

Abstract

In recent years, the High-Performance Computing (HPC) community has placed

a growing emphasis on energy efficiency, recognizing the escalating energy con-

sumption of non-computational components within these systems. This shift has

prompted discussions on environmental sustainability in the Information Tech-

nology (IT) sector, particularly in HPC, where the term ”green” has become a

recurring theme. This context sets the stage for the exploration of artificial intelli-

gence (AI) as a key player in predicting and optimizing energy parameters within

HPC systems. The coexistence of AI with traditional optimization techniques is

highlighted as a promising approach. The thesis, with its central focus on two

primary objectives, unfolds within this landscape. Firstly, the thesis aims to com-

pile a detailed dataset encompassing the energy consumption of nodes in an HPC

system, specifically tailored to various configurations of jobs executed on the sys-

tem. Secondly, it seeks to assess the efficacy of an AI model in providing realistic

predictions of energy consumption for unknown cases. The specific research focus

hones in on parallel algorithms designed for solving linear systems, both in fault-

tolerant and non-fault-tolerant versions. This choice is rooted in the widespread

applications of linear systems across diverse sectors, adding practical relevance to

the undertaken research.

Contents

Introduction 1

1 Linear systems solver algorithms: IMe and ScaLAPACK 4

1.1 The Inhibition Method (IMe) . 4

1.1.1 The Inhibition Method with reduced memory footage 7

1.2 ScaLAPACK . 9

1.3 Fault tolerance management . 10

1.3.1 ScaLAPACK Diskless Checkpoining strategy 10

1.3.2 IMe Checksum strategy . 11

2 Essential Machine Learning Concepts for Predictive Analysis 16

2.1 Overview . 16

2.2 Regression Models . 18

2.2.1 Decision Tree . 18

2.2.2 Random Forest . 22

2.2.3 Gradient Boosting Decision Tree 23

2.3 Evaluation Metrics for Regression Models 24

2.3.1 Root Mean Squared Error (RMSE) 24

2.3.2 Mean Absolute Error (MAE) 26

2.3.3 Mean Absolute Percentage Error (MAPE) 28

ii

CONTENTS

2.4 Tuning the hyperparameters . 29

3 Dataset Structure and Implementation 31

3.1 CRESCO6 Cluster Architecture . 31

3.2 Dataset Structure . 33

3.3 Dataset Implementation . 34

3.3.1 Preparation phase for job launch 35

3.3.2 Job Launch Scripts . 39

3.3.3 MPI-based Command Line “Tester” 43

3.3.4 Communication with the monitoring node 46

3.3.5 Job results statement . 51

3.4 Configuration Parameters . 52

4 Predictive Analysis 54

4.1 Data Exploration . 54

4.1.1 Data Preprocessing . 55

4.1.2 Data Description . 56

4.1.3 Boxplots . 57

4.1.4 Histograms target . 59

4.2 Regressor Evaluation . 61

4.3 Prediction error analysis . 62

4.3.1 Random Forest . 62

Conclusions 65

A Additional analyses for ideally numerically stable dataset 68

A.1 Prediction error analysis . 69

A.1.1 Decision Tree . 69

A.1.2 Gradient Boosting Decision Tree 70

iii

CONTENTS

B Dataset analysis with real numerical stability conditions 72

B.1 Data Exploration . 72

B.1.1 Data Preprocessing . 72

B.1.2 Data Description . 73

B.1.3 Boxplots . 73

B.1.4 Histograms target . 74

B.2 Regressors Evaluation . 75

B.3 Prediction error analysis . 76

B.3.1 Decision Tree . 76

B.3.2 Random Forest . 77

B.3.3 Gradient Boosting Decision Tree 79

Bibliography 83

List of Figures 85

List of Tables 86

Index 87

Acknowledgements 87

iv

Introduction

In recent years, the High-Performance Computing (HPC) community has increas-

ingly emphasized the importance of developing energy-efficient HPC systems. The

focus has been on improving both the energy efficiency of computation and the

energy efficiencies related to other system components, such as memory or disks.

The energy consumption of non-computational components within an HPC system

constantly represents an increasing percentage of the overall energy consumption.

Numerous articles have addressed and continue to address the prevailing topic

of environmental sustainability, especially in the field of Information Technology

(IT) and, more specifically, in areas such as HPC [1], [2]. The term “green” has

become a recurring theme in discussions on eco-friendly practices in the IT sector.

Top500.org [3] stands out as the website that regularly updates a classifica-

tion of the most powerful supercomputers globally, providing details on hardware

specifications, the organization that owns or uses them, their geographical loca-

tion, and more. Published twice a year, this ranking, known as the “Top500”,

lists supercomputers based on their computing capacity, measured in teraflops

per second (trillions of floating-point operations per second). Widely used as a

benchmark, it assesses the computing capabilities of the world’s most advanced

machines. Alongside this ranking, a second list has been published since 2008,

monitoring the energy consumption of supercomputers. Dubbed the “Green500”,

it displays results using the GFlops/watts metric for these supercomputers, includ-

1

INTRODUCTION

ing their peak performance number (for peak power efficiency) and their Linpack

performance number (for actual power efficiency).

In nearly all fields, a crucial and increasingly pervasive element is the use of

artificial intelligence. Its significant evolution in recent years has opened the door

to new possibilities, including the prediction and estimation of energy parame-

ters within systems such as HPC [4]. This approach not only provides advanced

projections of energy consumption but also identifies key factors influencing its

variations. Such a perspective allows for in-depth analysis, offering concrete in-

sights on how to optimize system performance and achieve energy savings.

Utilizing artificial intelligence in this context is seen as an additional method-

ology, coexisting with traditional techniques for optimizing computation and im-

proving the energy efficiency of individual system components. This synergy be-

tween artificial intelligence and more conventional approaches could represent a

significant advancement in the quest for more effective solutions for the overall

optimization of high-performance systems.

This thesis aims to achieve several objectives, focusing primarily on two fun-

damental aspects. Firstly, the goal is to create an extensive dataset containing

detailed information on the energy consumption of nodes in a High-Performance

Computing system, specifically for each configuration of jobs executed on such a

system. Secondly, the intention is to assess the effectiveness of an artificial intelli-

gence model in providing realistic predictions of energy consumption of unkonwn

cases.

The specific focus of this thesis revolves around parallel algorithms designed

for solving linear systems, presented in both fault-tolerant and non-fault-tolerant

versions. This choice stems from the inherent significance of linear systems as a

mathematical model with wide-ranging applications across various sectors, includ-

ing computer protocols, image processing (computer vision), sound manipulation,

2

INTRODUCTION

building design, railway systems, and other fields.

The emphasis placed on linear systems in addressing real-world problems adds

pertinence and practicality to the research undertaken in this thesis. It contributes

to the development of predictive models capable of anticipating energy perfor-

mance in scenarios involving the utilization of HPC systems. This approach aims

to proactively intervene to enhance energy efficiency during the operation of such

systems.

Thesis outline

The work is structured into several chapters, each dedicated to a specific phase of

the research. In Chapter 1, the resolution of linear systems using the IMe (Inhi-

bition Method) and ScaLAPACK algorithms, which will be the two algorithms in

the dataset, is presented in detail. In addition to explaining how these algorithms

work, strategies for handling potential failures in a high-performance computing

(HPC) environment are explored.

Chapter 2 provides the essential fundamentals for predictive data analysis,

examining the chosen Machine Learning models, accuracy evaluation metrics, and

hyperparameter tuning techniques.

In Chapter 3, the structure of the dataset is described, outlining the steps to

prepare the necessary conditions for job execution. Measurement mechanisms, cho-

sen configurations, and the implementation of a second equivalent dataset charac-

terized by more realistic numerical stability, achieved through the use of non-ideal

condition number matrices, are detailed.

Finally, Chapter 4 presents the results of predictive analysis based on the IMe

and ScaLAPACK algorithms, using the criteria outlined in Chapter 2. Any less

relevant graphs from the first dataset are discussed in Appendix A, while Appendix

B illustrates the graphs derived from the predictive analysis of the second dataset.

3

Chapter 1

Linear systems solver algorithms:

IMe and ScaLAPACK

Before presenting the main activity of this thesis, it is necessary to set out the

concepts behind it. In particular, this section will present the two linear system

resolution algorithms used and their parallel implementation to be adopted on

HPC systems. In addition, the respective fault tolerance management and recovery

methods will be described.

1.1 The Inhibition Method (IMe)

IMe represents a precise approach grounded in the Effect Superposition Theo-

rem, initially formulated in 1963 [5] for the examination of complex linear electric

circuits. Subsequently, it found application in analyzing broader scenarios, en-

compassing physical linear systems [6] and square matrix inversion [7]. Given its

original focus on accuracy rather than efficiency, this method involves additional

computations compared to more widely adopted algorithms like Gauss-Jordan

Elimination (GJE) when tackling linear systems.

4

1.1. THE INHIBITION METHOD (IME)

The original technique solves a linear system of type Ax = b, where A is the

matrix of n× n coefficients, b is the vector of constant terms and x is the vector

representing the unknowns. Based on this specification, the initial step involves

the construction of a matrix T (n), referred to as the inhibition table, calculated as

follows:

T (n) =

1
a1,1

0 0 1
a2,1
a1,1

.
an,1
a1,1

0
1

a2,2
. 0

a1,2
a2,2

1
an,2
a2,2

...
...

. . .
...

...
...

...
. . .

...
...

0
1

an−1,n−1

0
...

... . . . 1
an,n−1

an−1,n−1

0 0
1

an,n

a1,n
an,n

.
an−1,n

an,n
1

where ai,j are the elements ofA. The matrix T (n) is a decomposition of the original

problem into n sub-problems (one for each row).

IMe employs a foundamental formula to progressively decrease the dimensions

of T (n) by one row and one column through iterative steps, so that at each step

(usually called level) l (with l = n. . . 1), T (l) represents the original problem

decomposed into l sub-problems:

t
(l−1)
i,j = (t

(l)
i,j − t

(ι)
l,j · t

(ι)
i,n+l) · h

(l)
i , l = n . . . 1, i = 1 . . . l − 1, j = 1 . . . n+ l − 1

where h
(l)
i is the ith element of the auxiliary vector h(l), which must be recomputed

at each level as well:

h
(l)
i =

1

1− t
(l)
l,n+i · t

(l)
i,n+l

, l = n . . . 2, i = 1 . . . l − 1.

Figure 1.1 shows graphically what has been said so far. At each level, the element

5

1.1. THE INHIBITION METHOD (IME)

(t
(l−1)
i,j) of the inhibition table is recalculated using its previous value (t

(l)
i,j), the

elements of the last row (t
(l)
l,j) and column (t

(l)
i,n+l) of the previous inhibition table

and the corresponding auxiliary quantity h
(l)
i . For the calculation of h(l), only

the elements in the last row (t
(l)
l,n+i)and column (t

(l)
i,n+l) of the inhibition table are

required.

To calculate the solution of the system, the vector of constant terms b and the

solution vector x are initialised and updated at each level as shown in Table 1.1.

When all iterations are completed (i.e. at level l = 1), the matrix T (1) has only

one row and n columns. The vector x(1) houses the solution of the linear system.

Initialization Update

b b
(n)
i =

{
bn i = n

bi − t
(n)
n,n+ibn o/w

b
(l−1)
i = b

(l)
i − t

(l−1)
l−1,n+ib

(l)
l , i = 1 . . . l − 2

x x
(n)
i =

{
t
(n)
n,i · bn i = n

0 o/w
x
(l−1)
i = x

(l)
i − t

(l−1)
l−1,i b

(l)
l , i = l − 1 . . . n

Table 1.1: IMe prescribed steps to compute the system’s solution.

Figure 1.1: Graphical visualization of the fundamental formula and the computa-
tion of the auxiliary quantities. (Source: [8])

6

1.1. THE INHIBITION METHOD (IME)

1.1.1 The Inhibition Method with reduced memory footage

As shown in a later study [9], the Inhibition Table T (n) can also be represented in

the form of two matrices: E(n) (matrix of effects) and K(n) (matrix of inhibition

quantities), and the vector h(n) was converted to αn.

Figure 1.2: Inhibition Table alternative form.(Source: [9])

It was also illustrated in [9] that, to reduce the memory space occupied, the

matrix can be compressed by taking the K(n) matrix alone and replacing its di-

agonal with that of the E(n) matrix, generating a single matrix V (n) (Figure 1.3).

According to this change, we initialise each v
(n)
ij element of V (n) as follows:

v
(n)
ij =

1
aij

if j = i

aji
aii

otherwise

with i, j = 1 . . . n. The fundamental formula becomes:

v
(l−1)
ij = α

(l)
i ·

v
(l)
ii , if j = i

−v
(l)
il v

(l)
ll , if j = l

v
(l)
ij − v

(l)
il v

(l)
lj otherwise

7

1.1. THE INHIBITION METHOD (IME)

with l = n . . . 2, i = 1 . . . l − 1, and j = 1 . . . n. To compute the solution we apply

the following for all levels l = n . . . 2:

b
(l−1)
i = b

(l)
i − v

(l−1)
l−1,i · b

(l)
l , i = 1 . . . l − 2

x
(l−1)
i = x

(l)
i − v

(l−1)
l−1,i · b

(l)
l , i = l − 1 . . . n

The algorithm used in this thesis to generate configurations with the Inhibition

Method is the latter.

Figure 1.3: Evolution of IMe data structures when compressing E and K into a
single matrix V . (Source: [9])

8

1.2. SCALAPACK

1.2 ScaLAPACK

ScaLAPACK (Scalable Linear Algebra PACKage) is a high-performance linear

algebra library designed for parallel distributed memory machines. It addresses

dense and banded linear systems, least squares problems, eigenvalue problems,

and singular value problems. ScaLAPACK incorporates key features such as block

cyclic data distribution for dense matrices and block data distribution for banded

matrices, which can be customized at runtime. It utilizes block-partitioned al-

gorithms to maximize data reuse and includes well-designed low-level modular

components, simplifying the parallelization of high-level routines by maintaining

consistency with their sequential counterparts.

The objectives of the ScaLAPACK project align with those of LAPACK, focus-

ing on efficiency (aiming for optimal speed), scalability (accommodating growing

problem sizes and processor numbers), reliability (including error bounds), porta-

bility (across major parallel machines), flexibility (allowing users to create new

routines from well-designed components), and ease of use (ensuring a similar in-

terface to LAPACK and ScaLAPACK).

To achieve these goals, the project emphasizes the importance of standards,

particularly for low-level communication and computation routines. Notably, Sca-

LAPACK minimizes machine dependencies by relying on three standard libraries:

BLAS (Basic Linear Algebra Subprograms), LAPACK, and BLACS (Basic Lin-

ear Algebra Communication Subprograms). LAPACK can run on any machine

with available BLAS, and ScaLAPACK is compatible with machines where BLAS,

LAPACK, and BLACS are accessible. The library is currently written in Fortran

(with the exception of a few symmetric eigenproblem auxiliary routines written in

C).

9

1.3. FAULT TOLERANCE MANAGEMENT

1.3 Fault tolerance management

In the event of executing the parallel implementation of these algorithms on HPC

infrastructure for solving a large-scale linear system, it is crucial to consider that

the failure of even a single computing processor inevitably disrupts the entire com-

putation. The results obtained from the fault-tolerant versions of these techniques

will also be taken into account when creating the datasets in this thesis. Although

ScaLAPACK does not have inherent fault-tolerant mechanisms, routines can be

modified relatively easily to incorporate the classic fault-tolerant mechanism know

as Diskless C/R (Checkpointing/Rollback). Instead IMe one uses a more effective

strategy based on a checksum mechanism.

1.3.1 ScaLAPACK Diskless Checkpoining strategy

The Checkpointing is a critical aspect of fault-tolerant computing and forms the

basis for rollback recovery. In the event of a failure on the machine running a

prolonged computation, without checkpointing, users would need to restart the

program from the beginning upon machine recovery, resulting in the loss of all

prior computation. However, by periodically saving checkpoints of the program’s

state to stable storage, users have the option to restart the program from the most

recent checkpoint in case of a failure. This process, referred to as rolling back to a

stored checkpoint, proves invaluable for long-running computations, allowing users

to minimize the amount of lost computation in the event of failures. There are two

different ways to make checkpointing: to a stable storage (i.e. disk) or diskless.

The second one reduce the overhead removing stable storage and replace it with

memory and processor redundancy.

10

1.3. FAULT TOLERANCE MANAGEMENT

Diskless checkpointing [10] involves two main components:

1) Saving the state of each application processor in memory.

2) Encoding these in-memory checkpoints and storing the encodings in check-

pointing processors.

In the event of a failure, system recovery unfolds as follows. Firstly, the non-

failed application processors revert to their stored checkpoints in memory. Fol-

lowing this, replacement processors are selected to substitute the failed proces-

sors. Ultimately, the replacement processors utilize the checkpointed states of the

non-failed application processors, in addition to the encodings stored in the check-

pointing processors, to compute the checkpoints of the failed processors. Once

these checkpoints are determined, the replacement processors roll back, and the

application resumes from the checkpoint.

Plank et al. [11] embedded diskless checkpointing into several matrix operations

in the ScaLAPACK distributed linear algebra package, thus making them resilient

to single processor failures with low Overhead. Kim et al. [12] extended this work

to employ onedimensional parity encoding, which both lowers the overhead and

increases the failure coverage.

1.3.2 IMe Checksum strategy

When implementing IMe in parallel mode on an HPC infrastructure to cope with

a large linear system, one must consider that a failure affecting even one comput-

ing processor inevitably interrupts the entire computation. A simpler and more

efficient approach, as outlined in [12], replaces the C/R technique.

For the first formulation of IMe this method involves parallelization by columns

and the computation of the sum by rows for all entries of T (l). This results in a

checksum vector, denoted as s(l), where each entry is determined through the

11

1.3. FAULT TOLERANCE MANAGEMENT

following calculation:

s
(l)
i =

n+l∑
k=1

t
(l)
i,k ∀i = 1 . . . l (1)

s(l) is stored in the memory of an additional computing processor. In the event of

a fault affecting a column of T (l), the entries can be recovered by solving n linear

equations. An important characteristic of this technique is that when applying

the fundamental formula to s(l), it produces a vector s(l−1), which serves as the

checksum vector for T (l−1) once again. This property allows for the calculation

of checksums via Eq. (1) only in the initial instance T (n). The processor housing

s(l) can then apply the fundamental formula to it, akin to how other processors

handle the columns of T (l), persisting as the host for checksums of T (l) for any

subsequent level.

This is the case where there is at most a single fault. In the case of multi-

ple faults [8], this technique is extended by appropriately defining m checksum

columns. We therefore extend the inhibition table with the checksum matrix S(l)

as follows:

Φ(l) =
[
S(l) | T (l)

]
=

s1,1 . . . s1,m t1,1 · · · t1,n+l

...
. . .

...
...

. . .
...

sn,1 · · · sn,m tn,1 · · · tn,n+l

According to [13], if the checksum matrix is computed as

S(l) = T (l) · Λ(l),

where Λ(l) is a (n + l) ×m matrix suitably conceived for the purpose (such that

any square sub-matrix of Λ(l) is nonsingular), then in case of a fail-stop involving

any m columns of Φ(l), their values can be recomputed by solving a linear system

12

1.3. FAULT TOLERANCE MANAGEMENT

for each of its l rows as follows

s
(l)
i,1 =

n+l∑
k=1

λk,1t
(l)
i,k

...
... ∀i = 1 . . . l

s
(l)
i,m =

n+l∑
k=1

λk,mt
(l)
i,k

Every such system has m equations and m unknowns (corresponding to the

elements of the failed columns). The important property previously described for

the single checksum column remains valid and is extended to the entire checksum

matrix, as described in [14]. Finally, in the case of the Inhibition Method with

memory optimisation, multiple fault tolerance is adapted as follows [9]: to for-

mulate a versatile algorithm suitable for interconnected nodes, the adoption of a

2D-block cyclic distribution for the initial matrix V (n) was proposed, as shown

in Figure 1.4. This distribution effectively partitions V (n) into N × N blocks,

distributing them across a process grid composed of P ×Q processors, with each

processor receiving a maximum of K =

⌈
N

P

⌉
×
⌈
N

Q

⌉
blocks.

Moreover, in alignment with the original algorithm [14], the row-wise weighted

sums computed during initialization must be executed on the matrix Ṽ
(n)

=

V (n) + I. This adjustment takes into consideration the 1-entries on the diagonal

of K(n), which may be overwritten by compression. Subsequently, S(n) undergoes

partitioning into distinct blocks:

S
(n)
k,pr =

∑
q∈Q

ωqrṼ
(n)
k,pq

where S
(n)
k,pr denotes the kth block of the checksum matrix S(n) held by the recov-

ery processor (p, r), where 1 ≤ k ≤ K and r ∈ R. Similarly, Ṽ
(n)
k,pq represents the

13

1.3. FAULT TOLERANCE MANAGEMENT

kth block of the modified matrix Ṽ
(n)

stored on the computing processor (p, q),

excluding the identity matrix. Additionally, wqr stands for the entry at the inter-

section of row q and column r in a weight matrix W . Notably, for the recovery of

multiple faults, the checksums must be weighted using a Q × R matrix, ensuring

that any square sub-matrix of W is non-singular [13]. All blocks S
(n)
k,pr consist of

nb × nb elements, and each recovery processor can host a maximum of K blocks,

mirroring the capacity of any other computing processor.

Figure 1.4: 2D block-cyclic distribution of V and S on a 3×4 and 3×2 processor
grid, respectively. (Source: [9])

Implementing a fault-tolerant system for IMe offers several advantages over the

Checkpoint/Restart (C/R) mechanism used in ScaLAPACK. The integration of

fault resilience has minimal impact on floating-point operations (flops), memory

usage, message count, and volume compared to the non-fault-tolerant implemen-

tation.

14

1.3. FAULT TOLERANCE MANAGEMENT

Traditional C/R mechanisms involve saving the computation state at prede-

termined intervals. In the event of an error, a rollback to the last checkpoint is

necessary. In contrast, IMe employs a continuous checksum at each level, elim-

inating the need to periodically interrupt the computation for state encoding.

Additionally, no extra communication is required among the computational pro-

cessors.

These considerations are among the reasons why a dataset comparing and

analyse the energy performance of these two algorithms was selected.

15

Chapter 2

Essential Machine Learning

Concepts for Predictive Analysis

In this chapter, the focus shifts to key concepts used for predictive analysis after a

brief introduction to Machine Learning and its application, with a specific emphasis

on Regression. The discussion will center around various regressors and their

parameters, providing insights into their predictive capabilities.

2.1 Overview

Machine learning is a prominent field in contemporary computing. Extensive

research has been conducted to provide machines with intelligence. Learning, a

natural human behavior, has been integrated as an essential aspect of machines as

well. Various techniques have been devised for this purpose, with traditional ma-

chine learning algorithms finding application in numerous domains. Researchers

have invested considerable efforts in enhancing the accuracy of these machine learn-

ing algorithms.

Shinde and Shah [15] identified several application domains and subdomains of

16

2.1. OVERVIEW

machine learning such as computer vision, prediction, semantic analysis, natural

language processing and information retrieval.

In this thesis, we explore the application of machine learning in the context of

predicting and retrieving information related to the energy analysis of consump-

tion associated with linear system solving algorithms in the High Performance

Computing (HPC) environment. A topic of great relevance is energy savings,

especially considering the wide use of technology, which involves considerable en-

ergy consumption. The aim is to acquire and predict energetic information prior

to execution, thus enabling efficient utilisation of such technologies. Regression is

coming into play for this purpose.

In its most basic form, Regression Analysis allows one to examine the con-

nections between one or more independent variables and a dependent variable.This

analysis offers unique information that other techniques often fail to provide.

The main advantages of using regression analysis are as follows:

1) Determining whether the independent variables have a significant cor-

relation with the dependent variable.

2) Assess the relative strength of the effects of the different independent

variables on the dependent variable.

3) Make predictions.

The exploration of energy analysis will involve the application of sophisticated

regression models [16], such as the Decision Tree Regressor, Random Forest Re-

gressor, and Gradient Boosting Decision Tree Regressor. Each of these models

will be extensively examined in subsequent sections, highlighting their distinctive

features and specific applications in the prediction.

17

2.2. REGRESSION MODELS

2.2 Regression Models

This section will present the three regression models used to conduct energy perfor-

mance analyses of the data collected on linear system solvers run on HPC systems:

the Decision Tree, the Random Forest, and the Gradient Boosting Decision Tree.

2.2.1 Decision Tree

Decision Trees (DTs) are a form of non-parametric supervised learning method

applicable to both classification and regression tasks. Their primary objective

is to develop a predictive model for a target variable by deriving uncomplicated

decision rules from the dataset’s features. In a conceptual sense, envisioning a tree

as an approximation of the target variable through segmented, constant pieces

enhances understanding.

Figure 2.1: Single Decision Tree scheme (Source: [17])

This model features a hierarchical tree structure comprising a root node, bran-

ches, internal nodes, and leaf nodes. As depicted in Figure 2.1, a decision tree

begins with a root node devoid of any incoming branches. The outgoing branches

from the root node then flow into internal nodes, also referred to as decision

nodes. Both node types, based on available features, conduct evaluations to create

homogeneous subsets indicated by leaf nodes or terminal nodes. The leaf nodes

encompass all potential outcomes within the dataset.

18

2.2. REGRESSION MODELS

Advantages of Decision Trees

Decision trees offer several advantages:

1) Simplicity and Interpretability: Decision trees are easy to understand

and visualize, providing a clear representation of decision-making processes.

2) Minimal Data Preparation: Unlike some methods, decision trees require

less data preprocessing, handling both numerical and categorical data.

3) Logarithmic Cost for Predictions: The cost of predicting data using a

decision tree is logarithmic in the number of data points used for training.

4) Multi-output Capability: Decision trees can handle problems with mul-

tiple outputs.

5) White Box Model: Decision trees offer transparency, providing explana-

tions for conditions through easily understandable boolean logic.

6) Statistical Validation: Models can be validated using statistical tests,

allowing for an assessment of reliability.

7) Robustness: Decision trees can perform well even when assumptions about

the data’s true model are somewhat violated.

19

2.2. REGRESSION MODELS

Disadvantages of Decision Trees:

However, decision trees have their drawbacks:

1. Overfitting: Decision trees can create overly complex models that don’t

generalize well, known as overfitting. Techniques like pruning and setting

tree parameters help mitigate this issue.

2. Instability: Small variations in data may lead to entirely different trees.

3. Non-Smooth Predictions: Predictions from decision trees are piecewise

constant approximations, making them unsuitable for smooth or continuous

extrapolation.

4. Computational Complexity: Learning an optimal decision tree is NP-

complete, leading to heuristic algorithms like the greedy algorithm.

5. Challenges in Expressing Complex Concepts: Decision trees struggle

to express certain complex concepts, such as XOR, parity, or multiplexer

problems.

6. Bias in Class-Dominated Datasets: Decision tree learners may create

biased trees when certain classes dominate the dataset. It is advisable to

balance the dataset before fitting the decision tree to address this issue.

20

2.2. REGRESSION MODELS

Decision Tree Regression

Shifting the focus to a specific application, consider a 1D regression scenario em-

ploying a decision tree. In this context, the decision tree is utilized to fit a sine

curve while accommodating noisy observations. Consequently, the tree learns local

linear regressions to approximate the sine curve.

The depth of the tree is linked to the complexity of these rules, resulting in a

more sophisticated model as the tree deepens. It is noteworthy that when setting

the maximum depth of the tree (regulated by the max_depth parameter) exces-

sively high, the decision tree captures fine details of the training data, including

noise, leading to overfitting. This emphasizes the importance of controlling the

model’s complexity to avoid an overly detailed representation that may not gen-

eralize well beyond the training data.

Figure 2.2: Example of a regression tree diagram (Source: [18])

21

2.2. REGRESSION MODELS

2.2.2 Random Forest

Random Forests constitute an ensemble of tree predictors, with each tree relying

on values sampled randomly and independently from a common distribution. As

the forest size grows, the generalization error consistently converges to a limit.

In the context of a forest comprising tree classifiers, the generalization error is

influenced by both the individual strength of each tree and the level of correlation

among them.

Figure 2.3: Random Forest scheme (Source: [17])

22

2.2. REGRESSION MODELS

2.2.3 Gradient Boosting Decision Tree

Gradient Boosting Decision Trees is a machine learning algorithm that sequentially

constructs a series of decision trees, each correcting the residual errors of the

previous model. Initially, a “weak” decision tree is built and used for predictions.

Residual errors are calculated, and a new tree is constructed to correct these errors.

This process is iteratively repeated, with each new tree focusing on the residual

errors of the combined model up to that point. Trees are assigned different weights

based on their accuracy, and ultimately, predictions from all trees are combined

to obtain the final result. This incremental approach helps create a more robust

and accurate model.

Figure 2.4: Gradient Boosting Decision Tree scheme (Source: [17])

In Figure 2.4, the yellow tree is equivalent to the “weak” tree. The residual

errors are then calculated and the next purple-colored tree is constructed, which

corrects those errors. Again, the blue-colored tree is created, which corrects the

errors in the purple tree, and so on.

23

2.3. EVALUATION METRICS FOR REGRESSION MODELS

2.3 Evaluation Metrics for Regression Models

In the context of analyzing applied machine learning models, it is crucial to un-

derstand and employ appropriate evaluation metrics to assess the accuracy and

performance of regression models. Metrics play a fundamental role in providing a

quantitative measure of the models’ effectiveness in predicting continuous values.

Among the widely used metrics, the Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) stand out

. These metrics offer a detailed insight into the discrepancy between the values

predicted by the model and the actual values, allowing for a comprehensive un-

derstanding of prediction quality. In the subsequent chapters, we will apply these

metrics to our analysis, focusing on their implications and contributions to our

evaluation. In this section, our emphasis will be on explaining these metrics and

their significance in the broader context of regression model assessment.

2.3.1 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) stands as a widely adopted metric

in the realms of machine learning and statistics, serving as a measure of precision

for predictive models. This metric calculates the disparities between predicted

and actual values by squaring the errors, averaging them, and subsequently taking

the square root. RMSE offers a transparent evaluation of a model’s performance,

where lower values signify enhanced predictive accuracy.

Derived from the square root of Mean Squared Error (MSE), RMSE is alterna-

tively known as the Root Mean Square Deviation. It gauges the average magnitude

of errors, focusing on the deviations from the actual values. An RMSE value of

zero denotes a flawless fit, reflecting a model that perfectly aligns with the data.

The desirability of lower RMSE values is rooted in their indication of superior

24

2.3. EVALUATION METRICS FOR REGRESSION MODELS

model performance and more accurate predictions. Conversely, a higher RMSE

suggests substantial deviations from the residuals to the ground truth. RMSE

proves versatile across different features, aiding in the assessment of whether a

particular feature contributes positively to the model’s predictive capabilities.

RMSE formula is:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where y are the real values and ŷ the predicted values and n is the sample size.

Pros of RMSE

1) Sensitivity to large errors: RMSE effectively penalizes significant errors,

particularly beneficial when dealing with outliers.

2) Differentiability: being differentiable and continuous, RMSE is suitable for

optimization algorithms, crucial for gradient-based optimization techniques.

3) Easy interpretation: the RMSE value is in the same units as the target

variable, facilitating straightforward interpretation of error magnitude in the

original data scale.

4) Widespread adoption: RMSE’s wide usage and recognition make it easy

to compare model performance across different studies and applications, con-

tributing to its acceptance in the data science and machine learning commu-

nities.

25

2.3. EVALUATION METRICS FOR REGRESSION MODELS

Cons of RMSE

1) Sensitivity to outliers: while sensitivity to large errors is advantageous,

RMSE’s significant weighting of outliers can be a drawback, leading to overly

pessimistic evaluations in cases where outliers don’t represent the general

trend.

2) Doesn’t indicate direction of error: RMSE lacks information about

the direction of errors, which can be crucial in certain applications where

understanding error direction is important for informed decision-making.

3) Assumption of normality: RMSE assumes errors are normally distributed,

potentially impacting metric reliability when this assumption is violated in

real-world scenarios.

4) Not scale-independent: RMSE is sensitive to the scale of the target vari-

able, posing limitations when comparing models working with different units

or when the scale of the target variable varies.

2.3.2 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE), or referred to as L1 loss, distinguishes it-

self as one of the most straightforward and easily understandable loss functions

and evaluation metrics. It is calculated by averaging the absolute discrepancies

between predicted and actual values throughout the dataset. In mathematical

terms, it denotes the arithmetic mean of absolute errors, concentrating solely on

their magnitude, regardless of direction. A diminished MAE value signifies height-

ened model accuracy.

MAE provides a direct and intuitive measure of the model’s average predic-

tion error, proving particularly effective when evaluating accuracy without overly

26

2.3. EVALUATION METRICS FOR REGRESSION MODELS

penalizing large errors. This metric is robust to outliers since it does not square

the errors, and its interpretation in original units makes model assessment more

accessible. Due to its simplicity as a loss function, MAE is often used in scenar-

ios where differentiability is not crucial, and a more straightforward evaluation is

preferable.

MAE formula is:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where y are the real values and ŷ the predicted values and n is the sample size.

Pros of MAE

1) Sensitivity to outliers: MAE is less sensitive to outliers, making it suitable

for scenarios where outliers should not unduly impact model evaluation.

2) Interpretability: Easily interpretable, representing the average magnitude

of errors in the same units as the target variable.

3) Simplicity: Straightforward calculation and computational efficiency.

Cons of MAE

1) Equal treatment of errors: Treats all errors equally, regardless of their

magnitude, which might not align with the actual importance of different

errors.

2) Lack of sensitivity to prediction variability: Does not differentiate

between different levels of variability in predictions.

3) Non-Differentiability: Not differentiable at points where the absolute

value function is not differentiable, limiting its use in certain optimization

scenarios.

27

2.3. EVALUATION METRICS FOR REGRESSION MODELS

4) Limited information on error direction: Does not provide information

about the direction of errors, which may be crucial in certain applications.

2.3.3 Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE), alternatively called Mean

Absolute Percentage Deviation (MAPD), is a metric used to assess the accuracy of

a forecasting model, particularly in the context of time series analysis. It calculates

the average percentage difference between the predicted values and the actual

values in the dataset.

MAPE expresses the prediction errors as a percentage of the actual values,

providing a measure of the relative accuracy of the forecasting model. A lower

MAPE indicates better accuracy, with 0% indicating a perfect fit.

MAPE formula is:

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

· 100

where y are the real values and ŷ the predicted values and n is the sample size.

Pros of the MAPE

1) Scale-indipendent: MAPE is scale-independent as its error estimates are

in terms of percentage.

2) Normalization: All errors are normalized on a common scale (the percent-

age scale), enhancing ease of understanding.

3) Avoidance of cancellation issue: The use of absolute percentage errors in

MAPE prevents the problem of positive and negative values canceling each

other out.

28

2.4. TUNING THE HYPERPARAMETERS

Cons of the MAPE

1) Division by Zero Challenge: MAPE faces a critical challenge when the

denominator becomes zero, resulting in a ”division by zero” issue.

2) Bias towards negative errors: MAPE exhibits bias by penalizing negative

errors more than positive errors, potentially favoring methods with lower

values.

3) Sensitivity to actual value alterations: Due to the division operation,

MAPE’s sensitivity to changes in actual values leads to varying loss for the

same error.

2.4 Tuning the hyperparameters

Parameter tuning is a critical step in refining machine learning models. A widely

employed approach is the use of GridSearchCV, which systematically explores a

grid of hyperparameter combinations to identify the optimal configuration, thereby

improving the model’s performance.

GridSearchCV[20], short for Grid Search Cross-Validation, is a machine

learning technique designed to discover the most effective combination of hyper-

parameters for a given model. Hyperparameters, which are predetermined pa-

rameters not learned during training, include aspects like the maximum depth

of a decision tree, regularization strength in linear regression, or the number of

neighbors in a k-Nearest Neighbors model.

The GridSearchCV process follows these steps:

1) Hyperparameter Grid Definition: Users specify a grid of values for each

hyperparameter they wish to optimize. For example, when working with a

29

2.4. TUNING THE HYPERPARAMETERS

decision tree, the grid might include values for the maximum depth, mini-

mum number of samples in a leaf, etc.

2) Model Creation: All possible models are generated by combining the spec-

ified values from the grid for each hyperparameter.

3) Cross-Validation: For each model, a cross-validation procedure is exe-

cuted. This entails dividing the dataset into different ”folds,” training the

model on some of these folds, and evaluating it on the remaining folds. This

process is repeated multiple times (k times, where k is the number of folds),

and the average performance is computed.

4) Performance Evaluation: The average performance of the model across

all folds is calculated using a designated evaluation metric (e.g., accuracy,

recall, F1-score, RMSE, MAE, etc.).

5) Selection of the Best Model: The model with the highest average per-

formance across the hyperparameter grid is chosen as the optimal model.

GridSearchCV streamlines this process by automating the systematic explo-

ration of the hyperparameter grid, resulting in the selection of the optimal model.

This aids in mitigating the risk of overfitting and enhances the model’s general-

ization to new data. However, it’s essential to note that GridSearchCV can be

computationally demanding, particularly with a large grid or if the model neces-

sitates extensive training. Additionally, more advanced techniques like Random-

izedSearchCV may provide a more efficient exploration of the hyperparameter

space.

30

Chapter 3

Dataset Structure and

Implementation

The most important goal of this thesis is to construct a comprehensive dataset

that captures the details and energy performance of algorithmic routines designed

to solve linear systems under various configurations. First, a description of the

characteristics of the system where these executions were carried out will be pre-

sented, followed by the construction details of the dataset, such as the structure

and the launch mechanism of the various configurations.

3.1 CRESCO6 Cluster Architecture

The HPC centre of ENEA sited in Portici hosts the main Clusters [21]. The

executable files to create the datasets discussed in this thesis are executed on

CRESCO6 Cluster. It is a computational system consisting of 434 nodes.

Each node consists of:

• 2 sockets of 24 cores with Intel(R) Xeon(R) Platinum 8160 processor with a

clock frequency of 2.10GHz and 192 GB RAM

31

3.1. CRESCO6 CLUSTER ARCHITECTURE

• An Intel Omni-Path 100 Gb/s interface

• 2 GbE (Gigabit Ethernet) interfaces

• BMC/IPMI 1.8 support and software for remote console management

The architecture of a CRESCO6 node is represented by the following scheme:

Figure 3.1: Structure diagram of a single node belonging to the CRESCO6 cluster
(Source: [21])

To use the cluster firstly you have to login to a front-end node. There 2 of

them: cresco6x001.portici.enea.it and cresco6x002.portici.enea.it (also for interac-

tive jobs). These nodes are for launching applications via LSF, editing their own

launch scripts, or for compilations. Computing nodes are reachable only via LSF.

Two file systems are available on this system:

• AFS: is the geographically distributed file system common to all ENEA-

GRID.

• GPFS: is the IBM high-performance file system for parallel I/O.

For this thesis, the GPFS file system was used because of its greater amount of

memory available to the user.

Launched jobs are placed in a submission queue. The one used for this thesis is

cresco6_48h24, which is suitable for parallel jobs requiring at least 48 cores and

a maximum running time of 24 hours.

32

3.2. DATASET STRUCTURE

3.2 Dataset Structure

The dataset is organized into three distinct blocks of information, each contributing

to providing a holistic overview of the executions.

The first block centres on detailing the execution parameters of the routines,

meticulously outlining the diverse input configurations of the algorithms slated for

execution.

The second block encompasses measurements gathered through sensors posi-

tioned on each node of the CRESCO6 cluster. These physical data include critical

information such as power and energy consumption, ambient temperature, and the

speed of the cooling system’s fans of each node.

The final block of information is dedicated to execution statistics, incorporating

runtime, average and total memory consumption, as well as any computation errors

encountered during the executions.

Through this elaborate and nuanced dataset, the aim is to gain a comprehensive

understanding of the algorithmic performance under investigation, thus making a

substantial contribution to the optimisation of these computational processes.

To ensure order and easy editing of the scattered data retrieval scripts, the three

blocks are divided separately into three groups of files, each of which is stored

in a separate directory. The report files, which contain details of the routines’

input parameter configurations, are stored in a directory called reports. Sensor

measurement files are located in the energy_data directory, while the output files

of each configuration, which include the summary of LSF statistics and the output

result of the executed routine, are stored in the results directory. Each block of

information has associated job ID or job name for each tuple.

For each executed job, the job ID and job name associations and the start

and end timestamps of the job provided by LSF are recorded on a further file,

so that the data can be merged between the various blocks if necessary, and the

33

3.3. DATASET IMPLEMENTATION

information can be filtered in the execution time range of each job.

The initial step to obtain this dataset involves the careful preparation of the job.

For the information obtained from the execution of a job to be valid, it is essential

that LSF executes these jobs according to specific requirements both in terms of

available resources and execution scheduling. Immediately afterwards, the start-

up scripts must be developed, which supplement the job execution command with

the parameters of the linear system solver routines to be executed. Next, the code

that constitutes the communication mechanism with the sensors located on the

cluster nodes must be implemented. Finally, the parameters of the configurations

and scripts dedicated to retrieving and processing the essential results taken from

the output files of the jobs are defined.

This crucial stage of the process implies a precise orchestration of actions,

ensuring that resources are allocated and utilised in such a way that jobs are

executed under the conditions necessary to guarantee the validity of the data

generated.

3.3 Dataset Implementation

After analysing the dataset structure, this section will show how the preparation

processes of the various algorithm configurations will be automated in the form of

jobs at execution and how measurements will be carried out. Figure 3.2 shows a

diagram of how the submission and execution of a job takes place.

34

3.3. DATASET IMPLEMENTATION

Figure 3.2: Job Execution Mechanism

3.3.1 Preparation phase for job launch

The algorithms, to be executed in parallel on these systems, must be submitted to

the LSF scheduler in the form of jobs. Most of the implemented code is written in

the form of Bash scripts. After a thorough analysis of the CRESCO6 architecture

and a full understanding of the LSF commands, it is necessary to provide specific

instructions to LSF before starting routines. This step is essential to successfully

co-ordinate the simultaneous execution of numerous subjobs, ensuring efficient

scheduling of available resources.

The CRESCO6 cluster is used daily by many users. The first requirements are:

• Nobody user have to use the nodes employed by jobs;

• LSF have to schedule every rank in the minimum number of nodes as possible.

35

3.3. DATASET IMPLEMENTATION

To satisfy these requirements, certain options must be integrated into the job

submission command, i.e. bsub. In order to request the entire node, it is essential

to commit all of its physical processor cores. Each node consists of 48 cores, so to

ensure that LSF reserves an entire node, the -n option must be specified with the

value 48. If more nodes are required, it is imperative to request a number of cores

equal to 48 multiplied by the desired number of nodes.

LSF follows a policy of allocating as many job ranks as possible on the cores of

the same node. However, if some of a node’s cores are already being used by other

users, LSF distributes the remaining ranks to an additional node. For example, if

48 processors are required but a node only has 30, the remaining 18 are allocated

to another node.

To fulfil the second requirement, the bsub command in LSF with the -R option

is used to specify resource requirements. In this circumstance, the requirement is

set to slots == 48, indicating that each node must have 48 free slots. In the LSF

context of CRESCO6, it is important to note that the number of working slots

corresponds to the total number of cores for each node.

In this context, each node is required to have all 48 cores free to execute the

job. Even if 48 processors are requested and a node has exactly 48 free cores, this

ensures that LSF will assign all processors to the same node. It should be noted

that although the -n option specifies the maximum number of node cores to use,

the job may not use them all. In situations where fewer cores are being used than

are specified with -n, the unused processors will switch to the IDLE state. The

actual number of cores required will be defined in the MPI launch script. This

setting ensures efficient allocation of resources, ensuring that jobs are executed on

the appropriate nodes and maximising the use of available cores.

To ensure correct measurement of the energy consumption of the jobs through

the communication mechanism with the node that acquires the data from the

36

3.3. DATASET IMPLEMENTATION

sensors, a strategy was implemented that requires the sequential execution of the

jobs. The key option used to achieve this was the -w option of bsub, which allows

the dependency requirements between jobs to be defined.

In particular, the specified requirement is like ended(PREVIOUS_JOB_NAME),

indicating that the job in question can only start after the previously submitted

job has finished. The termination condition is valid whether the exit status is EXIT

(in case of an error) or DONE (in case of success) of the predecessor job. It should

be noted that even if a job ends with an error state, the next job can still start.

This aspect was considered in the design to maximise overall time efficiency,

allowing the workflow to progress even in the presence of individual job errors.

This flexibility helps to ensure continuity of operations by reducing possible delays

due to individual failures.

Additional options aimed at optimising execution and resource management in

the cluster context were also adopted. These options include the control strategy

of the job execution duration, the specific cluster submission queue, output and

error management, and the monitoring and control of energy consumption.

The -W option is used to define the runtime limit of the job. It is important

to note that LSF uses this time estimate for scheduling purposes only, facilitating

job execution as soon as possible based on prior knowledge of the approximate

duration.

In order to direct jobs to a specific queue in the cluster, the -q option was used,

which allows the submission queue to be specified. In the context of this thesis,

the queue selected is cresco6_48h24, which is designed for parallel jobs with a

required number of cores of 48 or more, with a runtime limit of 24 hours.

The -o and -e options were implemented to direct the standard output and

error output of the job to specific file paths. This practice favours an orderly

management of the information generated during job execution.

37

3.3. DATASET IMPLEMENTATION

Given the dynamic nature of node allocation by LSF, a mechanism was adopted

to communicate these to the script that collects sensor data. To communicate this

information to the monitoring node, the -E and -Ep options were introduced.

The -E option enables the execution of a pre-execution command or script on

the first host assigned to the job by LSF, prior to the actual execution of the

job. This pre-execution command determines the possibility of starting the job,

affecting the scheduling process.

Similarly, the -Ep option enables post-execution operations, allowing a specific

command or script to be executed at the end of the job.

The main structure of the bsub command is as follows:

1 bsub -n <NUM_OF_CORES_TO_RESERVE >

2 -W <WTIME >

3 -q "cresco6_48h24"

4 -E "<PRE_EXEC_SCRIPT > <PARAMETERS >"

5 -Ep "<POST_EXEC_SCRIPT > <PARAMETERS >"

6 -J "<JOB_NAME >"

7 -w "<CONDITION >"

8 -o "<OUTPUT_FILE >"

9 -e "<ERRORS_FILE >"

10 -R "slots == 48"

11 <MPI_SCRIPT > <MPI_SCRIPT_PARAMETERS >

The subsequent section will describe in more detail the communication mecha-

nism between the node submitting the jobs and the node dedicated to monitoring

the sensors, which was mentioned above.

38

3.3. DATASET IMPLEMENTATION

3.3.2 Job Launch Scripts

The first job launch script created is the MPI application. CRESCO6 with Open-

MPI modules, as the command execution a script with a certain pattern [21]:

1 #!/bin/sh

2 exe=/afs/enea.it/por/user/raia/Hello_MPI # path of your MPI

program

3 HOSTFILE=$LSB_DJOB_HOSTFILE # name of hostfile for mpirun

4 N_procs=‘cat $LSB_DJOB_HOSTFILE | wc -l‘ # give to mpirun same

number of slots

5 mpirun --mca plm_rsh_agent "blaunch.sh" -n $N_procs --hostfile

6 $HOSTFILE $exe

For the jobs to be submitted for this thesis, it was readjusted as follows:

1 #!/bin/bash

2 module unload mpi_flavour pgi gcc intel

3 module load gcc/gcc730 mpi_flavour/openmpi_gcc730 -3.1.2

4

5 exe=/afs/enea.it/por/user/mcolonna/private/ime/bin/tester

6 HOSTFILE=$LSB_DJOB_HOSTFILE # name of hostfile for mpirun

7 N_procs=$1

8 NPERSOCKET=$2

9 shift shift

10 if ["${NPERSOCKET}" == "-"]; then

11 mpirun --map -by core --mca plm_rsh_agent "blaunch.sh" -n

$N_procs --hostfile $HOSTFILE $exe "$@"

12 else

13 mpirun --map -by ppr:${NPERSOCKET }: socket --bind -to core --mca

plm_rsh_agent "blaunch.sh" -n $N_procs --hostfile

$HOSTFILE $exe "$@"

14 fi

15 sleep 3

39

3.3. DATASET IMPLEMENTATION

In this code, the openMPI modules on CRESCO6 were loaded, as the default

ones were not appropriate for the requirements of the context. Subsequently, the

number of jobs was not bound to the number of available slots, as the nodes had

to fulfil specific requirements. In this circumstance, the parameters transmitted

included the actual number of cores to be used. Another relevant parameter is

the number of cores per socket. This is due to the fact that each job is executed

in two distinct modes: with a mapping involving all the nodes’ cores, excluding

the last one if there are cores in idle mode, or with a partitioning of cores per

socket on each node, in order to balance the execution load. This configuration is

accompanied by a process-core association to prevent the migration of processes

between cores.

Through the input parameter shift operation, input parameters received that

are no longer needed are discarded and the others are passed to the tester appli-

cation during the execution of the mpirun command. After preparing the MPI

script, aiming to simplify modifications and improve the scalability and maintain-

ability of the code, the script that is responsible for submitting the various jobs

was split up and made more modular.

Three separate sub-programmes were created to handle the different instances

of the MPI and ScaLAPACK routines, distinguishing between those without fault

tolerance, those with Inhibition Method fault-tolerant, and those with ScaLA-

PACK fault-tolerant. This subdivision was necessary due to the various types of

parameters to be passed as input to MPI scripts or processed within them.

Examining these sub-programmes, the first script handles the fault-tolerant

cases of the IMe and ScaLAPACK routines in a homogeneous manner. Since the

MPI application handles both cases similarly, common input parameters include:

• calculation processes: number of processes dedicated exclusively to the

calculation of the system solution;

40

3.3. DATASET IMPLEMENTATION

• matrix size: rank of the input matrix;

• precision: numerical representation of real numbers;

• repetitions: number of iterations of the internal algorithm (default value

used: 1);

• algorithm: IMe or ScaLAPACK;

• socket balancing: Boolean indicating whether or not to perform socket

balancing;

• wall time: estimate of the execution time useful to LSF for job scheduling;

• report file: path where the job configuration information is to be entered.

This code retrieves the MPI launch, pre-execution and post-execution scripts,

and, based on the algorithm and precision parameters, identifies the correct routine

to execute. It then calculates the number of nodes needed, the number of cores

to be reserved, the number of processes per socket (if balancing is enabled), the

scheduling condition, the path to save the output and error files, creates the job

name, and finally composes all the parameters collected and calculated to execute

the job. The job name is designed in such a way as to allow easy retrieval of

that job’s configuration through a dedicated script that acts as a parser, thus

facilitating the possibility of re-executing the job with the same settings.

As for the second and third scripts, they accept the same parameters as the

case without fault tolerance. In addition, they include the following parameters:

• fault tolerance level: specifies the level of fault tolerance that can be

handled (in this study 1, 2, 4, 8);

• number of simulated faults: specifies the number of faults to be simu-

lated. For each fault tolerance scenario, the decision was made to evaluate

41

3.3. DATASET IMPLEMENTATION

both the case with no simulated faults and the case with the maximum

number of simulated faults, in order to analyse the behaviour of the system.

The difference between the two scripts lies in the processing of the parameters

calculated within them to be included in the job submission command. In the

IMe algorithm, before determining the number of nodes required and the other

parameters already examined above, it is necessary to compute the spare processes

used to repair faults. To ensure optimal statistics, it was decided to simulate

failures at one of the lower levels, specifically level 2.

As far as ScaLAPACK is concerned, in addition to the previously mentioned

spare processes and parameters, it is necessary to calculate the blocking factor for

the load distribution of activities. This parameter varies depending on the number

of calculation processes and the rank of the matrix. In addition, the checkpoint

used for restoring the system in the event of a failure must be determined. In this

context, checkpointing is performed at half the rank of the matrix.

These three scripts are called from a main script dedicated to iterating over

the parameter values to be supplied as input. The convenience of this structure

lies in the fact that, if one wishes to modify the parameters, it is not necessary to

make changes to the scripts that perform the jobs. Instead, if a change to a type

of script is necessary, it is only possible to work on the relevant section of code,

without affecting the rest.

To facilitate the handling of any inconveniences during the execution of the

various jobs, additional utility scripts have been developed, including:

• A script that, starting from the job name, retrieves the parameters trans-

mitted to the execution script.

• A script that displays the jobs that encountered errors during execution.

42

3.3. DATASET IMPLEMENTATION

• A script that, analysing the error files of jobs, re-executes them in the event

of non-zero file sizes.

• A script dedicated to extracting information from each job output file.

• A script capable of executing queries passed as a parameter on the database,

in order to avoid the inclusion of confidential information in each individual

script.

3.3.3 MPI-based Command Line “Tester”

In this paragraph will briefly show the MPI-based command line application used

to execute the algorithm routines described in the last chapter the associated

parameters to ensure their correct configuration.

Commands

The main commands of the tester are:

• --help: prints information about the usage of the command line interface;

• --list: print the list of testable routines;

• --save: save the generated matrices to files;

• --run <routine>: run the test(s) of a routine or a list of routines;

Options

The options used to execute the tests of this thesis are:

• -nm <integer number>: specifies the matrix rank;

• -seed <integer number>: is the seed of the random generation of the linear

system coefficients (in this thesis is always 1);

43

3.3. DATASET IMPLEMENTATION

• -cnd <integer number>: is the condition number of the input matrix (in

this thesis it assumes values: 1 for generating arrays with ideal conditions

of numerical stability and 1000 for those with real conditions of numerical

stability);

• -type <string>: precision type [s, d, single, double] of the input matrix

(routines for different precisions cannot be mixed);

• -no-cnd-set: disables matrix pre-conditioning;

• -no-cnd-readback: disables condition number checking after generation;

• -energy-reading: read Powercap energy counters for each node used at the

beginning and end of the run;

• -r <integer number>: run multiple times corresponded to the specified

number of repetitions (in this case 1);

• -o <file path>: saves the output to CSV file

• -i <file path>: takes as input matrices base the ones saved at the specified

the file path name (.A, .X, .B auto appended)

• -ft <integer number>: is the fault-tolerance level (0=none);

• -fr <integer number>: simulate faulty MPI ranks;

• -fl <integer number>: simulates faulty IMe inhibition level;

• -npf <integer number>: is the number of simulated faults (0=none);

• -nps <integer number>: number of spare processes for recovery (0=none);

• -spk-cp <integer number>: checkpointing interval;

• -spk-nb <integer number>: ScaLAPACK blocking factor;

44

3.3. DATASET IMPLEMENTATION

Routines

This software is capable of executing the different routines of several algorithms.

In particular, the ones we will use are:

• IMe-pSGESV-co

• IMe-pDGESV-co

• IMe-pSGESV-co-ft

• IMe-pDGESV-co-ft

• SPK-pSGESV

• SPK-pDGESV

• SPK-pSGESV-ft

• SPK-pDGESV-ft

The first four are IMe routines. The other four are ScaLAPACK routines divided

into single and double precision and then into the respective cases with integrated

fault tolerance.

45

3.3. DATASET IMPLEMENTATION

3.3.4 Communication with the monitoring node

Each node in the CRESCO6 cluster is equipped with a sensor capable of taking

measurements of various parameters, including power consumption, energy con-

sumption and node temperature.

To obtain this data, the command nodesensors <NODENAME> can be used. This

command is launched on an isolated CRESCO architecture node, which cannot

be reached by user access nodes. Each time this command is invoked, the in-

stantaneous values detected by the sensor on the CRESCO6 node passed as input

parameter are returned.

Since the node retrieving the sensor data is isolated, communication between it

and the node responsible for launching the jobs is necessary in order to specify for

each job the nodes to be sampled. To facilitate this communication, a database was

chosen. Therefore, in the pre-execution script of the job, which already receives

the assignment of all nodes from LSF, this information is extracted and entered

into the database, indicating the nodes to be monitored and the time at which to

start recording measurement values.

On the other hand, in the post-execution script, instructions are provided to

terminate the measurements, perform data retrieval, and calculate any values de-

rived from the measurements. This approach enables the efficient management of

sensory data collection and analysis, contributing to the optimised monitoring and

management of resources in the context of the CRESCO6 cluster.

The communication process consists of the following phases:

1) The first phase begins with the submission of the job, which is queued in the

scheduling queue awaiting execution.

2) Once the necessary resources are available, the LSF (Load Sharing Facility)

proceeds to allocate these resources. During this phase, a pre-execution

46

3.3. DATASET IMPLEMENTATION

script is executed on the first allocated node. This script retrieves crucial

information, such as the names of the assigned nodes and the job ID, using

the bjobs command. This information is then entered into a database table,

which is accompanied by a lock flag. The latter indicates that the job is

about to be executed, and the flag is set to “R”. This “unlock” value is

essential, as it allows measurement scripts to run continuously.

3) During job execution, a script on the measurement node processes the last

row of the table containing information about the running jobs and nodes.

If the lock flag is set to “R”, the script processes the information from the

sensors and saves the values obtained in another database table.

4) Once the job execution is complete, a post-execution script comes into play.

In this phase, the value of the lock column in the table indicating the nodes

is changed to “D”. The measurement script stops the sampling task. The

measurement data in the database is then saved to a CSV file in the job’s

submission node. In parallel, another file stores the start and end data of the

job in timestamp format in seconds, thus providing a more precise method

for filtering the measurements.

Initially, the procedure for collecting the nodes’ energy values was conceived

using a single script, which received as input the complete list of nodes employed

by the job. For each node, the process would cyclically execute the nodesensors

command. However, this methodology was discarded due to the relatively low

sampling rate: with a list consisting of only one node, the measurement interval

was only 1 second (considered the optimal case), while for two 2 nodes it extended

to about 3 seconds and even reached 11 seconds to complete a measurement cycle

on 16 nodes. Since the job execution time decreases as the number of nodes

increases, the best case involved an interval of 9 seconds on 16 nodes, inevitably

47

3.3. DATASET IMPLEMENTATION

generating a significant margin of error in the measurements. These limitations

made it necessary to adopt an alternative strategy to ensure acceptable accuracy

in energy data collection.

Then, considering that the optimal configuration is achieved by sampling only

one node and that the maximum number of nodes used in the relevant jobs is

16, an approach based on 16 parallel instances of the script was adopted. These

instances act as daemons and operate cyclically, collecting data from each node

every second and subsequently feeding it into the database. The use of different

tuples with unique primary keys avoids conflicts during data entry. The script is

configured to depend on a single input parameter, indicating at which position

in the list it should read the name of the node to be monitored. In the event

that no node is present at that position, e.g. if the number of nodes is less than

the parameter value representing the position, unnecessary instances will remain

inactive, ensuring efficient and effective operation of the monitoring system.

This strategy ensures flexible and optimised management of the sampling pro-

cess, dynamically adapting to the configuration of nodes present in the context of

job execution.

Analysing the CSV file, where the sensor measurements are saved, it contains

the following entries:

• Jobid: id of LSF job;

• Nodename: node name, generally all nodes in the cluster have names with

prefix “cresco6x”;

• Tempo: precise date and time of the reading to the sensors, expressed in

the format “Thu 1 Nov 00:02:39 CET 2018”;

• Timestamp measure: timestamp of the measure expressed in unixtime;

48

3.3. DATASET IMPLEMENTATION

• Sys power: Total instantaneous Power Measurement of the computing node

in W;

• Cpu power: CPU instantaneous Power Measurement of the computing

node in W;

• Mem power: Ram Memory instantaneous Power Measurement of the com-

puting node in W;

• Sys util: percentage of use of the system (single node);

• Cpu util: percentage of use of the CPU’s (single node);

• Mem util: percentage of use of the RAM memory (single node);

• IO util: node I/O traffic;

• Amb temp: measured ambient temperature near the computing node.

• CPU1 Temp: CPU1 temperature in °C

• CPU2 Temp: CPU2 temperature in °C

• Exh temp: Exhaust temperature in °C (air exit of the node);

• Sysairflow: air flow of the node measured in CFM (cubic feet to minute) -

indicates the flow of air moved;

• Fan1a: speed of the cooling fan Fan1a installed in the node expressed in

RPM (revs per minute);

• Fan1b: speed of the cooling fan Fan1b installed in the node expressed in

RPM (revs per minute);

49

3.3. DATASET IMPLEMENTATION

• Fan2a: speed of the cooling fan Fan2a installed in the node expressed in

RPM (revs per minute);

• Fan2b: speed of the cooling fan Fan2b installed in the node expressed in

RPM (revs per minute);

• Fan3a: speed of the cooling fan Fan3a installed in the node expressed in

RPM (revs per minute);

• Fan3b: speed of the cooling fan Fan3b installed in the node expressed in

RPM (revs per minute);

• Fan4a: speed of the cooling fan Fan4a installed in the node expressed in

RPM (revs per minute);

• Fan4b: speed of the cooling fan Fan4b installed in the node expressed in

RPM (revs per minute);

• Fan5a: speed of the cooling fan Fan5a installed in the node expressed in

RPM (revs per minute);

• Fan5b: speed of the cooling fan Fan5b installed in the node expressed in

RPM (revs per minute);

• DCenergy: energy meter consumed up to the time of reading - useful for

making differences between two readings in kWh;

• Note: Measurement notes (not always present);

• Delta e: difference between previous and current measurement of energy in

KWh for that node;

50

3.3. DATASET IMPLEMENTATION

3.3.5 Job results statement

As mentioned in Section 3.2, the data were organised into three distinct informa-

tion blocks. After the presentation of the job configuration scripts, which also

include the storage of the first block of information, and the mechanisms for com-

munication and data retrieval with the sensors, representing the second block, this

section will briefly focus on the data generated by the results of each job, which

are stored in the respective output files.

For each job the main information are:

• LSF Resource usage summary:

– CPU time in seconds

– Max Memory in MB

– Average Memory in MB

– Max Processes

– Max Threads

– Run time in seconds

– Turnaround time in seconds

• Output of MPI application. The most relevant information are:

– Normwise Relative Error

– Powercap energy counters

Subsequently, through the previously mentioned utility script (Section 3.3.2),

this information was aggregated into a single file.

51

3.4. CONFIGURATION PARAMETERS

3.4 Configuration Parameters

The following parameters were chosen to represent this dataset for the different

configurations:

• Algorithms: Inhibition Method (IMe) with compressed matrix, ScaLA-

PACK based on Gaussian Elimination

• Calculating processes: 64, 100, 144, 256, 400, 484, 576

• Matrix sizes: 5280, 10560, 15840, 21120, 26400, 31680, 36960, 42240

• Accuracy: single, double

• Fault tolerance: 0 (no fault tolerance), 1, 2, 4, 8

• Number of simulated faults (only if fault tolerance > 0): 0 , maximum

value for fault tolerance

• Balancing per socket: yes, no.

With these parameters, a total of 4032 different configurations are obtained.

After defining the crucial parameters, the matrices to be used as input for the

algorithms in question were generated. Initially, matrices characterised by ideal

numerical stability conditions were created. However, to broaden the scope of

the analysis, it was subsequently decided to generate matrices with more realistic

numerical stability conditions. This choice was guided by the desire to build a

second dataset, aimed at investigating possible variations under different numerical

stability conditions.

For better organisation and clarity, it was decided to present a summary of

each of the two datasets in the form of a table. As shown in Table 3.1, it is mainly

52

3.4. CONFIGURATION PARAMETERS

characterised by two fundamental variables: the matrix size and the calculating

processes performed.

Each cell in the table corresponds to 72 different configurations generated, con-

sidering the variations of the other parameters in relation to the specified number

of processes and the rank of the matrix. It is important to note that, due to the

long execution times, the configurations for the last three rows of the first two

columns on the bottom left (coloured in red) were not actually executed. How-

ever, it should be emphasised that despite this limitation, each dataset consists of

3600 configurations instead of 4032, still maintaining a wide spectrum of data for

analysis.

mat size \calc procs 64 100 144 256 400 484 576
5 280 ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 560 ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 840 ✓ ✓ ✓ ✓ ✓ ✓ ✓
21 120 ✓ ✓ ✓ ✓ ✓ ✓ ✓
26 400 ✓ ✓ ✓ ✓ ✓ ✓ ✓
31 680 ✓ ✓ ✓ ✓ ✓
36 960 ✓ ✓ ✓ ✓ ✓
42 240 ✓ ✓ ✓ ✓ ✓

Table 3.1: Summary of jobs in a dataset

53

Chapter 4

Predictive Analysis

In this chapter, we will proceed with a little predictive analysis of energy perfor-

mance, using part of the data obtained through the execution of the previously

presented linear system solvers. The initial section will focus on target selection

and description of the two datasets, providing details on the distribution of values

and other relevant indicators. Subsequently, predictors, evaluation metrics and

hyper-parameter optimisation techniques, as outlined in Chapter 2, will be em-

ployed in order to identify the optimal regressor. This approach will allow reliable

evaluation of predictions and consequently achieve significant energy savings.

In this chapter, the primary graphs of the first dataset, characterized by ideal

numerical stability conditions, will be presented. For secondary and additional

graphs, as well as those pertaining to the second dataset under realistic numerical

stability conditions, refer to the Appendix A and B.

4.1 Data Exploration

In this section, the data characteristics of both datasets will be examined. The

chosen targets include the total energy consumption, the maximum and av-

54

4.1. DATA EXPLORATION

erage power value of the nodes, and the running time of the configurations

of the algorithms considered. In addition, a detailed description of the data, once

converted into numerical values for the regression, will be provided, accompanied

by boxplots of the targets to allow a visualisation of the distribution of the values.

4.1.1 Data Preprocessing

Before starting data analysis, a preprocessing step is necessary to convert cate-

gorical data into numerical values for use with a regressor. The fields involved in

this transformation are “ALGORITHM”, “PRECISION” and “BALANCE”. Typ-

ically, the ”One-Hot Encoder” method is employed, but given that all the data in

question have only two distinct values, a more efficient approach involves using a

binary variable. The conversion process for each field is as follows:

• ALGORITHM:

– 0 represents ‘IMeCO’ (compressed matrix IMe)

– 1 represents ‘SPK’ (ScaLAPACK)

• PRECISION:

– 0 represents ‘single’

– 1 represents ‘double’

• BALANCE:

– 0 represents ‘No’

– 1 represents ‘Yes’.

55

4.1. DATA EXPLORATION

4.1.2 Data Description

Fields \ Index Mean Std Min 25% 50% 75% Max
ALGORITHM 0.5 0.500069459 0 0 0.5 1 1
PRECISION 0.5 0.500069459 0 0 0.5 1 1

FT 3.333333333 2.789254178 0 1 2 4 8
NF 1.666666667 2.582347582 0 0 0 2 8

CPROCS 314 181.0838168 64 144 256 484 576
SPROCS 29.73333333 45.73302815 0 2 8 40 192
TPROCS 343.7333333 195.4135177 64 148 320 492 768
MATSIZE 22176 11760.75189 5280 10560 21120 31680 42240
NODES 7.668888889 4.02373189 2 4 7 11 16
SPK-CP 4928 6762.638515 0 0 0 10560 21120
BKF 10.38222222 11.63053132 0 0 0 24 25

BALANCE 0.5 0.500069459 0 0 0.5 1 1
NUMxSOCK 10.99333333 11.11289712 0 0 8 23 24

TOTAL ENERGY 0.076255028 0.140817828 0.00047 0.0059 0.01653 0.0680275 0.93859
MAX SYS POWER 334.8583333 32.51745315 150 310 340 360 440
MEAN SYS POWER 236.5875569 50.43170759 115 194.1188575 248.362065 280.40282 330.15842

RUNTIME 140.7272222 260.0918769 6 15 36 131 2097

Table 4.1: Description of the dataset data with ideal numerical stability condition

Table 4.1 presents a comprehensive overview of the dataset for each field, such

as key statistical indices from ‘pandas.describe‘: mean value, standard deviation,

min value, 25th, 50th, and 75th percentiles, and max value. It is important to note

that the target variable, representing total energy consumed, is normalized. While

the other target variables maintain their current representation for this thesis,

it is suggested that future studies consider normalizing these variables as well.

Analyzing the impact of normalization on the prediction of these data could be a

valuable avenue for further research.

56

4.1. DATA EXPLORATION

4.1.3 Boxplots

In Figure 4.1, four boxplot plots are shown for the variables ‘TOTAL ENERGY’,

‘MAX SYS POWER’, ‘MEAN SYS POWER’ and ‘RUNTIME S’. The boxplots

show the median, quartiles and outliers for each variable, providing a compact

view of the distribution of values. Outliers are represented by circles, indicating

values that deviate significantly from the rest of the sample. These graphs are

useful for identifying the presence of any outliers in the data and for assessing the

symmetry of the distribution.

The following information can be deduced:

• TOTAL ENERGY: Values are concentrated very close to zero, with a

median at or near zero. There are many outliers, indicating that there are

some observations with significantly higher total energy values than most of

the data.

• MAX SYS POWER: Values appear to be more distributed than in TO-

TAL ENERGY, with a median around 250-300. There are fewer outliers

here, indicating a smaller variance than in TOTAL ENERGY.

• MEAN SYS POWER: Values appear to be more distributed than in TO-

TAL ENERGY, with a median lying around 250. No outliers are shown.

• RUNTIME S: Most values are concentrated near zero, similar to TO-

TAL ENERGY, but there are many outliers indicating much longer run

times.

57

4.1. DATA EXPLORATION

Figure 4.1: Boxplots of total energy consumption, maximum and average power
for each node used and runtime

58

4.1. DATA EXPLORATION

4.1.4 Histograms target

In this subplot, histograms are shown for the target variables, illustrating the

frequency of the data in specific intervals (Figure 4.2). Above the histograms, a

density curve estimates the probability distribution of the variable. These graphs

are useful for visualising the general shape of the data distribution, including the

patterns and presence of skewness or bimodal distributions.

Figure 4.2: Distributions of Energy Performance: Total Consumption, Peak Power,
Avg. Power, and Runtime

59

4.1. DATA EXPLORATION

In this case, it is noted that:

• TOTAL ENERGY: The distribution is strongly skewed to the right, with

most values clustered near zero KWh and some extremely high values, as

indicated by the long tail on the right.

• MAX SYS POWER: The distribution of maximum system power values

seems more uniform and less skewed than TOTAL ENERGY, with a slight

tendency towards the medium-high values.

• MEAN SYS POWER: This distribution appears similar to that of MAX-

SYS POWER, suggesting that the mean value of the system power follows

a similar trend to that of the maximum system power.

• RUNTIME S: As with TOTAL ENERGY, there is a strong skew to the

right, with most values concentrated near zero.

60

4.2. REGRESSOR EVALUATION

4.2 Regressor Evaluation

The table provides a detailed overview of the metrics for the chosen regressors

in predicting energy performance. For each regressor, two hyperparameter opti-

mization processes were conducted using gridsearchCV, employing both negative

mean squared error and mean squared absolute error as evaluation criteria. Ad-

ditionally, metrics such as RMSE, MAE, and MAPE were calculated, along with

the optimal hyperparameter for depth. To ensure experiment reproducibility, the

random state value was fixed at 42. A thorough analysis reveals that the most

effective regressor, as expected, is the Random Forest Regressor.

TARGET: TOTAL ENERGY (Min value : 0.000470 kWh - Max value: 0.938590 kWh)

REGRESSOR
TYPE SCORING
GRIDSEARCH CV

BEST
DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 7 0.01275468750553877 0.00460957337260932 0.12892347597528406
Decision Tree

neg mean absolute error 19 0.013076086258963416 0.00440911111111111 0.07613024544466025
neg mean squared error 8 0.011459619557381045 0.00391048285208939 0.07706775271558028

Random Forest
neg mean absolute error 13 0.010977759177219614 0.0036212282992650656 0.0621044065764673
neg mean squared error 4 0.010984345149752914 0.004064171446502564 0.19531441428445115Gradient Boosting

Decision Trees neg mean absolute error 5 0.010964453587660499 0.003721560408455006 0.11999544031079942
TARGET: MAX POWER (Min value : 150.000000 W - Max value: 440.000000 W)

REGRESSOR
TYPE SCORING
GRIDSEARCH CV

BEST
DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 8 11.721032536216727 7.840206936800857 0.025459493945647525
Decision Tree

neg mean absolute error 10 12.67629088504843 7.966831722253927 0.02418583101927385
neg mean squared error 10 10.071289391584031 6.899977766413612 0.02081705971122439

Random Forest
neg mean absolute error 11 10.241775561215347 6.9472041660891115 0.020960671799750048
neg mean squared error 5 10.538027940147591 7.216216035020971 0.02165217702090875Gradient Boosting

Decision Trees neg mean absolute error 6 10.339164947223738 7.089667493848047 0.021379468805083495
TARGET: MEAN POWER (Min value : 115.000000 W - Max value: 330.158420 W)

REGRESSOR
TYPE SCORING
GRIDSEARCH CV

BEST
DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 7 7.8011153440732155 5.72857807241245 0.026113611768348765
Decision Tree

neg mean absolute error 9 7.297785836367988 5.188574471984356 0.024404831082133947
neg mean squared error 15 6.574396178443816 4.659535641571242 0.02215968926861537

Random Forest
neg mean absolute error 11 6.530530828193816 4.632852686227598 0.022011408105103197
neg mean squared error 5 5.9429056481767875 4.319605873630149 0.020523226809441252Gradient Boosting

Decision Trees neg mean absolute error 5 5.9429056481767875 4.319605873630149 0.020523226809441252
TARGET: RUNTIME (Min value : 6.000000 s - Max value: 2097.000000 s)

REGRESSOR
TYPE SCORING
GRIDSEARCH CV

BEST
DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 10 22.238984402183785 7.29594903278829 0.06542877264761252
Decision Tree

neg mean absolute error 10 22.238984402183785 7.29594903278829 0.06542877264761252
neg mean squared error 18 19.41031338156751 7.041209949695367 0.06054693612839134

Random Forest
neg mean absolute error 12 19.65149666938452 7.03334351312457 0.06011087396678247
neg mean squared error 6 14.637845002519697 5.560338101119648 0.06530000056868551Gradient Boosting

Decision Trees neg mean absolute error 6 14.637845002519697 5.560338101119648 0.06530000056868551

Table 4.2: Summary table of regressor prediction evaluation on the first dataset

61

4.3. PREDICTION ERROR ANALYSIS

4.3 Prediction error analysis

In this section, the final analysis compares the error distributions of the Random

Forest regressor using tuning scores with neg mean squared error and neg mean ab-

solute error for hyperparameters. Initially, the frequency of error values is pre-

sented for all configurations and each target (Figure 4.3). Subsequently, the pre-

diction errors are analyzed by dividing the data based on prediction precision

(single or double). The results of similar analyses for other regressors can be

found in Appendix A.

4.3.1 Random Forest

(a) Total energy - Score Tuning: Neg MSE (b) Total Energy - Score Tuning: Neg MAE

(c) Max Power - Score Tuning: Neg MSE (d) Max Power - Score Tuning: Neg MAE

62

4.3. PREDICTION ERROR ANALYSIS

(e) Mean Power - Score Tuning: Neg MSE (f) Mean Power - Score Tuning: Neg MAE

(g) Runtime - Score Tuning: Neg MSE (h) Runtime - Score Tuning: Neg MAE

Figure 4.3: Random Forest error predictions distribution

It can be noted that the majority of cases exhibit values around zero, with

higher precision observed for the target variables Total Energy and Runtime.

Specifically, as illustrated in figures 4.3b,4.3d,4.3f,4.3h there is a slight improve-

ment in scoring using neg mean absolute error (Neg MAE).

The next page will briefly show the prediction errors divided into single (Figure

4.4) and double (Figure 4.5) precision values.

Noteworthy is that, for total energy consumed and runtime, the prediction error

shows minimal difference between the single and double precision cases when the

model is trained on both precision types. However, a higher accuracy in predicting

maximum and average power values per node emerges in the double precision cases.

63

4.3. PREDICTION ERROR ANALYSIS

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure 4.4: Random Forest error predictions distribution in single precision cases

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure 4.5: Random Forest error predictions distribution in double precision cases

For further investigations, it might be interesting to explore the possibility of

training two separate models, each for only one precision type. Next, evaluate

how the prediction error varies with respect to the results presented in the graphs,

considering the two models separately.

64

Conclusions

The main objective of this project was to analyze the energy performance of two

linear solvers, the Inhibition Method and ScaLAPACK, run on a high-performance

computing system, considering different configurations. In the course of this analy-

sis, an attempt was made to exploit the opportunity of integrating machine learn-

ing techniques to gain benefits by exploiting the predictive capabilities of these

approaches.

During the execution of algorithms to solve linear systems, the collection of

a large amount of energy data was completed. Communication mechanisms were

developed to transfer data from the HPC scheduler to the programs responsible

for detection from physical sensors. Subsequently, codes were created to aggregate

and organize this data.

The two datasets generated offer comprehensive details on the energy parame-

ters of each job, including individual nodes, memory usage, CPU, cooling system

and other relevant aspects. In addition, these datasets make it possible to extract

information about groupings of parameters or physical components of the HPC

system, such as nodes used for execution and the breakdown of processes by sock-

ets. Energy data were also acquired from software tools such as powercap, with

the goal of future verification of the consistency of the information against the

precise measurements provided by sensors directly installed on the nodes.

As for the data analysis, although in its early stages, it has already provided

65

CONCLUSIONS

significant answers that further support the adoption of machine learning tech-

niques for energy prediction. The predicted results show much higher accuracy

than expected, and regression techniques show a significant correlation between

initial job configuration and energy performance. In particular, the Random For-

est Regressor proved optimal for the first dataset, with error metrics confirming

the overall high accuracy.

Future Developments

Looking to the future, the prospects for developing this work open the way for a

number of exciting possibilities. Among the challenges and goals outlined in the

following pathway are:

1) Depth Investigations and More Accurate Analysis: this could involve

specific insights into individual nodes, detailed assessments of memory, CPU,

cooling system and node temperature utilization.

2) Refinement of Machine Learning Techniques: exploration of machine

learning techniques could go further, with the aim of further improving the

accuracy of energy predictions. The most crucial features that influence

energy performance would be interesting to identify, thus helping to develop

more sophisticated predictive models.

3) Optimization of Parameter Tuning Techniques: Deepen the study of

parameter tuning techniques, with a focus on finding more efficient Grid-

Search CV approaches. This could lead to more robust models that are

adaptable to various job configurations.

4) Introduction of Neural Networks: In addition to regressors, introducing

neural networks could be a significant next step. Neural networks can cap-

66

CONCLUSIONS

ture complex relationships in the data and could offer superior performance,

especially considering the complexity of interactions in HPC systems.

5) Improving the Scheduling Process: Use the data collected and estimates

provided by artificial intelligence to optimize the scheduling process in HPC

systems. This could lead to more efficient management of resources and

execution time.

6) Dataset Expansion and Future Perspectives: Expanding the dataset

is a logical step to improve the representativeness and generalization of the

models. Doing so could involve collecting data on different HPC architectures

and execution environments.

7) Wider Applications and Subsequent Projects: Use the results of this

work as the basis for larger projects involving vast amounts of energy data.

This could include collaborating with other research projects or applying the

knowledge gained in broader contexts, such as system-level energy optimiza-

tion or designing more efficient algorithms.

Ultimately, the future of this work offers a broad spectrum of opportunities to

explore, innovate, and contribute significantly to the field of energy performance

in HPC systems.

67

Appendix A

Additional analyses for ideally

numerically stable dataset

In this appendix, graphs are presented on the error prediction of the two regressors

analyzed in Chapter 4: first, of the classical Decision Tree (subsection A.1.1) and

then of the Gradient Boosting Decision Trees model (subsection A.1.2). The graphs

illustrate the discrepancy between the actual data and the predictions, divided

into three subsets: one for all configurations (resp. Figures A.1 and A.4) without

distinction of precision and two more to distinguish single (resp. Figures A.2 and

A.5) and double (resp. Figures A.3 and A.6) precisions. It is emphasized that

both regressors were trained using a dataset that included both types of precision.

68

A.1. PREDICTION ERROR ANALYSIS

A.1 Prediction error analysis

A.1.1 Decision Tree

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure A.1: Decision Tree error predictions distribution

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure A.2: Decision Tree error predictions distribution in single precision cases

69

A.1. PREDICTION ERROR ANALYSIS

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure A.3: Decision Tree error predictions distribution in double precision cases

A.1.2 Gradient Boosting Decision Tree

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure A.4: Gradient Boosting Decision Tree error predictions distribution

70

A.1. PREDICTION ERROR ANALYSIS

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure A.5: Gradient Boosting Decision Tree error predictions distribution in sin-
gle precision cases

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure A.6: Gradient Boosting Decision Tree error predictions distribution in dou-
ble precision cases

71

Appendix B

Dataset analysis with real

numerical stability conditions

This Appendix provides data from the same analyses carried out in Chapter 4 and

Appendix A for the second dataset created, namely, the one featuring matrices

with realistic numerical stability conditions.

The availability of this data is bound to be very useful for future comparative

analyses, not only with the first dataset but also to explore other critical aspects in

performance evaluation, particularly in the context of more realistic and complex

scenario simulations.

B.1 Data Exploration

B.1.1 Data Preprocessing

As both datasets are structured in the same way, the same data preprocessing

described in Paragraph 4.1.1 has been applied.

72

B.1. DATA EXPLORATION

B.1.2 Data Description

Fields \ Index Mean Std Min 25% 50% 75% Max
ALGORITHM 0.5 0.5000694589153869 0.0 0.0 0.5 1.0 1.0
PRECISION 0.49972222222222223 0.5000693817441682 0.0 0.0 0.0 1.0 1.0

FT 3.335277777777778 2.790066914550512 0.0 1.0 2.0 4.0 8.0
NF 1.6666666666666667 2.5823475817683295 0.0 0.0 0.0 2.0 8.0

CPROCS 314.0 181.08381680308827 64.0 144.0 256.0 484.0 576.0
SPROCS 29.735277777777778 45.731954945898835 0.0 2.0 8.0 40.0 192.0
TPROCS 343.73527777777775 195.41113654720175 64.0 148.0 320.0 492.0 768.0
MATSIZE 22176.0 11760.751885507818 5280.0 10560.0 21120.0 31680.0 42240.0
NODES 7.668888888888889 4.023731890431845 2.0 4.0 7.0 11.0 16.0
SPK-CP 4928.0 6762.638515313564 0.0 0.0 0.0 10560.0 21120.0
BKF 10.382222222222222 11.630531318246515 0.0 0.0 0.0 24.0 25.0

BALANCE 0.5002777777777778 0.5000693817441682 0.0 0.0 1.0 1.0 1.0
NUMxSOCK 10.998333333333333 11.111998851572782 0.0 0.0 16.0 23.0 24.0

TOTAL ENERGY 0.07588855555555556 0.14034929283605288 0.00043 0.0057875 0.016425000000000002 0.0674275 0.99293
MAX SYS POWER 332.69444444444446 37.124573034626316 190.0 310.0 340.0 360.0 810.0
MEAN SYS POWER 237.13445114722222 50.17862726176367 111.25 194.42708 248.238925 281.280795 323.29204

RUNTIME S 140.45333333333335 260.5358063824153 6.0 15.0 36.0 128.25 2367.0

Table B.1: Description of the dataset data with real numerical stability condition

B.1.3 Boxplots

Figure B.1: Boxplots of total energy consumption, maximum and average power
for each node used and runtime

73

B.1. DATA EXPLORATION

B.1.4 Histograms target

Figure B.2: Distributions of Energy Performance: Total Consumption, Peak
Power, Avg. Power, and Runtime

74

B.2. REGRESSORS EVALUATION

B.2 Regressors Evaluation

TARGET: TOTAL ENERGY (Min value : 0.000430 kWh - Max value: 0.933830 kWh)

REGRESSOR
TYPE SCORING

GRID SEARCH CV
BEST

DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 6 0.012677891758296266 0.005380234815344958 0.21626462919047512
Decision Tree

neg mean absolute error 9 0.013818456161842631 0.004229301260162477 0.08283302086508638
neg mean squared error 7 0.010510454294855502 0.003923716804769786 0.11082853754088962

Random Forest
neg mean absolute error 14 0.01029298495650228 0.0034602339076107913 0.06465906203724821
neg mean squared error 4 0.009471948138803653 0.00348564658335038 0.18117993501409718Gradient Boosting

Decision Trees neg mean absolute error 5 0.009841154065001169 0.0032789628119311138 0.10917922830372573
TARGET: MAX POWER (Min value : 190.000000 W - Max value: 430.000000 W)

REGRESSOR
TYPE SCORING

GRID SEARCH CV
BEST

DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 6 15.950352526764423 11.012386004972942 0.0341947511029825
Decision Tree

neg mean absolute error 8 17.422814022241557 10.542704500572725 0.03259291985974746
neg mean squared error 7 15.56142791778739 10.252386523263118 0.03164025906615516

Random Forest
neg mean absolute error 8 16.079502853698937 10.15436820219703 0.031303663043796066
neg mean squared error 4 16.34298004700934 10.904020415733665 0.03353489836385893Gradient Boosting

Decision Trees neg mean absolute error 5 16.80221003205115 10.710370092813783 0.03292080902937197
TARGET: MEAN POWER (Min value : 111.250000 W - Max value: 321.366160 W)

REGRESSOR
TYPE SCORING

GRID SEARCH CV
BEST

DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 7 10.284141520130754 7.523980357051382 0.03480608007643323
Decision Tree

neg mean absolute error 8 10.027103004959717 7.252885337234795 0.03407978056750638
neg mean squared error 9 8.48625552480795 6.1457455966687125 0.0293638953141297

Random Forest
neg mean absolute error 10 8.556555371124416 6.076015524637254 0.02914376353848104
neg mean squared error 5 7.712039392436465 5.690627771000274 0.027524888248922054Gradient Boosting

Decision Trees neg mean absolute error 5 7.712039392436465 5.690627771000274 0.027524888248922054
TARGET: RUNTIME (Min value : 6.000000 s - Max value: 1015.000000 s)

REGRESSOR
TYPE SCORING

GRID SEARCH CV
BEST

DEPTH

RMSE
Root Mean

Squared Error

MAE
Mean Absolute Error

MAPE
Mean Absolute
Percentage Error

neg mean squared error 9 21.410858174061943 6.767014365546298 0.06487049973710668
Decision Tree

neg mean absolute error 17 22.28386127337515 6.92530864197531 0.07214101695964685
neg mean squared error 14 20.235359549239764 6.857134592887136 0.06371312433570141

Random Forest
neg mean absolute error 14 20.235359549239764 6.857134592887136 0.06371312433570141
neg mean squared error 6 16.182932593757208 6.086177888879056 0.07922660739897572Gradient Boosting

Decision Trees neg mean absolute error 6 16.182932593757208 6.086177888879056 0.07922660739897572

Table B.2: Summary table of regressor prediction evaluation on the second dataset

75

B.3. PREDICTION ERROR ANALYSIS

B.3 Prediction error analysis

B.3.1 Decision Tree

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.3: Decision Tree error predictions distribution

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.4: Decision Tree error predictions distribution in single precision cases

76

B.3. PREDICTION ERROR ANALYSIS

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.5: Decision Tree error predictions distribution in double precision cases

B.3.2 Random Forest

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.6: Random Forest error predictions distribution

77

B.3. PREDICTION ERROR ANALYSIS

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.7: Random forest error predictions distribution in single precision cases

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.8: Random Forest error predictions distribution in double precision cases

78

B.3. PREDICTION ERROR ANALYSIS

B.3.3 Gradient Boosting Decision Tree

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.9: Gradient Boosting Decision Tree error predictions distribution

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.10: Gradient Boosting Decision Tree error predictions distribution in
single precision cases

79

B.3. PREDICTION ERROR ANALYSIS

(a) Tot Energy - Neg MSE (b) Tot Energy - Neg MAE (c) Max Pow. - Neg MSE (d) Max Pow. - Neg MAE

(e) Mean Pow. - Neg MSE (f) Mean Pow. - Neg MAE (g) Runtime - Neg MSE (h) Runtime - Neg MAE

Figure B.11: Gradient Boosting Decision Tree error predictions distribution in
double precision cases

80

Bibliography

[1] Kenneth O’brien et al. “A Survey of Power and Energy Predictive Models

in HPC Systems and Applications”. ACM Comput. Surv. 50.3 (June 2017).

issn: 0360-0300. doi: 10.1145/3078811.

[2] Pierre-François Dutot et al. “Towards Energy Budget Control in HPC”.

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGRID). 2017, pp. 381–390. doi: 10.1109/CCGRID.2017.16.

[3] TOP500 - The List. Online. Accessed: 2024-01-21. url: https : / / www .

top500.org/.

[4] Dan Zhao et al. “A Green(er) World for A.I.” 2022 IEEE International Par-

allel and Distributed Processing Symposium Workshops (IPDPSW). 2022,

pp. 742–750. doi: 10.1109/IPDPSW55747.2022.00126.

[5] F. Ciampolini. “Un metodo di soluzione dei circuiti lineari”. L.10 (1963).

[6] F. Filippetti and M. Artioli. “IMe: 4-term formula method for the symbolic

analysis of linear circuits”. IEEE Transactions on Circuits and Systems 51-

I.3 (2004), pp. 526–538. doi: 10.1109/TCSI.2003.822374.

[7] M. Artioli. “Symbolic techniques addressed to electric circuit analysis and

diagnosis”. Ph.D. dissertation. University of Bologna, Mar. 2001.

81

https://doi.org/10.1145/3078811
https://doi.org/10.1109/CCGRID.2017.16
https://www.top500.org/
https://www.top500.org/
https://doi.org/10.1109/IPDPSW55747.2022.00126
https://doi.org/10.1109/TCSI.2003.822374

BIBLIOGRAPHY

[8] Daniela Loreti Loreti, Marcello Artioli, and Anna Ciampolini. “Solving Lin-

ear Systems on High Performance Hardware with Resilience to Multiple

Hard Faults”. 2020 International Symposium on Reliable Distributed Systems

(SRDS). Shanghai, China, 2020, pp. 266–275. doi: 10.1109/SRDS51746.

2020.00034.

[9] Daniela Loreti, Marcello Artioli, and Anna Ciampolini. “Rollback-free recov-

ery for a high performance dense linear solver with reduced memory foot-

print”. Submitted to IEEE Transaction on Parallel and Distributed Systems.

2024.

[10] J.S. Plank, Kai Li, and M.A. Puening. “Diskless checkpointing”. IEEE Trans-

actions on Parallel and Distributed Systems 9.10 (Oct. 1998), pp. 972–986.

doi: 10.1109/71.730527.

[11] James S. Plank, Youngbae Kim, and Jack J. Dongarra. “Fault-Tolerant Ma-

trix Operations for Networks of Workstations Using Diskless Checkpointing”.

Journal of Parallel and Distributed Computing 43 (Sept. 1997), pp. 125–138.

[12] Y. Kim, J. S. Plank, and J. J. Dongarra. “Fault Tolerant Matrix Operations

for Networks of Workstations Using Multiple Checkpointing”. High Perfor-

mance Computing on the Information Superhighway, HPC Asia ’97. Seoul,

Korea, Apr. 1997, pp. 460–465.

[13] Z. Chen. “Scalable Techniques for Fault Tolerant High Performance Com-

puting”. Ph.D. dissertation. Knoxville, TN, USA: University of Tennessee,

2006.

[14] Marcello Artioli, Daniela Loreti, and Anna Ciampolini. “Fault Tolerant High

Performance Solver for Linear Equation Systems”. 2019 38th Symposium on

Reliable Distributed Systems (SRDS). Lyon, France, 2019, pp. 113–11309.

doi: 10.1109/SRDS47363.2019.00022.

82

https://doi.org/10.1109/SRDS51746.2020.00034
https://doi.org/10.1109/SRDS51746.2020.00034
https://doi.org/10.1109/71.730527
https://doi.org/10.1109/SRDS47363.2019.00022

BIBLIOGRAPHY

[15] Pramila P. Shinde and Seema Shah. “A Review of Machine Learning and

Deep Learning Applications”. 2018 Fourth International Conference on Com-

puting Communication Control and Automation (ICCUBEA). 2018, pp. 1–6.

doi: 10.1109/ICCUBEA.2018.8697857.

[16] Leo Breiman et al. Classification and regression trees. Wadsworth, 1984.

[17] Rosaria Silipo. “Ensemble models: Bagging & Boosting - Analytics Vidhya -

Medium”. en. Medium (Dec. 2021). url: https://medium.com/analytics-

vidhya/ensemble-models-bagging-boosting-c33706db0b0b.

[18] Scikit-learn: Machine Learning in Python. Online. Accessed: 2024-01-17.

2023. url: https://scikit-learn.org/stable/user_guide.html.

[19] Padhma M. A comprehensive introduction to evaluating Regression Models.

Online. Nov. 2023. url: https://www.analyticsvidhya.com/blog/2021/

10/evaluation-metric-for-regression-models/.

[20] Scikit-learn: Tuning the hyperparameters of an estimator. Online. Accessed:

2024-01-18. 2023. url: https://scikit-learn.org/stable/modules/

grid_search.html.

[21] CRESCO - Computational RESearch Centre on COmplex Systems. Online.

Accessed: 2024-01-15. url: https://www.afs.enea.it/project/eneagrid/

Resources_en/CRESCO_documents/index.html.

83

https://doi.org/10.1109/ICCUBEA.2018.8697857
https://medium.com/analytics-vidhya/ensemble-models-bagging-boosting-c33706db0b0b
https://medium.com/analytics-vidhya/ensemble-models-bagging-boosting-c33706db0b0b
https://scikit-learn.org/stable/user_guide.html
https://www.analyticsvidhya.com/blog/2021/10/evaluation-metric-for-regression-models/
https://www.analyticsvidhya.com/blog/2021/10/evaluation-metric-for-regression-models/
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://www.afs.enea.it/project/eneagrid/Resources_en/CRESCO_documents/index.html
https://www.afs.enea.it/project/eneagrid/Resources_en/CRESCO_documents/index.html

List of Figures

1.1 Graphical visualization of the fundamental formula and the compu-

tation of the auxiliary quantities. (Source: [8]) 6

1.2 Inhibition Table alternative form.(Source: [9]) 7

1.3 Evolution of IMe data structures when compressing E and K into

a single matrix V . (Source: [9]) . 8

1.4 2D block-cyclic distribution of V and S on a 3 × 4 and 3 × 2

processor grid, respectively. (Source: [9]) 14

2.1 Single Decision Tree scheme (Source: [17]) 18

2.2 Example of a regression tree diagram (Source: [18]) 21

2.3 Random Forest scheme (Source: [17]) 22

2.4 Gradient Boosting Decision Tree scheme (Source: [17]) 23

3.1 Structure diagram of a single node belonging to the CRESCO6 clus-

ter (Source: [21]) . 32

3.2 Job Execution Mechanism . 35

4.1 Boxplots of total energy consumption, maximum and average power

for each node used and runtime . 58

4.2 Distributions of Energy Performance: Total Consumption, Peak

Power, Avg. Power, and Runtime 59

84

LIST OF FIGURES

4.3 Random Forest error predictions distribution 63

4.4 Random Forest error predictions distribution in single precision cases 64

4.5 Random Forest error predictions distribution in double precision cases 64

A.1 Decision Tree error predictions distribution 69

A.2 Decision Tree error predictions distribution in single precision cases 69

A.3 Decision Tree error predictions distribution in double precision cases 70

A.4 Gradient Boosting Decision Tree error predictions distribution . . . 70

A.5 Gradient Boosting Decision Tree error predictions distribution in

single precision cases . 71

A.6 Gradient Boosting Decision Tree error predictions distribution in

double precision cases . 71

B.1 Boxplots of total energy consumption, maximum and average power

for each node used and runtime . 73

B.2 Distributions of Energy Performance: Total Consumption, Peak

Power, Avg. Power, and Runtime 74

B.3 Decision Tree error predictions distribution 76

B.4 Decision Tree error predictions distribution in single precision cases 76

B.5 Decision Tree error predictions distribution in double precision cases 77

B.6 Random Forest error predictions distribution 77

B.7 Random forest error predictions distribution in single precision cases 78

B.8 Random Forest error predictions distribution in double precision cases 78

B.9 Gradient Boosting Decision Tree error predictions distribution . . . 79

B.10 Gradient Boosting Decision Tree error predictions distribution in

single precision cases . 79

B.11 Gradient Boosting Decision Tree error predictions distribution in

double precision cases . 80

85

List of Tables

1.1 IMe prescribed steps to compute the system’s solution. 6

3.1 Summary of jobs in a dataset . 53

4.1 Description of the dataset data with ideal numerical stability condition 56

4.2 Summary table of regressor prediction evaluation on the first dataset 61

B.1 Description of the dataset data with real numerical stability condition 73

B.2 Summary table of regressor prediction evaluation on the second

dataset . 75

86

Acknowledgements

First and foremost, I would like to express my gratitude to Professor Anna

Ciampolini and Professor Daniela Loreti for their essential support and assistance

in the completion of this thesis, marking the conclusion of my master’s degree.

I also extend my thanks to Eng. Marcello Artioli and Dr. Davide De Chiara

from ENEA, who were consistently available during my internship leading up to

this thesis and throughout its writing, providing valuable guidance and knowledge.

Special mention goes to Professor Andrea Borghesi for his assistance, especially

in the data analysis within the context of AI, and to Dr. Marta Chinnici for her

administrative and bureaucratic support.

A simple thank you is not enough, but I want to express my gratitude to my

parents, my brother, my grandparents, my aunts, uncles, and cousins, who have

supported me morally and economically.

To my friends Giordano and Michele, Flavio, and all my other friends from

Molise, thank you for your support and for sharing beautiful moments together

whenever we meet, despite being scattered across Italy.

In Bologna, I want to acknowledge the many people who have enriched my life:

To Alessandra, one of the first dear people I met in Bologna.

To Francesca, Alin, and Ada, who have become some of my closest friends.

To Generoso, for enduring and supporting me through countless moments.

To Marco (“Disi”), for the lengthy conversations and advice.

87

ACKNOWLEDGEMENTS

To Giuseppe (“Peppone”), whose charisma makes it impossible not to become

friends.

To Aldo, Alessandro, and Enrico, with whom I shared the emotions and dis-

appointments of our great passion, Formula 1, every Sunday, besides our studies.

To Fabiana, who is always there for me, has taught me so much and is without

a doubt one of the most important people I know.

To the “O’ sole mio” group, as I owe a lot to you for getting me here.

Thanks to my other close group of friends: Antonio, Federica, Filippo, Gabriele,

Giacomo, Giorgia, Guglielmo, Stefano, and Lorenzo.

I also extend my thanks to all the other computer engineers I’ve met in these

5 and half years.

Now, it’s time to acknowledge my second family: UniOne study room. I want to

mention a few names (in no particular order): Riccardo, Francesca, Anixia, Serena,

Emanuela, Gloria, Ilaria, Saverio, Sara, Carlotta, Matilde, Rachele, Beniamino,

Andrea, Federica and many others. Even if not mentioned, you are all in my

heart.

Moreover, I would like to thank the staff at UniOne, Rita, Roberto, Nicoletta,

and Gerardo, for making me feel at the study room literally like home.

As I approach the conclusion, I want to express gratitude to those who shared

the AlmaEnglish journey with me, particularly Arianna and Roberta.

Over the years I’ve met people from other engineering courses and from various

faculties in general. Others I met during a week’s vacation in Barcelona. There

are so many of you that I cannot name them all. Perhaps I forgot to mention

someone, and with this sentence I take the opportunity to thank you.

As one chapter closes, I hope you’ll be present in the ones that follow.

This marks the end of the thesis, and I thank you all.

88

	Introduction
	Linear systems solver algorithms: IMe and ScaLAPACK
	The Inhibition Method (IMe)
	The Inhibition Method with reduced memory footage

	ScaLAPACK
	Fault tolerance management
	ScaLAPACK Diskless Checkpoining strategy
	IMe Checksum strategy

	Essential Machine Learning Concepts for Predictive Analysis
	Overview
	Regression Models
	Decision Tree
	Random Forest
	Gradient Boosting Decision Tree

	Evaluation Metrics for Regression Models
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)

	Tuning the hyperparameters

	Dataset Structure and Implementation
	CRESCO6 Cluster Architecture
	Dataset Structure
	Dataset Implementation
	Preparation phase for job launch
	Job Launch Scripts
	MPI-based Command Line ``Tester''
	Communication with the monitoring node
	Job results statement

	Configuration Parameters

	Predictive Analysis
	Data Exploration
	Data Preprocessing
	Data Description
	Boxplots
	Histograms target

	Regressor Evaluation
	Prediction error analysis
	Random Forest

	Conclusions
	Additional analyses for ideally numerically stable dataset
	Prediction error analysis
	Decision Tree
	Gradient Boosting Decision Tree

	Dataset analysis with real numerical stability conditions
	Data Exploration
	Data Preprocessing
	Data Description
	Boxplots
	Histograms target

	Regressors Evaluation
	Prediction error analysis
	Decision Tree
	Random Forest
	Gradient Boosting Decision Tree

	Bibliography
	List of Figures
	List of Tables
	Index
	Acknowledgements

