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Abstract

Neural Language Models represent a category of computational systems de-

signed to learn task performance directly from raw textual inputs. Their in-

creasing popularity stems from their versatility and remarkable success across

diverse domains, such as their transformative impact on machine translation,

surpassing traditional machine learningmethods. Despite these achievements,

a crucial aspect remains unaddressed: the interpretability of themodel’s decision-

making process. Rationale extraction endeavors to furnish explanations that

are both faithful (reflective of the model’s behavior) and plausible (convinc-

ing to humans) by highlighting influential inputs without compromising task

model performance. Prior research has primarily focused on optimizing plau-

sibility using human highlights when training rationale extractors, while jointly

training the task model to optimize for predictive accuracy and faithfulness. In

this thesis, we delve into the significance of explanations, the associated chal-

lenges, and the research landscape in this field. We also introduce REFER,

a framework that incorporates a differentiable rationale extractor that facili-

tates back-propagation through the rationale extraction process. Through joint

training of the task model and rationale extractor with human highlights, our

analysis demonstrates that REFER achieves significantly improved results in

terms of faithfulness, plausibility, and downstream task accuracy on both in-

distribution and out-of-distribution data compared to previous baselines.
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Chapter 1

Introduction

Neural Language Models (NLMs) are a class of computing systems designed

to learn how to perform tasks directly from raw textual inputs. These systems

have been gaining in popularity over recent years due to their versatility and

revolutionary success in various domains. For example, NLMs have revolu-

tionized machine translation [96], with significant improvements in perfor-

mance over traditional machine learning methods. Learning without hard-

coding task-specific knowledge is a breakthrough in artificial intelligence.

However, there is a key missing and that is the interpretation behind a model

decision-making process. In the rest of this chapter, we investigate the im-

portance of explanation, challenges we may face, and research outline in this

field of study.

1.1 The Importance of Explanations for NLMs

It has been shown that a key factor in the success of NLMs is their capabil-

ity which allows them to learn features at various levels of abstraction be-

tween the raw data and the prediction. However, this comes at the cost of

explainability1, since providing a human-intelligible interpretation of an intri-

cate composition of a large number of non-linear functions is a difficult open
1In the following sections, we use explainability and interpretability interchangeably.
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question. Thus, in safety-critical applications, such as health diagnosis, credit

allowance, or criminal justice, one may still prefer to employ less accurate but

human-interpretable models, such as linear regression and decision trees.

The doubts around the decision-making processes of NLMs are justified,

as it has been shown that seemingly very accurate systems can easily rely on

spurious correlations (or statistical bias) in datasets to provide correct answers

[34, 35, 16, 65]. Another source of mistrust in black-box systems comes from

the potential subjective bias that these systems might develop, such as racism,

sexism, or other kinds of discrimination and subjectivity [9]. For instance, [26]

cast doubt on the fairness of the widely used commercial risk assessment soft-

ware COMPAS for recidivism prediction. Such biases may be learned either

from under-representation or irrelevant statistical correlations in the datasets

that we train and test our models on. Therefore, an increasing need for ex-

plainable models is arising.

Explainability refers to the ability to explain or present the behavior of

models in human-understandable terms [25, 28]. Improving the explainability

of NLMs is crucial for two key reasons. First, for general end users, explain-

ability builds appropriate trust by elucidating the reasoning mechanism be-

hind model predictions in an understandable manner, without requiring tech-

nical expertise. With that, end users are able to understand the capabilities,

limitations, and potential flaws of NLMs. Second, for researchers and de-

velopers, explaining model behaviors provides insight to identify unintended

biases, risks, and areas for performance improvements. In other words, ex-

plainability acts as a debugging aid to quickly advance model performance on

downstream tasks [92, 2, 103]. It facilitates the ability to track model capa-

bilities over time, make comparisons between different models, and develop

reliable, ethical, and safe models for real-world deployment.

In the past few years, several works have been proposed for improving the

interpretability of NLMs. In this thesis, we focus on local interpretable meth-

ods proposed for Natural Language Processing (NLP) tasks. In chapter 2, we
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define local methods as those that provide explanations only for specific deci-

sions made by the model - that is, methods that provide explanations for single

instances, rather than aiming to provide general descriptions of the model’s

decision-making process. We explore several recent local interpretation tech-

niques in NLP, which aim to support normal users with no expertise.

1.2 Research Challenges

In this section, we explore key research challenges that warrant further inves-

tigation from both the NLP and the explainable AI communities.

1.2.1 Explanation without Ground Truths

Ground truth explanations for NLMs are usually inaccessible. For example,

there are currently no benchmark datasets to evaluate the global explanation

of individual components captured by NLMs. This presents two main chal-

lenges. First, it is difficult to design explanation algorithms that accurately

reflect an LM’s decision-making process. Second, the lack of ground truth

makes evaluating explanation faithfulness and fidelity problematic. It is also

challenging to select a suitable explanation among various methods in the ab-

sence of ground truth guidance. Potential solutions include involving human

evaluations and creating synthetic explanatory datasets.

1.2.2 Sources of Emergent Abilities

NLMs exhibit surprising new capabilities as the model scale and training data

increase, even without being explicitly trained to perform these tasks. Eluci-

dating the origins of these emergent abilities remains an open research chal-

lenge, especially for proprietary models like ChatGPT and Claude whose ar-

chitectures and training data are unpublished. Even open-source LMs like
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LLaMA currently have limited interpretability into the source of their emer-

gent skills. This can be investigated from both a model and a data perspective.

Model Perspective It is crucial to further investigate the Transformer-based

model to shed light on the inner workings of NLMs. Key open questions in-

clude: 1) What specific model architectures give rise to the impressive emer-

gent abilities of NLMs? 2) What is the minimum model complexity and scale

needed to achieve strong performance across diverse language tasks? Con-

tinuing to rigorously analyze and experiment with foundation models remains

imperative as NLMs continue to rapidly increase in scale. Advancing knowl-

edge in these areas will enable more controllable and reliable NLMs. This

can provide hints as to whether there will be new emergent abilities in the

near future.

Data Perspective In addition to the model architecture, training data is an-

other important perspective for understanding the emergent abilities of NLMs.

Some representative research questions include: 1) Which specific subsets of

the massive training data are responsible for particular model predictions, and

is it possible to locate these examples? 2) Are emergent abilities the result of

model training or an artifact of data contamination issues [7]? 3) Are training

data quality or quantity more important for effective pre-training and fine-

tuning of NLMs? Understanding the interplay between training data charac-

teristics and the resulting behavior of the model will provide key insights into

the source of emergent abilities in large language models.

1.2.3 Shortcut Learning of NLMs

Recent explainability research indicates that languagemodels often take short-

cuts when making predictions. For the downstream fine-tuning paradigm,

studies show that languagemodels leverage various dataset artifacts and biases

for natural language inference tasks, such as lexical bias, overlap bias, position
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bias, and style bias [27]. This significantly impacts out-of-distribution gener-

alization performance. For the prompting paradigm, a recent study analyzes

how language models use longer contexts [57]. The results show that perfor-

mance was highest when relevant information was at the beginning or end of

the context, and worsened when models had to access relevant information in

the middle of long contexts. These analyses demonstrate that both paradigms

tend to exploit shortcuts in certain scenarios, highlighting the need for more

research to address this problem and improve generalization capabilities.

1.2.4 Safety and Ethics

The lack of interpretability in NLMs poses significant ethical risks as they be-

comemore capable. Without explainability, it becomes challenging to analyze

or constrain potential harms from issues such as misinformation, bias, and so-

cial manipulation. Explainable AI techniques are vital to audit these powerful

models and ensure alignment with human values. For example, tools to trace

training data attribution or visualize attention patterns can reveal embedded

biases, such as gender stereotypes [53]. Additionally, probing classifiers can

identify if problematic associations are encoded within the model’s learned

representations. Researchers, companies, and governments deploying NLMs

have an ethical responsibility to prioritize explainable AI. Initiatives such as

rigorous model audits, external oversight committees, and transparency regu-

lations can help mitigate risks as NLMs becomemore prevalent. For example,

as alignment systems continue to grow in scale, human feedback is becoming

powerless at governing them, posing tremendous challenges to the safety of

these systems. Leveraging explainability tools as part of audit processes to

supplement human feedback could be a productive approach. Advancing in-

terpretability techniques must remain a priority alongside expanding model

scale and performance to ensure the safe and ethical development of increas-

ingly capable NLMs.



1.3 Research Agenda and Outline 6

1.3 Research Agenda and Outline

This thesis explores various domains comprehensively, with the goal of con-

tributing new insights and advancements to the existing body of knowledge.

Following the findings and gaps identified in the preceding section, the subse-

quent research endeavors are designed to address key research questions and

push the boundaries of knowledge.

1.3.1 Effectiveness of Human Supervision

Nowadays, machine learning systems can learn to capture spurious correla-

tions in the data for solving any given task, and often struggle in more chal-

lenging cases [65]. When models are allowed to make predictions without

considering rationales-related criteria—faithfulness and plausibility—the ra-

tionales extracted by the model can be incomprehensible and lack meaningful

interpretations [99] and it becomes evident that neural models tend to rely on

dataset-specific patterns. As a result, although the model can produce accu-

rate results on in-distribution data, the rationales extracted by the model can

be incomprehensible and lack meaningful interpretations [99]. For instance,

baseline models often pay attention to stop-words and full-stops, which can

be considered as instances of null attention [99]. Conversely, in supervised

models, the words that receive the most attention are typically nouns such

as ”man”, ”woman” or ”people”, as they frequently serve as the subjects of

sentences [35].

In certain contexts, faithful explanations are crucial – for example, they

can be used to determine whether a model relies on protected attributes, such

as gender or religious group [77]. [65] propose the hypothesis that neural

natural language inference (NLI) models might rely on three fallible syntactic

heuristics: (i) lexical overlap, (ii) subsequences, and (iii) constituents. These

heuristics are used by themodels tomake predictions inNLI tasks. To evaluate

whether the models have indeed adopted these heuristics, we use Heuristic
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Analysis for NLI Systems (HANS, [65]), which includes a variety of examples

where such heuristics fail, providing a means to assess a model’s reliance on

these heuristics. table 1.1 shows instances of these heuristics in the HANS

dataset.

Table 1.1: The heuristics targeted by the HANS dataset, along with examples
of incorrect entailment predictions that these heuristics would lead to.

Heuristic Definition Example

Lexical overlap The premise entails all hypotheses
constructed from its own words.

The judges admired the doctors.
Wrong−−−→ The doctors admired the judges .

Subsequence The premise entails all of its
contiguous subsequences.

The lawyers believed the bankers resigned.
Wrong−−−→ The lawyers believed the bankers.

Constituent The premise entails all complete
subtrees in its parse tree.

Probably the tourists waited.
Wrong−−−→ The tourists waited.

Faithfulness refers to the degree to which an explanation provided by a

model accurately reflects the information utilized by the model to make a de-

cision [37]. Without understanding the factors and information that influence

the predictions of the model, it becomes difficult to trust or explain its out-

puts. In certain contexts, faithful explanations are crucial – for example, they

can be used to determine whether a model is relying on protected attributes,

such as gender or religious group [77]. Ensuring faithfulness in model expla-

nations is therefore imperative to address issues of transparency, fairness, and

accountability in the deployment of AI systems.

1.3.2 Imitation of Human Reasoning

Human rationales are often derived from their extensive background knowl-

edge and understanding of various concepts. While language models (LMs)

possess some degree of this knowledge, they face challenges in balancing be-

tween optimizing for task performance and meeting the criteria for extractive

explanations. Therefore, balancing plausibility, faithfulness, and task accu-

racy presents a challenging task. A model can reflect its inner process to make

a prediction (faithful), but it may notmake sense for humans (implausible). On
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the other hand, a model that returns convincing rationales (plausible) without

using them during decision-making is not very useful (unfaithful). The ideal

explanation regularization model would achieve human-level performance on

the task output while providing faithful rationales for the task prediction in a

manner that is convincing to humans or plausible. However, it is often nec-

essary to reach a trade-off between plausibility, faithfulness, and predictive

accuracy. In some cases, optimizing for plausibility may require sacrificing

faithfulness or task performance, and vice versa.

Optimizing for plausibility in thesemodels necessitates continuous human-

in-the-loop feedback. Acquiring such feedback is often impractical, leading

many researchers to resort to human-annotated gold rationales as a more cost-

effective form of plausibility supervision [24, 71]. [36] introduce Saliency

Guided Training (SGT) which regularizes a task model to produce faithful

Attribution Algorithm (AA)-based rationales. Still, AAs can be a bottleneck

for plausibility, as producing human-like rationales is a complex objective re-

quiring high-capacity rationale extractors [71, 24]. Amore detailed discussion

of these baseline models is provided in chapter 5.

1.3.3 Highlights Efficiency

Humans can efficiently learn new tasks with only a few examples by lever-

aging their prior knowledge. Recent approaches for rationalizing rely on a

large number of labeled training examples, including task labels and anno-

tated rationales for each instance. Obtaining such extensive annotations is of-

ten infeasible for many tasks. Additionally, fine-tuning LMs, which typically

have billions of parameters, can be expensive and prone to overfitting. Ide-

ally, each training instance would be annotated with a gold rationale, allowing

direct minimization of the plausibility loss for each instance. To this end, we

analyze the impact of having varying amounts of supervision on the extracted
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rationales during the training process. Given the high cost of human annota-

tions, a more practical approach involves incorporating a limited amount of

human supervision. We investigate the characteristics of effective rationales

and demonstrate that making the neural model aware of its rationalized pre-

dictions can significantly enhance its performance, especially in low-resource

scenarios.

1.3.4 Out-of-distribution Generalization

Out-of-distribution (OOD) generalization refers to the ability of a model to

accurately handle data samples that deviate from the distribution of its train-

ing data. OOD generalization is a critical challenge in NLP tasks and plays a

pivotal role in ensuring the reliability and effectiveness of NLPmodels in real-

world applications. Effective OOD generalization in NLP requires models to

capture and understand the underlying linguistic properties and generalizable

patterns rather than relying on memorization or overfitting specific training

instances. However, despite the growing interest in OOD generalization, ex-

isting evaluations in the field of explanation robustness have been limited in

scope and coverage.

The poor performance of models on OOD datasets can stem from limi-

tations in the model’s architecture, insufficient signals in the OOD training

set, or a combination of both [65]. An NLI system that correctly labels an

example may not do so by understanding the meaning of the sentences but

rather by relying on the assumption that any hypothesis with words appearing

in the premise is entailed by the premise [21, 70]. [35] raises doubts about

whether models trained on the SNLI dataset truly learn language comprehen-

sion or primarily rely on spurious correlations, also known as artifacts. For

instance, words like ”friends” and ”old” frequently appear in neutral hypothe-

ses, while ”animal” and ”outdoors” are prevalent in entailment hypotheses,

and ”nobody” and ”sleeping” are common in contradiction hypotheses. They
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also show that a premise-agnostic model, which only considers the hypothesis

as input and predicts the label, achieves 67% accuracy on the test set [10].

[65] delve into two factors contributing to the adoption of heuristics by

SoTA models trained on standard NLI datasets like SNLI [8] or MNLI [101].

Firstly, the MNLI training set predominantly consists of examples that align

with these heuristics, offering limited contradicting instances. Even among the

261 contradicting cases in MNLI, their impact on challenging the heuristics is

limited. Notably, 133 of these cases involve negation in the premise but not the

hypothesis. Rather than employing these cases to override the lexical overlap

heuristic, models may learn to associate contradiction labels specifically with

negation in the premise, but not in the hypothesis [64]. To analyze this, we

evaluate our model on contrast sets [32] as well as unseen data, which are

(mostly) label-changing small perturbations on instances to understand the

true local boundary of the dataset. Essentially, they help us understand if the

rationale extractor has learned any dataset-specific shortcuts.

Considering what we discussed so far, this thesis will focus on answering

the following research questions in the following chapters:

• Does training the model on human highlights improve the generaliza-

tion properties of the model?

• How can we make machines imitate human rationales?

• Does training themodel on a small number of human highlights improve

its generalization properties?

• Do the learned rationale extractors generalize to OOD data?



Chapter 2

Background on Explanatory

Methods for NLMs

In this chapter, we review explanation techniques for NLMs trained with the

pre-training and downstream fine-tuning paradigms. First, we introduce ap-

proaches to provide local explanations and global explanations. Here, the lo-

cal explanation aims to provide an understanding of how a language model

makes a prediction for a specific input instance, while the global explanation

aims to provide a broad understanding of how the NLM works overall. Next,

we discuss how explanations can be used to debug and improve models.

2.1 Local Explanation

The first category of explanations refers to explaining the predictions gener-

ated by NLM. Consider a scenario where we have a language model and we

input a specific text into the model. The model then produces a classification

output, such as sentiment classification or a prediction for the next token. In

this scenario, the role of explanation is to clarify the process by which the

model generated the particular classification or token prediction. Since the

goal is to explain how the NLM makes the prediction for a specific input, we

call it the local explanation. This category encompasses two main streams
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of approaches for generating explanations including feature attribution-based

explanation (also known as extractive rationales) and natural language expla-

nation.

2.1.1 Feature Attribution-Based Explanation

Feature attribution methods aim to measure the relevance of each input feature

(e.g., words, phrases, text spans) to a model’s prediction. Given an input text

x comprised of n word features x1, x2, ..., xn, a finetuned language model f

generates an output f(x). Attribution methods assign a relevance score r(xi)

to the input word feature xi to reflect its contribution to the model prediction

f(x). The methods that follow this strategy can be mainly categorized into

three types: perturbation-based methods, gradient-based methods, and surro-

gate models.

Perturbation-BasedExplanation Perturbation-basedmethodswork by per-

turbing input examples such as removing, masking, or altering input features

and evaluating model output changes. The most straightforward strategy is

leave-one-out, which perturbs inputs by removing features at various levels

including embedding vectors, hidden units [52], words [51], tokens and spans

[102] to measure feature importance. The basic idea is to remove the mini-

mum set of inputs to change the model prediction. The set of inputs is selected

with a variety of metrics such as confidence score or reinforcement learning.

However, this removal strategy assumes that input features are independent

and ignores correlations among them. Additionally, methods based on the

confidence score can fail due to pathological behaviors of overconfident mod-

els [31]. For example, models can maintain high-confidence predictions even

when the reduced inputs are nonsensical. This overconfidence issue can be

mitigated via regularization with regular examples, label smoothing, and fine-

tuning models’ confidence [31]. Besides, current perturbation methods tend

to generate out-of-distribution data. This can be alleviated by constraining the
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perturbed data to remain close to the original data distribution [78].

Gradient-Based Explanation Gradient-based attribution techniques deter-

mine the importance of each input feature by analyzing the partial derivatives

of the output w.r.t. each input dimension. The magnitude of derivatives re-

flects the sensitivity of the output to changes in the input. The basic formula-

tion of raw gradient methods is described as sj = ∂f(x)
∂xj

, where f(x) is the pre-

diction function of the network and xj denotes the input vector. This scheme

has also been improved as gradient×input [42] and has been used in various

explanation tasks, such as computing the token-level attribution score [68].

However, vanilla gradient-based methods have some major limitations. First,

they do not satisfy the input invariance, meaning that input transformations

such as constant shift can generate misleading attributions without affecting

the model prediction [42]. Second, they fail to deal with zero-valued inputs.

Third, they suffer from gradient saturation where large gradients dominate and

obscure smaller gradients. The difference-from-reference approaches, such as

integrated gradients (IG), are believed to be a good fit to solve these challenges

by satisfying more axioms for attributions [95]. The fundamental mechanism

of IG and its variants is to accumulate the gradients obtained as the input is

interpolated between a reference point and the actual input. The baseline ref-

erence point is critical for reliable evaluation, but the criteria for choosing

an appropriate baseline remain unclear. Some use noise or synthetic reference

with training data, but performance cannot be guaranteed [60]. In addition, IG

struggles to capture output changes in saturated regions and should focus on

unsaturated regions [66]. Another challenge of IG is the computational over-

head to achieve high-quality integrals. Since IG integrates along a straight line

path that does not fit well the discrete word embedding space, variants have

been developed to adapt it for language models [88, 85, 29].
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SurrogateModels Surrogate model methods use simpler, more comprehen-

sible models to explain individual predictions of black-box models. These

surrogate models include decision trees, linear models, decision rules, and

other white-box models that are inherently more understandable to humans.

The explanation models need to satisfy additivity, meaning that the total im-

pact of the prediction should equal the sum of the individual impacts of each

explanatory factor. Also, the choice of interpretable representations matters.

Unlike raw features, these representations should be powerful enough to gen-

erate explanations yet still understandable and meaningful to human beings.

An early representative local explanation method called LIME [83] employs

this paradigm. To generate explanations for a specific instance, the surrogate

model is trained on data sampled locally around that instance to approximate

the behavior of the original complex model in the local region. However, it is

shown that LIME does not satisfy some properties of additive attribution, such

as local accuracy, consistency, and missingness [59]. SHAP is another frame-

work that satisfies the desirable properties of additive attributionmethods [59].

It treats features as players in a cooperative prediction game and assigns each

subset of features a value reflecting their contribution to the model prediction.

Instead of building a local explanation model per instance, SHAP computes

Shapley values using the entire dataset. Challenges in applying SHAP include

choosing appropriate methods for removing features and efficiently estimat-

ing Shapley values. Feature removal can be done by replacing values with

baselines like zeros, means, or samples from a distribution, but it is unclear

how to pick the right baseline. Estimating Shapley values also faces com-

putational complexity exponential in the number of features. Approximation

strategies including weighted linear regression, permutation, and other model-

specific methods have been adopted to estimate Shapley values. Despite its

complexity, SHAP remains popular and widely used due to its expressive-

ness for large deep models. To adapt SHAP to Transformer-based language

models, methods such as TransSHAP have been proposed [43]. TransSHAP
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mainly focuses on adapting SHAP to sub-word text input and providing se-

quential visualization explanations that are well-suited for understanding how

NLMs make predictions.

2.1.2 Natural Language Explanation

Natural language explanation refers to explaining a model’s decision-making

on an input sequence with generated text. The basic approach for generat-

ing natural language explanations involves training a language model using

both original textual data and human-annotated explanations. The trained lan-

guage model can then automatically generate explanations in natural language

[81]. As explanations provide additional contextual space, they can improve

downstream prediction accuracy and perform as a data augmentation tech-

nique [61, 103]. Apart from the explain-then-predict approach, predict-then-

explain and joint predict-explain methods have also been investigated. The

choice of methods depends on the purpose of the task. However, the reliabil-

ity of applying generated explanations still necessitates further investigation.

It is worth noting that both the techniques introduced in this section and the

CoT explanations covered later in Section 4 produce natural language expla-

nations. However, the explanations covered here are typically generated by

a separate model, while CoT explanations are produced by the NLMs them-

selves.

2.2 Global Explanation

Unlike local explanations that aim to explain a model’s individual predictions,

global explanations offer insights into the inner workings of language mod-

els. Global explanations aim to understand what the individual components

(neurons, hidden layers, and larger modules) have encoded and explain the



2.2 Global Explanation 16

knowledge properties learned by the individual components. Global explain-

ers are particularly useful, for example, for quick model diagnostics of pos-

sible biases or knowledge discovery. Since global explainers aim to explain

the behavior of the entire target model, usually via distilling the target model

into an interpretable one, they implicitly provide local explanations as well.

However, it is difficult, or impossible, for an interpretable model to accurately

capture all the irregularities learned by a highly non-linear model. Hence, lo-

cal explanations derived from global explainers might not always be accurate.

The majority of the current works in the literature focus on designing local

explainers.

Three main approaches exist for examining global explanations: probing

methods that analyze model representations and parameters, neuron activa-

tion analysis to determine model responsiveness to input, and concept-based

methods. Since the focus of our research is on local explanations, we avoid

discussing each method in detail.

2.2.1 Probing-Based Explanations

The self-supervised pre-training process empowers language models, such as

BERT [23] and T5 [80], to acquire extensive linguistic knowledge from train-

ing data. Probing techniques such as classifier-based probing and parameter-

free probing are employed to explore the knowledge embedded in these mod-

els.

Classifier-based probing involves training a shallow classifier on top of

pre-trained languagemodels with frozen parameters. These classifiers identify

linguistic properties or reasoning abilities acquired by the model. Studies cat-

egorized under vector representations explore the model’s embedded knowl-

edge, revealing that lower layers capture word-level syntax, while higher lay-

ers excel in sentence-level syntax and semantic knowledge. Probing syntactic

information involves parse trees and structural probes, but debates persist on
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whether classifiers truly learn syntax or merely task-related information.

Parameter-free probing tailors datasets to linguistic properties without us-

ing classifiers. The model’s performance on these datasets serves as an indica-

tor of its ability to capture specific properties. Data-driven prompt search, ex-

ploring language models’ text generation abilities, is another approach. How-

ever, concerns arise about regularities in training datasets influencing results

and obscuring real factual knowledge captured by language models.

2.2.2 Neuron Activation Explanation

Neuron analysis in language models delves into individual dimensions, exam-

ining crucial neurons for model performance or linked to specific linguistic

properties. This line of work typically involves two steps: identifying im-

portant neurons unsupervisedly and establishing relations between linguistic

properties and individual neurons through supervised tasks. Shared neurons

across models learning similar properties are ranked using metrics like cor-

relation measurements or learned weights [4]. Conventional supervised clas-

sification can also be used for this purpose. The importance of ranked neu-

rons is validated quantitatively through ablation experiments, and methods

like greedy Gaussian probing have emerged to identify crucial neurons.

2.2.3 Concept-Based Explanation

Concept-based interpretability algorithms map the inputs to a set of concepts

and measure the importance score of each pre-defined concept to model pre-

dictions. By introducing abstract concepts, models can be explained in a

human-understandable fashion rather than on low-level features. Information

in latent space can also be transformed into comprehensible explanations.
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2.3 Making Use of Explanations

In the previous subsections, we introduced methods to provide explanations

for NLMs. In this subsection, we discuss how explainability can be used as a

tool to debug and improve models.

The inherent complexity of neural models has given rise to concerns re-

garding their opacity [84], particularly about the societal implications of em-

ploying neural models in high-stakes decision-making scenarios [5]. There-

fore, explainability is of utmost importance for fostering trust, ensuring ethical

practices, and maintaining the safety of NLP systems [25, 55].

2.3.1 Differnt Usage of Explanations in Training

Here, we discuss a few applications that arise on how explanations can be used

in modeling a task, in a standard supervised learning setup.

Learning to Explain Rationalization offers local explanations by providing

a unique explanation for each prediction instead of a global explanation that

covers the entire model [1, 82]. These explanations yield valuable insights for

various purposes, including debugging, quantifying bias and fairness, under-

standing model behavior, and ensuring robustness and privacy [69]. However,

obtaining direct supervision in the form of human-labeled rationales during

training is not always feasible, which has led to the development of datasets

that include human justifications for the true labels. These efforts enhance

the interpretability of NLP models and address the limitations associated with

direct supervision in learning to explain.

Post-hoc Explanations Post-hoc explanations are another branch of inter-

pretability research. These explanations often involve token-level importance

scores. In the quest for effective post-hoc explanations, a balance must be

struck between the clarity of semantics and the avoidance of counter-intuitive
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Figure 2.1: Computation graphs describing the relationships between post-
hoc explanations, learning to explain, and learning from rationales.

behaviors. Gradient-based explanations [94, 90] provide clear semantics by

describing the local impact of input perturbations on the outputs of the model.

However, they can sometimes exhibit inconsistent behaviors [31], and their

effectiveness relies on the differentiability of the model. Alternatively, there

are model-agnostic methods that do not rely on specific model properties. One

notable example is Local Interpretable Model-agnostic Explanations [LIME,

82]. These approaches approximate the behavior of the model locally by re-

peatedly making predictions on perturbed inputs and fitting a simple, explain-

able model over the resulting outputs.

Learning from Human Rationales Recent research has focused on lever-

aging rationales to enhance the training of neural text classifiers. [108] in-

troduced a rationale-augmented Convolutional Neural Network that explic-

itly identifies sentences supporting categorizations. [93] demonstrated that

incorporating rationales during training improves the quality of predicted ra-

tionales, as preferred by humans compared to models trained without explicit

supervision [93]. In addition to integrated models, pipeline approaches have

been proposed, where separate models are trained for rationale extraction and

classification based on these extracted rationales [48, 18]. These approaches

assume the availability of explicit training data for rationale extraction.
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2.3.2 Applications of Explanations for Further Works

DebuggingModels Post-hoc explainability methods can be used to analyze

model feature importance patterns to identify biases or limitations in its behav-

ior [27]. For example, if the model consistently attends to certain tokens in the

input sequence regardless of the context, this may indicate that the model re-

lies on heuristics or biases rather than truly understanding the meaning of the

input sequence. Recent work has used Integrated Gradients to debug trained

language models in natural language understanding tasks, finding that they

use shortcuts rather than complex reasoning for prediction [27]. Specifically,

these models favor features from the head of long-tailed distributions, picking

up these shortcut cues early in training. This shortcut learning harms model

robustness and generalization to out-of-distribution samples. Integrated Gra-

dient explanations have also been used to examine the adversarial robustness

of language models [17]. The explanations reveal that models robust to ad-

versarial examples rely on similar features, while non-robust models rely on

different key features. These insights havemotivated the development ofmore

robust adversarial training methods.

Improving Models Regularization techniques can be used to improve the

performance and reliability of model explanations. Specifically, explanation

regularization (ER) methods aim to improve NLM generalization by align-

ing the model’s machine rationales (which tokens it focuses on) with human

rationales [41]. For example, a framework called AMPLIFY is proposed

that generates automated rationales using post-hoc explanation methods [44].

These automated rationales are fed as part of prompts to NLM for prediction.

Experiments show that AMPLIFY improves the accuracy of NLMs by 10-

25% for various tasks, even when human rationale is lacking. Another study

proposes ER-TEST [41], a framework that evaluates the out-of-distribution

(OOD) generalization of ER models along three dimensions: unseen dataset
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Figure 2.2: ER-TEST Framework - Apart from existing ID evaluations of ER
criteria, ER-TEST evaluates ER’s impact on OOD generalization along three
dimensions: A. Unseen datasets, B. Contrast set tests, and C. Functional tests.

tests, contrast set tests, and functional tests. This provides a more compre-

hensive evaluation than just in-distribution performance. They consider three

types of explainability methods, including Input*Gradient, attention-based ra-

tionale [91], and learned rationale [14]. Across sentiment analysis and natural

language inference tasks/datasets, ER-TEST shows that ER has little impact

on in-distribution performance but yields large OOD gains. An end-to-end

framework called XMD was proposed for explanation-based debugging and

improvement [47]. XMD allows users to provide flexible feedback on task-

or instance-level explanations via an intuitive interface. It then updates the

model in real time by regularizing it to align explanations with user feedback.

Using XMD has been shown to improve models’ OOD performance on text

classification by up to 18%.

Downstream Applications Explainability can also be applied to real-world

problems such as education, finance, and healthcare. For example, explain-

able zero-shot medical diagnosis is an interesting use case. One recent study
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proposes a framework for explainable zero-shot medical image classification

utilizing vision-language models like CLIP along with NLMs like ChatGPT

[56]. The key idea is to leverage ChatGPT to automatically generate detailed

textual descriptions of disease symptoms and visual features beyond just the

disease name. This additional textual information helps to provide more ac-

curate and explainable diagnoses from CLIP [79]. To handle potential in-

accuracies from ChatGPT on medical topics, the authors design prompts to

obtain high-quality textual descriptions of visually identifiable symptoms for

each disease class. Extensive experiments on multiple medical image datasets

demonstrate the effectiveness and explainability of this training-free diagnos-

tic pipeline.



Chapter 3

Explanation Evaluation

Following the goals of explainable AI, a model’s quality should be evaluated

not only by its accuracy and performance but also by how well it provides ex-

planations for its predictions. In the previous chapter, we introduced different

explanation techniques and their usages, but evaluating how faithfully they

reflect a model’s reasoning process remains a challenge. Two key dimensions

of evaluations are plausibility to humans and faithfulness in capturing NLMs’

internal logic. Both parts will mainly cover universal properties and metrics

that can be applied to compare various explanation approaches. We focus on

quantitative evaluation properties andmetrics, which are usually more reliable

than qualitative evaluations.

Given the young age of the field, unsurprisingly there is little agreement on

how explanations should be evaluated. The majority of the works lack a stan-

dardized evaluation or include only an informal evaluation, while a smaller

number of papers looked at more formal evaluation approaches, including

leveraging ground truth data and human evaluation [20]. Human evaluations

assess plausibility through the similarity between model rationales and human

rationales or subjective judgments. However, these methods usually neglect

faithfulness. Subjective judgments may also not align with model reasoning,

making such an evaluation unreliable. As argued by [37], faithful evaluation
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should have a clear goal and avoid human involvement. Automatic evalua-

tions test importance by perturbing model rationales, avoiding human biases.

Therefore, developing rigorous automatic metrics is critical for fair faithful-

ness evaluation, which will be covered under the faithfulness evaluation di-

mension.

A more direct way to assess the explanation quality is to ask humans to

evaluate the effectiveness of the generated explanations. This has the advan-

tage of avoiding the assumption that there is only one good explanation that

could serve as ground truth, as well as sidestepping the need to measure the

similarity of explanations. Here as well, it is important to have multiple anno-

tators, report inter-annotator agreement, and correctly deal with subjectivity

and variance in the responses. The approaches found in this survey vary in

several dimensions, including the number of humans involved, as well as the

high-level task that they were asked to perform (including rating the explana-

tions of a single approach and comparing explanations ofmultiple techniques).

On the other hand, several works compare generated explanations to ground

truth data in order to quantify the performance of explainability techniques.

Employed metrics vary based on task and explainability technique, but com-

monly encountered metrics include P/R/F1 [11], perplexity, and BLEU [54,

81]. While having a quantitative way to measure explainability is a promis-

ing direction, care should be taken during ground truth acquisition to ensure

its quality and account for cases where there may be alternative valid expla-

nations. Approaches employed to address this issue involve having multiple

annotators and reporting inter-annotator agreement or mean human perfor-

mance, as well as evaluating the explanations at different granularities (e.g.,

token-wise vs phrasewise) to account for disagreements on the precise value

of the ground truth [11].

While the above overview summarizes how explainability approaches are

commonly evaluated, another important aspect is what is being evaluated. Ex-

planations are multi-faceted objects that can be evaluated on multiple aspects,
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such as fidelity (how much they reflect the actual workings of the underlying

model), comprehensibility (how easy they are to understand by humans), and

others. Therefore, understanding the target of the evaluation is important for

interpreting the evaluation results. [12] provides a comprehensive presenta-

tion of aspects of evaluating approaches. In this thesis, we utilized a recently

introduced method from ERASER [24], for extractive rationales evaluation

which involves evaluating plausibility and faithfulness.

3.1 Evaluating Plausibility

The plausibility of local explanation is typically measured at the input text or

token level. Plausibility evaluation can be categorized into five dimensions:

grammar, semantics, knowledge, reasoning, and computation [87]. These

dimensions describe the relationship between the masked input and human-

annotated rationales. Different evaluation dimensions require different kinds

of datasets. For example, the sentence “The country [MASK] was established

on July 4, 1776.” has the human-annotated rationale “established on July 4,

1776” and the answer to the mask should be “the United States” deriving from

fact/knowledge. Although rationales might be in different granularity levels

such as token or snippet and dimensions, evaluation procedures are the same

except for diversified metrics. Human-annotated rationales are generally from

benchmark datasets, which should meet several criteria: 1) sufficiency, mean-

ing rationales are enough for people to make correct predictions; 2) compact-

ness, requiring that if any part in the rationales is removed, the prediction

will change [63]. The explanation models are then responsible for predicting

important tokens and generating rationales with these tokens. The above two

kinds of rationales will be measured with various metrics. Popular metrics can

be classified into two classes according to their scope ofmeasurement. Metrics

measuring two token-level rationales include Intersection-Over-Union (IOU),

precision, and recall. Metrics that measure overall plausibility include the F1
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score for discrete cases and the area under the precision-recall curve (AUPRC)

for continuous or soft token selection cases [24].

3.2 Evaluating Faithfulness

There are several model-level principles to which explanation methods should

adhere to be faithful, which include implementation invariance, input invari-

ance, input sensitivity, completeness, polarity consistency, prediction consis-

tency, and sufficiency. Implementation invariance also known as model sen-

sitivity means that the attribution scores should remain the same regardless

of differences in the model architectures, as long as the networks are func-

tionally equal [95]. Even gradient-based approaches usually meet this metric

well; the assumption may not be grounded. Input invariance requires attri-

bution methods to reflect the sensitivity of prediction models w.r.t. effective

input changes. For example, attribution scores should remain the same over

the constant shift of the input [42]. Input sensitivity defines attribution scores

should be non-zero for features that solely explain prediction differences [95].

Completeness combines sensitivity and implementation invariance with path

integrals from calculus [95], which only applies to differentiable approaches.

Polarity consistency points out that some high-ranking features could impose

suppression effects on final predictions, which negatively impacts explana-

tions and should be avoided, but mostly not [58]. Prediction consistency con-

fines that instances with the same explanations should have the same predic-

tion. Sufficiency requires that data with the same attributions should have

the same related labels even with different explanations [22]. In this class

of approaches, researchers aim to prevent certain types of contradictory ex-

planations by formulating axioms and properties. However, each metric can

address only one particular facet of faithfulness problems. It is extremely dif-

ficult to provide all-in-one solutions within a single framework. Additionally,
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these approaches focus solely on avoiding inconsistent behaviors of expla-

nation models by designing properties for explanation methods. The overall

performance of models’ faithfulness is measured with the following metrics

by quantitatively verifying the relationship between prediction and model ra-

tionales.

• Comprehensiveness (Comp): the change in probability for the origi-

nal predicted class before and after top-ranked important tokens are re-

moved, which means how influential the rationale is. It is formulated as

Comp = m(xi)j − m(xi\ri)j . A higher score indicates the importance

of rationales [24].

• Sufficiency (Suff): the degree to which the parts within the extracted

rationales can allow the model to make a prediction, which is defined

as Suff = m(xi)j − m(ri)j [24].

Figure 3.1: Sufficiency and Comprehensiveness computation procedure.

In ERASER [24], related tokens are classified into groups ranked by im-

portance scores so that tokens can be masked in a ranked order and gradu-

ally observe output changes. The correlation between output changes and the

importance of masked tokens denotes models’ ability to correctly attribute

feature importance. Two key questions persist when evaluating explanation
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models, regardless of the specific metrics used: 1) how well does the model

quantify important features? 2) can the model effectively and correctly ex-

tract as many influential features as possible from the top-ranked features?

However, existing evaluation metrics are often inconsistent with the same ex-

planation models. [19] demonstrates that attention-based importance metrics

are more robust than non-attention ones whereas regarding attention as an ex-

planation is still debatable [38].
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Datasets

Highlights are subsets of the input elements (words, phrases, or sentences)

that explain a prediction. [49] coin them extractive rationales, or subsets of

the input tokens of a textual task that satisfy two properties: (i) compactness,

they are short and coherent, and (ii) sufficiency, they suffice for prediction as

a substitute of the original text. [104] introduce a third criterion, (iii) compre-

hensiveness, that all the evidence that supports the prediction is selected, not

just a sufficient set. Since the term “rationale” implies human-like intent, [37]

argue to call this type of explanation highlights to avoid inaccurately attribut-

ing human-like social behavior to AI systems. They are also called evidence

in fact-checking and multi-document question answering (QA)—a part of the

source that refutes/supports the claim. To reiterate, highlights should be suffi-

cient to explain a prediction and compact; if they are also comprehensive, we

call them comprehensive highlights. table 4.1 gives examples of sufficient vs.

non-sufficient and comprehensive highlights.

The main datasets in literature for this task are the CoS-E [81] and e-SNLI

[10] datasets, all of which have gold highlights from ERASER [24]. For the

OOD generalization evaluation, we consider MNLI [101] and HANS [65].

Given the discrepancies in the characterization of highlights and the specific

instructions provided to annotators, we can conclude that relying solely on
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Table 4.1: Examples of highlights differing in comprehensiveness and suffi-
ciency

Instance with Highlight Type of Highlight

Premise: People are stretching on yoga mats.
Hypothesis: They stretched on bikes.
Label: contradiction

Premise:People are stretching on yoga mats.
Hypothesis:They stretched on bikes.
(sufficient)

Premise: People on bicycles waiting at an intersection.
Hypothesis: There are people on bicycles.
Label: entailment

Premise: People on bicycles waiting at an intersection.
Hypothesis:There are people on bicycles.
(comprehensive)

Premise: People on bicycles waiting at an intersection.
Hypothesis: Some people on bikes are stopped at a junction.
Label: neutral

Premise: People on bicycles waiting at an intersection.
Hypothesis: Some people on bikes are stopped at a junction.
(¬ sufficient)

a general description of data collection for post-hoc assessment of compre-

hensiveness is prone to errors. In addition, it is important to note that gold

rationales are typically annotated based on the gold task label (yi) rather than

the predicted label (y∗
i ) generated by the taskmodel, which is unknown before-

hand. Therefore, if the predicted label (y∗
i ) differs from the gold label (yi), the

supervision provided by the gold rationales may introduce some noise or in-

consistencies. However, our fully end-to-end framework addresses this chal-

lenge by backpropagating the sufficiency and comprehensiveness loss from

the task model to the rationale extractor. This allows the framework to miti-

gate the impact of noisy supervision and enhance the overall performance and

alignment between the rationale extractor and the task model.

4.1 CoS-E

Deep learning models perform poorly on tasks that require commonsense rea-

soning, which often necessitates some form of world knowledge or reasoning

over information not immediately present in the input. CoS-E [81] consists of

multiple-choice questions and answers taken from thework of [97]. It includes

supporting rationales for each question-answer pair in two forms. Extracted

supporting snippets and free-text descriptions that provide a more detailed ex-

planation of the reasoning behind the answer choice.
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4.2 e-SNLI

e-SNLI [10] is an augmentation of the SNLI corpus [8] and includes human

rationales as well as natural language explanations, although they were not

utilized in our work. It is worth noting that the authors of e-SNLI collect non-

comprehensive highlights. In their annotation instructions, they specifically

instruct annotators to highlight only words in the hypothesis and not in the

premise for neutral pairs. Furthermore, they consider explanations involving

contradiction or neutrality to be correct as long as at least one piece of evi-

dence in the input is highlighted. Focusing on the hypothesis and allowing

partial highlighting of evidence leads to the collection of non-comprehensive

highlights in the dataset.

4.3 MNLI

MNLI [101] covers a broader range of written and spoken text, subjects, styles,

and levels of formality compared to SNLI. It was introduced to determine the

logical relationship between two given sentences. With over 400,000 sentence

pairs, MNLI provides a rich and representative dataset that enables researchers

to develop and evaluate models for natural language inference across different

domains.

To conduct additional OOD generalization evaluation, we utilized two

OOD Contrast Sets calledMNLI-Contrast andMNLI-Original. These con-

trast sets were created by slightly modifying the original MNLI instances

[50]. In MNLI-Contrast, the modification changes the original label, while

in MNLI-Original, the original label remains the same. Examples of these

contrast sets are shown in table 4.3. Besides, to evaluate the plausibility met-

rics on OOD data, we performed a random sampling of 50 instances from the

MNLI validation split and annotated them manually w.r.t. gold labels. We

referred to this particular subset of data as e-MNLI. table 4.2 shows instances
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Table 4.2: e-MNLI instances for different labels. Following e-SNLI for neu-
tral labels only tokens in hypothesis are highlighted.

Instances with Highlights Label

Premise: They drive it around the country in a dilapidated ice-cream truck trying to keep it cool.
Hypothesis: They used an ice cream truck to try and keep it from getting warm. entailment

Premise: Then he turned to Tommy.
Hypothesis: He talked to Tommy. neutral

Premise: but i’ve lived up here all my life and i’m fifty eight years old so i i could
Hypothesis: I have moved somewhere else in my life. contradiction

Table 4.3: MNLI Contrast Test Set. In the MNLI-Original the original label
is unchanged while in the MNLI-Contrast the label is also changed based on
changes in premise or hypothesis.

Model Contrast Set Instance

MNLI-Contrast

Premise: yeah well that’s not really immigration.
past simple−−−−−→ Yeah well that wasn’t immigration.
Hypothesis: That is not immigration.
future simple−−−−−−→ That won’t be immigration.
Label: entail−→ neutral

MNLI-Original

Premise: Clearly, GAO needs assistance to meet its
looming human capital challenges.
it cleft: ARG1−−−−−−−→ Clearly it is GAO who needs assistance
to meet its human capital challenges looming.
Hypothesis: GAO will soon be suffering from a shortage
of qualified personnel.
it cleft: ARG1−−−−−−−→ It is GAO who soon will be suffering from a
shortage of personnel qualified for.
Label: neutral−→ neutral

from e-MNLI for different labels.

4.4 HANS

HANS [65] is designed to evaluate the capability of NLI systems to rely on

heuristics and patterns instead of genuine understanding. HANS consists of

sentence pairs carefully crafted to mislead models using three heuristic cat-

egories: Lexical Overlap, Subsequence, and Constituent. Instances for each

heuristic are given in table 1.1. By evaluatingmodels on theHANS dataset, re-

searchers can gain insights into the limitations and robustness of NLI systems

and foster the development of models that rely on genuine linguistic under-

standing rather than shallow heuristics.



Chapter 5

Experiments and Setup

Rationale extraction aims to provide faithful (i.e., reflective of the behavior of

the model) and plausible (i.e., convincing to humans) explanations by high-

lighting the inputs that had the largest impact on the prediction without com-

promising the performance of the task model. In recent works, the focus of

training rationale extractors was primarily on optimizing for plausibility using

human highlights, while the task model was trained on jointly optimizing for

task predictive accuracy and faithfulness. In this thesis, we aim to implement

various frameworks for rationale extraction and analyze their associated ad-

vantages and disadvantages. Besides, we propose REFER [33], a framework

that employs a differentiable rationale extractor that allows to back-propagate

through the rationale extraction process. We analyze the impact of using hu-

man highlights during training by jointly training the task model and the ratio-

nale extractor. In our experiments, REFER yields significantly better results

in terms of faithfulness, plausibility, and downstream task accuracy on both

in-distribution and out-of-distribution data. To obtain a single score w.r.t all

three criteria, we utilizedNormalized Relative Gain (NRG) that maps obtained

scores to range 0 to 1 (the higher the better). The final score is composite

NRG (CNRG) which is the average over faithfulness NRG (FNRG), plausi-

bility NRG (PNRG), and task NRG (TNRG). On both e-SNLI and CoS-E, our
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Figure 5.1: The pipeline for explanation regularization is a fully end-to-end
approach where the task model’s output loss is back-propagated through all
components, resulting in a compromised performance that considers all train-
ing criteria.

best setting produces better results in terms of CNRG than the previous base-

lines by 11% and 3%, respectively. Besides, REFER generalizes faithfulness

and plausibility over out-of-distribution data.

5.1 REFER Architecture

TaskModel ConsiderFtask as the task model for text classification, where it

consists of an encoder [98] and a head. In modern NLP systems, Ftask usually

has a BERT-style architecture [23]. Let xi = [xt
i]nt=1 be ith input sequence

with length n, and Ftask(xi) ∈ RM be the logit vector for the output of the task

model. We use yi = arg maxj[Ftask(xi)]j to denote the class predicted by task

model. Given that cross-entropy loss is used to train Ftask to predict y∗
i , the

task loss is defined as follow:

Ltask = LCE(Ftask(xi), y∗
i ) (5.1)

Rationale Extractor Let Fext denote a rationale extractor, such that si =

Fext(xi). Given Ftask, xi, and yi, the goal of rationale extraction is to output

vector si = [st
i]nt=1 ∈ Rn, such that each st

i is an importance score indicating

how strongly token xt
i influenced Ftask to predict class yi. The final rationales

are typically obtained by binarizing si as r
(k)
i ∈ {0, 1}n, via the top-k% strat-

egy [24, 39, 76, 15]. Other binarization strategies, such as score thresholding
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and highest-scoring contiguous k-token span, can also be used.

To capture the degree to which the snippets within the extracted rationales

are sufficient for a model to make a prediction, we measure the disparity in

model confidence when considering the complete input versus only the ex-

tracted rationales. A small difference suggests the high importance of ex-

tracted rationales.

Lsuff-diff = LCE(Ftask(r(k)
i ), y∗

i ) − LCE(Ftask(xi), y∗
i ) (5.2)

Following [13], to avoid negative losses, we can use margin ms to impose

a lower bound on Lsuff-diff, yielding the following margin criterion:

Lsuff = max(−ms, Lsuff-diff) + ms (5.3)

To compute comprehensiveness we create contrast examples for xi, x̃i =

xi\r(k)
i , which is xi with the predicted rationales ri removed [107]. Similar to

eq. (5.2), we measure the difference in model confidence between considering

the complete input and the contrast set x̃i. A high score here implies that the

rationales were influential in the prediction. A negative value here means that

the model became more confident in its prediction after the rationales were

removed; this would seem counter-intuitive if the rationales were indeed the

reason for its prediction.

Lcomp-diff = LCE(Ftask(xi), y∗
i ) − LCE(Ftask(x̃i), y∗

i ) (5.4)

Repeatedly, we enforce Lcomp-diff to be positive as follows:

Lcomp = max(−mc, Lcomp-diff) + mc (5.5)

Due to the change of predicted label during the training, we use y∗
i to com-

pute the comprehensiveness and sufficiency loss instead of using predicted

label yi. This helps the model to be more stable during the training. Finally,
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the selection of the tokens for matching the human highlights can be cast as a

binary classification problem, and the plausibility loss is computed using the

binary cross-entropy (BCE) loss function:

Lplaus = −
∑

t

r∗,t
i log(Fext(xt

i)) (5.6)

where r∗i is the gold rationale for input xi of length t. This leads to the following

multi-task learning objective:

L = Ltask + αfLfaith + αpLplaus

= Ltask + αcLcomp, K + αsLsuff, K + αpLplaus

Back-PropagatingThroughRationale Extraction End-to-endmodels that

integrate discrete algorithms into their framework enable various capabilities,

such as sampling from discrete latent distributions [40, 75] and solving com-

binatorial optimization problems [100, 62, 72]. Relying on discrete outputs

solely during testing can lead to unexpected behaviors. Conversely, certain

situations necessitate the use of discrete outputs during training. For dis-

crete distributions, exact gradient computation for the expected loss becomes

intractable. Similarly, in the case of combinatorial optimization problems,

the loss function is discontinuous, resulting in gradients that are nearly zero

throughout most of the problem space. To address these challenges, the Score

Function Estimator (SFE) presents a viable option. However, the SFE suf-

fers from high variance, particularly when dealing with intractable distribu-

tions such as p(z; θ). In this sense, a recent approach called Implicit Maxi-

mum Likelihood Estimation (IMLE) [72] offers a solution by combining im-

plicit differentiation through perturbation with the path-wise gradient estima-

tor. This approach alleviates the variance issue associated with the SFE and

overcomes the intractability of the distribution p(z; θ).
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Figure 5.2: Illustration of the learning problem. z is the discrete latent struc-
ture, x and y are feature inputs and target outputs, Encoder maps X 7→ θ,
Decoder maps Z 7→ Y , and p(z; θ) represents the discrete probability distri-
bution. The dashed path indicates non-differentiability.

To back-propagate through the rationale extraction process, we use Adap-

tive Implicit Maximum Likelihood Estimation (AIMLE) [67], a recently pro-

posed low-variance and low-bias gradient estimation method for discrete dis-

tribution that does not require significant hyper-parameter tuning. AIMLE

is an extension of Implicit Maximum Likelihood Estimation (IMLE) [72] a

perturbation-based gradient estimator where the gradient of the loss w.r.t. the

token scores ∇sL is estimated as ∇sL ≈ r(s + ϵ) − r(s + λ∇rL + ϵ), where

ϵ denotes Gumbel noise, r denotes the top-k% function, and λ is a hyper-

parameter selected by the user. AIMLE removes the need for the user to select

λ by automatically identifying the optimal λ for a given learning task.

The proposed pipeline aims to overcome the limitations of previous archi-

tectures by taking the advantageous features of the AIMLE to combine dis-

crete exponential family distributions with differentiable neural components.

By leveraging the benefits of implicit differentiation and the path-wise gradi-

ent estimator, we aim to enhance the stability and efficiency of our framework.

In fact, AIMLE enables the backpropagation of the faithfulness loss obtained

from the task model through the rationale extractor making it adept at ensur-

ing faithfulness, as it can take into account the performance of the task model

when adapting itself.
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Figure 5.3: REFER Pipeline. The Task Model is trained using (i) Task Loss,
(ii) Sufficiency Loss, and (iii) Comprehensiveness Loss, while the Rationale
Extractor is trained through backpropagation using (i) Plausibility Loss, (ii)
Sufficiency Loss, and (iii) Comprehensiveness Loss. This approach ensures a
high level of consistency across each criterion, as all components are aware of
each other’s status and can adapt to strike a balance among the three criteria.

5.2 Baselines Models

To assess the effectiveness of back-propagation through discrete latent space

within the designated architecture for REFER, we implemented a set of pre-

vious baseline models that don’t take advantage of this process. Then we

compared their performance on different aspects of extractive rationales and

discussed their advantages and disadvantages in chapter 6.

Several prior works have aimed to enhance the faithfulness of extractive

rationales using Attribution Algorithms (AAs), which extract rationales via

handcrafted functions [94, 36, 89]. AAs do not involve training Fext and are

applied post hoc (i.e., they do not impact Ftask’s training). This class of archi-

tectures is not easily optimized and often requires significant computational

resources. [89, 86] tackle the computational cost by training a model to mimic

the behavior of an AA. Integrated Gradient baseline [AA (IG), 94] is utilized

as a baseline for this class. Saliency Guided Training [SGT, 36] is another

baseline that uses a sufficiency-based criterion to regularize Ftask, such that

the AA yields faithful rationales for Ftask.

[39, 105, 73, 3, 104, 49] use Select-Predict Pipelines (SPPs) to generate

faithful rationales. In SPPs, Ftask is trained to solve a given task using only
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the tokens chosen by Fext [39, 104, 73]; therefore, SPPs aim for ”faithfulness

by construction.” However, SPPs only guarantee sufficiency but not com-

prehensiveness [24], and generally produce less accurate results, since they

can only observe a portion of the input, and due to the challenges associated

with gradient-based optimization and discrete distributions. FRESH [39] and

A2R [104] have been proposed to produce faithful rationales: FRESH relies

on training Ftask and Fext separately, while A2R aims to improve Ftask’s task

performance by regularizing it with an attention-based predictor that utilizes

the full input [39, 104].
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Figure 5.4: Select-Predict-Pipeline Variants.

Regarding the plausibility of the rationales, existing approaches typically

involve supervising neural rationale extractors [6] and SPPs [39, 73, 24] using

gold rationales. However, LM-based extractors lack training for faithfulness,

and SPPs sacrifice task performance to achieve faithfulness by construction.

Other works mainly focus on improving the plausibility of rationales [71, 46,

10], often employing task-specific pipelines [81, 45]. In contrast, REFER

jointly optimizes both the task model and rationale extractor for faithfulness,

plausibility, and task performance and reaches a better trade-off w.r.t. these

desiderata without suffering from heuristic-based approaches (e.g., AAs) dis-

advantages.
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UNIREX [13] is the most recent pipeline from Meta research, which con-

siders two main architecture variants: (i) Dual LM (DLM), where Ftask and

Fext are two separate Transformer-based LMs with the same encoder archi-

tecture (ii) Shared LM (SLM), where Ftask and Fext share encoder, while Fext

has its own output head. fig. 5.5 shows the architecture for DLM and SLM in

UNIREX. DLM provides more capacity for Fext, which can help Fext provide

plausible rationales. While SLM leverages multitask learning and improve

faithfulness since Fext has greater access to information about Ftask’s reason-

ing process [13]. REFER benefits from both SLM and DLM architectures

by establishing communication between separate Ftask and Fext using back-

propagation.

Task/ RE Encoder

Task Head RE Head

ci si

Task LM
Rat i onal

Ext r act i on
LM

Task Head RE Head

ci si

mi (masked input)

xi (input sequence)

Figure 5.5: Shared LM (left) and Dual LM (right) architecture. Using shared
LM, the task model and rational extractor share the same encoder. While in
the Dual LM model, they are completely separate

5.3 Models Detail and Hyperparameters

Transformers-based models, such as BERT, have been one of the most suc-

cessful deep learning models for NLP. Unfortunately, one of their core limita-

tions is the quadratic dependency (mainly in terms ofmemory) on the sequence

length due to their full attention mechanism. To remedy this, [106] proposed

BigBird, a sparse attention mechanism that reduces this quadratic dependency

to linear. They show that BigBird is a universal approximator of sequence
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functions and is Turing complete, thereby preserving these properties of the

quadratic, full attention model. Along the way, their theoretical analysis re-

veals some of the benefits of having O(1) global tokens (such as CLS) that

attend to the entire sequence as part of the sparse attention mechanism. The

proposed sparse attention can handle sequences of length up to eight times

what was previously possible using similar hardware. Due to the capability to

handle longer contexts, BigBird drastically improves performance on various

NLP tasks such as question answering and summarization.

In our implementations, we utilize BigBird-Base [106] as the backbone

for both Ftask and Fext. This choice enables us to effectively handle input

sequences of considerable length, accommodating up to 4096 tokens. We used

AIMLE, which uses adaptive target distribution with alpha and beta initialized

to 1 and 0, respectively. Throughout all experiments, we maintain a consistent

learning rate of 2×10−5 and employ an effective batch size of 32. Our training

process spans a maximum of 10 epochs, with early stopping applied after 5

epochs of no significant improvement.

To ensure optimal performance, we focus our hyperparameter tuning ef-

forts on the weights associated with faithfulness and plausibility losses, specif-

ically αc = αs = αf, and αp as well as top-k%. We applied a grid search

across various configurations and evaluated their impact on comprehensive-

ness, sufficiency, plausibility scores, and task performance. The entire im-

plementation is carried out using the PyTorch-Lightning framework [74, 30],

which provides a streamlined and user-friendly environment for deep learning

experiments.



Chapter 6

Discussion and Results

In this chapter, we undertake a systematic analysis of the results to address

research questions introduced in chapter 1 and show that our proposed model,

REFER, outperforms the SoTA architectures in all the following areas. The

rest of this chapter is organized as follows: Initially, we examine various facets

of the process of extracting rationales, delving into the influence of human ra-

tionales onmodel behavior, themodel’s capacity to replicate human-generated

rationales and the degree to which the trained models can exhibit generaliza-

tion on OOD datasets. Subsequently, in addressing these inquiries, we assess

the performance of the REFER model in comparison to baseline models and

architectures, demonstrating that our proposed model excels over previous

models in the majority of instances.

We label the models with +P and +FP that are trained by optimizing for

plausibility and jointly faithfulness and plausibility, respectively. fig. 6.1 dis-

plays themain results for e-SNLI in terms ofNRG.Overall, REFER+FP achieved

the highest composite NRG, improving over the strongest baseline (UNIREX

SLM+FP) by 12%. Regarding plausibility, models explicitly trained for plau-

sibility (+P) or both faithfulness and plausibility (+FP) achieved similar re-

sults, with REFER+FP outperforming the second-best model by 3%. Regard-

ing faithfulness, REFER achieved the highest score in all three configurations.

An interesting finding is that even when training REFER and A2R solely for
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Figure 6.1: Comparison of models w.r.t. faithfulness NRG (FNRG), plau-
sibility NRG (PNRG), and composite NRG (CNRG). +P, +F, +FP indicate
whether the model was regularized for plausibility, faithfulness, or both.

plausibility (REFER+P and A2R+P), their faithfulness NRG scores remain con-

siderably higher than all other methods. Detailed results are shown in table 6.2

and table 6.3. Additionally, we analyzed the model’s predictions on correctly

labeled instances compared to falsely labeled ones, as presented in Table 6.1.

Surprisingly, although the model achieves relatively high plausibility scores,

the sufficiency and comprehensiveness metrics are low when the model pre-

dicts the wrong label. This suggests that even when human rationales are

extracted from the inputs, the model does not strongly rely on them in falsely

labeled input.

Table 6.1: Comparison of ER metrics for truly predicted labels and falsely
predicted labels from REFER. (↑) indicates the higher value is better and (↓)
the lower is better.

Metrics True Predictions Wrong Predictions

Sufficiency AOPC (↓) 0.0488 0.1566
Comprehensiveness AOPC (↑) 0.3311 0.3057
Plausibility TF1 (↑) 0.8016 0.7012
Plausibility AUPRC (↑) 0.8834 0.7350

The extracted rationales by the model, shown in table 6.4, demonstrate

the impact of regularization on explanation regularization. Without ER reg-

ularization, the model’s reasoning tends to rely on specific data patterns and

heuristics rather than meaningful explanations. In contrast, when the model is

regularized on ER, the quality of the rationales improves significantly in terms

of faithfulness and plausibility. For instance, the example highlights the se-

lection of ”man pushing cart” and ”woman smoking cigarette” as rationales
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Table 6.2: Benchmark on CoS-E dataset. Results of the baselines are obtained
from the work done by [13].

Configuration Faithfulness Plausibility Task Composite

Model End-to-End Comp (↑) Suff (↓) FNRG TF1 (↑) AUPRC (↑) PNRG Accuracy (↑) TNRG CNRG

AA(IG) FALSE 0.2160 0.3780 0.3306 0.4834 0.4007 0.2935 63.56 0.9772 0.5337
SGT FALSE 0.1970 0.3240 0.3699 0.5100 0.4368 0.3702 64.35 0.9950 0.5783

FRESH FALSE 0.0370 0.0000 0.5463 0.3937 0.3235 0.0849 24.81 0.1007 0.2439
A2R FALSE 0.0140 0.0000 0.5167 0.3312 0.4161 0.1041 21.77 0.0319 0.2176
SGT+P FALSE 0.2010 0.3280 0.3703 0.4795 0.413 0.3020 64.57 1.0000 0.5574

FRESH+P FALSE 0.0130 0.0130 0.5001 0.6976 0.7607 0.9890 20.36 0.0000 0.4964
A2R+P FALSE 0.0010 0.0000 0.5000 0.6763 0.7359 0.9322 20.91 0.0124 0.4816

UNIREX (DLM+P) FALSE 0.1800 0.3900 0.2702 0.6976 0.7607 0.9890 64.13 0.9900 0.7497
UNIREX (DLM+FP) FALSE 0.2930 0.3210 0.4968 0.6952 0.7638 0.9892 62.5 0.9532 0.8131
UNIREX (SLM+FP) FALSE 0.3900 0.4240 0.5000 0.6925 0.7512 0.9714 62.09 0.9439 0.8051

REFER+P TRUE 0.1831 0.2098 0.4867 0.6994 0.7683 1.0000 61.35 0.9272 0.8046
REFER+F TRUE 0.2798 0.0000 0.8584 0.3835 0.6691 0.4595 63.21 0.9692 0.7624
REFER+FP TRUE 0.1206 0.1489 0.4781 0.6881 0.7393 0.9521 64.23 0.9923 0.8075

Table 6.3: Benchmark on e-SNLI dataset. Results of the baselines are obtained
from the work done by [13].

Configuration Faithfulness Plausibility Task Composite

Model End-to-End Comp (↑) Suff (↓) FNRG TF1 (↑) AUPRC (↑) PNRG Macro F1 (↑) TNRG CNRG

AA(IG) FALSE 0.3080 0.4140 0.4250 0.3787 0.4783 0.1728 90.78 0.9909 0.5296
SGT FALSE 0.2880 0.3610 0.4557 0.4170 0.4246 0.1551 90.23 0.9766 0.5291

FRESH FALSE 0.1200 0.0000 0.6117 0.5371 0.3877 0.2337 72.92 0.5259 0.4571
A2R FALSE 0.0530 0.0000 0.5000 0.2954 0.4848 0.0989 52.72 0.0000 0.1996
SGT+P FALSE 0.2860 0.3390 0.4789 0.4259 0.4303 0.1696 90.36 0.9800 0.5428

FRESH+P FALSE 0.1430 0.0000 0.6500 0.7763 0.8785 0.9649 73.44 0.5394 0.7181
A2R+P FALSE 0.1820 0.0000 0.7150 0.7731 0.873 0.9562 77.31 0.6402 0.7705

UNIREX (DLM+P) FALSE 0.3110 0.3710 0.4819 0.7763 0.8785 0.9649 90.8 0.9914 0.8127
UNIREX (DLM+FP) FALSE 0.3350 0.3460 0.5521 0.7753 0.8699 0.9552 90.51 0.9839 0.8304
UNIREX (SLM+FP) FALSE 0.3530 0.3560 0.5700 0.7722 0.8758 0.9582 90.59 0.9859 0.8381

REFER+P TRUE 0.3127 0.1768 0.7193 0.7909 0.8411 0.9409 87.81 0.9136 0.8579
REFER+F TRUE 0.3054 0.0000 0.9207 0.4443 0.5958 0.3559 90.69 0.9885 0.7551
REFER+FP TRUE 0.3091 0.0399 0.8786 0.8126 0.8713 0.9927 91.13 1.0000 0.9571

to predict the label contradiction. The evaluation metrics for faithfulness on

e-SNLI in table 6.6 further support the notion that the model genuinely relies

on these rationales for its predictions.

fig. 6.2 shows the distribution of the results for different combinations of

faithfulness and plausibility loss weights on the CoS-E validation set. We

trained the model for (αf , αp) ∈ {0.0, 0.5, 1.0}2. Based on the results, there

is a slight reverse correlation between plausibility and faithfulness. How-

ever, the task shows relatively stable behavior over faithfulness and plausi-

bility variation. This means that, with our pipeline, we cannot reach a higher

plausibility and faithfulness trade-off from a certain level on CoS-E.

We conducted experiments to investigate how our model behaves when

different percentages of human-annotated data are included in the training set.
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Figure 6.2: REFER results distribution of CoS-E dev split for different faith-
fulness and plausibility weights and k=50%. Kernel Density Estimation is
used to have smoothed distribution over discrete data points for visualization
purposes.

Table 6.4: REFER highlights on e-SNLI. Instead of visualizing hard tokens
selected by the model, we highlighted all the words w.r.t. their score.

Model Highlights

Original Instance
Premise: A man in green pants and blue shirt pushing a cart.
Hypothesis: A woman is smoking a cigarette.
Label: contradiction

REFER without
ER regularization

Premise: A man in green pants and blue shirt pushing a cart .
Hypothesis: A woman is smoking a cigarette .
Predict: contradiction

REFER with
ER regularization

Premise: A man in green pants and blue shirt pushing a cart .
Hypothesis: A woman is smoking a cigarette .
Predict: contradiction

fig. 6.3 showcases the outcomes obtained for all training criteria when vary-

ing percentages of human annotation were used: 0.1%, 1%, 10%, 20%, 50%,

and 100%. The results indicate that until 10% of the data is annotated by hu-

mans, the plausibility remains consistent. On the other hand, REFER achieves

comparable plausibility to 100% human supervision with just 50% of human

annotation. This means REFER enables effective plausibility optimizations

using minimal gold rationale supervision. In contrast, task performance is re-

duced by increasing the human rationale supervision since the model should

learn from human highlights instead of repetitive patterns. Faithfulness does

not exhibit a clear relationship with the availability of gold rationales, as it

relies on the model’s intrinsic features rather than human-provided rationales.

table 6.5 and table 6.6 show the REFER results on ID and OOD datasets.

In both Tables REFER is trained on the ID dataset and evaluated over ID and



Discussion and Results 46

10 1 100 101 102

0.20

0.40

0.60

0.80

FN
RG

10 1 100 101 102

0.45

0.48

0.50

0.53

0.55

0.58

0.60

PN
RG

10 1 100 101 102
0.00

0.20

0.40

0.60

0.80

1.00

TN
RG

Exploration Regularization Frequency

Figure 6.3: Comaprioson of different models w.r.t. faithfulness NRG (FNRG),
plausibility NRG (PNRG), and composite NRG (CNRG).

10 20 30 40 50 60 70 80 90
top-k%

0.6

0.7

0.8

0.9

Pl
au

sib
ilit

y 
TF

1

Figure 6.4: Plausiblity TF1 score of model trained for top-50% and evaluated
for other top-k%s.

OOD sets. We consider the results from table 6.5 as the baseline and ana-

lyze the effect of ER regularization in table 6.6. When we train the model

with explanation regularization, faithfulness and sufficiency are enhanced.

On MNLI, sufficiency improves from 0.206 to 0.109, while on HANS, it goes

from 0.249 to 0.071. Regarding Comprehensiveness, training the model along

with ER regularization improves the baseline from 0.212 to 0.310 on MNLI

and from 0.272 to 0.320 on HANS. Besides, results on e-MNLI in table 6.6

show that the plausibility of OOD is significant and comparable to the ID data.

Similarly, the comprehensiveness and sufficiency improve on both MNLI-

Contrast and MNLI-Original. However, the results on MNLI-Original seem

to be better, especially w.r.t task macro F1, which means the model performs

equally well predicting different labels.

Another interesting finding is that the model trained for a specific top-k%

performs well on other top-k% during inference w.r.t. plausibility. fig. 6.4
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Table 6.5: Comparison of the performance of REFER without explanation
regularization on ID and OOD dataset.

Metrics
ID without ER
regularization OOD Datasets Contrast Test

e-SNLI MNLI HANS e-MNLI MNLI-Contrast MNLI-Original

Task Accuracy (↑) 90.47 74.65 67.09 76.00 82.66 88.72
Task Macro F1 (↑) 90.48 74.80 28.57 75.93 60.25 88.74
Sufficiency AOPC (↓) 0.205 0.206 0.305 0.249 0.226 0.201
Comprehensiveness AOPC (↑) 0.243 0.212 0.272 0.224 0.210 0.249
Plausibility TF1 (↑) 0.254 N/A N/A 0.197 N/A N/A
Plausibility AUPRC (↑) 0.211 N/A N/A 0.167 N/A N/A

Table 6.6: Comparison of the performance of REFER with explanation regu-
larization on ID and OOD dataset.

Metrics
ID with ER
regularization OOD Datasets Contrast Test

e-SNLI MNLI HANS e-MNLI MNLI-Contrast MNLI-Original

Task Accuracy (↑) 90.33 74.10 66.06 78.00 82.11 88.37
Task Macro F1 (↑) 90.36 74.13 27.75 78.11 59.92 88.44
Sufficiency AOPC (↓) 0.059 0.109 0.071 0.100 0.091 0.050
Comprehensiveness AOPC (↑) 0.329 0.310 0.320 0.315 0.321 0.329
Plausibility TF1 (↑) 0.792 N/A N/A 0.616 N/A N/A
Plausibility AUPRC (↑) 0.869 N/A N/A 0.445 N/A N/A

display roughly stable behavior of the model trained for top-50% and evalu-

ated for other top-k% w.r.t. plausibility TF1. This means the model tends to

select rationales among human highlights even with a low number of k. ta-

ble 6.7 illustrates the rationale selected by the model trained for top-50% and

evaluated for different ks.

Table 6.7: Comparison of rationales extracted by REFER trained on k=50%.
We forced the model for other k to see how it selects rationales.

Dataset Test Instance

Gold
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.
Label: contradiction

k=20% Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

k=30% Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

k=40% Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis:A woman in a blue tank top holding a car.

k=50% Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

k=60% Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.



Chapter 7

Conclusions

In this thesis, we have presented a comprehensive overview of explainabil-

ity techniques for NLMs. We summarize methods for local and global ex-

planations based on the model training perspective. We also discuss using

explanations to improve models, evaluation, and key challenges. Major fu-

ture development options include developing explanation methods tailored to

different NLMs, evaluating explanation faithfulness, and improving human

interpretability. Then, we proposed REFER, a rationale extraction framework

that jointly trains the task model and the rationale extractor to optimize down-

stream task performance, faithfulness, and plausibility. Being fully end-to-

end, thanks to Adaptive Implicit Maximum Likelihood Estimation [67], en-

ables the task model and the rationale extractor to be jointly optimized for

these criteria, therefore aware of each other behavior and adopting their pa-

rameter to improve their performance and obtain a better balance. We then an-

alyze several aspects of the rationale extraction process, investigating how hu-

man rationales affect the model behavior; how the model can imitate human-

generated rationales; and to what extent the learned models can generalize on

OOD datasets. Finally, we compare REFER performance with other methods

and architectures and illustrate that our model outperforms previous models

in most cases.
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This thesis served as the basis for a research article, ”REFER: An End-to-

end Rationale Extraction Framework for Explanation Regularization [33],”

presented at the CoNLL/EMNLP 2023 conference. I was funded by the Thesis

Abroad Scholarship from the Department of Computer Science and Engineer-

ing (DISI) at the University of Bologna and the work was done while I was at

the University of Edinburgh.
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