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Introduction

The realm of sports has witnessed a remarkable transformation over the past
twenty-five years, a period characterized by groundbreaking developments. This
evolution in sports is multifaceted, attributed to advancements in several key
areas: the enhancement of athletic performance, a deeper understanding of
medical knowledge to bolster athletes’ conditions, significant improvements in
sports equipment, and the pivotal role of sports analytics.

The concept of sports analytics is deeply rooted in the history of modern sports,
dating back to its early days[1]. This discipline emerged from the fundamental
need to quantify team and individual performances in sports, offering a precise
and objective lens. While sports analytics have always been integral to sports,
their modern application is a more recent phenomenon, originating in the early
21st century.

A quintessential example of this modern incarnation of sports analytics is story
of the Oakland Athletics[2], a baseball team that in 2002 dramatically enhanced
its performance compared to previous seasons by adopting a sabermetric
approach to player evaluation. This strategy, which marked a significant
departure from traditional methods, set a precedent in the sports world.

The Oakland Athletics’ success story has served as a catalyst, inspiring sports
directors and managers across various disciplines to embrace statistical and
analytical methods. This trend has extended beyond baseball, influencing
sports like ice hockey, basketball, and eventually, football and soccer. It’s
noteworthy how sports analytics initially flourished in baseball, a sport that
lends itself well to discrete mathematical modeling. Baseball actions, primarily
involving the pitcher and the hitter, can be easily quantified and analyzed.

Conversely, sports such as basketball and ice hockey pose greater challenges for
analytics due to the dynamic interactions of multiple players, each contributing
to the team’s success in less quantifiable ways. These sports can be seen as
continuous from a mathematical perspective, a complexity further amplified in
sports like soccer and football, where the number of players and the fluidity of
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2 Introduction

play increase significantly.

The transformation of the sports landscape through analytics has been predom-
inantly an American phenomenon, heavily influenced by the unique synergy
between sports and academia in U.S. colleges. This relationship has flourished
in an environment where sports are not just a form of entertainment but an
integral part of cultural and educational systems. The U.S. boasts one of the
richest sports environments globally, notably distinct from its European and
Asian counterparts.

In the United States, the Big Four sports, American football, baseball, basket-
ball, and ice hockey, have been the primary benefactors and drivers of sports
analytics. However, these sports do not enjoy the same level of popularity
worldwide. In contrast, soccer reigns supreme in Europe and South America,
while cricket is the sport of choice in India and Oceania.

There are exceptions, such as China and the Philippines, where basketball
has garnered immense popularity, and Japan, where baseball enjoys a similar
status. Yet, these regional preferences have not significantly influenced the
global sports analytics landscape. This disparity is particularly pronounced
in Europe, where the implementation of advanced analytics in sports remains
relatively nascent, especially in sports other than soccer.

The landscape of basketball analytics in Europe, when compared to the ad-
vancements in the United States, particularly in the NBA and NCAA, shows a
notable gap. This disparity can be attributed to a mix of financial and cultural
factors, which often limit the ability of European clubs outside the NBA to
implement long-term strategies fully leveraging the benefits of analytics.

Despite these challenges, there are commendable exceptions in the European
basketball scene that have embraced analytics to enhance their strategies and
performances. In Italy, teams like Virtus Bologna, Pallacanestro Varese, and
Pallacanestro Trieste have shown a keen interest in incorporating data-driven
approaches. France’s Paris Basketball is another notable example, as are
Baskets Bonn in Germany and the Spanish National team. These teams have
been at the forefront of integrating advanced analytics into their operations,
setting a precedent within their respective leagues and countries.

The adoption of analytics by these teams represents a significant step forward
in the evolution of basketball strategy and management in Europe. It is a
positive sign that paves the way for a broader acceptance and integration of
analytics in European basketball. As more teams witness the benefits reaped
by these early adopters, it is hoped that the coming years will see a growing
number of European teams joining this trend. Such a development would not
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only enhance the competitive landscape but also contribute to the enrichment
and expansion of the culture of analytics in European basketball, bringing it
closer to the sophistication seen in American basketball analytics.





Chapter 1

Background

1.1 Review of Basketball Analytics
For many years, basketball analytics primarily revolved around the statistical
interpretation of the traditional box score. The box score, as exemplified in
Table 1.1, provides a basic framework to understand game events, albeit in a
limited scope.

Player S5 MIN PTS 2FGM 2FGA 2FG% 3FGM 3FGA 3FG% FTM FTA FT% DREB OREB REB AST STL TOV PF BLK +/-

M. Jordan 1 43:41 45 12 28 42.9% 3 7 42.9% 12 15 80% 1 0 1 1 4 1 2 0 2
T. Kukoc 1 42:06 15 6 12 50% 1 2 50% 0 0 3 0 3 4 0 0 3 0 8
D. Rodman 0 38:59 7 3 3 100% 0 0 1 2 50% 4 4 8 1 2 2 5 1 5
R. Harper 1 28:34 8 3 3 100% 0 1 0% 2 2 100% 3 0 3 3 1 1 2 2 5
S. Pippen 1 25:43 8 4 7 57.1% 0 0 0 0 3 0 3 4 2 2 2 1 16
S. Kerr 0 24:05 0 0 0 0 0 0 0 0 0 0 3 1 1 3 0 -3
L. Longley 1 14:34 0 0 1 0% 0 0 0 0 2 0 2 0 1 0 4 0 -4
S. Burrell 0 10:18 0 0 1 0% 0 0 0 0 0 0 0 0 0 0 0 0 -17
J. Buechler 0 8:00 2 1 1 100% 0 0 0 0 1 1 2 1 0 0 1 0 3
B. Wennington 0 4:00 2 1 1 100% 0 0 0 0 0 0 0 0 0 2 1 0 -10

Total 0 240:00 87 30 57 52.6% 4 10 40% 15 19 78.9% 17 5 22 17 11 9 23 4 2

Table 1.1: Boxscore of the Chicago Bulls in the 6th game of 1998 NBA Finals

A significant shortcoming of the box score format lies in its bias towards
offensive statistics. Defensive contributions are often underrepresented, with
metrics like steals, blocks, defensive rebounds, and to a certain extent, fouls.
However, these stats do not comprehensively capture defensive prowess. Fouls,
in particular, can be ambiguous, not clearly delineating between offensive and
defensive actions.

This bias is rooted in historical practices as well as the inherent challenges in
objectively quantifying defensive play. For instance, while an offensive shot is a
discrete action directly attributed to a player, its defensive counterpart, such as
a contested shot, lacks such straightforward attribution. This ambiguity extends
to steals, where credit is often given to the player who ultimately secures the
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6 CHAPTER 1. BACKGROUND

ball, ignoring the efforts of players who may have facilitated the turnover. This
is also true, up to a certain degree, for some offensive contributions such as
screens, or for rebounds.

Another complexity in measuring defensive performance is the collaborative
nature of professional basketball defense. Unlike certain offensive statistics,
which can be attributed to individual efforts, defense typically requires coor-
dinated team effort, making it challenging to isolate and quantify individual
contributions

Recent advancements, particularly in the NBA, have seen the integration of
Computer Vision-based tagging systems that offer more nuanced insights into
defensive play. These systems can track player movements and interactions
more precisely, providing a richer dataset to analyze defensive effectiveness.
However, such advanced analytical tools are predominantly limited to the NBA,
leaving a gap in the analytical capabilities in other leagues, including European
basketball.

1.1.1 Measuring efficiency using possessions

One of the most significant contributions to basketball analytics was made
by Dean Oliver in 2004. In his seminal book Basketball on Paper[3], Oliver
proposed a novel method for measuring efficiency, shifting the focus from
a game-based normalization to a possession-based approach. A possession
in basketball is defined as a sequence of consecutive events where a team
controls the ball, concluding with a made shot, a missed shot rebounded by
the opponents, or a turnover. This method of analyzing data per possession
offers a more insightful analysis by inherently accounting for varying styles of
play, especially differences in playing speeds.

The concept of measuring a team’s pace of play is particularly insightful. Pace
is quantified by normalizing the number of possessions per 48 minutes, the
duration of an NBA game. This normalization uses minutes instead of games
to accommodate for variations in game lengths, such as those extended by
overtime periods. When a team does not play in overtime, the pace and number
of possessions effectively coincide. The formula for calculating possessions
(POSS) and pace (PACE) are as follows:

POSS = FGA+ 0.44 ∗ FTA+ TOV −OREB (1.1)

PACE = 48 ∗ POSS

MIN
(1.2)
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The 0.44 factor is applied to the number of free throw attempts (FTA) to
estimate how many of those attempts actually end a possession. The rationale
behind this factor is that not every free throw attempt results in the conclusion
of a possession. In basketball, various scenarios, such as and-one plays, technical
foul shots, or the first shot of a set of free throws, may lead to the continuation
of the possession after the free throw.

When dealing with traditional box score data, which doesn’t provide granular
details about each play, applying the 0.44 multiplier to FTAs becomes a
necessary approximation. It serves as a practical means to estimate the number
of possessions used, given the limitations in the level of detail available in box
scores.

However, with the availability of play-by-play (PBP) data, the dynamics of
possession counting change: PBP data offers a detailed record of every event
in a game, including each free throw attempt. By using PBP data, analysts
can accurately determine whether a specific free throw concluded a possession
or not. This precise information allows for a more exact count of possessions,
moving beyond the approximations required when using box scores.

Similar to the definition of possessions is the definition of plays, which nonethe-
less do not account for the number of captured offensive rebounds. Differently
from a possession, a play counts all of the single scoring opportunities that a
team has:

PLAY S = FGA+ 0.44 ∗ FTA+ TOV (1.3)

Oliver’s approach led to the development of three crucial metrics that qualita-
tively evaluate the effectiveness of offenses and defenses, rather than merely
quantifying scores or points allowed per game. These metrics are the Offensive
Rating (OFFRTG), Defensive Rating (DEFRTG), and Net Rating (NETRTG).
They provide a measure of a team’s ability to score or defend within a sin-
gle possession. The formulas for these metrics normalize team efficiency per
100 possessions, aligning with the average number of possessions in an NBA
game:

OFFRTG =
100 ∗ PTSteam

POSSteam

(1.4)

DEFRTG =
100 ∗ PTSopp

POSSopp

(1.5)
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NETRTG = OFFRTG−DEFRTG (1.6)

1.1.2 Four Factors

In his work, Oliver highlighted the four advanced metrics, known as Four
Factors, which mostly impact on a team capability of performing on both sides
of the game. These metrics are the Effective Field Goal Percentage (EFG%),
the Turnover Percentage (TOV%), the Offensive Rebound Rate (OREB%),
and the Free Throw Rate (FTr).

These statistical metrics, traditionally used for team evaluations, can also be
effectively adapted to assess individual player performance. By modifying the
formulas to focus on a specific player’s contribution rather than the team’s
collective output, these metrics offer valuable insights into individual skill
and efficiency. For example, the formula for Offensive Rebound Percentage
(OREB%) can be adjusted to reflect an individual player’s ability to secure
offensive rebounds in comparison to the total available while they are on the
court.

Additionally, these metrics can be extended to analyze defensive performance
by considering the statistics of the opponents. By doing so, they provide a
measure of how effectively a player or team is performing on the defensive
end.

Effective Field Goal Percentage

Effective Field Goal Percentage adjusts the traditional field goal percentage
to account for the added value of three-point shots. By giving extra weight to
three-pointers (0.5 times the number of made three-point shots), EFG% provides
a more accurate reflection of a player’s or team’s overall shooting efficiency,
considering that three-pointers are worth more than two-point shots.

EFG% =
FGM + 0.5 ∗ 3FGM

FGA
(1.7)

Turnover Percentage

Turnover Percentage is a statistical metric that measures the rate at which
a player or team commits turnovers relative to their total plays. A turnover
occurs when a player loses possession of the ball to the opposing team, typically
due to mistakes like bad passes, traveling violations, losing the ball out of
bounds, or having the ball stolen by an opponent. It accounts for the pace
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of the game and the overall number of possessions, offering a more accurate
representation of turnover propensity than simply counting turnovers

TOV% =
TOV

FGA+ 0.44 ∗ FTA+ TOV
=

TOV

PLAY S
(1.8)

Offensive Rebound Rate

Offensive Rebound Rate is a statistical measure used to assess a team’s or
player’s efficiency in securing offensive rebounds. It is calculated as the per-
centage of available offensive rebounds a team or player successfully retrieves
during a game. The formula for Offensive Rebound Rate is:

OREB% =
OREBtm

OREBtm +DREBopp

(1.9)

Free Throw Rate

Free Throw Rate is used to evaluate how often a team or player gets to the
free-throw line relative to how often they attempt field goals. It is a measure
of a team’s or player’s ability to draw fouls and earn free throw opportunities.
The formula for Free Throw Rate is:

FTr =
FTA

FGA
(1.10)

1.1.3 Other Advanced Metrics

Subsequently, many advanced metrics were developed in order to better estimate
the impact of teams and players in various aspects of the game, without being
limited to the amount of played minutes:

Team offensive and defensive ratings are macro-level metrics that evaluate the
overall efficiency of a team’s offense and defense, respectively. The offensive
rating for a team reflects how effectively the team scores points, considering
the number of possessions they have in a game. It encapsulates the collective
output of the team’s offensive efforts, including shooting efficiency, turnover
rates, and ability to secure offensive rebounds. Conversely, the defensive rating
measures a team’s effectiveness in preventing the opposing team from scoring,
encompassing aspects like opponent shooting efficiency, forced turnovers, and
defensive rebounding capabilities.

On the other hand, individual offensive and defensive ratings delve into the
contribution of each player to their team’s performance. These ratings are
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more complex as they attempt to isolate a player’s impact from the team
context. The individual offensive rating assesses how efficiently a player uses
possessions when they are on the court, factoring in their scoring ability, assist
rates, and turnover tendencies. The individual defensive rating, meanwhile,
gauges a player’s effectiveness in limiting the opponent’s scoring opportunities,
considering their contributions to steals, blocks, defensive rebounds, and overall
defensive presence.

The distinction between team and individual ratings is significant because it
allows analysts to understand not just the collective strength of a team but also
the specific contributions of each player. This differentiation helps in identifying
the value players bring to their team’s offensive and defensive systems, and
can be instrumental in player evaluation, game strategy, and team building in
basketball.

These advanced metrics represent a significant evolution in basketball analytics,
providing deeper insights into the efficiency and effectiveness of teams in both
offensive and defensive aspects of the game. By focusing on per-possession
analysis, these metrics offer a more accurate and nuanced understanding of a
team’s performance, taking into account the varying paces and styles of play in
modern basketball. These metrics can focus on aspects such as shooting, but
also on other side of the game such as rebounding or passing.

True Shooting Percentage

True Shooting Percentage (TS%) is a measure of shooting efficiency that takes
into account field goals, three-point field goals, and free throws. This metric is
more comprehensive than EFG% as it includes free throws, providing a holistic
view of a player’s shooting efficiency.

TS% =
PTS

2 ∗ (FGA+ 0.44 ∗ FTA)
(1.11)

Points per Possession

Points per Possession (PPP) is an analytical metric closely related to offensive
rating, yet it operates on a different scale and is typically applied in more specific
contexts. While offensive rating is often used to gauge overall team efficiency,
PPP is employed to assess the efficiency of a player or team within particular
playtypes, such as Pick&Roll, Post-ups, Isolations, and others. Contrary to
what the name might imply, PPP is traditionally calculated as a measure of
points per play, not per possession.
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PPP =
PTS

FGA+ 0.44 ∗ FTA+ TOV
=

PTS

PLAY S
(1.12)

Points per Shot

Points Per Shot (PPS) is an intuitive metric that measures the average number
of points scored per field goal attempt. It offers a direct way to assess a player’s
or team’s scoring efficiency by linking the total points scored to the number
of shots taken. This metric is particularly useful for evaluating a player’s or
team’s ability to convert shooting opportunities into points.

The formula for PPS can be seen as a practical application of the Effective
Field Goal Percentage (EFG%), scaled to reflect actual points rather than a
percentage. EFG% is designed to account for the extra value of three-point
shots. When you multiply EFG% by 2, you essentially convert this percentage
into a points per shot value.

PPS =
2 ∗ 2FGM + 3 ∗ 3FGM

FGA
= 2 ∗ EFG% (1.13)

1.1.4 Play-by-Play Data

The landscape of basketball analytics underwent a transformative shift with the
meticulous tracking of play-by-play (PBP) data starting in the 1996-97 NBA
season. PBP data represents a detailed event log, recording player actions on
the court in a chronological sequence. This data collection method not only
captures the outcome of each play but also provides critical context regarding
the timing and location of events, particularly for shots. This expansion of
data collection enhanced the analytical capabilities, allowing for a richer, more
nuanced understanding of the game.

With PBP data, analysts could now incorporate spatial and temporal dimensions
into their evaluations. This meant that the analysis of plays included not just
the what but also the where and when, offering a deeper insight into the
strategies and dynamics of the game. It enabled a more comprehensive view of
player movements and team formations, revealing patterns and tendencies that
were previously indiscernible.

A significant advantage of PBP data is its ability to evaluate all ten players on
the court simultaneously. This comprehensive view extends beyond individual
performance, shedding light on team dynamics, interactions, and strategies in
real-time. This holistic approach has proven invaluable in understanding the
complexities of team sports like basketball.
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One of the earliest and most pivotal advancements from PBP data was the
development of the Plus-Minus (+/−) statistic. This metric measures the
point differential for a team with a specific player on the court. It’s calculated
by subtracting the points allowed by the team from the points scored while
the player is in the game. The Plus-Minus statistic serves as a quantifier of a
player’s net impact on the team’s performance during their time on the floor,
providing a simple yet powerful insight into player effectiveness.

PBP data also spurred innovation in evaluating player combinations and team
lineups. This aspect, known as Lineups Analysis, examines the performance
of various player groupings, whether it’s a five-player lineup or pairings of
players. This analysis has been instrumental in understanding player synergy,
optimizing team composition, and devising strategic matchups. It allows teams
to assess not just individual contributions but also how players’ styles and
skills complement each other, leading to more informed decisions in team
management.

1.1.5 Spatial Description

The spatial tracking of shots across the entire competition has been particularly
revolutionary. It enables analysts to examine not only team tendencies in
specific zones but also, and more crucially, the efficiency of shots in these areas.
The rules of basketball classify shots into two main types: shots within the three-
point line, worth two points, and shots from outside the three-point line, which
yield three points. This distinction has significant strategic implications.

Breaking down the basketball court into five major shot zones enhances the
granularity of this analysis:

• Rim: the area within the basket and the no-charge zone, which is the
circle of 1.5 metres radius around the basket.

• Paint: often painted in a contrasting color, this rectangular area extends
from the baseline under the basket to the free-throw line. Offensive players
are restricted from staying in the paint for more than three seconds in a
row to prevent camping near the basket.

• Midrange: this area is between the paint and the three-point line. It
includes the elbows (the corners of the free-throw line) and the wings
(the sides of the court).

• Corner: Located at the intersection of the baseline and the three-point
line on each side of the court. The distance to the basket from the corner
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is slightly shorter than from other parts of the three-point line, making it
a favored spot for shooters.

• Above the Break: This refers to the area of the three-point line that
extends from the corners to the point where the arc approaches the top
of the key.

(a) NBA court zones (b) FIBA court zones

Figure 1.1: Difference between the NBA court and the FIBA court, used in
European and international leagues

While there are some differences between the FIBA court, used in international
competitions and European basketball, and the NBA court, which is slightly
larger with longer corner zones, the fundamental zones of play can be considered
analogous across both court types. This uniformity in court zoning allows for
a consistent approach in analyzing player and team performances in different
leagues.

1.1.6 The Impact of Analytics

The impact of analytics in basketball extends far beyond mere game and player
analysis, significantly influencing strategic approaches and playstyles. One of
the most transformative figures in this regard has been Daryl Morey, former
General Manager of the Houston Rockets. Morey’s analytical approach brought
to light the disparity in efficiency and value between 2-point and 3-point shots.
Specifically, analysis of Points Per Shot (PPS) by shot zone, as detailed by
Goldsberry[4], revealed a stark difference in efficiency between shots at the
rim, 2-point shots outside the rim, and 3-point shots, particularly from the
corner.

Morey also recognized the strategic advantage of increasing the game’s pace.
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Figure 1.2: Variations of shot volumes by zone in the last 20 years in NBA and
Euroleague

A faster pace not only heightened the entertainment value but also correlated
with an increase in scoring opportunities and, consequently, the probability of
winning. This insight led to a gradual yet profound shift in team strategies
across the league, emphasizing greater reliance on 3-point shots, especially
over mid-range attempts, as noted by Partnow[5]. This strategic evolution has
contributed to what can be described as an offensive inflation in the NBA, a
trend that continues to shape the game.

As illustrated in Figure 1.2, this uptick in 3-point shooting volume is more
pronounced in the NBA than in the Euroleague, though a similar trend is
observable in Europe’s premier basketball league. It is crucial to acknowledge
how differences in court size, rules, and other contextual factors between
the NBA and Euroleague influence these playstyle adaptations. Additionally,
the defensive 3-second rule in the NBA markedly affects team spacing and
shot selection, further differentiating the strategic landscape between the two
leagues.

The evolution of basketball in the NBA, characterized by strategic shifts influ-
enced by analytics, has been more pronounced compared to changes observed
in the Euroleague. However, considering the increasing exchange of players
and ideas between these two prominent leagues, it is reasonable to anticipate
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that trends prominent in the NBA will begin to manifest more distinctly in
European basketball as well.

1.2 Tools

1.2.1 Data Collection

The approach to data analysis in basketball varies significantly between the
NBA and European leagues. The NBA has been a forerunner in embracing
data analytics, encouraging stakeholders to engage in data-driven projects. It
facilitates this by offering an API (Application Programming Interface) that
allows for easy access and downloading of a wide range of basketball data.
This progressive stance has not only enhanced game strategies and player
evaluations but also fostered a culture of data-driven decision-making within
the league.

Contrastingly, the European basketball scene faces unique challenges that
hinder the widespread adoption and implementation of advanced analytics.
One primary issue is the relatively lower emphasis placed on data analysis in
these leagues. However, a more pressing problem is the lack of standardization
in statistical systems across different European leagues. Each league often
operates its own statistical system, characterized by variability in the types
of data collected, the level of detail (granularity), and accessibility. This
fragmentation makes it difficult to conduct comprehensive and comparative
analyses across leagues, posing a significant barrier to the development of a
unified analytical approach in European basketball.

Sdeng

To address these challenges, the Sdeng library was developed. This Python-
based web scraper[6] is designed to navigate the disparate statistical systems
of various European leagues, extracting data and converting it into a common,
unified format. The library’s primary goal is to standardize the data collection
process, thereby enabling analysts to compare and contrast data across different
leagues more effectively. By harmonizing the data, the Sdeng library opens up
new possibilities for in-depth analysis, benchmarking, and cross-league studies
that were previously impractical due to the lack of standardized data.

The introduction of tools like the Sdeng library is a pivotal step in elevating the
role of data analytics in European basketball. By overcoming the barriers of
data fragmentation and inaccessibility, it paves the way for more sophisticated
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analytical approaches, bringing European basketball closer to the analytical
rigor seen in the NBA.

The Sdeng library, initially developed to accommodate a few specific leagues,
has remarkably expanded its reach, encompassing a wide array of basketball
competitions across the globe. Its coverage now includes not only European
leagues like the Italian Legabasket, Euroleague, Eurocup, Basketball Champions
League, and Eurobasket but also major domestic leagues throughout Europe.
The addition of the Australian League, the NBA, the G League, and all FIBA
international competitions signifies a major milestone.

Moreover, the Sdeng library incorporates sophisticated error-handling mecha-
nisms in its data downloading phase. It automatically addresses common issues
that often plague basketball data sets, such as errors in the sequencing of ac-
tions, incorrect substitutions, inaccuracies in shot location data, and challenges
in correctly matching (or fuzzy joining) player information across different
data sources. These features are particularly crucial given the complexity and
variety of data involved in basketball analysis.

The scraping component of the library was developed using Python[7], renowned
for its robustness in handling web data extraction. Python’s object-oriented
nature and a rich ecosystem of libraries make it an ideal choice for scraping
tasks. In particular, the library BeautifulSoup[8], a well-known Python tool
for web scraping, plays a pivotal role in this process. BeautifulSoup’s ability
to navigate, search, and modify the parse tree of HTML and XML files makes it
exceptionally suited for extracting data from various basketball league websites
with varying structures and formats.

1.2.2 Statistical Analysis

On the other hand, the statistical computation component of Sdeng is written
in R[9], a language widely recognized for its capabilities in statistical analy-
sis and data visualization. R’s extensive package ecosystem, particularly the
tidyverse[10] collection of packages for data manipulation and the ggplot2[11]
library for data visualization, makes it exceptionally powerful for processing and
analyzing complex datasets. The tidyverse, with its emphasis on readable and
expressive syntax, streamlines data manipulation tasks, allowing for more effi-
cient and intuitive handling of the scraped basketball data. Meanwhile, ggplot2
offers a versatile and powerful tool for creating sophisticated visualizations,
enabling users to uncover patterns and insights from the data.

This bifurcated approach, utilizing Python for data acquisition and R for
data analysis and visualization, leverages the respective strengths of each
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language. Python’s effectiveness in scraping and handling web data combined
with R’s advanced capabilities in data manipulation, statistical analysis, and
visualization results in a potent synergy.

Other significant libraries that were crucial to this work were Gt Table[12],
magrittr[13], Unidecode[14], glmnet[15] and BasketballAnalyzeR[16].





Chapter 2

Individual Advanced Metrics

2.1 Overview

Over the past two decades, the field of basketball analytics has seen the
development of numerous metrics aimed at evaluating a player’s performance.
These metrics, often categorized as all-in-one[17], strive to encapsulate a
player’s overall impact on the game into a single numerical value. This approach
represents an effort to distill the multifaceted nature of basketball performance
into a more digestible and comparative format.

Historically, these all-in-one metrics have their roots in weighted averages of
traditional basketball statistics. The methodology typically involves assigning
positive values to statistics that reflect beneficial contributions to the game,
such as scoring points, grabbing rebounds, dishing out assists, and making
steals. Conversely, actions deemed detrimental to team performance, like
missing shots, committing fouls1, or turnovers, are assigned negative weights.
This approach creates a balance sheet of sorts, crediting players for positive
actions and debiting for negatives.

One notable example of an all-in-one metric is the Efficiency (EFF) metric,
developed by Martin Manley[19]. Another is the Performance Index Rating
(PIR), which is widely used in Euroleague basketball. Both metrics follow the
principle of assigning weighted values to various statistical components to arrive
at an overall performance score for a player. These metrics aim to provide a
quick, yet comprehensive, assessment of a player’s contribution to the game,
taking into account a wide range of statistical inputs.

1Fouling is not intrinsically negative, as it can be adopted as a defensive strategy[18]
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EFF = (PTS+REB+AST+STL+BLK−FGmissed−FTmissed−TOV )
GAMES

(2.1)

PIR = (PTS+REB+AST+STL+BLK+PFD)−(FGmissed+FTmissed+TOV+BLKA+PF )
GAMES

(2.2)

While early all-in-one metrics like EFF and PIR provided a foundational
approach to player evaluation, they were limited in their ability to fully capture
the diverse aspects of basketball performance. These metrics, though useful, did
not adequately differentiate between the varying impacts of different statistical
contributions. Recognizing this limitation, more sophisticated metrics were
developed to offer a more nuanced view of player performance, one of which is
the Player Efficiency Rating (PER) developed by John Hollinger[20].

PER marked a significant advancement in basketball analytics by incorporating
the context of team performance into the evaluation of individual players. This
metric goes beyond the simple aggregation of positive and negative statistics.
Instead, it adjusts these statistics to account for factors such as the pace of the
game and the overall efficiency of the team. By doing so, PER provides a more
balanced and context-aware assessment of a player’s performance.

One of the key innovations of PER is its recognition that not all statistical
contributions are equal in terms of their impact on a game. For instance, it
factors in the efficiency of scoring by considering field goal attempts, free throw
attempts, and three-point shots. It also adjusts for the team’s pace of play,
allowing for a fair comparison between players in different systems or playing
styles. This adjustment is crucial in modern basketball, where the pace and
style of play can vary significantly from team to team.

2.2 Plus-Minus
The Plus-Minus metric, originally conceived by the Montreal Canadiens of the
National Hockey League (NHL) in the 1950s, was designed to quantify the
point differential a team experiences while a specific player is on the ice. This
concept, rooted in ice hockey, has since been adopted in basketball, becoming
a widely used metric to assess player impact. Its transition to basketball was
facilitated by the availability of PBP data, first in the NBA and subsequently
in leagues around the world. It has seen subsequently been developed also for
other sports[21], such as football[22] and volleyball[23]
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In basketball, the Plus-Minus metric reflects the net score difference (points
scored by the player’s team minus points allowed) during the time a player is on
the court. It can yield both positive and negative values: a positive Plus-Minus
indicates that the team outscored its opponents while the player was in the
game, suggesting a positive impact, whereas a negative value implies the team
was outscored, indicating a potentially less effective performance.

While Plus-Minus represents a significant advancement in quantifying a player’s
impact, it is not without its flaws. One key limitation is its failure to account
for the quality of teammates and opponents on the floor. A player’s Plus-Minus
can be significantly influenced by the performance of others, meaning that
it may not always accurately reflect an individual player’s contribution. For
instance, a player might have a high Plus-Minus simply by being on the court
with a strong lineup, or conversely, a good player might have a lower Plus-Minus
due to playing with weaker teammates or against superior opposition.

Another issue with Plus-Minus is its susceptibility to noise, especially when
used to evaluate performance in a single game. In such cases, the metric can be
influenced by a small sample of events, many of which may be beyond the control
of a single player. This variability means that Plus-Minus can sometimes provide
a misleading representation of a player’s impact in individual games.

Despite these limitations, Plus-Minus remains a valuable metric in basketball
analytics. It provides a straightforward, if broad, indicator of a player’s overall
impact on team performance. However, for a more accurate and comprehensive
assessment, it is often used in conjunction with other metrics that can provide
additional context and account for the nuances that Plus-Minus alone may
overlook.

2.3 On-court advanced stats

The introduction of play-by-play data, coupled with advanced statistical meth-
ods, has significantly deepened the analysis of a player’s impact on a team’s
performance. This data allows for a detailed examination of how team dynamics
shift when a player is on the court versus when they are off it.

By analyzing PBP data, it is possible to calculate a team’s performance metrics
when a specific player is playing. Additionally, by comparing these on-court
statistics to the team’s overall stats, analysts can extract valuable insights about
the team’s performance during the player’s absence. This comparative analysis
offers a clearer understanding of the player’s influence on various aspects of
the game.
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The real value of this analysis emerges when these statistics are normalized.
As highlighted in Section 1.1.1, normalization by possessions is an effective
approach, allowing for the calculation of on-court stats per 100 possessions
for any given player. This normalization accounts for the pace of the game,
thereby enabling a fair comparison across different contexts.

OFFRTGtm_on =
100 ∗ PTStm_on

POSStm_on

(2.3)

DEFRTGtm_on =
100 ∗ PTSopp_on

POSSopp_on

(2.4)

NETRTGtm_on = OFFRTGtm_on −DEFRTGtm_on (2.5)

Furthermore, the on-off differential, which is the difference in team performance
when a player is on the court versus off, is particularly revealing. This metric,
also known as impact, is instrumental for coaching staffs and front offices in pin-
pointing where a player most significantly affects the team’s performance.

Impact = NETRTGtm_on −NETRTGtm_off (2.6)

Where the ratings off-the-court can be simply computed by subtracting from
the total non-normalized team values (points and possessions) the values on-
the-court, which can be computed from PBP data.

While efficiency ratings are common metrics used to assess a team’s overall
performance in these respective areas, the on-off differential allows for an
examination of more specific elements of play. For instance, it can shed light
on how the presence of a player affects the frequency of shots from the paint or
influences the opponents’ three-point shooting percentage.

This approach represents a considerable advancement in player evaluation, but
it is not without limitations. One of the persistent challenges is the difficulty
in isolating the individual impact of a player from the collective contribution of
their teammates and opponents. The interdependent nature of basketball means
that a player’s on-court value is invariably intertwined with the performance of
others around them.



Chapter 3

Advanced Plus-Minus

As highlighted in Section 2.2, the Plus-Minus metric, while informative, is
subject to a significant limitation due to high multicollinearity. This issue arises
when players from the same team, especially those belonging to exceptionally
strong or weak teams, exhibit similar Plus-Minus values. Such a scenario makes
it challenging to discern the individual contribution of each player from the
team’s collective performance. A striking example of this can be seen in the
2022-23 NBA season, where the Plus-Minus leaders, as shown in Table 3.1,
predominantly belonged to the Denver Nuggets – the team that eventually
clinched the league title.

Player Team +/-

N. Jokic DEN +9.3
A. Gordon DEN +7.6
J. Holiday MIL +7.2
M. Porter Jr. DEN +6.7
K. Caldwell-Pope DEN +6.5

Table 3.1: NBA Plus-Minus leaders in 2022-23 Regular Season with at least 50
played games

While advanced on-court statistics have mitigated multicollinearity to some
extent, the quest for more refined analytical tools has led researchers to develop
new advanced metrics. These metrics employ statistical models, moving beyond
merely descriptive analytics. An exemplary outcome of this research is the de-
velopment of Adjusted Plus-Minus, which represents a significant advancement
in isolating individual player impact from the overall team performance.
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Traditionally, advanced metrics like Adjusted Plus-Minus have predominantly
been computed for the NBA, largely due to the wider availability of detailed
game data and the global interest the league garners. However, this particular
study shifts its focus to the Euroleague, a domain that has garnered significantly
less attention in the realm of advanced basketball analytics. By concentrating
on Euroleague basketball, the study aims to uncover and explore aspects of the
game that have remained relatively unexamined in European contexts.

The primary objective of this Euroleague-focused analysis is twofold. First,
it seeks to illuminate the nuances and unique characteristics of European
basketball, which might differ from those observed in the NBA due to variations
in playing styles, rules, and competitive dynamics. Second, the study endeavors
to evaluate the correlation between the insights derived from these advanced
metrics and the general public perception or conventional wisdom about the
game in Europe.

3.1 Adjusted Plus-Minus

Adjusted Plus-Minus (APM), as conceptualized by Rosenbaum in 2004[24],
represents a significant advancement in basketball analytics. This statistical
method is specifically designed to isolate the impact of an individual player on
the game, distinguishing it from the contributions of the other nine players on
the court. The foundation of APM analysis lies in examining segments of the
game referred to as stints. These are specific periods during which there are no
substitutions, meaning the same ten players remain on the court throughout
the duration of the stint.

APM is particularly focused on evaluating team performances per 100 pos-
sessions during these stints. It assesses how the team fares with a specific
combination of ten players on the floor. The core of APM’s utility is in its
ability to calculate an individual coefficient for each player. This coefficient
represents the estimated impact of the player per 100 possessions, essentially
quantifying their contribution to the team’s performance during the time they
are on the court.

The point differential per 100 possessions for each stint is represented as Yi, and
the player presence for the home team (A) and the road team (B) during each
stint j is indicated by Ai,j and Bi,j . The coefficients β1, β2, . . . , βn quantify the
individual impact of each player.
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Y1 = β1A1,1 + β2A2,1 + . . .+ βn−1Bn−1,1 + βnBn,1

Y2 = β1A1,2 + β2A2,2 + . . .+ βn−1Bn−1,2 + βnBn,2

...
Ys = β1A1,s + β2A2,s + . . .+ βn−1Bn−1,s + βnBn,s

(3.1)

The primary goal of APM is to determine the values of β that best correlate
with the observed point differentials. This is achieved by expressing the problem
in matrix form:


Y1

Y2
...
Ys

 =


A1,1 A2,1 . . . Bn,1

A1,2 A2,2 . . . Bn,2
...

... . . . ...
A1,s A2,s . . . Bn,s



β1

β2
...
βn

 (3.2)

Which can be reformulated as

Y = Pβ (3.3)

Since the matrix P (representing player presence) is neither square nor invertible,
a least-squares approach is used, involving the multiplication of both sides by
P ’s transpose:

P TY = P TPβ (3.4)

The matrix P TP is a Gram matrix, the elements of which indicate the number
of stints shared between players. It is invertible if and only if it has full rank.
Due to potential dependencies in the rows of P , the pseudo-inverse of P TP is
utilized:

β = (P TP )+P TY (3.5)

The values in β represent the Adjusted Plus-Minus, indicating the impact per
100 possessions of the players, adjusted for the effect of players they share the
court with. The leaders in APM between 2018 and 2023 with at least 50 games
are displayed in Table 3.2.

The examination of the results, while showcasing some of the league’s most dis-
tinguished players in recent seasons, has brought to light an issue of notably high



26 CHAPTER 3. ADVANCED PLUS-MINUS

Player Games Minutes APM sd

W. Tavares 173 4045 +220.3 145.1
M. Fall 108 2414 +218.3 145.1
I. Canaan 63 1202 +217.1 145.1
T. Walkup 174 3970 +213.8 145.0
P. Lacombe 53 695 +213.4 145.1
N. Weiler Babb 93 2330 +212.7 145.1
J. Dibartolomeo 133 1756 +212.0 145.0
B. Baron 118 2594 +212.0 145.1
L. Olinde 76 1428 +211.8 145.1
P. Henry 100 2644 +211.5 145.0

Table 3.2: Best APM for Euroleague players with at least 50 games between
2018-19 and 2022-23

standard deviation values in the results. This variability, as Rosenbaum has pre-
viously articulated, arises from several factors intrinsic to APM’s methodology
and basketball data characteristics.

A significant source of this variability is the inherent noise within the data,
primarily because most game segments analyzed in APM, known as stints, are
short, usually encompassing just about three possessions. This brevity often
leads to fluctuations in data, challenging the accuracy of APM values. Addi-
tionally, the traditional APM model’s lack of a regularization term contributes
to this issue. For instance, the exceptionally high APM value of 220.3 for a
player like Walter Tavares seems implausible when compared to the typical net
rating of around +20 for elite Euroleague teams.

In response to these challenges, two primary solutions are suggested. Firstly,
extending the analysis to a broader timespan, spanning 5 or 10 seasons, can
help dampen the short-term fluctuations and offer a more comprehensive view
of a player’s performance, which is why traditionally APM is not analyzed
for a single season. Secondly, the introduction of a regularization term in the
APM calculation is proposed to address the issue of extreme values. This term
would help moderate the influence of outliers and provide a more balanced
representation of a player’s impact.

It is also crucial to acknowledge the distinct differences in game dynamics
between the NBA and Euroleague when interpreting APM data. The NBA’s
regular season comprises 82 games per team, with each game lasting 48 min-
utes, leading to an average of about 100 possessions per game. Conversely, the
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Euroleague features a shorter regular season with only 34 games of 40 minutes
each, resulting in an average of approximately 70 possessions per game. This
disparity highlights a significant difference in pace between the two leagues.
Even when normalized to a 40-minute game, an NBA match features substan-
tially more possessions than its Euroleague counterpart, underscoring the need
for a contextual understanding of APM values across different leagues.

3.2 Regularized Adjusted Plus-Minus
As table 3.2 shows, the variance of APM is extremely high, enough to make it
completely unreliable in assessing the contribute provided by each player. To
solve this problem, a regularization method is introduced. The outlined metric
is called Regularized Adjusted Plus-Minus (RAPM).

The challenge in calculating APM arises from the potential non-invertibility of
the player matrix, which is a common issue in situations with multicollinearity
or when the matrix is not square. Ridge Regression[25] offers a solution by
introducing a regularization term, λI, to Equation 3.4:

P TY = (P TP + λI)β (3.6)

Where (P TP + λI) becomes an invertible matrix. Thus, 3.5 can be reframed
as:

argmin
β

(Y −Xβ)T (Y −Xβ) (3.7)

Which becomes, by applying the regularization term:

argmin
β

(Y −Xβ)T (Y −Xβ) + λβTβ (3.8)

The solution for this equation can be found as:

β = (XTX + λI)−1XTY (3.9)

This regularization term serves two main purposes. Firstly, it helps to control
multicollinearity among players. Multicollinearity occurs when players’ per-
formances are highly correlated, making it difficult to isolate the individual
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impact of each player. By adding the regularization term, Ridge Regression
effectively reduces the Residual Sum of Squares (RSS), thus mitigating the
effects of multicollinearity.

Secondly, the term λβTβ acts as a shrinkage penalty. This penalty is crucial
in controlling the magnitude of the coefficients, β, thus preventing overfitting.
Overfitting occurs when a model becomes too complex, capturing the noise in
the data rather than the underlying pattern. The regularization term ensures
that the coefficients do not reach extreme values that overemphasize the impact
of any single player.

The tuning parameter λ plays a critical role in balancing these two objectives.
When λ = 0, the Ridge Regression model reduces to the standard APM
calculation, with no regularization applied. As λ increases, the shrinkage
penalty becomes more dominant, reducing the magnitude of the coefficients.
However, if λ approaches infinity, it excessively penalizes the coefficients, driving
them towards zero and diminishing the model’s effectiveness in capturing player
impacts.

Finding the optimal value for λ is crucial for the effectiveness of the Ridge Re-
gression model in RAPM calculation, particularly in the context of minimizing
model variance. Since RAPM typically does not involve labeled data in the
traditional sense, the focus shifts to minimizing the variance of the model to
enhance its predictive accuracy and reliability. This is achieved through k-Fold
Cross-Validation[26], a technique that assesses the model’s performance across
different subsets of the data. By partitioning the data into k subsets (k = 5 in
this case), the model is trained on k − 1 subsets while the remaining subset is
used for testing. This process is repeated k times, each time with a different
subset used for validation, ensuring a comprehensive evaluation of the model’s
performance.

The role of k-Fold Cross-Validation in this context is intricately linked to the
bias-variance trade-off in statistical modeling. The bias-variance trade-off
highlights the challenge in balancing the complexity of the model (bias) with
its ability to perform consistently across different data sets (variance). A
high λ value in Ridge Regression introduces more bias, simplifying the model
but potentially making it less sensitive to the true relationships in the data.
Conversely, a lower λ value reduces bias but can increase variance, leading to a
model that fits the training data well but may not generalize effectively. The
k-Fold Cross-Validation technique aids in finding the λ value that achieves the
optimal balance between bias and variance, thereby enhancing the model’s
overall effectiveness and reliability in predicting a player’s impact.
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Player Games Minutes RAPM

F. Campazzo 81 1982 +2.51
W. Tavares 173 4045 +2.45
D. Balbay 101 807 +2.29
S. Sanli 132 1861 +2.14
K. Simon 125 3020 +2.09
I. Canaan 63 1202 +2.00
N. Mirotic 128 3284 +1.98
R. Fernandez 138 2543 +1.92
M. Fall 108 2414 +1.75
J. Dibartolomeo 133 1756 +1.71

Table 3.3: Best RAPM for Euroleague players with at least 50 games between
2018-19 and 2022-23, for λ = 354.5

The application of RAPM in Euroleague basketball has yielded intriguing
results, displayed in Table 3.3, spotlighting not only some of the league’s widely
celebrated players like Facundo Campazzo, Walter Tavares, and Nikola Mirotic
but also unveiling some unexpected names, such as Dogus Balbay. Balbay’s
inclusion is particularly notable given his average of only 8 minutes per game
over 101 games, illustrating the depth and nuance that these metrics can offer
beyond traditional playing time or scoring averages.

One key observation from the results is the alignment of the scale of values
with realistic expectations of player impact. For instance, an average team
net rating of around 2.5 throughout a season, as suggested by the data, is
typically indicative of a playoff-bound team in Euroleague competition. This
coherence in scale marks a significant improvement over traditional APM, and
suggests a more accurate reflection of a player’s contribution to their team’s
performance.

However, it is important to note that, similar to APM, RAPM is most effectively
analyzed over multiple seasons. This approach is taken to mitigate the inherent
variability and potential anomalies that can arise from single-season data. By
examining player performance across a broader timespan, RAPM offers a more
stable and reliable assessment, smoothing out short-term fluctuations and
providing a clearer picture of a player’s consistent impact over time.





Chapter 4

Improvements of the model

4.1 Offensive and Defensive RAPM
While the RAPM model offers an effective approach to evaluate a player’s
impact, it does not differentiate between the contributions made on offense and
defense. To address this, RAPM can be split into Offensive RAPM (ORAPM)
and Defensive RAPM (DRAPM), providing a more granular analysis of a
player’s impact.

To achieve this, the base model for RAPM 3.2 is modified to separately account
for offensive and defensive contributions:



Y1,A

Y1,B

Y2,A

Y2,B
...

Ys,A

Ys,B


=



A1,1,A,off A2,1,A,off . . . Bn,1,A,def

A1,1,B,off A2,1,B,off . . . Bn,1,B,def

A1,2,A,off A2,2,A,off . . . Bn,2,A,def

A1,2,B,off A2,2,B,off . . . Bn,2,B,def
...

... . . . ...
A1,s,A,off A2,s,A,off . . . Bn,s,A,def

A1,s,B,off A2,s,B,off . . . Bn,s,B,def





β1,off

β1,def

β2,off

β2,def
...

βn,off

βn,def


(4.1)

Here, Ys,T represents the offensive rating for team T (A for the home team, B
for the one on the road) during stint s, and Pi,s,T,side indicates the presence of
player i during the s-th stint on the side of team T . It takes a value of 1 if the
side of the player’s team is the same of the stint, -1 if the side is different, 0 if
he is not on the court.

This model results in two β values for each player, one for each side of the
court. The system can be solved using ridge regression, as shown in the RAPM
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calculation. Once βoff and βdef are obtained for each player, they represent
ORAPM and DRAPM, respectively.

Unlike the Defensive Rating, where lower values indicate better defense, a higher
DRAPM represents a better defensive performance, as it can be interpreted as
the number of points per 100 possessions that the player prevented.

The overall RAPM is usually computed as the sum of the two values:

RAPM = ORAPM +DRAPM (4.2)

Nonetheless, Jacobs[27] highlighted that this is not inherently correct, since
players can play a different number of possession on the two ends of the
court. This may appear counter-intuitive, but is explained with the tendency
of coaches, especially in the last minutes of tied games, to change lineup at
every change of possession, whether the situation allows, in order to use more
offensive or defensive lineups. Table 4.1 shows the player having the having the
largest difference between offensive and defensive possessions per game, among
players with at least 25 played games. Notably, they are known as specialists
on either offense or defense, and are usually offensive players.

Player GAMES POSS off POSS def Tendency Difference

D. Balbay 101 13.3 15.1 Defense 1.87
S. Wilbekin 149 47.7 46.3 Offense 1.41
A. Muhammed 73 28 26.8 Offense 1.25
J. Carroll 84 27.5 26.3 Offense 1.23
N. De Colo 140 45.3 44.1 Offense 1.21
N. Nedovic 110 40.2 39 Offense 1.17
J. Anderson 133 25.1 26.2 Defense 1.17
S. Larkin 150 49.8 48.7 Offense 1.08
D. Bacon 56 49.8 48.7 Offense 1.05
M. James 161 56 55 Offense 1.04

Table 4.1: Players with at least 25 played games between 2018-19 and 2022-23,
having the largest difference in offensive and defensive possessions per game

To account for this difference, a new weighted formulation for the overall RAPM
is proposed:

RAPM = 2 ∗ ORAPM ∗ POSSoff +DRAPM ∗ POSSdef

POSSoff + POSSdef

(4.3)
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As Table 4.2 shows, some of the players with the largest difference appear
in Table 4.1, stating the relevance of accounting for the different number of
possessions. It is also relevant to note that the differences are in fact very small,
which makes 4.2 still suited in the cases where the number of possessions on
each side is not available.

player GAMES POSS off POSS def ORAPM DRAPM RAPM sum RAPM weight

D. Balbay 101 1340 1529 0.24 1.21 1.44 1.51
M. Birsen 51 635 658 -2.38 1.03 -1.34 -1.28
N. Nedovic 110 4419 4290 0.72 -1.22 -0.5 -0.47
G. Ricci 65 1249 1280 -1.72 0.61 -1.11 -1.08
I. Ukhov 66 971 1006 -0.38 1.2 0.82 0.85
S. Antonov 92 1289 1331 -0.45 1.05 0.6 0.63
A. Muhammed 73 2047 1956 0.51 -0.53 -0.02 0.01
U. Garuba 53 1403 1430 -2.15 0.34 -1.81 -1.79
D. Bertans 63 1936 1914 1.72 -1.86 -0.14 -0.12
S. Karasev 72 1887 1916 -2.27 0.23 -2.04 -2.02

Table 4.2: Largest differences in RAPM using sum or weighted sum for Eu-
roleague players with at least 50 games between 2018-19 and 2022-23, with
λ = 292.4

4.2 Weighting
In the realm of basketball analytics, RAPM and its derivatives such as Offensive
RAPM and Defensive RAPM, are built on foundational assumptions that merit
further scrutiny for enhanced accuracy. A pivotal assumption in these models
is the equal weighting of all possessions during a game. However, the reality of
basketball dynamics suggests a more nuanced approach, as not all possessions
hold the same level of importance. For instance, segments of a game colloquially
known as garbage time, where the outcome is largely decided and competitive
intensity may decrease, can skew the perceived impact of a player. These periods
contrast sharply with clutch moments, the final, often decisive minutes of a close
game or overtime, where player performance under high-pressure conditions is
particularly telling. Additionally, playoff games, with their elevated stakes and
intensity, arguably carry more weight than regular-season encounters.

The original RAPM model also does not take into account the varied lengths of
player stints. This oversight can lead to an imbalance, as making a significant
impact over a longer stint is generally more indicative of a player’s contribution
than brief appearances, which are more susceptible to statistical noise.

To address these limitations, the model can be refined with the introduction of
a weight vector W in the following form:
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W = L ◦Gt ◦Gp (4.4)

Here, Li denotes the length of the i-th stint, recognizing that sustained per-
formance is a more reliable indicator of a player’s impact. Gti assigns weights
based on the type of game, giving playoff games a higher value (2) compared to
regular-season games (1). Gpi adjusts for the game phase, with clutch moments
rated at 2, garbage time at 0.5, and standard periods at 1.

A similar approach has been used by Grassetti[28], when adopting the concept
of RAPM for lineups. However, the weighting system developed in his paper is
quite arbitrary with respect of what happens on the court, rather then on the
context in which events happen. The mentioned weighting system, assigning a
specific value to game events, such as made or missed shot, biases the model
towards what the author believes to be more relevant in a basketball game,
instead of focusing on objective efficiency per 100 possessions.

This solution also has the advantage of embedding weighting directly within the
computation of ORAPM and DRAPM, thus making unnecessary to compute
the overall RAPM as proposed in 4.3, and allowing to use the traditional
formulation as described in 4.2.

Player Games Minutes ORAPM DRAPM RAPM

F. Campazzo 81 1982 1.34 1.88 3.23
W. Tavares 173 4045 0.76 2.17 2.93
R. Fernandez 138 2543 1 1.67 2.66
D. Balbay 101 807 0.66 1.87 2.53
I. Ukhov 66 557 0.23 2.26 2.49
I. Canaan 63 1202 0.15 2.25 2.4
K. Simon 125 3020 1.82 0.57 2.39
S. Sanli 132 1861 1.77 0.6 2.37
J. Dibartolomeo 133 1756 1.31 0.99 2.3
R. Sorkin 58 770 0.76 1.53 2.29

Table 4.3: Best ORAPM and DRAPM for Euroleague players with at least 50
games between 2018-19 and 2022-23 using Ridge regression, with λ = 185.2

The results displayed in Table 4.3 provide some insights on the best overall
contributes, and shed light on the aspect of the game where players are more
impactful, either offense, defense or both. Notably, many players are the
same provided by both APM and the traditional RAPM, displaying the ability
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of the model to predict consistent values while allowing a deeper level of
inspection.

4.3 Shrinkage Methods
Ridge regression is a valuable technique in linear regression that aims to address
multicollinearity issues by introducing a regularization term. It endeavors to
shrink the coefficients of all p predictors towards zero, without forcing any
of them to reach exactly zero. This regularization technique ensures that
all predictors retain some level of influence on the model’s output. While
Ridge Regression effectively handles multicollinearity, it does not inherently
differentiate between predictors that have minimal impact and those that are
truly irrelevant.

To address these challenges, two alternative regression techniques, Lasso
Regression[29] and Elastic Net Regression[30], are proposed as solutions. These
methods offer distinct approaches to handling predictor selection and improving
model interpretability, which can be particularly beneficial when dealing with
high-dimensional datasets or when the distinction between minimal impact and
irrelevant predictors is crucial.

4.3.1 Lasso Regression

Lasso regression shares similarities with ridge regression in terms of pushing
coefficient values towards zero. However, it differs crucially in its ability to
set some coefficients exactly to zero when the regularization parameter λ is
sufficiently large. This characteristic of lasso regression makes it a more suitable
choice for models where sparsity is desired, effectively identifying and excluding
less impactful variables (or players, in this context). Lasso regression thus
provides a means to refine the model further, allowing for a more accurate
representation of each player’s distinct impact on the court.

The mathematical formulation of lasso regression in this context is expressed
as:

β = argmin
β

(
1

2n
∥W 1/2(Y −Xβ)∥22 + λ∥β∥1

)
(4.5)

This equation represents the optimization problem at the core of lasso regression,
balancing the fit of the model (measured by the residual sum of squares) with
the complexity (measured by the L1 norm of the coefficients). The inclusion of
the weight matrix W allows for differential weighting of observations, further
refining the model’s accuracy and relevance to real-game scenarios.
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Player Games Minutes ORAPM DRAPM RAPM

W. Tavares 173 4045 0.69 6.15 6.84
W. Clyburn 124 3524 6.64 0 6.64
K. Simon 125 3020 5.34 0 5.34
D. Exum 63 1300 4.66 0 4.66
T. Black 85 1330 0 4.46 4.46
I. Canaan 63 1202 0 4.42 4.42
N. Mirotic 128 3284 2.95 0.91 3.87
F. Campazzo 81 1982 2.25 1.5 3.75
K. Punter 96 2393 3.77 -0.19 3.58
R. Fernandez 138 2543 1.27 2.22 3.49

Table 4.4: Best ORAPM and DRAPM for Euroleague players with at least 50
games between 2018-19 and 2022-23 using Lasso regression, for λ = 0.43

Player Games Minutes ORAPM DRAPM RAPM

A. Shved 86 2570 0 -4.72 -4.72
M. Birsen 51 362 -4.66 0 -4.66
I. Diop 87 848 -4.45 0 -4.45
T. Schneider 89 1002 0 -4.43 -4.43
S. Karasev 72 1048 -4.31 0 -4.31
L. Radosevic 104 1400 -3.98 0 -3.98
M. Delow 84 1001 -3.96 0 -3.96
J. Lauvergne 89 1583 0 -3.69 -3.69
L. Nnoko 55 1114 0 -2.89 -2.89
M. Eric 71 1180 -2.84 0 -2.84

Table 4.5: Worst ORAPM and DRAPM for Euroleague players with at least
50 games between 2018-19 and 2022-23 using Lasso regression, for λ = 0.43

The data presented in Tables 4.4 and 4.5 reveal a distinctive trend in Lasso
regression: it tends to favor players who excel significantly on one end of the
court. This tendency is evident as only two players among the top 10, Facundo
Campazzo and Rudy Fernandez, exhibit both a DRAPM and an ORAPM
greater than 1. In contrast, five of the top six players demonstrate a zero
impact on either offense or defense. Notably, the highest values observed in
Lasso regression are more pronounced than those seen in Ridge regression. For
example, Walter Tavares’s overall RAPM in Lasso regression is more than double
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his value in the Ridge regression (referenced in 4.3). However, while Facundo
Campazzo maintains a comparable value to his Ridge regression performance,
he is no longer ranked as the top player in the Lasso regression framework.
This shift underscores the unique impact of Lasso regression in emphasizing
distinct, one-sided contributions and its influence on player rankings.

4.3.2 Elastic Net Regression

Elastic Net regression shares similarities with Ridge and Lasso regression in
its goal of mitigating multicollinearity and reducing the impact of less relevant
predictors. However, it offers a unique blend of both L1 (Lasso) and L2 (Ridge)
regularization, striking a balance between feature selection and coefficient
shrinkage.

One of the crucial distinctions of Elastic Net regression is its ability to set some
coefficients exactly to zero when the regularization parameters, denoted as λ1

and λ2, are sufficiently large. This characteristic makes it particularly suitable
for situations where sparsity is desired, enabling the automatic identification
and exclusion of less impactful variables or players in the context of your
analysis.

The mathematical formulation of Elastic Net regression can be expressed as
follows:

β = argmin
β

(
1

2n
|W 1/2(Y −Xβ)|22 + λ1|β|1 + λ2|β|22

)
(4.6)

In this equation, β represents the coefficient vector, Y is the target variable, X
is the predictor matrix, and W is a weight matrix that can be used to assign
varying importance to observations. The regularization parameters λ1 and λ2

control the L1 (Lasso) and L2 (Ridge) regularization terms, respectively.

In Elastic Net regression, the parameter α plays a crucial role in determining
the balance between L1 (Lasso) and L2 (Ridge) regularization. It essentially
dictates the mix of regularization techniques applied in the model. An α value
of 1 equates to pure Lasso regression, emphasizing feature selection by setting
some coefficients to zero, while an α of 0 aligns with Ridge regression, focusing
more on shrinking coefficients to address multicollinearity. Intermediate values
of α indicate a blend of both approaches, enabling Elastic Net to leverage the
feature selection capability of Lasso and the coefficient shrinkage of Ridge.
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β = argmin
β

(
1

2n
∥W 1/2(Y −Xβ)∥22 + λ(α∥β∥1 + (1− α)∥β∥22)

)
(4.7)

Player Games Minutes ORAPM DRAPM RAPM

W. Tavares 173 4045 0.79 6.17 6.96
W. Clyburn 124 3524 6.77 0 6.77
K. Simon 125 3020 5.34 0.1 5.44
D. Exum 63 1300 4.76 0 4.76
T. Black 85 1330 0 4.56 4.56
I. Canaan 63 1202 0 4.53 4.53
N. Mirotic 128 3284 3.14 0.94 4.09
F. Campazzo 81 1982 2.29 1.73 4.02
R. Fernandez 138 2543 1.43 2.41 3.84
K. Punter 96 2393 3.84 -0.41 3.44

Table 4.6: Best ORAPM and DRAPM for Euroleague players with at least 50
games between 2018-19 and 2022-23 using Elastic Net regression, with λ = 0.78
and α = 0.5

Player Games Minutes ORAPM DRAPM RAPM

M. Birsen 51 362 -5.47 0 -5.47
T. Schneider 89 1002 -0.15 -4.87 -5.02
A. Shved 86 2570 0 -4.86 -4.86
S. Karasev 72 1048 -4.69 0 -4.69
I. Diop 87 848 -4.88 0.33 -4.54
L. Radosevic 104 1400 -4.27 0 -4.27
M. Delow 84 1001 -4.17 0 -4.17
J. Lauvergne 89 1583 0 -4.1 -4.1
L. Nnoko 55 1114 0 -3.27 -3.27
M. Eric 71 1180 -3.02 -0.05 -3.07

Table 4.7: Worst ORAPM and DRAPM for Euroleague players with at least 50
games between 2018-19 and 2022-23 using Elastic Net regression, with λ = 0.78
and α = 0.5

The results provided by this variation of the model are quite similar to the
ones provided by Lasso regression.
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4.3.3 Comparison

RAPM models, using all of the described regressions, encounter significant
challenges in accurately predicting the value of players with few possessions.
This limitation is vividly illustrated in image 4.1, where a phenomenon known
as the funnel effect is evident. The funnel effect, more pronounced in Ridge
regression, also occurs in Lasso and Elastic Net regression, albeit to a lesser
extent.

Figure 4.1: Funnel effect using ridge regression (left), elastic net regression
(center) lasso regression (right)

The funnel effect refers to a pattern where the accuracy of predictions or
evaluations disproportionately decreases for players with fewer possessions or
playing time. In RAPM models, this effect manifests as a widening variance
or uncertainty in player evaluation as the number of possessions decreases.
This effect is akin to a statistical funnel where the right (representing players
with many possessions) has narrow variability, indicating more reliable and
consistent evaluations. As one moves left the funnel (towards players with fewer
possessions), the variability increases, leading to less reliable predictions.

The presence of the funnel effect is particularly problematic when analyzing
statistics per 100 possessions for players who had minimal court time. These
players often participate during garbage time, therefore their contributions
may not accurately reflect their true abilities or potential impact under normal
game conditions.

To address this issue and enhance the model’s reliability, a filtering criterion
has been applied, setting a minimum threshold of 50 games for player inclusion
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in the analysis. This approach ensures that the players evaluated have had
a sufficient amount of playtime, providing a more stable and representative
dataset for RAPM calculations.

Method Stat Mean Sd Min Median Max Zeros% Shapiro Test

Ridge
DRAPM -0.12 1.06 -3.72 -0.06 4.11 0 0.98
ORAPM -0.25 1.15 -3.79 -0.21 2.67 0 0.99
RAPM -0.37 1.52 -5.98 -0.29 3.95 0 0.99

Lasso
DRAPM -0 1.06 -5.99 0 7.34 82.5% 0.48
ORAPM 0.01 1.17 -7.02 0 6.64 80% 0.52
RAPM 0.01 1.55 -7.02 0 6.84 66.9% 0.7

Elastic
DRAPM -0.01 1.17 -6.39 0 7.81 79% 0.51
ORAPM -0.01 1.29 -7.36 0 6.77 75.9% 0.56
RAPM -0.02 1.7 -7.36 0 6.96 61.6% 0.74

Table 4.8: Statistical comparison across different regression models for players
with at least 50 games between 2018-19 and 2022-23

The results presented in Table 4.8 highlight a significant disparity between the
original model utilizing Ridge Regression and the newer models. The former
yields more constrained values, falling within the range of [−5.98,+3.95] for the
overall RAPM, despite exhibiting a similar standard deviation. Notably, when
applying a filter for players with at least 50 games played in the 2018-2023
timeframe, the results demonstrate a clear adherence to a normal distribution
pattern, as visualized in Figure 4.2, and confirmed by the high Shapiro-Wilk
Test statistic[31], which closely approaches 1.

In contrast, both the Lasso and Elastic Net regression models display notably
lower Shapiro-Wilk values, approximately 0.5 for offensive/defensive estimates
and 0.7 for the overall RAPM. This phenomenon is largely influenced by the
high prevalence of zero values, constituting around 80% for ORAPM and
DRAPM, and around 60-65% for the overall RAPM.

The results obtained from Lasso and Elastic Net regression models reveal a
significant limitation: a high prevalence of players being assigned a zero impact.
This outcome is somewhat counterintuitive, as it suggests that as many as
80% of players have a negligible impact on their teams, which is unlikely to
be the case. This phenomenon is particularly apparent in Figure 4.3, where
it’s observed that many players with RAPM values within the [−2, 2] range, as
determined by Ridge Regression, are reduced to a value of zero in models using
Lasso or Elastic Net. The figure also indicates that the distinction between the
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Figure 4.2: Distribution of values across different regression models for players
with at least 50 games between 2018-19 and 2022-23

Lasso and Elastic Net models is relatively subtle in terms of their treatment of
these players.

Figure 4.3: RAPM using different regression models for players with at least
50 games between 2018-19 and 2022-23

To mitigate these issues was addressed the flexibility of Elastic Net and its
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parameter α. Following thorough analysis, a finely tuned value of α = 1.25×
10−3 was selected. This specific value predominantly leans towards the Ridge
Regression approach while subtly integrating aspects of Lasso Regression,
offering an improvement over the standard Elastic Net approach with α = 0.5.
This nuanced application of Elastic Net Regression helps to overcome the
challenges of zero impact assignment, providing a more realistic and balanced
representation of player contributions.

The results of this approach are summarized in Table 4.8:

Method Stat Mean Sd Min Median Max Zeros% Shapiro Test

α = 0.00125
DRAPM 0.04 0.86 -3 0 2.78 36.7% 0.89
ORAPM 0.02 0.9 -4.08 0 2.85 33.8% 0.9
RAPM 0.06 1.25 -4.16 0 3.59 12.9% 0.97

Table 4.9: Statistical report of Elastic Net having α = 0.00125 and λ = 112.1
for players with at least 50 games between 2018-19 and 2022-23

This approach enhances the traditional RAPM computation by driving a
small subset of coefficients to zero, aligning with empirical experience, but
without disrupting the original RAPM values significantly. By doing so, it is
possible strike a balance that preserves the integrity of the RAPM metric while
harnessing the advantages of Lasso Regression in a controlled manner.

4.4 Results

The findings of this study, leveraging the RAPM model, intriguingly align with
the qualitative assessments typically derived from the eye-test in basketball.
This alignment lends credence to the model’s accuracy, particularly noteworthy
given the unsupervised nature of the problem where direct validation through
a supervised dataset is not feasible. The fact that many of the top 10 most
impactful players identified over the 2018-2023 period are also highly acclaimed
and awarded players further reinforces the model’s credibility.

In the realm of Euroleague basketball, RAPM analysis over the past five years
has spotlighted Facundo Campazzo as the competition’s most impactful player.
Campazzo, celebrated for his prowess, stands out for his versatile skills that
extend across both ends of the court. His high ratings in both Offensive and
Defensive RAPM are a testament to his well-rounded game and justify his
reputation as one of Euroleague’s premier talents.
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Player Games Minutes ORAPM DRAPM RAPM

F. Campazzo 81 1982 1.51 2.08 3.59
W. Tavares 173 4045 0.8 2.78 3.58
R. Fernandez 138 2543 1.07 1.92 2.99
K. Simon 125 3020 2.24 0.52 2.75
I. Canaan 63 1202 0 2.68 2.68
W. Clyburn 124 3524 2.85 -0.21 2.65
N. Mirotic 128 3284 1.46 1.04 2.5
T. Black 85 1330 0 2.49 2.49
D. Exum 63 1300 2.49 0 2.49
S. Sanli 132 1861 2.03 0.42 2.45
I. Ukhov 66 557 0 2.41 2.41
J. Dibartolomeo 133 1756 1.44 0.94 2.38
D. Balbay 101 807 0.19 1.99 2.18
M. Fall 108 2414 1.2 0.89 2.09
A. Abrines 112 1902 0.2 1.8 2.01

Table 4.10: Best ORAPM and DRAPM for Euroleague players with at least
50 games between 2018-19 and 2022-23 using Elastic Net regression, with
α = 0.00125 and λ = 112.1

Walter Tavares closely trails Campazzo in terms of overall impact, but with a
distinct skew towards defensive excellence. Tavares’s defensive capabilities, as
reflected in his RAPM scores, resonate with his accolades, including three De-
fensive Player of the Year (DPOY) awards. His dominance on the defensive end
is well-acknowledged and aligns seamlessly with public opinion and his award
history, underscoring the model’s ability to capture real-world performance
accurately.

The analysis also sheds light on players who excel predominantly on one side
of the court, sometimes in unexpected ways. Isaiah Canaan and Tarik Black,
despite their differing roles as guard and center respectively, both emerge
as defensive standouts. Their high defensive ratings challenge conventional
role-based expectations and highlight the diverse skill sets present in the
league.

Conversely, Will Clyburn and Dante Exum are recognized for their offensive
contributions. Clyburn’s acclaim for his scoring prowess is mirrored in his
ORAPM scores. More intriguing, however, is the case of Dante Exum, typically
lauded for his defensive skills. The RAPM model reveals a substantial impact
on the offensive end, diverging from the general perception of his defensive orien-
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tation. This insight into Exum’s offensive contribution underscores the nuanced
understanding of player capabilities that RAPM analysis can offer.

Player Games Minutes ORAPM DRAPM RAPM

T. Schneider 89 1002 -1.17 -3 -4.16
M. Birsen 51 362 -4.08 0 -4.08
L. Nnoko 55 1114 -0.83 -2.39 -3.22
M. Eric 71 1180 -2.12 -0.92 -3.04
S. Enoch 56 963 -1.83 -1.19 -3.02
S. Karasev 72 1048 -2.91 0.08 -2.84
L. Radosevic 104 1400 -2.74 0 -2.74
S. Monia 68 1099 -0.43 -2.21 -2.64
A. Tyus 75 1234 -0.95 -1.57 -2.51
J. Lauvergne 89 1583 0 -2.51 -2.51
M. Delow 84 1001 -2.49 0 -2.49
A. Kurucs 70 472 -1.31 -1.14 -2.46
J. Puerto 50 614 -0.21 -2.21 -2.42
A. Shved 86 2570 0.32 -2.56 -2.24
U. Garuba 53 801 -2.2 0 -2.2

Table 4.11: Worst ORAPM and DRAPM for Euroleague players with at least
50 games between 2018-19 and 2022-23 using Elastic Net regression, with
α = 0.00125 and λ = 112.1

The study also sheds light on players who, according to the model, negatively
impact their teams. The case of Metecan Birsen is particularly intriguing;
despite having a positive win-loss record, he is identified as one of the worst
impacting players. This might suggest that while Birsen’s presence does not
hinder his team’s ability to win games, his individual contributions might be
less critical to their success. The model also brings into focus players like
Alexej Shved, whose defensive shortcomings are highlighted alongside a limited
offensive value.

One of the significant findings in the application of RAPM is its relatively lower
correlation with team record (a correlation coefficient of 0.599) compared to
the traditional Plus-Minus statistic (which shows a higher correlation of 0.783
with team record), as shown in image 4.4. This difference in correlation is
particularly revealing and underscores the strengths of the RAPM model. Of
course, a certain correlation is still expected and desirable, since players with a
good contribution help the team to win.

The traditional Plus-Minus metric, while straightforward and easy to under-
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Figure 4.4: Correlations between the most adopted metrics in European bas-
ketball to evaluate a player’s impact on the team

stand, often oversimplifies player impact by not distinguishing between the
individual contributions of a player and the overall performance of the team.
As a result, players in strong teams can have inflated Plus-Minus figures simply
by virtue of playing alongside excellent teammates, even if their individual
contribution is not as significant. This can lead to misleading evaluations where
the metric reflects more about the team’s overall strength rather than the
player’s specific impact.

In contrast, RAPM offers a more nuanced approach. By reducing the influence
of playing within a particularly strong or weak team, RAPM focuses more on
the individual player’s contribution. The lower correlation with team record
suggests that RAPM is less prone to the confounding effect of a team’s overall
performance, offering a clearer insight into the actual impact a player has on
the court. This makes RAPM a more reliable metric for evaluating individual
player performance, especially in diverse team contexts.

This characteristic of RAPM is particularly valuable for teams and analysts
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in assessing player performance independently of the team context. It allows
for more objective evaluations, especially in cases where players are part of
exceptionally strong or weak teams. By focusing on the individual rather than
the collective, RAPM provides a truer reflection of a player’s contribution and
effectiveness.

In conclusion, the lower correlation of RAPM with team record compared to
traditional Plus-Minus not only demonstrates the validity of RAPM in assessing
individual player impact but also highlights its advantage in mitigating the
effect of a player’s context.



Chapter 5

Applications

5.1 Fine-Tuning BPM

RAPM serves as starting point for several all-in-one metrics in basketball ana-
lytics, such as Box Plus-Minus (BPM)[32], LEBRON[33], Expected Plus-Minus
(EPM)[34], and Real Plus-Minus (RPM)[35]. These metrics use RAPM as a
baseline, correlating it with traditional and advanced statistics over extended
periods (like 5 or 10 years) to derive coefficients for each stat. The final all-in-
one metrics are then computed as a weighted sum of individual stats, using
these coefficients as weights. This method melds the insights from RAPM
with other statistical perspectives, offering a comprehensive view of player
performance.

However, it’s important to note that most of these advanced metrics have been
developed for NBA basketball. European basketball presents different dynamics
and styles, which could potentially necessitate a distinct set of coefficients for an
accurate analysis. Despite this, even leading resources on European basketball
stats, such as Hackastat [36], often rely on the traditional coefficients developed
for the NBA. This adoption might overlook subtle but critical nuances of
European basketball.

This study on RAPM paves the way for fine-tuning the coefficients of metrics
like Box Plus-Minus to align more closely with the nuances of European
basketball, especially the Euroleague. BPM, in contrast to RAPM, relies solely
on traditional box score data, making it a more accessible metric. It assesses
a player’s contribution per 100 possessions without factoring in playing time,
offering a rate-based evaluation of performance.

Created by Myers, BPM was intentionally designed to utilize only box score
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stats, enhancing its accessibility. However, this approach comes with a notable
limitation: the box score’s inherent bias towards offensive stats, as described in
Section 1.1.

As a result, BPM inherently skews towards evaluating offensive contributions
more effectively than defensive ones. Nevertheless, it serves as a solid foun-
dation for developing more comprehensive metrics that encompass defensive
prowess.

In the European-focused implementation of Box Plus-Minus (BPM), additional
adjustments such as player roles, team context, or Bayesian Regression[37] to
incorporate playing time are not included. This results in a vanilla version
of BPM. This simplified form serves as a baseline for the development of a
Euroleague-adapted BPM, providing a foundational model that can be further
refined to suit the specific nuances and requirements of European basketball
leagues.

To compute Box Plus-Minus, a Lasso Regression is performed, utilizing offensive
and defensive RAPM as target variables and box score statistics per 100
possessions as predictors. This analysis covers a span of 12 seasons, from 2011
to 2023, and is divided into four segments, each encompassing a three-year
period. Following the calculation of RAPM for each segment, as detailed in
Section 4.3.2, the data is then merged with the box score statistics per 100
possessions. To ensure the robustness of the analysis and eliminate outliers,
players with fewer than 70 total possessions are excluded from the study, this
threshold reflecting the average length of a Euroleague game. The coefficients
derived from this model are presented in Table 5.1.

Stat Coefficient off Coefficient off

PTS 0.139 -0.008
3FGM 0.133 0.028
AST 0.163 0.029
TOV -0.317 -0.03
OREB 0.062 -0.06
DREB 0.05 0.078
STL 0.065 0.272
BLK 0.001 0.102
PF 0.023 -0.016
FGA -0.121 -0.008
FTA= 0.44 ∗ FTA 0.011 -0.011

Table 5.1: BPM Coefficients for Euroleague
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Interestingly, the coefficients obtained are lower than those proposed by Myers,
reflecting the stylistic differences between European leagues and the NBA.
On offense, turnovers (TOV) emerge as a significant negative factor, while a
penalty on field goal attempts (FGA) rewards efficient scoring. Defensively,
steals (STL) are the most valuable stat, followed by blocks (BLK) and defensive
rebounds (DREB).

These coefficients enable player performance evaluation over the defined three-
year segments. By multiplying each stat by its respective coefficient and
summing these values, it is possible to obtain Offensive BPM (OBPM) and
Defensive BPM (DBPM). The overall BPM is simply the sum of OBPM and
DBPM:

BPM = OBPM +DBPM (5.1)

Since the stats are normalized per 100 possessions, there’s no need to adjust for
the number of possessions played on each end. Table 5.2 showcases the players
with the highest BPM over these segments. Notably, most top performers,
such as Shane Larkin, Luka Doncic, and Sergio Rodriguez, are renowned for
their offensive skills. This metric, while offensively biased, serves as a valuable
tool for talent identification across European leagues without the need for
Play-By-Play data or extensive computational resources required by other
models.

Segment Player GAMES OBPM DBPM BPM

2017-2020 S. Larkin 59 3.83 0.53 4.35
2017-2020 L. Doncic 33 3.37 0.82 4.19
2014-2017 S. Rodriguez 55 3.35 0.57 3.91
2020-2023 D. Thompson 34 2.96 0.94 3.9
2014-2017 L. Doncic 47 2.76 1.07 3.83
2017-2020 L. Sikma 28 2.88 0.9 3.78
2020-2023 S. Vezenkov 109 3.14 0.63 3.76
2020-2023 N. Mirotic 100 3.2 0.55 3.75
2014-2017 N. Bjelica 29 2.53 1.22 3.75
2017-2020 N. Mirotic 28 3.1 0.6 3.7

Table 5.2: Best BPM segments in Euroleague from 2011 to 2023
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5.2 Multi-League Analysis
In the domain of NBA analytics, a significant focus has been on predicting the
potential and performance of new players, especially those transitioning from
the NCAA college league. This is due to the fact that a substantial number of
players entering the NBA predominantly come from NCAA basketball. This
one-directional flow from NCAA to NBA simplifies predictive analytics for
NBA organizations. They typically use NCAA player performance data as a
known variable and NBA statistics as target variables. This approach is central
to evaluating potential draft picks, helping teams gauge the future impact of
these players in the NBA. While attention is also given to players from other
leagues, such as the GLeague, NBL, or European leagues, the predominant and
steady stream of talent from NCAA to NBA makes this predictive task more
manageable and reliable.

In contrast, the landscape of European basketball presents a far more complex
scenario for similar predictive endeavors. European basketball is characterized
by a multitude of leagues, each with its unique style, level of competition, and
player dynamics. This diversity creates a challenge in predicting the impact of
a player moving to a new league within Europe, especially if they have no prior
experience in that specific league. For instance, predicting how a player from
Spain’s ACB league would perform in Italy’s LBA involves navigating a web
of variables and uncertainties that are not as prevalent in the NCAA-to-NBA
transition.

The primary challenge in European basketball analytics lies in the scarcity
of training data and the noisy context. Unlike the NCAA-to-NBA pathway,
where there is a wealth of data on players making this specific transition, the
movements between European leagues, such as from ACB to LBA, involve
far fewer players. This limited data pool hinders the development of robust
predictive models. Additionally, the varied contexts of different European
leagues – in terms of playing styles, tactical approaches, and overall league
competitiveness – add layers of complexity, making it challenging to accurately
forecast a player’s performance in a new league.

As previously highlighted, RAPM is a metric that benefits significantly from
extensive training data, typically necessitating multiple seasons’ worth of in-
formation to enhance its accuracy and reduce susceptibility to noise. This
requirement presents a particular challenge in the context of European bas-
ketball leagues, which, compared to the NBA, generally exhibit lower player
retention rates. The implication of these lower retention rates is that RAPM,
when applied to individual European leagues, tends to be noisier and potentially
less reliable due to the frequent player turnover. This is even more relevant
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when considering that European leagues usually play less games, which are
shorter and played at a significant lower pace, which shrinks the number of
stints each player plays throughout a season.

To mitigate this issue and address the complexities inherent in evaluating
players across different European leagues, a novel approach can be employed:
Multi-League Analysis using RAPM. Instead of restricting the RAPM model
to a single league over various seasons, this method involves training the model
across multiple leagues concurrently, still spanning multiple seasons. Such an
approach capitalizes on the substantial number of players who switch between
domestic leagues or participate in international competitions. Consequently,
there are numerous instances where players’ performances intersect across
different league contexts, providing a richer, more diverse dataset for the
RAPM analysis.

Implementing RAPM for Multi-League Analysis offers a significant advancement
in European basketball analytics, particularly addressing the challenges faced
by scouts and front-office personnel. This approach marks a significant shift
from traditional methods, allowing for a comprehensive and unified evaluation
of player performances across different leagues on the same scale. Such a unified
evaluation is immensely beneficial in European basketball, where the diverse
range of leagues often presents a hurdle in accurately assessing player quality
and potential.

Additionally, the broader data base encompassing multiple leagues significantly
enhances the predictive power of the RAPM model. This expansion of data not
only increases the model’s accuracy but also its reliability in forecasting player
impact and effectiveness. By encompassing a wider array of player performances
and contexts, the model becomes more robust, capable of making more precise
predictions about a player’s future performance. This is particularly valuable
in a sport like basketball, where player performance can be influenced by
a myriad of factors, including team dynamics, coaching styles, and league
characteristics.

Table 5.3 provides an overview of the top 20 players in Multi-League RAPM
for the seasons spanning from 2020-21 to 2022-23. These players have all
participated in at least 50 games across five of the most prominent European
basketball competitions. It’s important to note that incorporating additional
leagues into the model significantly increases computational demands, which
is why this example includes only five leagues rather than all the major ones.
The challenges associated with expanding the model will be further addressed
in the upcoming chapter.
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Player Games Minutes DRAPM ORAPM ORAPMEL EC LBA ACB PROA

W. Tavares 227 2740 2615 3.03 2.4 5.43
T. Satoransky 76 880 887 1.92 2.91 4.83
A. Hanga 204 1598 1784 3.13 1.19 4.32
C. Moneke 64 202 865 225 0.92 3.23 4.14
J. Dibartolomeo 92 1295 1.6 2.54 4.14
I. Cordinier 109 342 825 1276 2.52 1.59 4.11
N. Mirotic 210 2506 2473 1.52 2.57 4.08
S. Sanli 175 1584 1112 1.75 1.98 3.72
Y. Fall 207 1407 363 1548 1.32 2.38 3.7
M. Bilan 51 1351 0 3.44 3.44
W. Clyburn 85 2503 0 3.41 3.41
N. Melli 140 1610 1709 3.31 0 3.31
E. Muric 52 1340 1.01 2.08 3.08
G. Ricci 209 745 410 1985 2.66 0.41 3.07
R. Sorkin 58 770 2.08 0.98 3.06
M. Teodosic 151 507 884 2075 1.2 1.85 3.05
D. Thompson 111 916 358 891 747 0.47 2.44 2.91
A. Abrines 184 1533 1711 1.24 1.64 2.88
S. Shields 157 1886 2231 1.57 1.3 2.87
J. Carroll 68 460 576 0 2.8 2.8

Table 5.3: Best ORAPM and DRAPM for players with at least 50 games
between 2020-21 and 2022-23 in multiple leagues

The findings in Table 5.3 exhibit a high degree of consistency with the Eu-
roleague RAPM results presented in Table 4.7. One notable exception is the
absence of Facundo Campazzo due to his limited number of games during this
period. An interesting trend that emerges from these results is the overall
increase in RAPM values for most of the top players, indicating an even more
significant impact in their respective domestic leagues. This underscores the
varying degrees of influence that players can exert across different competitions,
with many players demonstrating their prowess on the home front.

Additionally, these results bring attention to players who were not prominently
featured in the previous analysis due to their limited game time. Players
like Chima Moneke and Isaia Cordinier stand out as impactful contributors,
highlighting the depth of talent across multiple leagues and emphasizing the
importance of considering a broader spectrum of competitions when evaluating
player impact.

Table 5.4 offers valuable insights into the potential influence of players who have
not participated in the Euroleague during the seasons under consideration. This
list includes highly regarded players such as Miro Bilan and Giorgi Shermadini,
both of whom have Euroleague experience in previous seasons.
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Player Games Minutes DRAPM ORAPM ORAPMEL EC LBA ACB PROA

M. Bilan 51 1351 0 3.44 3.44
E. Muric 52 1340 1.01 2.08 3.08
G. Shermadini 106 2428 -0.06 2.81 2.75
Z. Nikolic 64 422 648 2.39 0.25 2.64
A. Feliz 114 767 1491 1.82 0.69 2.51

Table 5.4: Best ORAPM and DRAPM for players outside of Euroleague with
at least 50 games between 2020-21 and 2022-23





Conclusions and future work

The findings from this study on Regularized Adjusted Plus-Minus in Euro-
pean basketball are highly encouraging and align well with the prevailing
perceptions of the sport. The models successfully identified many players as
impactful, corroborating their status as highly regarded figures in European
basketball. This alignment between the RAPM results and public opinion
validates the effectiveness of RAPM as a tool for assessing player impact and
performance.

However, this research should be viewed as an initial foray into the application
and significance of RAPM within the European basketball context. The field
of Basketball Analytics is dynamic, continually evolving, and ripe for the
adaptation and interpretation of new metrics tailored to European leagues.
Although the current data availability in European basketball is somewhat
limited, there is optimism that the coming years will see a more extensive
and refined collection of data, enhancing the analytical capabilities in the
region.

Beyond serving as a standalone metric, RAPM can act as a foundational element
for a range of other advanced metrics. One such application, as discussed in
Section 5.2, is the multi-league approach. This methodology could pave the way
for the adaptation of metrics like Value Over Replacement Player (VORP)[38],
providing team managers not only with insights into a player’s overall impact
but also with valuable information for salary negotiations and player valuations
in the diverse and intricate landscape of European basketball.

Moreover, the combination of RAPM with powerful tools like Sdeng opens
the possibility of developing predictive models akin to those used in the NBA,
such as the DARKO model[39]. While the unique characteristics of European
basketball add an extra layer of complexity to model development, the multi-
league approach offers a viable solution to simplify this challenge.

In conclusion, this study serves as a stepping stone towards a more comprehen-
sive and nuanced understanding of player performance in European basketball.
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The promising results of RAPM, coupled with the potential for future analyti-
cal developments, underscore the growing significance of advanced metrics in
enhancing strategic decisions, player evaluations, and the overall appreciation
of the game in Europe. As data availability improves and analytical techniques
evolve, the future of basketball analytics in Europe looks bright, with a myriad
of opportunities for deeper insights and innovative applications.
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