
ALMAMATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Internet Of Things

VARIATIONAL AUTOENCODERS
AND META-LEARNING:

TRANSFORMING FEDERATED LEARNING
IN IOT ENVIRONMENTS

CANDIDATE SUPERVISOR

Gianluca Di Tuccio Prof. Angelo Trotta

CO-SUPERVISOR

Prof. Marco Di Felice

Academic year 2022-2023

Session 4th

Abstract

This dissertation investigates the integration of Variational AutoEncoders and

Meta-Learning in Federated Learning, particularly in the IoT domain, where

data heterogeneity and limited samples pose significant challenges. The Class

Informed-VAE (CI-VAE) is introduced, establishing a federated latent space

that harmonizes data distributions of different clients into a unified distribution

that also enables the generation of synthetic samples and labels. The proposed

model attains performance on par with the conventional local and federated

models across image datasets (FEMNIST) and sample-based datasets (HAR).

Furthermore, the thesis explores the effectiveness of Meta-Learning (partic-

ularly the Reptile algorithm) in improving model performance with limited

data, showcasing its potential in scenarios with few samples per class.

iii

Contents

1 Introduction 1

2 Theory and State of the Art 4

2.1 AutoEncoder and VAE . 4

2.2 Federated Learning . 12

2.3 Meta Learning . 16

2.3.1 Reptile Algorithm (Batched Version) 18

3 System Descriptions 19

3.1 Federated ClassInformed-VAE 19

3.1.1 Linear Classifier in CI-VAE 23

3.1.2 CI-VAE in FL . 24

3.2 Federated Reptile CI-VAE 26

4 Datasets 30

4.1 FEMNIST . 30

4.2 HAR . 32

5 Results 34

5.1 FEMNIST (with Rotation) 34

5.1.1 Rotation challange 43

5.2 FEMNIST (w/out Rotation) 44

5.3 HAR . 46

Conclusion 49

Bibliography 55

iv

Chapter 1

Introduction

Several primary limitations of today’s AI in the IoT domain stem from con-

cerns about data privacy, due to the transmission of user data from devices to

a Server, and the challenge of creating a model capable of adapting to the di-

verse data distributions of clients. This challenge arises from data imbalance,

biases, distinct features, etc., inherent in client datasets. One potential solution

has been the deployment of local models trained directly on devices, thereby

mitigating privacy issues and enabling distributed training. However, these

models often lacked the ability to adapt to different users with distinct input

distributions. Federated Learning has partially addressed these limitations

by allowing each client to perform local training of their model, typically a

classifier. The model weights from the clients are subsequently transmitted to

a server, which aggregates and redistributes them for additional training iter-

ations. This process fosters models that can adapt to a broader range of users.

However, as can be understood, these models still struggle with adaptability in

contexts with heterogeneous data: a classifier may fit well with certain clients

but not with others, because conventional classifiers learn the mapping from

input to output labels and, hence, have limited capacity to comprehend the

underlying data distribution. There’s no mechanism or space to associate sim-

ilar inputs. A straightforward example is in the MNIST dataset, where each

client in the network has differently rotated digits. Discriminative models fail

to recognize that digits ‘4’ with different rotations represent the same infor-

mation. Furthermore, IoT datasets often have limited samples, necessitating

the generation of new samples and, sometimes, making accurate classification

challenging.

Introduction 2

The primary motivation for this work is to address the existing limitations

of Federated Learning by employingVariationalAutoEncoders (VAEs). These

VAEs facilitate a shared latent space among different clients, transforming

distinct information expressed through diverse distributions into a common

distribution, while simultaneously generating new samples. Specifically, this

work proposes the integration of a classifier directly into the latent space of

the VAE. This approach aims to establish a shared latent space for all clients,

enabling classification over a uniform distribution. Additionally, the realm of

Meta-Learning will be explored to assess how it can enhance performance

through the application of few-shot learning.

This work is structured as follows:

i. a chapter dedicated to the theory and foundations behind the technolo-

gies used, starting with VAEs, and moving on to the concept of Feder-

ated Learning and Meta Learning;

ii. a chapter referring to the architectures proposed in this thesis, particu-

larly focusing on the use of ClassInformed-VAE (CI-VAE) in a novel

context like Federated Learning, showcasing all its advantages, and on

the use of Reptile, a Meta Learning algorithm developed by OpenAI,

not yet tested in a Federated Learning context;

iii. subsequent chapters will present the datasets used to test the previous

architectures, such as FEMNIST and HAR;

iv. finally, the results for the previous datasets will be presented, highlight-

ing the strengths and weaknesses of the four main models (a local clas-

sifier, a federated classifier, and the proposed Fed CI-VAE model with

and without Meta Learning). Notably, these models will also be tested

on a variant of FEMNIST, where each client presents an added com-

plexity, the rotation of the images.

The corresponding code and results are also presented in the reference

Introduction 3

GitHub repository [1]. The hardware employed for this thesis comprised a PC

equipped with a 12th generation i5 CPU, a 2080 Ti GPU, and 64GB of DDR5

RAM.

Chapter 2

Theory and State of the Art

In this chapter, the technologies and frameworks used in this dissertation are

presented. The focus is on the theory of Variational Autoencoders (VAE),

which are used for transforming different input distributions into a same shared

latent space, thereby enabling the creation of data samples that retain the unique

characteristics and distributions of each client. The chapter also investigates

Federated Learning (FL), an innovative approach that allows for the collabo-

rative training of models across multiple clients while safeguarding data pri-

vacy and sustains strong performance with unseen clients with greater adapt-

ability to diverse data distributions. Moreover, Meta Learning techniques are

discussed, aiming to enhance client performance in few-shot learning envi-

ronments: this aim to solve the disparities in sample sizes among users and

improving model performance with a limited set of labels.

2.1 AutoEncoder and VAE

The primary architecture employed in this dissertation is the Variational Au-

toEncoder, an advanced variant of the classical AutoEncoder. AutoEncoders [2]

belong to a category of models in the deep learning domain, which are adept at

learning features; specifically, they excel at extracting unique characteristics

that define a given input, compressing these features, and subsequently recon-

structing the input. This process involves dimensionality reduction, where the

input is mapped to a lower-dimensional space compared to the original in-

put space. Consequently, this facilitates representing a given input with fewer

pieces of information while extrapolating the variation information in the data.

2.1 AutoEncoder and VAE 5

As a result, the model is categorized as a lossy model due to the information

loss between input and output. The primary applications of this model include

input dimensionality reduction (as shown in Figure 2.1), anomaly detection,

and denoising.

The architecture comprises an Encoder, a compressed space Z and a Decoder.

These components can be mathematically described as E : Rn → Rm for the

Encoder and D : Rm → Rn for the Decoder, where m ≤ n. The purpose of

the Encoder is to reduce the dimensionality of the input (from n dimensions

to m), the intermediate layer, called the “code” or simply Z, encapsulates

the compressed representation of the input in m dimensions, and finally, the

Decoder is responsible for reconstructing the data, mapping it from them di-

mensional space back to the n dimensional space, with an inherent loss of

information.

Figure 2.1: Architecture of the AutoEncoder for the digit 6, using the MNIST
dataset (Image taken from [2])

Initially, AutoEncoders were also employed for data generation, however,

the compressed variables Z learned during this process did not yield mean-

ingful insights, as the model learned a mapping between the input and these Z

variables without acquiring any semantic or relationships among various in-

puts. For example, in theMNIST dataset [3], digits 6, drawn by different users,

were represented in the Z layer with distinctly different values; this was con-

trary to the expectation of a strong correlation among various instances of the

digit 6 from different users and a weak correlation between digits representing

2.1 AutoEncoder and VAE 6

different numbers. This issue was subsequently addressed with the introduc-

tion of Variational AutoEncoders (VAE), which brought a more structured

and meaningful interpretation of Z, now called latent space, while still re-

taining the structure of the encoder and decoder from classical AutoEncoders.

The purpose of VAE is to replicate the model distributions of data, occa-

sionally complex, denoted as p(x) with x a vector. This distribution can be

articulated as follows:

p(x) =
∫
p(x|z)p(z)dz (2.1)

The terms within the integral may be construed as a generative approach [4].

Indeed, there are two potential approaches to elucidate the argument of the

integral (Figure 2.2): a discriminative and a generative approach. The first

Figure 2.2: a) Description of two distinct data labels in a 2D space where X
identifies the current input; b) discriminative approach, the probability of X
belonging to the blue group is high, thus, according to the decision making, it
is a definite and secure decision; c) generative approach, the point X is located
in the blue zone, but far from the region of blue points, hence it is an uncertain
decision (Image taken from [4])

approach can be articulated as p(y|x) where x denotes the input and y repre-

sents the input’s class (for instance, y = 0, 1, 2, 3, ..., 9 for theMNIST dataset).

The limitation of this method is its inability to provide a level of “certainty” in

the classification. Consequently, a second factor is introduced, symbolizing

the class distribution: p(y|x)p(x), with the latter term being referred to as the

prior probability; if the probability of a class for a given input is high, but the

2.1 AutoEncoder and VAE 7

probability of the input itself is low (i.e., it is situated far from the distribution,

akin to an outlier), the resulting product is a low value, thereby indicating an

uncertain decision. This same concept is expressed in Equation 2.1, where the

distribution p(x) is essentially the aggregate of all possible product distribu-

tions computed among z.

Then, the second step is how to compute Equation 2.1 and, in general, it

is a difficult task. Indeed, the integral is intractable due to the necessity of

evaluating it over the entire latent variables z. While theoretical computation

is possible, in practice, it proves to be excessively slow and costly, akin to at-

tempting to deduce a student’s University of Bologna password through mere

guesswork. One simple approach would be to use theMonte Carlo approx-

imation: it involves generating a large number of random samples from the

distribution and then computing the average value of the function [5]. For an

accurate approximation, it is necessary to sample a lot of points and with the

current technology it is very easy to sample many points in reasonably short

time. However, if z is multidimensional, the required number of samples to

adequately cover the space increases exponentially (i.e. curse of dimension-

ality); if we take too few samples, then the approximation is very poor. Due

to the fact that many models have a complex distribution, the Monte Carlo

approximation is not an optimal method.

An alternative approach, employed in VAE, involves variational infer-

ence [6, 7, 8]: an observable variable x is conditioned upon another hidden

random variable z, which constitutes the latent space. This latent space is

typically modeled as a multivariate Gaussian distribution, characterized by its

means and variances. A more precise way to express this concept would be to

learn the conditional probability p(z|x). Using the chain rule of probability,

the previous conditional probability could be expressed as:

p(z|x) = p(x, z)
p(x)

(2.2)

2.1 AutoEncoder and VAE 8

The issue with Equation 2.2 lies in the requirement of having a tractable p(x)

which brings us back to the original problem. The solution is manifested in the

ability to find an approximation to p(z|x), such that p(z|x) ≈ qφ(z|x) with q

an approximate posterior probability parameterized by φ. q can be computed

as follow:

log(p(x)) = log(p(x)) (2.3)

log(p(x)) = log(p(x)) ·
∫
qφ(z|x)dz (2.4)

log(p(x)) =
∫

log(p(x)) · qφ(z|x)dz (2.5)

where Equation 2.3 is simply multiplied by 1, i.e.
∫
qφ(z|x)dz, and in Equa-

tion 2.5 the log(p(x)) is brought inside the integral.

log(p(x)) = Eqφ(z|x) [log(p(x))] (2.6)

log(p(x)) = Eqφ(z|x)

[
log p(x, z)

p(z|x)

]
(2.7)

log(p(x)) = Eqφ(z|x)

[
log p(x, z)qφ(z|x)

p(z|x)qφ(z|x)

]
(2.8)

log(p(x)) = Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
+ Eqφ(z|x)

[
log qφ(z|x)

p(z|x)

]
(2.9)

log(p(x)) = Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
+DKL (qφ(z|x)||p(z|x)) (2.10)

where in 2.6 the definition of expectation is used, then the chain rule is applied

in 2.7, while in 2.8 both numerator and denominator are multiplied by the

same term, i.e. by 1, and in 2.9 the property of logarithms is used. Finally, the

second term of the right part in 2.10 is, by definition, the KL divergence [9],

that is always ≥ 0. Due this fact, the 2.10 could be written as:

log(p(x)) ≥ Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
(2.11)

where the expectation value is called Evidence Lower Bound (ELBO) [10].

2.1 AutoEncoder and VAE 9

Using again the chain rule, the properties of logarithms and again the definition

of KL divergence, the final result will be:

log(p(x)) ≥ Eqφ(z|x)

[
log p(x|z)p(z)

qφ(z|x)

]
(2.12)

log(p(x)) ≥ Eqφ(z|x) [log p(x|z)] + Eqφ(z|x)

[
log p(z)

qφ(z|x)

]
(2.13)

log(p(x)) ≥ Eqφ(z|x) [log p(x|z)]−DKL (qφ(z|x)||p(z)) (2.14)

In 2.14 the expectation value is the reconstruction likelihood of the decoder

(where p(x|z) could be seen as a distribution parametrized modeled by θ:

pθ(x|z), i.e. the decoder) of z sampled from qφ(z|x), as described previously

in Figure 2.2. This setup quantifies the “certainty” in reconstructing the ob-

served data x from latent variables z under the approximate posterior qφ(z|x),

as shown in Figure 2.3. The KL term, instead, is the distance between the ap-

proximate posterior distribution qφ(z|x) and the prior p(z), pushing qφ(z|x)

to become closer to p(z), that is zero when the distributions are equal. Max-

imizing the ELBO means to maximize the decoder reconstruction and at the

same time minimizing KL divergence (e.g., the formula could be seen as a

Profit equation, where maximizing Profit means maximizing Revenues and

minimizing Costs). In deep learning, maximizing the ELBO means to ad-

just the weights of the model along the gradient direction, with the classical

Stochastic Gradient Descend [11]. However, the gradient of ELBO is a bit

problematic [12]: the estimator for ELBO exhibits high variance (i.e. unsta-

ble gradient) and it can not be backpropagated in the neural network due to its

sampling phase. The solution adopted is the reparameterization trick [12,

13], as proposed in Figure 2.4.

The final architecture of the VAE can be delineatedwith an Encoder, which

generates Σz|x and µz|x, followed by an n-dimensional latent space, where n

2.1 AutoEncoder and VAE 10

Figure 2.3: A VAE learns the map between an observed x-space, with dis-
tribution qD(x), and a latent z-space; the generative part learns pθ(x|z)pθ(z),
while the encoder part, also called inference model, approximates the true but
intractable posterior pθ(z|x) using qφ(z|x) (Image taken from [6])

trated as a hyperparameter. This is succeeded by the Decoder, as shown in Fig-

ure 2.5. As previously mentioned, the reconstructed x̂ differs from the origi-

nal x due to the inherent lossy nature of the process. For loss functions, Mean

Squared Error (MSE) or Mean Absolute Error (MAE) are typically chosen for

input reconstruction, and the Kullback-Leibler (KL) divergence is employed

to approximate qφ(z|x) to p(z), usually using frameworks like Keras [16] or

PyTorch.

VAEs are currently employed for generative purposes, often in image cre-

ation, by sampling in the latent space. This process can involve direct sam-

pling in the cluster of a specific input class, or by sampling in the intermediate

areas between different clusters, that share common features: this technique

allows for the generation of new samples that incorporate features from mul-

tiple clusters, as illustrated in Figure 2.6. This capability extends beyond the

scope of what was possible with traditional AutoEncoders.

Besides, various versions of VAEs exist, such as the β-VAE, in which the

2.1 AutoEncoder and VAE 11

Figure 2.4: Graphical comparison of the traditional sampling in VAE (left)
versus the reparameterization trick (right). On the left, z is directly sampled
from the approximate posterior q(z|x), which is non-differentiable. On the
right, the reparameterization trick is used to sample z by adding a deterministic
transformation of two separate nodes: µ and σ, representing the mean and
standard deviation of the approximate posterior, and ϵ, a random node sampled
from a standard normal distributionN (0, 1). This allows the backpropagation
of the gradient (Image taken from [13])

Figure 2.5: An overview of the VAE architecture, from the initial input x to
the reconstructed, lossy, x̂. It incorporates the Encoder, which generates Σz|x
and µz|x based on the input or a set of inputs, followed by the application of
the reparameterization trick for sampling. Then, the Decoder reconstructs the
original input(s) (Image taken from [14])

KL divergence is multiplied by a constant β treated as a hyperparameter. Ad-

ditionally, there are Conditional VAEs (CVAE) [17], where label information

is also passed into the encoder, and MultiEncoder-VAEs (ME-VAE), which

are used even in the biomedical domain [18].

2.2 Federated Learning 12

Figure 2.6: AutoEncoder (left) vs VAE (right). AutoEncoders learn the map
between input and z without explicit consideration for the semantic distribu-
tion of the encoded features (a randomly sampled point may not correspond to
a meaningful feature set, as shown in black), while VAEs encodes input data
into a structured latent space in a probabilistic manner, allowing for the gen-
eration of new samples with different features from different clusters (Image
taken from [15])

2.2 Federated Learning

In the realm of artificial intelligence, spatial considerations [19] play a crucial

role in the structuring and implementation of AI systems. With the growing

diversity and volume of data sources, as well as the increasing need for pri-

vacy and efficient data processing, the choice of AI architecture has become

a significant factor in the design of intelligent systems. This chapter begins

by exploring the three main spatial architectures in AI, each characterized by

its approach to data processing and model training. The three main spatial

options in AI are as follows:

i. Centralized AI: This approach involves centralized AI in a single lo-

cation or Server. It typically relies on a powerful central computer or a

cloud-based system to perform AI tasks and manage data. This model

is efficient for handling large-scale data processing but can be limited

by bandwidth and latency issues;

ii. Distributed AI: in this model, AI processing is distributed across mul-

tiple systems or nodes. Each node can perform tasks independently and

may communicate with other nodes to share information or results. This

approach is beneficial for tasks that require parallel processing and can

provide resilience and scalability;

2.2 Federated Learning 13

iii. Federated AI: federated AI involves training algorithms across multi-

ple decentralized devices or servers holding local data samples, with-

out exchanging them. This approach is especially useful for privacy

preservation, as it allows AI models to learn from a vast amount of data

without the data ever leaving its original location.

The last (i.e. Federated Learning) is an emerging paradigm in the field of

AI. It distinguishes itself primarily through its focus on privacy and distributed

training. Here, the model training process is decentralized, occurring across a

multitude of devices or nodes: each node contributes to the learning process

using its local data, without the need to share its data with a central Server or

other nodes. This unique characteristic significantly enhances user privacy,

because sensitive data never leaves its original location. Other remarkable ad-

vantages of Federated Learning is the ability to uncover insights and features

during the federated training that a local model might fail to detect: a model

trained only on local data might lack the diversity and breadth required to

make accurate predictions or recognize patterns. Moreover, Federated Learn-

ing addresses a key challenge faced by local models: their limited ability to

adapt to users with scarce or no labeled data. By leveraging models trained

across various nodes, Federated Learning can effectively learn from a wide ar-

ray of data sources, each contributing different perspectives and knowledge.

This aggregated learning process results in a model that is not only more ro-

bust and generalizable but also capable of adapting to new, unseen data more

effectively than a model trained in local. Besides, Federated Learning have

two distinct approaches for the training: the first involves sending the model

from one client to another, executing Stochastic Gradient Descent (SGD or

others) on a mini-batch or an epoch. The second approach entails sending a

singular model from the server to the clients, conducting local training, then

returning these models to the server for the aggregation of the client mod-

els. In the first case, the model sequentially moves between clients, updating

2.2 Federated Learning 14

incrementally with each client’s data, fostering continuous learning but poten-

tially leading to latency due to sequential processing. The second approach, in

contrast, allows simultaneous local training across multiple clients, enhancing

efficiency and speed. After training, the server aggregates these local updates

into a global model, effectively combining diverse data insights. In the second

federated training technique using the FedAVG [20] algorithm: the process

begins with the server initialization with a global random model and distribut-

ing it to all participating clients. Each client then trains the model locally with

their unique dataset. After local training (SGD, Adam, etc on 1 or more steps),

Figure 2.7: Algorithm of FedAVG (Image taken from [20])

clients update their models with the new insights gained. These updated mod-

els, containing the learned parameters, are sent back to the server. The server’s

role is to aggregate these updates to refine the global model. In FedAVG, this

aggregation is typically achieved by computing the weighted average of the

received model updates. The weight is often determined by the volume of data

each client contributes, allowing for a proportional influence on the updated

global model. This cycle of distributing, training, and aggregating continues

2.2 Federated Learning 15

for multiple rounds, with each iteration improving the global model’s accu-

racy and robustness. This method efficiently harnesses insights from varied

data sources while preserving the privacy of each client’s data.

Subsequently, it’s essential to understand which architectures are used in

Federated Learning. One of the most commonly used architectures in this con-

text is the Federated Classifier, a deep learning network designed for local

training and subsequent aggregation of model weights across multiple clients:

this clients that participate in the active training are also called activation

clients. A distinctive feature of this architecture, in addition to adhering to

the fundamental principles of federated learning, is its ability to achieve good

performance for clients who don’t have labels, known as unseen clients. Fur-

thermore, an additional approach to enhance local performance (as the model

aims to adapt to all clients, local performance may be lower) is the use of

fine-tuning [21]. This involves freezing all layers except the last one, which

is related to classification. In this context, training the final layer, even with

few labels, can improve local performance. However, the Federated Classifier

faces certain limitations: often, the input distributions from different users are

highly heterogeneous, which can lead to lower global performance and addi-

tionally, this model falls under the category of discriminative AI, lacking the

advantages inherent to generative and probabilistic models.

Finally, for simulating Federated Learning environments, a widely used

framework is Flower [22, 23], a Python-based framework that facilitates the

construction of such systems. It is compatible with frameworks like PyTorch

or TensorFlow. Flower allows for the coding of server and client components,

where each client can load its dataset. The framework supports various strate-

gies, such as the number of clients, the fit_fraction (i.e., how many clients are

actually used for training), the number of training rounds, and the option to

use FedAVG. However, it should be noted that this system intensively utilizes

hardware resources due to the need to load (and retain) all the weights of all

clients and their corresponding datasets.

2.3 Meta Learning 16

2.3 Meta Learning

In deep learning, each model is typically trained on a specific task. Often, a

model trained for task A may not adapt well to a similar task B, necessitat-

ing retraining on task B. However, this approach differs from human learn-

ing, where the goal is to generalize learning across multiple concepts. This

is why Meta Learning [24, 25] was introduced. The aim is to create versatile

AI capable of performing across various tasks using only a few samples for

adaptation, known as few-shot learning (usually 1 to 10 shots, or simply sam-

ple, per class). This concept is illustrated in Figure 2.8. In this approach, the

Figure 2.8: Task of learning the binary classification between multiple pairs
instead of learning cat vs dog (Image taken from [26])

model is trained on a support set, which consists of samples from a dataset

D with specific classes, and is then tested on a query set, composed of sam-

ples from different classes also taken from dataset D. Commonly the used

algorithms in this context are optimization-based, where they rely on the back-

propagation of gradients. One of the most notable is MAML (Model-Agnostic

Meta-Learning) [27], an algorithm that can be applied to any model that uses

backpropagation. The goal of MAML is to find an optimal initial point for

the model, such that it minimizes the distance between this initialization point

2.3 Meta Learning 17

and the point of convergence for each task, as simply described in Figure 2.9.

Figure 2.9: MAML algorithm, find the optimal initialization θ such that, with
few-shot learning, it is possible to achieve the task specific optimal model θ∗

1,
θ∗

2 or θ∗
3 (Image taken from [27])

Considering a model denoted as fθ with parameters θ, for a given task Ti
and its associated dataset (Dtraini

, Dtesti) and the associated loss function LTi

computed on fθ, the model parameters can be updated through one or more

steps of gradient descent. These steps constitute what is referred to as the

inner loop. The update process can be formalized as follows:

θ′
i ← θ − α∇θLTi

(fθ) (2.15)

Subsequently, in the outer loop, the initial parameters θ are updated in a man-

ner that enhances performance across all tasks. This necessitates the compu-

tation of the gradient of the loss function with respect to the initial parameters:

θ ← θ − β∇θ

∑
Ti

LTi
(fθ′

i
) (2.16)

In this step, the gradient (∇θ) of the sum of the gradients (included in fθ′
i
) is

computed, involving the calculation of the second-order derivative.

2.3 Meta Learning 18

2.3.1 Reptile Algorithm (Batched Version)

Reptile [28] is an algorithm proposed byOpenAI as an improvement toMAML.

In MAML, the computation of the second derivative involves a significant

computational cost; therefore, the goal was to find an algorithm that would

stop at the first derivative, as proposed by Reptile. It samples a number N

of tasks and subsequently computes SGD for each task, then the model is up-

dated following the direction (gradient) common to all tasks. The analogy is

to compute the gradient of gradients without actually calculating the second

derivative. The algorithm that will be used in this dissertation is the batch

version [29], defined as follows:

i. Randomly initialize the parameters of the model θ;

ii. Sample N tasks Ti from the dataset D; in each task, the dataset is com-

posed as Di = (x1, y1), ..., (xk, yk) with k as number of samples;

iii. Inner loop: for each task, l steps of SGD are computed to obtain a new

model weights θi (i.e. a classical training is computed for Ti using Di);

iv. Outer loop: all the previous θiwere stored, now theweights of themodel

are computed using:

θ ← θ + η

N

∑
i

(θi − θ) (2.17)

with η as learning rate for the outer loop (called meta step) and N the

number of tasks.

Chapter 3

System Descriptions

In this dissertation, an architecture, not yet explored in the context of Federated

Learning, with two new variants will be proposed: the ClassInformed-VAE

with the goal of bringing inputs from different distributions to a common dis-

tribution (i.e., the same latent space for different clients, simply termed by us

as Federated Latent Space), and the use of Meta-Learning, specifically the

new algorithm Reptile, for rapid adaptation (i.e., fine tuning using few-shot

learning) of the CI-VAE to variations in client distributions.

3.1 Federated ClassInformed-VAE

Due to the limited number of samples available in common datasets, there is

often a necessity to generate synthetic samples, which is not feasible with the

current models in Federated Learning. Moreover, the standard Federated Clas-

sifier falls into the issue of the discriminative approach discussed in Chapter

2.1, where it does not provide a level of “certainty” in classification. Addition-

ally, these models have a final Dense Layers that complete the classification

based on the features received from the upper layers (i.e., CNN for images),

that is focusing on classifying based on edges, angles, textures, and, at higher

levels, parts of objects or more complex patterns in the case of images. How-

ever, the goal should be to learn the underlying distribution of the data in a

continuous and regular latent space, aiming to capture not just the visible char-

acteristics of the data but also their intrinsic variability and the probabilistic

relationship between them. This concept can be addressed with the use of

VAEs. Indeed, VAEs learn a probabilistic distribution in the latent space: this

3.1 Federated ClassInformed-VAE 20

implies that the model not only learns a compact representation (encoding) of

the data but also how these data are distributed in the latent space. This can

better capture the intrinsic variation in the data. Nevertheless, VAEs do not

perform actual classification, as their architecture consists of an Encoder and

Decoder, with the goal of reconstructing the data (both original and a modified

version, as in denoising). For this reason, a classifier is placed near the latent

space, taking as input a vector in the n-dimensional space of the latent space

and providing as output the class to which the data belong: in this way, both

discriminative and generative approach are used, as shown in Figure 3.1.

Figure 3.1: Diagram of the CI-VAE architecture. The section outlined by red
dots delineates the classification part, which includes the Encoder, latent space
z and sampling via the reparameterization trick, and the classifier. The portion
outlined in blue illustrates the generative process, where a sample from the
latent space is transformed into the reconstructed outputs x̂ and the synthetic
ŷ

The decision to impose a classifier in the latent space rather than after the

decoder is represented by the fact that in the decoder’s output there is no con-

trol of the output: indeed, the classifier might learn the classification based

3.1 Federated ClassInformed-VAE 21

on what the decoder provides, perhaps even features different from those we

would expect. This model of VAE with the latent space classifier is called

ClassInformed-VAE (CI-VAE) [30]. It offers numerous advantages:

i. the classifier, necessarily linear, aids in the learning of features in the

latent space; in fact, the information of the labels can be backpropa-

gated into the Encoder, adjusting the weights of the latter using also the

class information of the data (for example, a 4, a 9, or a 7 in MNIST

dataset could have extremely similar features, causing the features to

sometimes overlap with each other, as shown in Figure 3.2). Indeed,

as demonstrated in [31, 32, 30], it is possible to achieve a latent space

with greater differentiation of the various labels from each other. The

previous consideration is explained by the following observation:

“Once the linear discriminator is saturated and is unable

to linearly separate the data in the latent space, through gradi-

ent back-propagation, it sends signals to the entire network to

contribute to forming a latent space that is more linearly sep-

arable while maintaining low reconstruction quality” [30];

ii. during the generation process, the vector sampled in the latent space can

also be passed through the classifier, having in output both the synthetic

sample via the Decoder and the label via the classifier (blue part in Fig-

ure 3.1) using a threshold on the output probability of the classifier;

iii. in the case of simple classification, it is possible to use the Encoder with

the classifier to find the belonging class (red part in Figure 3.1);

iv. the CI-VAE demonstrates promising results even with datasets contain-

ing a limited number of samples, such as in the case of digits drawn by a

single user. As evidenced across various users, a more organized latent

space can be achieved through the classifier, an outcome not feasible

with standard VAEs when the number of samples is insufficient for an

3.1 Federated ClassInformed-VAE 22

optimal organization (as shown in Figure 3.3), leading to some overlap.

Therefore, CI-VAEs might be highly suitable for Federated Learn-

ing. However, this phenomenon also strongly depends on the latent

dimension size: with a larger latent size, even VAEs can better orga-

nize features. Nonetheless, an increasingly larger size may lead to the

“holes” phenomenon in the latent space: during inference or the gen-

eration of new data, the model might behave unpredictably or produce

unrealistic samples when exploring these “empty” or “hole” regions of

the latent space. Obviously, with a small dataset, a small latent dimen-

sion means also worse reconstructed and synthetic images. Thus, the

choice of the latent dimension value becomes extremely important.

For these reasons, CI-VAE could be considered a suitable solution in Federated

Learning, even though it has not yet been evaluated in this context.

Figure 3.2: Comparative visualization of latent spaces. The figure presents
a 2D t-SNE projection of the 20-dimensional latent spaces for the MNIST
dataset, as modeled by a standard VAE (left) and CI-VAE (right). The CI-
VAE latent space displays a more organized and distinct clustering of digits
with smaller overlap, indicating enhanced class separation compared to the
standard VAE (Image taken from [30])

3.1 Federated ClassInformed-VAE 23

Figure 3.3: Latent space for the standard VAE (left) and CI-VAE (right) repre-
senting digits drawn by the same individual with a limited number of samples
and using a 2D t-SNE projection of the 3-dimensional latent spaces. Notably,
the CI-VAE benefits from the integration of a classifier, which aids in dis-
cerning distinct features and distributions, resulting in clear and discernible
clusters. In contrast, the standard VAE, with its sparse sampling, fails to ade-
quately regularize the latent space

3.1.1 Linear Classifier in CI-VAE

The classifier, applied to the latent space, can be described by cψy(y|z) param-

eterized by ψ with weights dependent on the label value y during backpropa-

gation, and using the latent representations z to predict y, as illustrated in Fig-

ure 3.1. However, within the CI-VAE’s Encoder, z is computed as qφy(z|x),

thus the complete relationship of the classifier is:

c = cψy(y|qφy(z|x)) (3.1)

In practice, this classifier consists of a single layer of linear Dense with an

activation function of either softmax or sigmoid depending on the case. This

also enables the backpropagation of the classifier’s information into the En-

coder, using the cross-entropy loss once the classifier weights have saturated;

hence, the final loss for the CI-VAE will be:

Ltotal = LV AE + α · Lclassifier (3.2)

3.1 Federated ClassInformed-VAE 24

where LV AE could simply be the loss for Equation 2.14 or the β-VAE loss,

while Lclassifier could be simply equal to −∑
y log cψy(y|z). α, considered

as a hyperparameter, is the weight size for the classifier loss (privilege recon-

struction and KL or the classification) and could be any value ≥ 0. More-

over, it is also important to introduce a regularization factor (L1, also called

Lasso [33]) both in the classifier and in the VAE, as demonstrated in [30].

Furthermore, regularization will also be a very determining factor of the CI-

VAE in Federated Learning. Indeed, L1 regularization pushes the majority of

weights towards zero, aiding the model in preventing overfitting and making

it more generalizable to new data, as well as identifying which inputs are rele-

vant for a particular task, an aspect that is extremely crucial in Meta-Learning.

The L1 can be simply described as:

Lnew = L+ λ
∑
|ω| (3.3)

with ω being the model weights. An additional regularizer available in Keras

is L2 (Ridge), which penalizes larger weights (using ω2) by pushing them

towards a distribution of smaller and more uniform weights. Through certain

analyses, L1 has been found to yield better performance for the CI-VAE.

3.1.2 CI-VAE in FL

As discussed in the preceding section, CI-VAEs could offer several benefits

in the Federated Learning scenario. Firstly, it is essential to demonstrate the

standard federated VAE is capable of operating within an FL environment,

as evidenced in [34]. This reference illustrates that an Fed-VAE can achieve

similar generation performance with respect to the local VAEs.

Having established this, the next step is to verify the correct functioning

of the classifier applied to the latent space. The objective of the CI-VAE is to

align the same information, which may be expressed with different distribu-

tions or rotations, into a single distribution (i.e., two digit ‘4’s from different

3.1 Federated ClassInformed-VAE 25

Figure 3.4: Visualization of the 2D projection with t-SNE of the shared latent
space enabled by the classifier in FL for MNIST images for User1 and User2,
demonstrating how different shapes and rotations for various digits lead im-
ages with the same label to the same distribution, as shown by the two digit
‘4’s of different shapes and rotations brought into the same area of the latent
space

individuals with varying rotations and shapes should be represented similarly

in the latent space). With standard local VAEs, this is unachievable due to the

fact that each client creates a custom latent space, precluding interoperability

among different clients. Conversely, an Fed-VAE might struggle to represent

the same information in the same region in the latent space, what one client

perceives as the digit ‘9’ could be interpreted as a ‘6’ by another, simply by

considering how the rotation of a camera device is kept. This is precisely

where the classifier plays a crucial role: by using a shared classifier in FL and

a local VAE (i.e., the VAE is updated locally without receiving weights from

3.2 Federated Reptile CI-VAE 26

the server), it is feasible to describe different distributions using the same la-

tent variables z, as depicted in Figure 3.4, with different Encoders. Here, two

clients with different rotations and features were trained in a FL environment

with local VAEs and a shared classifier, proving the previous assertions. How-

ever, a significant challenge for this architecture is finding a balance between

the size of the latent space and the decoder. Specifically, a very small latent

dimension risks not adequately separating the different features for various

clients, while an excessively large latent space could preclude the generation

of samples due to the presence of “hole” in the latent space for smaller datasets.

Figure 3.5: Representation of an ME-VAE [18], a concept very similar to
the CI-VAE applied to Federated Learning: different clients have different
datasets, xn, and distinct encoders, En, with a shared latent space achieved
through the classifier

3.2 Federated Reptile CI-VAE

An alternative variant of the architecture proposed in this dissertation involves

the application of Meta Learning, specifically employing the batched version

of the Reptile algorithm, an algorithm that has not yet been evaluated in the

3.2 Federated Reptile CI-VAE 27

context of Federated Learning. This variant leverages the same CI-VAE archi-

tecture previously described, with the addition of federated training through

meta learning. The Federated Reptile CI-VAE, or FedRep CI-VAE has the

primary objective is to facilitate the adaptation to the diverse datasets of vari-

ous clients with fine-tuning, or called few-shot learning in this case. This time,

the CI-VAE model is trained entirely in a federated manner, not just the clas-

sifier. Naturally, this approach might lead to lower overall performance since

there isn’t a custom converge point for each client. However, through few-

shot learning, which is conducted after a federated training, the model should

be able to adapt to the specific client. Nonetheless, it is imperative to first

examine the application of Reptile within Federated Learning, a concept that

has not been explored. The preference for Reptile instead of MAML stems

from its utilization of first-order derivatives, unlike MAML’s approach, and

the straightforward manner in which Reptile can be adapted to the FL.
Algorithm 1: FedRep Algorithm
Input: Number of clients N with N ≤ Total Clients, Clients

c1, c2, . . . , cn, Meta Step η, Loss LTi
, k steps of SGD

Output: Updated global parameters θ

1 Initialize global parameters θ

2 for iteration = 1, 2, . . . do

3 Sample N clients c1, c2, . . . , cn in the pool

4 for i = 1, 2, . . . , n in parallel do

5 θi = SGD(LTi
, θ, k) (Client side)

6 end

7 Update θ ← θ + η
N

∑N
i=1(θi − θ) (Server side)

8 end

FromChapter 2.3.1, it is apparent that batched version of Reptile is founded

on the concept of sampling various tasks with distinct classes from the same

dataset. However, it is also intuitive to understand how a task can be equated

to the dataset of a specific client in Federated Learning with its unique

3.2 Federated Reptile CI-VAE 28

features, labels, and distributions (Algorithm 1). In essence, it can be sim-

ply stated that each set of clients conducts local training with their respective

datasets (i.e., client i, seen as task Ti with its own dataset Di), implementing

several steps of SGD and then all models are sent back to the Server where

their aggregation will take place (no longer using FedAVG). This process in-

volves calculating the difference between the weights of the client i’s trained

model and the model at the initial round, and then summing the differences

across all clients. With these considerations in mind, the final step of the al-

gorithm will be (using 2.17 as reference):

θ ← θ + η

N

N∑
i=1

(θi − θ) (3.4)

where θi represents the trained model with SGD for client i. Subsequently,

using the dissociative property, the equation can be written as:

θ ← θ + η

N

N∑
i=1

θi −
η

N

N∑
i=1

θ (3.5)

θ ← θ + η

∑N
i=1 θi
N

− η
∑N
i=1 θ

N
(3.6)

θ ← θ + η · θavg − η
N · θ
N

(3.7)

θ ← θ + η(θavg − θ) (3.8)

where θavg can be simply expressed as the average of the model parameters

from the clients (equivalent to an unweighted FedAVG). The fundamental dif-

ference from FedAVG (remembering it is equal to θ ← ∑
i
ni

N
θi with ni being

the number of samples per client) is that FedRep updates the global parameters

by moving them towards the aggregated parameters, representing an average

of the parameters obtained from various clients. Ultimately, this variant of-

fers numerous advantages due to its ability to quickly adapt to a client (i.e.,

task) with few-shot learning. Indeed, one can simulate a scenario where the

3.2 Federated Reptile CI-VAE 29

model is provided to a client who does not have labels, and if the classifica-

tion is uncertain (i.e., the probability of the classifier’s outcome is below a

certain threshold), the system asks the client for label(s) and then performs

fine-tuning.

Additionally, it is evident from the final formula that setting η = 1 directly

yields θavg, aligning with the formula of unweighted FedAVG. However, this

formula offers the advantage of transitioning from the initial point towards

the midpoint in steps defined by η. In subsequent rounds, a new model θ′
avg

will emerge, differing from the previous θavg since the starting points vary

with each round. Furthermore, the Reptile algorithm entails sampling different

tasks across various rounds. This concept is readily applicable to a real-world

Federated Learning scenario involving thousands of devices. In this network,

each round samples N clients from this pool, ensuring a consistently diverse

dataset in each round (e.g., with 1000 devices and N = 25, the likelihood

of sampling the same client in consecutive rounds is low). This approach

effectively facilitates the assumption of continually changing tasks.

Chapter 4

Datasets

4.1 FEMNIST

The FEMNIST dataset [35] is a dataset used for image classification. Each

image is represented as a digit, a lowercase, or an uppercase character. In-

deed, the digit images can be likened to those in the MNIST dataset, with

the significant difference that the images are grouped by writer. This aspect

is particularly important for simulating federated learning, as it allows for the

division of the dataset into several datasets that describe the images of a single

writer. This dataset includes a considerable number of users (3, 550 writers),

totaling 805, 263 images. The average number of images per user is 226.83

(considering digits and letters) with a standard deviation of 88.94. Figure 4.1

provides an histogram representing the number of samples per user. For this

Figure 4.1: Number of images per user for FEMNIST dataset (Image taken
from [35])

4.1 FEMNIST 31

dataset, no preprocessing phase was applied, and the images have a resolution

of 28x28 pixels. However, the dataset contains images of varying quality and

distribution, including some writers who have few or no labels for a particular

class or features that are sometimes difficult to interpret. Of course, all these

issues are part of the assumptions of Federated Learning, where each user

often presents images of varying quality and dissimilar distributions across

different users. This is precisely why the dataset was considered as is. Be-

sides, for this dissertation, only images depicting digits were considered due

to hardware limitations (i.e., to simulate a Federated Learning environment,

each user must upload their own dataset and model, potentially leading to the

simultaneous execution of 25 − 50 models. Therefore, the number of labels

chosen was 10 instead of 52, as would be the case with lowercase and upper-

case letters).

Figure 4.2: Examples of digit images from the FEMNIST dataset illustrate
how the digits exhibit various features or quality differences between different
writers

4.2 HAR 32

4.2 HAR

Human Activity Recognition (HAR) [36] has emerged as a vital research area

in the field of wearable technology and the Internet of Things (IoT). The ability

to accurately recognize and classify human activities has numerous applica-

tions, including healthcare monitoring, fitness tracking, gesture control, and

context-aware systems. It is extensively used in the realms of TinyML and

Federated Learning.

The dataset consists of 10, 299 samples from 30 users aged between 19

and 48, divided into 21 for training and 9 for testing, with 561 attributes and

across 6 activity classes: walking, walking upstairs, walking downstairs, sit-

ting, standing, and laying. Data have been collected using an accelerometer

(on X, Y, and Z axes) and a gyroscope using a Samsung SII smartphone, cap-

turing 3-axial linear acceleration and 3-axial angular velocity at a constant

rate of 50Hz. The data was then re-processed by applying noise filters. The

distribution between the training and test sets for each user is 70 − 30% and

the recorded values, ranging between −1 and 1, were normalized to a 0 − 1

range. The class distribution percentage for each user is almost equal, and

each client does not have missing values or users with a limited set of labels;

these characteristics make it a dataset that is easy to evaluate.

However, not all of the 561 features in the HAR dataset were utilized. An

increase in performance was observed through a feature selection analysis,

reducing the original 561 features to 144 (which were treated as a 12x12x1

image). The variance method was used for this purpose [37], selecting the top

144 features that exhibited the greatest compromise between variance across

different classes (i.e., if an attribute has the same value for different classes, it

might be considered insignificant for the classification) and the number of pa-

rameters. Indeed, some features were found to potentially worsen overall per-

formance. A more comprehensive analysis revealed that the most important

4.2 HAR 33

Table 4.1: Micro F1 score among different input size

Input Size N. Params micro F1
50 1665 0.899
60 2391 0.918
70 3205 0.926
80 4186 0.937
90 5245 0.936
100 6481 0.944
110 7785 0.937
120 9276 0.954
130 10825 0.969
140 12571 0.972
150 14365 0.974
160 16366 0.978
170 18405 0.975

features were those related to entropy and the mean/max accelerometer read-

ings on the X-axis. This variance method was tested for inputs ranging from

50 to 170 features, beyond which there was a decrease in performance 4.1.

Chapter 5

Results

In this chapter, the results for the two datasets introduced in the previous chap-

ter will be explained. Each dataset will be evaluated across four different

models: a locally trained classifier (Local CL), a Federated Classifier (Fed

CL), and finally the new models proposed in this dissertation, Fed CI-VAE

and FedRep CI-VAE. For each dataset, results will be presented for the active

clients (those who have actively participated in the federated training) and the

unseen clients (those who have not participated in the federated training and

have few or no labels). Besides, in federated learning, the use of batch nor-

malization and dropout can present challenges due to the non-i.i.d. nature of

the data and the distributed training setting; thus, they have not been used in

this dissertation.

5.1 FEMNIST (with Rotation)

For this dataset, a maximum of 25 clients were evaluated for active training

due to hardware limitations. The same seed was used in the sampling of clients

for each model to ensure more realistic comparisons. Moreover, in the follow-

ing sections, results will be presented only for seed 42, as the same considera-

tions and issues have been observed for other seeds used. In itself, this dataset

is quite simple, not showing any real differences in performance among dif-

ferent users. For this reason, the dataset was further complicated by adding

rotation: each client presents images with their own rotation, which was sam-

pled with values in the range of 0−359 degrees. This added complexity serves

to simulate more realistic datasets where the input distributions are muchmore

5.1 FEMNIST (with Rotation) 35

complex (e.g. rotation of a smartphone camera can change a lots while taking

the photo of the digit samples in this case) than the classic MNIST dataset,

remembering always that IoT devices can’t send data due to privacy.

For this dataset (and generally for the subsequent ones), four models were

evaluated:

i. Local CL: this model served as a benchmark for the performance of

each client. In each iteration, the client loaded its dataset, performed

training, and then tested the model on the test set. The used architecture

is depicted in Figure 5.1. The hyperparameters were set to a learning

rate of 0.001 with Adam and a batch size of 4, due to the low number

of images per user (ranging from 20 to 130).

Figure 5.1: The Local Classifier model architecture for the FEMNIST dataset

ii. Fed CL: the previous architecture (Local CL) was then evaluated in

a federated manner using FedAVG as the aggregation function on the

Server. Subsequently, Fine Tuning was performed, leaving the param-

eters of the last Dense Layer trainable, using 2 samples per class (2-shots

learning), as proposed in 2.2. The same hyperparameters as Local CL

were used;

5.1 FEMNIST (with Rotation) 36

iii. Fed CI-VAE: Subsequently, the first variant of VAE for FL was tested,

with the architecture proposed in Figure 5.2 and Figure 5.3, and a classi-

fier consisting of a single Dense Layer with the Latent Space dimension

as input and the number of classes as output. The model was trained

with local Encoders and Decoders and a federated Classifier, with Fe-

dAVG as the aggregation function. Regarding hyperparameters, a latent

dimension of 3 was used, learning rate of 0.001 with Adam, β = 1 for

the KL loss coefficient, α = 3 as a coefficient for the class loss, a batch

size of 4 and L1 regularizer of 0.1;

iv. FedRep CI-VAE: Finally, the last model tested used Meta-Learning.

The Encoder and Decoder (same architectures as before) in this case

were trained in a federated manner, as well as the classifier, with the

significant difference being that FedRep with η = 0.35 was used as

the aggregation function. All hyperparameters were the same as Fed

CI-VAE, with the difference of using SGD instead of Adam. Finally,

2-shots learning was tested. However, this model has some privacy lim-

itations, as it’s possible to generate a sample through the public Encoder

or Decoder of client i that has a distribution similar to client i’s input.

Consequently, this model requires a more thorough future analysis

involving Differential Privacy.

All the previous models were evaluated on the same 25 individuals, a limit

reached due to hardware constraints, but different seeds were used for each

evaluation. Regarding the number of epochs or rounds, a convergence point

was reached after 100 epochs for all federated models, always considering 25

individuals (however, the number of rounds could vary significantly with an

increase in clients). Fed CL experienced slight overfitting from 60 rounds on-

wards 5.4, while both Fed CI-VAE and FedRep CI-VAE showed slight overfit

after 80 rounds 5.5. Clearly, for these last two models, a greater number of

epochs is necessary, both for the stability of the VAE and for the classifier.

5.1 FEMNIST (with Rotation) 37

Figure 5.2: Architecture of the Encoder for CI-VAE used in FEMNIST

Besides, Local and Fed CL share the same architecture, totaling 180k pa-

rameters, while FedRep and Fed CI-VAE have a total of 229k parameters,

encompassing the Encoder, Decoder, and Classifier.

The initial performance (presented in Table 5.1) were conducted on the

same 25 clients, subsequently reporting the micro F1 score achieved on the

test set of the active clients. After that, the models were evaluated on the un-

seen clients, recalling that these are the clients that do not have labels. As

Table 5.1: Micro F1 score on FEMNIST with Rotation and w/out fine tuning

Model Test Set Active Client Unseen Client
Local CL 0.91 -
Fed CL 0.83 0.75

Fed CI-VAE 0.87 0.70
FedRep CI-VAE 0.84 0.74

revealed by the table 5.1, local models achieved better performance for the

5.1 FEMNIST (with Rotation) 38

Figure 5.3: Architecture of the Decoder for CI-VAE used in FEMNIST

FEMNIST dataset with rotation, mainly because each client presents its own

rotation and distribution. Thus, both the local classifier and the local CI-VAE

were able to adapt to the needs of individual clients, with the CI-VAE offer-

ing the possibility of a federated and common latent space. However, these

models encountered low performance with unseen clients: the Local CL could

not adapt as there is no real common model, raising the issue of which model

to choose from the client pool for testing the unseen clients. Regarding CI-

VAE, the final model chosen took the average of all the Encoder parameters,

using the federated classifier and a Decoder from the client who volunteered

as a sample participant; in this case, the performance was not null but indeed

very low for unseen clients (without accounting for the fact that the generated

samples correspond to the data of the user who served as a volunteer), in-

dicating struggles in situations with complex input distributions and without

labels. Fed CL, however, showed comparable results between active and un-

seen clients, though it was the model with the lowest micro F1 in active clients

(0.83), and the best in unseen clients (0.75). FedRep CI-VAE showed good

5.1 FEMNIST (with Rotation) 39

Figure 5.4: Mean Train and Val loss for Fed CL model received from the 25
clients

Figure 5.5: Mean Train and Val loss for Fed CI-VAE model received from the
25 clients

results for unseen clients (0.74), but it’s noteworthy that this model was de-

veloped to achieve good performance through the use of Meta-Learning. For

this reason, the second phase of performance evaluation involved the use of

2-shots learning for unseen clients (Table 5.2): each unseen client provided 2

random samples per class, and the remaining samples were used to test the per-

formance. Moreover, fine tuning can also be applied to federated models for

active clients: FedRep CI-VAE and Fed CL feature completely federatedmod-

els, hence performance on individual clients might be lower. Therefore, fine

tuning can be applied to active clients, using the train set or 2-shots learning.

5.1 FEMNIST (with Rotation) 40

It’s essential to note that for FedRep CI-VAE tuning can be done by freezing

the classifier. This ensures that the samples are always classified in the same

area of the latent space, while enhancing the performance of the Encoder and

Decoder.

Table 5.2: Micro F1 score on FEMNIST with Rotation and with fine tuning
(with * no fine tuning applied)

Model Test Set Active Client Unseen Client
Local CL 0.91* 0.33
Fed CL 0.86 0.86

Fed CI-VAE 0.87* 0.75
FedRep CI-VAE 0.88 0.88

As observed from Table 5.2, fine tuning was not performed for the Lo-

cal CL and Fed CI-VAE models for active clients as they have local models

trained on their datasets. Both, however, did not exhibit excellent performance

on unseen clients, where Local CL was trained using only 2 samples per class.

Conversely, the federated models achieved excellent performance, showing

high adaptability with the use of 2-shots learning; notably, FedRep CI-VAE

attained the best performance on unseen clients and showed a good margin

of improvement for active clients, thanks to the concept of Meta-Learning.

Hence, with 2-shots per class, it’s possible to achieve about 90% of micro F1

for the FEMNIST case with a different rotation for each client, also demon-

strating excellent results on the generative side, thanks to the possibility of

fine-tuning the VAE while keeping the latent space unchanged. Moreover,

the use of fine tuning yielded excellent results even in cases where users had

only a limited set of labels, demonstrating a strong capacity for adaptation for

labels not presented during the few-shot learning. This adaptability extends

to situations where a user’s data distribution changes over time: if the output

probability of the labels falls below a certain threshold, the system can re-

quest a new set of labels (2 samples per class or more). It can then retrain the

5.1 FEMNIST (with Rotation) 41

Figure 5.6: Random Samples Generated for FedRep CI-VAE with 2-shots
learning using a Latent Space with 3 dimensions for Client f0068_00 (that
have only 50 samples) and the output probability of the Synthetic Label gen-
erated

original model (i.e., before fine tuning) and perform a new round of fine tun-

ing, thereby showing high adaptability. Finally, as one might easily deduce,

a greater number of shots tends to yield more encouraging results. However,

it’s worth noting that it can sometimes be challenging to request more than

2 samples per class from a user. Lastly, it should be noted that the essential

condition for Reptile tasks (i.e., the model must be trained on continuously

varying tasks) was not entirely met due to the inability to load more than 25

clients. In a broader context, more users should be involved (1000 as in re-

search papers) and a threshold T should be employed to identify the correct

number of active clients (with T ≤ 1000).

However, a more detailed analysis of individual clients is also necessary

(Table 5.3). From the results obtained for each active client, it’s observable

that local models (Local CL and our, i.e., Fed CI-VAE) achieved higher per-

formance because they are better at capturing the individual client’s rotations.

In contrast, federated models adapt to perform optimally across all the un-

seen clients, mainly because the aggregation function is based on averaging

the weights of all the possible clients. However, as previously noted, local

models struggle to adapt to unseen clients. Another critical observation is that

the results are heavily influenced by the number of training samples available

(clients f0005, f0012, f0033, and f0048) which exhibit lower performance for

both local and federated models, indicating they possess extremely distinctive

features. Despite this, onemight expect improved performance from federated

5.1 FEMNIST (with Rotation) 42

Client N. Samples Angle Local CL F CL our FRep our
f0000_14 62 57 0.95 0.83 0.88 0.85
f0005_26 49 308 0.82 0.74 0.80 0.79
f0010_18 75 359 0.94 0.92 0.88 0.83
f0011_13 68 216 0.95 0.85 0.90 0.84
f0012_39 50 15 0.85 0.81 0.84 0.82
f0013_38 61 302 0.88 0.83 0.86 0.83
f0015_48 60 101 0.88 0.83 0.85 0.85
f0019_38 71 346 0.93 0.85 0.85 0.83
f0020_08 60 140 0.88 0.82 0.85 0.81
f0027_29 75 279 0.95 0.84 0.86 0.83
f0033_49 47 258 0.83 0.79 0.85 0.83
f0035_19 71 327 0.95 0.91 0.94 0.91
f0043_10 69 71 0.89 0.88 0.88 0.87
f0044_12 56 111 0.88 0.86 0.89 0.88
f0045_12 74 47 0.95 0.86 0.92 0.88
f0048_00 36 16 0.78 0.67 0.72 0.71
f0054_14 73 114 0.88 0.87 0.88 0.86
f0058_07 71 13 0.88 0.86 0.88 0.87
f0068_00 56 287 0.88 0.84 0.87 0.86
f0077_13 71 119 0.91 0.88 0.92 0.88
f0086_47 73 332 0.86 0.87 0.85 0.84
f0089_16 69 125 0.86 0.85 0.87 0.83
f0093_24 75 44 0.92 0.86 0.89 0.86
f0097_05 70 12 0.91 0.87 0.90 0.87
f0099_18 75 52 0.92 0.88 0.92 0.88
Total 1617 - 0.91 0.83 0.87 0.84

Table 5.3: Micro F1 for the four different models on active clients’ test sets
w/out fine tuning

models. However, even with the same rotations, other clients achieve better

performance, highlighting a stark example where a local model with Transfer

Learning could be a better solution in the case of few labels. Nonetheless,

a more detailed discussion concerning rotations is warranted, as described in

Section 5.1.1. During the 2-shots learning phase, there was an increase in

client performance, as indicated in Table 5.2, although the improvement was

almost consistent across all clients: those with initially low performance saw

only a slight enhancement. For amore accurate analysis, it would be necessary

to involve a larger number of active clients and to explore Transfer Learning

5.1 FEMNIST (with Rotation) 43

techniques from MNIST. Despite this, the CI-VAE has shown commendable

results (comparable with Local and Fed CL) even with a limited number of

samples available, thanks to the classifier applied to the latent space.

5.1.1 Rotation challange

Rotation represents a real challenge during federated training; in fact, from the

results described in the previous sections, it is possible to notice how the i.i.d.

problem (different rotations, shapes, and numbers of samples for each dataset)

is partly solved. However, for amore complete analysis, it is necessary to view

the performance of the models in a complex scenario, where there is a single

client in the network with distributions completely different from the remain-

ing clients. In FEMNIST dataset, the rotation will be evaluated, but the task

can be extended to any dataset where the majority of the network is composed

of clients with the same distributions. Rotation might pose a problem in cases

where the majority of users in the network experience the same rotation (e.g.,

with 10 clients of which 9 have the same rotation, the tenth could have lower

performance due to the fact that, in general, the Server with FedAVG simply

averages the model weights). To this end, four scenarios will be tested on 25

clients with the models previously described, except for the local model for

obvious considerations. In all the scenario Fine Tuning was used to restore

the client-performance (Table 5.4). Clearly, for a more complete analysis, it

would be necessary to test on a larger number of clients and with many more

configurations, something not possible with the hardware resources used.

The first scenario (Scenario 1) describes a simulation in which 24 clients had

a rotation between 0− 90 degrees, while a single client had a rotation of 250

degrees; this scenario was simulated by sampling different clients. However,

it is important to note that it also depends heavily on the client selected for the

250 degrees rotation. In the case of a client with a dataset containing errors or

difficult to interpret, the performance might not reflect those described in the

table. In this scenario, all models demonstrated high adaptability. The second

5.2 FEMNIST (w/out Rotation) 44

Table 5.4: Models’ adaptability to each scenario using mean micro F1 on the
selected client(s); High> 0.85; 0.75 ≤Medium< 0.85; 0.65 ≤ Low< 0.75;
Very Low < 0.65

Scenario Fed CL Fed CI-VAE FedRep CI-VAE
1 High High High
2 Low High Medium
3 Low Very Low Medium
4 Very Low Very Low Low

scenario (Scenario 2) represents a simulation where 24 clients have the same

rotation (0 degrees) and one client has a different rotation (250 degrees). In this

case, the Fed CI-VAE model showed high adaptability thanks to the presence

of the local VAE, while the model with Reptile achieved higher performance

compared to Fed CL. Finally, the last two scenarios describe a situation where

unseen clients are evaluated. The first (Scenario 3) is a simulation where all

active clients during training had rotations between 0− 90 degrees, while the

unseen clients had a rotation of 250 degrees. The second case (Scenario 4)

describes a simulation where all active clients had an identical rotation (0 de-

grees), and the unseen clients had a rotation of 250 degrees. In these last cases,

it is evident that the Fed CI-VAE has low adaptability due to the presence of

the local VAE, which is not able to adapt to unseen clients. As for the other

two models, FedRep CI-VAE showed better adaptability compared to Fed CL.

However, it can be concluded that the greater the variability of the clients (in

this case, more rotations, i.e., photos taken with different angles), the better

the performance of FedRep CI-VAE and to some extent also for Fed CL.

5.2 FEMNIST (w/out Rotation)

Themodels described in the previous sectionwere also evaluated for the FEM-

NIST dataset without any image rotation. Understandably, using the same

architectures and the same number of parameters, it was possible to achieve

5.2 FEMNIST (w/out Rotation) 45

higher performance compared to the scenario with image rotation, as can be

easily inferred. Regarding the hyperparameters, all the previously described

values from the preceding sectionwere used due to hardware limitations. How-

ever, for a more thorough analysis, a complete re-tuning should be performed,

possibly with the aid of a larger number of active clients, which has consis-

tently been maintained at 25. Initially, the models were tested without the aid

Table 5.5: Micro F1 score on FEMNIST w/out rotation and w/out fine tuning

Model Size Test Set Active Client Unseen Client
Local CL 180k 0.93 -
Fed CL 180k 0.95 0.92

Fed CI-VAE 229k 0.96 0.72
FedRep CI-VAE 229k 0.90 0.85

of fine tuning 5.5. In this case, high performance were achieved for the ac-

tive clients with the Fed CI-VAE variant, while the local classifier exhibited

lower performance (therefore, it can be concluded that the CI-VAE architec-

ture and the federated latent space contributed to an increase in performance).

Regarding the unseen clients, the only model that achieved acceptable results

was Fed CL, even though the FedRep variant for CI-VAE showed a signifi-

cant increase in performance compared to Fed CI-VAE. Subsequently, the four

Table 5.6: Micro F1 score on FEMNIST w/out rotation and with 2-shot learn-
ing (with * no fine tuning applied)

Model Size Test Set Active Client Test Set Unseen Client
Local CL 180k 0.93* -
Fed CL 180k 0.97 0.95

Fed CI-VAE 229k 0.96* 0.77
FedRep CI-VAE 229k 0.96 0.93

different models were evaluated using 2-shots learning 5.6. It is important to

note that in the local models, fine tuning was not performed for the Test Set

of the active clients. In this scenario, the best performance were achieved by

5.3 HAR 46

Fed CL, with a low adaptability of Fed CI-VAE (which improved from 0.72 to

0.77 with 2-shots learning, a minimal increase). This variation in the dataset

demonstrates how federated knowledge can lead to better performance com-

pared to local models: this can be attributed to the fact that some clients have

features that are difficult to interpret locally, which can be leveraged through

federated learning. However, it should be highlighted that FedRep CI-VAE

achieved performance similar to Fed CL, with the added benefits of a feder-

ated latent space and the ability to generate samples. It should also be noted

that, in this case too, a complete tuning of the hyperparameters was not per-

formed due to hardware limitations.

5.3 HAR

In this section, the results achieved by four reference models (Local and Fed

CL, Fed and FedRep CI-VAE) for the HAR dataset are presented. For this

dataset, 21 clients were used as active clients (with 100% of the fit_fraction)

and 9 clients as unseen clients. The primary goal for this dataset was to min-

imize the number of parameters while still achieving high performance. Ad-

ditionally, the focus for this dataset was predominantly on classification, al-

though the generative models also exhibited good performance, as demon-

strated and shown in [1]. Different structures and architectures for Encoders

andDecoders should be considered, especially given the limitedmemory avail-

able on IoT devices.

The models under consideration have architectures similar to those used

in the FEMNIST case, with the variation of employing Dense layers. Both the

local and federated classifiers feature a first Dense layer with 128 neurons and

a second layer with 64 neurons. The CI-VAE, on the other hand, has a latent

dimension of 3, with an Encoder composed of 64− 32 neurons for each layer,

and a Decoder with 16 − 32 − 64 neurons (thus an asymmetrical structure),

which showed better benefits in sample generation. Lastly, there is a linear

5.3 HAR 47

classifier with a single layer. For all versions, a batch size of 8 was used,

Adam as the optimizer with a learning rate of 0.001, a weight of 3 for the class

loss, 0.1 as L1 regularizer, and finally, η = 0.35 for the FedRep approach.

Regarding performance, in this instance as well, the number of active

clients used was quite low due to the small number of users in the dataset.

This was the case despite the hardware allowing for a greater number of ac-

tive clients for federated training, thanks to the small size of the models, as

shown in Table 5.7.

Table 5.7: Sizes of the models proposed on HAR dataset

Model N. Params
Fed CL and Local CL 27.2k

FedRep and Fed CI-VAE 23.7k

The advantage of architectures with CI-VAE is that they can achieve per-

formance similar to other solutions while also having the ability to generate

samples and distribute knowledge through the federated latent space. The re-

sults for the different models without and with the use of fine tuning (2-shots

learning in this case) are shown in Tables 5.8 and 5.9. As can be inferred, for

Fed CI-VAE and Local CL, fine tuning was not considered for the Test Set of

Active Clients, since the training is already performed locally. From the over-

Table 5.8: Micro F1 score on HAR w/out fine tuning

Model Test Set Active Client Unseen Client
Local CL 0.98 -
Fed CL 0.92 0.90

Fed CI-VAE 0.97 0.75
FedRep CI-VAE 0.90 0.88

all results, it is observed that FedRep CI-VAE and Fed CL demonstrate good

performance for unseen clients without fine tuning (without labels), achiev-

ing very high performance for local models, which, however, show very low

5.3 HAR 48

Table 5.9: Micro F1 score on HARwith 2-shots learning (with * no fine tuning
applied)

Model Test Set Active Client Test Set Unseen Client
Local CL 0.98* 0.23
Fed CL 0.96 0.93

Fed CI-VAE 0.97* 0.85
FedRep CI-VAE 0.92 0.92

adaptability to unseen clients. These, in turn, exhibited low adaptability even

in the case of 2-shots learning, although Fed CI-VAE showed higher perfor-

mance compared to the local classifier. Regarding the other models, Fed CL

performed better than FedRep CI-VAE, although the latter offers the capability

of a federated latent space and the possibility to generate samples.

Moreover, amore detailed analysis on individual clients revealed that some

users have low performance [1], such as for user 14, with results shown in Ta-

ble 5.10. From these performance results, it can be noted that higher micro

Table 5.10: Micro F1 score on Active Client 14 Test Set (with * no fine tuning
applied)

Model w/out fine tuning After 2-shots
Local CL 0.88 0.88*
Fed CL 0.69 0.94

Fed CI-VAE 0.95 0.95*
FedRep CI-VAE 0.72 0.90

F1 values were achieved with local models, likely because this particular user

has input distributions (and in a minority compared to the network) that are

very different from those of other users. In this case, fine tuning represents

a very valid choice to address the issues of users who have distributions that

differ significantly from all other users in the network.

In conclusion, for this dataset too, the performance should be repeatedwith

a larger number of active clients to evaluate the limits and advantages of all

the models, in addition to better parameter tuning for CI-VAE.

Conclusion

This dissertation explored the potential of VAE and Meta-Learning on Feder-

ated Learning scenarios. One of the primary challenges in Federated Learning,

especially in IoT scenarios where user data distributions are highly heteroge-

neous and the number of samples in a dataset is often limited, is the lack of

shared knowledge. This thesis revealed that the CI-VAE architecture is ca-

pable of not only establishing federated knowledge through a federated latent

space, where diverse input distributions converge into a unified distribution,

but also of generating synthetic samples and labels through its classifier. It

achieves performance comparable to existing local and federated models in

the literature while using the same number of parameters, applicable to both

image datasets (FEMNIST) and sample-based datasets (HAR). Furthermore,

Meta-Learning has proven to be an effective approach for enhancing perfor-

mance with very few samples per class, even within a Federated Learning

scenario. Additional advantages include the ability to adapt to changes in user

input distributions or users with a limited set of labels. Potential future direc-

tions based on this work include evaluating CI-VAE and Meta-Learning with

quantization to reduce model sizes for IoT systems, exploring the potential of

Knowledge Distillation (employing the Server as teacher and clients as stu-

dents), model pruning, differential privacy, and considering the application of

Transfer Learning where feasible. However, it’s important to highlight that

these results should be re-evaluated in a broader context, with a larger num-

ber of clients, additional datasets, and comprehensive hyperparameter tuning,

which was not possible due to hardware limitations.

List of Figures

2.1 Architecture of theAutoEncoder for the digit 6, using theMNIST

dataset (Image taken from [2]) 5

2.2 a) Description of two distinct data labels in a 2D space where

X identifies the current input; b) discriminative approach, the

probability of X belonging to the blue group is high, thus, ac-

cording to the decision making, it is a definite and secure de-

cision; c) generative approach, the point X is located in the

blue zone, but far from the region of blue points, hence it is

an uncertain decision (Image taken from [4]) 6

2.3 A VAE learns the map between an observed x-space, with

distribution qD(x), and a latent z-space; the generative part

learns pθ(x|z)pθ(z), while the encoder part, also called in-

ference model, approximates the true but intractable posterior

pθ(z|x) using qφ(z|x) (Image taken from [6]) 10

2.4 Graphical comparison of the traditional sampling inVAE (left)

versus the reparameterization trick (right). On the left, z is di-

rectly sampled from the approximate posterior q(z|x), which

is non-differentiable. On the right, the reparameterization trick

is used to sample z by adding a deterministic transformation of

two separate nodes: µ and σ, representing the mean and stan-

dard deviation of the approximate posterior, and ϵ, a random

node sampled from a standard normal distribution N (0, 1).

This allows the backpropagation of the gradient (Image taken

from [13]) . 11

2.5 An overview of the VAE architecture, from the initial input

x to the reconstructed, lossy, x̂. It incorporates the Encoder,

which generates Σz|x and µz|x based on the input or a set of

inputs, followed by the application of the reparameterization

trick for sampling. Then, the Decoder reconstructs the origi-

nal input(s) (Image taken from [14]) 11

2.6 AutoEncoder (left) vs VAE (right). AutoEncoders learn the

map between input and z without explicit consideration for

the semantic distribution of the encoded features (a randomly

sampled point may not correspond to a meaningful feature

set, as shown in black), while VAEs encodes input data into a

structured latent space in a probabilistic manner, allowing for

the generation of new samples with different features from

different clusters (Image taken from [15]) 12

2.7 Algorithm of FedAVG (Image taken from [20]) 14

2.8 Task of learning the binary classification between multiple

pairs instead of learning cat vs dog (Image taken from [26]) . . 16

2.9 MAML algorithm, find the optimal initialization θ such that,

with few-shot learning, it is possible to achieve the task spe-

cific optimal model θ∗
1, θ∗

2 or θ∗
3 (Image taken from [27]) . . . 17

3.1 Diagram of the CI-VAE architecture. The section outlined by

red dots delineates the classification part, which includes the

Encoder, latent space z and sampling via the reparameteri-

zation trick, and the classifier. The portion outlined in blue

illustrates the generative process, where a sample from the la-

tent space is transformed into the reconstructed outputs x̂ and

the synthetic ŷ . 20

3.2 Comparative visualization of latent spaces. The figure presents

a 2D t-SNE projection of the 20-dimensional latent spaces for

the MNIST dataset, as modeled by a standard VAE (left) and

CI-VAE (right). The CI-VAE latent space displays a more or-

ganized and distinct clustering of digits with smaller overlap,

indicating enhanced class separation compared to the standard

VAE (Image taken from [30]) 22

3.3 Latent space for the standard VAE (left) and CI-VAE (right)

representing digits drawn by the same individual with a lim-

ited number of samples and using a 2D t-SNE projection of

the 3-dimensional latent spaces. Notably, the CI-VAE bene-

fits from the integration of a classifier, which aids in discern-

ing distinct features and distributions, resulting in clear and

discernible clusters. In contrast, the standard VAE, with its

sparse sampling, fails to adequately regularize the latent space 23

3.4 Visualization of the 2D projection with t-SNE of the shared la-

tent space enabled by the classifier in FL for MNIST images

for User1 and User2, demonstrating how different shapes and

rotations for various digits lead images with the same label to

the same distribution, as shown by the two digit ‘4’s of dif-

ferent shapes and rotations brought into the same area of the

latent space . 25

3.5 Representation of an ME-VAE [18], a concept very similar to

the CI-VAE applied to Federated Learning: different clients

have different datasets, xn, and distinct encoders, En, with a

shared latent space achieved through the classifier 26

4.1 Number of images per user for FEMNIST dataset (Image taken

from [35]) . 30

4.2 Examples of digit images from the FEMNIST dataset illus-

trate how the digits exhibit various features or quality differ-

ences between different writers 31

5.1 The Local Classifiermodel architecture for the FEMNIST dataset 35

5.2 Architecture of the Encoder for CI-VAE used in FEMNIST . . 37

5.3 Architecture of the Decoder for CI-VAE used in FEMNIST . . 38

5.4 Mean Train and Val loss for Fed CL model received from the

25 clients . 39

5.5 Mean Train and Val loss for Fed CI-VAEmodel received from

the 25 clients . 39

5.6 Random Samples Generated for FedRep CI-VAEwith 2-shots

learning using a Latent Space with 3 dimensions for Client

f0068_00 (that have only 50 samples) and the output proba-

bility of the Synthetic Label generated 41

List of Tables

4.1 Micro F1 score among different input size 33

5.1 Micro F1 score on FEMNIST with Rotation and w/out fine

tuning . 37

5.2 Micro F1 score on FEMNIST with Rotation and with fine tun-

ing (with * no fine tuning applied) 40

5.3 Micro F1 for the four different models on active clients’ test

sets w/out fine tuning . 42

5.4 Models’ adaptability to each scenario using mean micro F1 on

the selected client(s); High > 0.85; 0.75 ≤ Medium < 0.85;

0.65 ≤ Low < 0.75; Very Low < 0.65 44

5.5 Micro F1 score on FEMNIST w/out rotation and w/out fine

tuning . 45

5.6 Micro F1 score on FEMNIST w/out rotation and with 2-shot

learning (with * no fine tuning applied) 45

5.7 Sizes of the models proposed on HAR dataset 47

5.8 Micro F1 score on HAR w/out fine tuning 47

5.9 Micro F1 score on HAR with 2-shots learning (with * no fine

tuning applied) . 48

5.10 Micro F1 score on Active Client 14 Test Set (with * no fine

tuning applied) . 48

Bibliography

[1] FederatedRep CI-VAE. URL: https : / / github . com / DitucSpa /

FederatedRep_CI-VAE.

[2] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Ma-

chine learning for data science handbook: data mining and knowledge

discovery handbook:353–374, 2023.

[3] MNIST dataset. URL: https://keras.io/api/datasets/mnist/.

[4] Jakub M. Tomczak. Deep Generative Modeling. Springer, 2022.

[5] Estimating PI | monte carlo animation | python simulation. URL: https:

//www.youtube.com/watch?v=jnNBM62jT5E.

[6] Diederik P Kingma, Max Welling, et al. An introduction to variational

autoencoders.Foundations and Trends® inMachine Learning, 12(4):307–

392, 2019.

[7] Saul Dobilas. Tutorial 5: variational autoencoders. URL: https://

www.borealisai.com/research-blogs/tutorial-5-variational-

auto-encoders/.

[8] Variational autoencoder - model, ELBO, loss function and maths ex-

plained easily! URL: https : / / www . youtube . com / watch ? v =

iwEzwTTalbg&list=LL&index=1.

[9] Yufeng Zhang, Wanwei Liu, Zhenbang Chen, Ji Wang, and Kenli Li.

On the properties of kullback-leibler divergence between multivariate

gaussian distributions. arXiv preprint arXiv:2102.05485, 2021.

[10] Cheng Zhang, Judith Bütepage, HedvigKjellström, and StephanMandt.

Advances in variational inference. IEEE transactions on pattern anal-

ysis and machine intelligence, 41(8):2008–2026, 2018.

https://github.com/DitucSpa/FederatedRep_CI-VAE
https://github.com/DitucSpa/FederatedRep_CI-VAE
https://keras.io/api/datasets/mnist/
https://www.youtube.com/watch?v=jnNBM62jT5E
https://www.youtube.com/watch?v=jnNBM62jT5E
https://www.borealisai.com/research-blogs/tutorial-5-variational-auto-encoders/
https://www.borealisai.com/research-blogs/tutorial-5-variational-auto-encoders/
https://www.borealisai.com/research-blogs/tutorial-5-variational-auto-encoders/
https://www.youtube.com/watch?v=iwEzwTTalbg&list=LL&index=1
https://www.youtube.com/watch?v=iwEzwTTalbg&list=LL&index=1

[11] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maxi-

mumof a regression function.The Annals ofMathematical Statistics:462–

466, 1952.

[12] Diederik PKingma andMaxWelling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[13] Zhiyuan Chen, Waleed Mahmoud Soliman, Amril Nazir, and Moham-

mad Shorfuzzaman. Variational autoencoders and wasserstein genera-

tive adversarial networks for improving the anti-money laundering pro-

cess. IEEE Access, 9:83762–83785, 2021.

[14] Rushikesh Shende. Autoencoders, variational autoencoders (VAE) and

β-VAE.Medium. URL: https://medium.com/@rushikesh.shende/

autoencoders-variational-autoencoders-vae-and-$%5Cbeta$-

vae-ceba9998773d.

[15] Oneminute overview of variational autoencoders (VAE). URL: https:

//www.linkedin.com/pulse/one-minute-overview-variational-

autoencoders-vae-saulius-dobilas.

[16] Variational autoencoder. URL: https : / / keras . io / examples /

generative/vae/.

[17] Artidoro Pagnoni, Kevin Liu, and Shangyan Li. Conditional variational

autoencoder for neuralmachine translation. arXiv preprint arXiv:1812.04405,

2018.

[18] Luke Ternes, Mark Dane, Sean Gross, Marilyne Labrie, Gordon Mills,

Joe Gray, Laura Heiser, and Young Hwan Chang. Amulti-encoder vari-

ational autoencoder controlsmultiple transformational features in single-

cell image analysis. Communications biology, 5(1):255, 2022.

[19] DineshCVerma.Federated AI for Real-World Business Scenarios. CRC

Press, 2021.

https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-$%5Cbeta$-vae-ceba9998773d
https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-$%5Cbeta$-vae-ceba9998773d
https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-$%5Cbeta$-vae-ceba9998773d
https://www.linkedin.com/pulse/one-minute-overview-variational-autoencoders-vae-saulius-dobilas
https://www.linkedin.com/pulse/one-minute-overview-variational-autoencoders-vae-saulius-dobilas
https://www.linkedin.com/pulse/one-minute-overview-variational-autoencoders-vae-saulius-dobilas
https://keras.io/examples/generative/vae/
https://keras.io/examples/generative/vae/

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep net-

works from decentralized data:1273–1282, 2017.

[21] LiamCollins, HamedHassani, AryanMokhtari, and Sanjay Shakkottai.

Exploiting shared representations for personalized federated learning:2089–

2099, 2021.

[22] Daniel J Beutel and Topal et al. Flower: a friendly federated learning

framework, 2022.

[23] Flower documentation. URL: https://flower.dev.

[24] Sudharsan Ravichandiran. Hands-on meta learning with Python: meta

learning using one-shot learning, MAML, Reptile, and Meta-SGD with

TensorFlow. Packt Publishing Ltd, 2018.

[25] Lan Zou. Meta-learning: Theory, algorithms and applications. Else-

vier, 2022.

[26] Introduction tometa learning and neural architecture search. URL: https:

//www.thinkautonomous.ai/blog/meta-learning/.

[27] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-

learning for fast adaptation of deep networks:1126–1135, 2017.

[28] Alex Nichol and John Schulman. Reptile: a scalable metalearning al-

gorithm. arXiv preprint arXiv:1803.02999, 2(3):4, 2018.

[29] Meta-learning: learning to learn fast. URL: https://lilianweng.

github.io/posts/2018-11-30-meta-learning/.

[30] Mohsen Nabian, Zahra Eftekhari, and Alec Wong. CI-VAE: a class-

informed deep variational autoencoder for enhanced class-specific data

interpolation, 2022.

[31] Michel Barlaud and Frederic Guyard. A non-parametric supervised au-

toencoder for discriminative and generative modeling, 2022.

https://flower.dev
https://www.thinkautonomous.ai/blog/meta-learning/
https://www.thinkautonomous.ai/blog/meta-learning/
https://lilianweng.github.io/posts/2018-11-30-meta-learning/
https://lilianweng.github.io/posts/2018-11-30-meta-learning/

[32] MiladMemarzadeh, BryanMatthews, and Thomas Templin.Multiclass

anomaly detection in flight data using semi-supervised explainable deep

learning model. Journal of Aerospace Information Systems, 19(2):83–

97, 2022.

[33] Layer weight regularizers. URL: https://keras.io/api/layers/

regularizers/.

[34] HugoDugdale. Federated learning with variational autoencoders, 2023.

[35] Leaf: a benchmark for federated settings. URL: https://github.

com/TalwalkarLab/leaf.

[36] Reyes-Ortiz et al. Human Activity Recognition Using Smartphones,

2012. DOI: https://doi.org/10.24432/C54S4K.

[37] Tiny machine learning for human activity recognition. URL: https:

//github.com/lorenzo-orsini/Tiny-Machine-Learning-for-

Human-Activity-Recognition.

[38] URL: https://www.youtube.com/watch?v=aE-hvefJI_0.

https://keras.io/api/layers/regularizers/
https://keras.io/api/layers/regularizers/
https://github.com/TalwalkarLab/leaf
https://github.com/TalwalkarLab/leaf
https://github.com/lorenzo-orsini/Tiny-Machine-Learning-for-Human-Activity-Recognition
https://github.com/lorenzo-orsini/Tiny-Machine-Learning-for-Human-Activity-Recognition
https://github.com/lorenzo-orsini/Tiny-Machine-Learning-for-Human-Activity-Recognition
https://www.youtube.com/watch?v=aE-hvefJI_0

Acknowledgements

I would like to thank Prof. Angelo Trotta for assisting (and the patience) on

this journey and for co-developing the thesis with me, I hope there can be other

opportunities for collaborations.

I am grateful to Prof. Marco Di Felice for introducing me to the world of AI

in IoT systems, and especially to the realm of Federated Learning.

I thank Unibo and all the faculty members of this course for their help and

instruction.

Furthermore, I want to express my gratitude to Lorenzo for assisting me with

exams over the years and for collaborating on some truly wonderful projects.

I also thank Alessandro, Marzio, and Luca for the growth opportunities they

provided, which allowed me to continually learn more in the world of embed-

ded systems and microcontrollers.

I am indebted to my parents for their unwavering support and also Ennio,

Nonna, Paola and Rosa for always supporting me.

Lastly, I want to thank the most important person of all, Sara, who has been by

my side throughout these years. You have helped, tolerated, and supported me

in every possible way. You have guided and assisted me in all my academic

endeavors, and I have reached the conclusion of this journey partly because

of you [38].

	Introduction
	Theory and State of the Art
	AutoEncoder and VAE
	Federated Learning
	Meta Learning
	Reptile Algorithm (Batched Version)

	System Descriptions
	Federated ClassInformed-VAE
	Linear Classifier in CI-VAE
	CI-VAE in FL

	Federated Reptile CI-VAE

	Datasets
	FEMNIST
	HAR

	Results
	FEMNIST (with Rotation)
	Rotation challange

	FEMNIST (w/out Rotation)
	HAR

	Conclusion
	Bibliography

