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Abstract

Intelligent Transportation Systems (ITS) built using Deep Neural Network

(DNN) models offer an effective solution for handling short-term traffic flow,

which greatly assists drivers, travellers or public security and safety in their

decision-making. In particular, Spatio-Temporal Graph Neural Networks (ST-

GNNs) have gained popularity as a powerful tool for effectively modelling

spatio-temporal dependencies in diverse real-world urban applications, in-

cluding intelligent transportation and public safety. However, the black-box

nature of these models prevents a true understanding of the results and a trust-

worthy adoption by their users.

The research field of eXplainable Artificial Intelligence (XAI) addresses

this concern by developing systems that help users trust non-transparent AI.

Non-expert ITS users are primarily interested in the non-technical reasons

behind model predictions. Hence, leveraging Natural Language Generation

(NLG), verbal descriptions of the reasons behind model outcomes are a pecu-

liar tool to provide an easy and clear illustration of the process.

This work focuses on developing an XAI system to explain short-term

speed forecasts in traffic networks obtained from STGNNs. The primary em-

phasis lies in explaining the reasons behind predicted traffic congestions or

free flows. Key information justifying these predictions is extracted from the

input traffic network in the form of a significant subgraph. The information

of the subgraph is finally summarized and it is then converted into text using

a template-based approach.

This thesis makes a dual contribution. First, it delves into explaining
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short-term traffic predictions by STGNNs, an underexplored area in current

literature. Second, it leverages NLG techniques uniquely, using them to ver-

bally translate XAI explanations into a coherent narrative, following a data-

to-sequence template-based approach.
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Chapter 1

Introduction

1.1 Overview

Traffic forecasting plays a fundamental role within the realm of Intelligent

Transportation Systems (ITS). Precise predictions on traffic have the chance

to improve results on several problems related to transportation, such as route

optimization, efficient dispatch of vehicles, and handling traffic congestion. In

recent years, this domain has observed a notable increase in research outputs,

with a particular emphasis on employing Deep Learning techniques, which

have shown notable progress in predicting and managing traffic more effec-

tively [1].

The accuracy of predictions on traffic lowers as the forecasting time frame

extends. This happens because forecasts rely on external factors, which be-

come increasingly uncertain in the distant future. Moreover, these forecasts

are dependent on the relationships between travel patterns and these external

factors, which can evolve over time. [2]. On the other hand, short-term traffic

forecasting is a thoroughly explored area of study and it is, thus, more reliable

for developing a more advanced transportation system to help end-users con-

trol traffic and avoid congestion. Recent studies focused on examining past

traffic data and forecasting traffic patterns for the subsequent minutes or next

few hours, reaching reliable levels of accuracy [3, 4, 5].
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Among different Deep Neural Network (DNN) architectures employed

in short-term traffic forecasting, Graph Neural Networks (GNNs) have been

largely adopted due to their ability to properly encode the graph structure of a

traffic network along with the spatial dependencies between its nodes, becom-

ing state-of-the-art models applied in the field. In order to account for temporal

relations in the traffic networks, Spatial-Temporal GNNs (STGNNs) are the de

facto standard solution adopted for this subject area [6, 7, 8]. They combine

the advantages of GNNs and Recurrent Neural Networks (RNNs) to model

both the spatial and local temporal dependencies in traffic data. Furthermore,

global temporal dependencies can be handled by the use of transformers.

Such architectures, along with other DNNs, are highly successful in mak-

ing accurate predictions, although their computational procedure lacks trans-

parency and poses a significant challenge in understanding the rationale be-

hind their decisions. Consequently, the explanations for the models’ predic-

tions are considered opaque or “black”, leading to their classification as black

box models. This has led to a growing interest in the field of eXplainable

Artificial Intelligence (XAI), which aims to make the reasoning of black box

models more accessible and interpretable [9, 10].

In the realm of ITS, retrieving knowledge from traffic forecasting models

can enhance their design and yield insights. This has implications for crucial

processes like road design, proactive traffic control systems, route planning,

and other aspects of the ITS ecosystem impacted by traffic-related knowledge

[11].

XAI is divided into two primary categories: Intrinsic and Post-hoc ex-

planations [12]. Intrinsic methods involve constructing inherently explana-

tory models (such as decision trees or rule-based models), while Post-hoc ap-

proaches involve developing separate models to explain the functioning of

existing models. The latter methodology aligns with the investigation into the

interpretability of black box models like STGNNs.

Post hoc explanations can be performed through two main techniques:
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model explanation and outcome explanation [13, 14]. Model explanation tech-

niques aim to globally understand the behaviour of a black box model by pro-

viding insights into why it generates particular predictions, drawing from its

structure and parameters. On the other hand, outcome explanation methods

provide local explanations for specific instances, unveiling the link between

particular inputs and their predicted outcome. In addition, a technique defined

as model inspection that derives from both model and outcome explanations

can be applied. This method uses visual or textual representations to explain

specific properties or decisions of the black box model. For instance, it en-

ables sensitivity analysis by visually demonstrating how varying inputs affect

predictions.

When it comes to explaining complex concepts to non-technical users,

outcome explanations or model inspections tend to resonate more effectively

than model explanations. This is because the former methods more easily find

roots in the cognitive and social processes of understanding, by highlighting

the link between specific inputs and the resulting predictions or outcomes.

The cognitive process of understanding identifies specific relations, while the

social aspect focuses on verbal exchange between explainers and explainees

[15]. In particular, the verbal delineation of the explanation is argued to be

more impactful than visual representations. However, visuals can still play a

supportive role, offering benefits in guiding comprehension.

This thesis aims to develop a new XAI system tailored for non-technical

users, explaining short-term speed predictions in traffic networks generated by

a STGNN. It focuses on clarifying the reasons behind both traffic congestion

and free flow. To achieve this goal, the system uses a transparent and easily

comprehensible post-hoc model inspection technique to provide explanations

which can be more easily conveyed to the target users and which consider

both the local and global scope of explanations. These explanations take the

visual form of an important subgraph within the input traffic network data,

highlighting information crucial for the forecasts. These visual explanations
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are then enriched by their translation into verbal descriptions to better align

with the social process of understanding. The system summarizes essential

data from the extracted subgraph into clear, straightforward text, using a sim-

ple data-to-sequence template-based method to ensure easy comprehension.

The code of the experiment is available publicly [16].

1.2 Contribution

This thesis contributes to XAI applied to ITS for two key reasons. First, it aims

to generate easily understandable, clear and concise explanations for predic-

tions made by STGNNs regarding short-term traffic forecasting. These kind

of black box models have not received much attention in current academic

literature. By focusing on this underexplored domain, the thesis proposes a

novel pathway for understanding how STGNNs can be trusted in the predic-

tion of future traffic patterns whether they determine a congestion or a free

flow.

Secondly, the thesis introduces an innovative use of Natural Language

Generation (NLG) techniques. It transforms visual explanations of traffic net-

work predictions into verbal descriptions, aligning better with how people nat-

urally understand information. This method uses a data-to-sequence template-

based approach to convert complex visual social traffic network data into nar-

ratives that anyone can grasp easily. By bridging the gap between technical

insights and comprehensible narratives, this application of NLG enriches the

accessibility of AI-generated insights related to transportation, making them

more user-friendly and applicable in real-world scenarios.

1.3 Structure of the thesis

The thesis structure is divided in the following chapters:

Chapter 2 delivers an exploration of the literature regarding the practical
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applications of GNNs, with an emphasis on STGNNs. Then, it delves into

the background of techniques designed to enhance the interpretability and ex-

plainability of these models. Finally, it conducts an analysis of previously

employed data-to-text methodologies.

Chapter 3 provides an overview of the chosen experimental architecture.

Specifically, details of the adopted STGNN model will be illustrated, offer-

ing an understanding of its design. Following this, the explanation pipeline

implemented in this study will be presented, sorting out the reasons behind

its use and its implementation. Lastly, the chapter will uncover the template

approach utilized to transform the results of the explanation pipeline into co-

herent verbal narratives.

Chapter 4 highlights the experimental setup adopted for the thesis. It

begins by outlining the technology stack employed in the experiment. Subse-

quently, a comprehensive analysis and exploration of the datasets utilized are

presented. Finally, the training process of the adopted STGNN model is de-

scribed, along with the fine-tuning procedure of the explanation pipeline and

the rule set adopted in the template-based verbal translation.

Chapter 5 will present the quantitative results obtained and showcase the

generated outputs. In detail, it will start by outlining the error metrics for the

STGNN prediction. Following this, a comprehensive analysis of the errors in

the explanation pipeline results will be conducted, emphasizing its strengths,

weaknesses, and time taken. Lastly, it will illustrate examples of verbal trans-

lations of the explanations supported by their visual representations in the in-

put traffic network, showcasing their effectiveness.

Chapter 6 will finally recap the results obtained in the thesis work and it

will outline the explainer limitations and potential directions for future work.





Chapter 2

Background

The work of the thesis focuses on creating an eXplainable AI (XAI) pipeline

specifically designed for users without technical expertise. The system aims

to explain forecasts of short-term speeds in static spatio-temporal traffic net-

works produced by a Spatio-Temporal GraphNeural Network (STGNN). STG-

NNs are built uponGraph Neural Networks (GNNs), a class of Deep Learning

models designed to operate on static graph-structured data. In the rest of this

chapter, all the background notions needed to understand the work are pro-

vided. Related works are discussed as well.

2.1 Graph Neural Networks

Static graphs, illustrated in Figure 2.1, are a data structure which defines a

set of objects, or nodes, and their relationships, or edges, and are a powerful

tool to represent data with interconnected relations, such as social networks,

knowledge graphs, and traffic networks [17].

Figure 2.1: Example of a static graph.



2.1 Graph Neural Networks 8

GNNs are able to capture these relationships and use them to make predic-

tions and solve related problems. GNNs can be applied for a variety of tasks

[18], such as:

• Node prediction: Predicting the category of a node, such as the scien-

tific domain of an article in a citation network.

• Link prediction: Predictingwhether an edge exists between two nodes.

For instance, whether an article quotes another in a citation network.

• Graph classification: Predicting the category of a graph. As an exam-

ple, whether a social network is a business or a traffic network.

The most adopted GNN architectures include Graph Convolutional Networks

(GCNs), Graph Attention Networks (GATs) andMessage Passing Neural Net-

works (MPNNs). Spatio-Temporal GNNs (STGNNs) extend these architec-

tures to account for static or dynamic spatio-temporal graphs (shown in Figure

2.2).

t1 t2 t3

(a) Example of static spatio-temporal graph where node attributes change over time.

t1 t2 t3

(b) Example of dynamic spatio-temporal graphwhere node attributes and links change
over time.

Figure 2.2: Example of static and dynamic spatio-temporal graphs.
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Static spatio-temporal graphs include temporal dependencies between net-

work nodes that change their attribute values over time, while their spatial re-

lationships defined in their edge set remain fixed. In contrast, dynamic spatio-

temporal graphs capture evolving relationships among nodes, where connec-

tions and attributes change frequently over time intervals.

2.1.1 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [19] stand out as the most referenced

models in the field of GNNs, widely adopted as the predominant architecture

in practical applications. Their main functionality lies behind the concept of

spectral graph convolution which enables the model to learn the features of

neighbouring nodes. This operation is defined as the multiplication of a signal

x ∈ RN (a scalar for every node) with a filter gθ = diag(θ) parameterized by

θ ∈ RN in the Fourier domain:

gθ ∗ x = UgθU
Tx (2.1)

U is a matrix of the eigenvectors of the normalized graph Laplacian L =

I − D− 1
2AD− 1

2 . I is the identity matrix, A is the adjacency matrix of the

nodes of the graph andD is the degree matrix of the nodes of the graph. L can

be decomposed into L = UΛUT . Λ is a diagonal matrix with the eigenvalues

of the graph and UTx is the Fourier transform of x.

Since the computation of the normalized graph Laplacian L could lead to

the problem of vanishing gradient, GCNs adopt the following renormalization

trick in their calculation:

I −D− 1
2AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 (2.2)

with Ã = A+ I and D̃ii = ∑
j Ãij .

Given amatrix ofN nodes andC featuresX ∈ RN×C and given a trainable
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parameters matrix of C features and F filtersW ∈ RC×F , the GCN operation

can be illustrated as:

H = σ(D̃− 1
2 ÃD̃− 1

2XW ) (2.3)

with σ being a selected non-linear activation function. The operation can be

repeated several times in order to encode a deeper representation of the net-

work.

This definition can be expressed from a node-wise perspective as seen in

Figure 2.3. Given a node i, its updated representation hi through the GCN

operation is seen as:

hi = σ(
∑
j∈Ni

1
cij
xjW ) (2.4)

Where Ni is the neighbourhood of i, cij =
√
didj and di = |Ni| denotes the

degree of node i.

x2

x3

x1

x4

(a) Example graph.

x2

c31x3

h1 c41

x4

c21
c11

(b) GCN operation.
h1 = σ(

∑
j∈N1

1
c1j

xjW )

Figure 2.3: Illustration of the GCN mechanism.

2.1.2 Graph Attention Networks

Graph Attention Networks (GATs) [20] revisit the node-wise update rule of

GCNs expressed in Equation 2.4, by presenting an attention-driven design for

classifying nodes within graph-based data. The concept involves generating

hidden representations for each node in the graph by focusing on its neigh-

bouring nodes, employing a self-attention approach.
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Considering a set of input node featuresX = {x1, ..., xN}, with xi ∈ RF ,

where N is the number of nodes and F is the number of features in each

node, a common linear transformation is employed as an initial stage. This is

characterized by a shared weight matrix W ∈ RF ′×F transforming the node

features X in a hidden representation with F ′ features. Following this, self-

attention is executed among the nodes using a shared attentional mechanism

a : RF ′ × RF ′ → R between couples of neighbour nodes i, j to calculate

attention coefficients eij that indicate the importance of node j’s features to

node i:

eij = a(Wxi,Wxj) (2.5)

Attention coefficients are then normalized across the neighbourhood Ni of

each node i following the function:

αij = softmax( exp(eij)∑
k∈Ni

exp(eik)
) (2.6)

The updated representation of node i is finally obtained by updating the GCN

operation in Equation 2.4:

hi = σ(
∑
j∈Ni

αijxjW ) (2.7)

The attention coefficient computation process is observed in Figure 2.4.

Figure 2.4: Illustration of the Graph Attention Network attention coefficient
computation.
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2.1.3 Message Passing Neural Networks

Message Passing Neural Networks (MPNNs) [21] are based on the message

passing mechanism, which is illustrated in Figure 2.5. The representation of

the graph nodes is iteratively updated by the encoded information obtained

from their neighbouring nodes. This process is repeated multiple times until

the nodes converge to a representation that captures the global structure of the

graph.

ht
2

ht
3

e21

e41e31

ht
1

ht
4

(a) Example graph.

ht
2

ht
3

e21

e41e31

Mt
12

ht
1

ht
4

Mt
13 Mt

14

(b) Message generation.

ht
2

ht
3

e21

e41e31

ht+1
1

ht
4

Mt
31

Mt
21

Mt
41

(c) Message aggregation
and representation up-
date.

Figure 2.5: Illustration of the message passing mechanism.

In detail, the process at each iteration t can be divided into the following

steps:

1. Message generation: Every node i in the graph generates a message

M t
ij for each of its neighbors j. Messages are defined by a learnable

function ϕ of the node features hti, the neighbour features htj , and the

eventual edge weight among them eij:

M t
ij = ϕ(hti, htj, eij) (2.8)

2. Message aggregation: Each node i aggregates the received messages

by its neighbours (N(i)), using a permutation-invariant function θ, mean-

ing the order of message reception doesn’t affect the result, such as a
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summing or an averaging:

mt+1
i = θj∈N(i)(M t

ij) (2.9)

3. Representation update: Finally, each node i updates its representation

ht+1
i through a learnable function Ut depending on its current attributes

hti and the aggregated information of its neighboursmt+1
i :

ht+1
i = Ut(mt+1

i , hti) (2.10)

2.1.4 Spatio-Temporal Graph Neural Networks

Spatio-Temporal Graph Neural Networks (STGNNs) [22] are extensions of

GNNs that are designed to work with spatio-temporal graph data. Spatio-

temporal graphs are data structures where the nodes have both spatial and

temporal information associated with them. This type of data is common in

applications such as traffic forecasting, weather forecasting, and disaster man-

agement.

STGNN methods fall into two main categories, namely: Sequential STG-

NNs, where patterns in space and time are learned separately and then com-

bined to understand their relationship, and Simultaneous STGNNs which are

models that simultaneously handle spatial connections and temporal data to

create unified spatial-temporal embeddings. To simplify, the Sequential ap-

proach deals with time step by step, while the Simultaneous processes space

and time together within one layer. The Sequential method is adept at building

time series models for graph data, excelling in tasks involving time consider-

ations but they demand substantial computation for each time step. On the

other hand, the Simultaneous approach efficiently manages spatial and tem-

poral data within a single layer, yet it might not suit all tasks, especially those

emphasizing time series analysis.

Among different Successive STGNN applications, RNN-based methods
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and Transformer-based methods stand out in order to respectively capture

short-term and long-term temporal dependencies in the temporal network.

RNN-based methods They integrate Recurrent Neural Networks (RNNs)

with GNNs to model spatio-temporal data. This integration can be performed

by either modifying the inner operations of the RNN cells through Graph Neu-

ral Network methodologies aimed at extracting the spatial correlations or by

performing recursively spatial and temporal encodings in sequence.

TheGraph-Convolutional Long-Short TermMemory network (GC-LSTM)

[23], for instance, applies a modification to the classical Long-Short Term

Memory (LSTM) cell. In its original definition, the cell state and the output

are updated recursively from the input sequence using gating operations in-

volving matrix multiplications. In GC-LSTM cells, the cell state and output

are updated by replacing the matrix multiplications with graph convolutions.

Another example of a RNN-based method is T-GCN [24]. This model

uses a recursive structure to encode the spatial and temporal correlation. In

detail, at each time step, GCN and Gated Recurrent Unit (GRU) layers work

in sequence to learn spatial and temporal relationships from graph data as il-

lustrated in Figure 2.6.

Figure 2.6: Illustration of the process of T-GCN.

Given f(A,Xt) the GCN operation applied on the graph X at timestep t
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using the adjacency matrix A andWu,Wr andWc learnable parameter matri-

ces, the T-GCN operation can be decomposed in the following steps. Firstly,

the update gate result ut is obtained from the GCN operation on the network

at time t and the concatenation with the hidden state h at time t− 1:

ut = σ(Wu[f(A,Xt), ht−1]) (2.11)

Then, the reset gate result rt is obtained in a similar fashion:

rt = σ(Wr[f(A,Xt), ht−1]) (2.12)

Next, a concatenation of the GNN operation on the network at time t and the

elment-wise product of the result of the reset gate and the previous hidden

state is computed:

ct = tanh(Wc[f(A,Xt), (rt ∗ ht−1)]) (2.13)

Finally, the hidden state h at time t is obtained as follows:

ht = ut ∗ ht−1 + (1− ut) ∗ ct (2.14)

Transformer-basedmethods They connect the spatial-capturing properties

of GNNs with the power of transformer architectures in order to encode long-

term temporal relationships in the data. In contrast to conventional RNNs,

transformers handle time series data comprehensively rather than sequentially,

through recursive processes. Specifically, a GNN derives spatial embeddings

of the graph nodes at every time point, which are then input into a transformer

employing self-attention mechanisms to calculate similarity scores a-cross the

entire time sequence. Transformers operate without relying on past hidden

states to capture dependencies on previous timestamps. Instead, each step

directly accesses all other steps, mitigating the risk of losing past information.
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As an example, Spatio-Temporal Attention Graph Isomorphism Network

(STAGIN) [25] in order to extract temporal information on the spatio-temporal

graph G employs a single-headed transformer encoder upon the sequence of

graph features (h̃G(1), ..., h̃G(t)) obtained through spatial encodings of the graph

at each timestep T ∈ [1, t]. The resulting temporal encodings (hG(1), ..., hG(t))

are then averaged to obtain the final graph representation hGdyn
= ∑

t∈T
hG(t)
|T | .

The process is observed in Figure 2.7.

Figure 2.7: Illustration of STAGIN spatio-temporal encoding mechanism.

Simultaneous STGNNs include Spatial Attention-based methods and Tem-

poral Attention-based methods.

Spatial Attention-based methods They gauge input similarities and blend

them based on softmax-calculated similarities. Unlike standard transformer-

like models that derive similarity from transformed features, the crucial point

of employing attention, as proposed in (2.5+1)D Spatio-Temporal Scene Gra-

phs for VideoQuestion Answering [26], lies in using a similarity defined by the

spatio-temporal adjacency of graph nodes within a (2.5+1)D scene graph. For
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any two nodes v1, v2 ∈ V , a similarity kernel k is defined to capture spatial-

temporal proximity between v1, v2 at scales δS and δT for spatial and temporal

signals respectively. The (2.5+1)D-Transformer can then be expressed as:

F = softmax(K(V, V | δS, δT ))VF (2.15)

Here, K represents the spatio-temporal kernel matrix formed on V for each

node pair, and VF denotes the Value matrix transformed from node embed-

dings. This kernel merges features from nearby nodes in the graph, consider-

ing both spatial and temporal proximity.

TemporalAttention-basedmethods They employ the attentionmechanism

to assign weights to graph edges based on temporal distance. These weights

are determined by assessing similarity between node features connected by

each edge across different time steps. This approach enables the model to

concentrate on neighboring nodes that offer the most relevant temporal infor-

mation for the ongoing prediction task. For instance, Graph Multi-Attention

Network (GMAN) [27] defines temporal attention between two time steps of a

particular node as the dot product of spatial-temporal embedding concatena-

tion and the node’s hidden embedding at those time steps.

2.2 GNNs & Explainability

GNNs generally operate as black-boxmodels due to their non-transparent na-

ture, which obscures the reasoning behind their decisions. Hence, Post hoc

explanations become essential to highlight their decision-making processes.

These explanations are pursued after the models predictions, aiming to clarify

in retrospect the reasoning behind specific decisions. Post-hoc explanation

techniques comprise two main categories: model explanation and outcome

explanation. Model explanation methods aim to comprehensively understand
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the behavior of a black box model by seeking why it generates specific pre-

dictions, developing insights from its structure and parameters. Conversely,

outcome explanation techniques offer localized explanations highlighting the

causal relationship between particular inputs and their predicted outcomes.

A hybrid technique, termed model inspection, emerges from both model and

outcome explanations, employing visual or textual representations to elucidate

specific properties or decisions of the black box model [13, 14].

For what concerns GNNs, explanations often follow an outcome explana-

tion or model inspection methodology. These methods are broadly divided

into two groups: non-GNN-originated methods, which stem from other Deep

Learning domains, andGNN-originatedmethods, specifically tailored for GN-

Ns. Recent attention has primarily focused on GNN-originated methods due

to their novelty. In understanding GNNs, their explanations often manifest

as important subgraphs within their input graphs data. While some explana-

tionmethods directly output these subgraphs, most methods assign importance

scores to each edge in the graph [28].

As these networks process graph-structured data, understanding the pre-

cise logic leading to their outputs becomes challenging. Firstly, due to graphs

combinatorial nature, seeking important sub-structures involves assessing nu-

merous combinations to optimize specific predictions, presenting a major ob-

stacle. Additionally, graphs may include node attributes and edge connectiv-

ity, both of which can impact predictions and require their joint consideration

in the explanation process. Moreover, these explanations must be flexibile in

order to accommodate different GNN architectures [29].

When it comes to STGNNs, the challenge in explaining their behavior in-

tensifies due to the reason that they incorporate the temporal dimension on top

of the spatial one. Thesemodels not only deal with spatial relationships among

elements of static graphs but also account for how these relationships evolve

over time. The growing interest in explaining GNN models, coupled with the

unique challenges posed by unfolding the behavior of STGNNs, has resulted
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in a scarce academic literature addressing the explainability of STGNNs.

This section offers an overview of various GNN-originated explainability

methods and their limited current applications for STGNNs. These methods

have been explored to construct the explanation pipeline for the STGNN uti-

lized in this thesis. This pipeline aims to provide an easily understandable and

transparent model inspection approach by extracting a significant subgraph

from the input traffic network data. This subgraph serves to explain the pre-

dictions made by the STGNN.

2.2.1 GNNExplainer

GNNExplainer [30] is the first general, model-agnostic outcome explanation

approach adopted to explain GNN-based models on any static graph-based

task. It aims to produce an explanation by obtaining a subsection of the com-

putation graph and specific node features that significantly impact the model

Φ’s predictions Y (Figure 2.8).

(a) GNNExplainer identifies a small set of
nodes and edges (green) that are crucial
for the prediction in v.

(b) In addition, GNNExplainer identifies
what feature dimensions of the selected
nodes are important for the prediction of
v.

Figure 2.8: Example of the GNNExplainer approach for node classification.

The objective with a given input graphG is to obtain a sub-graphGS ⊆ G

and the corresponding features XS = {xj|vj ∈ GS} through a learned mask
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that significantly influence Φ’s predictions. To quantify importance, mutual

informationMI is employed following the given optimization framework that

aims at maximizing MI between the explanations and the original model’s

predictions:

max
GS

MI(Y, (GS, XS)) = H(Y )−H(Y | GS, XS) (2.16)

Where the mutual information MI quantifies the change in the conditional

entropy H between Y = Φ(G,X) and Y = Φ(GS, XS).

This objective is translated in practice by finding the edge mask M that

minimizes the following computation:

min
M

H(Y | G = A⊙ σ(M), X = XS) (2.17)

With σ being the sigmoid function, A the adyacency matrix of G and ⊙ the

element-wise matrix multiplication operation.

GNNExplainer faces scalability issues due to parameter size scaling with

the input graph size. Moreover, it offers only individual-level explanations,

lacking a comprehensive understanding of predictions on a global scale. An-

other drawback is its inability to take into account the temporal dimension of

spatio-temporal Graph, rendering it unusable to explain STGNNs.

2.2.2 GraphMask

GraphMask [31] is a post-hoc model inspection GNN explanation technique,

that derives a global understanding of the model behavior. It detects which

edges (u, v) at each layer k of the GNN can be removed without affecting

model outcomes.

The elimination of an edge (u, v) at layer k containing message m(k)
u,v is

performed by its replacement by a baseline b(k) guided by a single layer neural

network binary classifier z trained on the whole training data, which performs
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a binary decision z(K)
u,v ∈ {0, 1} such that:

m̃(k)
u,v = z(k)

u,v ·m(k)
u,v + b(k) · (1− z(k)

u,v) (2.18)

Given a GNN Φ ofL layers, a graphG, with edge set E , and input embeddings

X the task of GraphMask is to identify a set GS = {G(1)
S , ..., G

(L)
S } of infor-

mative sub-graphs with minumn number of edges at every layer. Minumum

divergence between the predictions of Φ obtained with the original graph G

and the subgraphGS is computed through a divergence functionD∗[f(G,X)||

f(GS, X)]. The objective is defined over a dataset D as follows:

max
λ

min
π,b

∑
G,X∈D

(
L∑
k=1

∑
(u,v)∈E

1[R ̸=0](z(K)
u,v )) + λ(D∗[Φ(G,X)||Φ(GS, X)]− β)

(2.19)

Where π is the learned parameter of z, λ ∈ R ≥ 0 denotes the Lagrange

multiplier, 1 is the indicator function and β a set tolerance level.

GraphMask offers scalability and considers the dataset at a global level.

However, it requires knowledge of the GNN’s internal structure and is not

suitable to explain STGNNs as it is not developed in order to take into account

temporal dependencies. Furthermore, it falls in the paradox of explaining a

black-box model using another black-box model z in its subgraph extraction

process.

2.2.3 PGM-Explainer

Probabilistic Graphical Model Explainer (PGM-Explainer) [32] employs the

Probabilistic Graphical Model (PGM) to construct model-agnostic outcome

explanations for GNNs. PGMs are statistical models that encode intricate dis-

tributions in a multi-dimensional space using graph-based representations. In

detail, it leverages Bayesian networks, a popular PGM type which depict con-

ditional dependencies among variables through directed acyclic graphs which

are known for their intuitive representations. An illustrative example of the
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PGM-Explainer process is seen in Figure 2.9.

(a) A graph containing the target predic-
tion E to be explained.

(b) A PGM-explanation in the form of
Bayesian network. It estimates the condi-
tional probability that node E has the pre-
dicted role given the other nodes.

Figure 2.9: Depiction of an example of the PGM-Explainer process.

PGM-Explainer involves finding the optimal Bayesian network,B, through

an optimization process considering the target prediction obtained by the GNN

Φ:

argmaxBRΦ,t(B), s.t.|V(B)| ≤M, t ∈ V(B) (2.20)

where V(B) is the set of random variables in the Bayesian network B, t is

the random variable corresponding to the target prediction and R is a fitness

function. The first constraint limits the number of variables in B by a given

constantM to encourage a compact solution, while the second guarantees the

target prediction is included in the explanation.

The cons of this architecture are that the explanations are provided solely

at instance level and that the learning process of Bayesian Networks is very

computationally expensive. Similar to the previous models, PGM-Explainer

is not aimed to explain STGNN architectures.

2.2.4 SubgraphX

SubgraphX [33] adopts a different outcome explanation approach. Given Φ

as a GNN model and G an input graph, the aim in the explanation task is to
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identify the most influential sub-graph for the prediction ofΦ. To ensure com-

prehensibility, it focus solely on connected sub-graphs, as disconnected nodes

pose challenges in interpretation. The collection of connected sub-graphs inG

is denoted as {G1, ..., Gn}, where n signifies the various connected sub-graphs

withinG. The explanation for the prediction concerning the input graphG can

be defined as follows:

G∗ = argmax|Gi|≤Nmin
Score(Φ, G,Gi) (2.21)

where Score is a scoring function for evaluating the importance of a subgraph

given the trained GNNs and the input graph and Nmin is an upper bound on

the size of subgraphs so that the explanations are succinct enough.

In order to obtain candidate sub-graphs, the model generates a search tree

with the input network as the root node and connected sub-graphs as children

nodes. Each edge in the search tree denotes that the graph associated with

a child node can be obtained by performing node-pruning from the graph de-

scribed by its parent. AMonte Carlo Tree Search (MCTS)method explores the

tree, with statistics guiding the selection of informative subgraphs for GNN

predictions. Subgraphs are scored using the Shapley value, and the most rel-

evant one is retained for explanation.

Notably, this algorithm does not require prior knowledge of the GNN’s

structure. However, it operates at instance level may face scalability chal-

lenges when dealing with large instances due to the need for constructing ex-

tensive search trees. It also shares with the previous illustrated models, the

lack of adoption to STGNN structures.

2.2.5 PGM-Explainer for STGNNs

The approach used in An Explainer for Temporal Graph Neural Networks [34]

builds upon the PGM-Explainer framework illustrated in chapter 2.2.3, aim-

ing to provide explanations specifically tailored for STGNNs. In addition,
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among the experimental setups employed in the paper, the methodology has

been applied to explain traffic forecasting predictions, aligning with the task

in the thesis. This paper stands out as one of the rare contributions in the litera-

ture that delves into addressing the explainability of STGNNs. Its explanation

framework can be observed in Figure 2.10.

Figure 2.10: Explanation framework of PGM-Explainer for STGNNs.

In order to simplify interpretation, the STGNN model is reformulated.

This reformulation allows for independent explanations at various temporal

snapshots, exploiting the capabilities of the static graph PGM-Explainer. In

detail, given a STGNNΦ, a time window T , a graphG and its feature matrices

X the original predictions:

Y = Φ(G, [Xt, ..., Xt+T−1]) (2.22)

are decomposed into a sequential temporal implementation:

∀i ∈ [t, t+ T − 2], Hi+1 = Φ̂(G,Xi, H1) (2.23)

where Hi is the hidden feature configuration computed by the STGNN at

timestep i and HT+t−1 = Y .

At each timestep t, the PGM-Explainer finds the optimal Bayesian net-

work, Bt, through the optimization process seen in Equation 2.20. Through

the use of a score function FD the concept of interesting Bayesian network and
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temporal dominant interesting Bayesian network are formulated. Specifically,

a Bayesian network B qualifies as an interesting Bayesian network within a

designated temporal window [ts, te] if FD(B) surpasses a set threshold. More-

over, if the temporal window [ts, te] doesn’t fall within any other interesting

Bayesian network’s temporal scope, B is identified as a temporal dominant

interesting Bayesian network within that time frame. The dominant Bayesian

network defines a concise rationale of the predictions.

The search of dominant Bayesian graph is obtained through a pruning ap-

proach. In essence, when a temporal dominant Bayesian network is identi-

fied within a time frame [t1, t2], it implies the absence of any other dominant

Bayesian graph within a smaller time frame [t′1, t′2] ⊂ [t1, t2]. This character-

istic guides a search method starting from the largest time frame [t1, t2]. The

algorithm computes the interest level of each Bayesian graph across this full

time frame and recursively shrinks the time frame if no dominant Bayesian

network is found. Conversely, upon discovering a dominant Bayesian net-

work within [t1, t2], it prunes the subset of this time frame, eliminating the

need to compute interest measures for other Bayesian networks inside that

subset.

The drawbacks of this architecture are the same as PGM-Explainer. In

particular, explanations lack a global view as they are assessed at instance

level. Moreover, computing Bayesian Networks requires high computation

resources. One of its advantages is that the model is tailored specifically for

explaining STGNNs.

2.2.6 TGNN-Explainer

Anothermethodology introducesTemporalGNN-Explainer (TGNN-Explainer)

[35], a model inspection method applied to STGNNs node classification archi-

tectures. This approach defines an input spatio-temporal graph as a sequence

of events S = {e1, e2, ...}. Each ei = {nui
, nvi

, ti, atti} means that the node
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nui
and nvi

have an edge at timestamp ti with weight atti.

Given the sequence of events and a STGNN Φ, TGNN-Explainer eluci-

dates why the model predicts an event ek would occur or not. Specifically, it

finds a subset of events Rk from all the previous events Gk to maximize the

mutual informationMI(Yk,Rk). Yk is the original prediction by Φ(Gk)[ek].

Maximizing the mutual informationMI(Yk,Rk) consists in minimizing con-

ditional entropy H(Yk | Rk) such that:

min
Rk
−
∑
c=0,1

1(Yk = c) logP (Ynew = c | Rk) (2.24)

where P (Ynew | Rk) is computed by Φ(Rk)[ek] and c indicates whether the

event occurred or not.

Identifying an important subset of events Rk for the target event ek is a

combinatorial optimization problem where any subset of Gk could be the ex-

planation. In order to limit the combinatorial search space, TGNN-Explainer

proposes to compute a heuristic correlation score among events through a nav-

igator, providing thus a global understanding of the correlation patterns in the

data. Specifically, the navigator constitutes a feed-forward neural network

denoted as hθ(ej, ek). Its role involves deducing the correlation score of an

event ej concerning a specific target event ek.

The navigator is concretely adopted in aMonte Carlo Tree Search (MCTS)

employed to seek the subset of eventsRk that explains the target event ek. Ini-

tially, the root node of the MCT represents a collection of all potential events.

Multiple rounds, or rollouts, expand nodes in the search tree, where each node

indicates a viable subset of events within the search space. Each round in-

volves:

1. Selecting a path from the root to a leaf node which meets a certain spar-

sity threshold.

2. Creating new nodes by eliminating less important events based on the
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navigator hθ correlation scores.

3. simulating rewards for these new nodes using Φ.

4. Updating statistical information in the path nodes by backpropagating

the leaf node’s reward.

Finally, the explanation result is the node with the best reward among the

multiple rounds.

This methodology offers a global understanding of the explanations of a

STGNN as its search is guided by a correlation score learned from a training

dataset. Unfortunately, its application is solely applicable to node classifi-

cation and, similarly to GraphMask, it becomes paradoxical as it explains a

black-box model using another black-box model hθ to compute navigation

heuristics.

2.2.7 STExplainer

STExplainer [36] introduces a method called structure-distilled Graph Infor-

mation Bottleneck (structure-distilled GIB) for enhancing the inherent inter-

pretability of STGNNs. In the related paper, the architecture has been tested

in explaining STGNN predictions in different domains, including the traffic

forecasting one. Its goal is to distill valuable information from complex spatio-

temporal graph data by the acquisition of a small subset of spatio-temporal

graph structures according to the objective:

min
P(GS |G)

−MI(Y,GS) + β ·MI(G,GS) (2.25)

where The subgraph GS represents the distilled subgraph obtained from the

conditional probability distribution P(GS | G) given the original graph G.

Moreover, Y are the predictions by the STGNN, MI(Y,GS) measures the

mutual information between the predictions and the distilled subgraph, while
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MI(G,GS) is the mutual information between the original spatio-temporal

graph and the distilled subgraph and β a weight parameter.

STExplainer, firstly produces a spatial-temporal encoding of the input spa-

tio-temporal graph through spatial and temporal attention neural modules.

Then, theGumbel-Softmax reparameterization trick is adopted to compute the

spatio-temporal probabilities p(s)
uv and p(t)

uv for each edge of the encoded graph

uv in a differentiable manner. Next the adjacency matrix structures A(s)
S and

A
(t)
S defining the spatial and temporal subgraph GS = (G(s)

S ,G(t)
S ) are obtained

such that:
A

(s)
S = α(s) ⊙ A(s), α(s)

uv ∼ Bern(p(s)
uv )

A
(t)
S = α(t) ⊙ A(t), α(t)

uv ∼ Bern(p(t)
uv)

(2.26)

where A(s) and A(t) are the original spatial and temporal adjacency matrices

and ⊙ the element-wise matrix product. α(s) and α(t) are the spatio-temporal

matrices of selected edges in the input subgraph sampled on a Bernoulli distri-

bution considering their probabilities in p(s) and p(t). Finally, the predictions

of the STExplainer, Y , are obtained by encoding the spatio-temporal features

on the distilled subgraph GS followed by a prediction layer. In practice, this

is achieved by performing the message passing or the GCN operation (both

described in section 2.1) just on the selected spatial edges in A(s)
S and by per-

forming temporal attention just on the node and edges of A(t).

The training of STExplainer is based on a triad loss function:

L = L0 + λ1LS-GIB + λ2LT-GIB (2.27)

where L0 maximizes the mutual informationMI(Y,GS) of Equation 2.25, by

minimizing the error between the ground truth and the predictions of themodel

Y using the information in the distilled subgraph GS . LS-GIB and LT-GIB are the

losses for the spatial-temporal subgraph weighted by parameters λ1 and λ2

respectively. They maximize the mutual informationMI(G,GS) in Equation
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2.25, by minimizing the errors:

LS-GIB = EG(s) [KL(P(G(s)
S | G(s))||Q2(G(s)

S ))]

LT-GIB = EG(t) [KL(P(G(t)
S | G(t))||Q2(G(t)

S ))]
(2.28)

where P(G(s)
S | G(s)) and P(G(t)

S | G(t)) are the conditional spatial and temporal

probability distributions computed, considering the spatial and temporal node

sets with V(s) and V(t), as:

P(G(s)
S | G(s)) = ∏

u,v∈V(s) P(α(s)
uv | p(s)

uv )

P(G(t)
S | G(t)) = ∏

u,v∈V(t) P(α(t)
uv | p(t)

uv)
(2.29)

whileQ2(G(s)
S ) andQ2(G(t)

S ) are the prior spatial and temporal distributions of

GS computed as:

Q2(G(s)
S ) = P(n(s))∏n

u,v=1 P(α′(s)
uv )

Q2(G(t)
S ) = P(n(t))∏n

u,v=1 P(α′(t)
uv )

(2.30)

where α′(s) ∼ Bern(r(s)) α′(t) ∼ Bern(r(t)) are selected spatial and temporal

edges through a Bernoulli sampling on hyperparameters r(s) and r(t), while

n(s) and n(t) are the spatial and temporal edges.

This methodology differs from the previously introduced as it offers an

inherently interpretable STGNN model which outputs both predictions and

the most important input data leading to them. Nonetheless, the subgraph

extraction based on the edge sampling methodology is obtained on an encoded

version of the original input graph through a black box architecture. Although

the edge samplingmethod is transparent it is unclear which are the patterns that

lead to the edge probabilities used for their selection and it is hence obscure

why the subgraph attributes are important to the prediction.
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2.2.8 Related Work

The thesis work focuses on explaining STGNN predictions in traffic fore-

casting. Previously introduced methods like GNNExplainer (section 2.2.1,

GraphMask (section 2.2.2), PGM-Explainer (section 2.2.3), and SubgraphX

(section 2.2.4) address explainability in static GNNs by extrapolating the in-

put subgraphs that lead to the predictions, but they cannot derive explanations

that consider the temporal and spatial component mutually. In existing stud-

ies, such as [37], explainers designed for static GNNs have been employed

to explain temporal graph sequences predicted by STGNNs by treating each

timestep separately. However, this approach has a limitation as it overlooks

the temporal correlation in the explanation process.

STGNN explainability methods, similarly to the static ones, aim at out-

putting the rationale of the predictions of an STGNN by a subset of the input

data, although they are specifically designed to work on STGNNs architec-

tures while considering the temporal patterns in the data on top of the spatial

ones. In academic literature, the methods designed to explain STGNNs are

PGM-Explainer for STGNNs (section 2.2.5), TGN-Explainer (section 2.2.6)

and STExplainer (section 2.2.7). In particular, PGM-Explainer for STGNNs

and STExplainer have also been applied to explain forecasts within traffic net-

works, the same task of the thesis.

PGM-Explainer for STGNNs (section 2.2.5), similarly to the explainer

used in the thesis work, describes the rationale of the predictions by the in-

put data in a model-agnostic manner. Its rationale is a dominant Bayesian

Networks that contains the input nodes with the higher conditional probabil-

ity with respect to the predictions it has to explain. Its limitation lay in the

fact that it is applied at instance level and it thus lacks a global view of the

explanations. Moreover, it requires expensive computations to find the dom-

inant Bayesian Networks. Countrarily, the explainer employed in the thesis
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generates explanations through both a global perspective and a local inspec-

tion of each instance. Furthermore, the rationale is not given by a Bayesian

Network, but as a subgraph of the input network. The computation of the ex-

plainer used in the thesis work is not extensive as the search space is cut by a

global heuristic.

TGN-Explainer (section 2.2.6) presents a large amount of similarities with

the thesis work, as both provide a global and local understanding of the ex-

planations in a model-agnostic manner by a rationale given as a subset of the

input data. Both models use MCTS as a search methodology to extract the

explanations. TGN-Explainer differs from the employed explainer because

it is applied to node classification, a different task than the one described in

the thesis. Its limitation lays in the fact that it uses a black-box model in its

architecture to compute a global correlation score among input nodes and pre-

dicted nodes to explain. These scores are then used to guide the MCTS. The

thesis work addresses this limitation by computing the global heuristic score

between input and output nodes in a transparent manner, using traffic-domain

related laws.

STExplainer (section 2.2.7) provides a framework to build inherently ex-

plainable STGNNs models. On the other hand, the thesis work focuses in

building a post-hoc explainer that can be applied to any STGNN in a model-

agnostic manner. The similarity of the architectures is that they both find

explanations from subsets of the input network. A limitation of STExplainer

lays in its subgraph extraction methodology, even though transparent in the

process, it operates on an encoded version of the input graph via a black-box

architecture, making the interpretability of the patterns onwhich the extraction

is performed uncertain. The thesis overcomes this by conducting all search op-

erations directly on the input network without encoding it. This approach en-

sures that the explainabilitymethodology operates directly on human-interpre-

table data rather than on encoded or cryptic representations.

To sum up, the explainability methodology envisioned in the thesis aims
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to find the rationale of traffic forecasts by an STGNN through an important

subgraph of the input network. It proposes an explainer able to capture both

temporal and spatial correlations between input data and forecasted predic-

tions transparently exploiting traffic-domain laws. Moreover, it deals with

generating explanations through both a global perspective and a local inspec-

tion of each instance. Furthermore, its nature is post-hoc and model-agnostic

as the explainer does not need to know the specifics of the implementation of

the STGNN used for the predictions.

Its limitation lies in its domain-specific application of forecasts applied

on traffic networks since it exploit traffic laws as prior knowledge. How-

ever, it intends to demonstrate that leveraging domain-specific knowledge in

the explanations of black-box architectures enhances transparency and global

insights, showcasing the potential for clear and effective explanations when

domain expertise is utilized.

2.3 Verbal Explanations

Data-to-sequence systems offer a potent capability of generating verbal sum-

marizations automatically from data sources, simplifying the communication

of intricate information. Instead of relying on visualization methods, these

systems utilize natural human language, the primarymode of human-to-human

interaction. Moreover, they possess the ability to address their output content

to suit users’ preferences, backgrounds, or interests, making interactions more

engaging for users. Content selection stands as a critical component within

data-to-sequence systems, as it dictates which information among the avail-

able data should be conveyed to the user [38].

In addition, it is argued that describing the explanation in words has a

greater effect than using visual representations as it is in line with the concept

of the social processes of understanding. This involves an interactive pro-

cess between the explainer and explainee, aiming to equip the explainee with
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adequate information to grasp the causes behind an event [15].

This section outlines different ways to turn structured data into natural lan-

guage explanations. All thesemethods stand as potential choices for achieving

the thesis goal: transforming pertinent sub-graphs, acquired through the ex-

planation pipeline, into coherent and understandable narratives that elucidate

the outputs of the STGNN model.

2.3.1 Template-Based Approaches

Historically, many data-to-sequence systems have relied on rule-based meth-

ods, employing template selection and completion to generate natural lan-

guage text [39]. These approaches remain prevalent in practical applications

due to their robustness and ability to produce high-quality output given suffi-

cient time and resources. Furthermore, human control over the output ensures

accuracy in representing the data.

However, while effective for simpler scenarios, rule-based systems often

fall short when describing complex problems, requiring an extensive and time-

consuming set of rules. Thus, the laborious nature of rule creation and the chal-

lenge of considering all possible variations make them impractical for many

domains.

2.3.2 Scalable Micro-Planned Generation

Another interpretable solution for data-to-sequence translation is inspired by

the pipeline presented in the paper ScalableMicro-planned Generation of Dis-

course from Structured Data [40]. While the primary focus of this model is

generating natural language descriptions from tabular data, it has also been

applied to knowledge graphs and JSON structures. The proposed approach

can be observed in Figure 2.11 and it involves the following steps

1. Conversion of data into a canonical triple format< e1, r12, e2 >, where

two data entities e1 and e2 are linked by a relation r12. The entities e1 and
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e2 are tagged using a Named Entity Recognizer (NER), which assigns

domain-independent place-holder tags to them.

2. Generation of simple sentences from each canonical triple < e1, r12,

e2 >. A preprocessing step firstly transforms the relation term in the

triple r12 into a verb phrase. Sentence generation is next obtained by

feeding the triples to different NLG neural architectures. The resulting

sentences of each model are then scored in terms of fluency and ade-

quancy and the best results are kept for the successive steps.

3. Application of sentence compounding and co-reference substitution for

improved fluency. Sentence compounding consists in taking pairs of

sentences obtained at the previous steps and produce a compound com-

plex sentence. Every sentence is split into a < e1, rvp, e2 > form where

e1 and e2 are entities that appear in the input and rvp is the relation verb

phrase. If two sentences have either the same subject e1 or the same

object e2, they can be combined using ‘AND’ to link their relationship

phrases. When one sentence’s object matches the following sentence’s

subject, a clause can be formed by introducing “who” or “which”. Oth-

erwise, if neither e1 nor e2 match between sentences, they can bemerged

using ‘AND’. Co-reference substitution is finally applied to enhance

paragraph coherence. It consists in a heuristic that replaces repeating

entities with pronominal anaphora.

Figure 2.11: Scalable Micro-Planned Generation framework.
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This approach is domain-generic and largely interpretable, although it in-

corporates non-transparent architectures such as neural models and pre-trained

NERs.

2.3.3 CycleGT

CycleGT [41] involves the use of a self-supervised generative model, which

includes both a graph-to-sequence and sequence-to-graph component and lever-

ages backtranslation techniques. Its framework is illustrated in Figure 2.12.

Figure 2.12: Illustration of CycleGT.

It considers two separate sets of data:

• A collection of N text sequences DT = {ti}Ni=1

• A set ofM graphs DG = {gj}Mj=1

Both sets share a common latent content distribution denoted as z, yet they

manifest in different forms, namely text and graphs. The likelihood of these

sets can be expressed through the shared content z:

log p(g) = log
∫
z
p(g | z)p(z)dz (2.31)

log p(t) = log
∫
z
p(t | z)p(z)dz (2.32)

The objective involves training two models without supervision: a graph-

to-sequence (G2S) neural model to generate text from graphs, and a sequence-

to-graph (S2G) neural architecture which produces graphs from text. This

assumes an implicit correspondence, although not strictly one-to-one, between

text and graphs. The parameters of G2S are defined as θ and the ones of S2G
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as ϕ. Considering an unseen ground truth distribution, DPair (e.g., a test set),

where each paired text and graph (t, g) shares identical content. The optimal

goal is to maximize the log-likelihood of θ and ϕ across text and graph pairs

(t, g) sampled from DPair:

J (θ, ϕ) = E(t,g) ∼ DPair[log p(t | g, θ) + log p(g | t, ϕ)] (2.33)

The training procedure is based on the concept of back translation. This pro-

cess ensures that a variable x and its bijective mapping function f(·) adhere

to the equation x = f−1(f(x)), where f−1 represents the inverse function

of f . In CycleGT scenario, G2S and S2G act as inverse functions since one

changes a graph into text while the other transforms text into a graph. Each

text is hence matched with its back-translated form and each graph with its

corresponding back-translated version through the objectives:

L(θ) = E(t,ĝ)∈D̂Pair
[− log p(t | ĝ, θ)] (2.34)

L(ϕ) = E(t̂,g)∈D̂Pair
[− log p(g | t̂, ϕ)] (2.35)

Where D̂Pair is a synthetic approximation ofDPair generated by the two models

(t, ĝ = S2Gϕ(t)) and (t̂ = G2Sθ(g), g) for all t ∈ DT , g ∈ DG. The sum

of these 2 objectives reasonably approximates the log-likelihood expressed in

Equation 2.33.

This solution limitation lies in the lack of interpretability of the applied

neural models and its reliance on an additional text dataset, DT .



Chapter 3

Design

3.1 Problem Statement

The thesis aims to create an eXplainable Artificial Intelligence (XAI) frame-

work specifically designed for individuals without technical expertise. This

system will explain short-term traffic speed forecasts within static spatio-tem-

poral traffic networks, produced by a STGNN. The emphasis is on provid-

ing understandable explanations for both traffic jams and unrestricted traffic

movements in the form of coherent narratives supported by graphical expla-

nations. A static spatio-temporal traffic network is a data structure defined

by G = {G0, ...,GT} which covers a discretized time window of T timesteps

T = [0, ..., T ]. Each Gt = (V ,Xt, E , A), with t ∈ T , is a static network

representing the state of the nodes of G during timestep t where:

• V = {v1, ..., vN} is the static set of nodes of the network. This set is the

same at each timestep. Moreover, each node vi in the traffic network

represents a location in the physical space (e.g.: a loop detector of a

highway).

• Xt = {Xvi
t ∈ RN×F | vi ∈ V} defines the set of node attributes in

the traffic network at timestep t, where N is the number of nodes and

F the number of features. In the traffic forecasting domain, without
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any loss of generality, it is assumed that at every time step t, the data

collected contains the average speed recorded within the discretized pe-

riod. Specifically, within the traffic network for each node vi ∈ V and

each timestep t ∈ T , svi
t ∈ R describes the average speed measurement

for vi collected in the discrete time interval t, where svi
t ∈ Xvi

t .

• E = {(vi, vj) | vi, vj ∈ V} is the set of edges connecting the nodes,

fixed for the whole time period.

• A = {avivj
| vi, vj ∈ V} is the adjacency matrix that measures the

spatial proximity avivj
of pair of nodes vi, vj in the traffic network and

that is also unchanged for the whole period.

The first phase in the framework pipeline, denoted as prediction phase, con-

sists of the forecast of upcoming node speeds in the traffic network through

a well-trained STGNN architecture denoted as Φ. This model serves as the

predictor for the state of the traffic network nodes in the successive T ′ =

[T + 1, ..., T ′] discretized timesteps such that:

Ŷ = Φ(G) (3.1)

where Ŷ = {ŶT+1, ..., ŶT ′} and Ŷt′ = {ŝvi
t′ ∈ R | vi ∈ V} define the set of

predicted average node speeds in the traffic network at the discrete timestep

t′ ∈ T ′. The predicted traffic network in the successive timesteps can be thus

defined as Ĝ = {ĜT+1, ..., ĜT ′}, with Ĝt′ = (V , Ŷt′ , E , A) and t′ ∈ T ′.

Within the forecasted network, there exist events that could be of partic-

ular interest to users, namely congestion or instances of free-flowing traffic.

These occurrences stand out due to their direct impact on daily commutes

and travel experiences. Congestions and free-flowing traffic greatly influence

travel time, route planning, and overall convenience for individuals navigating

through road networks. These events are denoted by subgraphs of the fore-

casted traffic network Ĝ∗ ⊆ Ĝ, where Ĝ∗ = {Ĝ∗
T+1 ⊆ ĜT+1, ..., Ĝ∗

T ′ ⊆ ĜT ′}.
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The subgraphs Ĝ∗ comprise spatio-temporally connected nodes which speed

attributes Ŷ∗ = {Ŷ∗
T+1 ⊆ ŶT+1, ..., Ŷ∗

T ′ ⊆ ŶT ′} define a noteworthy predicted

event, such as traffic congestion or free-flowing traffic. The set of nodes and

edges of Ĝ∗ is not static over the time period as it may change at each timestep.

In detail, Each Ĝ∗
t′ is defined as Ĝ∗

t′ = (V̂∗
t′ , Ŷ∗

t′ , Ê∗
t′ , A), with t′ ∈ T ′ with:

• V̂∗
t′ being the set of nodes of Ĝ∗ considered at timestep t′. This set is

defined as a different subset of V at each timestep V̂∗
t′ ⊆ V .

• Ŷ∗
t′ defining a set that explains the average speeds of the nodes in Ĝ∗ at

timestep t′. In detail, the set of speeds are obtained among the forecasted

ones in Ŷt′ considering just the set of nodes in V̂∗
t′ as Ŷ∗

t′ = {ŝvi
t′ ∈ R |

vi ∈ V̂∗
t′}.

• Ê∗
t′ being the set of edges connecting the nodes at timestep t′ of Ĝ∗. This

set changes at each timestep t′ and is defined as the subset of E limited

to the nodes in V̂∗
t′ such that Ê∗

t′ = {(vi, vj) | (vi, vj) ∈ E ∧vi, vj ∈ V̂∗
t′}.

The second phase is the explanation phase that aims at understanding the

causes behind an event described by Ĝ∗. Extrapolating the causes leading

to congestion or a free-flow could help users anticipate potential delays or

smoother travel, enabling them to make informed decisions about their routes

and travel plans. The factors that cause Ĝ∗ are extracted through a transparent

model inspection and a model-agnostic explainer called ψ. This process aims

to reveal the primary factors driving the predictions within Ĝ∗ generated by the

predictive model Φ. The explainer ψ achieves this by identifying an important

subgraph, denoted as G̃ ⊆ G, within the input network G. This subgraph en-

capsulates the most critical attributes that influence Φ in forecasting the event

Ĝ∗. ψ operates independently of the specific predictive model as it conducts

an outcome explanation process, shedding light on the rationale behind the

forecasts. In detail, ψ returns the important subgraph G̃ by means of the speed

attributes of the event Ŷ∗, the STGNN Φ and the input traffic network G:
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G̃ = ψ(Ŷ∗,Φ,G) (3.2)

The important subgraph is structured as G̃ = {G̃0 ⊆ G0, ..., G̃T ⊆ GT}.

Similarly to Ĝ∗, the nodes and edges comprising G̃ fluctuate over time, po-

tentially changing at each timestep. Specifically, each G̃t is characterized as

G̃t = (Ṽt, X̃t, Ẽt, A), where t belongs to the set T where:

• Ṽt is the set representing the nodes within G̃ at timestep t and it is de-

lineated as a distinct subset Ṽt ⊆ V for each timestep.

• X̃t is a set that defines the node attributes within G̃ at timestep t. Specifi-

cally, it comprises the node attributes inXt, considering solely the traffic

nodes in Ṽt, expressed as X̃t = {Xvi
t | vi ∈ Ṽt}.

• Ẽt is the set of edges linking nodes of G̃ at timestep t, altering at each

timestep t. It is defined as a subset of E constrained to nodes in Ṽt,

denoted as Ẽt = {(vi, vj) | (vi, vj) ∈ E ∧ vi, vj ∈ Ṽt }.

The aim of the explainer ψ is to find G̃ such that it maximizes the mutual

informationMI:

MI(Ŷ∗, G̃) = H(Ŷ∗)−H(Ŷ∗ | G̃) (3.3)

Maximizing this term is the equivalent of finding G̃ such that it minimizes

the error L between the original forecasted event speeds Ŷ∗ and the ones re-

predicted by Φ, denoted as Ỹ∗, using just the information present in the im-

portant subgraph G̃:

min
G̃
L(Ŷ∗, Ỹ∗ | Ỹ = Φ(G̃)) (3.4)

Where Ỹ = {ỸT+1 = {s̃vi
T+1 | vi ∈ V}, ..., ỸT ′ = {s̃vi

T ′ | vi ∈ V}} are

the re-predicted future node speeds by Φ given the limited information of the

important subgraph G̃, while Ỹ∗ = {Ỹ∗
T+1 = {s̃vi

T+1 | vi ∈ V̂∗
T+1}, ..., Ỹ∗

T ′ =
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{s̃vi
T ′ | vi ∈ V̂∗

T ′}} are the re-predicted speed attributes of the event described

by Ĝ∗ according to the information in Ỹ . Additionally, the size of G̃ should be

concise, as the total number of nodes considering each timestep should respect

a sparsity threshold Ñ such that:

∑
t∈T
|Ṽt| ≤ Ñ (3.5)

with Ṽt being the set of nodes at timestep t.

It is worth mentioning that the important subgraph obtained in the input

to explain the selected event is not straightforward to interpret. It comprises

a set of nodes, yet the descriptive context remains inaccessible. Therefore, by

clustering the input subgraph into sets of subgraphs, a more comprehensible

interpretation of the important subgraph can be facilitated. Each cluster, rep-

resenting a subgraph of the important graph, will clarify whether the cluster

represents congestion or free flow. Without clustering, the explanation would

be: the event in the output is the consequence of this set of nodes in the input.

Through clustering, the explanation transforms into: the event in the output is

due to this congestion, this free flow, and this other congestion in the input.

Formally, the important subgraph G̃ can be dissected into the sequence of

C distinct events it encapsulates. Each event is denoted as G̃c ⊆ G̃, with

c ∈ [1, ..., C], thus forming the set G̃ = {G̃1, ..., G̃C}. The traffic nodes

of these events should be both spatially and temporally interconnected while

presenting similar values of speed and they aim at showing how prior traffic

conditions within historical data contribute to shape the predicted outcome Ĝ∗.

The final phase consists in the verbal explanation of the factors that influ-

enced the event, represented by the subgraphs G̃c, that lead to the prediction of

the event Ĝ∗ by the STGNN Φ. Firstly, important content is extracted for each

event G̃c and for the predicted event Ĝ∗. Namely, for each event it selected is

the kind of occurrence it describes (e.g.: congestion or free flow), the location

where the event occurred in the physical space according to the coordinate of
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its traffic nodes, the average speed of the nodes registered and the span of time

in which the event occurred. Each piece of content k is extracted by a func-

tion k = f(Gc), with Gc being either one of the subgraphs G̃c or the event to

explain G̃∗. To conclude, the obtained content is translated into text through a

template-based approach.

The obtained verbal narratives are formed as follows. Firstly, the predicted

event Ĝ∗ is introduced, by indicating its measured average speed, whether it

is congestion or a free flow, where it happened and at what time. Next, it is

expressed that the reasons behind the prediction of Ĝ∗ lay on previously ob-

served events in the traffic network. These events are none other than the ones

obtained from the important subgraph G̃c. Finally, each event G̃c described in

detail similarly to Ĝ∗. Figure 3.1 sums up the pipeline adopted.

1 T0

Important Subgraph G̃

STGNN Φ

0 1 T

Input G

Explainer ψ

Content Extraction

Verbal Translation

Prediction Phase

Explanation Phase

Verbal Explanation Phase

Event to Explain...

1 T 0 10

T + 1 T + 2 T ′

Prediction Ĝ

T + 2 T ′

Event to explain Ĝ∗

Important Subgraph events

1 T 0 10

T + 2 T ′

Figure 3.1: Experiment pipeline.
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3.2 STGNN

The Spatio-Temporal Graph Neural Network (STGNN), referred to as Φ in

this study, aligns with the model introduced in the paper titled Traffic Flow

Prediction via Spatial Temporal Graph Neural Network [42]. As previously

illustrated in Equation 3.1, Φ produces future speed forecasts Ŷ in a traffic net-

work given historical information G. The decision to utilize this model stems

from its primary focus on forecasting traffic speed. Moreover, this architec-

ture incorporates a dynamic positional attention mechanism, enabling effi-

cient information gathered from nearby roads. Simultaneously, it integrates a

sequential component designed to capture traffic flow dynamics, effectively

leveraging both local and global temporal relationships.

The framework is depicted in Figure 3.2 and it comprises three key com-

ponents: the Spatial Graph Neural Network (S-GNN) layers, the Gated Re-

current Unit (GRU) layers and the transformer layer. The S-GNN layers are

responsible for capturing spatial relationships among roads within the traffic

network. The GRU layers are designed to sequentially capture local temporal

dependencies, while the transformer layer is dedicated to directly capturing

long-range or global temporal dependencies within the sequence.

Figure 3.2: Illustration of the applied STGNN architecture.
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In detail, given an input static spatio-temporal graph G = {Gt}t∈T , the

STGNN firstly extract the hidden patterns between node atributes through a

linear layer, then encodes through the S-GNN modules the spatial relation-

ships of the input static network at each timestep Gt using the hidden node

patterns at time t, Xt, and the adjacency matrix A and obtaining their hidden

representation X̃t. Next, the local temporal dependency among the hidden

representations of each successive input graph (X̃t−1, X̃t) is captured by a se-

ries of GRU layers, returning hidden representation H̃t. Then, the transformer

layer is applied to each node individually in order to encode its global tempo-

ral dependencies. Finally, the set of outputs of the transformer layer is taken

as input of a multi-layer feed-forward network utilized to forecast the traffic

speed for forthcoming periods Ŷ using the found spatio-temporal patterns.

It’s important to note that the S-GNN layers, employed to model spatial

relationships between nodes at each time step, are applied to both the input and

hidden representations obtained by the GRU unit. The GRU and transformer

layers function to capture temporal dependencies for each node individually,

offering distinct perspectives: local and global temporal connections respec-

tively. Following, each module comprising the STGNN is described in detail.

3.2.1 S-GNN Layers

The S-GNN layers aim at grasping spatial connections within the input traffic

network, through a Graph Convolutional Network (GCN) model. This model

is utilized to convert and distribute spatial information across the network at

each timestep by the adoption of the GCN operation, described in Equation

2.3. Given the traffic network node attributes Xin, and the adjacency matrix

A, the operation is described as:

Xout = σ(D̃− 1
2 ÃD̃− 1

2XinW ) (3.6)
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where σ is a non-linear activation function, Ã = A+I is the refined adjacency

matrix with I the identity matrix, D̃ is the refined degree matrix and W are

the learnable parameters.

The original GCN operation relies solely on network information con-

structed from the proximity of sensors along roads. Nevertheless, the rela-

tionship between roads can be considerably deeper. Various factors, including

the number of lanes connecting roads, road conditions, vehicle and population

density, as well as unforeseen events, significantly impact traffic flow. Conse-

quently, when executing the aggregation by GCN, the information from neigh-

boring nodes should not be uniformly combined for a specific central node.

S-GNN layers propose, thus, a modified GCN operation to capture these fac-

tors.

Firstly, a latent positional representation is derived from every node in or-

der to encompass these influences. More precisely, for each node vi a latent

positional representation pvi
of its attributes Xvi

t is obtained by a sequential

feed-forward simple neural architecture. Then, the pair-wise relations R be-

tween each couple of road nodes vi and vj are modeled as:

Rvivj
=

exp(pTvi
· pvj

)∑
vk∈V exp(pTvi

· pvk
)

(3.7)

The relation matrix R is sparsified as RM through a masking process adept at

reducing the computational complexity:

RM =


Rvivj

, if Âvivj
> 0

0, otherwise
(3.8)

Finally, the GCN operation in Equation 3.6, is modified to take into account

the newly computed sparsified relation matrix RM :

Xout = σ(D̃− 1
2

R R̃D̃
− 1

2
R XinW ) (3.9)
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Where R̃ = RM+I , D̃R is the degreematrix of R̃ and σ is theReLU non-linear

transformation. For simplicity, the operation is sum-up through the following

formula:

Xout = f(A,Xin) (3.10)

3.2.2 GRU Layers

To model short-term temporal relationships, the GRU is employed to handle

sequential data. A hidden representation H̃t is obtained for each time step

t, regulating information flow to successive steps and serving as the current

step’s output. To incorporate spatial relationships into the sequence process-

ing, the modified GCN operation described in Equation 3.10 is applied to both

the input and hidden representations of the GRU. Specifically, at time step t,

given the input node features Xt and previous step’s hidden representations

H̃t−1, the modified GCN operation is applied to both as follows:

X̃t = f(A,Xt)

Ht = f(A, H̃t−1)
(3.11)

Afterwards, the operation of the GRU at timestep t can be expressed as fol-

lows:
ut = σ(WuX̃t + UuHt−1)

rt = σ(WrX̃t + UrHt−1)

ct = tanh(WcX̃t + Uc(rt ⊙ UcHt1))

H̃t = (1− ut)ct + utHt−1

(3.12)

where ut is the result of the update gate, rt the outcome of the reset gate

and ct the output of the state gate. ⊙ is the element-wise multiplication,

Wu,Wr,Wc, Uu, Ur, Uc are the learnable parameters and σ is the sigmoid func-

tion. Moreover, Ht is the output of the current time step after the application

of the GCN operation, which also serves as the input to the next time step.

The initial hidden state H0 is set to a matrix of 0 values.
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3.2.3 Transformer Layer

GRU is useful for capturing sequential short-term time-based data, but in traf-

fic forecasting, time patterns might not just follow a sequence. To accurately

predict traffic speed, it’s crucial to analyse overall time patterns. To achieve

this, a transformer layer is placed after the GRU, aiming to directly capture

long-term time dependencies. The transformer layer is applied to each node

independently. For a specific node, vi, the output sequence {H̃vi
0 , ..., H̃

vi
T ) ob-

tained by GRU is the input for the transformer. This layer, depicted in Figure

3.3, includes a multi-head attention layer, a shared feed-forward neural net-

work layer, and batch normalization layers positioned between them.

Figure 3.3: The transformer layer of the STGNN.

Initially, single-head attention is introduced, followed by an explanation

of its extension to multi-head attention. The attention function involves com-

puting for each node vi queries Qvi and keys Kvi with a dimension of dk and

values V vi with a dimension of dv across all the temporal sequence positions.

By computing the dot product between queries and keys, dividing them by
√
dK , applying a softmax function and multiplying by their values, attention

scores for each position are obtained for node vi as:

attentionvi(Qvi , Kvi , V vi) = softmax
(
Qvi(Kvi)T√

dK

)
V vi (3.13)
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Qvi ,Kvi and V vi are derived from the output {H̃vi
0 , ..., H̃

vi
T ) of the GRU layer,

organized into a matrix H̃vi ∈ RT×d, where vi indicates the corresponding

node, T the time window size and d their hidden representation size. This

matrix H̃vi is obtained by stacking the output sequence from the GRU layer

row-wise in sequential order and then linearly projecting it into:

Qvi = H̃viWQ, K
vi = H̃viWK , V

vi = H̃viWV (3.14)

where WQ,WK ∈ Rd×dk and WV ∈ Rd×dv are learnable parameters shared

for all the nodes.

Multi-head attention is preferred over a single attention function because

it combines information from various representation subspaces, enhancing the

model’s learning abilities. This method employs S sets of projection matrices

to project H̃vi into different sets of queries, keys, and values Qvi
s , K

vi
s , and

V vi
s , for each head s. The output of multi-head attention for node vi is a con-

catenation of individual attention function outputs, resulting in an augmented

representation:

multiheadvi(H̃vi) = concatenate(headvi
1 , ..., head

vi
S )WS (3.15)

withWS being a learnable parameter matrix and each headvi
s is obtained by:

headvi
s = attentionvi

s (Qvi
s , K

vi
s , V

vi
s ) = softmax

(
Qvi
s (Kvi

s )T√
dK

)
V vi
s (3.16)

where queries, keys and values for each attention head s are given by:

Qvi
s = H̃viW s

Q, K
vi
s = H̃viW s

K , V
vi
s = H̃viW s

V (3.17)

with W s
Q,W

s
K and W s

V being learnable parameters shared between all nodes

at head s.

To enable the transformer layer to consider the relative position of H̃vi
t
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within the complete sequence, position encoding et is employed for each po-

sition. New representations H̃
′vi
t are generated by combining H̃vi

t with the

respective position encoding et:

H̃
′vi
t = H̃vi

t + et (3.18)

with et computed by:

et =


sin( t

10,0002i/d ), if t = 0, 2, 4, ...

cos( t
10,0002i/d ), otherwise

(3.19)

with i being the ith dimension of the embedding.

In conclusion, instead of the sequence H̃vi = (H̃vi
0 , ..., H̃

vi
T ) obtained di-

rectly from the GRU layer, the one with positional encoding H̃ ′vi = (H̃ ′vi
0 , ...,

H̃
′vi
T ) is passed to the transformer layer. The results are stacked node-wise and

passed to the prediction layer to obtain the future node speed information in

the traffic network Ŷ .

3.3 Explainer

The obtained speed predictions Ŷ , describe the traffic network Ĝ at future

timesteps T ′ = [T + 1, ..., T ′]. Within the predicted network, there exist

events of congestions or free flow, Ĝ∗ ⊆ Ĝ, which might draw users’ atten-

tion. The process to extract them is described in section 3.3.1. An explainer

ψ is employed to uncover the primary factors that drive predictions within Ĝ∗,

generated by the predictive modelΦ. The explainerψ process consists in iden-

tifying an important subgraph, denoted as G̃ ⊆ G, within the input network

G, which serves as the explanation behind the forecasts Ŷ∗ by the STGNN Φ

as seen in equation 3.2. Moreover, the error between the original predicted

events Ŷ∗ and the re-predicted events Ỹ∗ by Φ using as input the limited in-

formation in G̃ should be minimum, as expressed in Equation 3.4. In addition,



3.3 Explainer 50

it’s essential for the size of G̃ to remain compact. This means that the overall

count of nodes considered across each timestep should adhere to a predefined

sparsity threshold Ñ as per Equation 3.5.

The explainer ψ is designed as a post-hoc model-agnostic architecture,

which explains the causes of the predictions of the model Φ according to its

input data, while being unaware of its internal structure. ψ roots its core idea

in the TGNN-Explainer [35] described in section 2.2.6, but deeply modifies its

design to account for the task of the problem and its domain while replacing

its opaque components with a transparent model. In particular:

• It updates the reward mechanism used in the Monte Carlo Tree Search

(MCTS), initially tailored for node classification, to suit the current prob-

lem context, i.e., forecasting future speed in a spatio-temporal graph

(regression problem).

• It substitutes the navigator model, a black-box trained neural architec-

ture aimed at computing broad correlations between input and output

data to be explained, with a global heuristic. This heuristic is designed

for high comprehensibility and transparency and it integrates domain-

specific elements to refine the solution search space, aligning with the

pattern-extraction approach pursued by the STGNN Φ.

The explainer ψ is a MCTS algorithm that performs a localized search on

the input graph G of the instance to be explained. In particular, it returns

the important subgraph G̃ which serves as the explanation of the predicted

selected event Ĝ∗ outputed by Φ. The search space is cut by a transparent

global heuristic (section 3.3.3) that exploits domain-specific characteristics

and limits the search on a subgraph of the input graph Groot ⊆ G composed of

the top scoring N∗ nodes according to the global heuristic. The utilization of

both global and local aspects in the explanations, presented visually through

the defining structure of the important subgraph G̃ of the input traffic network

G, places ψ within the realm of model inspection techniques.
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3.3.1 Output Events Selection

The subgraph Ĝ∗ extracted from the predicted output graph Ĝ should consist

of a series of spatially and temporally connected nodes that define an impor-

tant event as the causes of the prediction. The speed similarity of the nodes

of the subgraph is crucial for identifying notable traffic events like congestion

or free-flow, as it signifies either widespread slowdown (congestion) or con-

sistent smooth traffic flow (free-flow) across the interconnected nodes within

that particular timeframe. To perform the extraction of these events from Ĝ,

while guaranteeing the spatio-temporal and speed similarity requirement is

met, the methodology explained in Revealing the day-to-day regularity of ur-

ban congestion patterns with 3D speed maps [43] is adapted for the prob-

lem. The paper concentrates on investigating macroscopic mobility patterns

by analyzing the congestion dynamics within the transportation network and

its methodology applies to the problem of the thesis. In detail, a distance ma-

trix M ∈ R(N ·T ′)×(N ·T ′) between each output traffic node at each timestep

is defined, with N being the number of nodes and T ′ the number of output

timesteps. Following that each node of Ĝ is clustered by a clustering algo-

rithm while considering the distance matrix as a measure of dissimilarity.

The distance matrix M is constructed as the composition of three dif-

ferent matrices, namely a spatial distance matrix Md ∈ R(N ·T ′)×(N ·T ′), a

temporal distance matrix Mt ∈ R(N ·T ′)×(N ·T ′) and a speed distance matrix

Ms ∈ R(N ·T ′)×(N ·T ′). In each of these matrices, the first N row and column

indices define the measured distances of the N nodes at the first time step

t = 0, the second N row and column indices are the distances of theN nodes

at the second time step t = 1 and so on. In particular:

• The spatial distance matrix Md is an (N · T ′) × (N · T ′) matrix de-

rived from the adjacency matrix of the traffic network A ∈ RN×N and

describing the spatial distance of each nodes regardless of their timestep.

For each single node vi and each pair of timesteps t1 and t2,M
(vi·t1)(vi·t2)
d
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is 0 because the same nodes at different timesteps have spatial distance

0. For each pair of nodes vi and vj where vi ̸= vj and each timestep

t1 and t2, M
(vi·t1)(vj ·t2)
d = 1 − Avivj

, as it defines the spatial distance

among the two nodes regardless of the timestep. Note that the spatial

distance is the opposite of the spatial adjacency expressed in A.

• The temporal distance matrix Mt is an (N · T ′) × (N · T ′) matrix

describing the temporal distance of the nodes at each timestep. For

each pair of nodes vi and vj and each couple of timesteps t1 and t2,

M
(vi·t1)(vj ·t2)
t is equal to the absolute difference between t1 and t2.

• The speed distancematrixMs is an (N ·T ′)×(N ·T ′)matrix describing

the speed distance of the nodes at each timestep. For each pair of nodes

vi and vj and each pair of timesteps t1 and t2,M
(vi·t1)(vj ·t2)
s = |svi

t1−s
vj

t2 |

is equal to the absolute difference between the discretized speed svi
t1 of

node vi at time t1 and the discretized speed s
vj

t2 of node vj at time t2.

The matrices Md, Mt and Ms are each scaled through min-max scaling be-

tween 0 and 1 and summed together in order to obtainM as follows:

M = W ·Ms +Md +Mt (3.20)

where the speed distance is overweighted by multiplyingMs by a factorW ≥

1 because the speed variable is expected to play a predominant role during

the clustering process. M is next normalized again between 0 and 1 through

min-max scaling. The clustering algorithm should generate groups of nodes

in which each node is connected by a spatial path to every other node of the

group. To guarantee it, the matrixM should reflect whether pairs of nodes are

spatially unreachable. Hence, for each couple of nodes vi and vj and for each

pair of timesteps t1 and t2, if in the original adjacency matrixA expresses that

vi and vj are unconnected, Avivj
= 0, then an “out of bound” distance value

1, 000 is expressed in the matrixM such thatM (vi·t1)(vj ·t2) = 1, 000.
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Next, the clustering techniqueDBSCAN is used on the distance matrixM .

It identifies whether each node of the predicted traffic network Ĝ at a given

time, specified by an index inM , is part of a distinct traffic cluster Ĝc ⊆ Ĝ or

categorized as noise as seen in Figure 3.4. DBSCAN is capable of handling

irregularly shaped clusters and detecting outliers without prior knowledge of

the cluster count. This method is chosen because the resulting traffic network

might feature numerous unspecified traffic clusters along oddly shaped road

sections, where some nodes might not significantly contribute to a specific

cluster and are better classified as noise. Among the obtained clusters of the

predicted traffic network Ĝc, each is classified as describing congestion or a

free flow based on its node speeds and is considered as a potential event to

explain Ĝ∗.

DBSCAN

Noise Cluster 1 Cluster 2

T + 2 T ′T + 1 T + 1 T + 2 T ′

Predicted network Ĝ Clustered Ĝ

Figure 3.4: Illustration of DBSCAN clustering on the predicted traffic net-
work.

3.3.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [44] is employed as the localized search

algorithm that outputs the important subgraph G̃. MCTS is an algorithm for

decision-making that involves exploring tree structures representing combi-

natorial spaces. These trees consist of nodes representing states or configu-

rations of the problem, and edges representing transitions or actions between

these states. The approach utilizes a smart tree search strategy, maintaining a

balance between exploration and exploitation. MCTS conducts random sam-

pling through simulations, storing action statistics to guarantee more informed



3.3 Explainer 54

choices in each following iteration. The method performs random sampling in

the form of simulations and has become a state-of-the-art technique for com-

binatorial games. It has also found applications in practical domains such as

transportation, scheduling, and security, where efficient problem-dependent

modifications are often required.

The MCTS algorithm used in the thesis is listed in Algorithm 3.1 and vi-

sually illustrated in Figure 3.5.

Algorithm 3.1Monte Carlo Tree Search
Input: The output event to explain Ŷ∗; The STGNN Φ; The input traffic network G;
the sparsity threshold Ñ .
Output: The important subgraph G̃ serving as an explanation of the event Ŷ∗.
1: Groot ← subgraph of G by the global heuristic
2: Nroot[G]← Groot
3: r∗ ← −∞
4: G̃ ← NULL
5: for R rollouts do
6: path = [Nroot]
7: Ni ← Nroot
8: while number of nodes in Ni > Ñ do
9: do node expansion
10: Nc ← do node selection
11: vti ← traffic node removed in the node selection
12: GNc ← GNi \ {vti}
13: Nc[G]← GNc

14: Ni ← Nc
15: append(path,Ni)
16: end while
17: Nleaf ← Ni
18: append(path,Nleaf)
19: Gleaf = Nleaf[G]
20: r(Nleaf)← 1/L(Ŷ∗, Ỹ∗ | Φ(Gleaf)) ▷ reward of Nleaf
21: if r(Nleaf) > r∗ then
22: r∗ ← r(Nleaf)
23: G̃ ← Gleaf
24: end if
25: do backpropagation of r(Nleaf) on path
26: end for
27: return G̃
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Global
Heuristic

1 T0 0 1 T

0 1 T

Tree Leaf
Reward: 0.9

Tree Leaf
Reward: 0.8

Important
Subgraph

Tree Root

Objective

Figure 3.5: Illustration of the Monte Carlo Tree Search.

The root node Nroot is initially established as a selected subgraph within

the input traffic graph Groot ⊆ G according to a global heuristic defined in

section 3.3.3. A subsequent number of R iterations, known as rollouts, aim

to expand nodes within the search tree and each node in this structure repre-

sents a workable subset of Groot within the search area. The rollout ends as a

leaf node Nleaf, representing a candidate important subgraph Gleaf ⊆ Groot, is

reached. Moreover, Gleaf should respect the sparsity threshold Ñ . These iter-

ations involve choosing a path from the root Nroot to a leaf node Nleaf where

for each tree node Ni in the path describing the traffic network GNi
⊂ Groot:

1. A new tree node is expanded fromNi according to an action. The action

consists in removing a specific traffic node in GNi
.
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2. A child node is selected from Ni among the expanded ones. In partic-

ular, it is selected the child node that maximizes exploration and ex-

ploitation.

3. If Ni is a leaf node, its reward is computed using the STGNN Φ.

4. If Ni is a leaf node, its reward is backpropagated from it up to the path

nodes untilNroot is reached to update information useful for exploration

and exploitation in the tree search.

Ultimately, the final explanation outcome defined as the important subgraph

G̃ is determined by the subgraph Gleaf of the leaf node Nleaf that attains the

highest reward and which meets the specified sparsity threshold Ñ .

Initialization The root nodeNroot of the MCT is set as a subgraph Groot ⊆ G

of the input traffic network as seen in Figure 3.6. This subgraph contains can-

didate input traffic nodes that are considered important to explain the predicted

output event Ĝ∗ by Φ according to a global perspective. The subgraph Groot is

extracted according to the global heuristic explained in section 3.3.3.

Tree Root Nroot

0 1 T

Groot ⊆ G

Figure 3.6: Initialization of the MCTS.

Node Selection A node in the search tree denoted byNi defines a subgraph

GNi
⊂ Groot of the root nodeNroot containing the traffic network subgraph Groot.

The action of discarding a traffic node vj from GNi
at timestep t is represented

by avjt. Performing action avjt in the tree search results in the selection of the

tree nodeNc in the rollout path. Nc encloses a traffic network subgraph GNc ⊂

GNi
such that the traffic node vj at timestep t is removed (GNc = GNi

\ Vvj

t ).

The Upper Confidence bound applied to Trees (UCT) formula is utilized to
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ensure a balance between exploitation and exploration during node selection.

When assessing node Ni, the criteria for action selection are based on:

a∗ = argmaxavj t∈C(Ni)

 c(Ni, avjt)
n(Ni, avjt)

+ λ

r∗

√∑
avlt∈C(Ni) n(Ni, avlt)
n(Ni, avjt)


(3.21)

whereC(Ni) represents the actions of nodes already expanded fromNi, while

n(Ni, avjt) signifies the number of times action avjt has been selected in pre-

vious rollouts at node Ni and c(Ni, avjt) represents the cumulative reward

obtained by choosing action avjt at tree node Ni in previous rollouts. More-

over, λ is a constant parameter which weights the exploration in the search

tree. The parameter is divided by the best reward obtained so far r∗, in order

to push further exploration for low reward while limiting it if the best reward

is large.

In summation, the former component focuses on exploitation, favouring

nodes with higher cumulative rewards and that, hence, reached high rewarding

leaf nodes in previous rollouts. Contrarily, the latter relates to exploration,

favouring nodes which have been selected fewer times in the path of previous

rollouts. The transition from nodeNi to his childNc in the path is performed

by discarding from GNi
the node according to the best action a∗ as seen in

Figure 3.7.

Parent Node

Selected
Child Node

Not Selected
Child Node

Rollout Path

Figure 3.7: Illustration of Node Selection.
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Node Expansion The strategy of node expansion is the focus of the local-

ized aspect of the search, that seeks to expand nodes for paths leading to leaf

nodes containing important subgraph G̃. The expansion discards the global

aspect of the search, in order to find a local explanation more suited for the

instance to explain. Assuming the selected node Ni is expandable (i.e., the

set of already considered actions C(Ni) is not complete as there are possible

other actions leading to different child nodes), a random action avjt is selected

such that avjt /∈ C(Ni) and the set of expanded actions of Ni is then updated

by including avjt, C(Ni) = C(Ni)
⋃{avjt}. Figure 3.8 illustrates the process.

Parent Node

Expanded
Child Node

Removed
Node

Figure 3.8: Illustration of Node Expansion.

Node selection and expansion follow an alternating pattern. Starting from

the root nodeNroot, a new child node is expanded by a random action avjt and

avjt is then added to its set of expanded actions C(Nroot). Subsequently, the

action with the greatest value, as per Equation 3.21, is chosen among the root’s

expanded actions C(Nroot) and the corresponding child node Nc is selected.

This process iterates, conducting expansion and selection from the new node

Nc, until the current node qualifies as a leaf node, precisely when its subgraph

contains fewer or equal than Ñ traffic nodes.

Reward Simulation The reward is simulated by the STGNN Φ. In detail,

the reward of a leaf node r(Nleaf), describing a candidate important subgraph

of the input traffic network Gleaf ⊆ G, is computed as the reciprocal of the
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error L between the original predicted event speed features Ŷ∗ and the re-

predicted event speeds Ỹ∗ computed by Φ, while considering the information

limited by the subgraph Gleaf, following the optimization method observed in

Equation 3.4:

r(Nleaf) = 1
L(Ŷ∗, Ỹ∗ = Φ(G̃))

(3.22)

This assures that the lower the error between the original and re-predicted

event features, the higher the reward of the leaf node r(Nleaf). The process is

illustrated in Figure 3.9.

1 T0

Gleaf

STGNN Φ

Re-predicted Event to Explain

Reciprocal error
1/L

Reward r(Nleaf)

T + 2 T ′

Nleaf

T + 1 T + 2 T ′

Re-Predictions

Original Event to explain Ĝ∗

T + 2 T ′

Figure 3.9: Illustration of the reward mechanism.

In practice, the STGNNΦ cannot use the subset of input features described

by Gleaf as its input layer consists in a feature matrix of predetermined size

Xin ∈ RT×N×F , where T is the number of timesteps,N is the number of nodes

and F the number of features. Thus, the absence of traffic nodes in the input

traffic network G described by the subgraph Gleaf is obtained by substituting in

G the speed features of the missing traffic nodes by a predetermined missing

value flag s̃ such that:

∀ vi ∈ V ∧ t ∈ T | vi /∈ V tleaf, svi
t = s̃ (3.23)

with V tleaf being the set of nodes of Gleaf at timestep t and svi
t ∈ Xvi

t being the

speed feature of node vi at timestep t in the input graph G. The modified graph



3.3 Explainer 60

G incorporating the adjusted speeds as per the equation is utilized to obtain the

re-predictions Ỹ∗ by feeding it to the STGNN Φ.

Backpropagation Backpropagation, is applied after the reward simulation

of a leaf node Nleaf in order to update the statistics of the nodes in the roll-

out path for balancing exploration and exploitation in the successive rollouts.

During backpropagation, each node Ni selected by action avjt in the rollout

path spanning from the rootNroot to the leaf nodeNleaf will update the number

of selection of the action avjt fromNi (n(Ni, avjt)) and the cumulative reward

of selecting the action avjt from Ni (c(Ni, avjt)). In detail, as in Figure 3.10,

n(Ni, avjt) is updated by one n(Ni, avjt) = n(Ni, avjt)+1 and the c(Ni, avjt)

by the leaf node’s reward c(Ni, avjt) = c(Ni, avjt) + r(Nleaf).

Update c(Nleaf, a
2)

with r(Nleaf)
Update c(Ni, a

1)
with r(Nleaf)

Update n(Nleaf, a
2)

by 1
Update n(Ni, a

1)
by 1

NrootNiNleaf

a1a2

Figure 3.10: Illustration of the backpropagation mechanism.

3.3.3 Global Heuristic

Discovering all potential subgraphs of G (composed ofN · T nodes), meeting

a sparsity threshold of Ñ , involves a polynomial time complexity of O((N ·

T )Ñ), rendering it computationally intractable. To cut down the search space a

global heuristic is introduced, crafted to be easily understood and transparent,

merging domain-specific components to reduce the solution search space, in

line with the STGNN Φ’s method of extracting patterns. Furthermore, the

heuristic offers a comprehensive overview of the model predictions, as it is
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applied universally across instances by utilizing traffic-specific knowledge.

Subsequently, the MCTS utilizes this insight to reduce the search space to a

subgraph Groot ⊆ G of the input traffic network G and to conduct a targeted

exploration for each individual instance.

The heuristic leverages two main aspects of the traffic forecasting domain,

namely the fundamental equation of traffic flow and the assumption of local-

ized spatial correlation. These two concepts are combined to compute the

global heuristic correlation scores between each node of the input network

and the nodes of the event to explain.

Fundamental equation of traffic flow The fundamental equation of traffic

flow [45] is an essential concept in traffic theory and it is used to analyze and

model the behaviour of traffic in various conditions. It expresses the relation-

ship between the flowQ of traffic, the speed of vehicles V , and the density of

vehicles D on a roadway as:

Q = D · V (3.24)

The diagram observed in figure 3.11 denotes that small changes in flowQ are

propagated back through the stream of vehicles in the roadway and that the

speed of the vehicles V is related to the density of the traffic D. Intuitively,

traffic nodes that are close in space and time and exhibit similar speeds are

likely to be part of the same flow on a roadway as they demonstrate stronger

influences dictated by the fundamental equation. In contrast, if traffic nodes

are close in both time and space but have different speeds, it suggests they

operate independently, not adhering to the flow conservation defined by the

fundamental equation. Consequently, these nodes are likely to belong to dis-

tinct traffic streams, potentially representing different lanes on a road or even

entirely separate, unconnected roads. As nodes become more distant in either

time or space, the importance of flow conservation decreases. Consequently,
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the relevance of speed similarity between two nodes diminishes, as they are

less likely to belong to the same traffic stream governed by flow conserva-

tion. In practice, nodes distant in space are more likely to represent distinct

unconnected road segments, while nodes distant in time are more likely to

characterize unrelated traffic streams.

Figure 3.11: Diagram of the fundamental equation of traffic flow

To capture this dynamic, a flow correlation coefficient cf vivj

tt′ is introduced.
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This coefficient measures, in accordance with the fundamental law of traffic

flow, the potential influence of a node vi at time t in the input graph G on

predicting the speed of a node vj at time t′ within the forecasted traffic event

Ĝ∗:

cf
vivj

tt′ = exp(−(∆t+ ∆d))
∆s

(3.25)

Where ∆t is the time distance between timesteps t′ and t, while ∆d is the

spatial distance between traffic nodes vi and vj and ∆s is their speed abso-

lute difference at the given timesteps. The higher cf vivj

tt′ , the higher the flow

correlation between nodes vi at timestep t and node vj at timestep t′.

Assumption of localized spatial correlation The assumption of localized

spatial correlation [46], is based on the concept that not all the traffic nodes

in the input network G can contribute to the predictions in the output network

subgraph Ĝ∗ defining the traffic event to explain. Given a node vj of Ĝ∗ and

its last timestep t′ a spreading cone from vj at time t′ can be drawn in the input

network. The angle between the time and space axes of the spreading cone is

defined as θ. Given a node vi at a previous timestep t of the input network G,

vi is part of that cone if it satisfies the semi vertex angle tan(θ) = cr:

∆d
∆t
≤ cr (3.26)

where ∆d is the spatial distance between vi and vj and ∆t the temporal dis-

tance t′ − t. All points outside the spreading cone are independent of vj be-

cause their impact cannot reach location vj in the next t′− t steps. Figure 3.12

illustrates the process.

The lower the value ∆d/∆t or, equivalently, the higher ∆t/∆d between

two nodes at two given timesteps, the higher their localized spatial correlation.

To capture this property, a localized spatial correlation coefficient csvivj

tt′ is thus

computed as follows:

cs
vivj

tt′ = ∆t
∆d

(3.27)
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The higher csvivj

tt′ , the higher the localized spatial correlation between nodes

vi at timestep t and node vj at timestep t′.

Space

θ

t′T + 1T0

Time

node vi

Input nodes
dependent
on vi

Nodes
independent

on vi

Output
node vi

cr

Input network
spreading cone

Output network
spreading cone

Separation of
input and

output network

Figure 3.12: Diagram of the spreading cone from output node vi with last
timestep t′.

Global heuristic correlation scores Given the output subgraph of the event

to explain Ĝ∗, the correlation heuristic score among an input graph node vi at

time t and the set of nodes in Ĝ∗ is given by:

cvi
t =

∑
vj ∈

⋃
V̂∗

cs
vivj

tt′ + cf
vivj

tt′

|⋃ V̂∗|
(3.28)

with t′ being the last timestep of vj in Ĝ∗ and
⋃ V̂∗ is the set of distinct in-

dices of the nodes present in Ĝ∗ considering all timesteps. Note that for the

experiment, ∆s in cf vivj

tt′ was actually computed considering the speed differ-

ence among the input traffic node vi at timestep t and the average speed of the

output node vj across all the considered output timesteps. The search space is

cut by considering just the topN∗ nodes in G reaching the highest correlation

heuristic scores. The network G limited as the top scoring nodes is defined as

Groot ⊆ G and is employed in the MCTS illustrated in section 3.3.2.
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3.3.4 Important Subgraph Events Extraction

The important subgraph G̃ obtained by the explainer ψ contains the informa-

tion that leads the STGNN Φ to predict the output event Ĝ∗. However, the

specific nature of the nodes within this important subgraph G̃ and their rela-

tionships remain ambiguous. To enhance clarity, it becomes necessary to clus-

ter these nodes into events, such as congestions or free-flowing traffic, that are

spatially and temporally connected. These events offer clearer explanations

of the output event Ĝ∗, since they illustrate how previous traffic conditions in

the historical data contribute to shaping the predicted outcome. By discern-

ing these interconnected events, it becomes possible to unveil the sequential

progression of events that ultimately lead to the forecasted traffic state, enrich-

ing the understanding of influences within the traffic network. These events

consist in subgraphs G̃c ⊆ G̃ of the important subgraph G̃ that define clusters

of spatially and temporally connected nodes defining a congestion or a free

flow. In each cluster G̃c, it is necessary for their node speeds to be close to

characterizing one of these noteworthy traffic events.

To extract these events, a similar process to the one in section 3.3.1 is

adopted, although quietly modified, to account for the specificity of the data

that needs to be clustered. In detail, a distance matrixM ∈ R(N0+...+NT )×(N0+

...+NT ) between each important subgraph node at each timestep is defined,

with Ni being the number of nodes at timestep t and T the number of input

timesteps. The distance matrixM is constructed as the composition of three

different matrices, namely a spatial distance matrixMd ∈ R(N0+...+NT )×(N0+...

+NT ), a temporal distance matrixMt ∈ R(N0+...+NT )×(N0+...+NT ) and a speed

distance matrixMs ∈ R(N0+...+NT )×(N0+...+NT ). In each of these matrices, the

first row and column indices in [1, N0] define the measured distances of the

nodes in the important subgraph at the first time step t = 0, the second row

and column indices in [N0 + 1, N1] are the distances of the nodes in the im-

portant subgraph at the second time step t = 1 and so on. These matrices and



3.3 Explainer 66

their composition inM are computed with the same method as section 3.3.1.

Following that, a clustering algorithm is applied considering the distance

matrix M as a measure of dissimilarity between traffic nodes. DBSCAN,

which was used to select the events to explain in the predicted network, has

been discarded in favour of Agglomerative clustering. This is a hierarchi-

cal clustering technique which begins by assigning each traffic node in G̃ to

its own cluster. Then, it iteratively merges the closest clusters based on the

distance measures obtained by M , continuing until a specified number C of

clusters is achieved and G̃ is entirely decomposed in C clusters each defining

congestions or free flows G̃ = {G̃1, ..., G̃C} as seen in Figure 3.13. In this

approach, the determination of the number of clusters (C) is conducted sepa-

rately for each instance, considering a spectrum of potential values forC. The

ideal value ofC for each instance is selected to ensure that the speeds of nodes

within each cluster are maximally similar, while the speeds of nodes belong-

ing to different clusters are as dissimilar as possible. This method is chosen

as it clusters each traffic node of the important subgraph, without classifying

any one of them as noise and excluding it from a specific cluster. Not exclud-

ing any traffic point of G̃ is necessary, as all of them are considered important

nodes that lead to the prediction of Ĝ∗ according to the explainer ψ.

Agglomerative
Clustering

G̃1 G̃2 G̃3

1 T0 0 1 T

Important subgraph G̃ Clustered G̃

Figure 3.13: Illustration of Agglomerative clustering on the important sub-
graph of the input traffic network.
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3.4 Verbal Explanations

Following the explanation phase driven by the explainer ψ, it is acquired, for

a predicted event Ĝ∗, the significant subgraph G̃ of the input traffic network.

This subgraph is clustered into C distinct events G̃c with c ∈ [1, ..., C], such

that G̃ = {G̃1, ..., G̃C}. These clusters serve as the rationale behind the pre-

dictions in Ĝ∗ and they function as graphical explanations for the predictions

made by themodel. They establish the groundwork to extract verbal narratives

for the users, however, they need to be processed in two-step process: by ini-

tially extracting significant content from them and subsequently utilizing this

content to craft a coherent verbal translation.

3.4.1 Content Extraction

Let’s denote each cluster of the important input subgraph G̃ and the predicted

event Ĝ∗ as Gc. Each event Gc = {Gct0 , ...,G
c
tn} contains a set of traffic nodes

with a certain measured average speed on each of the discretized timesteps

T c = [t0, ..., tn]. If Gc is a cluster of the input subgraph, T c is the set of input

timesteps T , while if Gc is the predicted event subgraph Ĝ∗, T c is the set of

output timesteps T ′. Each Gct , with t ∈ T c is defined as Gct = (Vct ,X c
t , Ect , A),

where Vct ⊆ V is the set of nodes at time t, X c
t = {svi

t | vi ∈ Vct } the set

of speed attributes of each node (with svi
t , the speed of node vi at time t) and

Ect = {(vi, vj) | (vi, vj) ∈ E ∧ vi, vj ∈ Vct } the set of edges at timestep t.

The most important content to extract for each event Gc is the kind of

occurrence it describes, a traffic congestion or free flow, the location where the

event occurred in the physical space, the average speed of the nodes registered

for the event and the span of time in which the event occurred. A series of

functions aimed at extracting these pieces of information are introduced:

• speed(Gc) extracts the average speed sGc among all nodes at each timestep
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of the event described by Gc such that:

sGc = speed(Gc) =
∑
t∈T c

∑
vi∈Vc

t ,

svi
t

| ⋃
t′∈T c

Vct′|
(3.29)

• label(Gc) defines the kind of event kGc described by Gc according to

its average speed sGc . kGc can have the value of “severe congestion”,

“congestion” or “free flow” based on the speed thresholds ssc, sc as:

kGc = label(Gc) =



“severe congestion”, if sGc ≤ ssc

“congestion”, if tsc < sGc ≤ sc

“free flow”, otherwise

(3.30)

• location(Gc) delineates the event occurrence spots. It outputs a dictio-

nary, lGc , encompassing streets l0, l1, ... where the nodes of Gc are situ-

ated. These streets arematchedwith sets of kilometrage {km0, km1, ...},

specifying the precise location of nodes along each street such that:

lGc = location(Gc) = {l0 : {km0, ...}, l1 : {km0, ...}} (3.31)

Algorithm 3.2 Location Extraction Algorithm: location(·)
Input: A traffic event part of the explanation Gc.
Output: The location dictionary lGc with the streets as keys and the list of kilometres
at which the nodes are present as values.
1: lGc ← ∅
2: for vi ∈

⋃
t∈T c Vct do

3: lvi ← street of vi
4: kmvi ← kilometrage of vi in lvi

5: if lvi ∈ lGc then
6: append(lGc [lvi ], kmvi)
7: else
8: lGc [lvi ]← {kmvi}
9: end if
10: end for
11: return lGc
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As seen in Algorithm 3.2, for each node vi in Gc, defined by the union

of the set of nodes at each timestep
⋃
t∈T c Vct , the street lvi

where vi is

located is extracted. If lvi
is already a key of the dictionary lGc , then the

kilometrage kmvi
of the node on street lvi

is added to its value set, oth-

erwise the key lvi
is added to the dictionary lGc and its value is initiated

with a set containing its kilometrage kmvi
.

• days(Gc) returns the set of days dGc = {d0, d1, ...} in which the event

occurs, since the traffic forecasting obtained by the STGNN Φ is based

on a short term period, the days onwhich each event spans is usually just

one, although, it may happen that the event starts at aroundmidnight and

crosses over the next day. The set of days is obtained by the information

of the timesteps t where there are traffic nodes present in Gc (Vct ̸= ∅),

such that:

dGc = days(Gc) = {day of t | t ∈ T c ∧ Vct ̸= ∅} (3.32)

• time(Gc) outputs a pair tGc = (tstart, tend) defining the starting time of the

event tstart and the end time tend in the format hh:mm, where hh defines

the hour and mm the minute in each time of the pair:

tGc = time(Gc) = (tstart, tend) (3.33)

As seen in Algorithm 3.3, the starting time tstart of the event is obtained

as the time of the first timestep t where the event Gc presents a non-

empty set of traffic nodes, Vct ≠ ∅, while the end time tend is the time of

the last timestep t′ where traffic nodes are present in Gc, Vct′ ̸= ∅.
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Algorithm 3.3 Time Extraction Algorithm: time(·)
Input: A traffic event part of the explanation Gc.
Output: The pair of timesteps (tstart, tend) defining the time when the traffic event
started and ended.
1: tstart ← NULL
2: tend ← NULL
3: for t ∈ T c do
4: if Vct ̸= ∅ then
5: tend ← time of t
6: if tstart = NULL then
7: tstart ← time of t
8: end if
9: end if
10: end for
11: return (tstart, tend)

3.4.2 Verbal Translation

Following content selection, the verbal translation occurs through a template-

based approach. This method involves substituting placeholders in textual

templates with the chosen content to form coherent narratives. This approach

is preferred over complex, highly automated, and domain-generic operations

due to its adherence to the principle of Occam’s razor. This is a principle in

problem-solving and philosophy that advocates for selecting the simplest so-

lution when faced with multiple options. It suggests that among competing

hypotheses or explanations, the one that requires the fewest assumptions or

entities tends to be the most likely or preferred explanation. In essence, it en-

courages prioritizing simplicity and minimizing complexity when making de-

cisions or formulating explanations. Moreover, employing manual template-

based approaches, despite demanding more time for their construction, is ad-

vantageous as they are less susceptible to errors.

The verbal translation consists of composing a series of paragraphs by

exploiting the content extracted from the graphical explanations. The first

paragraph describes the predicted event Ĝ∗ and briefly sums up its causes,

while the second to last paragraphs illustrate in detail each cause G̃c leading

to the event which is each cluster of the important subgraph. The paragraphs
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describing the causes are sorted by the time G̃c occurred, based on its temporal

information dG̃c and tG̃c . Each paragraph is formulated by filling a series of

templates with the extracted content.

For the first paragraph three sets of templates are defined. τp which tem-

plates serve to describe the predicted event Ĝ∗, τ+ which templates may be

used to describe additional information of the event if needed and τc which

briefly sums up the causes G̃c leading to the event. In each set, its elements

are templates that contain the same latent information and are thus equivalent

in terms of semantics. In order to form the first paragraph a random template

from each set, Tp ∈ τp, T+ ∈ τ+ and Tc ∈ τc, is fetched and filled with the

extracted content. The filled templates are concatenated (∗) in the order:

first paragraph = Tp ∗ T+ ∗ Tc (3.34)

Each template Tp ∈ τp contains the following placeholders that need to be

filled with the selected content:

• The placeholder <speed> needs to be filled with the average speed ex-

tracted content sĜ∗ of the event to explain Ĝ∗.

• The placeholder <label> needs to be filled with the kind of event con-

tent kĜ∗ defining the event to explain Ĝ∗.

• The placeholder<location main> needs to be filled with the main street

information of the extracted location information lĜ∗ of location(Gc).

The main street is defined as the lmain ∈ lĜ∗ , comprising the larger set

of nodes considering each timestep in Ĝ∗. In practice, lmain is selected

as the street in the dictionary that presents the largest set of kilometres.

• The placeholder <day> needs to be filled with the days in which the

event Ĝ∗ occurred defined by dĜ∗ .

• The placeholder <time> is filled with the timespan in which the event

Ĝ∗ lasted. This information is found in tĜ∗ .
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The template T+ ∈ τ+ is filled just in the case the dictionary of location lĜ∗

is composed of more than one key, meaning that the event occurred in more

than one single street. In this case the template T+ presents a placeholder

<label> that is filled as per the template Tp and a placeholder <location sec-

ondary> that needs to be filled with the secondary street information of the

extracted location information lĜ∗ of location(Gc). The secondary streets are

all the streets in lĜ∗ minus themain one lmain. Hence, the secondary street infor-

mation is defined by the dictionary lĜ∗ with the key lmain excluded, lĜ∗\{lmain}.

In the case where the dictionary lĜ∗ contains just one street all the necessary

location information has already been mentioned by replacing the placeholder

<location main> in the template Tp, thus, filling T+ is unnecessary. In this

case T+ is substituted by the empty string ∅ in the concatenation, meaning that

Equation 3.34 is substituted by:

first paragraph = Tp ∗ ∅ ∗ Tc = Tp ∗ Tc (3.35)

Tp T+ Tc

“A <label> was predicted <loca-
tion main> <day>, with an average
speed of <speed> km/h <time>.”

“The <label> also affected <loca-
tion minor>”

“This was caused by <causes>.”

Extracted content

sĜ∗ = 42.47; kĜ∗ = severe congestion; lĜ∗ = {Golden State Freeway : {10, 11}}; dĜ∗ =
{Thursday, 05/06/2012}; tĜ∗ = (09:45, 10:35); kG̃1 = congestion; kG̃2 = free flow

Filled Tp Filled T+ Filled Tc

“A severe congestion was predicted
on Golden State Freeway at kms 10
and 11 on Thursday, 05/06/2012,
with an average speed of 42.47 km/h
from 09:45 to 10:35.”

∅ “This was caused by a congestion
and a free flow.”

Paragraph Composition

“A severe congestion was predicted on Golden State Freeway at kms 10 and 11 on Thursday, 05/06/2012, with an
average speed of 42.47 km/h from 09:45 to 10:35. This was caused by a congestion and a free flow.”

Table 3.1: Example of first paragraph formation.

The template Tc ∈ τc is filled by substituting a placeholder <causes>

by the information of the event kind kG̃c of each subgraph of the important
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subgraph G̃c, which serves as an explanation of Ĝ∗. In this template, the causes

leading to predictions are briefly summed up by a sentence such as “This was

caused by a series of congestions and free-flows.” or “This was driven by a

congestion.”. An example of the formation of the first paragraph is given in

Table 3.1.

For the other paragraphs, two sets of templates are used. τe which tem-

plates serve to describe the input event G̃c and τ+ which is the same set as the

first paragraph to describe additional location information. Once again, the el-

ements of each template are equivalent in terms of semantics. In order to form

the other paragraphs a random template from each set, Te ∈ τe and T+ ∈ τ+, is

fetched and filled with the extracted content. Afterwards, the filled templates

are concatenated (∗) in the order:

other paragraph = Te ∗ T+ (3.36)

Each template Te ∈ τe contains the same placeholders as the elements of τc,

although they are filled with extracted content of the considered input event

G̃c, instead of the extracted content of Ĝ∗. An example of the formation of the

other paragraphs is given in Table 3.2.

Te T+

“A contributing <label> manifested on <location
main>, occurring <time> <day> with an average speed
of <speed> km/h.”

“The <label> also affected <location secondary>.”

Extracted content

sĜc = 97.09; kG̃c = free flow; lĜc = {Ventura Freeway : {9, 10, 11, 12, 13},Golden State Freeway : {10}};
dĜc = {Thursday, 05/06/2012}; tĜc = (08:45, 09:40)

Filled Te Filled T+

“A contributing free flow manifested on Ventura Freeway
at kms 9, 10, 11, 12 and 13, occurring from 08:45 to 09:40
on Thursday, 05/06/2012 with an average speed of 97.09
km/h.”

“The free flow also affected Golden State Freeway at km
10.”

Paragraph Composition

“A contributing free flow manifested on Ventura Freeway at kms 9, 10, 11, 12 and 13, occurring from 08:45 to 09:40
on Thursday, 05/06/2012 with an average speed of 97.09 km/h. The free flow also affected Golden State Freeway at
km 10.”

Table 3.2: Example of other paragraphs formation.
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The final verbal translation consists of the concatenation of the first para-

graph, followed by the other paragraphs sorted by the time of the occurrence of

the event they define. The ruleset governing the filling of each placeholder p

within the templates is determined by a series of dedicated functions rule(p, c)

utilizing the required content c. A comprehensive explanation of the adopted

ruleset in the experiment is provided in section 4.5.2. In this section are also

discussed additional enrichments applied to the paragraphs to enhance the nat-

ural flow and expression of the verbal narratives.



Chapter 4

Experimental Setup

4.1 Technology Stack

The experiment utilizes Python [47] as the primary programming language.

PyTorch [48] version 2.0.0+cu117 was employed for building the STGNN

model and defining the error and validation metrics. Clustering methods like

DBSCAN and Agglomerative Clustering were selected from scikit-learn [49]

version 1.3.2. Numpy [50] version 1.23.5 was utilized for matrix operations,

while data analysis was performed through pandas [51] version 1.5.3. The

visualization of the spatio-temporal traffic networks on the geographical maps

was accomplished using Kepler.gl [52]. Furthermore, the GeoPy [53] Python

library has been used for geolocation operations.

The experiment was conducted on a machine with an architecture com-

prising 16GB of RAM, an Intel Core i7 10700k 2.60 GHz 6-core CPU, and

an NVIDIA GeForce RTX 2080 GPU with 8GB of RAM. The STGNN train-

ing and inference operations have been performed using GPU computations

through the Cuda Pytorch library.

To ensure reproducibility, seeding was employed for random operations.

Specifically, seed 42 was used for the random Python library, the random

numpy module, as well as for Pyorch and cuda random modules. More-

over, deterministic Cuda operations were exclusively used by setting cudnn.
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deterministic as True.

4.2 Data

Experiments were carried out using two extensive real-world datasets: The

METR-LA dataset, comprising traffic data gathered from loop detectors along

Los Angeles County’s highways [54] and the PEMS-BAY dataset, which loop

detectors data is sourced from the California Transportation Agencies Per-

formance Measurement System (PeMS). The experiment uses the same sub-

set of data as the one collected in the paper Diffusion Convolutional Recur-

rent Neural Network: Data-Driven Traffic Forecasting [55]. Specifically, the

METR-LA dataset employs 207 sensors covering the area of central Los An-

geles, while including the Glendale, Burbank and La Cañada Flintridge dis-

tricts. On the west side, it extends up to the Sepulveda zone. Data is gathered

from March 1st, 2012, to June 30th, 2012, over a 4-month period. The traffic

speed readings are aggregated in 5-minute windows for a total of 6, 519, 002

observed traffic data points. On the other hand, the PEMS-BAY dataset in-

cludes 325 sensors in the Bay Area mainly covering the zone of central San

Jose while also including areas of Milpitas, Santa Clara, Cupertino, Sunny-

vale and Mountain View. The data is collected from January 1st, 2017, to

May 31st, 2017, spanning 6 months. Speed readings are aggregated once

again in 5-minute windows for a total of 16, 937, 179 traffic data points. These

two datasets were chosen for the experiment due to their availability as open-

source data and their extensive use as benchmarks in traffic forecasting ex-

periments. Figure 4.1 illustrates the spatial distribution of the loop detectors

contained in the datasets.

For both dataset the following content is provided:

• The latitude and longitude information for each loop detector.

• An adjacency matrix measuring the spatial proximity between any pair



4.2 Data 77

of loop detectors normalized between 0 and 1.

• For each discretized timestep, the date and time of the measurement

along with the registered average speed in miles per hour by each loop

detector.

(a) METR-LA (b) PEMS-BAY

Figure 4.1: Distribution of the sensors in the employed datasets.

4.2.1 Analysis

In both datasets, observations with a speed value of 0 are considered as miss-

ing data. A closer look at the METR-LA dataset reveals that the instances

with missing speed information amount to a significant portion, accounting

for 8.1% of all observations. Conversely, in the PEMS-BAY dataset, the oc-

currence of missing data is notably low, constituting only 0.0031% of the total

data.

As seen in Figure 4.2, the speed distribution of METR-LA nodes displays

a left-skewed pattern, suggesting a prevalence of free-flowing traffic events

and rare congestions during the observed period. A prominent peak at value 0

indicates a significant number of missing speed data instances, aligning with

the previously observed high percentage of missing data. Regarding the dis-

tribution of observation timestamps in METR-LA for both time of day and

day of the week, each element appears well represented, displaying a uniform

distribution pattern.
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(a) Speed frequency. (b) Time of the day fre-
quency.

(c) Day of the week fre-
quency.

Figure 4.2: METR-LA data distribution.

Likewise, Figure 4.3 demonstrates a left-skewed speed distribution among

PEMS-BAY nodes, suggesting infrequent congestion occurrences. Unlike

METR-LA, there are no peaks at value 0, aligning with the previously seen

low percentage of missing data. Additionally, the distributions for time of

day and day of the week exhibit uniform patterns in PEMS-BAY, indicating

an equal representation for each day and time slot.

(a) Speed frequency. (b) Time of the day fre-
quency.

(c) Day of the week fre-
quency.

Figure 4.3: PEMS-BAY data distribution.

The datasets are further inspected by extracting the speed distribution of

the three nodes exhibiting the most significant speed variations, considered

pivotal for analysis, for each day of the initial week as a sample. Addition-

ally, an analysis is conducted on the average speed distribution of all nodes

based on both the hour of the day and the day of the week. Regarding the

first week of METR-LA, Figure 4.4 shows that during weekdays, the lowest

speeds occur between 7:00 am and 6:00 pm. However, on certain days like

Monday and Tuesday, speed picks up during off-peak hours, notably around

12:00 am and 1:00 pm. Notably, on Friday and Saturday, the trend of low
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speeds seems to persist until approximately 8:00 pm. This might be associ-

ated with these days being near the end of the week when people tend to be

more active during later hours. This pattern of lower speeds in late hours isn’t

observed on Sunday. On weekends, it’s clear that movement is less in the

early hours, with significant speed decreases starting around 10:00 am. For

Saturday, slower speeds continue until 8:00 pm, while on Sunday, the slower

speed trend diminishes around 2:00 pm.

Figure 4.4: Analysis of the speed of pivotal nodes of METR-LA on the first
week.

As seen in Figure 4.5, in terms of hourly METR-LA average speeds, there

are two notable dips occurring during peak traffic hours at 8:00 a.m. and 5:00

p.m., corresponding to the times when people commute to and from work.

These periods likely experience heavier traffic flow. Conversely, the highest

speeds are unsurprisingly seen during nighttime hours when traffic flow tends

to be lighter. The average speed typically remains high throughout the week,

fluctuating between 90 to 100 km/h. Weekdays generally exhibit the lowest

average speeds, except for Mondays. Conversely, higher average speeds are

noticeable during the weekends, suggesting reduced overall traffic congestion.
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(a) Average speed per hour. (b) Average speed per week

Figure 4.5: Analysis of the average speed of the METR-LA nodes for the
collected period.

For what concerns PEMS-BAY, Figure 4.6 depicts that during the week-

days of the first week, the lowest speed values occur between 3:00 pm and 7:00

pm, coinciding with working hours. Saturday exhibits a pattern where speeds

are high in the morning and decrease towards the night. Peaks in speed are

particularly noticeable at 9:00 am, 3:00 pm, and 8:00 pm. On Sunday, speeds

tend to remain high, with decreases between 12:00 am and 5:00 pm.

Figure 4.6: Analysis of the speed of pivotal nodes of PEMS-BAY on the first
week.

As depicted in Figure 4.7, the peak velocities in PEMS-BAY occur at
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night, while the lowest points are evident during rush hours at 8:00 am and

5:00 pm. As anticipated, weekdays exhibit lower average speeds, typically

below 100 km/h. On weekends, the average speed rises to over 105 km/h.

This aligns with expectations as traffic flow is usually heavier on weekdays.

However, the disparity in speed between weekdays and weekends isn’t sub-

stantial.

(a) Average speed per hour. (b) Average speed per week

Figure 4.7: Analysis of the average speed of the PEMS-BAY nodes for the
collected period.

4.2.2 Pre-processing

The experiment involved partitioning both datasets into three subsets: a train-

ing setDtrain, a validation setDval, and a test setDtest. Given the time-series na-

ture of the datasets, the split was performed sequentially in time. This sequen-

tial splitting ensured the preservation of temporal continuity and prevented

data leakage by maintaining the order of observations across the three sets,

thus avoiding the shuffling of future and past data within the subsets. The

division of the datasets aligns with the methodology detailed in the paper by

[42]. It involves allocating the last 20% of observations to form the test sets

Dtest, while the train and validation sets are extracted from the initial 80% por-

tions. More precisely, within these initial portions, the final 10% is allocated

to construct the validation sets Dval, leaving the initial 90% for the training

sets Dtrain.

After dividing the dataset into the three segments, sequence samples are
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generated by sliding a window of width T + T ′. Each sample sequence spans

time steps with 5-minute intervals. The initial T time steps are designated as

input data for predictions, while the subsequent T ′ steps represent the ground

truth. In this experiment, both T and T ′ are set to 12-time steps, establishing a

forecasting approach that utilizes one hour of historical traffic data to predict

the state of the traffic network in the subsequent hour. The resulting datasets

are thus built as a set of input instances X and the corresponding ground truth

Y . Each input instance Xi ∈ RT×N×F is a three-dimensional matrix describ-

ing the input traffic network with T = 12 the number of input timesteps,N the

number of traffic nodes and F the number of features. The feature set of each

node at each timestepXvi
t ∈ RF , where t ∈ [0, ..., 11] is an input timestep and

vi is a traffic node, is a vector composed of 9 features, where:

• The first element of the vector is the registered average speed svi
t of the

node vi at discretized timestep t.

• The second element is the encoding of the time of the day normalized

between 0 and 1 which is extracted from the date associated at timestep

t, such that:

X t
vi

[1] = hour(t) · 60 + minute(t)
23 · 60 + 59

(4.1)

with hour(t) a function to extract the hour at the given timestep t and

minute(t), the function to extract its associated minute.

• The last 7 elements are the one-hot-encoding of the day of the week

associated with timestep t, allowing for a unique binary sequence to in-

dicate which day is associated with that specific time step. For instance,

if the sequence is [0, 0, 0, 0, 0, 0, 1], it signifies that the time

step t corresponds to Sunday. Each day of the week is mapped to a

unique binary pattern, providing its categorical representation.

Note that no further time information, such as the month or the year, has been

extracted from the timestep and added to the input feature set. This decision
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was deliberate, as the time span covered in both datasets was too short for the

models to be trained to learn from such patterns.

On the other hand, each ground truth of an instance Yi ∈ RT ′×N×1 is a

three-dimensional matrix describing the output traffic network with T ′ = 12

the number of output timesteps and N the number of traffic nodes. In this

matrix, the last dimension records the registered speed svi
t of each node vi at

the respective time step t. Note that the encoding of the time information is

absent in the ground truth, as the focus of the STGNN is to learn future speed

information in the traffic network and the future timestamps can be deduced

directly from the input time information.

Each of the train, validation and test datasetsD is thus finally defined as a

set of instances containing input dataXi that describes the input traffic network

Gi at the first T timesteps and ground truth data Yi defining the traffic network

G ′
i at future T ′ timesteps, such that:

D = {(Gi,G ′
i)}i∈[0,...,N ] (4.2)

with N being the number of instances in D.

4.3 STGNN

In this section the hyperparameters of the used STGNNs, along with the train-

ing approach are described.

4.3.1 Hyperparameters

In the employed STGNN Φ the hidden features of the initial linear layer, of

the S-GNN layers and of the GRU layers are set to 64. Moreover, the latent

positional representation of the nodes obtained at the beginning of the S-GNN

layers is obtained by a sequential feed forward network composed as an input

linear layer with the same number of input and output features followed by
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another linear layer with an output dimension half of the input features. The

number of attention heads of the transformer layer is set to 4, while the number

of hidden features used for computing the queries Qvi
s , keys Kvi

s and values

V vi
s of each node vi for each attention head of the transformer s is set as 64.

Finally, the output layer outputing the predictions is a feed-forward neural

network composed of two layers. The former layer has a hidden dimension of

64 and is followed byReLU non-linear activation function. The latter layer has

output dimension 1, as the STGNN predicts an output matrix Ŷ ∈ RT ′×N×1,

containing for each node of the traffic network at each future timestep the

value of its predicted average speed.

4.3.2 Training Procedure

Two different STGNNs are trained, one on the METR-LA training set and the

second on the PEMS-BAY training data (Dtrain). To train both models Adam

is used as an optimizer with learning rate 1e − 3 and weight decay 2e − 6.

The training epochs are set to 200 for both models and the training instances

are shuffled at each epoch to induce a more generalized training approach and

reduce overfitting. For METR-LA a batch size of 64 is used during training,

while for PEMS-BAY this parameter is set as 32. The employed loss function

L is the Mean Absolute Error (MAE). The function computes the average of

the absolute error in each batch between the speed predictions of the model

Ŷi ∈ Ŷ , describing the predicted output traffic network, Ĝi and the ground

truth speeds Yi ∈ Y , describing the actual output traffic network, G ′
i. In the

computation the nodes having missing ground truth speeds are excluded (Yi =

{svj

t | s
vj

t ∈ Yi ̸= 0} and Ŷi = {ŝvj

t | ŝ
vj

t ∈ Ŷi ∧ s
vj

t ∈ Y ̸= 0}), such that:

MAE(Ŷ ,Y) = 1
N

N∑
i=1
|Yi − Ŷi| (4.3)

with N being the number of batch samples.
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Validation metrics are computed on the respective validation sets Dval af-

ter each training epoch is completed to measure the prediction accuracy of the

model on data non used for training and, thus, avoid overfitting. Validation

is obtained as the average error between the speed predictions of the model

Ŷi ∈ Ŷ and the ground truth speeds Yi ∈ Y of all the instances of the val-

idation datasets. Nodes having missing ground truth speeds are excluded in

the computation as it is done for computing the loss. For all metrics, smaller

values indicate better prediction performances. In particular the following

validation metrics are used:

• TheMean Absolute Error (MAE) computed as in the loss function as per

Equation 4.3. This metric is more punitive on samples that are easier to

predict and it is more suitable to measure the overfitting on those.

• The Root Mean Squared Error (RMSE), defined as the rooted average

squared difference between the predicted values and the ground truth:

RMSE(Ŷ ,Y) =

√√√√ 1
N

N∑
i=1

(Yi − Ŷi)2 (4.4)

This metric punishes more unpredictable samples and its error measures

overfitting mainly on those.

• Mean absolute percentage error (MAPE), which considers the percent-

age of errors to ground truth as:

MAPE(Ŷ ,Y) = 100
N

N∑
i=1
|Yi − Ŷi
Yi

| (4.5)

A checkpoint monitor is utilized to store the best performances of the models

during validation. It saves the weights of the STGNNsΦ at the epoch in which

the minimal sum of validation metrics is obtained:

argminΦi | i∈epochsMAEΦi
(Dval) + RMSEΦi

(Dval) + MAPEΦi
(Dval) (4.6)



4.3 STGNN 86

where MAEΦi
, RMSEΦi

and MAPEΦi
are the metrics computed from Φ at

epoch i. The trained models are ultimately evaluated on the same metrics used

for validation on the respective test datasets to acquire more dependable error

results on data that has not been encountered during the training procedure.

Additionally, the speed feature in the input data is scaled through standard

scaling before being fed to the STGNN. The remaining input features, namely

time of the day and one-hot-encoded day of the week, are not furtherly pro-

cessed as they already lay in a space between 0 and 1. Standardization aids

in stabilizing the training procedure by mitigating the challenge posed when

dataset features exist on varying scales. Neural networks find it challenging

to learn when adjustments to weights are required to cater to each feature dif-

ferently, causing instability in the training process. Standard scaling on each

speed input feature s is computed as:

s′ = s− µ̃
σ̃

(4.7)

where µ̃ is the mean value of the speed distribution estimated by averaging the

speed values in the whole respective training dataset Dtrain, while σ̃ is the es-

timated standard deviation of the speed distribution computed as the standard

deviation of the speed values in Dtrain. After the models inference the speed

values of the predictions ŝ′ are brought back to their original scale with:

ŝ = ŝ′ · σ̃ + µ̃ (4.8)

This guarantees that the predictions are expressed in miles per hour and that

the loss function and the validation metrics are computed between instances

with features at the same scale.
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4.4 Explainer

This section details the selection of the hyperparameters used in the DBSCAN

algorithm in order to extract the output events Ĝ∗ in the predicted traffic net-

works Ĝ, while illustrating the employed evaluation metrics to evaluate the

clustering results. Then it will delineate the hyperparameter selection ap-

proach for the explainer ψ along with the metrics used to evaluate the impor-

tant subgraph of the input network G̃ that ψ outputs as an explanation. Finally

it will illustrate the parameters used in the Agglomerative Clustering for the

content extraction of the events of the important subgraph G̃ along with the

evaluation approach used.

4.4.1 Output Events Selection Setup

Events selection is performed by dividing the traffic network Ĝ predicted by

the STGNN Φ into separate clusters Ĝ∗ which describe important events, such

as congestions or free-flows. These clusters should each contain traffic nodes

close in time and space and with low variances of speed. Moreover, each

of them should be as dissimilar as possible to the others. The clustering is

performed by applying the DBSCAN algorithm on the predictions Ĝ using a

distance matrixM among all nodes of Ĝ as a measure of dissimilarity.

The hyperparameters of DBSCAN are eps, measuring the maximum dis-

tance between two samples for one to be considered as in the neighbourhood

of the other, and min samples, namely the number of samples in a neigh-

bourhood for a point to be considered as a core point. For what concerns the

clustering of the predicted traffic networks Ĝ by Φ of both METR-LA and

PEMS-BAY, the selected values for eps is 0.35, while the number of min

samples is set as 5. Moreover, the speed distance matrix component of the

distance matrixM is overweighted by a factorW of 3 for both METR-LA and

PEMS-BAY.W , eps and min samples are tuned by performing grid search

on the predictions Ĝ obtained by Φ on the training datasets Dtrain.
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Each combination of hyperparameters was evaluated by considering the

following metrics on the clustering results:

• Within cluster variance: It measures the normalized variance among

the features of the same clusters weighted by the size of the cluster.

The lower the result the better, as it denotes that the similarity of each

element within the same clusters is high. It is applied on each clustered

prediction while considering the speed attributes of the nodes of the

obtained clusters as:

WCV = 1∑
Ĝi∈Ĝ Ni

∑
Ĝi∈Ĝ Niσ

2
i

σ2 (4.9)

with Ĝi being the ith cluster in the predicted network Ĝ, Ni being the

number of nodes in Ĝi and σ2
i the speed variance among its nodes. σ2 is

the variance among all nodes of Ĝ.

The within cluster variance is averaged across all clustering results of

each predicted network of the employed dataset. Moreover, nodes that

are flagged as “noise” by DBSCAN are excluded from the computation.

• Cluster Dissimilarity: It measures the dissimilarity among the features

of different clusters. The higher the result the better, as it denotes that

the dissimilarity of each element within different clusters is high. It

is applied on each clustered prediction while considering the speed at-

tributes of the nodes of the obtained clusters as:

CD =
∑

Ĝ1,Ĝ2∈Ĝ|Ĝ1 ̸=Ĝ2

√
N1 ·N2 · |µ1 − µ2|∑

Ĝ1,Ĝ2∈Ĝ|Ĝ1 ̸=Ĝ2

√
N1 ·N2

(4.10)

with Ĝi being the ith cluster in the predicted network Ĝ, Ni being the

number of nodes in Ĝi and µi the mean speed among its nodes.

The cluster dissimilarity is averaged across all clustering results of each

predicted network of the employed dataset. Moreover, nodes that are
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flagged as “noise” by DBSCAN are excluded from the computation.

• Noise Ratio: It measures the ratio of the nodes classified as outliers by

DBSCAN in a predicted traffic network Ĝi. The lower this value the

better, as it means that more nodes are assigned to a cluster. The noise

ratio is averaged across all clustering results of each predicted network

of the employed dataset.

DBSCAN has been applied for both METR-LA and PEMS-BAY on the

predictions of each instance of each dataset, namely the trainDtrain, validation

Dval and test setsDtest. The obtained clustered events of each prediction of each

set D have been collected into three different sets: a set describing events of

severe congestion, one describing congestions and the latter containing events

of free-flows of traffic. The rule applied to assign an event Ĝi to a specific set

considers two speed thresholds: t1 and t2 such that:

Ĝi =



severe congestion, if µi ≤ t1

congestion, if t1 < µi ≤ t2

free-flow, otherwise

(4.11)

where µi is the average speed of the traffic nodes in Ĝi. In detail, the thresholds

have been selected as the ones defined in the official mobility performance

reports of the Department of Transportation of California [56, 57]. For both

METR-LA and PEMS-BAY, the threshold for severe congestion t1 is set as 35

miles per hour or ≈ 56 kms per hour, while the one for a congestion t2 is set

as 60 miles per hour, meaning ≈ 96 kms per hour.

For bothMETR-LA and PEMS-BAY, three datasets are built, namelyD∗
train,

D∗
val and D∗

test. Each of these sets D∗ contains an equal number of severe con-

gestions, congestions and free flows. In practice, each instance of each dataset

D∗ is described by a predicted event Ĝ∗
i ⊆ Ĝi and the associated input traffic
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network Gi that led to the prediction of Ĝi by Φ, such that:

D∗ = {(Gi, Ĝ∗
i )}i∈[0,...,N ] (4.12)

where N is the number of instances in D∗. The number of events selected

in each dataset has been chosen in order to reflect the sizes of the respective

original datasets Dtrain, Dval and Dtest. In particular, for both METR-LA and

PEMS-BAY, 999 instances have been used for D∗
train, 198 for D∗

val and 300 for

D∗
test. In each dataset D∗, one third of events are severe congestions, one third

are congestions and one third are free-flows. The event selection criteria has

been employed in a way that the sampled events are as equidistant in time as

much as possible, in order to guarantee the maximum temporal variance of the

instances in the datasets.

4.4.2 Monte Carlo Tree Search Setup

The MCTS employed by the explainer ψ computes a global heuristic among

the traffic nodes of the input traffic network G and the nodes of a predicted

event to explain Ĝ∗. It obtains a subset of G defined as Groot, by selecting the

top N∗ scoring nodes according to the global heuristic. It finally performs a

localized MCTS on Groot and outputs an important subgraph G̃ ⊆ Groot that

serves as the explanation of the event Ĝ∗.

The hyperparameters of ψ containN∗, defining the size of Groot and Ñ , the

sparsity threshold describing the maximum size of the important subgraph G̃.

Other hyperparameters include the exploration weight λ used for weighting

the exploration in the MCTS, the number R of rollouts to perform and the

value s̃ that is used to substitute the speed values of the removed nodes in a

leaf of the tree Gleaf. For METR-LA N∗ is selected as double the value of

Ñ , while this hyperparameter is set as double the size of the total nodes in

the event to explain Ĝ∗. Additionally, λ is set as 20 and R as 50. Finally,

s̃ is set to 0, the original value used to define missing recorded speed data
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of traffic nodes. This value has been adopted since the frequency of missing

data in METR-LA is quite high as seen in section 4.2.1 and the STGNN Φ

is well-trained in order to recognize missing data patterns and output reliable

predictions despite it. For PEMS-BAY N∗ is selected with the same criteria

as in METR-LA, while Ñ is set as three times the size of the event to explain.

λ is set as 10 and R, again at 50. However, s̃ is not set to 0, as the frequency

of missing data in PEMS-BAY is insignificant as seen in section 4.2.1. Due

to this reason, the STGNN Φ trained on PEMS-BAY data is expectedly not

able to handle correctly missing node speed information. If the speed s̃vi
t of

each removed node vi at timestep t of Gleaf is set as 0, Φ is expected to confuse

it as an occurrence of severe congestion. Thus s̃ is set as an “out-of-bound”

value of the speed distribution, namely −60. The hyperparameters are tuned

by performing a grid search on the instances of the datasetD∗
train. Each possible

combination of hyperparameters was evaluated by considering the Fidelity−

on the sets D∗
train along with the average explanation time:

• Fidelity− [58]: It computes the difference in absolute error between

predictions obtained using the whole input graph and the ones obtained

using the important substructure of the input graph that serves as expla-

nation. The lower the metric the better, as the explanation obtained by

the important subgraph is more sufficient to explain the predictions:

Fidelity− = 1
N

N∑
i=1

(|Φ(Gi)− Φ(G̃i))|) (4.13)

Where Φ is the model computing the predictions, Gi the ith input graph,

G̃i the ith important subgraph serving as explanation andN the number

of instances used to compute the metric.

In the thesis work this metric is adapted for the problem task. It com-

putes the average error among each instance i between the original pre-

dicted event speeds Ŷ∗
i , obtained by feeding the STGNN Φ with the

whole input network G, and the re-predicted event speeds Ỹ∗
i , obtained
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by feeding to Φ just the important subgraph G̃. The metric is thus equiv-

alent to the computation of the MAE between each Ŷ∗
i and Ỹ∗

i and it is

actually expressed as:

Fidelity− = MAE− = 1
N

N∑
i=1

(|Ŷ∗
i − Ỹ∗

i |) (4.14)

Where N are the number of instances in D∗
train, Ŷ∗

i are the original pre-

dicted speeds of the event to explain Ĝ∗
i at instance i in D∗

train and Ỹ∗
i

are the re-predicted event speeds of the event at instance i using just the

important subgraph G̃i obtained from Gi by ψ.

• Average Explanation Time: It measures the average time employed

to output the important subgraph G̃ by ψ for each instance of D∗
train.

The goodness of the results of the explanations has been evaluated onD∗
val and

D∗
test. The selected metrics are:

• Fidelity−: Computed as the averaged MAE between Ŷi and Ỹi consid-

ering all the instances i of the dataset as per Equation 4.14.

Moreover, modifications of the classic Fidelity− have been also con-

sidered by using different error metrics, namely RMSE and MAPE.

RMSE− is the fidelity computed using the RMSE as:

RMSE− =

√√√√ 1
N

N∑
i=1

(Ŷ∗
i − Ỹ∗

i )2 (4.15)

MAPE− is the fidelity computed using the MAPE as:

MAPE− = 100
N

N∑
i=1
| Ŷ

∗
i − Ỹ∗

i

Ŷ∗
i

| (4.16)

• Fidelity+ [58]: It computes the difference in absolute error between

predictions obtained using the whole input graph and the ones obtained

using the complement of the important substructure of the input graph
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that serves as explanation. The higher the metric the better, as the expla-

nation described by the important subgraph is more necessary to explain

the predictions:

Fidelity+ = 1
N

N∑
i=1

(|Φ(Gi)− Φ(G̃c
i ))|) (4.17)

Where Φ is the model computing the predictions, Gi the ith input graph,

G̃c
i = G \ G̃i the complement of the ith important subgraph serving as

explanation andN the number of instances used to compute the metric.

In the thesis, this metric calculates the average error per instance i be-

tween the originally predicted event speeds Ŷ∗
i , derived from the en-

tire input network G fed into the STGNN Φ, and the re-predicted event

speeds Ỹ∗c
i , obtained by feeding only the complement of the impor-

tant subgraph G̃c
i to Φ. The metric computes the Mean Absolute Error

(MAE) between each Ŷ∗
i and Ỹ∗c

i , represented as:

Fidelity+ = MAE+ = 1
N

N∑
i=1

(|Ŷ∗
i − Ỹ∗c

i |) (4.18)

Where N are the number of instances in the dataset.

Similarly to Fidelity−, modifications of the classic Fidelity+ have been

also considered. RMSE+ is the fidelity computed using the RMSE as:

RMSE+ =

√√√√ 1
N

N∑
i=1

(Ŷ∗
i − Ỹ∗c

i )2 (4.19)

MAPE+ is the fidelity computed using the MAPE as:

MAPE+ = 100
N

N∑
i=1
| Ŷ

∗
i − Ỹ∗c

i

Ŷ∗
i

| (4.20)

• Sparsity [58]: It measures the average opposite of the fraction of in-

put data that is selected as being important by the explanation method.
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Note that higher sparsity values are better as they indicate that expla-

nations are sparser, thus likely to capture only the most essential input

information. Sparsity is computed as:

Sparsity = 1
N

N∑
i=1

(1− mi

Mi

) (4.21)

Where N are the number of instances in the dataset, mi the number of

nodes in the important subgraph used for the explanation G̃i obtained

by ψ at instance i andMi the number of nodes of the input graph Gi at

instance i.

• Average Explanation Time: measuring the average time employed to

output the important subgraphs across all instances.

4.4.3 Important Subgraph Events Extraction Setup

Content extraction from the important subgraph G̃ is performed by dividing

G̃ into C separate clusters Ĝc which describe important events, such as con-

gestions or free-flows. These clusters should each contain traffic nodes close

in time and space and with low variances of speed. Moreover, each of them

should be as dissimilar as possible to the others. The clustering is performed

by applying the Agglomerative Clustering algorithm using a distance matrix

M among all nodes of G̃ as a measure of dissimilarity. The parameter W

weighting the speed factor inM is set to 3.

Agglomerative clustering is performed on the obtained G̃ 5 times consid-

ering a number of clusters varying from 1 to 5. Single linkage is applied as a

metric to agglomerate pairs of clusters at each iteration of the algorithm. In

detail, it agglomerates clusters that present the minimum distances between

all traffic nodes of the two sets according toM . This linkage method expects

to minimize the Within Cluster Variance (Equation 4.9) among each obtained

cluster G̃c. The number of clusters C ∈ [1, ..., 5] is selected as the one that
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leads the Agglomerative Clustering results of G̃ to the highest ratio between

Cluster Dissimilarity (Equation 4.10) and Within Cluster Variance (Equation

4.9):

argmaxc = CDc

WCVc
(4.22)

Where CDc andWCVc are the Cluster Dissimilarity and Within Cluster Vari-

ance scores on Agglomerative Clustering computed using c clusters. This

scoring function selects c that balances a high dissimilarity between clusters,

while their within variance is low.

4.5 Verbal Explanations

This section details the specifics of the content selection functions applied to

the subgraphs G̃c of the important subgraph G̃ and to the event to explain Ĝ∗.

Then it defines the adopted ruleset to fill the placeholders of the templates

used to translate into narratives the extracted content, along with additional

enrichments applied to the verbal narratives to enhance their natural flow and

expression.

4.5.1 Content Extraction Setup

For what concerns extracting the average speed sGc from an event Gc, in order

to conform to the International System of Units the speed measurements sGc

are translated from miles per-hour to kilometers per hour by multiplying it by

the constant 1.609344. Precisely, 1 mile is equivalent to 1.609344 kms.

The speed thresholds used to define the event kind kGc of the event Gc as

per Equation 3.30 are the same as the ones used in section 4.4.1. In particular:

ssc, the threshold for severe congestions, is set as 35 miles per hour or ≈ 56

kms per hour, while sc, the one for congestions, is set as 60 miles per hour,

meaning ≈ 96 kms per hour.
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In the dictionary describing the location of event Gc, lGc , The set of kilo-

metrage of each street l ∈ lGc is computed by rounding the kilometrage of

each node to the nearest integer. This is applied in order to have a more con-

cise and descriptive set of kilometrages for the streets in the dictionary. The

kilometrage for each node vi is pre-calculated using the Haversine formula,

determining the kilometers between the latitude and longitude of vi and the

starting point of the street in which vi is situated, which is the north-westmost

point. The starting point of each street has been manually fetched using Ar-

cGIS World Street Map [59], while the street each node is part of has been

extracted using the GeoPy [53] Python library.

4.5.2 Verbal Translation Setup

The placeholder of the various templates is filled using a specific ruleset, such

that given a placeholder pwithin the templates and a specific piece of extracted

content c, the placeholder is filled through a function:

rule(p, c) (4.23)

Following, the ruleset for each placeholder given the content used to complete

it is defined:

• The placeholder<speed> is simply directly filledwith the average speed

extracted content sGc of the related event Gc such that:

rule(<speed>, sGc) = “sGc” (4.24)

As an example, the <speed> placeholder of the template “A <label>

was predicted<locationmain><day>, with an average speed of <speed>

km/h <time>.” given sGc = 42.47 is filled as “A <label> was pre-

dicted <location main> <day>, with an average speed of 42.47 km/h

<time>.”



4.5 Verbal Explanations 97

• The placeholder <label>, similarly for what concerns <speed> is di-

rectly filled with the kind of event kGc of the related event Gc such that:

rule(<label>, kGc) = “kGc” (4.25)

For instance, the <label> placeholder of the template “A <label> was

predicted <location main> <day>, with an average speed of <speed>

km/h <time>.” given kGc = severe congestion is filled as “A severe

congestion was predicted <location main> <day>, with an average

speed of <speed> km/h <time>.”

• The placeholder<location main> is filled by firstly extracting the street

lmain ∈ lGc with the largest list of kilometrages for event Gc. Afterwards,

the set of kilometrages {km1, km2, ...} is sorted in ascending order. If

the set of kilometrages contains just one element km1, the placeholder

is filled as follows:

rule(<location main>, lGc) = “lmain at km km1” (4.26)

On the other hand, If the set of kilometrages is composed ofm elements

{km1, km2, ..., kmm}, the placeholder is filled by separating the sorted

kms by a comma while “AND-ing” the second last and the last as fol-

lows:

rule(<location main>, lGc) = “lmain at kms km1, km2, [...] and kmm”

(4.27)

Furthermore, if the context of the template requires it, the preposition

“on” is added at the beginning of the filled placeholder. For instance,

the <location main> placeholder of the template “A <label> was pre-

dicted <location main> <day>, with an average speed of <speed>

km/h <time>.” given main street lmain = Golden State Freeway with
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kilometrages {10, 11} is filled as “A <label> was predicted on Golden

State Freeway at kms 10 and 11 <day>, with an average speed of

<speed> km/h <time>.”

• Placeholders<location secondary> are completed by getting a sentence

for each street in lGc \ lmain excluding the main one lmain as per Equations

4.26 or 4.27. Afterwards, each obtained sentence {s1, ...sm} is filled by

separating them by a commawhile “AND-ing” the second last sm−1 and

the last sm as follows:

rule(<location secondary>, lGc) = “s1, s2, [...] and sm” (4.28)

As an example, the <location secondary> placeholder of the template

“The <label> also affected <location secondary>.” given secondary

street information lsecondary = {Golden State Freeway} with kilome-

trages {10} is filled as “The <label> also affected Golden State Free-

way at km 10.”.

• The placeholder <day> for event Gc is filled through a series of pro-

cesses. Firstly, the extracted days dGc = {d1, ..., dm} of event Gc are

sorted chronologically. Then the date datedi
and day of theweekweek-daydi

are extracted for each day di ∈ dGc . Lastly, if dGc contains just one day

d1, the placeholder is filled as follows:

rule(<day>, dGc) = “on weekdayd1
, dated1” (4.29)

Otherwise, if dGc contains more days, where the first day is d1 and the

last is dm, the placeholder is filled as:

rule(<day>, dGc) = “from weekdayd1
, dated1 to weekdaydm

, datedm”

(4.30)

As an example, the <day> placeholder of the template “A <label> was
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predicted <location main> <day>, with an average speed of <speed>

km/h<time>.” given a days content dGc = {{weekday : Thursday, date :

05/06/2012}} is filled as “A <label> was predicted <location main>

on Thursday, 05/06/2012, with an average speed of <speed> km/h

<time>.”

• The placeholder <time> of event Gc is filled by the times denoting the

beginning tstart and the end tend of the event tĜc , but it also considers the

information of the days of the event dGc . In particular, if dGc contains

just one day and tstart = tend, meaning that the event started and ended

at the same discretized timestep, the placeholder is filled as:

rule(<time>, tGc , dGc) = “at tstart” (4.31)

Contrarily, if dGc contains more days or tstart ̸= tend, the event has taken

place across multiple timesteps and the placeholder is filled as:

rule(<time>, tGc , dGc) = “from tstart to tend” (4.32)

For instance, the <time> placeholder of the template “A <label> was

predicted <location main> <day>, with an average speed of <speed>

km/h <time>.” given a time content tGc = (09:45, 10:35) and a days

content dGc = {{weekday : Thursday, date : 05/06/2012}} is filled as

“A <label> was predicted <location main> <day>, with an average

speed of <speed> km/h from 09:45 to 10:35.”

• Placeholders <causes> given the events G̃1, ..., G̃C that explain the pre-

dicted event Ĝ∗ are filled by extracting firstly the list of labels kG̃c of each

input event G̃c, defined as K. For simplicity in the verbal translation,

severe congestions in the extracted list K are renamed as congestions.

Then the translation of the placeholder in the template is applied with
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the following rule:

rule(<causes>, K) =

=



“an unknown reason”, if |Kc| = 0 ∧ |K f| = 0

“a free flow”, if |Kc| = 0 ∧ |K f| = 1

“a congestion”, if |Kc| = 1 ∧ |K f| = 0

“a congestion and

a free flow”, if |Kc| = 1 ∧ |K f| = 1

“a series of free flows”, if |Kc| = 0 ∧ |K f| > 1

“a series of congestions”, if |Kc| > 1 ∧ |K f| > 0

“a series of free flows

and a congestion”, if |Kc| = 1 ∧ |K f| > 1

“a series of congestions

and a free flow”, if |Kc| > 1 ∧ |K f| = 1

“a series of congestions

and free flows”, otherwise

(4.33)

where K f is the sublist of K containing just free flows labels and Kc

is the sublist containing just congestion labels. For instance, the place-

holder<causes> in the template “This was caused by <causes>.” given

K = [congestion, free flow] is filled as “This was caused by a conges-

tion and a free flow.”.

Note, that an extreme scenario, in which no input contributing events

are present is considered, by setting the cause of the prediction as “an

unknown reason”. This may happen in the case that the input data from

which the important subgraph is extracted presents a traffic-network

composed solely of missing speed information. In this case, the im-

portant subgraph is empty G̃ = ∅, thus, no reason behind the prediction
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can be extracted.

The final verbal translation is finally enriched with additional information in

order to make the narrative more fluent and coherent:

• If the event to explain is explained by a single input event G̃, the para-

graph that explains G̃ is edited by substituting the first preposition “a”

with “the” to reflect the fact that just one event led to the prediction.

As an example, the paragraph “A contributing free flow manifested on

Ventura Freeway [...]” is modified with “The contributing free flow

manifested on Ventura Freeway [...]”

• If more than one input event G̃1, ...G̃c, contributed to the predicted event,

additional connectors are placed at the beginning of each paragraph de-

scribing each G̃c. If G̃c is the first described input event, the paragraph

will start with a connector such as “Firstly,” or “Initially,”, while if it

is the last described event connectors such as “Finally,” or “Lastly,”

are added at the beginning. For the other in-between events other con-

nectors are integrated at the beginning of the paragraph such as “Next,”

or “Subsequently,”. For instance, if the paragraph A contributing free

flow manifested on Ventura Freeway [...]” provides a description of the

first contributing event, it is modified as “Initially, a contributing free

flow manifested on Ventura Freeway [...]”.

• If a paragraph describes an input event G̃c which label kG̃c has already

been seen on previously described input events, a connector such as

“another” or “a further” will be added before the description of the

event kG̃c in the paragraph. This is applied to reinforce the fact that there

are more than one occurring events of the same kind. For example, if

the paragraph A contributing free flow manifested on Ventura Freeway

[...]” is given and in previous paragraph free flows have already been

described, it is modified as “A further contributing free flowmanifested

on Ventura Freeway [...]”.
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• Similarly to the previous point, if a paragraph describes an event G̃c that

occurred in the same location of a previously described input event, a

connector such as “again” or “once more” will be added before the

description of the location in the paragraph. If the paragraph A con-

tributing free flow manifested on Ventura Freeway [...]” is given and

previous paragraph describes an event occurring again on Ventura Free-

way, it is modified as “A contributing free flow manifested on, again,

Ventura Freeway [...]”.

• The translation of the days information dG̃c of an event G̃c is omitted or

modified according to the day information dĜ∗ of the event to explain

Ĝ∗. If the day information in dG̃c is equivalent to dĜ∗ , meaning that the

input event G̃c occurred in the same days as G̃∗, then the description of

the day in the paragraph illustrating G̃c is completely omitted, as it is re-

dundant and implicit. As an example, if the paragraph “A contributing

free flow manifested [...] occurring from 08:45 to 09:40 on Thursday,

05/06/2012 with an average speed [...]” is given and the day informa-

tion is the same as the one of the event to explain, it is modified as “A

contributing free flow manifested [...] occurring from 08:45 to 09:40

with an average speed [...]”. If the day information in dG̃c is composed

of more days the following considerations are applied:

– If dĜ∗ has just one day and the last day of dG̃c is the day of dĜ∗ and

the first day of dG̃c is the day before the day of dĜ∗ , the day infor-

mation in the paragraph describing G̃c is substituted with: “from

the previous to the same day”

– If dĜ∗ has more days and the last day of dG̃c is the first day of dĜ∗

and the first day of dG̃c is the day before the first day of dĜ∗ , the

day information in the paragraph describing G̃c is substituted with:

“from the previous to the first day”

– If dĜ∗ has just one day and the last day of dG̃c is the day of dĜ∗
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and the first day of dG̃c , d1 is not the day before the day of dĜ∗ ,

the day information in the paragraph describing G̃c is substituted

with: “from d1 to the same day”

– If dĜ∗ has more days and the last day of dG̃c is the first day of dĜ∗

and the first day of dG̃c , d1 is not the day before the first day of dĜ∗ ,

the day information in the paragraph describing G̃c is substituted

with: “from d1 to the first day”

– If the last day of dG̃c is the day d1 before the first day of dĜ∗ , the

day information in the paragraph describing G̃c is substituted with:

“from d1 to the previous day”

If dG̃c is composed of one day and dĜ∗ ̸= dG̃c:

– If the day of dG̃c is the day before the first day of dĜ∗ , the day

information in the paragraph describing G̃c is substitutedwith: “on

the previous day”.

– If dĜ∗ has more days and the day of dG̃c is the same as the first

one of dĜ∗ , the day information in the paragraph describing G̃c is

substituted with: “on the first day”.





Chapter 5

Results

5.1 STGNN Results

In this section, the training and evaluation outcomes of the STGNNs Φ on the

METR-LA and PEMS-BAY datasets are explored. The analysis first focuses

on the training progression, showing the prediction results of the models dur-

ing the various epochs. Then, the models’ performance results on the test set

are illustrated, focusing on their forecasting power considering different hori-

zons of time in the future and considering different events separately. Finally,

a qualitative analysis of the predictions is illustrated for both datasets.

5.1.1 Training Results

For what concerns the training outcomes for METR-LA and PEMS-BAY, as

it can be seen in Figures 5.1 and 5.2, in both cases no clear signs of overfitting

are observed during the whole process for both MAE, RMSE and MAPE. It

is interesting to point out how the validation results on METR-LA exceed the

performances of the training.
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Figure 5.1: Training process outcome on the METR-LA dataset.

Figure 5.2: Training process outcome on the PEMS-BAY dataset.

5.1.2 Test Results

Table 5.1 presents the average prediction performance across the test sets for

both METR-LA and PEMS-BAY datasets, measured in terms of Mean Ab-

solute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute

Percentage Error (MAPE) for forecasting at intervals of 15 minutes, 30 min-

utes, and 60 minutes ahead.
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Next 15 minutes Next 30 minutes Next 60 minutes

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA 2.92 5.55 7.8% 3.27 6.4 9.05% 3.86 7.74 11.5%

PEMS-BAY 1.18 2.48 2.43% 1.49 3.36 3.26% 1.92 4.43 4.54%

Table 5.1: STGNNs prediction results considering different time horizons.

As anticipated, the prediction accuracy tends to decrease with the increase

in the forecasting horizon for both datasets. However, the errors remain within

reasonable limits and affect only a small portion of the predictions as ex-

pressed by MAPE. Notably, the prediction outcomes for METR-LA display a

notably inferior performance compared to PEMS-BAY. This discrepancy can

be attributed to two primary factors. Firstly, METR-LA involves a notably

smaller number of instances in its dataset compared to PEMS-BAY, leading

to a training process with fewer observations. Secondly, and more signifi-

cantly, METR-LA exhibits a substantially higher rate of missing information

compared to PEMS-BAY. This higher degree of missing data contributes to

increased uncertainty in the predictions, consequently impacting their accu-

racy.

Table 5.2 showcases the average prediction performance on the test sets

for METR-LA and PEMS-BAY datasets, evaluating the MAE, RMSE, and

MAPE across different speed predictions, categorized into severe congestions,

congestions, and free-flow events. These event distinctions are established

using the thresholds outlined in section 4.4.1.

Severe congestions Congestions Free flows

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA 12.2 17.9 65.1% 5.21 7.73 10.6% 1.96 4.16 3.02%

PEMS-BAY 10.6 15.8 49.1% 4.46 7.05 9.23% 1.07 1.95 1.64%

Table 5.2: STGNNs prediction results considering different event kinds.

The STGNNperformance reveals considerable difficulty in accurately pre-

dicting severe congestion for both datasets, outputting unreliable predictions



5.1 STGNN Results 108

in these instances. Predictions for congestion demonstrate acceptable out-

comes, whereas themodel shows notably successful performance in predicting

free-flow events. This trend aligns with the data distribution noted in section

4.2.1, where the dataset exhibits an imbalance, featuring more instances of

free-flow scenarios compared to congestion. The model’s training methodol-

ogy remains consistent with the approach detailed in the original paper [42],

without specific handling of the imbalance in node speeds during the training

process. Consequently, the model demonstrates inferior performance in pre-

dicting instances associated with lower speeds, describing instances of severe

congestion.

5.1.3 Qualitative Analysis

Figure 5.3 displays a comparison between the ground truth speeds and the pre-

dicted speeds in the test dataset for 3 randomly selected nodes, each having 100

randomly chosen observations. The visualization highlights the challenges

encountered in predicting severe congestion, consistent with the observations

from Table 5.2. Despite these challenges, the model exhibits commendable

performance. However, it struggles with certain speed peaks and troughs, in-

dicating difficulty in accurate predictions for these specific instances.

(a) METR-LA predictions. (b) PEMS-BAY predictions.

Figure 5.3: Visualization of the speed predictions by the STGNNswith respect
to ground truths for randomly selected observations.
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5.2 Explainer Results

In this section, the outcomes of the Explainer ψ are quantified and analysed

on the test sets D∗
test of both METR-LA and PEMS-BAY in terms of Fidelity-,

Fidelity+, Sparsity and average prediction time. Moreover, a visual example

of an extracted important subgraph G̃ by ψ divided in the event it is composed

of concerning an output event Ĝ∗ is shown for both datasets.

5.2.1 Test Results

Table 5.3 expresses the Fidelity- results on the explanations of both datasets

using the MAE error (MAE-), the RMSE error (RMSE-) and the MAPE error

(MAPE-). It illustrates the result averaged for the different kinds of predicted

events and as their total average value across the whole dataset.

Severe congestions Congestions Free flows

MAE- RMSE- MAPE- MAE- RMSE- MAPE- MAE- RMSE- MAPE-

METR-LA 3.21 3.82 14.1% 1.65 2.06 3.45% 0.713 0.881 1.09%

PEMS-BAY 12.5 12.9 59.3% 2.65 3.13 5.24% 1.97 2.15 2.93%

Total Average

MAE- RMSE- MAPE-

METR-LA 1.84 2.24 6.14%

PEMS-BAY 5.67 6.02 22.4%

Table 5.3: Fidelity− explanation results considering different event kinds.

The explanations provided by ψ reveal the challenges the STGNNs Φ face

in accurately predicting severe instances of congestion as the Fidelity− results,

where higher values indicate poorer performance, are notably higher for these

events in both datasets. While the Fidelity− results in METR-LA for severe

congestions are still acceptable, they are significantly high for what concerns

this kind of predicted event in PEMS-BAY. This implies that the explainer

struggles to assemble a subgraph comprehensive enough to justify the pre-

dictions of severe congestions by Φ in this latter dataset. The results also

suggest that Φ is not ideally trained to forecast severe congestion, potentially
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indicating its lack of internal consideration of traffic laws and patterns spe-

cific to these events. Conversely, the results of Fidelity− for other events and

considered as average are generally low, indicating that the explanations are

sufficient as they are enough for Φ to correctly predict the outcome event.

Table 5.4 showcases the Fidelity+ outcomes for both datasets, encompass-

ing as error metrics theMAE (MAE+), RMSE (RMSE+) andMAPE (MAPE+).

Thesemetrics are shown as their average value for the distinct predicted events

and their collective average across the entire dataset.

Severe congestions Congestions Free flows

MAE+ RMSE+ MAPE+ MAE+ RMSE+ MAPE+ MAE+ RMSE+ MAPE+

METR-LA 19.1 20.9 86.2% 9.68 10.6 20.4% 2.96 3.5 4.54%

PEMS-BAY 17.2 19.1 73.1% 9.6 10.7 19.2% 41.8 46 63.2%

Total Average

MAE+ RMSE+ MAPE+

METR-LA 10.6 11.7 37.1%

PEMS-BAY 22.8 25.3 51.8%

Table 5.4: Fidelity+ explanation results considering different event kinds.

For both datasets, the Fidelity+ scores are consistently higher than Fidelity−

across all event types. This indicates that the extracted important subgraphs

play a necessary role in explaining the predictions made by the STGNNs (Φ).

In the case of METR-LA, Fidelity+ echoes the observations from Fidelity−:

predicting severe congestions poses a greater challenge, suggesting that the

STGNNs are better attuned to predicting free-flows or moderate congestions

than severe congestions. Consequently, the subgraphs associated with severe

congestions achieve higher Fidelity+ scores, underscoring their necessity for

the model to accurately predict these events. However, these subgraphs ap-

pear to be less critical when predicting congestions or free-flows, potentially

due to the model’s inherent bias toward these events.

Regarding PEMS-BAY, two notable observations emerge. Firstly, Fidelity+

closely aligns with Fidelity− in explaining instances of severe congestion.

This indicates that the explanations for these events might not be significantly
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more necessary than sufficient, lacking a comprehensive representation of the

model’s predictions. Secondly, the explanations seem crucial for predicting

free-flow events, reflected in their highest Fidelity+ among all event types.

This could be attributed to the dataset’s larger spatial node representation than

METR-LA, potentially leading to confusion in predictions if the essential in-

formation provided by the important subgraph is excluded from the explana-

tion set generated by ψ.

Table 5.5 illustrates consistently high sparsity average results for both

METR-LA and PEMS-BAY, indicating that the explanations derived by ψ are

concise. This conciseness is anticipated given that, in both datasets, the size

Ñ of the important subgraphs used for explanations is relatively small, be-

ing respectively twice the size of the predicted events in METR-LA and three

times the predicted events in PEMS-BAY.

Sparsity

METR-LA 0.985

PEMS-BAY 0.985

Table 5.5: Sparsity of the explanations.

Finally, the average time taken to compute the explanations is relatively

low for both datasets: 8.88 seconds forMETR-LA and 11.6 seconds for PEMS-

BAY. The increased time in PEMS-BAY is attributed to the larger subgraph

used for the localized search conducted by ψ. However, despite this variation,

the processing time remains within acceptable limits, ensuring that users can

obtain explanations within a reasonable timeframe.

5.2.2 Visual Examples of the Results

In Figure 5.4, an illustrative example showcases the extracted important sub-

graph, segmented into its cluster events, explaining a severe congestion oc-

currence near the intersection of two streets in METR-LA. The visualization

highlights the succinct nature of the explanation, as it involves only a small
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subset of nodes compared to the entire spatial network. The explanation aligns

with the notion of localized spatial correlation introduced in section 3.3.3, as

the nodes considered in the explanation are visually spatially close to the ones

of the event to explain.

(a) Important subgraph. (b) Event to explain.

Nodes excluded
in the explanation

Nodes of Clusters of
the important subgraph

Node of the
event to explain

Figure 5.4: Overall visualization of an explanation of a prediction in METR-
LA.

Moreover, Figure 5.5 provides a detailed depiction of the clusters within

the important subgraph across time, specifically focused on explaining the

event highlighted in Figure 5.4. This visualization significantly reinforces the

concept of localized spatial correlation. As time progresses, there’s a notice-

able reduction in spatial distance between nodes influencing the explanation

and those representing the output event being explained. This is expected,

since as time approaches the event to be explained, the relevance of nearby

input nodes in influencing the prediction increases. Conversely, nodes located

farther away gradually contribute less to the explanation of the event.

The graphical representation also illustrates the evolving nature of clus-

ters associated with the event. Two primary clusters, namely a congestion

( ) and a severe congestion ( ), consistently contribute across the entire ob-

served period within the central region of the important subgraph. Conversely,

a smaller cluster denoting a free-flow in the northern zone ( ) contributes to

explaining the prediction just in the first three timesteps. Similarly, another

congestion in the northernmost area ( ), evolving within the first 6 timesteps,
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demonstrates contributions to predict the event. Additionally, a small conges-

tion ( ) emerges in the last three timesteps, situated in the eastern area of the

subgraph. For what concerns the event to explain, it is a severe congestion that

develops constantly along the output period, involving the same set of nodes

( ) just above the intersection of the two streets.

(a) Input timesteps
0-2.

(b) Input timesteps
3-5.

(c) Input timesteps
6-8.

(d) Input timesteps
9-11.

(e) Output timesteps
0-2.

(f) Output timesteps
3-5.

(g) Output timesteps
6-8.

(h) Output timesteps
9-11.

Nodes excluded
in the explanation

Nodes of Clusters of
the important subgraph

Node of the
event to explain

Figure 5.5: Detailed visualization of an explanation of a prediction in METR-
LA.

In Figure 5.6, an example illustrates the extracted important subgraph di-

vided into cluster events explaining congestion on a major highway in PEMS-

BAY. Similarly to the previously observed explanation, this visualization em-

phasizes the concise nature of the subgraph relative to the complete spatial

network.

The detailed explanation depicted in Figure 5.7 reveals that major conges-

tion ( ) developing for the whole period along the street where the congested

output event took place was the primary influence on the prediction. Addi-

tionally, other factors contributing to this prediction include minor congestion

( ), a small free-flow ( ), and a limited severe congestion ( ) occurring in

the northern section of the important subgraph across the period.
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(a) Important subgraph. (b) Event to explain.

Nodes excluded
in the explanation

Nodes of Clusters of
the important subgraph

Node of the
event to explain

Figure 5.6: Overall visualization of an explanation of a prediction in PEMS-
BAY.

(a) Input timesteps
0-2.

(b) Input timesteps
3-5.

(c) Input timesteps
6-8.

(d) Input timesteps
9-11.

(e) Output timesteps
0-2.

(f) Output timesteps
3-5.

(g) Output timesteps
6-8.

(h) Output timesteps
9-11.

Nodes excluded
in the explanation

Nodes of Clusters of
the important subgraph

Node of the
event to explain

Figure 5.7: Detailed visualization of an explanation of a prediction in PEMS-
BAY.

5.3 Verbal Translation Examples

Table 5.6 illustrates the verbal translation result for the explanation of the pre-

diction in the METR-LA dataset shown in Figure 5.4 of section 5.2.2. The

verbal description aims at explaining the causes that led to the prediction of
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severe congestion in San Diego Freeway on Wednesday, 04/06/2012, occur-

ring from 07:45 to 08:40. Images between brackets (·) in the verbal narrative

are added to guide the user to visualize the event in the graphical support of

the translation.

Event to explain Causes

Verbal translation

“San Diego Freeway at kms 11, 12, 13 and 14 was forecasted to see severe congestion ( ) on Wednesday,
04/06/2012, with an average speed of 24.04 km/h from 07:45 to 08:40. This occurred because of a series of
congestions ( , , , ) and a free flow ( ).

To start, a contributing free flow ( ) materialized, at 107.75 km/h, on San Diego Freeway at kms 8 and 10
from 06:45 to 06:50.

Following this, contributing congestion ( ) occurred, averaging at a speed of 82.83 km/h, on, another time,
San Diego Freeway at kms 9 and 10 from 06:45 to 07:10.

Afterwards, a new contributing congestion ( ) took place, with an average speed of 88.65 km/h, on Ventura
Freeway at kms 27, 28, 29, 30 and 31 occurring from 06:45 to 07:40. The congestion also took place on, once
again, San Diego Freeway at kms 11, 12 and 13.

After this, a contributing severe congestion ( ) happened on, yet again, San Diego Freeway at kms 10, 11,
12, 13, 14 and 15 from 06:45 to 07:40 with an average speed of 19.70 km/h.

To conclude, yet a further contributing congestion ( ) occurred at 07:30 on, again, Ventura Freeway at km
27 with an average speed of 72.62 km/h.”

Table 5.6: Verbal translation of an explanation of a prediction in METR-LA
aided by graphical support.

Similarly, Table 5.7 presents the verbal translation outcome for the pre-

diction explanation in the PEMS-BAY dataset, specifically for the congestion

event illustrated in Figure 5.6 of section 5.2.2. This verbal narrative aims to

show the factors contributing to the forecasted congestion on I 880, occurring

on Saturday, June 21st, 2017, from 16:20 to 17:15. Supporting images en-

closed in parentheses (·) have been included in the verbal description to aid
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users in visualizing the event in the graphical context of the translation.

Event to explain Causes

Verbal translation

“A congestion ( ) was predicted on I 880 at km 61 on Saturday, 21/06/2017, with an average speed of 83.19 km/h
from 16:20 to 17:15. This was a result of a series of congestions ( , ) and a free flow ( , , ).

Firstly, contributing congestion ( ) took place on Bayshore Freeway at km 62, with an average speed of
68.93 km/h, from 15:20 to 15:55.

Next, a contributing free flow ( ) happened, at 112.06 km/h, on, again, Bayshore Freeway at km 63 from
15:20 to 16:10.

After this, an extra contributing congestion ( ) materialized, with an average speed of 91.86 km/h, on I 880
at kms 60 and 61 occurring from 15:20 to 16:15.

Lastly, a contributing severe congestion ( ) happened on, another time, I 880 at kms 60 and 61, occurring
from 15:25 to 16:05 with an average speed of 52.03 km/h.”

Table 5.7: Verbal translation of an explanation of a prediction in PEMS-BAY
aided by graphical support.
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Conclusions

This thesis aimed to create an eXplainable AI (XAI) system tailored for non-

technical users to interpret short-term speed predictions in traffic networks

generated by a Spatio-Temporal Graph Neural Network (STGNN). Its primary

focus was on extrapolating reasons behind traffic congestion and free flow by

extracting a significant subgraph from the input network and converting these

explanations into user-friendly verbal narratives.

To achieve this, the system utilized an explainer designed as a transpar-

ent, easily understandable post-hoc model inspection technique. Initially, the

explainer employs a global heuristic based on traffic-domain laws to select

a subset of highly correlated input data related to the predicted event. It then

refined this subset using a localizedMonte Carlo Tree Search (MCTS) to iden-

tify instance-specific input data influencing the prediction, culminating in nar-

rative explanations through a template-based approach.

The results showcased the explainer’s capacity to capture concise, mean-

ingful explanations, particularly effective in describing events aligning with

the STGNN’s training, such as moderate congestions and free-flow scenar-

ios. The verbal narratives provided users with a comprehensible guide to un-

derstanding the sequence of events leading to the STGNN predictions. This

underscored the potential of integrating domain-related laws in constructing

explanations for opaque models, hinting at their internal reasoning reflecting



Conclusions 118

these fundamental laws.

However, some limitations surfaced primarily in the explainer’s efficacy in

explaining rare events, notably severe congestions, especially concerning the

PEMS-BAYdataset. This observation suggests that the STGNNs are not prop-

erly well-trained in predicting severe congestion. Repurposing the explainer

for models more aligned with data distribution and capable of handling such

events could yield a more comprehensive understanding of their explanatory

power. The explainer’s dependence on domain-related laws presents another

limitation in the fact that these rules need manual adjustments when new at-

tributes are added to the input data or if there are alterations in the prediction

task. This confines the explainer’s expertise to the realm of traffic prediction,

making it less adaptable to diverse scenarios and impeding its generalizability

beyond this specific task.

Looking ahead, future work could explore the explainer’s broader appli-

cability. This includes extending its usage beyond traffic speed prediction to

encompass various traffic attributes and characteristics. Investigating how the

explainer performs across diverse domains utilizing different heuristic laws

would enrich its applicability and reliability. Additionally, further assessing

the explainer’s model-agnostic nature by applying its explanation process to

models beyond STGNNs is crucial for understanding its generalizability.
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