Bonacchi, Alessio
(2024)
Deep Learning approaches for multimodal analysis in car collision forensics.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
Abstract
Machine Learning and Deep Learning have gained significant traction, playing a pivotal role in addressing a myriad of challenges across various domains. In particular,
we decide to exploit them in order to solve numerous tasks as car pose classification,
regression of EES (Equivalent Energy Speed), car damage segmentation and 3D re-
construction from images and videos. This thesis will present the methods used to
solve these problems, along with possible future improvements.
Abstract
Machine Learning and Deep Learning have gained significant traction, playing a pivotal role in addressing a myriad of challenges across various domains. In particular,
we decide to exploit them in order to solve numerous tasks as car pose classification,
regression of EES (Equivalent Energy Speed), car damage segmentation and 3D re-
construction from images and videos. This thesis will present the methods used to
solve these problems, along with possible future improvements.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Bonacchi, Alessio
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Deep Learning,Machine Learning,Computer Vision,Classification,Cars,Regression,3D Rendering,Instance Segmentation,Neural Radiance Fields,Gaussian Splatting
Data di discussione della Tesi
2 Febbraio 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Bonacchi, Alessio
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Deep Learning,Machine Learning,Computer Vision,Classification,Cars,Regression,3D Rendering,Instance Segmentation,Neural Radiance Fields,Gaussian Splatting
Data di discussione della Tesi
2 Febbraio 2024
URI
Statistica sui download
Gestione del documento: