Variational AutoEncoders and Meta-Learning: Transforming Federated Learning in IoT Environments

Di Tuccio, Gianluca (2024) Variational AutoEncoders and Meta-Learning: Transforming Federated Learning in IoT Environments. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (5MB)

Abstract

This dissertation investigates the integration of Variational AutoEncoders and Meta-Learning in Federated Learning, particularly in the IoT domain, where data heterogeneity and limited samples pose significant challenges. The Class Informed-VAE (CI-VAE) is introduced, establishing a federated latent space that harmonizes data distributions of different clients into a unified distribution that also enables the generation of synthetic samples and labels. The proposed model attains performance on par with the conventional local and federated models across image datasets (FEMNIST) and sample-based datasets (HAR). Furthermore, the thesis explores the effectiveness of Meta-Learning (particularly the Reptile algorithm) in improving model performance with limited data, showcasing its potential in scenarios with few samples per class.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Di Tuccio, Gianluca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
AI,Federated Learning,VAE,Meta Learning,HAR,FEMNIST,IoT,Heterogeneous data
Data di discussione della Tesi
2 Febbraio 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^