SCUOLA DI SCIENZE Corso di Laurea in Matematica

Singolarità di Du Val

Tesi di Laurea in Matematica

Relatrice: Chiar.ma Prof.ssa Antonella Grassi Presentata da: Pietro Magliano

Anno Accademico 2022/2023

a mio fratello

Introduzione

Le singolarità di Du Val compaiono in molte aree della matematica come geometria algebrica, teoria delle singolarità e teoria dei gruppi. Vengono chiamate anche singolarità di Klein o punti doppi razionali ed esistono vari modi di caratterizzarle [1]. Storicamente venero studiate per la prima volta da Felix Klein nell'ambito della teoria degli invarianti [3]. Per capire come mai un argomento di teoria dei gruppi sia così legato alla geometria bisogna ricordare che Klein vedeva quest'ultima come uno strumento per studiare le proprietà dello spazio che sono invarianti rispetto a un dato gruppo di trasformazioni. Considerando i gruppi finiti di $SL(2,\mathbb{C})$, Klein, trova che i polinomi invarianti per ognuno di questi gruppi definiscono una relazione polinomiale che, vista come superficie algebrica, è singolare nell'origine. Circa mezzo secolo dopo Patrick Du Val [9], riprendendo il lavoro di Klein, riesce ad associare a ognuna delle superfici trovate un diagramma che a posteriori si scopre essere il diagramma Dynkin, utilizzato nello studio dei gruppi e delle algebre di Lie. Più recentemente, nel 1978, McKay [5], scoprì una nuova connessione fra le rappresentazioni di sottogruppi di $SL(2,\mathbb{C})$ e la classificazione dei diagrammi di Dynkin di gruppi di Lie semplici senza involvere lo studio della superficie. Il diagramma associato alle orbite singolari del gruppo ottenuto da McKay è un diagramma di Dynkin esteso già conosciuto nelle classificazioni dei gruppi semplici di Lie. Un' altra applicazione delle singolarità di Du Val si ha nella teoria delle catastrofi, un ramo della teoria delle biforcazioni nello studio dei sistemi dinamici. Teoria delle catastrofi studia e classifica i fenomeni caratterizzati da improvvisi cambiamenti del comportamento del sistema dovuti a piccole perturbazioni, in particolare vengono studiati i punti critici degeneri del potenziale di un sistema. Vladimir Arnold diede alle catastrofi la stessa classificazione delle singolarità di Du Val a causa della forte connessione con i gruppi di Lie [2].

Le singolarità di Du val vengono classificate nei seguenti tipi, A_n , D_n , E_6 , E_7 , E_8 , con $n \in \mathbb{N}$, a cui corrispondono rispettivamente i gruppi di trasformazioni lineari ciclico, diedrale binario, tetraedrale binario, octaedrale binario e icosaedrale binario. Questi gruppi prendono il nome dal fatto che sono gruppi di rotazioni che trasformano un poliedro regolare in se stesso: il gruppo ciclico è dato dalle rotazioni che trasformano un poligono di n lati in se stesso, il gruppo diedrale binario trasforma un diedro di n lati, cioè due poligoni di n lati incollati sui bordi, in se stesso, il gruppo tetraedrale trasforma un tetraedro in se stesso e così via. Questi gruppi sono quindi rotazioni di \mathbb{R}^3 che noi tratteremo però come gruppi di rotazioni su \mathbb{C}^2 ; identificando la sfera S^2 con la retta proiettiva complessa $\mathbb{P}^1(\mathbb{C})$ è infatti possibile vedere questi gruppi come sottogruppi finiti di $SL(2, \mathbb{C})$. Un esempio di singolarità di tipo A_1 è dato dal punto singolare del cono a cui corrisponde il gruppo dato dalla simmetria per l'origine. In questa tesi seguiremo questo percorso storico e mostreremo quindi come, da ogni gruppo dei precedenti, si possa arrivare a definire una determinata superficie con un punto singolare e poi che a questa è possibile associarne il diagramma attraverso la risoluzione.

Per poter trattare questi argomenti, nel primo capitolo, viene data la definizione di varietà algebrica, di punto singolare e di risoluzione. Parleremo anche di divisori di una superficie poiché vedremo che saranno questi a determinare il diagramma di Dynkin. Per risolvere i punti singolari utilizzeremo il BlowUp, uno strumento, che consiste in una mappa che, centrata nel punto singolare, "scoppia" la superficie di partenza mandandola in un'altra immersa in uno spazio di dimensione maggiore. La superficie così ottenuta è isomorfa all'originale se non per il punto singolare che viene mandato in un insieme di curve, ovvero divisori della superficie.

Nel secondo capitolo per ogni tipologia di punto singolare mostreremo prima come, dato un gruppo fra i precedenti, si determini l'equazione di una superficie con una singolarità nell'origine e poi come la risoluzione di questa dia il diagramma di Dynkin. Per dimostrare la relazione fra gruppo e superficie individueremo tre polinomi invarianti che soddisfino fra di loro una relazione algebrica che definirà la superficie. Grazie ad una mappa definita con questi tre polinomi dimostreremo che la superficie è isomorfa al quoziente ottenuto facendo agire il gruppo su \mathbb{C}^2 . Definita quindi l'equazione della superficie singolare partiamo da questa per ricavarne una risoluzione. Preso il punto singolare iniziale faccio il BlowUp della superficie centrandolo in quel punto, ripetendo la procedura fino ad ottenere una superficie liscia. Una volta trovata questa la controimmagine del punto singolare darà un insieme di curve che denomineremo divisore eccezionale. Il diagramma duale del divisore eccezionale è così definito: ad ogni punto corrisponde una curva e due punti del diagramma sono uniti da un lato se le rispettive curve si intersecano. Il numero di curve ottenute corrisponde al pedice della tipologia di punto. Nei punti di tipo A_n il primo BlowUp ci riconduce ad una superficie con punto singolare di tipo A_{n-2} , basterà quindi studiare i caso A_1 ed A_2 per ricavare gli altri punti. Analogamente i punti di tipo D_n , dopo il primo BlowUp, si riconducono ai punti di tipo D_{n-2} . Nei casi A_1 , $A_2 \in D_4$ vedremo esplicitamente dalle equazioni che le curve del divisore eccezionale sono tutte -2-curve, ovvero il loro indice di auto-intersezione è -2. Nel terzo capitolo mostreremo che questa proprietà non è una particolarità solo di quella tipologia di punti ma, più in generale, discende da una proprietà di queste singolarità: quella di avere una risoluzione crepante. Questo termine viene coniato da Miles Reid rimuovendo il prefisso "dis" dalla parola discrepate per indicare che la risoluzione non ha discrepanza nella classe canonica. Più precisamente dimostreremo non solo che le singolarità di Du Val hanno una soluzione crepante ma anche che se un punto singolare su una superficie ha soluzione crepante allora questa sarà una singolarità di Du Val. Infine accenneremo al numero di Milnor che può essere considerato sia un invariante geometrico che un invariante algebrico; per questo ha un ruolo importante sia nella geometria algebrica che nella teoria delle singolarità, [6]. Nel caso delle singolarità di Du Val il numero di Milnor indicherà il numero di curve eccezionali ottenute nella risoluzione o equivalentemente la quantità di nodi da cui è composto il diagramma di Dynkin.

Indice

Introduzione i						
1	1 Richiami, preliminari e notazioni					
	1.1	Definizioni	1			
	1.2	Strumenti per la risoluzione, il BlowUp	4			
	1.3	Divisore Canonico	6			
2	Sing	golarità di Du Val	9			
	2.1	Definizione delle Singolarità di Du Val	9			
	2.2	Punti di singolarità A_n	10			
		2.2.1 Punti A_n come quozienti	10			
		2.2.2 Risoluzione dei punti A_n	11			
		2.2.3 Punti A_1	12			
		2.2.4 Punti A_2	13			
	2.3	Punti di singolarità D_n	13			
		2.3.1 Punti D_n come quozienti	13			
		2.3.2 Risoluzione di D_n	15			
		2.3.3 Punti D_4	16			
		2.3.4 Punti D_5	17			
	2.4	Punto di singolarità E_6	20			
		2.4.1 Punto E_6 come quoziente	20			
		2.4.2 Risoluzione dei Punti E_6	21			
	2.5	Punto di singolarità E_7	25			
	2.6	Punto di singolarità E_8	29			
3	Proprietà e caratterizzazioni 35					
	3.1	Du Val e risoluzioni crepanti	35			
	3.2	Numero di Milnor	36			

Capitolo 1 Richiami, preliminari e notazioni

1.1 Definizioni

Definizione 1.1 (Anello Noetheriano). Sia A un anello commutativo con unità allora le seguenti condizioni sono equivalenti.

- (i) Ogni ideale $I \subset A$ è finitamente generato; ovvero, per ogni ideale $I \subset A$, esistono $f_1, \ldots, f_k \in I$ tali che $I = (f_1, \ldots, f_k)$.
- (ii) Ogni catena ascendente

$$I_1 \subset \cdots \subset I_m \subset \cdots$$

di ideali di A è stazionaria, ovvero esiste N per cui $I_N = I_{N+1} = \cdots$

- (iii) Ogni insieme non vuoto di ideali di A ha un elemento massimale.
- Se A soddisfa una di queste condizioni allora A viene detto anello Noetheriano. La dimostrazione è trattata in [7]

Esempio 1.2. Un campo K è un anello Noetheriano. Infatti i suoi unici due ideali sono (0) e K = (1).

Teorema 1.3 (Teorema delle basi di Hilbert). Sia A un anello, se A è Noetheriano allora A[X] è Noetheriano.

Corollario 1.4. Se K è un campo l'anello dei polinomi a coefficienti nel campo K[X] è Noetheriano.

Definizione 1.5 (Spazio affine \mathbb{A}_{K}^{n}). Sia K un campo, indichiamo A_{K}^{n} lo spazio affine *n*-dimensionale su K come l'insieme delle *n*-uple di elementi di K.

$$A_{K}^{n} = \{(x_{1}, \cdots, x_{n}) | x_{i} \in K \quad \forall i = 1, \dots, n\}$$

Definizione 1.6 (Varietà algebrica affine).

Sia K un campo e $K[x_1, ..., x_n]$ l'anello dei polinomi a coefficienti in K in n incognite. Sia I un ideale in $K[x_1, ..., x_n]$ allora una varietà algebrica affine X è data da l'insieme

$$V(I) := \{ (x_1, \dots, x_n) \in \mathbb{A}_K^n | \quad f(x) = 0 \quad \forall f \in I \}.$$

e da K[X], l'anello di funzioni polinomiali $f: V(I) \to K$

Definizione 1.7 (Varietà irriducibile).

Sia X una varietà algebrica, X si dice irriducibile se non esistono $X_1, X_2 \subset X$, algebrici, con $X_1 \neq X_2$ tali che

$$X_1 \cup X_2 = X$$

Osservazione 1.8. Per 1.4 esistono $f_1, \ldots, f_m \in I$ generatori di I tali per cui se $g \in I$ allora $g = p_1 f_1 + \ldots + p_m f_m \operatorname{con} p_1, \ldots, p_m \operatorname{in} K[x].$

Chiedere che si annullino tutti i polinomi di I equivale a chiedere che si annullino tutti i suoi generatori. Quindi

$$V(I) = \bigcap_{i=1}^{m} \{ x \in \mathbb{A}_{K}^{n} | f_{i}(x) = 0 \} = \bigcap_{i=1}^{m} V(f_{i}).$$

Definizione 1.9 (Dimensione). Data X una varietà algebrica irriducibile, definiamo la dimensione di X come

 $dim(X) = max\{k \mid X = Y_k \supseteq \cdots \supseteq Y_1 \supseteq Y_0; Y_i \text{ algebrico irriducibile per ogni } i\}.$

In questa tesi considereremo X come varietà algebrica irriducibile.

Teorema 1.10. Se X è definita da un ideale generato da un unico polinomio irriducibile $f \in K[x_1, ..., x_n]$ allora dim(X) = n - 1

Definizione 1.11 (Spazio tangente a X in P).

Sia X = V(I), con $I = (f_1, \ldots, f_m)$ e sia $P = (a_1, \ldots, a_n)$ un punto in X. Per ogni $g \in K[x_1, \ldots, x_n]$ indichiamo

$$d_Pg := \sum_{k=1}^n \frac{\partial f}{\partial x_k} (P)(x_k - a_k).$$

Questo è un polinomio di grado uno, definiamo ora lo spazio tangente a X in P:

$$T_P X = \bigcap_{f \in I} (d_P f = 0). \tag{1.1}$$

Analogamente se f_1, \ldots, f_m sono un insieme di generatori di I allora

$$T_P X = \bigcap_{i=1}^m (d_P f_i = 0).$$

Osservazione 1.12. Se X = V(f) con f polinomio irriducibile allora $T_P X$ definito come in (1.1) è un iperpiano, poiché definito da una sola equazione lineare, se e solo se le derivate parziali di f calcolate in P sono diverse dal vettore nullo.

Definizione 1.13. Sia X un insieme algebrico,

X è una superficie se dim(X) = 2. X è una curva se dim(X) = 1.

Definizione 1.14 (Punto Singolare). Sia $f \in K[x_1, ..., x_n]$ polinomio irriducibile diverso da una costante e X = V(f) la varietà definita da questo. Un punto $P \in X$ è detto singolare se

$$\left(\frac{\partial f}{\partial x_1}(P), \cdots, \frac{\partial f}{\partial x_n}(P)\right) = (0, \cdots, 0).$$

P è non singolare se e solo se $dim(T_PX) = dim(X)$.

Definizione 1.15 (Risoluzione di un Punto Singolare). Sia X una superficie affine e $P \in X$ un punto singolare isolato in X. Una risoluzione di X è un morfismo birazionale $f: Y \to X$ tale che:

- Y è una superficie liscia.
- $f_{|f^{-1}(X \setminus P)} : f^{-1}(X \setminus P) \to X \setminus P$ è un isomorfismo.

Una risoluzione $f: Y \to X$ si dice minimale se ogni altra risoluzione $\tilde{f}: \tilde{Y} \to X$ si fattorizza su f ovvero esiste $\phi: \tilde{Y} \to Y$ tale che $\tilde{f} = f \circ \phi$.

Esempio 1.16. Sia X = V(f) con $f = x_3^2 - x_2^2 - x_1^2$, $X \subset \mathbb{A}^3_{\mathbb{R}}$. Le derivate parziali $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right) = (-2x_1, -2x_2, 2x_3)$, si annullano in P = (0, 0, 0) P è quindi un punto singolare per X.

Definizione 1.17 (Divisori). Sia X una varietà algebrica irriducibile. Una collezione di varietà algebriche irriducibili C_1, \ldots, C_r di codimensione 1 in X con un assegnato numero intero di molteplicità k_1, \ldots, k_r è detto divisore di X. Un divisore si scrive

$$D = k_1 C_1 + \dots + k_r C_r. \tag{1.2}$$

Se tutti i $k_i = 0$, scriviamo D = 0. Se tutti i $k_i \ge 0$ e alcuni $k_i > 0$ scriviamo D > 0; in questo caso D è detto divisore effettivo. Una varietà irriducibile di codimensione 1 con molteplicità 1 prende il nome di divisore primo. Se $k_i \ne 0$ in (1.2) per ogni i allora la varietà data da $C_1 \cup \cdots \cup C_r$ è detto supporto di D e viene denotato con Supp D.

Possiamo definire un operazione di addizione fra divisori: Presi D e D', è possibile scrivere

$$D = k_1 C_1 + \dots + k_r C_r$$
 e $D' = k'_1 C_1 + \dots + k'_r C_r$

con eventualmente qualche k_i o k'_i uguale a 0 così da avere gli stessi divisori primi C_1, \ldots, C_r . Allora definiamo,

$$D + D' = (k_1 + k'_1)C_1 + \dots + (k_r + k'_r)C_r.$$

Con questo i divisori di X formano un gruppo dato dalle sottovarietà di codimensione 1 di X. Questo gruppo è denotato con DivX.

Esempio 1.18 (**Divisore associato a** $f \in K(X)$). Sia $f \in K(X)$, f non nulla. Definiamo divf il divisore associato ad f come

$$div(f) = div_0(f) - div_\infty(f).$$

 $div_0(f)$ è chiamato divisore degli zeri e $div_0(f) = \{$ insieme degli zeri di f contati con molteplicità $\}$; $div_{\infty}(f)$ è chiamato divisore dei poli di f e $div_{\infty}(f) = \{$ insieme dei poli di f contati con molteplicità $\}$. $div_0(f)$ e $div_{\infty}(f)$ sono divisori effettivi. Un divisore della forma D = div(f) è detto divisore principale

I divisori principali formano un sottogruppo P(X) nel gruppo dei divisori DivX. Il gruppo quoziente DivX/P(X) è detto gruppo delle classi dei divisori; due divisori D_1 e D_2 sono nella stessa classe se $D_1 - D_2 = div(f)$ con $f \in K(X), f \neq 0$, se questo accade D_1 e D_2 sono detti linearmente equivalenti e si indica con $D_1 \sim D_2$.

Teorema 1.19. È possibile considerare il numero di intersezione $D_1 \cdot D_2$ fra due divisori su una superficie come un applicazione da $DivX \times DivX$ in \mathbb{Z} con le seguenti proprietà:

- 1. $D_1 \cdot D_2$ è bilineare.
- 2. Se $D_1 \stackrel{lin.}{\sim} D'_1$ allora $D_1 \cdot D_2 = D'_1 \cdot D_2$.
- 3. Se D_1 , $D_2 \ge 0$ sono divisori effettivi, e non hanno componenti in comune allora $D_1 \cdot D_2 = \sum_P (D_1 D_2)_P$, al variare di P in $D_1 \cap D_2$, e dove $(D_1 D_2)_P$ è l'indice di intersezione locale in P definito come:

$$(D_1D_2)_P = dim_K \mathcal{O}_{X,P}/(f_1, f_2);$$

 $O_{X,P}$ è l'anello locale di $P \in X$ e f_1 , f_2 sono le equazioni locali intorno a P, rispettivamente, di D_1 e D_2 .

1.2 Strumenti per la risoluzione, il BlowUp

Uno degli strumenti per la risoluzione dei punti di singolarità su superfici è il Blow-Up, in italiano scoppiamento, di una superficie in un punto.

Definizione 1.20 (BlowUp dello spazio affine).

Siano \mathbb{A}^n di coordinate (x_1, \dots, x_n) e \mathbb{P}^{n-1} coordinate omogenee $[\omega_1, \dots, \omega_n]$. Sia $P \in \mathbb{A}^n$ che, a meno di un cambio di coordinate, possiamo supporte $P = (0, \dots, 0)$, consideriamo la superficie di $\mathbb{A}^n \times \mathbb{P}^{n-1}$ descritta dall'equazione:

$$Bl_P\mathbb{A}^n = \left\{ \left((x_1, \cdots, x_n), [\omega_1, \cdots, \omega_n] \right) \in \mathbb{A}^n \times \mathbb{P}^{n-1} \, | \, x_i y_j = x_j y_i \, \forall \, i, j = 1, \dots, n \right\}.$$

$$(1.3)$$

l'applicazione

$$\sigma: Bl_P \mathbb{A}^n \to \mathbb{A}^n$$

indotta dalla proiezione al primo termine viene chiamata scoppiamento di \mathbb{A}^n centrato in P. Se $Q = (x_1, \dots, x_n) \neq P$ allora $\sigma^{-1}(Q)$ è univocamente determinato: Se $Q \neq P$ allora per almeno un i $x_i \neq 0$ quindi da 1.3 sappiamo che $\omega_j = x_j \frac{\omega i}{x_i}$. Quindi $\sigma^{-1}(P) = ((x_1, \dots, x_n), [x_1 \frac{\omega i}{x_i}, \dots, x_n \frac{\omega i}{x_i}]) = ((x_1, \dots, x_n), [x_1, \dots, x_n])$ poiché stiamo lavorando con coordinate omogenee. Possiamo quindi definire la mappa $\sigma^{-1} : \mathbb{A}^n \setminus P \rightarrow$ $Bl_P \mathbb{A}^n$. Se invece Q = P l'equazione di 1.3 è soddisfatta per ogni $[\omega_1, \dots, \omega_n]$. Sicché $\sigma^{-1}(P) = P \times \mathbb{P}^{n-1}$ e σ definisce un isomorfismo fra $\mathbb{A}^n \setminus P$ e $\mathbb{P}^{n-1} \setminus (P \times \mathbb{P}^{n-1})$ Osservazione 1.21. È possibile ricoprire $Bl_P\mathbb{A}^n$ con n carte affini ciascuna delle quali é isomorfa a \mathbb{A}^n . Per ogni $i = 0, \ldots, n$ fissato considero la carta $B_i : (\omega_i \neq 0)$ sulla quale i punti di $Bl_P\mathbb{A}^n$ sono esprimibili nella forma:

 $(x_1, \dots, x_n) \times [\omega_1, \dots, 1, \dots, \omega_n]$ dove 1 è l'i-esima coordinata.

dall'equazione di $Bl_P\mathbb{A}^n$ si ottiene che $x_k = \frac{\omega_k}{1}x_i$ per ogni $k \neq i$. Quindi possiamo considerare \mathbb{A}^n di coordinate $(\omega_1, \dots, x_i, \dots, \omega_n)$. da questo vediamo inoltre che $Bl_P\mathbb{A}^n$ è una superficie non singolare.

Teorema 1.22. Supponiamo che $X \subset \mathbb{A}^n$ sia una varietà irriducibile e σ lo scoppiamento di questa centrato in P. Allora la preimmagine $\sigma^{-1}(X)$ di X attraverso σ è data da due componenti.

$$\sigma^{-1}(X) = (P \times \mathbb{P}^{n-1}) \cup Y. \tag{1.4}$$

La restrizione di σ a Y definisce una mappa regolare da Y a X che è un isomorfismo.

Dimostrazione. Denotiamo con Y la chiusura $\overline{\sigma^{-1}(X \setminus P)}$ di $\sigma^{-1}(X \setminus P)$. Dato che σ è un isomorfismo su $\mathbb{A}^n \setminus P$ segue che $\sigma^{-1}(X \setminus P)$ è isomorfo a $X \setminus P$, e dato che X è irriducibile lo è anche Y. L'equazione 1.4 è ovvia per definizione. Se $Q \in X \setminus P$ allora $\sigma^{-1}(Q) \in Y$ mentre se $Q = P \sigma^{-1}(P) = P \times \mathbb{P}^{n-1}$. \Box

Definizione 1.23 (Trasformata stretta).

Siano X e Y come in 1.22. Y viene definita la trasformata stretta di X attraverso σ .

Definizione 1.24 (Divisore eccezionale). Siano X e Y come in 1.22. $(P \times \mathbb{P}^{n-1}) \cap Y$ definisce un ipersuperficie di Y che viene chiamata divisore eccezionale di Y. La mappa σ contrae per definizione il divisore eccezionale in P.

In questa tesi tratteremo di superfici in \mathbb{A}^3 ; il divisore eccezionale sarà quindi dato da un insieme di curve.

Lemma 1.25. Siano $\{\Gamma_i\}_{i=1}^k$ un insieme di curve, con unione connessa $\Sigma = \bigcup \Gamma_i$, su una superficie non singolare Y, contratte in un punto Q da un morfismo birazionale $f: Y \to X$ che, ristretto a $Y \setminus \Sigma \to X \setminus P$, è un isomorfismo. Allora esiste un divisore effettivo $D = \sum a_i \Gamma_i$ tale che $D\Gamma_i \leq 0$ per ogni i e $D\Gamma_i < 0$ per almeno un i.

Dimostrazione. Sia $g \in m_{X,Q} \subset O_{X,Q}$ cioè una funzione regolare in $Q = f(\Gamma_i)$ tale che g si annulli in Q. Definisco $C = div g \subset X$ il divisore di g su X; per costruzione, $Q \in C$. La funzione $f^*(g) := g(f^{(P)})$, con $P \in Y$, è quindi regolare su Y e il suo divisore $div_Y g = f^{-1}(C)$ si può scrivere, per 1.22, nella forma D + C' dove, $D = \sum a_1 \Gamma_i$ è eccezionale, con $a_i > 0$ per ogni i, e C' è la trasformata stretta di C. C' non ha componenti in comune con nessuna curva Γ_i quindi $C'\Gamma_i \ge 0$ per ogni i. $(div_Y g)\Gamma_i = 0$, quindi si ha che $0 = C'\Gamma_i + D\Gamma_i$ ovvero che $D\Gamma_i \le 0$. Se ora C' intersecasse almeno un Γ_i allora si avrebbe che $C'\Gamma_i > 0$ e quindi $D\Gamma_i < 0$. È vero più in generale che per ogni $g \in m_{X,Q} \subset O_{X,Q}$ la trasformata birazionale C' di C = div g interseca ogni componente connessa di $f^{-1}(Q)$. Tuttavia la dimostrazione di questo usa strumenti che vanno oltre l'argomento della tesi. Tuttavia, preso C'_0 in Y che non sia eccezionale ma intersechi almeno un Γ_i , definendo g in modo che si annulli su $C_0 = f(C'_0)$ si ottiene il risultato desiderato; infatti, per costruzione, $C_0 \subset div g$, quindi, $C'_0 \subset C$, quindi, $C\Gamma_i > 0$.

Proposizione 1.26. Sia D divisore di X come in 1.25 ed e $E = \sum \alpha_i \Gamma_i \operatorname{con} \alpha_i > 0$ per ogni i. Allora DE < 0.

Dimostrazione. La dimostrazione è una diretta conseguenza delle proprietà di D.

 $DE = D \sum \alpha_i \Gamma_i = \sum \alpha_i D\Gamma_i$, ma $D\Gamma_i \leq 0$ per ogni i e ne esiste almeno uno per cui $D\Gamma_i < 0$.

Teorema 1.27 (Negatività del divisore eccezionale). Siano $\{\Gamma_i\}_{i=1}^k$, Y, X e $f: Y \to X$ come in 1.25. Allora per ogni $(n_1, \ldots, n_k) \in \mathbb{Z}^k \setminus \{0\}$

$$q(n_1,\ldots,n_k) = (\sum n_i \Gamma_i)^2 = \sum \sum n_i n_j \Gamma_i \Gamma_j < 0.$$

Ovvero la forma quadratica q rappresentata dalla matrice simmetrica $(\Gamma_i \Gamma_j)_{ij}$ è definita negativa; cioè, per ogni divisore della forma $E = \sum b_i \Gamma_i$, il suo numero di autointersezione è negativo. In particolare per ogni curva eccezionale Γ_i , $\Gamma_i^2 < 0$.

Dimostrazione. Sia $D = \sum a_i \Gamma_i$ come in 1.25: $a_i > 0$ e $D\Gamma_i \leq 0$ per ogni i con $D\Gamma_i < 0$ per almeno un i. Supponiamo per assurdo che $E = \sum b_i \Gamma_i$ abbia autointersezione $E^2 \geq 0$.

Posso supporre E > 0; infatti, posso scrivere $E = E_1 - E_2$ con $E_1 > 0$ ed $E_2 > 0$ senza componenti in comune, allora $0 \le E^2 = E_1^2 + E_2^2 - 2E_1E_2 \le E_1^2 + E_2^2$, quindi o $E_1^2 \ge 0$ o $E_2^2 \ge 0$.

Se qualche curva Γ_i non compare in E posso non considerarla fra l'insieme di curve Γ_i , l'ipotesi $D\Gamma_i < 0$ resta comunque vera. Sia ora $c = min\{\frac{b_i}{a_i}\}$ al variare di i fra le componenti di E. Definisco E' = (E - cD), allora E' > 0 e, per costruzione di c, esisterà Γ_i in E' con coefficiente $b'_i = b_i - ca_i = 0$ in E', inoltre $E'^2 \ge 0$; infatti per 1.26 si ha che:

$$E'^2 = (E - cD)E' = EE' - cDE' \ge EE' \ge E(E - cED) \ge 0.$$

Possiamo continuare definendo $c' = min\{\frac{b'_i}{a_i}\}$ e E'' = E' - c'D. Allora dopo un certo numero di passi troveremo $0 = E^{(n)} = E^{(n-1)} - c^{(n-1)}D$, allora, $E^{(n-1)} = c^{n-1}D$ e quindi $E^{(n-2)} = E^{(n-1)} + c^{(n-2)}D = (c^{n-2} + c^{n-1})$ e così fino a E = sD dove $s = \sum c^{(i)}$. Ma quindi $E^2 = sED < 0$.

1.3 Divisore Canonico

Sia X una varietà algebrica n-dimensionale. Se $z_1, \ldots z_n$ sono coordinate locali allora possiamo considerare $dz_1 \wedge \cdots \wedge dz_n$ come una forma di volume.

Teorema 1.28. Sia $\omega = sdf_1 \wedge df_2 \wedge \cdots \wedge df_n$ una forma di volume su X dove $s \in K(X)$, allora è possibile riscrivere localmente ω in maniera seguente:

$$\omega = Jg(dx_1 \wedge dx_2 \wedge \dots \wedge dx_n)$$

La dimostrazione viene svolta in [4]. L'idea è quella di esprimere df_j come combinazione lineare dei dx_i e di andare a sostituire questi nell'equazione di ω .

Definizione 1.29 (Divisore canonico). Definiamo ora il divisore canonico come la classe del divisore associato ad una forma di volume regolare su X e lo indichiamo con K_X . Notiamo che per il Teorema 1.28 K_X è ben definito perché due forme di volume regolare differenti $\omega \ e \ \omega'$ seguono la relazione $\omega = h\omega'$ dove $0 \neq h \in K(x)$ funzione razionale, e quindi, div $s = div \ s' + div \ h$.

Teorema 1.30 (Formula di aggiunzione). Sia $X \subset Y$ un ipersuperficie. Allora $K_X = (K_Y + X)|_X$.

La restrizione a X consiste nel considerare prima un divisore $D \sim (K_Y + X)$ che non contiene X, e poi di intersecare D con X per ottenere la classe $D_X = (K_Y + X)_{|X}$.

La dimostrazione è trattata in [7].

Definizione 1.31. Data X una curva algebrica irriducibile non singolare, definiamo g(X), il genere di X, come la dimensione dello spazio delle forme di volume regolari su X.

Corollario 1.32. Dalla formula di aggiunzione segue che per una curva C di genere g su una superficie X

$$2g - 2 = (K_X + C)C.$$

Capitolo 2 Singolarità di Du Val

In questo capitolo per ogni tipologia di singolarità di Du Val deriviamo che la Tabella 2.1 è corretta; ovvero che ad ogni gruppo G corrisponde la superficie definita dal polinomio f a cui corrisponde il diagramma. Quando G agisce su \mathbb{A}^2 è possibile infatti trovare tre polinomi G-invarianti $X, Y, Z \in K[u, v]$, che rispettano una certa equazione polinomiale R(X, Y, Z) = 0 (che sarà quella definita in tabella); questi polinomi definiscono una mappa da \mathbb{A}^2 in $X = V(R) \subset \mathbb{A}^3$. Passando al quoziente questa mappa si troverà un isomorfismo fra $\mathbb{A}^2/G \in X$.

Per passare invece dalla equazione al diagramma la strategia è quella di considerare X = V(f) e di trovare una risoluzione $X_k \to \cdots \to X$ tale che ogni freccia sia il BlowUp di un punto singolare. Una volta determinata X_k il divisore eccezionale sarà dato da un insieme di curve la cui configurazione determinerà il diagramma.

2.1 Definizione delle Singolarità di Du Val

Nella tabella seguente il polinomio f(x, y, z) definisce una superficie X : V(f) di \mathbb{A}^3 dove P = (0, 0, 0) è l'unico punto singolare. Possiamo definire le singolarità di Du Val come quelle presenti nella tabella.

Il pedice di A_n, D_n, E_6, E_7, E_8 , indica il numero di curve eccezionali ottenute nella risoluzione minimale la cui configurazione è data dal diagramma di Dynkin: ogni vertice corrisponde a una curva e due vertici sono collegati da un lato se le curve corrispondenti si intersecano. I gruppi sono tutti i possibili sottogruppi finiti $\Gamma \subset SL(2, \mathbb{C})$ che agiscono su \mathbb{A}^2 . Il quoziente \mathbb{A}^2/G può essere immerso in \mathbb{A}^3 come una superficie definita da V(f)che ha un unico punto di singolarità in (0, 0, 0).

Lemma 2.1. Ogni superficie descritta dai polinomi in 2.1 ha come unico punto singolare P = (0, 0, 0). P è detto punto doppio.

Teorema 2.2. Le singolarità di Du Val sono caratterizzate dall'avere come unico punto singolare un punto doppio e sono classificate come nella tabella 2.1.

Dimostreremo che il gruppo definisce una superficie definita al polinomio corrispondente in 2.1 che, mediante la risoluzione, definisce il diagramma di Dynkin corrispondente. Per dimostrare che la risoluzione definisce il diagramma la nostra strategia sarà fare il Blow-up nel punto singolare P = (0,0,0), individuare ulteriori punti singolari nella trasformata stretta X_1 di X e ripetere questo procedimento fino ad ottenere una

Nome	Gruppo	Equazione	Diagramma di Dynkin
\mathbb{A}_n	ciclico $\mathbb{Z}/(n+1)$	$x^2 + y^2 + z^{n+1}$	• • · · · •
			$\bullet - \bullet - \bullet \cdots \bullet$
\mathbb{D}_n	diedrale binario $BD_{4(n-2)}$	$x^2 + y^2 z + z^{n-1}$	•
			$\bullet - \bullet - \bullet - \bullet$
\mathbb{E}_6	tetraedrale binario	$x^2 + y^3 + z^4$	•
			$\bullet - \bullet - \bullet - \bullet - \bullet - \bullet$
\mathbb{E}_7	octaedrale binario	$x^2 + y^3 + yz^3$	•
			$\bullet - \bullet - \bullet - \bullet - \bullet - \bullet - \bullet$
\mathbb{E}_8	icosaedrale binario	$x^2 + y^3 + z^5$	•

Tabella 2.1: Singolarità di Du Val

superficie liscia X_k . La configurazione delle curve eccezionali date dalla preimmagine del punto singolare P definirà il diagramma di Dynkin.

2.2 Punti di singolarità A_n

In questa sezione dimostreremo prima che i punti A_n si ottengano come quozienti di gruppi e poi che la loro risoluzione definisce il diagramma di Dynkin in tabella.

2.2.1 Punti A_n come quozienti

Vogliamo mostrare che preso un gruppo G che agisce linearmente su \mathbb{A}^2 il quoziente \mathbb{A}^2/G è una superficie che può essere immersa in \mathbb{A}^3 con un punto di singolarità di tipo A_n in (0, 0, 0).

Consideriamo il gruppo ciclico $G = \mathbb{Z}/(n+1)$ generato dall'applicazione lineare $L: (u, v) \mapsto (\epsilon u, \epsilon^{-1}v)$, dove ϵ é una radice n-esima di 1, che agisce linearmente su \mathbb{C}^2 . D'ora in avanti sceglieremo $\epsilon = e^{\frac{2\pi i}{n}}$; L è dunque associata alla matrice

$$\begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{bmatrix}$$

Geometricamente, fissato n, possiamo vedere G come il gruppo delle rotazioni che mandano un poligono regolare di n lati centrato nell'origine, in se stesso. I monomi u^n, v^n, uv sono G-invarianti su \mathbb{C}^2 e la mappa $q : \mathbb{C}^2 \to \mathbb{C}^3$ data da $q(u, v) = (u^n, v^n, uv)$ induce un isomorfismo \bar{q} fra \mathbb{A}^2/G e $S : (xy - z^n = 0)$.

Per dimostrare l'iniettività di \bar{q} consideriamo il punto $Q = (x, y, z) \in S$. Se z é nullo allora xy = 0 quindi almeno uno fra $x \in y$ é nullo; se sono nulli entrambi $Q = \bar{q}([(0, 0)])$. Se x é non nullo allora $q^{-1}(Q) = \{(\lambda, 0) \in \mathbb{C}^2 \text{ t.c } \lambda \text{ sia una radice n-esima di } x\}$; dato che le radice n-esime di x differiscono in maniera moltiplicativa per radici dell'unità l'insieme $q^{-1}(Q)$ viene rappresentato da un unica classe $[(\lambda, 0)]$. Si procede in maniera analoga se y è non nullo.

Se invece z non é nullo ho che $z^n = xy$ e quindi $z = \sqrt[n]{|xy|} e^{\frac{arg(x)}{n} + \frac{arg(y)}{n} + \frac{2k\pi}{n}}$ con k intero fra 0 e n-1. Allora posso scegliere u e v radici n-esime rispettivamente di x e y tali che uv = z.

 $u = \sqrt[n]{|x|} e^{\frac{arg(x)i}{n} + \frac{2s\pi i}{n}}, v = \sqrt[n]{|x|} e^{\frac{arg(y)i}{n} + \frac{2t\pi i}{n}} \text{ con } t \in s \text{ interi che variano fra 0 e n-1.}$

La condizione uv = z equivale a scegliere $s \in t$ tali che $s + t = k \mod n$. Ogni elemento della classe di (u, v) é della forma $L^p(u, v) = (\epsilon^p u, \epsilon^{-p} v)$ quindi se (\tilde{u}, \tilde{v}) stanno nella classe di (u, v) allora $\tilde{u}\tilde{v} = z$ poiché s + p + t - p = s + t = k.

Viceversa se (\tilde{u}, \tilde{v}) sono tali che $\tilde{u}\tilde{v} = z$, ovvero $\tilde{s} + \tilde{t} = k$, allora $\tilde{s} + \tilde{t} - s - t = 0$. Determino quindi $p = \tilde{s} - s = t - \tilde{t} \cos i$ che $\tilde{s} = s + p$ e $\tilde{t} = t - p$ ovvero $(\tilde{u}, \tilde{v}) = L^p(u, v)$. Quindi esiste unica [(u, v)] tale che $\bar{q}([(u, v)]) = Q$. Oltre a dimostrare l'iniettività di \bar{q} abbiamo dimostrato anche che $S \subseteq Im(\bar{q})$.

 $Im(\bar{q}) \subseteq S$ è banale poiché $u^n + v^n - (uv)^n = 0$.

S non é definita dalla stessa equazione associata ad A_n nella tabella, ma considerando il cambio di coordinate ψ :

$$\psi: \begin{cases} \tilde{x} = \frac{x+y}{2} \\ \tilde{y} = \frac{x-y}{2i} \\ \tilde{z} = \lambda z \qquad \cos \lambda^n = -1 \end{cases}$$

 $\psi(S)$ é definito da
 $(\tilde{x}^2+\tilde{y}^2+\tilde{z}^n=0)$ poiché esplicitando (x,y,z) in funzione di
 $(\tilde{x},\tilde{y},\tilde{z})$ si ha che:

$$\begin{cases} x = \tilde{x} + i\tilde{y} \\ y = \tilde{x} - i\tilde{y} \\ z = \lambda \tilde{z} \end{cases}$$

e quindi $xy - z^n = (\tilde{x} + i\tilde{y})(\tilde{x} - i\tilde{y}) - (\lambda \tilde{z})^n = \tilde{x}^2 + \tilde{y}^2 + \tilde{z}^n.$

2.2.2 Risoluzione dei punti A_n

In questa sezione si vuole osservare come ai punti di singolarità A_n corrisponde il diagramma di Dynkin della Tabella 2.1. Consideriamo quindi

$$X: (f_n := x^2 + y^2 + z^{n+1} = 0) \subset \mathbb{A}^3$$

P = (0, 0, 0) è l'unico punto che annulla contemporaneamente le derivate parziali di f_n . Il Blow-Up dello spazio in P é dato dalla superficie $Bl_P\mathbb{A}^3$ e dalla mappa $\sigma : Bl_P\mathbb{A}^3 \to A^3$. Voglio quindi studiare la preimmagine di X attraverso σ sulla carta affine B_2 di coordinate (ω_1, ω_2, z) dove $\sigma((x, y, z), [\omega_1, \omega_2, \omega_3]) = (z\omega_1, z\omega_2, z)$.

$$f(z\omega_1, z\omega_2, z) = z^2\omega_1^2 + z^2\omega_2^2 + z^{n+1} = z^2f_1$$
 dove $f_1 = \omega_1^2 + \omega_2^2 + z^{n-1}$

Il fattore z^2 svanisce sul piano $(\omega_1, \omega_2) = \sigma^{-1}(P) \cap B_2$ ed indica il divisore eccezionale mentre f_1 definisce X_1 : la trasformazione birazionale di X ristretta alla carta B_2 . La preimmagine di P in X_1 é data da $(z = 0) \cap (f_1 = 0) = (z = 0) \cap (\omega_1^2 + \omega_2^2 = 0)$, ovvero due rette sul piano z = 0 incidenti in $P_1 = (0, 0, 0)$.

$$E_{1} = \begin{cases} z = 0\\ \omega_{1} + i\omega_{2} = 0 \end{cases} \quad E_{2} = \begin{cases} z = 0\\ \omega_{1} - i\omega_{2} = 0 \end{cases}$$

graficamente

Quindi, per n maggiore di 2 il polinomio f_1 ci riporta al caso A_{n-2} con punto singolare P_1 . Possiamo quindi considerare un diagramma di Dynkin del tipo:

Posso continuare a fare il BlowUp centrato nel nuovo punto singolare fino a trovare un punto di tipo A_1 o A_2 . Il BlowUp è un isomorfismo fuori dal punto in cui è centrato quindi usare questo mezzo non va a cambiare le strutture precedentemente trovate. Se quindi A_1 e A_2 hanno una soluzione coerente a quella della tabella posso quindi determinare il diagramma di Dynkin per ogni punto di tipo A_n .

Studio quindi la risoluzione dei punti $A_1 \in A_2$

2.2.3 Punti A_1

Nel caso di $A_1 f(x, y, z) = x^2 + y^2 + z^2$. Il Blow Up di P = (0, 0, 0) da una superficie liscia; data la simmetricità del polinomio nelle entrate lo studio del BlowUp della superficie su una dette tre carte che lo ricoprono è analogo. Scegliamo di studiarlo sulla carta B_0 .

$$f(x, \omega_2 x, \omega_3 x) = x^2 (1 + \omega_2^2 + \omega_3^2) = x^2 f_1.$$

Quindi $X_1 : (f_1 = 0)$ non ha punti singolari poiché le derivate parziali $(0, \omega_2, \omega_3)$ si annullano tutte in O = (0, 0, 0) ma questo non appartiene alla curva. Inoltre la preimmagine di P in X_1 è data da $(x = 0) \cap (1 + \omega_2^2 + \omega_3^2 = 0)$ curva birazionale che chiamo E_1 . Il diagramma di Dynkin é quindi il grafo con un solo nodo. Vogliamo ora mostrare che E_1 è una -2-curva, ovvero, $E_1^2 = -2$. Per fare questo consideriamo la funzione y su X, questa è regolare su $X \in P \in div_X y = (y = 0) \cap X$. Come in 1.25 $Div_{X_1} y = E_1 + C$, dove C è la trasformata birazionale di $div_X y$, definita da, $C : (\omega_2 = 0) \cap X_1 = (\omega_2 = 0) \cap (1 + \omega_3^2 = 0)$. Dal fatto che $Div_Y y E_1 = 0$ abbiamo che $E_1^2 + CE_1 = 0$. $C \in E_1$ sono divisori effettivi senza componenti in comune quindi l'indice di intersezione è dato semplicemente dai punti di intersezione contati con molteplicità che sono $(0, 0, i) \in (0, 0, -i)$ con molteplicità 1. Quindi $E_1^2 = -CE_1 = -2$.

2.2.4 Punti A_2

Per A_2 la superficie è definita da $f = x^2 + y^2 + z^3$. Procediamo in maniera analoga facciamo il BlowUp σ di X. Sia X_1 la trasformata stretta di X mediante σ , che su B_2 , è definita da

$$f(z\omega_1, z\omega_2, z) = z^2(\omega_1^2 + \omega_2^2 + z)$$
 quindi $f_1 = \omega_1^2 + \omega_2^2 + z$

Vediamo subito che le derivate parziali di f_1 non si annullano mai contemporaneamente poiché $\frac{\partial f_1}{\partial z} = 1$. Quindi X_1 rappresenta già una risoluzione di X. Su questa la preimmagine di P è data da $(z = 0) \cap (\omega_1^2 + \omega_2^2 = 0)$: due rette $E_1 : (z = 0) \cap (\omega_1 + i\omega_2 = 0)$ ed $E_2 : (z = 0) \cap (\omega_1 - i\omega_2 = 0)$ che si incontrano in $P_1 = (0, 0, 0)$.

Per mostrare che E_1 ed E_2 sono -2-curve consideriamo, come in 2.2.3, la funzione y regolare su X. $div_X y = X \cap (y = 0)$ e $div_{X_1} y = div_{X_1} z \omega_2$ è dato da $(z^2 = 0) \cap X_1$ ovvero $E_1 + E_2$ e da $(y = 0) \cap X_1$ che è la curva data da $C = (\omega_2 = 0) \cap (\omega_1^2 + z = 0)$. Allora da $(E_1 + E_2 + C)E_1 = 0$ si ha che $E_1^2 = -E_2E_1 - CE_1 = -2$, ovvero, $E_1^2 = -2$. In maniera analoga si vede che anche E_2 è una -2 curva.

2.3 Punti di singolarità D_n

Analogamente al capitolo precedente dimostreremo che al gruppo in tabella corrisponde la superficie definita dal polinomio e poi che la risoluzione del punto di singolarità su questa da il diagramma di Dynkin associato.

2.3.1 Punti D_n come quozienti

Denominiamo $G = BD_{4(n-2)}$ il gruppo binario diedrale generato dalle applicazioni lineari associate rispettivamente alle matrici:

$$L = \begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon^{-1} \end{bmatrix} \quad T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

dove ϵ è una radice 2(n-2)-esima di 1. In particolare scelgo $\epsilon = e^{\frac{2\pi i}{2(n-2)}}$. L genera il gruppo ciclico di ordine 2(n-2). Prese u,v coordinate per \mathbb{A}^2 i polinomi $(u^{2(n-2)} - v^{2(n-2)})uv, u^{2(n-2)} + v^{2(n-2)}, u^2v^2$ sono G-invarianti. L'applicazione

$$q: \begin{cases} x = (u^{2(n-2)} - v^{2(n-2)})uv \\ y = u^{2(n-2)} + v^{2(n-2)} \\ z = u^2v^2 \end{cases}$$

è quindi G-invariante da \mathbb{A}^2 a \mathbb{A}^3 la cui immagine è la superficie singolare $X \subset \mathbb{A}$ definita da $x^2 - y^2 z + 4z^{n-1}$, che corrisponde a quella definita in 2.1 attraverso il cambio di coordinate ψ

$$\psi: \begin{cases} \tilde{x} = x \\ \tilde{y} = iy \\ \tilde{z} = \sqrt[n-1]{4}z \end{cases}$$

Passando q al quoziente si ottiene un isomorfismo $\bar{q} : \mathbb{A}^2/G \to X$. Dimostrare questo equivale a mostrare che l'immagine attraverso q di due punti è la stessa se e solo se questi stanno nella stessa classe. Ovvero che q(u, v) = q(u', v') se e solo se [(u, v)] = [(u', v')].

Se [(u, v)] = [(u', v')], per definizione di q, si ha che q(u, v) = q(u', v').

Viceversa se per ipotesi ho che q(u, v) = q(u', v') allora:

$$\begin{cases} (u'^{2(n-2)} - v'^{2(n-2)})u'v' = (u^{2(n-2)} - v^{2(n-2)})uv \\ u'^{2(n-2)} + v'^{2(n-2)} = u^{2(n-2)} + v^{2(n-2)} \\ u'^{2}v'^{2} = u^{2}v^{2} \end{cases}$$
(2.1)

Se (u, v) = (0, 0) dalla terza equazione otteniamo che almeno uno fra u' e v' deve essere nullo; se per esempio u' = 0 andando a sostituire nella seconda equazione otteniamo $v'^{2(n-2)} = 0$ che implica v' = 0, quindi (u, v) = (0, 0) implica (u', v') = (0, 0) e viceversa.

Se invece solo uno fra $u \in v$ è nullo allora si ha che solo uno fra $u' \in v'$ è nullo. Ipotizziamo quindi che $v \in v'$ siano uguali a zero, allora dalla seconda equazione del sistema si ottiene $u'^{2(n-2)} = u^{2(n-2)}$. Quindi $u' = \lambda u \operatorname{con} \lambda$ una radice 2(n-2)-esima di 1, allora esiste k intero tale per cui $\lambda = \epsilon^k$, cioè $(u', 0) = (\epsilon^k u, 0) = L^k(u, 0)$, ovvero [(u, v)] = [(u', v')].

Se $(u, v) \neq (0, 0)$ allora dalla terza equazione del sistema si deduce che $u'v' = \pm uv$. Distinguo dunque i due casi:

• Se uv = u'v' definisco $\lambda = \frac{u'}{u} = \frac{v}{v'}$. Allora $u' = \lambda u$ e $v' = \lambda^{-1}v$. And and a sostituire nel sistema (2.1) con a = 2(n-2)

$$\begin{cases} \lambda^{a}u^{a} - \frac{1}{\lambda}{}^{a}v^{a} = u^{a} - v^{a} \quad (1) \\ \lambda^{a}u^{a} + \frac{1}{\lambda}{}^{a}v^{a} = u^{a} + v^{a} \quad (2) . \\ uv = uv \end{cases}$$
 Sommando (1) e (2) $2\lambda^{a}u^{a} = 2u^{a}.$

Ovvero λ è una radice *a*-esima di 1, quindi esiste *k* tale per cui $\lambda = \epsilon^k$. Ricapitolando $(u', v') = (\epsilon^k u, \epsilon^{-k} v) = L^k(u, v)$, ovvero [(u, v)] = [(u', v')].

• Se uv = -u'v' definisco $\lambda = \frac{v'}{-u} = \frac{v}{u'}$. Allora $u' = \lambda^{-1}v$ e $v' = -\lambda u$. And and a sostituire nel sistema (2.1) con a = 2(n-2)

$$\begin{cases} \frac{1}{\lambda}{}^{a}v^{a} - \lambda^{a}u^{a} = u^{a} - v^{a} \quad (1) \\ \frac{1}{\lambda}{}^{a}v^{a} + \lambda^{a}u^{a} = u^{a} + v^{a} \quad (2) . & \text{Sottraendo} (1) \text{ a} (2) & 2\lambda^{a}u^{a} = 2u^{a}. \\ uv = uv \end{cases}$$

 λ è una radice a-esima di 1, esiste k tale per cui $\lambda = \epsilon^k$.

In conclusione $(u', v') = (\lambda^{-1}v, -\lambda u) = (\epsilon^k v, -\epsilon^{-k}u) = L^k(v, -u) = L^kT(u, v)$, cioè [(u, v)] = [(u', v')].

2.3.2Risoluzione di D_n

Partiamo dal caso generale D_n , $X : (x^2 + y^2 z + z^{n-1} = 0)$, facciamo il BlowUp in P = (0, 0, 0), denominiamo con X_1 la trasformata birazionale di X e la analizziamo nelle tre carte che lo ricoprono. In ogni carta come in 1.22 $\sigma_{|_{B_i}}^{-1}(X)$ è data da due componenti, una è il divisore eccezionale e l'altra è la trasformata birazionale di X che indicheremo $\operatorname{con} X_1$.

Carta $B_1 \sigma^{-1}(X)_{|_{B_1}} : (x^2(1+x\omega_2^2\omega_3+x^{n-3}\omega_3^{n-1})).$ $X_{1|_{B_1}} : (1+x\omega_2^2\omega_3+x^{n-3}\omega_3^{n-1}=0).$ Su questa carta non sono presenti punti singolari perché le derivate parziali non si annullano per punti sulla superficie:

$$\begin{cases} \omega_2^2 \omega_3 + (n-3)x^{n-4}\omega_3^{n-1} = 0\\ 2x\omega_2 \omega_3 = 0\\ x\omega_2^2 + (n-1)x^{n-3}\omega_3^{n-2} = 0 \end{cases}$$

Infatti dalla seconda equazione abbiamo che se uno fra x, ω_2, ω_3 è nullo. Se x = 0o $\omega_3 = 0$ allora dall'equazione il punto non si trova sulla superficie. Andando a sostituire viene infatti 1 = 0. Se invece $\omega_2 = 0$ dalla terza equazione del sistema si ha che uno fra $x \in \omega_3$ è uguale a zero e quindi come nel caso precedente il punto non sta sulla superficie.

Carta $B_2 \sigma^{-1}(X)_{|B_2} : (y^2(\omega_1^2 + y\omega_3 + y^{n-3}\omega_3^{n-1})).$ $X_{1|B_2} : (\omega_1^2 + y\omega_3 + y^{n-3}\omega_3^{n-1} = 0).$ La controimmagine di P su X_1 è data da $(y=0) \cap (\omega_1=0)$ che su B_2 è l'asse ω_3 e la denoto con E_0 . Il sistema delle derivate parziali

$$\begin{cases} \omega_1 = 0\\ \omega_3 + (n-3)y^{n-4}\omega_3^{n-1} = \omega_3(1+(n-3))y^{n-4}\omega_3^{n-2}) = 0\\ y + (n-1)y^{n-3}\omega_3^{n-2} = y(1+(n-1)y^{n-4}\omega_3^{n-2}) = 0 \end{cases}$$

da un' unica soluzione (0, 0, 0) che appartiene a E_0 e, facendo un ulteriore scoppiamento, si dimostra essere un punto singolare doppio di tipo A_1 .

Carta $B_3 \sigma^{-1}(X)_{|B_3} : (z^2(\omega_1^2 + \omega_2^2 z + z^{n-3}))$ $X_{1|B_2} : (\omega_1^2 + \omega_2^2 z + z^{n-3} = 0).$ La controimmagine di P su X_1 analogamente a prima è data dall'asse ω_2 che si incolla in maniera naturale a E_0 ; infatti, queste sono due equazioni locali della stessa retta proiettiva data dall'insieme dei punti del tipo $(0,0,0) \times [0,\omega_2,\omega_3]$ al variare di ω_2,ω_3 in \mathbb{C} . Con un abuso di notazione denoto sempre questa con E_0 . Su $B_3 X_1$ è descritta da un' equazione analoga a quella dei punti di tipo D_{n-2} . X_1 ha quindi un unico punto singolare in (0,0,0) su B_3 .

Ricapitolando siamo in una situazione di questo tipo:

$$\underbrace{A_1 \qquad D_{n-2} \qquad E_0}_{\bullet}$$

che da un diagramma di Dynkin di tipo D_n .

Il ragionamento precedente è attuabile solo se $n-2 \ge 4$. Dobbiamo quindi studiare il caso D_4 e il caso D_5 .

2.3.3 Punti D_4

Il punto singolare e la superficie associata a D_4 sono

$$P = (0,0,0) \in X : (f = x^2 + y^2 z + z^3 = 0) \subset \mathbb{A}^3.$$

Scoppiamo lo spazio in P; per il teorema 1.22 ho che $\sigma^{-1}(X) = X_1 \cup \sigma^{-1}(P)$ dove, $\sigma : Bl_p \mathbb{A}^3 \to \mathbb{A}^3$ è la mappa definita in (1.20), X_1 è la trasformata propria di $X \in \sigma^{-1}(P)$ il divisore eccezionale. Da (1.21) so che X_1 è ricoperto da le tre carte B_i per i = 1, 2, 3:

- Carta $B_1 X_{1|B_1}$: $(x^2(1 + x\omega_2^2\omega_3 + x\omega_3^3) = 0)$. $(x^2 = 0)$ rappresenta il divisore eccezionale mentre $(1 + x\omega_2^2\omega_3 + x\omega_3^3 = 0)$ la trasformata propria di X. Su questa carta non sono presenti punti singolari: se $\partial_x f = \omega_2^2\omega_3 + \omega_3^3$ si annullasse in un punto $Q = (\bar{x}, \bar{\omega}_2, \bar{\omega}_3)$ allora questo non rispetterebbe l'equazione della superficie, infatti andando a sostituire $1 + \bar{x}(\bar{\omega}_2^2\bar{\omega}_3 + \bar{\omega}_3^3) = 1 \neq 0$.
- Carta $B_2 X_{1|B_2} : (y^2(\omega_1^2 + y\omega_3 + \omega_3^3 y) = 0)$. Denoto $f = \omega_1^2 + y\omega_3 + \omega_3^3 y$. La preimmagine di P su la superficie è data da

$$X_1 \cap \sigma^{-1}(P) : \begin{cases} y^2 = 0\\ \omega_1^2 + y\omega_3 + \omega_3^3 y = 0 \end{cases} \quad \text{ovvero l'asse } \omega_3 : \begin{cases} \omega_1 = 0\\ y = 0 \end{cases}$$

Ricerco ora punti singolari:

$$\begin{cases} \partial_{\omega_1} f = 2\omega_1 = 0\\ \partial_y f = \omega_3 + \omega_3^3 = 0\\ \partial_{\omega_3} f = y(1 + 3\omega_3^2) = 0\\ \omega_1^2 + y\omega_3 + \omega_3^3 y = 0 \end{cases}$$

Il sistema ha tre soluzioni:

$$P_{1} = \begin{cases} \omega_{1} = 0 \\ y = 0 \\ \omega_{3} = 0 \end{cases} \qquad P_{2} = \begin{cases} \omega_{1} = 0 \\ y = 0 \\ \omega_{3} = i \end{cases} \qquad P_{3} = \begin{cases} \omega_{1} = 0 \\ y = 0 \\ \omega_{3} = -i \end{cases}$$

Scritti in coordinate non locali su B_2 corrispondono a $P_1 = ((0,0,0), [0,1,0]), P_2 = ((0,0,0), [0,1,i]), P_3 = ((0,0,0), [0,1,-i])$ e stanno tutti sulla retta proiettiva E_1 data da $(0,0,0) \times (\omega_1 = 0)$

Carta $B_3 X_{1|B_3} : (z^2(\omega_1^2 + \omega_2^2 z + z) = 0)$. Il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ 2\omega_2 z = 0\\ \omega_2^2 + 1 = 0\\ \omega_1^2 + \omega_2^2 z + z = \end{cases}$$

da due soluzioni: $Q_1 = (0, i, 0)$ e $Q_2 = (0, -i, 0)$ che in equazioni non locali corrispondono rispettivamente a ((0, 0, 0), [0, i, 1]) ed a ((0, 0, 0), [0, -i, 1]) che sono i punti P_3 e P_2 trovati sulla carta B_2 .

0

Siamo quindi in una situazione del tipo

$$\underbrace{\begin{array}{cccc} P_3 & P_1 & P_2 & E_1 \\ \bullet & \bullet & \bullet & \bullet \end{array} }_{\bullet}$$

Questi sono tutti punti doppi di tipo A_1 il cui Blow di ciascuno li trasforma in una curva birazionale ovvero se denoto $\psi : Y \to X$ risoluzione la preimmagine di P è data dalle quattro curve che si incontrano in maniera seguente:

Bisogna precisare che in realtà la retta del disegno E_1 sarebbe E'_1 trasformata stretta attraverso ψ di (E_1) ma per semplicità continuo a chiamarla E_1 . Rimane da dimostrare che queste curve sono -2-curve. Le curve E_2 , E_3 , E_4 , ottenute rispettivamente dai BlowUp dei punti P_1 , P_2 , P_3 sono -2-curve perché si ottengono da punti di tipo A_1 . Resta quindi da dimostrare che $E_1^2 = -2$. Per fare questo consideriamo y funzione regolare su X, $P \in div_X y$. Il divisore $div f^*y = 2E_1 + E_2 + E_3 + E_4 + C$, dove C è la curva data da $\omega_2 = 0$ su Y. Allora segue che $0 = 2E_1^2 + E_2E_1 + E_3E_1 + E_4E_1 + CE_1 = 2E_1^2 + 4$, ovvero $E_1^2 = -2$.

2.3.4 Punti D_5

Consideriamo ora la varietà associata ai punti di tipo D_5

$$P = (0, 0, 0) \in X : (f = x^2 + y^2 z + z^4 = 0) \subset \mathbb{A}^3.$$

Procediamo in maniera analoga al caso precedente. Nella trattazione del caso generale D_n l'ipotesi $n \ge 6$ era necessaria solo sulla carta B_3 . I ragionamenti fatti sulle carte B_1 e B_2 per il punto D_5 sono quindi gli stessi fatti nella trattazione dei punti D_n , quindi; non sono presenti punti singolari su B_1 , su B_2 ho un punto doppio di tipo A_1 e la controimmagine di P su X_1 è la retta proiettiva E_0 che, in B_3 , è definita da ($\omega_1 = 0$) $\cap (z = 0)$.

Studiamo quindi X_1 su B_3 . $\sigma^{-1}(X)_{|B_3} : (z^2(\omega_1^2 + \omega_2^2 z + z^2))$ $X_{1|B_3} : (\omega_1^2 + \omega_2^2 z + z^2 = 0)$. Cerchiamo punti sulla superficie che risolvano il sistema.

$$\begin{cases} \omega_1 = 0\\ 2\omega_2 z = 0\\ \omega_2^2 + 2z = 0 \end{cases}$$

L'unica soluzione del sistema è $P_1 = (0, 0, 0)$. Rinomino le coordinate $\omega_1, \omega_2, z \operatorname{con} x, y, z$. $X_{1|B_3}$ è definito attraverso $(x^2 + y^2 z + z^2 = 0)$ e E_0 corrisponde all'asse $(x = 0) \cap (z = 0)$. Studiamo quindi il punto di singolarità P_1 mediante il BlowUp di B_3 centrato in P_1 . Denomino con X_2 la trasformata birazionale di X_1 mediante sigma e la studio nelle tre carte affini B_1 , $B_2 \in B_3$.

Carta
$$B_1 \sigma^{-1}(X_1)_{|B_1} : (x^2(1 + x\omega_2^2\omega_3 + \omega_3^2) = 0)$$

 $X_{2|B_1} : (1 + x\omega_2^2\omega_3 + \omega_3^2 = 0).$ Il sistema delle derivate parziali

$$\begin{cases} \omega_2^2 \omega_3 = 0\\ 2x \omega_2 \omega_3 = 0\\ x \omega_2^2 + 2\omega_3 = 0 \end{cases}$$

non ammette soluzioni sulla superficie. Dalla terza equazione si ha infatti che se x o ω_2 fossero nulli allora anche ω_3 lo dovrebbe essere ma, se così fosse, il punto non rispetterebbe l'equazione della superficie. La seconda equazione richiede che almeno una delle coordinate sia nulla; è quindi impossibile che un punto che rispetti questo sistema si trovi sulla superficie.

Carta $B_2 \sigma^{-1}(X_1)_{|B_2} : (y^2(\omega_1^2 + y\omega_3 + \omega_3^2) = 0)$ $X_{2|B_2} : (\omega_1^2 + y\omega_3 + \omega_3^2 = 0).$ Continuo a chiamare E_0 la trasformata di E_0 che è definita da $(\omega_1 = 0) \cap (\omega_3 = 0)$. La controimmagine di P_1 è $(\omega_1^2 + \omega_3^2) \cap (y = 0)$; due rette incidenti che denoto con E_1 ed E_2 .

$$E_{0}:\begin{cases} \omega_{1} = 0\\ \omega_{3} = 0 \end{cases} \qquad E_{1}:\begin{cases} y = 0\\ \omega_{1} + i\omega_{3} = 0 \end{cases} \qquad E_{2}:\begin{cases} y = 0\\ \omega_{1} - i\omega_{3} = 0 \end{cases}$$

 E_0, E_1 ed E_2 si incontrano nel punto $P_2 = (0, 0, 0)$ e il sistema delle equazioni parziali

$$\begin{cases} 2\omega_1 = 0\\ \omega_3 = 0\\ y + 2\omega_3 = 0 \end{cases}$$

ha come soluzione proprio il punto P_1 .

Carta $B_3 \sigma^{-1}(X_1)_{|B_3} : (z^2(\omega_1^2 + \omega_2^2 z + 1) = 0)$ $X_{2|B_3} : (\omega_1^2 + \omega_2^2 z + 1 = 0)$. Su questa carta la superficie è liscia perché il seguente sistema non ha soluzioni sulla superficie.

$$\begin{cases} 2\omega_1 = 0\\ 2\omega_2 z = 0\\ \omega_2^2 = 0 \end{cases}$$

Graficamente possiamo rappresentare le situazione nel modo seguente.

Dove E_3 è una risoluzione del punto di tipo A_1 che si trovava su E_0 .

Nuovamente rinomino le coordinate $\omega_1, y, \omega_3 \operatorname{con} x, y, z$, quindi, $X_2 : (x^2 + yz + z^2 = 0)$ e le tre rette E_0, E_1, E_2 hanno equazioni

$$E_0: \begin{cases} x = 0 \\ z = 0 \end{cases} \qquad E_1: \begin{cases} y = 0 \\ x + iz = 0 \end{cases} \qquad E_2: \begin{cases} y = 0 \\ x - iz = 0 \end{cases}.$$

Carta $B_1 \sigma^{-1}(X_2)_{|B_1} : (x^2(1+\omega_2\omega_3+\omega_3^2)=0)$

 $X_{3|B_1}$: $(1 + \omega_2\omega_3 + \omega_3^2 = 0) E_4$: $(x = 0) \cap (\omega_1^2 + \omega_3 + \omega_3^2 = 0) E_4$ è una conica, curva liscia birazionale isomorfa a \mathbb{P}^1 , che in equazioni globali è data da $(0, 0, 0) \times (\omega_1^2 + \omega_2\omega_3 + \omega_3^2 = 0)$. Questo basta per dire che non ho punti singolari neanche sulle altre carte.

Su B_1 la trasformata propria E_0 va nell'asse ω_2 che non interseca E_4 . E_1 va in $(\omega_2 = 0) \cap (\omega_3 = i)$ che interseca E_4 in $q_1 = (0, 0, i)$ che in coordinate globali è $q_1 = (0, 0, 0) \times [1, 0, i]$. E_2 analogamente interseca E_4 in $q_3 = (0, 0, -i)$ che in coordinate globali è $q_3 = (0, 0, 0) \times [1, 0, -i]$. Ricapitolando $q_1 = E_4 \cap E_1$, $q_2 = E_4 \cap E_2$

Carta $B_2 \sigma^{-1}(X_2)_{|_{B_2}} : (y^2(\omega_1^2 + \omega_3 + \omega_3^2) = 0)$ $X_{3|_{B_1}} : (\omega_1^2 + \omega_3 + \omega_3^2 = 0)$

> La controimmagine di P_1 in X_3 su questa carta è data da $E_4 : (y = 0) \cap (\omega_1^2 + \omega_3 + \omega_3^2 = 0)$ una curva che interseca la controimmagine di $E_0 : (\omega_1 = 0) \cap (\omega_3 = 0)$ nel punto $q_0 = (0, 0, 0)$ che in coordinate globali è $q_0 = (0, 0, 0) \times [0, 1, 0]$. Quindi $q_0 = E_4 \cap E_0$.

Carta
$$B_3 \sigma^{-1}(X_2)_{|B_3} : (z^2(\omega_1^2 + \omega_2 + 1) = 0)$$

 $X_{3|B_1} : (\omega_1^2 + \omega_2 + 1 = 0).$

Graficamente, per semplicità, rappresentiamo la conica E_4 come una retta, questa non è una perdita di generalità perché E_4 è isomorfa alla retta proiettiva. allora abbiamo che:

2.4 Punto di singolarità E_6

2.4.1 Punto E_6 come quoziente

Denominiamo G il gruppo tetra
edrale binario generato da le tre applicazioni lineari
 α,β e γ le cui matrici associate sono

$$\alpha = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \quad \beta = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \gamma = \frac{1}{\sqrt{2}} \begin{bmatrix} \epsilon & \epsilon^3 \\ \epsilon & \epsilon^7 \end{bmatrix}.$$

dove $\epsilon=e^{\frac{2\pi i}{8}},$ una radice ottava dell'unita.

Come in precedenza cerchiamo tre polinomi G-invarianti, che indico con F_1, F_2, F_3 , che rispettino un'equazione $R(F_1, F_2, F_3) = 0$, così che la mappa $\psi : \mathbb{A}^2/G \to V(R)$ che a [(u, v)] associa $(F_1(u, v), F_2(u, v), F_3(u, v))$ sia un isomorfismo ben definito.

Notiamo che le applicazioni $\alpha \in \beta$ generano il gruppo binario diedrale BD_8 trattato per i punti di tipo D_n . Sappiamo da 2.3.1 che tre polinomi invarianti per BD_8 sono:

$$q_1 = uv(u^4 - v^4)$$
 $q_2 = u^4 + v^4$ $q_3 = u^2v^2.$

Cerchiamo quindi delle combinazioni polinomiali di questi che siano anche invarianti per γ . Calcolando i polinomi in $\gamma(u, v)$ notiamo che possiamo esprimere questi come combinazione lineare di q_i , i = 1, 2, 3:

$$q_1(\gamma(u,v)) = q_1(u,v).$$

$$q_2(\gamma(u,v)) = -\frac{1}{2}q_2(u,v) + 3q_3(u,v).$$

$$q_3(\gamma(u,v)) = -\frac{1}{4}q_2(u,v) - \frac{1}{2}q_3(u,v).$$

Dato che q_1 è già γ invariante ci riduciamo a cercare combinazioni di q_2 e q_3 .

Iniziamo con combinazioni di polinomiali di grado grado uno; considero q_2 , q_3 una base di questo spazio e associamo alla valutazione in γ dei polinomi la matrice A che ha per colonne le coordinate di $q_2(\gamma)$ e $q_3(\gamma)$.

$$A = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{4} \\ 3 & -\frac{1}{2} \end{pmatrix}$$

Cerco quindi a, b tali per cui

$$aq_2(\gamma) + bq_3(\gamma) = aq_2 + bq_3.$$

Ovvero cerco v = (a, b) tale che Av = v, cioè (A - I)v = 0.

$$A - I = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{4} \\ 3 & -\frac{1}{2} \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} & -\frac{1}{4} \\ 3 & -\frac{3}{2} \end{pmatrix}$$

La matrice A - I ha determinante diverso da zero e quindi l'unica soluzione del sistema è banale.

Consideriamo ora i polinomi omogenei di grado 2, una base è data da q_2^2 , q_2q_3 , q_3^2 . Andando a calcolare i polinomi in γ si ottiene che:

$$\begin{aligned} q_2^2(\gamma) &= \frac{1}{4}q_2^2 - 3q_2q_3 + 9q_3^2. \\ q_2q_3(\gamma) &= \frac{1}{8}q_2^2 - \frac{1}{2}q_2q_3 - \frac{3}{2}q_3^2. \\ q_2^2(\gamma) &= \frac{1}{16}q_2^2 - \frac{1}{4}q_2q_3 + \frac{1}{4}q_3^2. \end{aligned}$$

Possiamo quindi associare alla valutazione in γ la matrice B

$$B = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} & \frac{1}{16} \\ -3 & -\frac{1}{2} & \frac{1}{4} \\ 9 & -\frac{3}{2} & \frac{1}{4} \end{pmatrix}$$

Analogamente ai polinomi di grado uno cercare un polinomio γ equivale a determinare a, b, c tali per cui

$$aq_2^2(\gamma) + bq_2q_3(\gamma) + cq_3^2(\gamma) = aq_2^2 + bq_2q_3 + cq_3^2.$$

Bisogna quindi risolvere (B - I)v = 0, ovvero trovare il nucleo della matrice B - I. Questo è dato dallo span del vettore v = (1, 0, 12). Possiamo quindi dire che il polinomio $F_2 = q_2^2 + 12q_3^2$ è G-invariante.

Consideriamo ora i polinomi omogenei di grado tre. Scegliamo la base q_2^3 , $q_2^2q_3$, $q_2q_3^2$, q_3^2 , q_3^2 , la valutazione in γ è associata alla matrice C:

$$C = \begin{pmatrix} -\frac{1}{8} & -\frac{1}{16} & -\frac{1}{32} & -\frac{1}{64} \\ +\frac{9}{4} & \frac{5}{8} & \frac{1}{16} & -\frac{3}{32} \\ \frac{27}{2} & -\frac{3}{4} & \frac{5}{8} & -\frac{1}{36} \\ 27 & -\frac{9}{2} & \frac{3}{4} & -\frac{1}{8} \end{pmatrix}$$

Il nucleo di (C - I) è dato dallo Span di (1, 0, -36, 0) e (0, 1, 0, -4), quindi $q_2^3 - 36q_2q_3^2$ e $q_2^2q_3 + q_3^3$ sono G invarianti.

Scegliamo fra questi quattro polinomi trovati i tre polinomi $F_1 = q_1, F_2 = q_2^2 + 12q_3^2$ e $F_3 = 2q_2^3 - 72q_2q_3^2$, si vede che questi rispettano l'equazione

$$F_3^2 = -432F_1^2 + 4F_2^3.$$

Allora la mappa ψ :

$$\psi(u, v) : \begin{cases} x = F_3(u, v) \\ y = F_2(u, v) \\ z = F_1(u, v) \end{cases}$$

Ha come immagine la superficie $X : (-x^2 + 4y^3 - 432z^4 = 0)$ che sotto un opportuno cambio di coordinate prende equazione $X : (x^2 + y^3 + z^4 = 0)$.

2.4.2 Risoluzione dei Punti E_6

Cerchiamo ora una risoluzione dei punti E_6 , vogliamo mostrare che hanno una risoluzione in cui il divisore eccezionale è l'unione di sei curve birazionali la cui configurazione da il diagramma di Dynkin. Prendiamo quindi

$$P = (0, 0, 0) \in X : (f = x^2 + y^3 + z^4 = 0) \subset \mathbb{A}^3.$$

Nomino X_1 la trasformata stretta X e la studio sulle tre carte affini che la ricoprono.

Carta $B_1 \sigma^{-1}(X)_{|B_1} : (x^2(1+x\omega_2^3+x^2\omega_3^4)=0)$ $X_{1|B_1} : (1+x\omega_2^3+x^2\omega_3^2=0)$. Dal sistema della derivate parziali si vede che non sono presenti punti singolari sulla superficie, la derivata rispetto ω_2 implica x=0 ma questi punti non rispettano l'equazione della superficie.

Carta $B_2 \sigma^{-1}(X)_{|_{B_2}} : (y^2(\omega_1^2 + y + y^2\omega_3^4) = 0)$ $X_{1|_{B_2}} : (\omega_1^2 + y + y^2\omega_3^4 = 0).$ Ricerco punti singolari su X_1 .

$$\begin{cases} 2\omega_1 = 0\\ 1 + 2y\omega_3 = 0\\ 4y^2\omega_3^3 = 0 \end{cases}$$

Dalla terza equazione si deduce che uno fra ω_3 o y sia zero, se così fosse, allora la seconda equazione non ha soluzione. Non sono quindi presenti punti singolari su B_2 .

Carta $B_3 \sigma^{-1}(X)_{|_{B_3}} : (z^2(\omega_1^2 + \omega_2^3 z + z^2) = 0)$ $X_{1|_{B_3}} : (\omega_1^2 + \omega_2^3 z + z^2 = 0).$

La preimmagine di P su X_1 , che chiamiamo E_0 , è data da $(z = 0) \cap (\omega_1 = 0)$. Il sistema delle derivate parziali

0

$$\begin{cases} 2\omega_1 = 0\\ 3\omega_2 z = 0\\ \omega_2^3 + 2z = \end{cases}$$

Ha come unica soluzione $P_1 = (0, 0, 0)$.

Su B_3 rinomino le coordinate (ω_1, ω_2, z) con (x, y, z) e faccio il Blow-Up in P_1 . X_2 è la trasformata stretta di X_1 .

Carta $B_1 \sigma^{-1}(X_1)_{|B_1} : (x^2(1+x\omega_2^3\omega_3+\omega_3^2)=0)$ $X_{2|B_1} : (1+x\omega_2^3\omega_3+\omega_3^2=0).$

Il sistema delle derivate parziali

 $\begin{cases} \omega_2^3 \omega_3 = 0\\ 3x \omega_2^2 \omega_3 = 0\\ x \omega_2^3 + 2\omega_3 = 0 \end{cases}$

Non ha soluzioni sulla superficie: se un punto rispettare il sistema dalla prima equazione si ha che una fra ω_2, ω_3 deve essere nulla ma questo implica che il punto no sta sulla curva.

Carta $B_2 \sigma^{-1}(X_1)_{|B_2} : (y^2(\omega_1^2 + y^2\omega_3 + \omega_3^2) = 0)$

 $X_{2|B_2}$: $(\omega_1^2 + y^2\omega_3 + \omega_3^2 = 0)$. Su questa carta la preimmagine di P_1 è data da $(y = 0) \cap (\omega_1^2 + \omega_3)$, due rette di equazione $(y = 0) \cap (\omega_1 + i\omega_3 = 0)$ e $(y = 0) \cap (\omega_1 - i\omega_3 = 0)$, che nominiamo E_1 e E_2 . La trasformata stretta di E_0 è definita da $(\omega_1 = 0) \cap (\omega_3 = 0)$.

Il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ 2y\omega_3 = 0\\ y^2 + 2\omega_3 = 0 \end{cases}$$

Ha come soluzione il punto $P_2 = (0, 0, 0)$ che è anche punto di intersezione di E_0, E_1 e E_2 .

Carta $B_3 \sigma^{-1}(X_1)_{|B_3} : (z^2(\omega_1^2 + \omega_2^3 z^2 + 1) = 0)$ $X_{2|B_3} : (\omega_1^2 + \omega_2^3 z^2 + 1 = 0).$ Il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ 3\omega_2^2 z^2 = 0\\ 2\omega_2^3 z = 0 \end{cases}$$

Non ha soluzioni che stanno sulla curva.

Rinomino nuovamente le coordinate di B_2 e faccio lo scoppiamento in P_2 nominando X_3 la trasformata stretta di X_2

Carta $B_1 \sigma^{-1}(X_2)_{|B_1} : (x^2(1+x\omega_2^2\omega_3+\omega_3^2)=0)$ $X_{3|B_1} : (1+x\omega_2^2\omega_3+\omega_3^2=0)$. Su questa carta non sono presenti punti singolari:

$$\begin{cases} \omega_2^2 \omega_3 = 0\\ 2x \omega_2 \omega_3 = 0\\ x \omega_2 + 2 \omega_3 = 0 \end{cases}$$

La prima equazione implica che ω_2 o ω_3 siano nulli; se $\omega_3 = 0$ allora il punto non sta sulla superficie, se $\omega_2 = 0$ allora dalla terza equazione abbiamo $\omega_3 = 0$ e quindi il punto non sta sulla superficie.

Carta $B_2 \sigma^{-1}(X_2)_{|B_2} : (y^2(\omega_1^2 + y\omega_3 + \omega_3^2)) = 0)$ $X_{3|B_2} : (\omega_1^2 + y\omega_3 + \omega_3^2 = 0)$. La controimmagine di P_2 è data da $(y = 0) \cap (\omega_1^2 + \omega_2^2 = 0)$; ovvero, due rette che denomino con $E_3 : (y = 0) \cap (\omega_1 + i\omega_3 = 0)$ ed $E_4 : (y = 0) \cap (\omega_1 - i\omega_3 = 0)$. La trasformata propria di E_0 è data da $(\omega_1 = 0) \cap (\omega_3 = 0)$ che interseca E_3 ed E_4 in $P_3 = (0, 0, 0)$. Il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ \omega_3 = 0\\ y + 2\omega_3 = 0 \end{cases}$$

Ha come unica soluzione il punto P_3 che è un punto di tipo A_1 poiché l'equazione $\omega_1^2 + y\omega_3 + \omega_3^2$ con un cambio di variabile può essere ricondotta a $\omega_1^2 + y^2 + \omega_3^2$.

Carta $B_3 \sigma^{-1}(X_2)_{|_{B_3}} : (z^2(\omega_1^2 + \omega_2^2 z + 1)) = 0)$ $X_{3|_{B_3}} : (\omega_1^2 + \omega_2^2 z + 1 = 0).$ Su questa carta la trasformata di E_1 e quella di E_2 sono date rispettivamente da $E_1: (\omega_2 = 0) \cap (\omega_1 + i = 0) \in E_2: (y = 0) \cap (\omega_1 - i = 0).$ e la preimmagine di P_2 è data sempre dalle due rette E_3 ed E_4 che prendono equazione rispettivamente $(z = 0) \cap (\omega_1 + i = 0), (z = 0) \cap (\omega_1 + i = 0).$ E_1 interseca E_3 in $q_1 = (-i, 0, 0)$, mentre E_2 interseca E_4 in $q_2 = (i, 0, 0)$. Su B_3 la superficie risulta essere liscia perché il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ 2\omega_2 z = 0\\ \omega_2^2 = 0 \end{cases}$$

Ha come soluzioni che non rispettano le equazioni della sulla superficie.

Su B_2 riesco a vedere solo le rette E_0 , E_3 ed E_4 ma da quello che abbiamo visto sulla carta B_3 sappiamo che E_1 interseca E_3 in q_1 e che E_2 interseca E_4 in q_2 che non sono punti singolari. Graficamente possiamo rappresentare questa cosa con il seguente disegno

L'unico punto singolare è P_3 che ha coordinate (0,0,0) su B_2 , faccio quindi lo scoppiamento in questo punto. Rinomino le coordinate di B_2 con (x, y, z); allora si ha che su B_2

- $X_3: (x^2 + yz + z^2 = 0).$
- $E_0: (x=0) \cap (z=0).$
- $E_3: (y=0) \cap (x+iz=0).$
- $E_4: (y=0) \cap (x-iz=0).$

La superficie X_3 è un cono, che sappiamo avere un punto di singolarità di tipo A_1 , ci limiteremo quindi solo a studiare l'intersezione delle rette E_0 , E_3 ed E_4 con la curva ottenuta dalla preimmagine di P_3 che indico con E_5 .

Carta $B_1 \sigma^{-1}(X_3)_{|_{B_1}} : (x^2(1+\omega_2\omega_3+\omega_3^2)=0)$ $X_{4|B_1}$: $(1 + \omega_2\omega_3 + \omega_3^2 = 0)$. La curva E_5 è definita da $(x = 0) \cap (1 + \omega_2\omega_3 + \omega_3^2 = 0)$. Le trasformate di E_3 ed E_4 sono definite rispettivamente da $(\omega_2 = 0) \cap (1 + i\omega_3 = 0)$ e $(\omega_2 = 0) \cap (1 - i\omega_3 = 0)$ che si intersecano con E_6 rispettivamente in $q_3 = (0, 0, i)$ e $q_4 = (0, 0, -i).$

Carta $B_2 \sigma^{-1}(X_3)_{|B_2} : (y^2(\omega_1^2 + \omega_3 + \omega_3^2) = 0)$ $X_{4|B_2} : (\omega_1^2 + \omega_3 + \omega_3^2 = 0)$. Su questa carta E_5 è definita da $(y = 0) \cap (\omega_1^2 + \omega_3 + \omega_3^2 = 0)$ e la trasformata stretta di E_0 è data da $(\omega_1 = 0) \cap (\omega_3 = 0)$ che interseca E_6 in (0, 0, 0).

Concludendo si ha che E_5 interseca E_0, E_3 ed E_4 in tre punti diversi. Graficamente:

Il diagramma di Dynkin è quindi ha sei vertici con la configurazione seguente

Punto di singolarità E_7 2.5

$$P = (0,0,0) \in X : (f = x^2 + y^3 + yz^3 = 0) \subset \mathbb{A}^3.$$

Facciamo lo scoppiamento di \mathbb{A}^3 in P, studio X_1 , la superficie ottenuta sulle carte affini che la ricoprono.

Carta $B_1 \sigma^{-1}(X)_{|B_1} : (x^2(1 + x\omega_2^3 + x^2\omega_2\omega_3^3) = 0)$ $X_{1|B_1} : (1 + x\omega_2^3 + x^2\omega_2\omega_3^3 = 0)$. Su questa carta la superficie è liscia, il sistema delle derivate parziali non ha soluzioni sulla curva:

$$\begin{cases} \omega_2^3 + 2x\omega_2\omega_3^3 = 0\\ 3x\omega_2^2 + x^2\omega_3^3 = 0\\ 3x^2\omega_2\omega_3^2 = 0 \end{cases}$$

Dalla terza equazione si ha che una fra x, ω_2, ω_3 è nulla ma se x, ω_2 si annullano il punto non sta sulla curva quindi $\omega_3 = 0$. Allora la Seconda equazione diventa $3x\omega_2^2 = 0$, quindi o x = 0 o $\omega_2 = 0$. La superficie è quindi liscia su B_1 .

Carta $B_2 \sigma^{-1}(X)_{|B_2} : (y^2(\omega_1^2 + y + y^2\omega_3^3) = 0)$ $X_{1|B_2} : (\omega_1^2 + y + y^2\omega_3^3 = 0). \ E_0 = \sigma^{-1}(P) = (y = 0) \cap (\omega_1^2 + y + y^2\omega_3^3 = 0) = (y = 0) \cap (\omega_1 = 0).$ Il sistema seguente non ha soluzioni.

$$\begin{cases} \omega_1 = 0\\ 1 + 2y\omega_3^3 = 0\\ 3y^2\omega_3^2 = 0 \end{cases}$$

dalla terza segue che uno fra $y \in \omega_3$ è nullo. Quindi andando a sostituire nella seconda si ottiene 1 = 0.

• Carta $B_3 \sigma^{-1}(X)_{|B_3} : (z^2(\omega_1^2 + \omega_2^3 z + \omega_2 z^2) = 0)$ $X_{1|B_3} : (\omega_1^2 + \omega_2^3 z + \omega_2 z^2 = 0)$. Su questa carta $E_0 = \sigma^{-1}(P) \cap X_1$ è definito da $(z = 0) \cap (\omega_1 = 0)$. Il sistema delle derivate parziali con la condizione di stare sulla superficie

$$\begin{cases} \omega_1 = 0\\ z(3\omega_2^2 + z) = 0\\ \omega_2(\omega_2^2 + 2z) = 0\\ \omega_2\omega_3(\omega_2^2 + z) = 0 \end{cases}$$

da come unica soluzione il punto $P_1 = (0, 0, 0)$.

Dopo questo primo passo abbiamo $E_0 \in P_1$, che si trova su E_0 , che è punto singolare per X_1 . Su B_3 rinomino ω_1, ω_2, z con x, y, z e faccio lo scoppiamento, denomino X_2 la trasformata di $X_1 : (x^2 + y^3 z + y z^2)$ attraverso questo.

Carta $B_1 \sigma^{-1}(X_1)_{|B_1} : (x^2(1+x^2\omega_2^3\omega_3+x\omega_2\omega_3^2)=0)$ $X_{2|B_1} : (1+x^2\omega_2^3\omega_3+x\omega_2\omega_3^2=0).$

Ricerca di punti singolari:

$$\begin{cases} \omega_2 \omega_3 (2x\omega_2^2 + \omega_3) = 0\\ x\omega_3 (3x\omega_2^2 + \omega_3) = 0\\ x\omega_3 (x\omega_3^2 + 2\omega_3) = 0 \end{cases}$$

Poiché i punti con almeno una coordinata nulla non stanno sulla superficie il sistema equivale a:

$$\begin{cases} 2x\omega_2^2 + \omega_3 = 0\\ 3x\omega_2^2 + \omega_3 = 0\\ x\omega_3^2 + 2\omega_3 = 0 \end{cases}$$

che non ha soluzioni che non implichino che una coordinata sia nulla. Non ho quindi punti singolari su B_1 .

• Carta $B_2 \sigma^{-1}(X_1)_{|B_2} : (y^2(\omega_1^2 + y^2\omega_3 + \omega_3^2y) = 0)$ $X_{2|B_1} : (\omega_1^2 + y^2\omega_3 + \omega_3^2y = 0)$ Qui la preimmagine di P_1 ristretta a X_2 è data da $E_1 : (y = 0) \cap (\omega_1 = 0)$. Quella di E_0 è definita da $(\omega_1 = 0) \cap (\omega_3 = 0)$, mediante un abuso di notazione nomino questa sempre E_0 . Il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ \omega_3(2y + \omega_3) = 0\\ y(y + 2\omega_3) = 0 \end{cases}$$

ha soluzione per $P_2 = (0, 0, 0)$ che è anche punto di intersezione per E_0 ed E_1 .

Carta $B_3 \sigma^{-1}(X_1)_{|B_3} : (z^2(\omega_1^2 + \omega_2^3 z^2 + \omega_2 z) = 0)$ $X_{2|B_3} : (\omega_1^2 + \omega_2^3 z^2 + \omega_2 z = 0).$ Cerco punti singolari:

$$\begin{cases} 2\omega_1 = 0\\ z(3\omega_2^2 z + 1) = 0\\ \omega_2(2\omega_2^2 z + 1) = 0 \end{cases}$$

La soluzione unica è $P_3 = (0, 0, 0)$. Dalla seconda e dalla terza equazione si ha che z = 0 implica $\omega_2 = 0$ e viceversa. Se ipotizzo $Z \neq 0$ allora un punto è soluzione se $(3\omega_2^2 z + 1) = 0(2\omega_2^2 z + 1) = 0$ ma quindi sottraendo la seconda dalla prima si ha $\omega_2^2 z = 0$ e quindi $\omega_2 = 0$.

Dopo questo passo su X_2 abbiamo la seguente situazione:

 P_2 è visto in B_2 dove, se rinomino $(\omega_1, y, \omega_3) = (x, y, z)$, si ha che:

- $X_2: (x^2 + y^2z + yz^2 = 0).$
- $E_0: (x=0) \cap (z=0).$
- $E_1: (x=0) \cap (y=0).$
- $P_2 = (0, 0, 0).$

 P_3 è visto in B_3 dove, se rinomino $(\omega_1, \omega_2, z) = (x, y, z)$, si ha che:

- $X_2: (x^2 + y^3 z^2 + yz = 0).$
- $E_0: (x=0) \cap (z=0).$
- $E_1: (x=0) \cap (y=0).$
- $P_3 = (0, 0, 0).$

Studiamo prima quindi il punto P_2 . Il polinomio che definisce X_2 è simmetrico in y,z e quindi lo studio di X_3 trasformata propria di X_2 sulla carta B_2 darà gli stesi risultati di quello sulla carta B_3 .

Carta
$$B_1 \sigma^{-1}(X_2)_{|_{B_1}} : (x^2(1+x\omega_2^2\omega_3+x\omega_2\omega_3^2)=0)$$

 $X_{3|_{B_1}} : (1+x^2\omega_2^2\omega_3+x\omega_2\omega_3^2=0).$ Il sistema delle derivate parziali:

$$\begin{cases} 2x(\omega_2^2\omega_3 + \omega_2\omega_3^2) = 0\\ x\omega_3(2\omega_2 + \omega_3) = 0\\ x\omega_2(\omega_2 + 2\omega_3) = 0 \end{cases}$$

I punti dove almeno una delle coordinate è nulla non stanno sulla superficie, possiamo quindi supporre $x \neq 0, \omega_2 \neq 0, \omega_3 \neq 0$. Dalla seconda equazione otteniamo $\omega_3 = -2\omega_2$, sostituendo nella terza equazione del sistema allora $-3\omega_2 = 0$. Non sono presenti punti singolari su X_3 nella carta B_1 .

Carta $B_2 \sigma^{-1}(X_2)_{|B_2} : (y^2(\omega_1^2 + y\omega_3 + y\omega_3^2) = 0)$ $X_{3|B_2} : (\omega_1^2 + y\omega_3 + y\omega_3^2 = 0)$. La controimmagine di P_2 è data da $E_2 : (y = 0) \cap (\omega_1 = 0)$. La trasformata propria della retta E_0 è data da $(\omega_1 = 0) \cap (\omega_3 = 0)$. E_0 ed E_2 si intersecano in $P_4 = (0, 0, 0)$. Il sistema della derivate parziali:

$$\begin{cases} 2\omega_1 = 0; \\ \omega_3(1 + \omega_3) = 0 \\ y(1 + 2\omega_3) = 0 \end{cases}$$

Da due soluzioni; una è $P_4 = (0, 0, 0)$ mentre l'altra è $P_5 = (0, 0, -1)$.

• Carta B_3 Data la simmetria del polinomio in x e y le soluzioni su questa carta sono analoghe a quelle della B_2 . Avremo quindi altri due punti $P_6 = (0,0,0)$ e $P'_5 = (0,-1,0)$. I punti P_5 e P'_5 sono in realtà lo stesso punto visto su due carte diverse infatti $P_5 = (0,0,0) \times [0,1,-1]$ e $P'_5 = (0,0,0) \times [0,-1,1]$.

Rappresentando graficamente questi risultati abbiamo.

Ognuno di questi punti è un punto doppio semplice di tipo A_1 la cui risoluzione da un insieme di sette curve che si intersecano nel modo seguente.

A cui corrisponde il diagramma di Dynkin di tipo E_7 .

2.6 Punto di singolarità E_8

Vogliamo dimostrare che il polinomio di Tabella 2.1 associato ad E_8 abbia una risoluzione sulla quale il divisore eccezionale è dato da otto curve che hanno una rappresentazione come quella del diagramma nella tabella. Consideriamo quindi

$$X:(x^2+y^3+z^5=0)\subset \mathbb{A}^3$$

Come detto in 2.1 P = (0, 0, 0) è l'unico punto doppio e quindi analogamente allo studio degli altri punti il primo passo è di fare il Blow-up dello spazio in P.

Denoto con X_1 la trasformata stretta di X, controllo se ha ulteriori punti singolare e la configurazione del divisore eccezionale, per farlo la analizzo sulle carte affini che la ricoprono.

Carta $B_1 \sigma^{-1}(X)_{|B_1} : (x^2(1+x\omega_2^3+x^3\omega_3^5)=0)$ $X_{1|B_1} : (1+x\omega_2^3+x^3\omega_3^5=0)$. Ricerco punti singolari come soluzioni del sistema delle derivate parziali:

$$\begin{cases} \omega_2^3 + 3x^2 \omega_3^5 = 0\\ 3x \omega_2^2 = 0\\ 5x^3 \omega_3^4 = 0 \end{cases}$$

I punti con coordinata x = 0 non appartengono a X_1 perché non rispettano l'equazione che lo descrive quindi nel risolvere il sistema possiamo considerare $x \neq 0$. La seconda e la terza equazione del sistema allora implicano che ω_2 e ω_3 siano nulli ma se così fosse i punti non apparterrebbero ad X_1 che è quindi liscia su B_1 .

Carta $B_2 \sigma^{-1}(X)_{|B_2} : (y^2(\omega_1^2 + y + y^3\omega_3^5) = 0).$ $X_{1|B_3} : (\omega_1^2 + y + y^3\omega_3^5 = 0).$ Il sistema della derivate parziali non ha soluzioni:

$$\begin{cases} 2\omega_1 = 0\\ 1 + y^2 \omega_3^5 = 0\\ 5y^3 \omega_3^5 = 0 \end{cases}$$

La terza equazione implica che una fra $y \in \omega_3$ sia nulla ma allora la seconda equazione diventa 1 = 0. X_1 è quindi liscia su B_2

Carta $B_3 \sigma^{-1}(X)_{|B_3} : (z^2(\omega_1^2 + \omega_2^2 z + z^3) = 0).$ $X_{1|B_3} : (\omega_1^2 + \omega_2^3 z + z^3 = 0).$ La contro immagine di P su X_1 è data da $E_0 : (z = 0) \cap X_1 = (z = 0) \cap (\omega_1 = 0).$ Il sistema delle derivate parziali

$$\begin{cases} 2\omega_1 = 0\\ 2\omega_2 z = 0\\ \omega_2^2 + 3z^2 = \end{cases}$$

0

ha un unica soluzione il $P_1 = (0, 0, 0)$.

Facciamo nuovamente uno scoppiamento centrandolo in P_2 , poiché P_2 sta sulla carta B_3 studio solo lo scoppiamento di questa carta. Per semplicità rinomino le coordinate $\omega_1, \omega_2, z \operatorname{con}(x, y, z) \operatorname{cos}$ che $X_1 : (x^2 + y^3 z + z^3 = 0)$. Analizzo quindi X_2 , la superficie ottenuta dallo scoppiamento di X_1 , sulle carte che la ricoprono.

Carta $B_1 \sigma^{-1}(X_1)_{|B_1} : (x^2(1+x^2\omega_2^3\omega_3+x\omega_3^3)=0)$ $X_{2|B_1} : (1+x^2\omega_2^3\omega_3+x\omega_3^3=0)$. Su questa carta il sistema delle derivate parziali non ha soluzioni:

$$\begin{cases} 2x\omega_2^3 + \omega_3^3 = 0\\ 3\omega_2^2 + x^2 + \omega_3 = 0\\ 3x^3\omega_3^3 = 0 \end{cases}$$

dalla terza equazione si ha che x = 0 o $\omega_3 = 0$, in entrambi i casi andando a sostituire nell'equazione della superficie si ottiene 1 = 0. X_2 è quindi liscia su B_1 .

Carta $B_2 \sigma^{-1}(X_1)_{|_{B_2}} : (y^2(\omega_1^2 + y^2\omega_3 + y\omega_3^3) = 0)$ $X_{2|_{B_2}} : (\omega_1^2 + y^2\omega_3 + y\omega_3^3 = 0).$ Ricerco punti singolari:

$$\begin{cases} 2\omega_1 = 0\\ \omega_3(2y + \omega_3^2) = 0\\ y(y + 3\omega_3^2) = 0 \end{cases}$$

Non è difficile vedere che $P_2 = (0, 0, 0)$ è soluzione del sistema e appartiene alla superficie. Cerco altri punti diversi dal punto P, poiché $\omega_1 = 0$ è una condizione necessaria per essere soluzione del sistema chiedo che una fra y o ω_3 sia diversa da zero ma dato che, dalla seconda e alla terza equazione, si ottiene che $\omega_3 = 0$ implica y = 0 e viceversa posso supporli entrambi diversi da zero. Chiedere che un punto risolva il sistema è equivalente a cercare y ed ω_3 diversi da zero tali che $2y + \omega_3^2 = 0$ e $y + 3\omega_3^2 = 0$. Sottraendo 2 volte la seconda equazione alla prima si ottiene però $\omega_3 = 0$. P_2 è quindi l'unico punto singolare su B_2 . Su questa carta la preimmagine di P_1 , che denoto con E_1 , è data da $(y = 0) \cap (\omega_1 = 0)$ e la trasformata di E_0 è definita da $(\omega_1 = 0) \cap (\omega_3 = 0)$. P_2 è quindi il punto di intersezione fra E_0 ed E_1 .

Carta
$$B_3 \sigma^{-1}(X_1)_{|B_3} : (z^2(\omega_1^2 + \omega_2^3 z^2 + z) = 0)$$

 $X_{2|B_3} : (\omega_1^2 + \omega_2^3 z^2 + z = 0)$. Non sono presenti punti singolari su questa carta:

$$\begin{cases} 2\omega_1 = 0\\ 3\omega_2^2 z^2 = 0\\ 1 + 2z\omega_2^3 = 0 \end{cases}$$

Il sistema delle derivate parziali non ha soluzioni: la terza equazione implica che uno fra ω_2 e z sia nullo ma se così fosse andando a sostituire nella seconda equazione si otterrebbe 1 = 0.

Su X_2 abbiamo quindi che l'unico punto singolare è il punto P_2 che è anche punto di intersezione delle due curve eccezionali E_0 ed E_1 .

Vogliamo fare ora nuovamente uno scoppiamento centrato in P_2 denominiamo X_3 la trasformata stretta di X_2 attraverso σ . Rinomino prima le coordinate di B_2 con (x, y, z). X_2 ha quindi equazione X_2 : $(x^2+y^2z+yz^3=0) \in E_0$ ed E_1 sono definite rispettivamente da $(x=0) \cap (z=0) \in (x=0) \cap (y=0)$. Le coordinate di P_2 rimangono (0,0,0). Studio ora X_3 sulle carte che la ricoprono.

Carta $B_1 \sigma^{-1}(X_2)_{|B_1} : (x^2(1+x\omega_2^2\omega_3+x^2\omega_2\omega_3^3)=0).$ $X_{3|B_1} : (1+x\omega_2^2\omega_3+x^2\omega_2\omega_3^3=0).$ Osserviamo che se $Q = (x, \omega_2, \omega_3) \in X_{3|B_1}$ allora $x, \omega_2 \in \omega_3$ sono tutte diverse da 0. Possiamo quindi ricondurci al caso $x \neq 0, \omega_2 \neq 0$ $e \omega_3 \neq 0$

$$\begin{cases} \omega_2 \omega_3 (\omega_2 + 2x\omega_3^2) = 0 \\ x\omega_3 (2\omega_2 + x\omega_3^2) = 0 \\ x\omega_2 (\omega_2 + 3x\omega_3^2) = 0 \end{cases} \quad \text{ovvero} \quad \begin{cases} \omega_2 + 2x\omega_3^2 = 0 \\ 2\omega_2 + x\omega_3^2 = 0 \\ \omega_2 + 3x\omega_3^2 = 0 \end{cases}$$

Sottraendo dalla terza equazione la prima si ottiene $x\omega_3^2 = 0$ che significa che uno fra $x \in \omega_3$ siano nulli. Questo va contro l'osservazione fatta in precedenza, $X_{3|B_1}$ non presenta punti singolari.

Carta $B_2 \sigma^{-1}(X_2)_{|B_2} : (y^2(\omega_1^2 + y\omega_3 + y^2\omega_3^3) = 0).$ $X_{3|B_2} : (\omega_1^2 + y\omega_3 + y^2\omega_3^3 = 0).$ Ricerco punti singolari.

$$\begin{cases} 2\omega_1 = 0\\ \omega_3(1+2y\omega_3^2) = 0\\ y(1+3y\omega_2^2) = 0 \end{cases}$$

 $P_3 = (0, 0, 0)$ è una soluzione del sistema; controllo se ce ne sono altre. La prima equazione del sistema fissa la coordinata $\omega_1 = 0$ mentre la seconda e la terza equazione ci dicono che y = 0 implica $\omega_3 = 0$ e viceversa. Posso quindi ricondurmi a cercare soluzioni del tipo $(0, y, \omega_3)$ con $y \neq = 0$ e $\omega_3 \neq 0$, sotto queste ipotesi posso dividere in maniera lecita la seconda equazione per ω_3 e la terza per y, sottraendole si ottiene $y\omega_3^2 = 0$. Non esistono quindi ulteriori soluzioni oltre a P_3

La controimmagine di P_2 mediante lo scoppiamento su X_3 è data da

 $E_2: (\omega_1 = 0) \cap (y = 0).$

Su B_2 è anche possibile vedere la trasformata di E_0 che ha equazione ($\omega_1 = 0$) \cap ($\omega_3 = 0$). E_0 ed E_2 si intersecano nel punto singolare P_2 .

Carta $B_3 \sigma^{-1}(X_2)_{|_{B_3}} : (z^2(\omega_1^2 + \omega_2^2 z + \omega_2 z^2)) = 0).$ $X_{3|_{B_3}} : (\omega_1^2 + \omega_2^2 z + \omega_2 z^2 = 0).$ Ricerco punti singolari:

$$\begin{cases} 2\omega_1 = 0\\ z(2\omega_2 + z) = 0\\ \omega_2(\omega_2 + 2z) = 0 \end{cases}$$

Oltre al punto $P_4 = (0, 0, 0)$, che è soluzione del sistema, se per esempio z fosse diverso da zero si avrebbe dalla seconda equazione $z = -2\omega_2$; sostituendo nella terza equazione $-3\omega_2^2 = 0$, allora $\omega_2 = 0$ e z = 0. P_4 è quindi l'unica soluzione. E_2 su questa carta prende equazione ($\omega_1 = 0$) $\cap (z = 0)$ e la trasformata di E_1 è definita da ($\omega_1 = 0$) $\cap (\omega_2 = 0)$.

Su X_3 abbiamo trovato due punti singolari, $P_3 \in B_2$ e $P_4 \in B_3$ e il divisore eccezionale è dato dalle tre curve E_0 , E_1 ed E_2 che si intersecano in P_3 e P_4 come in figura

$$E_0 \qquad E_1$$

 $P_3 \qquad P_4$
 E_2

Mentre la retta E_2 è vista sia in B_2 che B_3 il punto P_3 e la retta E_0 sono viste solo in B_2 e P_4 ed E_1 stanno su B_3 . Quindi ricapitolando:

Carta
$$B_2$$
:
$$\begin{cases} X_3 : (x^2 + yz + y^2 z^3 = 0) \\ P_3 = (0, 0, 0) \\ E_0 = (x = 0) \cap (z = 0) \\ E_2 = (y = 0) \cap (x = 0) \end{cases}$$
Carta B_3 :
$$\begin{cases} X_3 : (x^2 + y^2 z + yz^2 = 0) \\ P_4 = (0, 0, 0) \\ E_1 = (x = 0) \cap (y = 0) \\ E_2 = (z = 0) \cap (x = 0) \end{cases}$$

Facciamo lo scoppiamento in P_3 . Denomino con X_4 la trasformata di X_3 e la studio sulle carte che la ricoprono.

Carta $B_1 \sigma^{-1}(X_3)_{|_{B_1}} : (x^2(1 + \omega_2\omega_3 + x^3\omega_2^2\omega_3^3)) = 0).$ $X_{4|_{B_1}} : (1 + \omega_2\omega_3 + x^3\omega_2^2\omega_3^3 = 0).$ Su questa carta non sono presenti punti singolari, infatti il sistema delle derivate parziali non ha soluzioni sulla superficie:

$$\begin{cases} 3x^2\omega_2^2\omega_3^3 = 0\\ \omega_3 + 2x^3\omega_2\omega_3^3 = 0\\ \omega_2 + 3x^3\omega_2^2\omega_3^2 = 0 \end{cases}$$

Dalla prima equazione si ottiene che un punto per essere soluzione deve avere almeno una coordinata nulla. Se la coordinata nulla fosse una fra ω_2 o ω_3 allora il punto non si trova su X_4 . Posso quindi supporte che x = 0.andando a sostituire nelle altre equazioni si ottiene però lo stesso risultato, ovvero, $\omega_2 = 0$ e $\omega_3 = 0$.

Carta $B_2 \sigma^{-1}(X_3)_{|B_2} : (y^2(\omega_1^2 + \omega_3 + y^3\omega_3^3)) = 0).$ $X_{4|B_2} : (\omega_1^2 + \omega_3 + y^3\omega_3^3 = 0).$ Anche su questa carta sono assenti punti singolari: dalla seconda equazione del sistema delle derivate parziali si deduce y = 0 o $\omega_3 = 0$, andando a sostituire nella terza equazione questa diventa 1 = 0.

$$\begin{cases} 2\omega_1 = 0\\ 3y^2\omega_3^3 = 0\\ 1 + 3y^3\omega_3^3 = 0 \end{cases}$$

Nonostante non ci siano punti singolari questa carta ci è utile per controllare se la trasformata di E_0 si interseca con la curva eccezionale data dalla preimmagine P_3 che definiamo con $E_3 : (y = 0) \cap (\omega_1 = 0)$. La trasformata di E_0 è data dalla retta $(y = 0) \cap (\omega_1 = 0)$. Quindi E_0 ed E_3 si intersecano nel punto (0, 0, 0), che chiamo, q_1 .

Carta
$$B_3 \sigma^{-1}(X_3)|_{B_3} : (z^2(\omega_1^2 + \omega_2 + \omega_2^2 z^3)) = 0).$$

 $X_{4|B_3}: (\omega_1^2 + \omega_2 + \omega_2^2 z^3 = 0)$ Anche su questa carta non ci sono punti singolari. Lo studio del sistema delle derivate parziali è analogo a quello della carta B_2 . Su questa carta E_3 è descritta da $E_3: (\omega_1 = 0) \cap (z = 0)$ e la trasformata di $E_2: (\omega_1 = 0) \cap (\omega_2 = 0)$. Le due rette si incontrano in $q_2 = (0, 0, 0)$.

Dallo scoppiamento di P_3 non abbiamo ottenuto ulteriori punti singolari e abbiamo trovato la configurazione seguente delle curve eccezionali:

Il BlowUp, come visto in 1.20, all'infuori del centro, è un isomorfismo. Avendo ora fatto il BlowUp di P_3 posiamo considerare l'equazione della superficie invariata in un intorno di P_4 che si trovava su un altra carta rispetto a P_3 . Sulla una carta affine che conteneva P_4 prima di questo scoppiamento posso quindi considerare invariate le equazioni che definiscono X_4 e le rette eccezionali E_1 ed E_2 . Quindi intorno a P_4 la superficie X_4 è descritta dalla stessa equazione di X_3 ; ovvero $X_4 : (x^2 + y^2 z + yz^2)$. Lo studio del BlowUp centrato in (0, 0, 0) di una superficie con questa equazione con due rette eccezionali descritte dalle equazioni $(x = 0) \cap (y = 0)$ e $(z = 0) \cap (x = 0)$ è stato fatto per la risoluzione dei punti di tipo E_7 . Si ottiene quindi dallo scoppiamento di P_4 una retta E_4 sulla quale sono presenti tre punti singolari P_5 , P_6 e P_7 . P_5 e P_7 sono i punti di intersezione fra E_4 e ,rispettivamente, E_2 e E_1 mentre P_6 si trova su E_4 . Graficamente si ottiene

I punti singolari trovati sono tutti di tipo A_1 e quindi la risoluzione finale da il seguente diagramma.

Capitolo 3

Proprietà e caratterizzazioni

In questo capitolo si vogliono mostrare alcune proprietà e caratterizzazioni delle singolarità di Du Val analizzate nel Capitolo 2.

3.1 Du Val e risoluzioni crepanti

Definizione 3.1 (Risoluzione crepante).

Sia $P \in X$ un punto singolare, una risoluzione $\phi : Y \to X$ viene detta crepante quando non influenza il divisore canonico di X, ovvero $K_Y = \phi^* K_X$.

Teorema 3.2. Le singolarità di Du Val sono caratterizzate da una delle seguenti condizioni

- (1) $P \in X$ è un punto doppio isolato ed ha una risoluzione $X_n \to X_{n-1} \to \cdots \to X_1 \to X$ dove ogni passo $X_i \to X_{i-1}$ è lo scoppiamento di un punto doppio isolato di X_{i-1} .
- (2) Esiste una risoluzione della singolarità $\phi : Y \to X$ tale che $K_Y = \phi^* K_X$. In altre parole, K_Y è banale in un intorno del divisore eccezionale. La risoluzione ϕ è quindi una risoluzione crepante.

Dimostrazione. Faremo la dimostrazione solo del fatto che (1) implica (2), la dimostrazione del verso opposto può essere ritrovata in [8].

Il fatto che singolarità di Du Val abbia una risoluzione come nel punto (1) corrisponde al Capitolo 2.

Vogliamo quindi dimostrare che se un punto ha una risoluzione data da una sequenza di BlowUp allora la risoluzione è crepante. Per fare questo dimostriamo che, per ogni scoppiamento σ , $K_{X_i} = \sigma^* K_{X_{i-1}}$. Se quindi $\sigma : Bl_P \mathbb{A}^3 \in \mathbb{A}^3$ è lo scoppiamento di \mathbb{A}^3 centrato in P, con divisore eccezionale $F = \sigma^{-1}(P) \cong \mathbb{P}^2 \subset Bl_P \mathbb{A}^3$, allora $K_{Bl_P \mathbb{A}^3} = \sigma^* K_{\mathbb{A}^3} + 2F$. Il BlowUp X_1 è contenuto in $Bl_P \mathbb{A}^3$ e $X_1 = \sigma^* X - 2F$. Allora per la formula di aggiunzione 1.30

$$K_{X_1} = (K_{Bl_P \mathbb{A}^3} + X_1)_{|X_1} = (\sigma^* K_{\mathbb{A}^3} + 2F + \sigma^* X - 2F) = \sigma^* (K_{\mathbb{A}^3} + X)_{|X_1} = \sigma^* (K_X).$$

Proposizione 3.3. Sia X una superficie con una singolarità di Du Val, $e \psi : Y \to X$ la sua risoluzione crepante. Il divisore eccezionale dato dalle curve E_i è data da -2-curve, che sono, curve $\cong \mathbb{P}^1$ con $E^2 = -2$.

Dimostrazione. Abbiamo già visto nel Capitolo 2 che questo è vero per i punti A_1, A_2, D_4 . Per la formula di aggiunzione 1.32 si ha che $2g(E) - 2 = (K_Y + E)E$, ma $K_Y E = 0$, perché $K_Y = 0$ in un intorno di $E \in g(E) = 0$. Quindi $-2 = E^2$.

3.2 Numero di Milnor

Un invariante per punti critici di funzioni è il numero di Milnor. Sia $f: M \to \mathbb{C}$ con $M = \mathbb{C}^3$ con un punto critico isolato in P. L'algebra di Milnor è definita come $J(f) = \mathcal{O}_{\mathbb{C}^3}/(\partial f/\partial x_i)$, ovvero il quoziente dell'anello locale di M in P rispetto l'ideale generato dalle derivate parziali di f.

Il numero di Milnor $\mu(f) = dim_{\mathbb{C}} J(f)$ è un invariante di un punto critico isolato e per le singolarità di Du Val coincide con il numero di curve ottenute nella risoluzione.

Esempio 3.4. Si
a $f=x^2+y^3+z^5$ il polinomio che descrive il punto di singolarità di Du
 Val $E_8.$ Allora

$$f_x = 2x, \quad f_y = 3y^2, \quad f_z = 5z^4,$$

Quindi $J(f)=C[x,y,z]/(x,y^2,z^4)$ ha base 1, z, $z^2\,,z^3\,,y\,,yz\,,yz^2\,,yz^3,$ e la sua dimensione è 8.

Analogamente con i punti di tipo A_n descritti da $f_n = x^2 + y^2 + z^{(n+1)}$, si ha che $J(f_n) = C[x, y, z]/(x, y, z^n)$, una base è data da 1, z, \ldots, z^{n-1} . Quindi $\mu(f_n) = n$.

Bibliografia

- Alan Durfee, Fifteen characterizations of rational double points and simple critical points, Enseign. Math. 25 (1979) 131?163
- [2] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. Singularities of Differentiable Maps, Volume I: The Classification of Critical Points Caustics and Wave Fronts. Monographs in Mathematics, Vol. 82, Birkhäuser. 1985
- [3] Felix Klein, Vorlesungen über das Ikosaeder: und die Auflösung der Gleichungen vom fünften Grade, Teubner, Liepzig 1888
- [4] I.R. Shafarevich, Basic Algebraic Geometry 1, Springer, 1994
- [5] J. McKay, Graphs, singularities, and finite groups, Proc. Symp. Pure Math. 37, 183-186, 1980
- [6] J. Milnor, Singular points of complex hypersurfaces, Annals of Math Studies 61 Princeton, 1968
- [7] Miles Reid, Undergraduate Algebraic Geometry, C.U.P., 1988
- [8] Miles Reid, The Du Val singularities A_n, D_n, E_6, E_7, E_8
- [9] P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction I, II, III, Proc. Cambridge Phil. Soc. 30, 483-491, 1934
- [10] P. Slodowy, *Platonic solids, klenian singularities and lie group*, Math. Institut Universitat Bonn, Bonn

Ringraziamenti

Arrivato in fondo a questo percorso di laurea triennale sento che è mio dovere e piacere ringraziare tutte le persone che, in qualche maniera, hanno contribuito al raggiungimento di questo traguardo. In primis vorrei ringraziare la mia relatrice,Prof.ssa Grassi Antonella, per avermi seguito nella stesura di questa tesi e per avermi fatto appassionare alla geometria algebrica.

Un immenso grazie ai miei familiari hanno avuto sin da subito fiducia nelle mie possibilità e mi hanno permesso di seguire un percorso che rispecchiasse i miei interessi. A mio babbo che ha saputo farmi le ramanzine al momento giusto e a mia mamma per il suo amore incondizionato. Grazie anche a mio fratello Luca da cui ho sentito sempre un enorme appoggio in tutte le mie scelte, ti voglio bene.

Vorrei poi ringraziare Francesco, Lapo, Manuel per tutti i momenti passati insieme, quelli belli e quelli brutti che ci hanno unito sempre di più. Grazie per la felicità e il senso di spensieratezza che provo ogni volta che ci vediamo ma soprattutto per aver cercato di capire l'argomento di questa tesi. Una volta qualcuno disse "siamo cinque facce della stessa medaglia" e non potrei essere più d'accordo.

Vorrei ora fare una piccola pausa e spendere due parole per evidenziare come durante il mio terzo anno di studi mi sia sentito molto vicino all'abbandonare la matematica qui a Bologna; seguivo solo le lezioni a distanza, non avevo molte persone con cui confrontarmi e mi sentivo sempre più spaesato e dubbioso su cosa fare della mia vita. Se adesso mi sento fiero del mio percorso universitario e sono convinto di proseguirlo è per merito di tutti gli amici conosciuti in questi ultimi anni con cui ormai quotidianamente mi siedo in auletta o in biblioteca a studiare. Grazie per la compagnia che mi tenete ogni giorno, per ridere con me, per lo sfotting dopo pranzo e per il bellissimo soprannome che mi avete dato. Un grazie, in particolare, anche per quella domanda così schietta e diretta che mi ha fatto interrogare sul senso di come stessi affrontando lo studio.

Per concludere voglio ringraziare la mia fidanzata Alice. Mi hai fatto crescere mettendo a nudo i miei difetti, mi hai spinto ogni giorno a dare il meglio di me, mi hai compreso nei momenti bui e sei sempre riuscita a farmi sorridere. Grazie per tutto il tempo che mi hai dedicato.