline the description of a dataset by reducing the number of vari-
ables to a more manageable set of latent variables. The objective is to minimize potential
information loss in this process.
The methodology involves a linear transformation of variables, projecting the original data
onto a new Cartesian coordinate system. Visualized as a point cloud, this representation illus-
trates how variables co-vary. The initial step, termed mean-centering, shifts these points to the
central position of the coordinate system, eliminating undesired biases from measurements.
Subsequently, scaling the data, often to unit variance, ensures uniform units of measurement.
Establishing new coordinates for the reference system involves identifying principal compo-
nents, each comprising a direction vector pi of size K×1and a vector of scores ti, representing
distances measured by projecting data onto the new Cartesian coordinate system. When em-
ploying a singular component, the latent variable model takes the form of a line; introducing
a second component extends the model to a plane. Subsequently, employing three or more
components defines the model within a hyperplane. This hyperplane serves as the optimal ap-
proximation of the original data, and the perpendicular distance from each point on the plane
is termed residual distance or residual error.
PCA effectively discerns raw data into a latent variable model and a residual error.
The objective post identifying the optimal line is to minimize the error, i.e., maximize the
variance among the scores in the score vector t. Considering xi as a row of raw data, the score
for an observation (ti,1) is defined as the distance from the origin of the vector p1 to the point
where the perpendicular for that data falls.
These mathematical transformations and the underlying principles emphasize the efficacy of
PCA in simplifying complex datasets while retaining essential information.
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Figure 4.1: Component along a vector [18]

Recalling trigoniometric relations, we observe that:
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ti,1 = x
′

1p1 (4.6)

(1× 1) = (1×K)(K × 1)

where ∥ · ∥ indicates the length of the contained vector. Given that the vector p1 has length 1,
we can derive equation 4.6. The ti,1 = x

′
1p1 represents a linear combination:

ti,1 = xi,1p1,1 + xi,2p2,1 + ...+ xi,kpk,1 + ...+ xi,KpK,1

Similarly, the expression for the second score value for the ith observation is given by:

ti,2 = xi,1p1,2 + xi,2p2,2 + ...+ xi,kpk,2 + ...+ xi,KpK,2

and so on for all the components needed.
This entire process can also be expressed in a concise matrix form:

t
′

i = x
′

iP (4.7)

(1× A) = (1×K)(K × A) (4.8)
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This approach enables the simultaneous calculation of all A-score values for a given observa-
tion and, consequently, for the entire data matrix:

T = XP (4.9)

(N × A) = (N ×K)(K × A) (4.10)

4.5.2 Model Operation and Application Domains

PCA involves three fundamental steps:

1. Preprocessing of the raw data;

2. Eigenvalue decomposition;

3. Testing by, for example, Squared Prediction Error (SPE) and Hotelling’s T 2.

Pre-processing can be done the different ways such as transformations, expanding the initial
matrix, handling outliers, centering data in the chosen reference system, and scaling to ensure
uniform units.
Once the preprocessing procedure is completed, we move on to the eigenvalue decomposition
procedure. It can be implemented in different ways explained step by step below.

Eigenvalue decomposition

The initial step of the method involves formulating an optimization problem, recognizing that
the direction of latent variables (or the loading vector) is aligned to maximize the variance of
scores while being orthogonal to each other. For the first component, the objective function is
defined as:

maxϕ = t
′

1t1 = p
′

1X
′
Xp1 (4.11)

s.t.p
′

1p1 = 1

The conventional approach for computing principal components employs Lagrange multipli-
ers, transforming the constraint into an objective function. The maximum value is obtained
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when the partial derivatives with respect to p1 are set to 0:

∂ϕ

∂p1
= 0 = p

′

1X
′
Xp1 − λ1(p

′

1p1 − 1)

0 = 2X
′
Xp1 − 2λ1p1

0 = p1(X
′
X − λ1IK×K)

X
′
Xp1 = λ1p1 (4.12)

Equation 4.12ncludes both the eigenvectors X ‘X and the eigenvalues λ1.
The procedure for the second principal component is similar, with the addition of the con-
straint representing the orthogonality of the direction vectors (p1 ⊥ p2). This can be mathe-
matically translated with the following function: X ′

Xp2 = λ2p2.
To apply eigenvalue decomposition, once the raw data has been preprocessed, the corre-
lation matrix X

′
X , is calculated. Subsequently, the eigenvalues and eigenvectors are de-

termined and sorted in decreasing order. From a computational standpoint, calculating all
eigenvalues can be resource-intensive. The maximum number of eigenvalues to calculate is
Amax = min(N,K).

Singular Value Decomposition (SVD)

A second technique for performing eigenvalue decomposition is Singular Value Decomposi-
tion (SVD). This method involves decomposing the matrix X into three matrices:

X = UΣV
′

(4.13)

Here, U and V are orthonormal matrices, and Σ is a diagonal matrix. The relationship linking
this decomposition to PCA is given by:

X = TP
′

(4.14)

In this equation, P is also an orthonormal matrix. After applying SVD to the source matrix
X , it can be considered that P = V and T = UΣ. Moreover, the terms on the diagonal of Σ
are associated with the variance of each principal component. While this method enables the
calculation of all possible main components, it defaults in handling missing data.
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Non-Linear Iterative Partial Least-Squares (NIPALS)

The NIPALS Algorithm was initially developed for PCA and later adapted for Projection to
Latent Structures (PLS). It is a widely used method for calculating the principal components of
a dataset, offering more numerically accurate results compared to the SVD of the covariance
matrix, albeit being slower to calculate. The method can be summarized by outlining its
various steps:

1. Generate an initial column for ta, which can either be a column with random values or
a column selected at random from those constituting the matrix X;

2. Conduct a Least Square Regression (LSR) on the initial column of ta for each column
of X . Once the regression coefficients are computed, store them in pa, as expressed by
the equation:

pa,k =
t
′
aXk

t′ata

3. Normalize the vector pa to have a magnitude of 1.0.

4. For each row of X , perform a Least Square Regression onto pa and let the regression
coefficients become the values of the scores for the ith row, stored in the ta vector:

ti,a =
x

′
ipa

p′
apa

;

5. Iterate through steps 2, 3, 4 until the changes between one iteration and the next are
very small, approximately on the order of 10−6 or 10−9;

6. Store the vectors ta and pa in the ath column of the respective matrices, namely T and
P . After computing the vectors of variable weights (scores) and principal component
coefficients (loadings) for the first principal component, deflate the data. This involves
removing the information explained by the first principal component from the original
data, resulting in a residual data set. Mathematically, this is accomplished as follows:

Ea = Xa − tap
′

a

Xa+1 = Ea (4.15)

7. Return to step 1 and repeat the entire procedure for the subsequent components.
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The final step in PCA involves model testing, where the goodness of fit of the model is evalu-
ated using precise indices such as Hotelling’s T 2 and SPE.

Squared prediction error (SPE)

After obtaining the PCA model, let’s assume, for simplicity, a single component. The best es-
timate of the observation xi is the point along p1 where the original observation is projected.
Additionally, ti,1 is the distance from the origin of the direction vector to the projection point,
and the actual point along p1 is a vector representing our best estimate of the original obser-
vation, denoted as x̂i,1.

Figure 4.2: Prediction along a vector [18]

Mathematically, I can express x̂i,1 as follows:

x̂
′

i,1 = ti,1p
′

1 (4.16)

(1×K) = (1× 1)(1×K)

If we consider adding a second component, the expression becomes:

x̂
′

i,2 = ti,1p
′

1 + ti,2p
′

2 (4.17)

(1×K) = (1×K) + (1×K)
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In the case of multiple variables, the matrix form is more suitable:

X̂ = TP
′

(4.18)

(N ×K) = (N × A)(A×K)

Once the estimated value is obtained, calculating the vector of residuals is useful. This vector
contains the differences between the actual value and the one calculated by the model:

e
′

i,A = x
′

i − x̂
′

i,A (4.19)

(1×K) = (1×K)− (1×K)

The residual distance is the sum of the squares of the residuals, and to calculate the distance,
we take the square root. The Squared Prediction Error (SPE) is defined as:

SPEi =
√

e
′
i,Aei,A (4.20)

(1× 1) = (1×K)(K × 1)

where ei,A is the residual vector of the ith observation using A components.

Hotelling’s T 2

Another critical metric for evaluating the PCA model is Hotelling’s T 2. Hotelling’s T 2 distri-
bution is an extension of Student’s t-distribution used in multivariate hypothesis testing. The
value of T 2 for the ith observation is defined as:

T 2 =
a=A∑
a=1

(
ti,a
sa

)2

(4.21)

where s2a values are constant and represent the variances of each component. T 2 is a scalar
value that summarizes all score values. It is a non-negative number, and it indicates the
distance from the center of the hyperplane to the projection of the observation onto it.
The calculated T 2 value is a measure of the deviation between the multivariate means of the
considered groups. A higher T 2 value indicates a greater difference between the groups.
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4.5.3 Pros and Cons

Principal Component Analysis (PCA) is a widely employed technique in data analysis, offer-
ing both advantages and limitations.
One of its primary strengths lies in its ability to effectively reduce the dimensionality of
datasets by transforming them into a set of uncorrelated variables known as principal compo-
nents. This facilitates simplified data representation and aids in identifying the most influential
features, making it particularly useful for large and complex datasets. PCA also serves as a
valuable tool for feature extraction, capturing underlying patterns and structures within the
data. Its application is advantageous in scenarios where multicollinearity is prevalent, as it
mitigates issues associated with highly correlated variables. Moreover, PCA aids in visual-
ization by projecting high-dimensional data into a reduced-dimensional space, enabling the
identification of trends, clusters, and outliers.
Despite these benefits, it is essential to acknowledge certain drawbacks, such as the poten-
tial loss of interpretability due to the abstract nature of principal components. PCA assumes
linear relationships between variables, which may not always hold true, and it is sensitive to
the scale of variables, making careful preprocessing necessary. Additionally, its sensitivity to
outliers and the orthogonality assumption of principal components are aspects that should be
considered when applying PCA in a Master’s thesis research context. Understanding these
pros and cons is crucial for making informed decisions about the appropriateness of PCA for
a specific dataset and research objectives.

4.6 Principal Component Regression (PCR) Model

PCR is a statistical analysis technique that is based on PCA. In particular, it is used to esti-
mate unknown regression coefficients in a standard linear regression model. Furthermore, it
represents one of the methods by which I collect and process data from a spectrometer. PCR
also represents an alternative to MLR and has several advantages over it. In PCR we have that
the principal components of the explanatory variable are used as regressors. The main idea of
the method is to replace the K columns in the raw data matrix and to do this, we are going to
replace the N ×K raw data matrix with a smaller one, N ×A, which summarizes the source
matrix.
At this point we are going to identify a relationship that connects the A scores to the y variable
and these two steps can be represented mathematically as follows:
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Figure 4.3: PCR data structure compared to MLR [18]

1. T = XP from the PCA model

2. ŷ = Tb

The second equation can be solved as b = (T
′
T )−1T

′
y

In the context of constructing and using the Principal Component Regression (PCR) model, it
is crucial to follow a specific set of steps:

1. Observation of New Data: Collect the (X) and (y) data required for the model.

2. Building the PCA Model: Use the data in X to develop a PCA model, determining the
number of components (A) through cross-validation. Evaluate the need to modify (A)

after the initial model.

3. Analysis of PCA Graphs: Examine the Squared Prediction Error (SPE) and T 2 plots
generated by the PCA model to ensure that the model is not influenced by outliers.

4. Utilizing Columns in (T ): Use the columns in (T ) from the PCA model as (X) vari-
ables in the normal Multiple Linear Regression (MLR) model.

5. Estimation of MLR Parameters: Solve for the parameters of the MLR model, repre-
sented by a vector b, through the equation b = (T ′T )−1T ′y, where each coefficient in b

corresponds to a score.

6. Application of the Model to New Observations: For a new observation represented
by the vector x′

new, raw:

• Preprocess the vector as done during the construction of the PCA model.

• Calculate the scores t′new for the new observation.

• Obtain the predicted value x̂′
new and the residual vector e′new.



74

• Calculate the residual distance from the model plane (SPEnew) and the value of
Hotelling’s T 2 (T 2

new).

• Before calculating the final prediction, check if SPEnew and T 2
new are below the

95% or 99% limits. If yes, proceed with the calculation of the prediction ŷ′new =

t′newb; otherwise, investigate the reasons for the unusual behavior of the new ob-
servation.

4.6.1 Application Domains

Principal Component Regression (PCR) is a versatile technique widely employed in various
applications. In the fields of chemistry and spectroscopy, PCR contributes to the analysis
of complex spectral data, such as that derived from nuclear magnetic resonance (NMR) or
infrared spectra. In process engineering, PCR models and optimizes industrial processes by
identifying key variables. Environmental applications involve using PCR to analyze complex
data from environmental monitoring, pinpointing major contributors to variations. In biology
and genetics, PCR analyzes molecular data, including gene expression, revealing relationships
between biological variables. In the financial sector, PCR is applied to the analysis of complex
economic data. In medicine, it aids in the analysis of clinical data to identify key factors. In
industrial quality control, PCR monitors and improves product quality by identifying critical
variables. Overall, PCR adapts to contexts with complex and multicollinear data, making it
valuable in various scientific and industrial disciplines.

4.6.2 Pros and Cons

Principal Component Regression (PCR) is a modeling technique that integrates Principal
Component Analysis (PCA) with Multiple Linear Regression (MLR). It offers several advan-
tages, including effective handling of multicollinearity by reducing variables into uncorrelated
principal components. PCR also allows for the reduction of the original variable set, partic-
ularly beneficial when dealing with numerous variables and aiming to simplify the model.
Moreover, it helps prevent overfitting through dimensionality reduction, crucial in scenarios
with limited observations. However, PCR comes with challenges. The interpretation becomes
more complex as it transforms original variables into principal components, lacking intuitive
significance. Additionally, it relies on the linear assumption between independent and depen-
dent variables, which might not hold for all data types. There is a risk of overfitting, especially
if an excessive number of principal components is used relative to observations. PCR may be
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sensitive to outliers, influencing both principal components and subsequent regression. Fur-
thermore, it necessitates scaling, making it advisable to standardize or normalize variables
before application. In conclusion, the decision to employ PCR should be based on a careful
evaluation of the specific problem requirements and the characteristics of the available data.

4.7 Partial Least Squares (PLS) Regression Model

The origin of PLSR lies in the field of chemistry. The development of near-infrared spec-
troscopy (NIR) would have been challenging without a method to quantitatively analyze spec-
tra, given their highly overlapping lines and challenging overtones.
In PLSR, there is typically a minor component in X highly correlated with Y . The inclusion
of this component in the first latent variable distinguishes PLSR from other methods. Despite
similarities with PCR, PLSR often requires fewer latent variables, covering more variation in
Y and achieving comparable prediction accuracies.
PCR and PLSR act as shrinkage methods in algorithms, with PLSR occasionally increasing
the variance of individual regression coefficients. This phenomenon may explain why PLSR
is not consistently superior to PCR.
PLS aims to find latent variables that best explain Xa and Ya, facilitating the creation of a
robust relationship between Xa and Ya. PLS involves three simultaneous operations.

4.7.1 Model Operation and Application Domains

PLS simultaneously extracts the score vectors for X and for Y :

ta = Xawa

ua = Yaca

The goal of PLS is to extract these scores in such a way as to obtain maximum covariance.
Since a high covariance implies a strong correlation between the two vectors, it is more useful
to speak of correlation and variance. Accordingly, we can express it as follows:

Cov(ta, ua) = Correlation(ta, ua)×
√

(V ar(ta))×
√

(V ar(ua))

Cov(ta, ua) = Correlation(ta, ua)×
√

(t
′

ata)×
√

(uau
′

a) (4.22)
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The objective is to maximise the three components simultaneously which allows us to obtain
both the best explanation of the space Xa and that of the space Ya, which are given by the
two variances, plus I also obtain the best relationship between Xa and Ya, which, on the other
hand, is derived from the correlation.
All scores are subject to the same constraint, i.e. wawa

′ = 1.0 and caca
′ = 1.0.

4.7.2 Construction of the PLS model

To create the PLS model, apply the NIPALS algorithm to the preprocessed Xa and Ya matrices
when a = 1.
Also in this case, we will illustrate the various steps:

1. First, we will randomly take a column of the matrix Ya as the initial estimate of ua;

2. Next, I regress each column from Xa onto the vector ua. The regression coefficients are
stored as entries of wa as follows

wa =
X

′
aua

uau
′
a

3. Then, we proceed with the normalization of the weight vector, following the formula

wa =
wa√
waw

′
a

4. At this point I am going to regress each row of Xa on the weight vector, ta. This means
that the rows in Xa that have characteristics similar to those contained in the weight
vector will have a higher value in ta, while the observations that are totally different
from what is reported in wa are recorded with value close to zero. The values stored in
ta follow the following formula:

ta =
Xawa

waw
′
a

5. Now, I regress each column from Ya onto the score vector ta. The regression coefficients
are stored as entries of ca as follows

ca =
Y

′
a ta
tat

′
a



77

6. Then, we proceed with the normalization of the weight vector, following the formula

ca =
ca√
cac

′
a

7. Again, I am going to regress each row of Ya on the weight vector, ca. The values stored
in ca follow the following formula:

ca =
Yaca
cac

′
a

After all these steps, we proceed with the deflation of the matrix X , in order to remove the
already explained variability from Xa and Ya. To do this, using the vector wa, I remove from
Xa its best prediction, X̂a. Mathematically, this involves the following steps

X̂a = taw
′

a

Ea = Xa − X̂a = Xa − taw
′

a

Xa+1 = Ea

The exact same procedure is also applied to Ya, that is

Ŷa = tac
′

a

Ea = Ya − Ŷa = Ya − tac
′

a

Ya+1 = Ea

Note that we never used the score vector ua. This is because if we apply the PLS model to
a new data set in the future, we will not know the values of y and consequently not even the
values contained in ua.
Very often when using PLS models, rather than using the W vector, it is preferred to use the
R vector for the weights. Specifically, R is a matrix whose columns can be found by doing:

R = W (P
′
W )−1 where r1 = w1 (4.23)

4.7.3 Pros and Cons

While Partial Least Squares Regression (PLS) finds extensive applications in fields such as
chemometrics and spectroscopy, it is less commonly employed or understood in certain do-
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mains. For instance, traditional statistical fields, like classical linear regression or analysis
of variance, may be more prevalent in disciplines such as statistics or economics. In areas
where practitioners are more accustomed to classical statistical methods and less inclined
towards advanced machine learning techniques, PLS might face lower adoption rates. More-
over, some branches of machine learning, particularly those favoring transparent and easily
interpretable models, might opt for simpler techniques like linear regression or decision trees.
PLS has the advantage of handling multicollinearity and is suitable for datasets with complex
relationships, making it valuable in specific contexts. However, its sensitivity to outliers and
less widespread use in fields emphasizing model interpretability and underlying statistical as-
sumptions could limit its application. Additionally, in disciplines where the focus is primarily
on hypothesis testing or causal inference, PLS may not be leveraged as extensively, as its
primary strength lies in predictive modeling and capturing complex relationships. The less
common use of PLS in certain fields is not indicative of its inefficiency but rather reflects the
diversity of statistical and machine learning tools available, with each field often having its
preferred methods influenced by historical practices, disciplinary norms, and the nature of the
data typically encountered.

4.8 Comparison and Model Selection

4.8.1 Comparative Analysis of Models

In the realm of predictive modeling for your specific aim of predicting substance concen-
tration from a spectrum, three prominent techniques stand out: Multiple Linear Regression
(MLR), Principal Component Regression (PCR), and Partial Least Squares (PLS). MLR, a
classical approach, models the relationship between multiple independent variables and a de-
pendent variable through a linear equation. It assumes independence of observations, normal
distribution, and linearity, making it a foundational method. However, MLR has limitations,
including sensitivity to multicollinearity and the need for a high number of observations rela-
tive to variables.
PCR, an extension of PCA combined with MLR, addresses multicollinearity by transforming
variables into uncorrelated principal components. It simplifies complex datasets and allows
for efficient dimensionality reduction. However, PCR has drawbacks, such as the challenge of
interpreting principal components and a reliance on the linear assumption between variables.
PLS, specifically chosen for your case, excels in predicting substance concentration from a
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spectrum. It integrates features of PCA and MLR, extracting latent variables that maximize
covariance between spectral data and concentration. PLS is particularly effective with high-
dimensional and collinear data, offering a robust solution for capturing complex relationships.
It addresses the limitations of MLR and PCR, providing a powerful tool for your analytical
objectives.
In summary, while MLR provides a straightforward approach, PCR focuses on dimensional-
ity reduction, and PLS emerges as a versatile solution for predicting substance concentration
from spectral data. The choice among these models should consider the specific character-
istics of your dataset and the trade-offs between simplicity, interpretability, and predictive
performance.

4.8.2 Selected Methods for Concentration Prediction

For the specific aim of predicting substance concentration from a spectrum, the selected
method is Partial Least Squares (PLS). This choice is based on several factors that align with
the unique characteristics and requirements of your analytical objectives.
Firstly, PLS demonstrates exceptional efficacy in handling high-dimensional and collinear
spectral data, which is inherent in scenarios involving substance concentration prediction from
spectra. By extracting latent variables that maximize the covariance between the spectral fea-
tures and the concentration levels, PLS captures complex relationships effectively.
Moreover, PLS integrates the strengths of both Principal Component Analysis (PCA) and
Multiple Linear Regression (MLR). While PCA alone focuses on dimensionality reduction,
PLS goes further by considering the relationship with the response variable (substance con-
centration). This dual focus allows PLS to provide a more comprehensive solution compared
to MLR or PCR.
The ability of PLS to handle collinearity among variables, a common challenge in spectral
data, is a significant advantage. Collinearity often leads to instability in traditional regression
models, making PLS a more robust choice. Additionally, PLS is less sensitive to outliers com-
pared to PCR, contributing to improved model reliability.
In summary, the selection of PLS is driven by its capability to effectively model the intricate
relationships between spectral data and substance concentration. Its versatility in handling
collinear and high-dimensional data, along with its robustness to outliers, positions PLS as
the most suitable method for achieving accurate and reliable predictions in your specific ana-
lytical context.



Chapter 5

Laboratory Experiments and Results
Analysis: Aqueous Pigmented Solutions
and Culture Medium Samples

This chapter focuses on fundamental preliminary experiments conducted using aqueous so-
lutions containing colorants with significant spectra in the visible range. These experiments
serve as an essential prelude to understanding and interpreting subsequent laboratory analy-
ses, which center on evaluating the concentrations of glucose and lactate produced by cells in
culture.
The use of colorants provides an intriguing window into the dynamics of aqueous solutions,
allowing for the tracking of qualitative and quantitative changes through visible color al-
terations. These carefully selected colorants exhibit absorption spectra that extend into the
visible range, providing crucial information about the progression of the involved chemical
reactions. This approach proves particularly useful for monitoring changes in the chemical
properties of solutions and highlighting the presence or formation of specific compounds.
Additionally, the chapter will delve into the detailed execution of a laboratory experiment
aimed at determining the concentrations of glucose and lactate within a cultured cellular sys-
tem. The choice of these two metabolically crucial molecules reflects their significance in
fundamental biochemical processes and cellular energy pathways. Analyzing the concentra-
tions of glucose and lactate offers a comprehensive overview of the metabolic activity of the
examined cells, allowing for the assessment of their physiological state and behavior in re-
sponse to specific stimuli or environmental conditions.
Through the combination of experiments with colorants and biochemical analyses of cultured

80
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cells, this chapter aims to provide a complete and detailed picture of the methodologies used
to explore chemical and metabolic dynamics in aqueous environments. The results obtained
from these experiments will form the foundation for subsequent research phases, contributing
to an in-depth understanding of the biological and chemical processes under investigation.

5.1 Instrumentation (Tecan Spectrometer)

During this initial phase of our research, the Infinite® 200 PRO microplate reader has played
a pivotal role in conducting a meticulous analysis of absorbance, offering precise assessments
of the concentrations of substances under investigation.
Recognized as a cornerstone instrument in our study, the Tecan Infinite 200 PRO operates with
exceptional precision during absorbance measurements. In this mode, a tungsten lamp serves
as the light source, emitting light across a specified range of wavelengths. This emitted light
permeates through the samples housed in the microplate wells. Absorption measurements rely
on the interaction between incident light and molecules within the sample, resulting in the ab-
sorption of specific wavelengths dictated by the unique characteristics of the molecules. The
resulting absorbance spectra provide both quantitative and qualitative insights into the concen-
tration and nature of the substances. The instrument’s sophisticated optical system, featuring
filters or monochromators, facilitates the precise selection of wavelengths for excitation and
emission. Absorbance values are then detected by a sensitive photodetector, ensuring accurate
quantification.
The Tecan Infinite 200 PRO’s advanced temperature control system guarantees experiment
stability, a critical factor for reactions sensitive to temperature fluctuations. Seamless integra-
tion of data acquisition and analysis into the user-friendly software enhances the efficiency
of interpreting and visualizing absorbance data. This comprehensive approach to absorbance
measurements underscores the Tecan Infinite 200 PRO’s significance in elucidating the chem-
ical composition and concentration of target molecules, thereby substantially contributing to
the success and reliability of experimental outcomes in our research.
The Tecan Infinite 200 PRO microplate reader boasts an intuitive and user-friendly interface

that significantly contributes to the efficiency and accessibility of our experimental endeavors.
This interface serves as a central hub for experiment design, allowing for the easy specifi-
cation of parameters such as measurement type, wavelength settings, and microplate layout.
Real-time monitoring capabilities provide invaluable insights into the ongoing experiments,
enabling prompt assessments of data quality. The temperature control feature, seamlessly
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Figure 5.1: Tecan Infinite 200 PRO

integrated into the interface, allows for precise regulation and monitoring of experimental
conditions. Ultimately, the Tecan Infinite 200 PRO’s user interface plays a pivotal role in
facilitating experiment execution, data analysis, and ensuring a seamless user experience for
researchers across different proficiency levels. The figure 5.2 shows the graphical user inter-
face of the tool to set up and start the analysis.

5.2 Preliminary Experiments

5.2.1 Materials Used

Used Dyes: Alizarin and PrestoBlue

The first dye used for laboratory testing is Alizarin Red S. It is a water-soluble sodium salt of
Alizarin sulphonic acid with a chemical formula of C14H7NaO7S. In the field of histology
it is used to mark calcium deposits in tissue, while in geology it is used to identify minerals
containing carbonate ions (CO2−

3 ). The structure of alizarin presented in the figure 5.3 shows
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Figure 5.2: Graphic interface to set up and start the analysis

a 9,10-anthraquinone structure with two hydroxyl substituents at positions 1 and 2. They
shift the energy absorption to the visible region and are responsible for the indirect binding of
the molecule to a support. The groups responsible for the red colouring of the molecule are
the two hydroxyls and the carbonyls, i.e. its chromophore groups. UV/visible spectroscopy
of the molecule makes it possible to describe the microscopic properties responsible for the
macroscopic properties, such as which transitions are responsible for the molecule’s colour-
ing. The spectrum shows two bands: the first is due to π − π transitions in the 200-300 nm
range and, being in the ultraviolet, makes no significant contribution to the colouration; the
second, on the other hand, although also due to π−π transitions, but being in the visible range
at around 450 - 500 nm determines the colouration of the molecule in a sometimes peculiar
manner. It is precisely the position of the latter band that leads to a significant variation in
the molecule’s colouration. The second dye we used was PrestoBlue. It has resazurin as an
active ingredient, which is a non-fluorescent blue dye that can be reduced by metabolically
active cells to a fluorescent pink product called resorufin. Specifically, the dye contains a re-
dox indicator that changes colour in response to the metabolic activity of living cells. Viable
cells with active metabolism reduce the PrestoBlue dye, resulting in a colour change or fluo-
rescence. For this reason, PrestoBlue is used in the measurement of cell viability. The extent
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Figure 5.3: Chemical structure and Visible/UV absorption spectrum of ALizarin Red S dye [38]

of the colour change or fluorescence can be measured by spectrophotometry or fluorimetry,
providing a quantitative assessment of cell viability. Researchers commonly use PrestoBlue
in assays where they need to determine the effects of various treatments (such as drugs or
experimental conditions) on cell viability. The test is relatively quick and convenient, making
it a popular choice for high-throughput screening.
The chromophore properties of resazurin and its transformation to resorufin are key to its ap-
plication in cell viability assays. Resazurin in its unaltered state has a maximum absorbance
around 600-605 nm, resulting in a blue color. In the figure 5.4, we can observe the chemical
structure and absorption spectrum of both resazaurin and resorufin.

5.2.2 First Experiment: Alizarin Solution

The first experiment we chose to conduct involved samples containing different concentra-
tions of Alizarin. We chose to make 21 samples with different dilutions of alizarin and used
laboratory micropipettes to dose them.
Specifically, we started with the mother substance, which we will call sample (1), placed in-
side a 1.5 mL laboratory tube with a solution consisting of 850 µL of water and 150 µL of
Alizarin.
From mother tube (1), I take 750 µL of solution previously mixed with a shaker and place it
in another 1.5 mL test tube with 250 µL of water inside. The new test tube will be number
(2) and I mix the contents with the shaker. Now from test tube number two I take 750 µL and
place it in test tube number (3), which contained 250 µL of water and so on.
This procedure will be repeated another 17 times until I have obtained the 21 predetermined
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Figure 5.4: Chemical structure and Visible/UV absorption spectrum of PrestoBlue dye [14]

samples at different concentrations.
At this point, I take a 96-well plate. Inside the wells I put 100 µL of the solutions in the
tubes. I need 100 µL otherwise I cannot cover the entire bottom of the well, compromising
the measurement with the spectrometer that I am going to make.
Once I have loaded all my samples with diluted solutions, I go on to add an additional sample
containing only water.
Now, the 96-well plate is ready and I insert it into the spectrometer and start the acquisitions.
Specifically, acquisitions will be made at wavelengths between 200 nm and 1000 nm with a
step size of 5 nm.
Our spectrometer will report all the results obtained in an Excel file from which the values
that will make up our spectra will be extracted.
Once I have the file with all the data, I go and import it into MATLAB.
To do this, I use the following code:

1 % Load E x c e l f i l e and s p e c i f y s h e e t name
2 f i l e E x c e l = ' S p e c t r a 2 0 . x l s x ' ;
3 s h e e t = ' Sh ee t0 ' ;
4 % D e f i n e c e l l r ang es f o r s p e c t r u m da ta i n E x c e l
5 gammacel l s = [ ” S30 : EZ30 ” , ” S38 : EZ38 ” , ” S46 : EZ46 ” , ” S54 : EZ54 ” , ” S62 : EZ62 ” ,

” S70 : EZ70 ” , ” S78 : EZ78 ” , ” S86 : EZ86 ” , . . .
6 ” S31 : EZ31 ” , ” S39 : EZ39 ” , ” S47 : EZ47 ” , ” S55 : EZ55 ” , ” S63 : EZ63 ” ,

” S71 : EZ71 ” , ” S79 : EZ79 ” , ” S87 : EZ87 ” , . . .
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7 ” S32 : EZ32 ” , ” S40 : EZ40 ” , ” S48 : EZ48 ” , ” S56 : EZ56 ” , ” S64 : EZ64 ” ] ;
8 % I n i t i a l i z e a m a t r i x t o s t o r e s p e c t r u m da ta
9 d a t a = z e r o s ( 2 1 , 138) ;

10 % D e f i n e w a v e l e n g t h s f o r p l o t t i n g
11 w a v e l e n g t h s = [ 3 1 5 : 5 : 1 0 0 0 ] ;
12 % Cr ea te a f i g u r e f o r p l o t t i n g
13 f i g u r e
14 % Loop t h r o u g h each sample , l oad s p e c t r u m data , and p l o t
15 f o r i = 1 :21
16 % Load s p e c t r u m da ta from E x c e l i n t o t h e da ta m a t r i x
17 d a t a ( i , : ) = x l s r e a d ( f i l e E x c e l , s h e e t , gammacel l s ( i ) ) ' ;
18 % P l o t t h e s p e c t r u m
19 p l o t ( wave l eng ths , d a t a ( i , : ) ) ;
20 % Add t i t l e and a x i s l a b e l s t o t h e p l o t
21 t i t l e ( ' S p e c t r a o f t h e 21 samples ' ) ;
22 x l a b e l ( ' Wave leng ths (nm) ' ) ;
23 y l a b e l ( ' Absorbance ' ) ;
24 % Hold t h e p l o t t o o v e r l a y m u l t i p l e s p e c t r a
25 hold on
26 end

Listing 5.1: Code for importing and plotting data

In this way, I obtain the plot of all 21 spectra as shown in the image 5.5. At this point, to

Figure 5.5: Spectrum of the 21 samples

create the predictive model, I need to calculate the known concentrations. To do this, I need
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to:

1. I calculate the concentration by doing:

Concentration1 =
150µL

150µL+ 850µL
(5.1)

2. To calculate the concentration of following test tubes, I perform the following operation:

Concentrationi =
Concentrationi−1V olumei−1

V olumewater + V olumei−1

(5.2)

where Concentrationi is the concentration of the test tube I am currently considering,
Concentrationi−1 is the concentration of the solution I have taken from the ’previous’
test tube and placed in the i-th tube which a priori contains a certain volume of water
(250 µL), V olumei−1 is the volume of the solution I have taken from the i− 1 test tube
and added to the i-th tube.

This procedure is performed by the code 5.2

1 % I n i t i a l volume o f A l i z a r i n and water i n m i c r o l i t e r s
2 A l i z a r i n = 150 ; %[ mcrL ]
3 Water = 850 ; %[ mcrL ]
4 % I n i t i a l i z e an a r r a y t o s t o r e known c o n c e n t r a t i o n s
5 C o n c e n t r a t i o n k n o w n = z e r o s ( 2 1 , 1 ) ;
6 % C a l c u l a t e c o n c e n t r a t i o n f o r t h e f i r s t sample
7 C o n c e n t r a t i o n k n o w n ( 1 ) = A l i z a r i n / ( Water + A l i z a r i n ) ;
8 % C a l c u l a t e c o n c e n t r a t i o n s f o r t h e s u b s e q u e n t sample s u s i n g a r e c u r s i v e

f o r m u l a
9 f o r i = 2 :20

10 % C o n c e n t r a t i o n f o r m u l a based on t h e volume o f t h e p r e v i o u s s o l u t i o n
added

11 C o n c e n t r a t i o n k n o w n ( i ) = C o n c e n t r a t i o n k n o w n ( i − 1 ) * 750 / 1000 ;
12 end

Listing 5.2: Code for calculating concentrations

Once all these steps have been performed, we are ready to perform PLS with MATLAB’s PLS
Toolbox.
The PLS Toolbox is a computational tool used to perform multivariate data analysis, in par-
ticular to deal with regression problems, dimensionality reduction and modelling complex
relationships between variables.
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PLS, as is already known, is a technique that can be particularly useful when working with
complex datasets in which many variables are correlated or when there is a risk of multi-
collinearity.
PLS works through a combination of dimensionality reduction and regression. The main ob-
jective is to establish a relationship between a set of independent variables X and a set of
dependent variables Y.
In particular, PLS seeks to identify latent components (or factors) that are linear combinations
of both sets of variables.
To start the Toolbox, we have to type in the MATLAB Command Window the ”browse” com-
mand, which, once executed, will open a new window.
Within the Toolbox it is possible to follow different types of data analysis and consequently it
is necessary to select the one we are interested in, namely PLS - Partial Least Square. Once
I have selected the analysis that is right for us, a window like the one shown in the figure 5.6
will open.
Now, first I have to load the data correctly. Specifically, the matrix containing all the spectra

Figure 5.6: Toolbox screen view

will be placed in the calibration X’s, while in the calibration Y’s I will place the matrix with
the values of the known concentrations. Once this is done, the preprocessing is set to ”Au-

toscale” mode by default and we leave it exactly that way.
At this point, I go to select from the spectra provided those that will constitute the spectra to
be used for the claibration of the model and those that I am going to use for the validation of
the model. To do this, I right-click on the validation X box and select the command ”Split into
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Calibration / Validation”. I randomly select 6 spectra that we will use for validation, while the
remaining ones will be the spectra for calibration.
I run the programme to obtain the model. The next step consists of a series of procedures

Figure 5.7: Screenshot of results obtained at the end of the analysis

that are implemented in order to improve the predictive capability of the model we are con-
sidering. First, I go to the ”Variable selection” section and click on ”Execute”. By doing this,
the programme searches within the spectra that I have provided to it, for the portions with
the highest variability. Once the analysis is finished, I click on ”Use” so that to calculate the
model, the toolbox uses those portions of the spectrum more predominantly.

PLS Analysis Results for Alizarin Solution

When evaluating the effectiveness of a predictive model, a key parameter often considered
is the RMSE, which stands for Root Mean Square Error. The RMSE is a crucial metric in
assessing the accuracy of a predictive model compared to observed data. Its expression in
dimensionless values makes it versatile, as it is not influenced by the original unit of measure-
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ment of the data.
When one wishes to express the error in percentage, a significant approach involves com-
paring the RMSE with the maximum value present in the data. This calculation provides an
indication of the relative error compared to the maximum observed value, offering a more
intuitive understanding of the overall accuracy of the model.
In this way, the analysis of percentage error takes into account the maximum scale of measure-
ments, allowing for an evaluation of the impact of the error proportionally to the maximum
range of the data. Such an approach contributes to a more comprehensive assessment of the
model’s performance, providing valuable insights for improvement and optimization of pre-
dictions.
Now I have to run the programme again in order to obtain the model and I get the screen
shown in the figure 5.7. I select the number of latent variables that shows a lower RMSECV,
which in our case is 6.
At this point, it is very interesting to visualise the graph that relates the measured Ys reported
on the X-axis and the predicted Ys reported on the Y-axis. This relationship is shown in the
figure 5.8

Figure 5.8: ”Screenshot depicting the results obtained at the end of the analysis through PLS application for
estimating concentrations of Red Alizarin in the samples. The graph illustrates the correlation between predicted
concentrations (y-axis) and actual measured concentrations (x-axis).”

The graph also shows RMSEC (Root Mean Squared Error of Calibration), RMSECV (Root
Mean Squared Error of Cross-Validation) and RMSEP (Root Mean Squared Error of Predic-
tion).
The RMSEC represents the root mean squared error between observed and predicted values
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using the model on the calibration data, i.e. it measures the accuracy of the model in repro-
ducing the data used to build it. Being very low, this indicates a good fit of the model to the
calibration data.
Next comes the RMSECV (Root Mean Squared Error of Cross-Validation). This value repre-
sents the root mean squared error between the observed values and the values predicted using
the model during the cross-validation process. Again, if this value is rather low, it indicates a
greater capacity for generalisation of the model, which is certainly a positive aspect.
We also have the RMSEP (Root Mean Squared Error of Prediction), which represents the root
mean square error between the observed values and the values predicted using the model on
an independent prediction dataset. It therefore measures the model’s ability to make accurate
predictions on new data not used in the calibration. It too is rather low, indicating a higher
accuracy in predicting new data.
Looking at all three parameters, we see that they are all low, so it can be affirmed that the
model has a good ability to fit the calibration data, generalise to new data and make accurate
predictions on independent data.
However, it is also important to consider other performance indicators, such as R2, to obtain
a complete view of the model’s performance. Values of R2 (coefficient of determination)
are statistical measures that provide information on the quality and fit of a regression model
High R2

Cal, R
2
CV and R2

Pred values suggest a very well-fitted model, capable of explaining and
generalising the data well.

5.2.3 Second Experiment: PrestoBlue Solution

In the same way, tests are carried out with the PrestoBlue. So, we prepared 20 samples
with distinct dilutions of PrestoBlue, employing laboratory micropipettes for precise dosing.
The procedure commenced with the creation of the primary solution, denoted as sample (1),
housed in a 1.5 mL laboratory tube. This solution comprised 850 µL of water and 150 µL of
PrestoBlue. Subsequently, from the mother tube (1), 750 µL of the solution, previously mixed
using a shaker, was transferred to another 1.5 mL test tube labeled as number (2), containing
250 µL of water. The contents were thoroughly mixed. This process was iteratively repeated
17 times, with each subsequent test tube receiving 750 µL from the preceding tube and 250 µL
of water. This sequence yielded the 20 predetermined samples with varying concentrations.
Next, a 96-well plate was employed, and each well was filled with 100 µL of the solutions
from the respective tubes. The 100 µL volume was crucial to ensure complete coverage of
the well bottom, essential for accurate spectrometer measurements. Following the loading
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of all samples, an additional well containing only water was added. The 96-well plate was
then inserted into the spectrometer, and acquisitions commenced. The measurements were
specifically conducted at wavelengths ranging from 200 nm to 1000 nm, with a step size of
5 nm. The resulting spectrometer data were recorded in an Excel file, from which the values

Figure 5.9: Spectrum of the 21 samples of solutions with different concentration of PrestoBlue

constituting our spectra were extracted. Subsequently, the data were imported into MATLAB
using a custom code. The concentrations of PrestoBlue in the samples were calculated using
specific formulae, providing known concentrations for subsequent multivariate data analysis.

PLS Analysis Results for PrestoBlue Solution

For the predictive modeling phase, we employed the MATLAB PLS Toolbox. The Toolbox
facilitated the exploration of complex relationships between the spectra and the known con-
centrations of PrestoBlue. Utilizing partial least squares regression, we aimed to establish
a robust model capable of predicting concentrations accurately. The resulting model under-
went optimization steps, including variable selection to enhance its predictive capability. The
evaluation of the model’s performance, as depicted in figures and statistical metrics, indicated
its efficacy in fitting the calibration data, generalizing to new data, and making accurate pre-
dictions on independent datasets. The high values of R-squared further affirmed the model’s
quality and suitability for the analysis of PrestoBlue concentrations.



93

Figure 5.10: Screenshot depicting the results obtained at the end of the analysis through PLS application for
estimating concentrations of Prestoblue in the samples. The graph illustrates the correlation between predicted
concentrations (y-axis) and actual measured concentrations (x-axis).

5.2.4 Third Experiment: Alizarin and PrestoBlue Solution

The second experiment involved the preparation of samples using a mother solution composed
of 150 µL of Alizarin and 150 µL of PrestoBlue. Similar to the first experiment, we aimed to
create 20 samples with varying concentrations by diluting the mother solution. The procedure
began with sample (1) placed in a 1.5 mL laboratory tube with a solution of 850 µL of water
and 150 µL of the Alizarin-PrestoBlue mixture.
Sequentially, 750 µL of the solution from each tube was transferred to the next tube contain-
ing 250 µL of water. This process was repeated 17 more times to obtain the 20 samples with
different concentrations. Subsequently, 100 µL of each sample solution was dispensed into
wells of a 96-well plate, ensuring full coverage of the well bottom for accurate spectrometer
measurements.
After loading all samples, a pure water sample was added to the plate. The plate was then
inserted into the spectrometer, and acquisitions were carried out across wavelengths ranging
from 200 nm to 1000 nm with a step size of 5 nm. The resulting data were exported to an
Excel file for further processing.
Once I have the file with all the data, I go and import it into MATLAB.
In the provided MATLAB code (5.3), we initiate the process of importing and visualizing
spectral data for a solution containing PrestoBlue and Alizarin. The Excel file and sheet con-
taining the spectral data are specified, and cell ranges for each sample are defined. Notably,
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due to saturation in the peak of the first two samples, only 19 spectra are utilized. Addition-
ally, to mitigate saturation issues, the wavelength range starts from 365 nm rather than 200
nm. The script then proceeds to plot individual spectra for each sample, overlaying them
for a comprehensive view. Concentrations of Alizarin and PrestoBlue in the mother solution
are calculated iteratively using prescribed formulas, considering the dilution process. The
resulting concentrations are stored in arrays for further analysis.

1 % S p e c i f y i n g t h e E x c e l f i l e and s h e e t c o n t a i n i n g s p e c t r a l da ta
2 f i l e E x c e l = ' S p e t t r i P r e s t o B l u e S o l u z i o n e p e r P L S I I . x l s x ' ;
3 s h e e t = ' Sh ee t0 ' ;
4 % D e f i n i n g t h e c e l l r ang es c o n t a i n i n g s p e c t r a l da ta f o r each sample
5 gammacel l s = [ ” AC53 : EZ53 ” , ”AC54 : EZ54 ” , ”AC55 : EZ55 ” , ”AC56 : EZ56 ” , ”AC57 :

EZ57 ” , ”AC58 : EZ58 ” , ”AC59 : EZ59 ” , ”AC60 : EZ60 ” , ”AC61 : EZ61 ” , ” AC62 : EZ62 ” ,
”AC63 : EZ63 ” , ”AC64 : EZ64 ” , ”AC65 : EZ65 ” , ”AC66 : EZ66 ” , ” AC67 : EZ67 ” , ” AC68 :
EZ68 ” , ” AC69 : EZ69 ” , ” AC70 : EZ70 ” , ” AC71 : EZ71 ” ] ;

6 % I n i t i a l i z i n g m a t r i c e s t o s t o r e s p e c t r a l da ta and d e f i n i n g w a v e l e n g t h
range

7 d a t a = z e r o s ( 1 9 , 1 2 8 ) ;
8 w a v e l e n g t h s = [ 3 6 5 : 5 : 1 0 0 0 ] ;
9 % P l o t t i n g i n d i v i d u a l s p e c t r a f o r each sample

10 f i g u r e
11 f o r i = 1 :19
12 % Reading and t r a n s p o s i n g s p e c t r a l da ta from E x c e l
13 d a t a ( i , : ) = x l s r e a d ( f i l e E x c e l , s h e e t , gammacel l s ( i ) ) ' ;
14 % P l o t t i n g t h e s p e c t r u m
15 p l o t ( wave l eng ths , d a t i ( i , : ) ) ;
16 % Adding l a b e l s and t i t l e t o t h e p l o t
17 t i t l e ( ' S p e c t r a o f t h e 19 samples ( P r e s t o B l u e and A l i z a r i n Mix tu re ) ' ) ;
18 x l a b e l ( ' Wavelength (nm) ' ) ;
19 y l a b e l ( ' Absorbance ' ) ;
20 % Hold ing t h e p l o t f o r o v e r l a y i n g m u l t i p l e s p e c t r a
21 hold on
22 end
23 % I n i t i a l c o n c e n t r a t i o n s o f A l i z a r i n , P r e s t o B l u e , and Water i n t h e mother

s o l u t i o n
24 P r e s t o B l u e = 150 ; %[ mcrL ]
25 A l i z a r i n = 150 ;
26 Water = 700 ; %[ mcrL ]
27 % I n i t i a l i z i n g a r r a y s t o s t o r e c a l c u l a t e d c o n c e n t r a t i o n s
28 Conc k A = z e r o s ( 1 9 , 1 ) ;
29 Conc k P = z e r o s ( 1 9 , 1 ) ;
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30 % C a l c u l a t i n g c o n c e n t r a t i o n s u s i n g t h e p r o v i d e d f o r m u l a s
31 Conc k A ( 1 ) = A l i z a r i n / 1 0 0 0 ;
32 Conc k P ( 1 ) = P r e s t o B l u e / 1 0 0 0 ;
33 f o r i = 2 :19
34 Conc k A ( i ) = Conc k A ( i −1) * 7 5 0 / 1 0 0 0 ;
35 Conc k P ( i ) = Conc k P ( i −1) * 7 5 0 / 1 0 0 0 ;
36 end
37 % Combining c o n c e n t r a t i o n s o f A l i z a r i n and P r e s t o B l u e
38 Conc k = [ Conc k A Conc k P ] ;

Listing 5.3: Code for Importing and Plotting Spectral Data for PrestoBlue and Alizarin Mixture

The plots of the 19 spectra we took into account for the creation and validation of the model
are shown in the 5.11.

Figure 5.11: Spectrum of the 19 samples of solutions with different concentration of PrestoBlue and Alizarin
mixture

PLS Analysis Results for Alizarin and PrestoBlue Solution

Initially, we imported the ”data” matrix containing all 19 spectra into the X calibration block,
excluding two initially due to saturation issues. Subsequently, we imported the matrix con-
taining the concentration values calculated using the specified formulas into the Y calibration
block. With these datasets, we proceeded to create the model.
Upon reviewing the emerged values, it was observed that the optimal RMSECV occurred in



96

the vicinity of 7 latent variables. Consequently, we recreated the model with these specifi-
cations to maximize predictive accuracy. Following this, we examined the model’s scores.

Figure 5.12: Graph illustrating model parameters obtained with seven latent variables before dataset split into
calibration and validation sets.

The scores plot promptly exposed a data point positioned outside the ellipse, suggesting the
existence of an outlier. Acknowledging the possible repercussions of this outlier on model
development, we identified it as the sample corresponding to row number 12 and emphasized
its presence. Subsequently, we proceeded to remove this outlier. This strategic step not only
bolstered the overall quality of the model but also heightened its predictive precision by mit-
igating potential adverse effects stemming from anomalous data points. The elimination of
such anomalies augments the model’s capability to discern meaningful patterns and relation-
ships within the dataset, ultimately resulting in a more dependable and accurate predictive
model. After cleaning and addressing outliers in the dataset, the next crucial step involved
partitioning the data. Seventy percent was allocated for calibration purposes, while the re-
maining 30% was reserved for model validation. This deliberate split not only ensures the
model’s robustness but also facilitates its evaluation on previously unseen data. Following the
dataset organization, the analysis of RMSEP trends played a pivotal role in influencing our
strategic decision-making process. Notably, we observed a discernible trend during the ex-



97

Figure 5.13: Scores plot revealing outliers in the dataset. The graph illustrates the distribution of data points in the
latent variable space, where a distinct point lies outside the typical pattern indicated by the ellipses. This outlier,
marked for visibility, could potentially impact the model’s robustness and predictive accuracy. Identifying and
addressing outliers is crucial for refining the model and improving its overall performance.

Figure 5.14: a) RMSEP for the substance 1; b) RMSEP for the substance 2

amination of RMSEP for varying numbers of latent variables. The reduction in RMSEP was
particularly pronounced when transitioning from two to three latent variables. After careful
consideration, we concluded that employing three latent variables yielded a more significant
improvement in predictive accuracy compared to other configurations. This strategic choice
aimed at achieving a balance between model complexity and performance. The subsequent
execution of the model using the cleaned and divided dataset further enhances its ability to
generalize and make accurate predictions on new and independent data.
In this specific analysis, unlike the two previous experiences, we found ourselves unable to
use the ”Variable Selection” tool. This limitation arose because our Y dataset includes more
than one column. The variable selection tool is designed to handle only one dependent vari-
able at a time. Therefore, in addressing this situation, we adapted to the peculiarity of the
Y matrix and proceeded without the use of this tool. In 5.15, we observe that the parame-
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Figure 5.15: Graphical representation of model results with three plots: the first illustrates the relationship
between known Y values and model-predicted Y values for the first substance, while the second plot depicts
the same relationship for the second substance. The third plot displays the scores, which, in this specific case,
are absent as all data points lie within the ellipse. The absence of outliers in the scores plot underscores the
robustness of the model’s predictions for both substances.

ters resulting from this analysis offer a detailed assessment of the model’s performance. The
mean values for the Y columns approach 0.0401802, indicating accurate overall concentration
predictions. The low standard deviation (0.0408066) underscores the model’s consistency in
prediction, with data showing limited dispersion around the mean. Error indicators, such as
RMSEC (0.00152397), RMSECV (0.00346906), and RMSEP (0.00345212), highlight no-
table precision in predicting concentrations during both calibration and on independent data.
The absence of systematic trends is confirmed by values close to zero for Bias, CV Bias, and
Pred Bias. Additionally, the high R2 values (0.998797, 0.995451, 0.997045) indicate a strong
correlation between known and predicted Y values during calibration, cross-validation, and
prediction on independent data.
Overall, these results suggest that the model is accurate, well-fitted, and capable of reliably
generalizing to new data. These parameters provide a solid foundation for our understanding
of the relationship between the considered variables and constitute a valuable resource for
future analyses within the scope of this research. In addition to the analysis of the model’s
statistical parameters, a scatter plot was generated to further evaluate the quality of the pre-
dicted data in comparison to the measured concentrations. This MATLAB code creates a
visual representation of the relationship between the measured concentrations of substances 1
and 2 (Ym1 and Ym2) and the corresponding predicted concentrations (Yp1 and Yp2). The plot
displays each concentration pair, using circles for measured data and asterisks for predicted
data, with a clear legend for distinction. The x-axis represents the measured concentrations
of substance 1, while the y-axis represents the measured concentrations of substance 2. This
visualization aids in assessing how well the predicted concentrations align with the actual
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1 % Load da ta from t h e p r o v i d e d MATLAB f i l e
2 load ( ' D a t a P r e s t o A l i z a r i n . mat ' )
3 % S e p a r a t e t h e da ta i n t o measured and p r e d i c t e d v a l u e s f o r s u b s t a n c e s 1

and 2
4 Y m 1 = D a t a P r e s t o A l i z a r i n ( : , 1 ) ; % Measured da ta f o r s u b s t a n c e 1
5 Y m 2 = D a t a P r e s t o A l i z a r i n ( : , 2 ) ; % Measured da ta f o r s u b s t a n c e 2
6 Y p 1 = D a t a P r e s t o A l i z a r i n ( : , 3 ) ; % P r e d i c t e d da ta f o r s u b s t a n c e 1
7 Y p 2 = D a t a P r e s t o A l i z a r i n ( : , 4 ) ; % P r e d i c t e d da ta f o r s u b s t a n c e 2
8 % Cr ea te a f i g u r e t o p l o t t h e measured and p r e d i c t e d da ta
9 f i g u r e

10 p l o t ( Y m 1 , Y m 2 , ' o ' ) % S c a t t e r p l o t f o r measured da ta
11 hold on
12 p l o t ( Y p 1 , Y p 2 , ' * ' ) % S c a t t e r p l o t f o r p r e d i c t e d da ta
13 % Add l e g e n d and l a b e l s t o t h e p l o t
14 l egend ( ” Measured d a t a ” , ” P r e d i c t e d d a t a ” )
15 x l a b e l ( ” Measured C o n c e n t r a t i o n − S u b s t a n c e 1 ” )
16 y l a b e l ( ” Measured C o n c e n t r a t i o n − S u b s t a n c e 2 ” )
17 t i t l e ( ” Measured vs P r e d i c t e d C o n c e n t r a t i o n s f o r S u b s t a n c e s 1 and 2 ” )

Listing 5.4: Scatter plot illustrating the relationship between measured, known, and predicted concentrations for
substances 1 and 2.

measured concentrations for both substances, providing valuable insights into the model’s
predictive accuracy.

5.3 Experiment on Glucose and Lactate Detection in a Cul-
ture Medium: Preliminary Phase of Experimentation

In the context of research aimed at the precise determination of concentrations of specific
substances, such as glucose and lactate, the experiment was extended to the analysis of a
culture medium present in the laboratory. The main objective was to assess the concentrations
of these compounds within the sample, utilizing visible spectra acquired through the Tecan
Infinite® 200 PRO spectrometer. The use of this advanced technology allowed for detailed
spectra, providing crucial insights into the spectral characteristics of the target substances
and significantly contributing to the understanding of the chemical dynamics of the examined
culture medium.

5.3.1 Culture Medium

In this experimental setup, the culture medium played a crucial role, with a focus on three
distinct formulations: MO, M1, and M2. The baseline composition, MO, comprised α-MEM
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Figure 5.16: Figure displaying the measured concentrations of substances 1 and 2 compared to their predicted
concentrations. Substance number one corresponds to Red Alizarin, while substance number two corresponds
to PrestoBlue. Each point represents a concentration pair, with circles denoting measured data and asterisks
denoting predicted data. The plot provides a visual assessment of the modelś predictive accuracy.

(Minimum Essential Medium), FBS (Fetal Bovine Serum), and 1% of Penicillin/Strep-
tomycin. The M1 formulation introduced 0.2 mM of Ascorbic Acid 2-Phosphate and 10
mM of Glycerol 2-Phosphate, enhancing antioxidant and metabolic aspects. M2, building
upon M1, incorporated an additional component, 50 nM of Melatonin, known for its role in
circadian rhythm regulation.
For experimental conditions, MO was exclusively used for ”Static” (S) and ”Not conditioned”

(NC) cell cultures. In contrast, M1 and M2 formulations were applied in ”Conditioned” (C)

culture experiments. These variations aimed to create diverse microenvironments influencing
concentrations of target substances like glucose and lactate within samples. Spectroscopic
data from the Tecan Infinite® 200 PRO spectrometer were utilized to analyze and predict sub-
stance concentrations in the respective culture conditions.
The M1 composition, enriched with antioxidants and metabolic support, included Ascorbic
Acid 2-Phosphate and Glycerol 2-Phosphate. The former, a derivative of ascorbic acid, con-
tributes antioxidant properties to maintain a reducing environment. Glycerol 2-Phosphate
serves as a source of glycerol and phosphate, supporting cellular energy metabolism and var-
ious biochemical processes.
M2, an extension of M1, introduced Melatonin (50 nM), a hormone involved in circadian
rhythm regulation. In cell culture, melatonin may influence various cellular processes, poten-
tially impacting metabolic activities. In summary, these variations in the culture medium aim
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to create nuanced environments affecting substance concentrations, providing a comprehen-
sive understanding of experimental outcomes.
At this point, the cell cultures in the C and NC states underwent dynamic culture using a
perfusion bioreactor, while cultures in the S state were treated with static culture. Static and
dynamic cultures represent two distinct approaches in manipulating cellular growth condi-
tions, each with unique characteristics significantly influencing cellular responses. In static
culture, cells are maintained in a stationary environment, devoid of flow or agitation of the
culture medium. This method is preferred when replicating uniform and constant growth
conditions, similar to those cells may experience in stationary physiological contexts. Static
cultures are often used to examine specific phenomena without the interference of dynamic
variables.
On the other hand, dynamic cultures are conducted in bioreactors, systems where the culture
medium is constantly stirred or flowing. This approach aims to reproduce a more dynamic
environment, similar to physiological conditions where cells are exposed to nutrient flows
and environmental changes. The continuous stirring or flow in bioreactors contributes to im-
proving the uniform distribution of nutrients and oxygen, also promoting efficient removal
of waste products. Dynamic cultures are particularly useful when simulating more realistic
conditions, such as those occurring in biological tissues or tissue engineering contexts.
The key differences between the two methodologies lie in the static nature of the environment
in static culture and the dynamism introduced by constant stirring or flow in dynamic culture.
The choice between these two approaches depends on the specific goals of the experiment and
the need to replicate the most relevant conditions for the ongoing study. Both methodologies
play a crucial role in biological research and tissue engineering, providing fundamental tools
to understand cellular dynamics in both static and dynamic contexts.

5.3.2 PLS Analysis for Metabolite Concentration Prediction

This initial experiment laid the groundwork for subsequent trials with an increased number of
acquisitions, reaching a total of 63. The preliminary nature of this experiment allowed for the
refinement of acquisition parameters and the establishment of a robust foundation for more
extensive data collection.
For this experimental phase, given the uncertainty surrounding the outcomes and the nature of
the spectra, acquisitions were conducted for samples labeled as C (Conditioned), NC (Non-
Conditioned), and S (Static) on days 0, 10, and 21. In previous experiments, a greater number
of wavelengths were excluded due to a better understanding of the spectral behavior of the
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solution. Multiple iterations were performed, and optimal results were consistently achieved
by excluding wavelengths exhibiting saturation, particularly at 230 nm. Consequently, the
spectrum importation process focused on the range from 235 nm to 1000 nm.

Importation of Absorption Spectra

The provided MATLAB code plays a crucial role in the analysis of absorbance spectra de-
rived from a set of gamma cells within a scientific experiment. Its primary objective is to
extract, process, and visualize absorbance data as it varies with wavelength. The code handles
the extraction of absorbance spectra from nine distinct gamma cells, organizes the data into a
matrix, and generates meaningful plots.
In the initial phase, specific gamma cells are identified and defined through the ‘gammacells‘
variable. This variable holds the cell ranges in the Excel sheet corresponding to each gamma
cell. Subsequently, a matrix named ‘data‘ is initialized to store absorbance data, and a wave-
length range is defined for the absorbance spectra. A figure is created to visually represent the
spectra, and a loop is employed to extract and visualize absorbance spectra for each gamma
cell. The resulting plots provide valuable insights into the characteristics of the absorbance
data.
The code also includes the definition of concentrations for glucose (Conc k glu) and lactate
(Conc k lac) for each gamma cell. hese concentrations are crucial for training the subsequent
machine learning algorithm, allowing it to learn the relationship between absorbance spectra
and concentration levels.
After training, the model can predict concentrations based on new, unseen absorbance spectra.
This prediction capability is invaluable in the validation phase, where the model’s accuracy
and generalization to unseen data are assessed. The concentrations, organized in the matrix
Conc k, play a pivotal role in both the training and validation steps, contributing to the ro-
bustness and reliability of the machine learning algorithm for absorbance data analysis.
In summary, this MATLAB code represents a pivotal component of the data analysis pipeline,
facilitating a detailed examination of absorbance spectra and associated concentration varia-
tions across different gamma cells. The generated plots offer a visual representation of spectral
characteristics, while the defined concentrations contribute to a comprehensive understanding
of the experimental conditions.

1 % D e f i n i t i o n o f gamma c e l l s from which t o e x t r a c t absorbance s p e c t r a
2 gammacel l s = [ ” C30 : EZ30 ” , ”C31 : EZ31 ” , ”C32 : EZ32 ” , ”C33 : EZ33 ” , ”C34 : EZ34 ” ,

”C35 : EZ35 ” , ”C36 : EZ36 ” , ”C37 : EZ37 ” , ”C38 : EZ38 ” ] ' ;
3 % I n i t i a l i z a t i o n o f t h e m a t r i x f o r absorbance da ta
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4 d a t a = z e r o s ( 9 , 1 5 4 ) ;
5 % D e f i n i t i o n o f w a v e l e n g t h s
6 w a v e l e n g t h = [ 2 3 5 : 5 : 1 0 0 0 ] ;
7 % C r e a t i o n o f a f i g u r e t o v i s u a l i z e t h e s p e c t r a
8 f i g u r e
9 % Loop t o e x t r a c t and v i s u a l i z e absorbance s p e c t r a f o r each gamma c e l l

10 f o r i = 1 : 9
11 d a t a ( i , : ) = x l s r e a d ( f i l e E x c e l , s h e e t , gammacel l s ( i ) ) ' ;
12 p l o t ( wave leng th , d a t a ( i , : ) ) ;
13 x l a b e l ( ' Wavelength (nm) ' ) ;
14 y l a b e l ( ' Absorbance ' )
15 hold on
16 end
17 % D e f i n i t i o n o f c o n c e n t r a t i o n s o f g l u c o s e and l a c t a t e f o r each gamma c e l l
18 C o n c k g l u = [ 4 . 8 8 , 4 . 0 0 , 4 . 2 2 , 4 . 9 4 , 4 . 8 3 , 3 . 5 0 , 4 . 8 8 , 4 . 3 8 , 1 . 8 3 ] ' ;
19 C o n c k l a c = [ 2 . 0 5 , 2 . 1 5 , 3 . 6 3 , 2 . 0 8 , 2 . 9 8 , 4 . 2 4 , 2 . 1 7 , 3 . 1 4 , 5 . 7 9 ] ' ;
20 % C r e a t i o n o f a combined c o n c e n t r a t i o n m a t r i x
21 Conc k = [ C o n c k g l u C o n c k l a c ] ;

Listing 5.5: The code performs the extraction and visualization of absorbance spectra from various gamma cells
in an experimental setup. Each gamma cell’s spectrum is plotted, providing insights into the characteristics of
the absorbance data. Additionally, concentrations of glucose and lactate for each gamma cell are defined and
combined into a matrix for further analysis.

Figure 5.17: The figure displays absorption spectra from nine different samples categorized into three conditions:
Non-Conditioned (NC), Conditioned (C), and Static (S). Each line represents the absorbance characteristics of a
specific sample, offering a visual overview of spectral variations under distinct experimental conditions.
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Application of the Machine Learning Algorithm and results

In the initial phase, we proceed with the data upload, placing all complete spectra in block
X and the known concentrations in block Y. From the outset, the data is divided between
those used for calibration and model creation and those designated for the validation phase.
This division allocates 75% of the data for calibration and the remaining 25% for validation,
achieved through the use of the Onion algorithm.
In this scenario, the system has six latent variables available but opts to use only two. The
decision to limit the analysis to two latent variables is motivated by achieving improved RM-
SECV results with this specific configuration. Subsequently, it is necessary to select the type

Figure 5.18: The table presents various model performance metrics for different numbers of latent variables. The
focus is on RMSECV, and the results indicate that selecting two latent variables achieves the lowest RMSECV,
supporting the choice of this configuration for enhanced predictive accuracy.

of preprocessing to apply. In spectral analysis, ”mean centering” and ”autoscaling” emerge as
two data preprocessing approaches, each with specific advantages based on the nature of the
analysis and spectral data characteristics.
”Mean centering” proves effective in removing offset effects in the data, bringing the mean of
each wavelength to zero. This allows for a clear visualization of differences between spectra
without altering the overall structure. This technique is particularly suitable when absolute
variations in the data are of primary interest compared to relative variations between wave-
lengths.
On the other hand, ”autoscaling” involves normalizing each variable by dividing by its stan-
dard deviation. This process scales variables so that they have a mean of zero and a standard
deviation of one. ”Autoscaling” is preferable when relative variations between variables are
more relevant than absolute variations and when the measurement units of variables are dif-
ferent.
In the context of spectra, the choice between ”mean centering” and ”autoscaling” depends on
the specific goals of the analysis. In the case of spectra from different experimental condi-
tions, such as samples C, NC, and S, the choice of ”mean centering” is motivated by our focus
on preserving the absolute shape of the spectra. This is crucial for identifying specific patterns
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and characteristic variations of each condition.
The decision to use ”mean centering” as a preprocessing technique is based on the goal of
preserving the specificity of each sample’s spectra, allowing for an accurate analysis of vari-
ations in specific absorption regions while maintaining the consistency of spectral features.
This choice provides a solid foundation for subsequent analysis, accurately highlighting spec-
tral differences between the considered experimental conditions. Moving on to the model

Figure 5.19: Comparison between measured and predicted glucose concentrations using the predictive model,
highlighting the consistency between real values and those obtained through the machine learning algorithm.

results, the figures display the comparison between measured and predicted concentrations
for glucose and lactate. The model employing two latent variables demonstrates excellent
performance, with low values of RMSEC (0.2322) and RMSECV (0.41619) indicating high
accuracy during both calibration and cross-validation. The low RMSEP (0.33401) in predic-
tion further underscores the model’s robustness in forecasting concentrations.
The calibration bias of 0 signifies that the model’s predictions align well with the actual val-
ues during the training phase. The minor systematic errors indicated by the cross-validation
bias (-0.13013) and prediction bias (-0.12082) have relatively small magnitudes, suggesting
the model’s overall reliability.
The coefficient of determination (R2) values provide insight into the model’s explanatory
power. The high R2 values for both calibration (0.951) and cross-validation (0.911) demon-
strate the model’s ability to capture the variance in the data during training and testing. The
perfect R2 value of 1.000 in prediction indicates an exact fit, reinforcing the model’s capabil-
ity to precisely predict concentrations.
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In summary, the model with two latent variables exhibits exceptional accuracy and predictive
power for glucose and lactate concentrations. The low errors, minimal biases, and high R2

values collectively signify a robust and reliable model, making it suitable for practical appli-
cations and further experimentation. The two latent variable model for lactate concentration

Figure 5.20: Comparison between measured and predicted lactate concentrations using the predictive model,
highlighting the consistency between real values and those obtained through the machine learning algorithm.

demonstrates exceptional predictive performance. The minimal values of RMSEC (0.19253)
and RMSECV (0.55604) reflect high precision during calibration and cross-validation, respec-
tively. The low RMSEP (0.2445) in prediction reinforces the model’s reliability in forecasting
lactate concentrations.
A calibration bias of 0 indicates a strong alignment between the model’s predictions and the
actual values during the training phase. Although minor systematic errors are suggested by
the cross-validation bias (-0.25417) and prediction bias (-0.15774), their relatively small mag-
nitudes imply overall robustness.
The coefficient of determination (R2) values offer insights into the model’s explanatory ca-
pability. High R2 values for calibration (0.980) and cross-validation (0.890) underscore the
model’s capacity to capture lactate data variance during training and testing. A prediction R2

value of 0.935 signals a robust fit, affirming the model’s accuracy in predicting lactate con-
centrations.
In conclusion, the two latent variable model exhibits outstanding accuracy and predictive
power for lactate concentrations. The minimal errors, negligible biases, and high R2 values
collectively affirm a reliable and robust model suitable for practical applications and further
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investigations.
To further enhance the predictive capabilities, an advanced data transformation using a poly-
nomial transformation with squared and cubed cross terms is applied. This choice aims to
create a more accurate and adaptable predictive model, especially considering complex non-
linear relationships between wavelengths and absorbance in the spectral data.
The introduction of polynomial and cross terms improves the model’s predictive capacity by
increasing flexibility, allowing for more accurate predictions compared to rigid models. The
transformation simplifies the data structure, focusing on significant components and reducing
the impact of irrelevant noise or variations.
The effectiveness of this transformation depends on the specific nature of spectral data. A
careful analysis of different transformation techniques is essential to select the most suitable
strategy, ensuring maximum predictive accuracy and optimal interpretability of the model.

Figure 5.21: Comparison between measured and predicted glucose concentrations using the predictive model,
highlighting the consistency between real values and those obtained through the machine learning algorithm. It’s
noteworthy that data transformation methods were employed to enhance the accuracy of the predictions.

The introduction of polynomial transformations, including squared and cubed cross terms,
has significantly improved the predictive performance of the model, particularly in estimat-
ing glucose concentrations. This improvement is evident through key metrics. Firstly, the
Root Mean Square Error of Cross-Validation (RMSECV) for the transformed model is sig-
nificantly lower, indicating heightened accuracy in predicting glucose concentrations during
cross-validation. This reduction signifies a closer alignment with actual glucose levels in the
validation set.
Moreover, the calibration bias in the transformed model is negligible, indicating a more bal-
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Figure 5.22: Comparison between measured and predicted lactate concentrations using the predictive model,
highlighting the consistency between real values and those obtained through the machine learning algorithm.
It’s noteworthy that data transformation methods were employed to enhance the accuracy of the predictions.

anced fit during the calibration phase. This suggests that the transformed model tends to avoid
systematic overestimation or underestimation of glucose concentrations during the calibration
process. Additionally, the R2 values, representing the goodness of fit, are higher for both
calibration and cross-validation in the transformed model. This signifies not only a superior
fit to the calibration data but also a more effective generalization to unseen data, capturing
underlying patterns and relationships.
The benefits of the transformed model also extend to the prediction of lactate concentrations,
albeit to a slightly lesser extent. The lower RMSECV and a slightly higher R2 (CV) for lactate
indicate improved accuracy and a better fit to the data during cross-validation.
In conclusion, the incorporation of polynomial transformations with squared and cubed cross
terms proves to be a valuable enhancement for the model’s predictive capabilities. The trans-
formed model demonstrates an improved ability to capture non-linear relationships in the data,
resulting in superior accuracy, minimized bias, and enhanced generalization. Therefore, the
transformed model stands out as the preferred choice, offering a more nuanced understanding
of the complex relationships within the spectral data, especially in the precise prediction of
glucose concentrations.
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Model Configuration Evaluation: Transformation Impact on Predictive Performance

Within the analysis of predictive models for glucose and lactate concentrations, a thorough
evaluation of different configurations was conducted, encompassing models without any trans-
formation and models adopting polynomial transformation with the introduction of cubic and
square terms. These approaches yielded distinct results, providing a detailed overview of
model performance and adaptability to the spectral data under consideration.
Without Transformation, the models exhibit valid results with accurate predictions, especially
for glucose and lactate. The absence of transformations simplifies the model, making it more
interpretable, with high R2 (Pred) values indicating good adaptability to new observations.
With Transformation, transformed models significantly improve prediction accuracy, espe-
cially for glucose. The near absence of Calibration Bias suggests a more balanced calibration,
while elevated R2 (Pred) values indicate good adaptability to new observations.
The choice between models with or without transformation is guided by a balanced consider-
ation of predictive accuracy and model complexity. The transformation approach offers clear
advantages in terms of prediction accuracy but introduces greater complexity. The final deci-
sion should reflect the specific objectives of the analysis, considering data availability and the
need for a balance between accuracy and interpretability.
In conclusion, since it is preferable for our application to achieve greater precision in predic-
tion, we are willing to accept the additional complexity of the model. However, it is crucial
to carefully evaluate the trade-off between complexity and precision based on the specific
objectives of our analysis.

5.4 Experiment on Glucose and Lactate Detection in a Cul-
ture Medium: Impact of Experimental Conditions on
Predictive Modeling

This experimental phase involves a diversified set of five cell cultures, each representing a
specific experimental condition. The NC (Non-Conditioned) and C (Conditioned) cultures
are two-dimensional and differ based on the use of conditioned (C) or non-conditioned (NC)
medium. The S culture (Static) follows a static mode, while the DC (Dynamic Conditioned)
and SC (Static Conditioned) cultures involve the use of scaffold supports, differing in the
dynamic nature of the culture condition. In the table shown in the figure 5.23, we have sum-
marized the main characteristics of the cultures used for the analysis. The introduction of
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Figure 5.23: Characteristics of Different Cultures

different culture media poses a significant challenge in the prediction phase, especially when
applying Partial Least Squares (PLS) software to spectral data. To mitigate this complexity,
analyses were conducted using exclusively spectra from identical cultures, ensuring greater
consistency in the results. It is crucial to note that the spectra were acquired in the visible
range, ranging from 235 nm to 1000 nm. Since lactate is one of the substances of interest for
concentration prediction from spectra, it would be ideal to use the optimal acquisition range
for this substance, which, in the case of lactate, is in the MIR. However, due to the availability
of laboratory instrumentation allowing measurements in the visible range, this solution was
chosen in the initial testing phases, considering also the high cost of technology required for
MIR range acquisition.
The MATLAB code used for data import has been omitted in this introduction, as it has been
previously explained in the preceding paragraphs.

5.4.1 Bidimentional Static Culture Experiment: Spectral Analysis and
Predictive Modeling

The first experiment conducted during this phase involved acquiring spectra for the S culture
on days 0, 6, 8, 10, 12, 14, 16, 18, and 21. As evident, samples for days 2 and 4 are not
present in the corresponding vials due to compromise. To ensure data integrity, such data
were excluded from the collection. After acquiring spectra with the TECAN 200 Infinite
spectrometer, a data analysis was performed. Specifically, an initial modeling with a set of 10
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Figure 5.24: Acquired spectra for sample S from 400 to 1000 nm.

spectra was conducted. However, results revealed a sample in the validation set, particularly
in lactate concentration prediction, showing significantly deviated results from the fit curve.
The removal of this specific sample, identified as the data from row number 9, was carried out
to explore potential improvements in the final model and predictions.

Modeling Results

After acquiring spectra with the TECAN 200 Infinite spectrometer, a data analysis was per-
formed. Specifically, an initial modeling with a set of 10 spectra was conducted. However,
results revealed a sample in the validation set, particularly in lactate concentration prediction,
showing significantly deviated results from the fit curve. The removal of this specific sample,
identified as the data from row number 9, was carried out to explore potential improvements
in the final model and predictions.
Before delving into the removal of a specific sample, the modeling results exhibited remark-
able precision, with low values of RMSEC, RMSECV, and RMSEP for both glucose and
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lactate. However, it is important to highlight that lactate showed a relatively low R2 CV of
0.0445795, indicating limited generalization capacity during cross-validation.
Subsequently, in the model creation process, it was observed that a sample in the validation
set for lactate displayed significantly deviated results from the fit curve. The removal of this
specific sample, identified as the data from row number 9, was carried out to explore potential
improvements in the final model and predictions.
Before the removal of the problematic sample, the model for glucose exhibited high precision
during the training phase, as indicated by the RMSEC (Root Mean Square Error of Calibra-
tion) of 0.0183117. This parameter represents the average quadratic error between observed
and predicted data during training. The high value of R2 Cal (Coefficient of Determina-
tion Calibration) of 0.997737 indicated an excellent fit of the model to the data during this
phase. However, during cross-validation, the model showed lower generalization capacity to

Figure 5.25: Scatter Plot of Measured vs. Predicted Y-values (Original Model without Sample Removal). The
model for glucose exhibits high precision during training (RMSEC = 0.0183117, R2 Cal = 0.997737). However,
cross-validation indicates lower generalization capacity (RMSECV = 0.607814, R2 CV = 0.659822).

new data, as highlighted by the RMSECV (Root Mean Square Error of Cross-Validation) of
0.607814 and the R2 CV (Coefficient of Determination Cross-Validation) of 0.659822. The
RMSECV represents the average quadratic error during cross-validation, while the R2 CV
measures the model’s ability to generalize to new data. The removal of the sample led to an
improvement in these parameters, suggesting greater stability in glucose predictions for data
not used in model construction.
For lactate, the original model exhibited limited generalization capacity, indicated by a low
R2 CV of 0.0445795 during cross-validation. After the removal of the problematic sample,
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a significant improvement occurred, with a notable increase in R2 CV, suggesting greater
adaptability of the model to new observations. In the analysis of prediction parameters after

Figure 5.26: Scatter Plot of Measured vs. Predicted Lactate Concentrations (Original Model without Sam-
ple Removal). The original lactate model demonstrates limited generalization capacity during cross-validation
(RMSECV = 0.0445795, R2 CV = 0.0445795).

removal, the RMSEP (Root Mean Square Error of Prediction) for glucose slightly increased
to 0.414195, indicating greater variability in predictions for new data not used in model con-
struction. However, the R2 Pred (Coefficient of Determination Prediction) remained high at 1,
confirming that the model has good adaptability to new data. For lactate, the variations were
more evident, with a significant decrease in RMSEP to 0.101089, indicating greater precision
in predictions for new data. The R2 Pred increased to 1, confirming a perfect adaptability of
the model to new observations.

Conclusion

After a thorough analysis of the results obtained before and after the removal of the problem-
atic sample in the PLS modeling for predicting glucose and lactate concentrations, important
considerations emerge.
The evaluation of prediction parameters indicates that, despite a slight increase in RMSEP for
glucose after removal, the model retains remarkable precision, as evidenced by an R2 Pred of
1. The tendency to predict slightly higher values, indicated by the positive pred bias, may be
acceptable depending on the analysis goals.
For lactate, the removal of the problematic sample led to significant improvements. RMSEP
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Figure 5.27: Scatter Plot of Measured vs. Predicted Y-values (Model after Sample Removal). The removal of
the problematic sample improves cross-validation parameters, suggesting greater stability in glucose predictions
for new data (RMSECV and R2 CV improvement).

has notably decreased, and R2 Pred has risen to 1, suggesting a perfect adaptability of the
model to new observations. This indicates that the removal procedure contributed to a more
accurate and reliable prediction for lactate.
The choice between using the model with or without the removal of the specific sample should
be guided by the specific goals of the analysis. In the context of this experiment, where accu-
rate prediction of lactate is crucial, sample removal seems justified. Significant improvements
in prediction parameters, especially for lactate, suggest that this procedure enhances the over-
all reliability of the model.
However, it is crucial to consider the trade-off between precision and model stability. If the
primary goal is highly precise lactate prediction, sample removal is the preferable choice. On
the other hand, if stability and model generalization are priorities, the decision may require a
more in-depth evaluation.
In conclusion, the specific sample removal procedure seems to provide a significant improve-
ment in concentration predictions, especially for lactate. The decision to adopt this procedure
should be based on a careful evaluation of the specific analysis goals and the desired balance
between precision and model stability.
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Figure 5.28: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model after Sample Removal). The re-
moval of the problematic sample results in significant improvements in prediction parameters. RMSEP decreases
to 0.101089, indicating greater precision in predictions for new data. The R2 Pred increases to 1, confirming a
perfect adaptability of the model to new observations.

5.4.2 Bi-dimensional Non-Conditioned Culture Experiment: Spectral
Analysis and Predictive Modeling

To broaden the scope of our investigation, we extended our study to non-conditioned culti-
vation, characterized by the constant presence of M0 medium throughout the experiment’s
duration. As customary, soil replacement occurs on the sixth day, introducing a significant
transition in environmental composition.
Our approach focuses on spectral analysis of this non-conditioned cultivation, utilizing the
optical range. This methodology allows us to explore spectral variations over time, providing
a detailed perspective on the cultivation dynamics and interactions among M0 soil compo-
nents. In our analysis, we chose to commence from 400 nm, maintaining a targeted approach
that preserves relevant information for lactate and glucose concentrations. This decision was
motivated by the common practice of excluding early wavelengths in spectral analyses to re-
duce electronic noise, enhance baseline stability, and optimize predictive models.
Special attention was dedicated to the analysis and evaluation of predictive models for glucose
and lactate concentrations. Using spectral data in the optical range aims to develop reliable
and accurate models to predict variations in these crucial substances in non-conditioned culti-
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vation. This integrated approach, combining spectral analysis and predictive modeling, forms
a robust foundation for in-depth understanding of ongoing biological and chemical processes.
Its implementation is essential for optimizing non-conditioned cultivation conditions, con-
tributing to advancements in scientific research.

Modeling Results

Particular attention will be paid to the evaluation of predictive models for the detection of glu-
cose and lactate concentrations. Using spectral data in the optical range, we aim to develop
reliable models that can accurately predict changes in these key substances in the context of
unconditioned culture. This integrated approach, combining spectral analysis and predictive
modeling, will provide a solid basis for understanding ongoing biological and chemical pro-
cesses, as well as for the optimization of future unconditioned cultures. Again, the culture

Figure 5.29: Acquired spectra for sample S from 400 to 1000 nm.

was sampled on days 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21. In this case, the sample referring to
day 4 was absent. In addition, we were not placed in the optimum conditions for the realiza-
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tion of the model, as we have the substitution of the culture medium, which obviously entails
variations. Furthermore, the data of the known concentrations provided to us are the result of
the mathematical average between two concentration measurements on two different samples.
Also in this analysis, we started with glucose, immediately finding some difficulties with the

Figure 5.30: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model before Sample Removal).
The scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

predictive model of glucose. The very low RMSEC (Root Mean Square Error of Calibration)
value of 0.0243313 testifies to the model’s ability to fit the training data excellently. However,
during the cross-validation phase, the slightly higher RMSECV (Root Mean Square Error of
Cross-Validation), with a value of 1.01104, indicates a possible excessive complexity of the
model or the presence of noise in the data.
The RMSEP (Root Mean Square Error of Prediction) value during prediction on unseen data
is moderately low, registering 1.86068. This value, although indicative of good predictive
ability, is higher than the calibration and cross-validation parameters, suggesting some uncer-
tainty in prediction on new data.
The R2 (Coefficient of Determination) takes on extremely high values during calibration
(0.99936), indicating an almost complete explanation of the variation in the training data.
However, during cross-validation (0.0577914) and the prediction phase (0.0129411), the R2

is significantly lower, suggesting a potential challenge in generalizing the model to new data.
During the analysis of the graph, two points, 8 and 9, were found to show significant discrep-
ancies with the model. These points were excluded to improve the predictive accuracy of the
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Figure 5.31: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

model. The initial RMSEC value was remarkably low (0.0243313), indicating the exceptional
fit of the model to the training data. However, the higher RMSECV (1.01104) during cross-
validation suggested possible excessive model complexity or the presence of noise in the data.
After removing the outlier points, the RMSECV remained almost unchanged, but RMSEP ex-
perienced a significant improvement, dropping to 0.516896. This reduction indicates greater
accuracy in predictions on new data. The initial R2 Cal was extremely high (0.99936), indi-
cating an excellent explanation for the variation in the training data. However, during both
cross-validation and prediction, there was a significant increase in the R2 values, reaching
0.0577914 and 1, respectively. This suggests a significant improvement in the ability to gen-
eralize the model to new data, overcoming the initial challenges of low R2 in cross-validation
and prediction. In the course of our analysis, our focus was on creating a predictive model for
measuring lactate concentration. Initially, the model had the following parameters:

• RMSEC: 0.578098

• RMSECV: 1.29598

• RMSEP: 0.5211

• R2 Cal: 0.616028

• R2 CV: 0.300714
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• R2 Pred: 0.403273

Figure 5.32: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model before Sample Removal).
The scatter plot illustrates the initial model’s performance in predicting lactate concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

Notably, after obtaining the model and observing the graph and data points, we identified a
point in the calibration set that was slightly distant from the fit curve, with a lactate concen-
tration measurement of 2.545 and a prediction of 3.21107. The removal of this point resulted
in the following changes to the model:

• RMSEC: 0.578098

• RMSECV: 1.29598

• RMSEP: 0.430686

• R2 Cal: 0.616028

• R2 CV: 0.300714

• R2 Pred: 1

A detailed analysis of the two models reveals some important considerations. Before remov-
ing the outlier point, the model exhibited good precision during calibration (R2 Cal: 0.616028)
but showed some complexity during non-calibration phases, including cross-validation (R2

CV: 0.300714) and the prediction phase (R2 Pred: 0.403273).
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Figure 5.33: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting lactate concentrations, showcasing high pre-
cision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias, R2

Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

After excluding the problematic point, a significant improvement in the model’s performance
was observed. The reduction in RMSEP to 0.430686 indicates greater precision in predictions
on new data. Moreover, achieving the maximum R2 Pred value of 1 suggests a complete ex-
planation of the variation in prediction data.
The decision to remove the outlier point is supported by the fact that its presence compromised
the precision of the model, especially in non-calibration phases such as cross-validation and
prediction. Correcting this discrepancy contributed to better adaptability of the model to the
data and increased reliability in predictions. This optimization is crucial to ensuring the va-
lidity and effectiveness of the predictive model, providing more accurate and generalizable
results in the measurement of lactate concentrations.
The initial R2 Cal was extremely high (0.99936), indicating an excellent explanation for the
variation in the training data. However, during both cross-validation and prediction, there was
a significant increase in the R2 values, reaching 0.0577914 and 1 respectively. This suggests
a significant improvement in the ability to generalise the model to new data, overcoming the
initial challenges of low R2 in cross-validation and prediction.

Conclusion

In conclusion, the in-depth spectral analysis and evaluation of predictive models for glucose
and lactate concentrations in non-conditioned cultivation provided a detailed perspective on
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the dynamics of our specific experiment. The use of the optical range and attention to spectral
details helped develop accurate models to predict variations in these key substances within
the context of our non-conditioned culture. The removal of outlier points enhanced the pre-
cision and reliability of predictions, underscoring the importance of an integrated approach
involving spectral analysis and predictive modeling. These results establish a solid founda-
tion for further exploration and optimization in future cultivation experiments, contributing to
our understanding of ongoing biological and chemical processes.

5.4.3 Bi-dimentional Conditioned Culture Experiment: Spectral Analy-
sis and Predictive Modeling

In this section, we will create a predictive model using PLS to predict the concentration of
lactate and glucose within a conditioned two-dimensional culture. In this case, the culture
was sampled on days 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21. Notably, the sample referring to the
fourth day was absent. In Figure 5.34, the ten spectra acquired through the spectrometer are

Figure 5.34: Acquired spectra for sample C from 400 to 1000 nm.
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presented, all within the visible range. For this specific case, we preferred to consider infor-
mation starting from the wavelength of 400 nm. The choice to initiate the analysis from 400
nm is motivated by the common practice of excluding information related to the initial wave-
lengths in spectral analyses. This decision was made to reduce sensitivity to electronic noise,
enhance baseline stability, and optimize the predictive model, while ensuring that relevant
information for lactate and glucose concentration is preserved in our analysis.

Modeling Results

As part of our investigation into conditioned cultivation, achieving precise predictions of glu-
cose and lactate concentrations is crucial to demonstrate the capability of Partial Least Squares
(PLS) in developing predictive models for substance concentrations. It is important to note
that, in our study, glucose and lactate serve as key substances for analysis, and our primary
focus is on showcasing the effectiveness of PLS in generating accurate predictive models for
these concentrations.
Nevertheless, our PLS-based approach has encountered notable challenges that could compro-
mise the precision of predictions. Changes in cultivation conditions, particularly the transition
from M1 to M2 soil between the sixth and twenty-first days, along with the absence of sam-
plings on the fourth day, may introduce complex variations in glucose production, directly
impacting the validity of the predictive model. In this section, we will closely examine the
performance of our PLS model, considering the temporal dynamics and peculiarities of our
conditioned cultivation, to assess the robustness and reliability of the obtained predictions.
The accurate prediction of glucose concentration is pivotal in our investigation into condi-
tioned cultivation. The model, initially constructed using the entire dataset, exhibited the
following performance metrics for glucose concentration: Before Glucose Outlier Removal:

• RMSEC: 0.510162

• RMSECV: 2.14233

• RMSEP: 4.29748

• R2 Cal: 0.695992

• R2 CV: 0.179894

• R2 Pred: 0.0185977
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Figure 5.35: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model before Sample Removal).
The scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

Subsequently, during the application of the variable selector, data point 7, identified as an
outlier specifically for glucose concentration, was removed to enhance the model’s accuracy.
After Glucose Outlier Removal (Point 7):

• RMSEC: 0.510162

• RMSECV: 2.14233

• RMSEP: 0.482205

• R2 Cal: 0.695992

• R2 CV: 0.179894

• R2 Pred: 0.76752

The targeted removal of glucose outlier (Point 7) has led to significant improvements in the
model’s accuracy for predicting glucose concentration. This strategic choice resulted in a sub-
stantial reduction in RMSEP, indicating increased precision in predicting new glucose data.
R2 Pred has significantly increased, highlighting a better ability of the model to generalize to
glucose samples outside the training set.
It is crucial to emphasize that outlier removal is a practice that requires caution and a thorough
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Figure 5.36: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

understanding of the experimental context. However, in our case, this operation was funda-
mental to ensuring a more reliable and accurate predictive model for glucose concentration in
our investigation into conditioned cultivation.
A comprehensive evaluation of the lactate concentration predictive models involved compar-
ing their performance before and after strategically removing specific samples. Notably, two
samples—one from the calibration set and another from the validation set—were excluded to
understand their influence on model robustness.
Initially, the lactate concentration predictive model displayed the following parameters:

• RMSEC: 0.59073

• RMSECV: 4.64854

• RMSEP: 1.72715

• Bias: -8.88178e-16

• CV Bias: 1.65875

• Pred Bias: -0.251501

• R2 Cal: 0.81412
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• R2 CV: 0.170865

• R2 Pred: 0.644816

Following the strategic exclusion of the second sample from the calibration set and the eighth
sample from the validation set, the model exhibited adjustments:

• RMSEC: 0.67645

• RMSECV: 3.2348

• RMSEP: 0.285631

• Bias: 0

• CV Bias: 0.0578471

• Pred Bias: 0.0897236

• R2 Cal: 0.722489

• R2 CV: 0.0784432

• R2 Pred: 1

Figure 5.37: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting lactate concentrations, showcasing high pre-
cision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias, R2

Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.
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The rationale behind the sample exclusions was grounded in a meticulous examination of their
impact on the model’s predictive capabilities. Sample 8 from the validation set displayed a
substantial deviation, justifying its removal due to its pronounced outlier status. Similarly,
Sample 2 from the calibration set warranted exclusion to enhance overall model accuracy,
despite exhibiting a minor discrepancy.
The comparative analysis indicated a nuanced trade-off. While the removal of Sample 8
significantly improved RMSEP and Pred Bias, addressing a pronounced outlier, the exclusion
of Sample 2 introduced a slight reduction in R2 Cal. Nevertheless, the net effect was an overall
enhancement in predictive precision. These strategic sample exclusions were imperative for
cultivating a more robust and reliable predictive model for lactate concentrations within the
conditioned two-dimensional culture (C).

Conclusion

The thorough analysis of predictive models for lactate and glucose concentrations within con-
ditioned cultures has yielded significant insights, revealing the impact of crucial decisions in
the initial phase of cultivation.
Initially, the model for lactate concentration exhibited promising precision and adaptability
parameters, as highlighted by RMSEC, RMSECV, and R2 Cal. However, careful examination
revealed the presence of influential samples that affected the model’s robustness. The strate-
gic exclusion of specific samples led to a substantial improvement in predictive accuracy and
model adaptability, confirming the importance of a detailed and targeted data analysis.
The variation in culture medium, transitioning from M1 to M2, emerged as a critical element.
The transition on the sixth day could have introduced substantial variations in cell metabolic
dynamics, directly impacting lactate and glucose concentrations. This discontinuity poses a
challenge in creating stable predictive models and may be responsible for some of the ob-
served variations in results.
In conclusion, despite initial challenges, refining the model through targeted exclusions has
proven to be crucial in obtaining more accurate results. The variability in the culture medium
underscores the importance of carefully addressing environmental conditions in such analy-
ses, paving the way for further explorations and refinements in experimental design.
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5.4.4 Static Culture Experiment: Spectral Analysis and Predictive Mod-
eling

To conduct further experiments, we also considered a static culture. This culture is three-
dimensional on a scaffold and has the characteristic of being realized by providing M2 culture
medium for the entire duration of the experiment. Similar to the other cultures, medium
replacement occurs on the sixth day, creating a significant transition in environmental com-
position. Our approach will focus on the spectral analysis of this non-conditioned culture,

Figure 5.38: Acquired spectra for sample SC from 400 to 1000 nm.

utilizing the optical range. This will allow us to explore and understand spectral variations
over time, providing a detailed perspective on the culture dynamics and interactions among the
components of the M0 soil. Once again, the decision to commence the analysis from 400 nm
is motivated by the common practice of excluding information related to early wavelengths in
spectral analyses. This decision aims to reduce sensitivity to electronic noise, enhance base-
line stability, and optimize the predictive model, while ensuring that information relevant to
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lactate and glucose concentrations is preserved in our analysis.
Special attention will be devoted to the evaluation of predictive models for detecting glucose
and lactate concentrations. By utilizing spectral data in the optical range, our goal is to de-
velop reliable models that can accurately predict changes in these key substances within the
context of non-conditioned cultivation. This integrated approach, combining spectral analysis
and predictive modeling, will establish a solid foundation for understanding ongoing biologi-
cal and chemical processes and optimizing future non-conditioned cultures.
In this case as well, the culture was sampled on days 0, 2, 4, 6, 8, 10, 12, 14, 16, 18. However,
a complication arose around the 16th day, where mold appeared. Consequently, the culture
was compromised, and it was deemed appropriate to discard the measurements acquired on
the 18th day.

Modeling Results

Thanks to the proactive removal of the compromised culture, in the case of glucose, no addi-
tional removals were necessary. The obtained model immediately presents excellent parame-
ters, indicative of high precision in predicting glucose concentrations.

• The RMSEC (Root Mean Square Error of Calibration) is 0.312709, highlighting the
model’s excellent adaptation to the training data.

• The RMSECV (Root Mean Square Error of Cross-Validation) is 0.732089, indicating
good generalization ability to unseen data during cross-validation.

• The RMSEP (Root Mean Square Error of Prediction) is 0.0659966, reflecting the
model’s accuracy in predictions on new data.

• The R² Cal (Coefficient of Determination for Calibration) is 0.364766, suggesting sat-
isfactory explanation of variation in training data.

• The R² CV (Coefficient of Determination for Cross-Validation) is 0.0649299, and de-
spite being relatively low, the maximum value of R² Pred indicates a highly predictive
model on new data, implying a complete explanation of variation.

In conclusion, the obtained model for predicting glucose concentrations is robust and highly
reliable, demonstrating remarkable accuracy and generalization capabilities to previously un-
seen data. The analysis of the lactate model, both before and after the removal of the outlier
point, reveals crucial insights into its performance characteristics. Before removal, the model
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Figure 5.39: Scatter Plot of Measured vs. Predicted Y-values for Glucose. The scatter plot illustrates the model’s
performance in predicting glucose concentrations, showcasing high precision and a good fit. Statistical metrics,
including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias, R2 Cal, R2 CV, and R2 Pred, highlight the
model’s accuracy.

demonstrated exceptional accuracy in fitting the training data, as indicated by the low RM-
SEC (Root Mean Square Error of Calibration) of 0.0336682. However, challenges arose dur-
ing cross-validation (RMSECV: 0.34924) and prediction on unseen data (RMSEP: 0.637734),
suggesting difficulties in generalizing to new observations. The coefficient of determination
values (R²) further emphasized this, with a high R² Cal (0.939239) for the calibration set but
considerably lower R² values for cross-validation (0.542459) and prediction (0.0227324). Af-
ter the removal of the problematic point, the model’s parameters showed notable changes.
While RMSEC remained unchanged, maintaining the excellent fit to the training data, RM-
SEP significantly improved to 0.16619, indicating enhanced predictive accuracy on new ob-
servations. The maximum R² Pred of 1 after removal signifies a complete explanation of the
variation in lactate concentrations on new, unseen data, a substantial improvement from the
initial low R² Pred. Importantly, the model’s generalization ability, as indicated by R² CV
(0.542459), remained consistent even after the removal. In summary, the removal of the out-
lier point played a pivotal role in refining the lactate model, addressing challenges in general-
ization and significantly improving its predictive accuracy. These enhancements contribute to
the model’s reliability and effectiveness, ensuring more accurate and trustworthy predictions
of lactate concentrations in practical applications.
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Figure 5.40: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model before Sample Removal).
The scatter plot illustrates the initial model’s performance in predicting lactate concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

Conclusion

In conclusion, the exploration of a static culture experiment provided valuable insights into the
spectral analysis and predictive modeling of glucose and lactate concentrations. The static cul-
ture, realized in a three-dimensional scaffold with continuous exposure to M2 culture medium,
offered a unique perspective on the cultivation dynamics.
The spectral analysis, conducted within the optical range from 400 to 1000 nm, allowed for
a detailed examination of variations over time, shedding light on the intricate interactions
among the components of the M0 soil.
For glucose predictions, the model exhibited outstanding parameters, with low RMSEC, RM-
SECV, and RMSEP values, indicating high precision, generalization ability, and accuracy on
new data. The scatter plot visually confirmed the model’s reliability and performance.
In the case of lactate, the initial model faced challenges in generalization, as indicated by
relatively higher RMSECV and RMSEP values. The removal of a problematic point led to a
significant enhancement, resulting in improved predictive accuracy, as reflected in the reduced
RMSEP and elevated R2 Pred to 1.
These findings emphasize the significance of proactive removal of compromised cultures and
outlier points in refining predictive models. The enhanced accuracy and generalization ca-
pabilities contribute to the robustness of the models, ensuring their reliability in predicting
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Figure 5.41: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

glucose and lactate concentrations. This experiment, despite the challenge posed by mold
around the 16th day, highlights the importance of meticulous data curation and analysis for
meaningful outcomes in future non-conditioned cultures.

5.4.5 Dynamic Culture Experiment: Spectral Analysis and Predictive
Modeling

In this section, we will create a predictive model using PLS to predict the concentration of
lactate and glucose within a DC culture. In this case as well, the culture was sampled on days
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, and showed no defects; all samples were available and not
deteriorated by molds.
Figure 5.42 depicts the eleven spectra acquired using the spectrometer, all within the visible
range. For this specific case, we preferred to consider information starting from the wave-
length of 400 nm, as the earlier part exclusively exhibited an initial peak.
The choice to initiate the analysis from 400 nm is motivated by the common practice of ex-
cluding information related to the initial wavelengths in spectral analyses. This decision was
made to reduce sensitivity to electronic noise, enhance baseline stability, and optimize the pre-
dictive model, while ensuring that relevant information for lactate and glucose concentration
is preserved in our analysis.
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Figure 5.42: Acquired spectra for sample DC from 400 to 1000 nm.

Modeling Results

The analysis of glucose concentration initially presented promising results, showcasing a pre-
dictive model with commendable precision. The comprehensive set of statistical metrics,
including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias, R2 Cal, R2 CV, and R2

Pred, underlined the accuracy of the initial model in capturing glucose dynamics within the
cell cultures.
However, the model’s robustness was put to the test with the inclusion of all samples, lead-
ing to an RMSEP of 1.00048 (Figure 5.43). While indicative of decent predictive capability,
there was room for enhancement. It was at this juncture that a pivotal decision was made to
scrutinize and address the impact of individual samples on predictive accuracy. The removal
of the sample at row 8, identified as a potential outlier, brought about a transformative change
in the model’s performance. Post-removal, the RMSEP saw a substantial drop to 0.75326,
signaling a remarkable improvement in prediction precision for glucose concentration. This
adjustment, combined with the steady Bias, indicated the model’s maintained fairness in pre-
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Figure 5.43: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model before Sample Removal).
The scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

dictions. The Pred Bias exhibited a noteworthy decline from 0.886418 to 0.676187, reflecting
a refinement in the model’s predictive tendencies after the removal of the problematic sample.
Most notably, the R2 Pred soared from 0.827095 to an impressive 0.978253, portraying the
model’s newfound adaptability to new observations with near perfection.
The modeling results for lactate concentration offer a detailed exploration of the predictive
model, shedding light on its performance with and without the inclusion of a specific data
point.
Upon meticulous examination, Row 9 emerged as an anomaly, evident in its substantial de-
viation from the model’s predictions. This data point, with a measured value (Y Measured)
of 2.86, significantly differed from the model’s prediction (Y Predicted: 1.33238), resulting
in a considerable Y Residual of -1.52762. To ensure the model’s reliability, this outlier was
excluded from further analyses.
The initial model, considering all samples, demonstrated commendable accuracy with RM-
SEC (0.235146), RMSECV (0.738069), and RMSEP (0.933185). While the model exhibited
a strong fit to calibration data (R2 Cal: 0.889052), limitations were evident in cross-validation
(R2 CV: 0.228413) and prediction (R2 Pred: 0.971399). Pred Bias suggested a slight underes-
timation of values (-0.339336). Post-exclusion of the outlier at Row 9, the lactate prediction
model underwent a remarkable transformation. RMSEP saw a substantial reduction from
0.933185 to 0.37342, indicating enhanced precision in predicting new data. Pred Bias shifted
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Figure 5.44: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

positively from -0.339336 to 0.254806, reflecting a correction in the model’s tendency to un-
derestimate lactate concentrations. Most notably, the R2 Pred reached a perfect score of 1,
showcasing flawless adaptability to new observations. The rationale behind excluding Row
9 was rooted in its substantial deviation from the expected pattern, as evidenced by the sig-
nificant difference between measured and predicted values. This strategic exclusion not only
improved overall model accuracy but also underscored the critical role of meticulous data
curation in refining predictive models for precise outcomes in complex analyses.

Conclusion

In this comprehensive exploration of predictive modeling for glucose and lactate concentra-
tions within a DC culture, a meticulous approach was undertaken to refine and enhance the
accuracy of the models. The initial phase involved the acquisition of eleven spectra, spanning
the visible range, from a culture sampled at various time points. Notably, our analysis focused
on wavelengths from 400 nm, excluding the initial portion to reduce electronic noise and op-
timize baseline stability.
The modeling results for glucose concentration showcased commendable precision initially,
as illustrated in Figure 5.43. However, the inclusion of all samples revealed areas for im-
provement, prompting a closer examination. The pivotal decision to exclude a specific sample
(Figure 5.44), identified as a potential outlier, led to a transformative change. Subsequent
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Figure 5.45: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model before Sample Removal).
The scatter plot illustrates the initial model’s performance in predicting lactate concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

enhancements in prediction parameters, including a substantial drop in RMSEP and an im-
pressive increase in R2 Pred, emphasized the significance of meticulous sample curation in
refining the glucose predictive model.
Similarly, the lactate concentration model underwent a detailed assessment, revealing an
anomaly in Row 9 (Figure 5.45). Strategic exclusion of this outlier (Figure 5.46) resulted
in a precision boost, with improved RMSEP and R2 Pred. This process reaffirmed the critical
role of data curation in optimizing predictive models.
In conclusion, the iterative refinement of the predictive models for glucose and lactate concen-
trations demonstrates a commitment to precision and reliability. These enhancements under-
score the importance of scrutinizing individual samples, addressing anomalies, and refining
models for robust predictions in the dynamic context of cell cultures. This iterative process not
only advances the accuracy of predictive models but also highlights the necessity of rigorous
data curation in ensuring the reliability of analytical outcomes.
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Figure 5.46: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting Lactate concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy.

5.4.6 Non-Conditioned and Static Culture Experiment: Spectral Anal-
ysis and Predictive Modeling for Glucose and Lactate Concentra-
tions

In our approach to modeling glucose and lactate concentrations, we initially focused on creat-
ing effective predictive models, addressing the complexity arising from differences in culture
media. The decision to model individual cultures was motivated by the use of various culture
media.
From the outset, we were aware of challenges related to the cultures, including the absence of
data for culture S on day 2 and both cultures NC and S on day 4. It is worth noting that despite
challenges related to the change in media on day 6 and compromised samples, a robust model
for glucose was successfully obtained. Interestingly, NC culture samples are represented by
a relative value, obtained by averaging two measurements from distinct samples, without the
possibility of tracing back to the original sample. This clarification underscores our targeted
approach to addressing the specific challenges of individual cultures, ensuring accurate and
informative modeling of glucose and lactate concentrations.
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Figure 5.47: Acquired spectra for NC and S samples from 400 to 1000 nm.

Modeling Results

During the analysis of the initial model, an anomalous point was identified in the test set,
with a measured value of 0 significantly differing from the predicted value of 2.94108. The
removal of this point led to substantial improvements in the model parameters. Subsequent
results show an RMSEC of 0.645152, an RMSECV of 1.06682, and an RMSEP of 0.462268.
These values indicate good adaptability to training data, reasonable generalization to new data,
and acceptable precision in predicting observations not included in the calibration phase. The
removal of the disturbance point significantly improved the consistency and accuracy of the
model, highlighting the importance of careful data cleaning. Despite intrinsic challenges in the
experimental process, the final results underscore the validity of the obtained model. Specif-
ically, the R² Cal, indicating the explanation of variation in training data, reached a value of
0.449466, suggesting a good ability of the model to adapt to such data. The R² CV, measuring
the ability to generalize to new data, was 0.0654148, indicating that the model maintains a
decent ability to adapt to data not used in the calibration phase. Finally, the R² Pred, repre-
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Figure 5.48: Scatter Plot of Measured vs. Predicted Y-values for Glucose (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting Glucose concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy

senting the ability to predict new data, reached the notable value of 0.911628, emphasizing the
effectiveness of the model in predicting glucose concentrations outside the calibration phase.
Now, we have moved on to lactate. We have again separated the data into test and training
sets and applied variable selection. The analysis of lactate model parameters before and af-
ter the removal of the two problematic samples reveals significant differences, underscoring
the effectiveness of the data cleaning procedure. Before removal, the model had an RM-
SEC of 0.301662, indicating good adaptability to training data, but a higher RMSECV of
0.682809, suggesting moderate generalization to data not included in the calibration. The
RMSEP of 0.64361 indicated acceptable precision in predicting new data. However, deter-
mination coefficients (R2) for calibration (0.790191), cross-validation (0.172615), and pre-
diction (0.647276) indicated challenges in explaining variation. After the removal of the
problematic samples, there was a significant improvement in all parameters. The RMSEC
decreased to 0.250547, highlighting excellent adaptability to training data. Despite the in-
crease in RMSECV to 0.812982, the model maintains good generalization to new data. The
significantly reduced RMSEP to 0.330117 indicates higher precision in predicting data not in-
cluded in the calibration phase. The determination coefficients R2 for calibration (0.843587),
cross-validation (0.0351263), and prediction (0.922145) reflect a notable improvement in the
model’s ability to explain variation in the data.
In summary, the removal of problematic samples significantly contributed to refining the lac-
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Figure 5.49: Scatter Plot of Measured vs. Predicted Y-values for Lactate (Model after Sample Removal). The
scatter plot illustrates the initial model’s performance in predicting Lactate concentrations, showcasing high
precision and a good fit. Statistical metrics, including RMSEC, RMSECV, RMSEP, Bias, CV Bias, Pred Bias,
R2 Cal, R2 CV, and R2 Pred, highlight the model’s accuracy

tate model, enhancing its ability to adapt to training data and generalize to new data. This
optimization is crucial to ensuring more accurate and reliable predictions of lactate concen-
trations in practical settings.

Conclusion

In conclusion, the modeling of glucose and lactate concentrations has successfully tackled
challenges associated with differences in culture media and compromised samples. The tar-
geted approach to data cleaning has once again proven crucial for obtaining robust and re-
liable predictive models. The removal of anomalous points has significantly enhanced the
consistency and accuracy of the models, underscoring the importance of careful analysis and
targeted interventions to address any disturbances in the data. The overall results indicate
the validity of the obtained models, contributing to a better understanding and prediction of
glucose and lactate concentrations in both experimental and practical settings.
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