
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Integrating Dynamic Lifting

into Qiskit

Relatore:
Chiar.mo Prof.
UGO DAL LAGO

Correlatore:
Dott.
ANDREA COLLEDAN

Presentata da:
OLGA BECCI

Sessione II
Anno Accademico 2022/2023

Introduction

In a forward-looking world, it is easy to be captivated by the excitement brought
about by new technologies. One such technology is quantum computers.

Quantum computing allows us to solve some of the problems considered infeasi-
ble using classical computation. This is possibile because, with quantum comput-
ing, we alter the basic structure of information. Instead of working with classical
information, we manipulate quantum information, namely qubits, and this allows
us to exploit quantum phenomena like superposition, quantum interference, and
entanglement to achieve the (sometimes superpolynomial) speed-up that makes
this new approach to computation so appealing. There are several algorithms
that demonstrate the possibilities of quantum computing in theory, most famously
Shor’s algorithm[18][17] and Glover’s algorithm[14]. Nevertheless, we are still far
away from a world where we can consider these hard problems solvable in practice,
as building a quantum computer with a useful number of qubits remains a partic-
ularly difficult challenge. Even though practical quantum computers are not yet
a reality, it is not surprising that the theoretical study of quantum computation
is particularly attractive. The speedup promised by quantum computation does
not come from the possibility of using more powerful hardware, instead you need
to look at problems under a different light to find ways to take advantage of the
aspects of quantum mechanics that bring about efficient solutions. In fact, even in
a scenario where large quantum devices remain in the realm of science fiction, the
insights gained by this new way of thinking about computation can still be useful
in classical computation. Despite the challenges of building quantum computers,
many are working towards making it a reality. Among those trying to bring quan-

i

tum computing to the real world is IBM, which has already built quantum devices
with up to 127 qubits. IBM recognizes the importance of the software connected
to this new hardware, and in their IBM Quantum Platform [1], they offer both
access to quantum devices via the cloud and a learning platform to better under-
stand quantum computation. IBM is where Qiskit was born. Qiskit [16] is an
open-source quantum computing software development framework that serves as a
gateway for both novices and experts to delve into the intricacies of quantum com-
putation. It is accessible as a Python library and provides easy access to both real
quantum processors and simulators for experimenting with quantum computing.
However, the open source nature of the project and the fact that the development
was primarily guided by what IBM’s devices could allow, result in Qiskit being a
cumbersome tool to design quantum algorithms.

With the goal of making tools like Qiskit more flexible, we look at dynamic
lifting as a means to achieve this objective. Dynamic lifting refers to the capability
of accessing the intermediate state of a wire during the circuit construction process,
usually in the form of a boolean value, often for control flow reasons.

The ability to instruct a quantum computer to perform an operation such as
“do this quantum operation when this wire has this value” is more challenging than
one may realize. It is possibile to implement circuits using these types of condi-
tionals without checking the values of qubits mid-circuit execution [19]. However,
from the perspective of someone designing an algorithm, the structure “if this, then
that” is way more intuitive than the corresponding complex circuit without the
conditional. Algorithms that require these mechanics (like quantum teleportation
or error correction codes) become more intuitive once we introduce a form of dy-
namic lifting. We thus achieve better ergonomics.

In this context, we present the following work on introducing dynamic lifting
in Qiskit, structured as follows:

1. In the first chapter, we give an introduction to quantum computing and
some key quantum theory concepts. We discusse the nature of qubits, su-

iii

perposition, the role of probability amplitudes, quantum interference and
entanglement. We present the most common unitary operators and give an
example of computation.

2. In the second chapter, we describe the quantum circuit model, an intuitive
computational framework which gained prominence over the quantum Tur-
ing machine. We explore its features, universal gates, and representation
guidelines. Additionally, we introduce Qiskit, an open-source framework for
quantum computing implemented in Python. We discuss the core workflow
of Qiskit, involving building, compiling, running, and analyzing quantum
circuits, providing insights into practical quantum algorithm development.

3. In the third chapter, we explain our implementation of dynamic lifting in
Qiskit. We introduce the LiftedValue class and the ifdl command and a
global circuit, which enhance Qiskit’s capabilities for conditional quantum
circuit construction. This refinement is exemplified in quantum teleportation
and error correction demonstrations.

4. In the fourth chapter, we lay the foundation for a formal definition of the
language resulting from the implementation. We provide a syntax and an
operational semantics for the language, paying particular attention to the
operational interpretation of dynamic lifting.

Contents

1 Quantum Computing 1

1.1 Quantum States . 2

1.2 Dynamics of Quantum Systems . 6

1.3 Measurement in Quantum Systems 9

1.3.1 Example: Bell State Construction 9

2 Quantum Circuit Description Languages 13

2.1 Quantum Circuits . 14

2.2 Languages . 15

2.3 Qiskit . 16

3 Qiskit with Dynamic Lifting 23

3.1 Language . 24

3.1.1 LiftedValue . 24

3.1.2 ifdl . 25

3.1.3 Global Circuit . 27

3.2 Examples . 27

3.2.1 Quantum Teleportation . 28

3.2.2 Error Correction . 30

4 The Operational Semantics of Dynamic Lifting 35

4.1 Syntax . 35

4.2 Operational Semantics . 40

v

vi CONTENTS

4.2.1 An Example . 46

Conclusions 51

A Code 53

Bibliography 71

List of Figures

4.1 Full syntax. 38
4.2 Arithmetic and Boolean expressions operational semantic rules. . . 49
4.3 Classical commands operational semantic rules. 50

vii

Chapter 1

Quantum Computing

When discussing computation within the classical context, our inclination is
often to think about it purely in abstracts terms, separating the physical reality
of computation from the theoretical framework. There is no prerequisite for a
lesson in electronics before starting to learn about programming. Nevertheless, it
is true though that computation is intrinsically linked to the physical objects on
which it operates, a connection that becomes even more pronounced in the realm
of quantum computing.

For instance, a foundational aspect of designing a quantum algorithm involves
constructing quantum interference to amplify desired results and diminish unde-
sired outcomes. This seemingly straightforward definition, however, poses a chal-
lenge for comprehension when one lacks familiarity with the concept of quantum
interference.

Furthermore, quantum physics concepts as quantum interference not only shape
theoretical constructs but intricately influences the physical architecture of quan-
tum computers. Importantly, the realization of quantum interference is contingent
upon fundamental alterations to the hardware itself. This intertwining of theory
and hardware underscores the trasformative nature of quantum computing.

While a comprehensive exploration of quantum mechanics is outside the scope
of this work, our aim in this first chapter is to elucidate the fundamental concepts
of quantum computing, with a focus on the facets essential for comprehending the

1

2 1. Quantum Computing

subsequent sections of this thesis.

1.1 Quantum States

When discussing quantum computation, what we talk about is the manip-
ulation of quantum information. The smallest unit of quantum information is
represented by qubits.

The key distinction between a qubit and a classical bit lies in the fact that
while a bit can only represent either a 1 or a 0, a qubit can exist in both states
simultaneously. This counterintuitive and intriguing aspect of quantum mechanics
is known as superposition and it will be the first mechanic we will encounter in
our exploration of quantum computation.

To comprehend how superposition is possible, we need to take a moment to
reason about probability. Quantum theory introduces the fact that probabilities
can be expressed using complex numbers. We do this by introducing the concept
of amplitude, represented by a complex number c whose square of the absolute
value |c|2 is interpreted as a probability.

Just as with probabilities, amplitudes can be combined: when we have events
occurring as a sequence of independent steps, their amplitudes are multiplied;
when we have events with alternative outcomes, their amplitudes are added.

Now, let us return to the discussion of qubits and bits. A bit has two alternative
ways of exciting, 0 or 1, and when it is in state 0 it has 100% chance of being 0.
In terms of amplitudes, we can say that a bit in state 0 results from the two
alternative events: "being in state 0" or "being in state 1", with a probability
amplitude of 1 for the former and 0 for the latter.

Mathematically, we can represent the states of a classical bit as two-dimensional
vectors, where the coefficients serve as the amplitudes:

|0⟩ =

(
1
0

)
|1⟩ =

(
0
1

)

1.1 Quantum States 3

When discussing qubits, as mentioned earlier, we have to take into account the
possibility that they can exist in both states simultaneously. What this means is
that the two alternative events "being in state 0" or "being in state 1", can actually
happen with any amplitude c1 and c2 as long as (c0 + c1)2 = 1. Mathematically,
we can see a generic qubit as the two-dimensional vector:

|ψ⟩ =

(
c0

c1

)
where (c0 + c1)2 = 1, c0, c1 ∈ C

This representation places a qubit within the C2 vector space.

We usually represent qubits as a linear combination of basis states of the C2

vector space, usually |0⟩ and |1⟩:

|ψ⟩ = c0 |0⟩ + c1 |1⟩ =

(
c0

c1

)
To gain further insight on what is happening, let us focus again on probabilities.
We have the two alternative outcomes (state |0⟩ and |1⟩), with probability

amplitudes c0 and c1. When determining the probabilities of either event occurring
we have to add the amplitudes and then take their absolute value squared1:

p = |c0 + c1|2 = |c0|2 + |c1|2 + c∗0c1 + c0c∗1
= p0 + p1 + |c0||c1|(ei(ϕ1–ϕ0) + e–i(ϕ1–ϕ0))

= p0 + p1 + 2
√

p0p1cos(ϕ1 – ϕ0).

This calculation reveals that when determining probabilities using ampli-
tudes, a new term appears alongside the classical probabilities one would expect:
2√p0p1cos(ϕ1 – ϕ0). This phenomenon is known as quantum interference. De-
pending on whether the term ϕ1 – ϕ0 (the relative phase) is positive or negative,

1We use p0 = |c0|2 and p1 = |c0|2 to indicate the probabilities of the two events independently.
We use the polar representation c0 = |c0|eiϕ0 and c1 = |c1|eiϕ1 for the complex numbers.

4 1. Quantum Computing

we can have a constructing interference that amplifies the probability of the out-
come, or a destructive interference that suppresses it. It is important to notice
that the relative phase depends on both outcomes simultaneously, underscoring
the necessity of superposition for interference to happen.

Ultimately, quantum computing is about modifying the phase of a quantum
state to manipulate the interference in such a way as to amplify the probability
of the desired outcomes.

Until now, we have explored the properties of a single qubit. Surprisingly, even
with just one qubit, we can achieve more than one might imagine. However, to
delve into more intriguing applications, we need more than one qubit. Mathemat-
ically, to combine qubits to form a multi-qubit system, we use the tensor product.
Suppose we have two qubits |x ⟩ = x0 |0⟩ + x1 |1⟩ and |y⟩ = y0 |0⟩ + y1 |1⟩. Their
combined state is given by |x ⟩ ⊗ |y⟩, which we denoted as |xy⟩:

|xy⟩ =

(
x0

x1

)
⊗

(
y0

y1

)
=


x0y0

x0y1

x1y0

x1y1

 = x0y0 |00⟩ + x0y1 |01⟩ + x1y0 |10⟩ + x1y1 |11⟩ .

Obviously, we can expand beyond two qubit. For instance, an 8-qubit system
(qubyte) would belong to the C256 vector space.

The vector representation of a qubyte is:



c0

c1
...

c98

c99

c100
...

c255


This complexity illustrates why simulating quantum computation on clas-

sical computers is challenging. Storing a single qubyte requires 256 complex values.

1.1 Quantum States 5

When working with multiple qubits, we encounter another fascinating and
puzzling phenomenon of quantum mechanics: quantum entanglement. Quantum
entanglement occurs when two or more particles become interconnected in a way
that changes in one particle’s state instantaneously affect the other’s, regardless
of distance. This phenomenon arises in complex systems that cannot be written
as a combination of their constituent subsystems.

Let us delve into how it works. Consider a two-qubit system and the state |ϕ⟩
in this system:

|ϕ⟩ =
1√
2

|01⟩ +
1√
2

|10⟩

Now, let us attempt to express this state in terms of the tensor product of two
independent one-qubit systems:

(c0 |0⟩ + c1 |1⟩) ⊗ (d0 |0⟩ + d1 |1⟩) = c0d0 |00⟩ + c0d1 |01⟩ + c1d0 |10⟩ + c1d1 |11⟩ .

To do so we have to find c0, c1, d0, d1 such that c0d1 = c1d0 = 1√
2

and
c0d0 = c1d1 = 0, which is impossible. Thus, |ϕ⟩ is an entangled state.

It is intuitively reasonable that there are composite states that cannot be ex-
pressed in terms of their constituents since the set of elements in C2 ⊗C2 is larger
than the number of elements in C2 + C2. Consequently, the combined space of
C2 + C2 lacks sufficient elements to fully capture the entirety of C2 ⊗ C2.

Returning to the example of the state |ϕ⟩, let us explore how the ‘spooky action
at a distance’ defining quantum entanglement works.

When we calculate the probabilities of finding the system in any state, we find
the probabilities p(|00⟩) = 0, p(|01⟩) = 1

2 , p(|10⟩) = 1
2 and p(|11⟩) = 0. This

means we have a 50/50 chance of observing the states |10⟩ and |01⟩. The state is
in a super position. If the first qubit ‘collapses’ into state |0⟩ when observed, we
will know for certain that the second bit must be in state |1⟩, because there is a
probability 0 that the system could have collapsed into state |00⟩. This stays true
no metter how far apart we take the two qubits.

6 1. Quantum Computing

1.2 Dynamics of Quantum Systems

We have established what a state is in a quantum system and we have explored
the basic quantum phenomena we want to exploit in quantum computation. Now,
we need a way to actually influence and change the quantum system. We want
tools to put a qubit in a superposition, to entangle a system, and manipulate
the interference within the system. We need a way to describe the evolution of a
system from one state to another over time. We need to talk about its dynamics.

In a quantum system, the evolution is described by unitary operators. If U
is a unitary matrix representing a unitary operator and |ϕ(t)⟩ is the state of the
system at time t , then the system at the next time step is given by

|ϕ(t + 1)⟩ = U |ϕ(t)⟩ .

Multiple unitary operators U1,U2, . . . ,Un are combined as

|ϕ(t + 1)⟩ = Un . . .U1 |ϕ(t)⟩ .

Although the connection between unitary operators and their physical imple-
mentation is interesting, it is outside our scope, so we focus only on their mathe-
matical interpretation.

Unitary operators can be seen as a counterpart to logical operators in the
classical realm. Unitary operators are useful in describing the evolution of quantum
systems because all the operations modifying the system must be reversible, which
unitary operators inherently are. Like with qubits, the coefficients in the unitary
matrices representing the operators can be complex numbers, and there exists an
uncountable number of possibile unitary operators. As with everything in quantum
physics, there are unitary operators that, when analyzed in terms of classical logic
or classical probability, are hard to make sense of (an example is the existence of
the square root of the logical not).

We will now list a set unitary operators, often referred to as quantum gates,
commonly used when designing quantum algorithms:

1.2 Dynamics of Quantum Systems 7

Pauli Gates

These gates act on a single qubit and are represented by 2-by-2 matrices:

X =

(
0 1
1 0

)
Y =

(
0 –i
i 0

)
Z =

(
1 0
0 –1

)
If we consider the qubit as a vector in a Bloch sphere, these operators corre-

spond to rotations along the x , y , or z axes. Notably, the X gate is significant
due to its resemblance to the logical not operation. Additionally, the Z gate is an
important first example of unitary operator that affects the phase of the qubit.

Hadamard Gate

The Hadamard gate operates also on a single qubit and is of particular impor-
tance because it creates an equal superposition of state when applied to a basis
state:

H =
1√
2

(
1 1
1 –1

)
Many quantum algorithms start with the application of an Hadamard gate,

because to manipulate the quantum interference, we first need to put the state in
a superposition, and the Hadamard gate does just that.

Control Not (CNOT) Gate

The CNOT gate acts on 2 qubits, with one as the control and the other as the
target. The target qubit flips if the control qubit is |1⟩:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


One typical use case for this gate is to facilitate the creation of entangled states.

8 1. Quantum Computing

Phase Shift Gate

The phase shift gates map |0⟩ to |0⟩ and |1⟩ to eiϕ |1⟩, introducing a phase
change without altering the likelihood of measuring |0⟩ or |1⟩:

R(ϕ) =

(
1 0
0 eϕ

)

The Pauli gate Z represents a phase shift of angle π. There are other shift
gates that are used often and thus are named are:

S = R(
π

2
) =

(
1 0
0 i

)

T = R(
π

4
) =

(
1 0
0 ei π4

)

Toffoli Gate

The Toffoli gate, acting on 3 qubits, flips the target qubit only when both
control qubits are in state |1⟩:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



1.3 Measurement in Quantum Systems 9

1.3 Measurement in Quantum Systems

As previously stated, the measurement of a qubit results in either |0⟩ or |1⟩.
Let us delve deeper in the meaning of measurements in quantum computation.

Measurements are represented by Hermitian operators, known as observables
in quantum computation. They represent the physical quantities one can detect
(observe) in each state of the system. Given an observable, the only possible
values that can be observed are its eigenvalues, which are always real values, due
to their Hermitian nature.

The act of applying an observable to a state is a measurement, and the result
of a measurement is a specific eigenvalue of the observable. Importantly, the
measurement of a quantum state does not leave the state unchanged. The state
after measurement will be an eigenvector corresponding to the observed eigenvalue.

The probability that a normalized state |ϕ⟩ will be found in a specific eigen-
vector |e⟩ after measurement (and so the probability of having the corresponding
eigenvalue as a result of the measurement) is given by the length squared of the
projection of |ϕ⟩ over |e⟩: | ⟨e|ϕ⟩ |2.

Let us illustrate this with a qubit. Suppose we have a qubit |ψ⟩ = α |0⟩ +
β |1⟩. If we want to determine the probability of the qubit being in state |0⟩ after
measurement, we calculate:

| ⟨0|ψ⟩ |2 = | ⟨0| (α |0⟩ + β |1⟩)|2 = |α ⟨0|0⟩ + β ⟨0|1⟩ |2 = |α|2

This expression shows the connection between the probability amplitudes and
the likelihood of observing a particular value, as discussed earlier.

1.3.1 Example: Bell State Construction

In summary, quantum computation involves setting up a state, manipulating
it through unitary operations (quantum gates), and measuring the final state.

10 1. Quantum Computing

Let us illustrate these concepts by constructing a Bell state. Bell states
represent a fundamental illustration of entangled states, specifically comprising a
system of two maximally entangled qubits. The four distinct Bell states are defined
as follows:

∣∣Φ+〉 =
1√
2
(|00⟩ + |11⟩)

|Φ–⟩ =
1√
2
(|00⟩ – |11⟩)∣∣Ψ+〉 =

1√
2
(|01⟩ + |10⟩)

|Ψ–⟩ =
1√
2
(|01⟩ – |10⟩)

To construct a Bell state, let us begin with a system of two qubits both ini-
tialized in the state |0⟩. The first step is to apply a Hadamard gate to one qubit,
placing it in a superposition. Since the Hadamard gate operates on a single qubit,
we tensor it with the appropriate identity matrix for the second qubit:

H ⊗ I =
1√
2

(
1 1
1 –1

)
⊗

(
1 0
0 1

)

=
1√
2


1 0 1 0
0 1 0 1
1 0 –1 0
0 1 0 –1



Next, we apply this matrix to the 2-qubit state |00⟩:

1.3 Measurement in Quantum Systems 11

H ⊗ I |00⟩ =
1√
2


1 0 1 0
0 1 0 1
1 0 –1 0
0 1 0 –1




1
0
0
0



=
1√
2


1
0
1
0

 =
|00⟩ + |10⟩√

2

Now, for the essential part of entanglement, we apply a CNOT gate with the
first qubit as the control and the second qubit as the target:

CNOT
|00⟩ + |10⟩√

2
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
1
0

 =
|00⟩ + |11⟩√

2

This resulting state is the Bell state
∣∣Φ+〉. When measuring these two qubits,

if the top qubit is measured as |0⟩, the bottom qubit will also be |0⟩; similarly, if
the top qubit is observed as |1⟩, the bottom qubit will also be |1⟩.

Chapter 2

Quantum Circuit Description

Languages

In the realm of quantum computing, two prominent computational models have
emerged: the quantum Turing machine [10][7] and the quantum circuit [11][20].
While in the classical case, one could argue that the Turing machine is the best
model to reason about computation, the quantum circuit model has gained more
popularity in the field of quantum computing.

Although the Turing machine model provides a solid mathematical abstraction
for discussing quantum computing, in retrospect it is considered quite cumbersome
and not particularly well-suited for discussing algorithms. On the other hand, the
quantum circuit model is more intuitive to use and, thanks to Yao [20], we know
that it is equivalent to the Turing machine model in computational power. As a
result, quantum circuits have become the preferred computational model in the
exploration of quantum algorithms and complexity theory, effectively replacing
quantum Turing machines.

Furthermore, quantum circuits present a model that can be more easily trans-
lated into a practical implementation on a quantum computers.

In this chapter, we provide an overview on how the quantum circuit model
works. Subsequently, we focus on programming languages based on this model,

13

14 2. Quantum Circuit Description Languages

specifically Qiskit.

2.1 Quantum Circuits

The quantum circuit model is a natural quantum generalization of the classical
circuit. A circuit involves input and output wires that carry information around,
and gates that perform simple computational tasks. In the particular case of
quantum circuits, each wire represents a qubit, and the gates are quantum gates,
meaning that they represents a unitary operation with dimensions 2n × 2n , where
n is the number input and output qubits. All the unitary operations discussed in
the previous chapter can be used as quantum gates.

Furthermore, quantum circuits need to have some more particular features
compared to classical circuits. First of all, the circuits need to be acyclic, meaning
that feedback from one part of the circuit to another is not allowed. Second, fanin
(when wires are joined together with a bitwise OR) is not allowed because it is not
a reversible operation. Third, fanout (producing copies of a wire) is not allowed
because of the no-cloning theorem, which states that it is impossible to create an
identical and independent copy of a quantum state.

In the realm of classical logic gates, a small set of gates can be used to compute
any classical function. Such small set of gates is then considered to be universal.
In the case of quantum computation, we have a similar concept, where a small set
of gates is said to be universal for quantum computation if, using the gates in the
set, we can approximate any unitary operation to the desired level of accuracy. We
talk about calculating them approximately because there exists an uncountably
infinite number of gates, so it is not possible to represent them all perfectly with
a countable set of gates. Some example of sets of universal quantum gates are:
{CNOT, H, T} and {Toffoli, H}

Quantum circuits are conventionally represented using specific guidelines:

• Time progresses from left to right.

• Each qubit is depicted as a horizontal wire.

2.2 Languages 15

• Single-qubit gates are illustrated as labeled boxes and are positioned on the
wire representing the qubit on which the gate operates.

• Controlled gates are denoted by a dot on the wire representing the con-
trol qubit, connected by a vertical line to the target gate. The widely used
controlled-NOT (CNOT) gate deviates from the conventional box represen-
tation by depicting the NOT operation as the ⊕ symbol.

• A special gate for measurement is represented as a “meter” symbol

For illustrative purposes, the following example demonstrates how to depict a
quantum circuit according to the established conventions:

|0⟩ H

|0⟩ T

2.2 Languages

To bridge the conceptual realm of quantum circuits with practical implementa-
tions, quantum circuit description languages play a pivotal role. These languages
provide a standardized syntax and structure for representing quantum circuits,
enabling seamless communication between theoretical quantum algorithms and
real-world quantum processors. These languages span a spectrum from low-level
assembly-like counterparts such as OpenQasm [9] to more abstract and high-level
languages like Quipper [13].

One noteworthy tool that falls under the quantum description languages
umbrella is Qiskit.

Qiskit (Quantum Information Software Kit) is an open-source framework for
working with quantum computers at the level of circuits, algorithms, and applica-
tion modules [16], based on Python.

16 2. Quantum Circuit Description Languages

The project falls under the umbrella of the IBM quantum computing ecosystem.
It is designed to work together with IBM’s real quantum processors or quantum
simulators available online on the IBM quantum platform [1].

The full documentation for Qiskit can be found at [4]. Here, we provide a brief
overview of the tool.

2.3 Qiskit

The core workflow of Qiskit involves four steps:

• Build: design the quantum circuit to solve the problem at hand.

• Compile: compile the circuit for the specific service utilized.

• Run: run the compiled circuit on either local or cloud-based quantum ser-
vices.

• Analyze: study the results of the experiments with visualizations and statis-
tics.

For our purpose, we will focus on the build step of the workflow.

As previously stated, Qiskit is not an independent language, but it is imple-
mented as a Python library. To import the entire Qiskit library, it is sufficient to
do the following:

from qiskit import *

To access the simulation tools it is useful to include the following import:

from qiskit_aer import AerSimulator

The core of quantum computation is the quantum circuit. In Qiskit, this
fundamental element is implemented by the QuantumCircuit class. A circuit in
Qiskit is a list of instructions bound to some registers.

To create a new circuit, one can simply write the following:

2.3 Qiskit 17

circ = QuantumCircuit ()

This creates a new circuit named circ . A circuit created in this way is not
connected to any qubit or classical bit.

There are two ways to create a quantum circuit with the associated bits:

• Give the circuit a sequence of register objects, quantum registers and/or
classical registers, to include in the circuit. For example:

QuantumCircuit(QuantumRegister (4))

QuantumCircuit(QuantumRegister (4), ClassicalRegister (3))

QuantumCircuit(QuantumRegister (4, ‘qr0 ’), QuantumRegister (2,

‘qr1 ’))

QuantumRegister and ClassicalRegister are the classes that implement
quantum and classical registers, respectively. QuantumRegister(n, ‘qr’)

creates a register with n qubits called qr , and ClassicalRegister(n,

‘cr’) creates a register with n bits called cr .

• Give the circuit a sequence of integers, which indicates the amount of qubits
and/or classical bits to include in the circuit. If only one number is given, it
indicates the number of qubits in the circuit. If there are two numbers, they
indicate the number of qubits and classical bits, respectively. For example:

QuantumCircuit (4) # A QuantumCircuit with 4 qubits

QuantumCircuit (4, 3) # A QuantumCircuit with 4 qubits

and 3 classical bits

The registers can be added to the circuit at a later time using the method
add_register :

18 2. Quantum Circuit Description Languages

circ = QuantumCircuit(QuantumRegister (4, ‘qr0 ’), QuantumRegister

(2, ‘qr1 ’))

is the same as:

circ2 = QuantumCircuit ()

circ2.add_register(QuantumRegister (4, ’qr0 ’))

circ2.add_register(QuantumRegister (2, ’qr1 ’))

Qiskit provides an implementation of a collection of well-studied and valuable
gates in the library qiskit.circuit.library . A comprehensive list of these
gates can be found in [5]. Each element can be plugged into a circuit using the
QuantumCircuit.append() method, but there is an easier way to add gates to
the circuit. Most gates can be accessed as methods of the QuantumCircuit class.
So, for example, to build a simple Bell state circuit, one can simply do:

qc = QuantumCircuit (2)

qc.h(0)

qc.cx(0, 1)

We have created a quantum circuit with two qubits, and we apply the H gate
to the first qubit. Then, we apply the controlled-not gate with the first qubit as
the control and the second qubit as the target.

The command to measure qubits is implemented as a method of the quantum
circuit: QuantumCircuit.measure(qubit, cbit) .

This operation performs a measurement of a qubit along the Z-axis and stores
the result in a classical bit. This operation is non-reversible.

The parameters of measure can be either a single qubit and a classical bit
or a list of qubits and classical bits. In the second case, the number of qubits
and classical bits must be the same. Let us see an example where we perform the
measurement of a simple Bell state:

qc = QuantumCircuit (2, 2)

qc.h(0)

2.3 Qiskit 19

qc.cx(0, 1)

qc.measure ([0, 1], [0, 1])

It is possible to apply a gate on the condition that a specific value is stored in a
classical register. This can be achieved via the InstructionSet.c_if() method.
For example:

qr = QuantumRegister (1)

cr = ClassicalRegister (1)

qc = QuantumCircuit(qr, cr)

qc.h(0)

qc.measure(0, 0)

qc.x(0).c_if(cr , 0)

qc.measure(0, 0)

The X gate will be executed only if we find the value 0 in the classical register.

Qiskit provides a way to visualize the designed circuit. It offers various formats
of visualization that are used in many textbooks and research articles. To see the
default visualization, we use the following command:

qc.draw() # qc is the circuit defined in the previous

examples.

This will produce a text-based representation:

q0: H M X M

c0: 1/ 0x0

0 0

20 2. Quantum Circuit Description Languages

There are many other circuit drawer backends, for example, for the LaTeX
backend:

qc.draw(output =" latex")

After building the circuit, it is time to compile it and run it on the desired
quantum service. Qiskit provides many different backends, from real quantum
devices accessible through the cloud [1] to local simulators. Let us see how to
compile and run our example on the Qiskit Aer simulator.

simulator = AerSimulator ()

compiled_circuit = transpile(qc, simulator)

job = simulator.run(compiled_circuit , shots =1000)

result = job.result ()

counts = result.get_counts(qc)

The transpile function compiles the circuit (qc) for the specified backend
(simulator). It is possible to indicate how many times the circuit is to be exe-
cuted by using the shots argument of the run method. In this case, the simula-
tion was configured to run 1000 shots, with the default being 1024. After obtaining
a result object, one can retrieve the count data by using the get_counts(qc)

method, which provides a summary of the experiment’s collective outcomes.
If one desires to incorporate the outcomes of the circuit’s execution in the

context of a more intricate algorithm by accessing the individual results of the
experiment, the get_memory() function can be employed. For instance, to access
the results of the experiment in the previous examples, the following steps can be
taken:

simulator = AerSimulator ()

compiled_circuit = transpile(qc, simulator)

job = simulator.run(compiled_circuit , shots =1000, memory=True)

result = job.result ()

memory = result.get_memory ()

2.3 Qiskit 21

Furthermore, by changing the simulator, we can have better insight on the
circuit we are building. For example, we can visualize the state vector after it is
transformed by the quantum operations described in the circuit. To do so, we can
do the following.

simulator = Aer.get_backend(’statevector_simulator ’)

result = execute(qc, backend=simulator).result ()

statevector = result.get_statevector ()

Another useful tool in understanding the circuit is the unitary_simulator ,
which allows us to visualize the unitary matrix resulting from the composition of
gates used in our circuit:

simulator = Aer.get_backend(’unitary_simulator ’)

result = execute(qc, backend=simulator).result ()

unitary = result.get_unitary ()

It is important to note that, in order to make this command work, we cannot
have measurements in the circuit.

Qiskit provides many ways to visualize the results of the experiments through
the qiskit.visualization library. An example is the plot_histogram func-
tion, to view the results:

plot_histogram(counts)

Chapter 3

Qiskit with Dynamic Lifting

In the last few years, IBM has equipped their quantum computers with
methods to allow interactions with classical computing instructions during the
execution of quantum circuits. This development has led to the introduction of
what IBM calls “dynamic quantum circuits” [6]. As a result of this enhancement,
the quantum circuit model now incorporates features such as mid-circuit mea-
surement, mid-circuit reset, and classically-controlled quantum operations.

Examining the implementation of these concepts at the programmatic level
within Qiskit reveals a serviceable yet somewhat cumbersome approach. Our
research endeavors to seek a more refined and elegant method of incorporating
these functionalities. To achieve this objective, we draw inspiration from a feature
prevalent in other quantum programming languages, known as dynamic lifting.

The term “dynamic lifting” pertains to the capability of accessing the inter-
mediate state of a qubit during the circuit construction process, usually in the
form of a boolean value. Notably, dynamic lifting is a feature inherent to Quip-
per [13], a functional quantum language, and it is subjected to more precise and
comprehensive formalization within select Proto-Quipper programming languages
[12].

23

24 3. Qiskit with Dynamic Lifting

3.1 Language

We opt for a limited implementation of dynamic lifting, centering our efforts on
the capability to enable the conditional application of gates based on the outcome
of a measurement.

To achieve this, we introduce the following components to the Python language
and the Qiskit library:

• A new class of object LiftedValue

• A new command ifdl

• Establishment of a default global circuit.

3.1.1 LiftedValue

The LiftedValue class serves as the conduit for accessing values during circuit
construction. The whole implementation can be found in Appendix A.

The objects that can be lifted are Qiskit’s Clbit s. To lift a Clbit , one must
instantiate a new LiftedValue , providing the targeted Clbit as an argument:

c = Clbit ()

lifted_value = LiftedValue(c)

In this way, lifted_value can be used as a condition.

The LiftedValue class implements some private methods to allow for the
use of Boolean expressions on lifted values. Specifically, the LiftedValue class
overloads the & , | , and ∼ Python symbols (utilized in Python to implement the
built-in bitwise and, or, and not operations, respectively) to facilitate the AND,
OR, and NOT Boolean operations on lifted values.

Since Qiskit does not provide any instrument to manipulate classical values,
the Boolean instruction is implemented through a quantum circuit. We will use
the expression l1 & l2 (where l1 and l2 are lifted values) to illustrate an
example of the implementation of these circuits.

3.1 Language 25

First, we create a sub-circuit with 3 qubits and 1 classical bit: two qubits for
the input values of the expression, one qubit for the result of the expression, and
a classical bit for storing the measurement of the result. The two input values are
initialized to the values of l1 and l2 , respectively, while the third qubit is set
to |0⟩. We then apply the gate implementing the quantum Boolean AND provided
by Qiskit to the three qubits1. In the end, we measure the result qubit, storing
the result in the classical bit.

This sub-circuit is appended to the global circuit, and the Clbit storing the
result of the expression is lifted, creating a new lifted value.

In the LiftedValue class, we can find the implementation of the __enter__

and __exit__ methods used to manage the implementation of the ifdl . We
will go into more detail about them in the next section.

3.1.2 ifdl

Since in Python, the host language of Qiskit, it is not possible for the user to
modify the behavior of the if construct on specific objects, we need to introduce
a new command. We refer to this command as ifdl , and it is used to implement
an if-like statement that allows the conditioning of the building of circuits on lifted
values.

Specifically, the aim is to define a block of code influenced by the lifted value.
Additionally, there is a need to implement instructions for setup before the condi-
tioned block and instructions for cleanup after the conditioned block.

We want to minimize changes to the Python compiler and perform much of the
work through libraries. To achieve this, the implementation of ifdl follows the
paradigm of the native Python with statement [2], utilizing the LiftedValue

objects as a context manager. A context manager is an object that defines the
__enter__ and __exit__ methods. The __enter__ function executes before
the block of code identified by the ifdl statement, while the __exit__ function
executes after the block of code.

1In the AND operation the state |1⟩ is interpreted as true. The result qubit is flipped if the
two input qubits are true [16].

26 3. Qiskit with Dynamic Lifting

An illustrative example elucidating the functionality of ifdl is presented be-
low:

ifdl(lv): # lv is a lifted value

X(q) # X is the x Pauli gate , q is a qubit

The execution of the ifdl statement unfolds as follows:

• The lifted value (lv) is evaluated to obtain a context manager. If the guard
of the ifdl includes a lifted value expression (e.g., l1 & l2), the circuit
evaluating the expression is appended to the global circuit. The resulting
lifted value represents the outcome of the expression and becomes the guard
of the ifdl .

• The __enter__ method of the lifted value is invoked:

– A flag named dl_flag is set to True to indicate the scope of the
ifdl .

– The lifted value is added to the list of active lifted values
(lifted_values) in the circuit.

• The body of the ifdl (X(q)) is executed.

• The __exit__ method of the lifted value is invoked:

– The last lifted value inserted in the lifted_values list is removed.

– If there are no more active lifted values in the circuit, the dl_flag is
set to False to signify the end of the ifdl scope.

The dl_flag is checked each time a gate is applied to the global circuit. When
the flag is set to True , it means that the circuit application is occurring within
the body of an ifdl statement. Consequently, this operation is conditioned on
the lifted values found in (lifted_values). The conditionality is practically
implemented using the .c_if construct provided by Qiskit. If the flag is False ,
it means that we are not within the scope of ifdl statement, and we proceed
with the standard application of the gate.

3.2 Examples 27

3.1.3 Global Circuit

In Qiskit, the introduction of an implicit global quantum circuit streamlines
the process of writing quantum programs and facilitates the implementation of
dynamic lifting, aligning with the approach adopted by other quantum program-
ming languages like Quipper.

When implementing the ifdl command, access to two key elements is essen-
tial:

• The dl_flag , indicating the scope of the ifdl command.

• The list of active lifted values in the circuit (lifted_values).

These parameters are realized as global variables, consistently referencing the
global circuit when applicable.

To enhance user convenience, a wrapper is implemented for quantum circuit
operations. This wrapper enables the use of these operations in the code without an
explicit reference to a particular circuit. For instance, the syntax of the application
of a gate transitions from circuit.h(q) to simply H(q) , where the target circuit
is implicitly the global one. Additionally, the wrapper checks for the dl_flag to
ensure that operations are conditioned only on the global circuit when lifted values
are involved. The code for the implementation of the wrapper can be found in
Appendix A.

These changes contribute to a more streamlined and user-friendly quantum
programming experience in Qiskit.

3.2 Examples

In the following section, we present the implementation of two simple algo-
rithms, both in basic Qiskit and with dynamic lifting.

28 3. Qiskit with Dynamic Lifting

3.2.1 Quantum Teleportation

The quantum teleportation protocol is a straightforward procedure enabling
the transfer of the state of an arbitrary qubit from one location to another. The
circuit that implements this protocol is as follows:

|ψ⟩

q0 |ψ⟩ H

q1 |0⟩ H

q2 |0⟩ X Z

To illustrate the functioning of the protocol, let us consider a scenario involving
two individuals, Alice and Bob, situated in different locations. Their goal is to
transfer a quantum bit, denoted as |ψ⟩, from Alice to Bob. The protocol operates
as follows:

• Initially, a Bell state involving two qubit q1 and q2 is generated, and q1 is
sent to Alice, while q2 is sent to Bob.

• Alice performs a Bell measurement on the qubit she intends to transfer, |ψ⟩,
and the Bell state qubit in her possession, q1. This measurement produces
one of three possible values, which can be encoded using two classical bits.

• The classical information obtained from Alice’s measurement is then trans-
mitted classically to Bob.

• Due to the phenomenon of entanglement, Bob’s Bell state qubit, q2, un-
dergoes a change based on Alice’s measurement. Consequently, Bob can
reconstruct the state of |ψ⟩ by applying specific operations to q2, guided by
the classical values received from Alice.

The following figures depict the corresponding circuit in Qiskit and the Qiskit
implementation with dynamic lifting.

3.2 Examples 29

qr = QuantumRegister (3)

crz = ClassicalRegister (1)

crx = ClassicalRegister (1)

q_teleport = QuantumCircuit(qr, crz , crx)

q_teleport.h(qr[1])

q_teleport.cx(qr[1], qr[2])

q_teleport.cx(qr[0], qr[1])

q_teleport.h(qr[0])

q_teleport.measure(qr[0], crz)

q_teleport.measure(qr[1], crx)

q_teleport.x(2).c_if(crx , 1)

q_teleport.z(2).c_if(crz , 1)

Program 3.1: Quantum Teleportation in Qiskit

qr = QuantumRegister (3)

crz = ClassicalRegister (1)

crx = ClassicalRegister (1)

lift_crz= LiftedValue(crz)

lift_crx = LiftedValue(crx)

addRegisterGlobal(cl_reg , crz , crx)

H(qr[1])

Cx(qr[1],qr[2])

Cx(qr[0],qr[1])

H(qr[0])

Measure(qr[0], crz)

Measure(qr[1], crx)

ifdl (lift_crx):

X(qr[2])

ifdl (lift_crz):

Z(qr[2])

30 3. Qiskit with Dynamic Lifting

Program 3.2: Quantum Teleportation in Qiskit with dynamic lifting

3.2.2 Error Correction

Quantum error correction is essential for safeguarding quantum information
against errors arising from decoherence and other sources of quantum noise. We
present a straightforward error correction protocol designed for bit flip errors,
employing a three-qubit repetition code. The circuit implementing this protocol
is illustrated below:

|ψ⟩

|0⟩

|0⟩

q0 |ψ⟩

error

X

q1 |0⟩ X

q2 |0⟩ X

q3 |0⟩

q4 |0⟩

We begin with an unknown quantum state |ϕ⟩ = α|0⟩ + β|1⟩. This quantum
state is encoded using three qubits, q0, q1 and q2:

• q0 is set to the value of |ϕ⟩.

• We apply the CNOT operations with q0 as control and q1 as target.

• We apply the CNOT operations with q0 as control and q2 as target.

This results in the entangled state α|000⟩ + β|111⟩.

Subsequently, a moment of decoherence occurs, introducing the possibility of
four potential errors:

• No error,

3.2 Examples 31

• Bit flip error on q0,

• Bit flip error on q1,

• Bit flip error on q2.

Detecting and correcting these errors requires the introduction of two auxiliary
qubits, q3 and q4. The detection happens through the application of four CNOT
operations:

1. Two CNOT operations with q3 as target, when the control is first q1 and
then q2,

2. Two CNOT operations with q4 as target, while the control is first q1 and
then q2.

The measurement of q3 yields 0 if q0 and q1 are in the same state. Similarly,
the measurement of q4 yields 0 if q0 and q2 are in the same state. If both auxiliary
qubits measure zero, no error has occurred; otherwise, an error is indicated. Once
the error type is detected, the corrupted qubit is flipped, and the three-qubit
system is decoded using the inverse operation of the encoding to restore the original
state before decoherence.

The figures below illustrate the circuit in Qiskit and in Qiskit with dynamic
lifting.

q= QuantumRegister (5)

c = ClassicalRegister (2)

bit_flip = QuantumCircuit(q, end_m , bit_check)

bit_flip.cx(q[0], q[1])

bit_flip.cx(q[0], q[2])

Here is what we want to protect

bit_flip.cx(q[0], q[3])

bit_flip.cx(q[1], q[3])

32 3. Qiskit with Dynamic Lifting

bit_flip.cx(q[0], q[4])

bit_flip.cx(q[2], q[4])

bit_flip.measure(q[3], c[0])

bit_flip.measure(q[4], c[1])

bit_flip.x(q[0]).c_if(c, 0b11)

bit_flip.x(q[1]).c_if(c, 0b01)

bit_flip.x(q[2]).c_if(c, 0b10)

bit_flip.cx(q[0], q[1])

bit_flip.cx(q[0], q[2])

Program 3.3: Error Correction in Qiskit

q= QuantumRegister (5)

c = ClassicalRegister (2)

lift0= LiftedValue(c[0])

lift1= LiftedValue(c[1])

addRegisterGlobal(q, c)

Cx(q[0], q[1])

Cx(q[0], q[2])

Here is what we want to protect

CX(q[0], q[3])

Cx(q[1], q[3])

Cx(q[0], q[4])

Cx(q[2], q[4])

Measure(q[3], c[0])

Measure(q[4], c[1])

ifdl (lift0 & lift1):

X(q[0])

3.2 Examples 33

ifdl (lift0 & (~lift1)):

X(q[1])

ifdl ((~ lift0) & lift1):

X(q[1])

Cx(q[0], q[1])

Cx(q[0], q[2])

Program 3.4: Error Correction in Qiskit with dynamic lifting

Chapter 4

The Operational Semantics of

Dynamic Lifting

In this chapter, our primary objective is to establish a formal foundation for
the previously discussed work. We aim to treat quantum components as integral
parts of the language, not merely as a library. To build a comprehensive formal
framework, we adopt a simplified version of Python, formalizing both its syntax
and operational semantics.

Furthermore, we delve into the formalization of the construction of quantum
circuits. While we provide formal structures for both Python and quantum com-
ponents, our emphasis is directed towards the intricacies of the quantum circuit
description process, with particular emphasis on dynamic lifting.

4.1 Syntax

In simplifying the Python language for our purpose, we retain essential objects
such as arithmetic expressions, boolean expressions, assignments, if and while

commands, and concatenation of commands. For the incorporation of quantum as-
pects, we introduce specialized objects representing qubits, classical bits, and uni-
tary operations. Subsequently, we establish mechanisms for incorporating qubits

35

36 4. The Operational Semantics of Dynamic Lifting

and bits into the circuit, along with constructs for lifted values and their integra-
tion into the circuit. Notably, the language features the ifdl construct, enabling
conditional statements based on lifted values, and includes a measurement opera-
tion.

The quantum circuit objects, namely Qubit, Clbit, and LiftedValue,
are treated as native objects. To achieve this, we introduce a set of indices
for referencing qubits, bits, and lifted values. The other fundamental objects
manipulated by the language include numbers, boolean values, and variables
(representing memory locations).

In summary, the fundamental objects manipulated by the language belong to
the following sets:

• N : the set of positive and negative numbers, including zero

• B: the set of boolean values: {True, False}

• V : the set of variables. It consists of non-empty strings form by valid char-
acters for Python identifiers: the uppercase and lowercase letters A through
Z, the underscore _ and, except for the first character, the digits 0 through
9 [3].

• I : a set of indices. elements of this set will be used to refer to qubits, bits
and lifted values.

The following metavariables will be employed in the description of the syntax
and, subsequently, in the discussion of the operational semantics. Each of these
metavariables can be primed or subscripted to refer to different objects.

• n ranges over numbers in N

• x ranges over variables in V

• i to range over elements of I

• t ranges over boolean values

4.1 Syntax 37

• a ranges over arithmetic expressions

• b ranges over boolean expressions

• c ranges over commands

• qb ranges over qubits

• cl ranges over classical bits

• lv ranges over lifted values

• lv_ex ranges over lifted values expressions

• U ranges over unitary operators.

The full syntax of the language is in Figure 4.1.

Let us emphasize the commands designed for quantum computation.

The commands Qubit() and Clbit() serve as foundational commands for
instantiating qubits and classical bits. The command LiftedValue(clb) enables
the lifting of classical values. Once lifted, these values can be used to perform
boolean operations through expressions denoted as lv_ex . These expressions can
be assigned to variables, allowing for convenient access through variable names.

Conditional statements on lifted values are implemented using the ifdl com-
mand, whose guards are lifted variable expressions (lv_ex). It is essential to note
that within the body of ifdl, all commands are applicable, but the conditioning
specifically applies to quantum gates. For example, it is possible to write:

ifdl(lv):

X(q)

v = 42

But only the command X(q) will be conditioned on lv, while v = 42 will not.
A set of commands is introduced for adding qubits, bits, and lifted values to

the circuit we are describing: addQubit(qb), addClbit(clb), addLiftedValue(lv).

38 4. The Operational Semantics of Dynamic Lifting

a ::= n | x | a0+a1 | a0–a1 | a0∗a1 | –a | a0/a1 | a0%a1

| a0//a1 | a0∗∗a1

b ::= True | False | x | a0==a1 | a0!=a1 | a0<a1 | a0>a1

| a0<=a1 | a0>=a1 | b0 and b1 | b0 or b1 | not b0

lv ::=LiftedValue(clb) | x

lv_ex ::=lv | lv_ex1&lv_ex2 | lv_ex1|lv_ex2 | ∼lv_ex

qb ::=Qubit() | x

clb ::=Clbit() | x

c ::= x=a | x=b | x=qb | x=clb | x=lv

| c0 c1

| if b:c0 else:c1

| while b : c

| addQubit(qb)

| addClbit(clb)

| addLiftedValue(lv)

| ifdl lv_ex: c

| U (qb0, . . . , qbn)

| Measure(qb, clb)

Figure 4.1: Full syntax.

4.1 Syntax 39

Moreover, the command U (qb0, . . . , qbn), represents the application of the
primitive quantum unitary operation U to qubits qb0, . . . , qbn . The set of
unitary operation which U ranges over is assumed to contain all gates and
transformations which are usually employed when describing quantum algorithms.
For example, for the single qubit Hadamard gate, we will have H(q0). Finally,
the Measure(qb, clb) command implements the measurement of qubit qb, whose
outcome is stored in bit clb.

To provide a practical illustration, consider the following example of a quantum
circuit constructed in accordance with the presented syntax:

c1 = Clbit()

c2 = Clbit()

c3 = Clbit()

q = Qubit ()

l1 = LiftedValue(c1)

l2 = LiftedValue(c2)

addClbit(c1)

addClbit(c2)

addClbit(c3)

addQubit(q)

addLiftedValue(l1)

addLiftedValue(l2)

ifdl(l1 & l2):

X(q)

H(q)

Measure(q,c3)

Which describes the circuit

40 4. The Operational Semantics of Dynamic Lifting

q X H

c1
c2

c3

4.2 Operational Semantics

In discussing the operational semantic, the context is given as a tuple (σ,κ, I),
where σ represents the memory state, κ the global quantum circuit and I is the
set of lifted values active in the scope.

A configuration is a pair ⟨e, (σ,κ, I)⟩ where e is the expressions we want to
evaluate and (σ,κ, I) is the context we want to evaluate the expressions in.

The state σ is a map from variable names to values. It can be seen as a function
σ : V → Value, where V is the set of strings indicating a variables and the values
can be numbers, Boolean values or indexes: Value = N ∪ B ∪ I . Therefore,
writing σ(x) will give us the value corresponding to the variable x in state σ.

The circuit κ is represented by a tuple (In , Qb , Clb , Lv):

• In is a sequence of instructions

• Qb is the set of qubits that can be used in the circuit

• Clb is the set of classical bits that can be used in the circuit

• Lv is the set of lifted values available.

Formally:

κ ∈ Instr∗ × Pfin(I) × Pfin(I) × Pfin(I).

The set Instr is defined as follow:

4.2 Operational Semantics 41

Instr = String × I ∗ × I ∗ × I ∗.

Its elements are tuples of the form (Name, qbs, clbs, lvs):

• Name represents the name (or identifier) of the instruction

• qbs represents the qubits on which the instruction acts

• clbs the bit on which the instruction acts

• lvs represents the lifted values the instruction maybe depend on.

Lastly, I is the least complex element of the context: it is a simple subset of
indices which represent the lifted values active in the scope.

The evaluation of arithmetic and Boolean expressions does not significantly
modify the context, in particular they interact only with the memory state σ.

For the arithmetic expressions, we have the following evaluation relation be-
tween configuration and numbers:

⟨a, (σ,κ, I)⟩ → n

meaning that the arithmetic expression a evaluates to the number n in the
(σ,κ, I) context.

When evaluating, for example, the expression a0+a1, we first evaluate a0 to get
the number n0, then we evaluate a1 to get the number n1, and then we add n0

and n1 to get n = n0 + n1 as the result of the evaluation of a0+a1.
Something similar happens for boolean expressions: ⟨b, (σ,κ, I)⟩ → t means

that the boolean expression b evaluates to the boolean value t in the (σ,κ, I)
context.

The complete set of rules for the evaluation of arithmetic and boolean
expressions can be found in Figure 4.2.

The evaluation of single qubit, classical bit and lifted value similarly returns
a single value, in this case an index : ⟨qb, (σ,κ, I)⟩ → i , ⟨clb, (σ,κ, I)⟩ → i and

42 4. The Operational Semantics of Dynamic Lifting

⟨lv , (σ,κ, I)⟩ → i . In particular, the rules for instantiating qubits and classical
bits are the following:

qubit
⟨Qubit(), (σ,κ, I)⟩ → next(κ)

clbit
⟨Clbit(), (σ,κ, I)⟩ → next(κ)

Where we employ the auxiliary function next(κ) to obtain the next index from
I that has not yet been utilized in κ, which identifies the new qubit or bit.

A lifted value always originates from a classical bit, so the corresponding rule
is:

⟨clb, (σ,κ, I)⟩ → i
dynlift

⟨LiftedValue(clb), (σ,κ, I)⟩ → i

The evaluation of a variable produces a single value as well. The rule is the
following:

var
⟨x , (σ,κ, I)⟩ → σ(x)

Lifted values can be used to form lifted value expressions lv_ex . These expres-
sions exhibit behavior similar to boolean expressions but operate on lifted values.
To convey a semantic equivalent to the expressions’ behavior in the implemen-
tation described in the previous chapter, we utilize a subcircuit to describe the
logical operation.

The evaluation rule for lifted value expressions does not produce a single value,
but rather a tuple:

⟨lv_ex , (σ,κ, I)⟩ → (i ,κm)

where i is a new lifted value that depends on the quantum logical operation,
and κm is the subcircuit that implements the quantum logical operation.

The semantics of lifted value expressions is as follows:

4.2 Operational Semantics 43

⟨lv , (σ,κ, I)⟩ → i
lv

⟨lv , (σ,κ, I)⟩ → (i , ϵ)

⟨lv_ex0, (σ,κ, I)⟩ → (i0,κ0) ⟨lv_ex1, (σ,κ, I)⟩ → (i1,κ1) lv_and
⟨lv_ex0&lv_ex1, (σ,κ, I)⟩ → rev_and((i0,κ0), (i1,κ1))

⟨lv_ex0, (σ,κ, I)⟩ → (i0,κ0) ⟨lv_ex1, (σ,κ, I)⟩ → (i1,κ1) lv_or
⟨lv_ex0|lv_ex1, (σ,κ, I)⟩ → rev_or((i0,κ0), (i1,κ1))

⟨lv_ex , (σ,κ, I)⟩ → (i ,κ0) lv_not
⟨∼lv_ex , (σ,κ, I)⟩ → rev_not((i ,κ0))

Where ϵ denotes an empty circuit, which is needed to facilitate the use of lv in
lifted values expressions. The auxiliary functions rev_and , rev_or and rev_not ,
are employed to implement their respective quantum logical operations using
Toffoli gates. Their return value is a tuple (i ,κm)

The evaluation of commands involves modifying the context, so, given a con-
figuration ⟨c, (σ,κ, I)⟩, where c is the command to be executed, we define the
relation

⟨c, (σ,κ, I)⟩ → (σ′,κ′, I ′)

which intuitively means that the execution of the command c in context
(σ,κ, I) terminates in the final context (σ′,κ′, I ′).

The first commands we analyze are the assignment commands x=a, x=b, x=qb,
x=clb, x=lv . These commands update the memory state, so, for example we have

⟨x=42, (σ,κ, I)⟩ → (σ[42/x],κ, I)

44 4. The Operational Semantics of Dynamic Lifting

where σ[42/x] is the memory state updated with the association between x
and 42.

The rules that describe all the assignment commands are the following:

⟨a, (σ,κ, I)⟩ → n

⟨x=a, (σ,κ, I)⟩ → (σ[n/x],κ, I)

⟨b, (σ,κ, I)⟩ → t

⟨x=b, (σ,κ, I)⟩ → (σ[t/x],κ, I)

⟨qb, (σ,κ, I)⟩ → i

⟨x=qb, (σ,κ, I)⟩ → (σ[i/x],κ, I)

⟨cl , (σ,κ, I)⟩ → i

⟨x=cl , (σ,κ, I)⟩ → (σ[i/x],κ, I)

⟨lv , (σ,κ, I)⟩ → i

⟨x=lv , (σ,κ, I)⟩ → (σ[i/x],κ, I)

Next, we have a set of commands that modify only the circuit in the context:
addQubit(qb), addClbit(clb) and addLiftedValue(lv). These fundamental com-
ponents operate in a similar fashion, they evaluate the object to be added to the
circuit and then they modify the circuit by inserting the corresponding index at
the appropriate location.

⟨qb, (σ, (In , Qb , Clb , Lv), I)⟩ → i

⟨addQubit(qb), (σ, (In , Qb , Clb , Lv), I)⟩ → (σ, (In , Qb ∪ {i}, Clb , Lv), I)

⟨clb, (σ, (In , Qb , Clb , Lv), I)⟩ → i

⟨addClbit(clb), (σ, (In , Qb , Clb , Lv), I)⟩ → (σ, (In , Qb , Clb ∪ {i}, Lv), I)

⟨lv , (σ, (In , Qb , Clb , Lv), I)⟩ → i

⟨addLiftedValue(lv), (σ, (In , Qb , Clb , Lv), I)⟩ → (σ, (In , Qb , Clb , Lv ∪ {i}), I)

Next, we focus on the ifdl command. Initially, we evaluate the guard
(lv_ex). This evaluation will return an index, denoted as i0, which corresponds

4.2 Operational Semantics 45

to the lifted value holding the result of lv_ex , and the circuit κ0 implementing
the logical operation. Both elements will be added to the context used for
the evaluation of the body of ifdl. Specifically, κ0 will be added to the
circuit, while i0 will be added to I (the set of active lifted values). This
new I set is particularly important when in the body of ifdl we have the uni-
tary operator. In such cases, the unitary is conditioned upon the lifted values in I.

The operational semantic rule for ifdl is outlined as follows:

⟨lv_ex , (σ,κ, I)⟩ → (i0,κ0) ⟨c, (σ,κ+ κ0, I ∪ {i0})⟩ → (σ′,κ′, I ′)
ifdl

⟨ifdl lv_ex: c, (σ,κ, I)⟩ → (σ′,κ′, I)

where κ + κ0 is to be interpreted as: if κ = (In ′, Qb ′, Clb ′, Lv ′) and κ0 =
(In ′′, Qb ′′, Clb ′′, Lv ′′), then κ+ κ0 = (In ′ :: In ′′, Qb ′ ∪Qb ′′, Clb ′ ∪ Clb ′′, Lv ′ ∪ Lv ′′)
(we use the :: symbol to indicate the concatenation in the sequence of instructions).

Pay particular attention to how the context is modified in the conclusion of
the rules: I remains the same as before the application of ifdl, ensuring that
only the quantum operation inside the body of ifdl can be conditioned on the
values introduced in the guard of the ifdl.

Next, we want to highlight the command that allows the application of a uni-
tary operation U (qb0, . . . , qbn). Its semantics involves adding a new instruction
to the circuit.

⟨qb0, (σ,κ, I)⟩ → i0 . . . ⟨qbn , (σ,κ, I)⟩ → in
U

⟨U (qb0, . . . , qbn), (σ,κ, I)⟩ → (σ,κ′, I)

where, if κ = (In , Qb , Clb , Lv) then κ′ = (In ::
(U , [i0, . . . , in], ∅, I), Qb , Clb , Lv).

The last command necessary for the description of a quantum circuit is the
measurement. Its semantics is the following:

46 4. The Operational Semantics of Dynamic Lifting

⟨qb, (σ,κ, I)⟩ → i0 ⟨clb, (σ,κ, I)⟩ → i1 meas
⟨Measure(qb, clb), (σ,κ, I)⟩ → (σ,κ′, I)

where, if κ = (In , Qb , Clb , Lv) then κ′ = (In ::
{(Measure, [i0], [i1], ∅)}, Qb , Clb , Lv).

The semantics for the remaining commands, pertaining to the classical aspects
of computation, can be found in Figure 4.3.

4.2.1 An Example

We will now give an example of derivation of the code described in section 4.1.

In the beginning we have a moment of definition and assignment of qubits and
classical bit.

c1 = Clbit()

c2 = Clbit()

c3 = Clbit()

q = Qubit ()

After this, the context will be: env = (σ[i1/c1][i2/c2][i3/c3][i4/q], ϵ, ∅).

Next, we have the dynamic lifting of the two classical bits c1 and c2.

l1 = LiftedValue(c1)

l2 = LiftedValue(c2)

To illustrate, an example of the derivation for the first lifting can be outlined
as follows:

⟨LiftedValue(c1), (σ[i1/c1][i2/c2][i3/c3][i4/q], ϵ, ∅)⟩ → i1
⟨l1 = LiftedValue(c1), env⟩ → (σ[i1/c1][i2/c2][i3/c3][i4/q][i1/l1], ϵ, ∅)

4.2 Operational Semantics 47

After the dynamic lifting, we add all these values into the circuit.

addClbit(c1)

addClbit(c2)

addClbit(c3)

addQubit(q)

addLiftedValue(l1)

addLiftedValue(l2)

This results in the context (σ,κ, ∅), where:

• σ = σ[i1/c1][i2/c2][i3/c3][i4/q][i1/l1][i2/l2]

• κ = (∅, {i4}, {i1, i2, i3}, {i1, i2})

Next, we have the application of the ifdl.

ifdl(l1 & l2):

X(q)

The derivation proceeds as follows:

⟨l1, (σ,κ, ∅)⟩ → i1
var

⟨l1, (σ,κ, ∅)⟩ → (i1, ϵ)
lv

⟨l2, (σ,κ, ∅)⟩ → i2
var

⟨l2, (σ,κ, ∅)⟩ → (i2, ϵ)
lv

⟨l1&l2, (σ,κ, ∅)⟩ → (i5,κ1)
lv_and

⟨q, (σ,κ + κ1, {i5})⟩ → i4
var

⟨X(q), (σ,κ + κ1, {i5})⟩ → (σ,κ2, {i5})
U

⟨ifdl (l1&l2) : X(q), (σ,κ, ∅)⟩ → (σ,κ2, ∅)
ifdl

Let us take a closer look at this derivation.

First of all, we need to evaluate the lifted value expression l1 & l2. Once we
evaluate l1 and l2 individually, the evaluation of the expression is given by the
function rev_and((i1, ϵ), (i2, ϵ)). This function implements the quantum logical
operation we described in the previous chapter when talking about the implemen-
tation. We will use And ∈ Instr∗ to refer to the sequence of instructions needed to
implement the quantum conjunction operator1. The And instruction needs three

48 4. The Operational Semantics of Dynamic Lifting

auxiliary quantum bits anc1, anc2, anc3 and one classical bit, i5, which is lifted.
So the rev_and function returns the couple (i5,κ1), where

κ1 = (And, {anc1, anc2, anc3}, {i5}, {i5}).

Next, we have the application of a X in the body of the ifdl. The context we
use to evaluate X(q) has to incorporate the result of the lifted value expression in
the guard. To do so, we add the lifted value i5 to the set of active lifted values,
and we add the subcircuit κ1 to the circuit already in the context. The rule for
the application of the unitary operators adds the instruction

Xi5
q = (X, [q], ∅, [i5]) ∈ Instr

to the circuit. So, the evaluation of the configuration ⟨X(q), (σ,κ+κ1,∪{i5})⟩
results in the context (σ,κ2, {i5}) where

κ2 = (And :: X, {i4, anc1, anc2, anc3}, {i1, i2, i3, i5}, {i1, i2, i5}).

Let us move on to the next command which is a simple application of a
Hadamard gate and a measurement:

H(q)

Measure(q,c3)

They can be derived with the U and meas rules respectively, adding to the
circuit the instructions:

Hq = (H, [q], ∅, ∅) ∈ Instr

Measq = (Measure, [q], [c3], ∅) ∈ Instr .

At the end of the whole derivation, the result will be the context (σ,κ, ∅) where:

• σ = σ[i1/c1][i2/c2][i3/c3][i4/q][i1/l1][i2/l2]

• κ = (And :: X :: H :: Meas, {i4, anc1, anc2, anc3}, {i1, i2, i3, i5}, {i1, i2, i5})

4.2 Operational Semantics 49

⟨n, (σ,κ, I)⟩ → n

⟨a, (σ,κ, I)⟩ → n

⟨–a, (σ,κ, I)⟩ → –n

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0+a1, (σ,κ, I)⟩ → n0 + n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0–a1, (σ,κ, I)⟩ → n0 – n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0∗a1, (σ,κ, I)⟩ → n0n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0/a1, (σ,κ, I)⟩ → n0/n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0%a1, (σ,κ, I)⟩ → n0 mod n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0//a1, (σ,κ, I)⟩ → ⌊n0/n1⌋

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0∗∗a1, (σ,κ, I)⟩ → nn1
0

⟨True, (σ,κ, I)⟩ → True ⟨False, (σ,κ, I)⟩ → False

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0==a1, (σ,κ, I)⟩ → t
where t =

True if n0 = n1

False if n0 ̸= n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0! =a1, (σ,κ, I)⟩ → t
where t =

True if n0 ̸= n1

False if n0 = n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0<a1, (σ,κ, I)⟩ → t
where t =

True if n0 < n1

False if n0 ̸< n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0>a1, (σ,κ, I)⟩ → t
where t =

True if n0 > n1

False if n0 ̸> n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0<=a1, (σ,κ, I)⟩ → t
where t =

True if n0 ≤ n1

False if n0 ̸≤ n1

⟨a0, (σ,κ, I)⟩ → n0 ⟨a1, (σ,κ, I)⟩ → n1

⟨a0>=a1, (σ,κ, I)⟩ → t
where t =

True if n0 ≥ n1

False if n0 ̸≥ n1

⟨b0, (σ,κ, I)⟩ → True ⟨b1, (σ,κ, I)⟩ → True

⟨b0 and b1, (σ,κ, I)⟩ → True

⟨b0, (σ,κ, I)⟩ → True ⟨b1, (σ,κ, I)⟩ → False

⟨b0 and b1, (σ,κ, I)⟩ → False

⟨b0, (σ,κ, I)⟩ → False

⟨b0 and b1, (σ,κ, I)⟩ → False

⟨b0, (σ,κ, I)⟩ → False ⟨b1, (σ,κ, I)⟩ → True

⟨b0 or b1, (σ,κ, I)⟩ → True

⟨b0, (σ,κ, I)⟩ → False ⟨b1, (σ,κ, I)⟩ → False

⟨b0 or b1, (σ,κ, I)⟩ → False

⟨b0, (σ,κ, I)⟩ → True

⟨b0 or b1, (σ,κ, I)⟩ → True

⟨b, (σ,κ, I)⟩ → True

⟨ not b, (σ,κ, I)⟩ → False

⟨b, (σ,κ, I)⟩ → False

⟨ not b, (σ,κ, I)⟩ → True

Figure 4.2: Arithmetic and Boolean expressions operational semantic rules.

50 4. The Operational Semantics of Dynamic Lifting

⟨c0, (σ,κ, I)⟩ → (σ′′,κ′′, I) ⟨c1, (σ′′,κ′′, I)⟩ → (σ′,κ′, I)

⟨c0 c1, (σ,κ, I)⟩ → (σ′,κ′, I)

⟨b, (σ,κ, I)⟩ → True ⟨c0, (σ,κ, I)⟩ → (σ′,κ′, I)

⟨if b: c0 else : c1, (σ, I)⟩ → (σ′,κ′, I)

⟨b, (σ,κ, I)⟩ → False ⟨c1, (σ,κ, I)⟩ → σ′

⟨if b: c0 else : c1, (σ,κ, I)⟩ → (σ′,κ′, I)

⟨b, (σ,κ, I)⟩ → False

⟨while b : c, (σ,κ, I)⟩ → (σ,κ, I)

⟨b, (σ,κ, I)⟩ → True

⟨c, (σ,κ, I)⟩ → (σ′′,κ′′, I) ⟨while b : c, (σ′′,κ′′, I)⟩ → (σ′,κ′, I)

⟨while b : c, (σ,κ, I)⟩ → (σ′,κ′, I)

Figure 4.3: Classical commands operational semantic rules.

Conclusions

In conclusion, this thesis has embarked on a journey into the realm of quantum
computing, focusing on the integration of dynamic lifting into the widely used
Qiskit framework. The exploration of dynamic lifting, a concept borrowed from
other quantum languages like Quipper, has not only enriched the functionality
of Qiskit but has also laid the groundwork for a formalized understanding of the
resulting quantum language. This work follows the steps of others like [8][12][15] in
giving a formal understanding of dynamic lifting, adapting it in a new environment.

As we reflect on the motivations behind this research, it becomes evident that
the formalization of quantum programming languages is a critical step forward in
the advancement of quantum computing. As a prominent quantum programming
framework, Qiskit has been the focal point of our investigation, and the successful
implementation of dynamic lifting offers a versatile and adaptable dimension to its
capabilities. The formalization of this extension provides a structured foundation,
facilitating a more comprehensive understanding of quantum algorithms developed
within the Qiskit environment.

As we look towards the future, the findings and formalizations presented in this
thesis lay the groundwork for further exploration and refinement of quantum pro-
gramming languages, in particular the possibility of construing a new independent
language based on Qiskit, further improving Qiskit’s ergonomics.

The field of quantum computing is in need of ongoing research and innovation,
and the contributions made here mark a modest advancement in this dynamic
journey.

51

52 CONCLUSIONI

Appendix A

Code

,

1 from qiskit.circuit.classicalregister import Clbit

2 from qiskit import ClassicalRegister, AncillaRegister

3 from qiskit import QuantumCircuit

4 from qiskit.circuit.library.boolean_logic import AND, OR

5 from DynamicLifting import gc_global

6

7

8

9 class LiftedValue(Clbit):

10

11 __slots__ = {’_clbit’}

12

13 def __init__(self, clbit : Clbit):

14

15 self._clbit = clbit

16

17 super().__init__(register=self._clbit.register, index=self._clbit.index)

18

19 def __and__(self, other: ’LiftedValue’) -> ’LiftedValue’: # symbol &

20 return self._logic_binaryop(other, AND(2))

21

22

23 def __or__(self, other: ’LiftedValue’) -> ’LiftedValue’: # symbol |

24 return self._logic_binaryop(other, OR(2))

25

26 def __invert__(self) -> ’LiftedValue’:

27 return self._logic_notop()

28

29 def __enter__(self):

53

54 CONCLUSIONI

30 gc_global.dl_flag = True

31 gc_global.lifted_values.append(self)

32

33 def __exit__(self, exc_type, exc_value, traceback):

34 gc_global.lifted_values.pop()

35 if len(gc_global.lifted_values) == 0:

36 gc_global.dl_flag = False

37

38 def _logic_notop(self):

39 input_reg = ClassicalRegister(bits=[self._clbit])

40 output_reg = ClassicalRegister(1)

41 qreg = AncillaRegister(1)

42

43 temp_circ = QuantumCircuit(qreg, input_reg, output_reg)

44

45 temp_circ.x(0).c_if(input_reg[0], 0)

46

47 temp_circ.measure(qreg[0], output_reg[0])

48

49 gc_global.global_qc.add_register(input_reg)

50 gc_global.global_qc.add_register(output_reg)

51 gc_global.global_qc.add_register(qreg)

52

53 gc_global.global_qc.compose(

54 temp_circ, [qreg[0]],

55 [input_reg[0], output_reg[0]], inplace=True)

56

57 return LiftedValue(output_reg[0])

58

59 def _logic_binaryop(self, other, bool_op):

60 input_reg = ClassicalRegister(bits=[self._clbit, other._clbit])

61 output_reg = ClassicalRegister(1)

62 qreg = AncillaRegister(3)

63

64 temp_circ = QuantumCircuit(qreg, input_reg, output_reg)

65

66 temp_circ.x(0).c_if(input_reg[0], 1)

67 temp_circ.x(1).c_if(input_reg[1], 1)

68

69 temp_circ.compose(

70 bool_op, [qreg[0], qreg[1], qreg[2]], inplace=True)

71

72 temp_circ.measure(qreg[2], output_reg[0])

73

74 gc_global.global_qc.add_register(input_reg)

75 gc_global.global_qc.add_register(output_reg)

76 gc_global.global_qc.add_register(qreg)

A Code 55

77

78 gc_global.global_qc.compose(

79 temp_circ, [qreg[0], qreg[1], qreg[2]],

80 [input_reg[0], input_reg[1], output_reg[0]], inplace=True)

81

82 return LiftedValue(output_reg[0])

,

1 from qiskit import QuantumCircuit

2

3 global_qc = QuantumCircuit()

4

5 lifted_values = []

6 dl_flag = False

,

1 from functools import reduce

2 import operator

3 import DynamicLifting.lifted_value as lv

4 from DynamicLifting import gc_global

5

6

7

8 def get_condition_register() -> lv.LiftedValue:

9 global lifted_values

10

11 if len(gc_global.lifted_values) <= 0:

12 return

13 elif len(gc_global.lifted_values) == 1:

14 return gc_global.lifted_values[0]

15 else:

16 return reduce(operator.and_, gc_global.lifted_values[1:], gc_global.lifted_values[0])

,

1 from qiskit import *

2 from DynamicLifting.gc_global import global_qc

3 from DynamicLifting import gc_global

4 from DynamicLifting import global_circuit

5 from qiskit.circuit.instruction import Instruction

6 from qiskit.circuit.instructionset import InstructionSet

7 from qiskit.circuit.register import Register

8 from qiskit.circuit.bit import Bit

9 from qiskit.circuit.gate import Gate

10 from qiskit.circuit.quantumregister import Qubit

11 from qiskit.circuit.classicalregister import Clbit

56 CONCLUSIONI

12 from qiskit.circuit.operation import Operation

13 from qiskit.circuit.quantumcircuitdata import CircuitInstruction

14 from qiskit.circuit.parameter import Parameter

15 from qiskit.circuit.parameterexpression import ParameterValueType

16 from qiskit.circuit.quantumcircuit import QubitSpecifier, ClbitSpecifier

17 from typing import (

18 Union,

19 Optional,

20 Sequence,

21 Iterable,

22 Dict,

23 Type,

24 Mapping

25)

26 import typing

27

28

29

30 def makeGlobal(qc : QuantumCircuit):

31 """Create a new global circuit from a given circuit"""

32 gc_global.global_qc = QuantumCircuit()

33

34 for qreg in qc.qregs:

35 gc_global.global_qc.add_register(qreg)

36 for creg in qc.cregs:

37 gc_global.global_qc.add_register(creg)

38 for instruction in qc:

39 gc_global.global_qc.append(instruction)

40

41

42 # For easy testing on jupiter notebook

43 def regenerateGlobal():

44 gc_global.global_qc = QuantumCircuit()

45 gc_global.lifted_values = []

46

47

48 def takeGlobal():

49 ’’’Returns the global circuit so that it can be used as a local circuit’’’

50 return gc_global.global_qc.copy()

51

52

53

54 def check_empty_global(qbits: QubitSpecifier = None, cbits: ClbitSpecifier = None):

55 """add the proper number of bits and qubits if the global circuit is empty"""

56 if isinstance(qbits, int):

57 if gc_global.global_qc.num_qubits < (qbits + 1):

58 gc_global.global_qc.add_register(QuantumRegister((qbits + 1) -

A Code 57

(gc_global.global_qc.num_qubits)))

59 if isinstance(cbits, int):

60 if gc_global.global_qc.num_clbits < (cbits + 1):

61 gc_global.global_qc.add_register(ClassicalRegister(

62 (cbits + 1) - (gc_global.global_qc.num_clbits)))

63

64

65 def addRegisterGlobal(*regs: Union[Register, int, Sequence[Bit]]):

66 gc_global.global_qc.add_register(*regs)

67

68 def qregsGlobal():

69 return gc_global.global_qc.qregs

70

71

72 def cregsGlobal():

73 return gc_global.global_qc.cregs

74

75 def qubitsGlobal():

76 return gc_global.global_qc.qubits

77

78

79 def clbitsGlobal():

80 return gc_global.global_qc.clbits

81

82

83

84 def dynamic_lifting(gate: InstructionSet):

85 if gc_global.dl_flag:

86 condition = global_circuit.get_condition_register()

87 return gate.c_if(condition._clbit, 1)

88

89 else:

90 return gate

91

92 def H(qubit: QubitSpecifier):

93 return dynamic_lifting(gc_global.global_qc.h(qubit))

94

95

96 def X(qubit: QubitSpecifier, label: Optional[str] = None):

97 dynamic_lifting(gc_global.global_qc.x(qubit, label))

98

99

100 def draw_global(

101 output: Optional[str] = None,

102 scale: Optional[float] = None,

103 filename: Optional[str] = None,

104 style: Optional[Union[dict, str]] = None,

58 CONCLUSIONI

105 interactive: bool = False,

106 plot_barriers: bool = True,

107 reverse_bits: bool = False,

108 justify: Optional[str] = None,

109 vertical_compression: Optional[str] = "medium",

110 idle_wires: bool = True,

111 with_layout: bool = True,

112 fold: Optional[int] = None,

113 # The type of ax is matplotlib.axes.Axes, but this is not a fixed dependency, so cannot be

114 # safely forward-referenced.

115 ax: Optional[typing.Any] = None,

116 initial_state: bool = False,

117 cregbundle: bool = None,

118 wire_order: list = None,):

119

120 return gc_global.global_qc.draw(

121 output,

122 scale,

123 filename,

124 style,

125 interactive,

126 plot_barriers,

127 reverse_bits,

128 justify,

129 vertical_compression,

130 idle_wires,

131 with_layout,

132 fold,

133 ax,

134 initial_state,

135 cregbundle,

136 wire_order)

137

138

139

140 def dataGlobal():

141 ’’’Calls data proprety of global circuit’’’

142 return gc_global.global_qc.data

143

144 def op_start_timeGlobal():

145 ’’’Calls op_start_times proprety of global circuit’’’

146 return gc_global.global_qc.op_start_times

147

148

149

150 def calibrationsGlobal():

151 ’’’Calls calibrations proprety of global circuit’’’

A Code 59

152 return gc_global.global_qc.calibrations

153

154

155 def has_calibration_forGlobal(instr_context: tuple):

156 ’’’Calls has_calibration_for of global circuit’’’

157 return gc_global.global_qc.has_calibration_for(instr_context)

158

159 def metadataGlobal():

160 ’’’Calls metadata proprety of global circuit’’’

161 return gc_global.global_qc.metadata

162

163

164 def stringGlobal():

165 ’’’Returns the global circuit as a string’’’

166 return str(gc_global.global_qc.draw(output="text"))

167

168 def equalGlobal(other):

169 if not isinstance(other, QuantumCircuit):

170 return False

171

172 from qiskit.converters import circuit_to_dag

173

174 return circuit_to_dag(gc_global.global_qc) == circuit_to_dag(other)

175

176 def has_registerGlobal(register: Register):

177 ’’’Calls has_register on global circuit’’’

178 return gc_global.global_qc.has_register(register)

179

180 def revers_opsGlobal():

181 ’’’Calls reverse_ops on global circuit’’’

182 return gc_global.global_qc.reverse_ops()

183

184 def reverse_bitsGlobal():

185 ’’’Calls reverse_bits on global circuit’’’

186 return gc_global.global_qc.reverse_bits()

187

188 def inverseGlobal():

189 ’’’Calls inverse on global circuit’’’

190 return gc_global.global_qc.inverse()

191

192 def repeatGlobal(reps: int):

193 ’’’Returns the global circuit repeated reps times’’’

194 return gc_global.global_qc.repeat(reps)

195

196 def my_repeatGlobal(reps: int):

197 ’’’The global circuit is sostituted by the same circuit but repeated reps times’’’

198 new_qc = gc_global.global_qc.repeat(reps)

60 CONCLUSIONI

199 makeGlobal(new_qc)

200

201 def powerGlobal(power: float, matrix_power: bool = False):

202 ’’’Raise global circuit to the power of ‘‘power‘‘ and returns it’’’

203 return gc_global.global_qc.power(power, matrix_power)

204

205

206 def my_powerGlobal(power: float, matrix_power: bool = False):

207 ’’’Raise global circuit to the power of ‘‘power‘‘ ’’’

208 new_qc = gc_global.global_qc.power(power, matrix_power)

209 makeGlobal(new_qc)

210

211 def controlGlobal(

212 num_ctrl_qubits: int = 1,

213 label: Optional[str] = None,

214 ctrl_state: Optional[Union[str, int]] = None):

215 ’’’Returns controlled version of global circuit’’’

216 return gc_global.global_qc.control(num_ctrl_qubits, label, ctrl_state)

217

218

219 def composeGlobal(

220 other: Union["QuantumCircuit", Instruction],

221 qubits: Optional[Sequence[Union[Qubit, int]]] = None,

222 clbits: Optional[Sequence[Union[Clbit, int]]] = None,

223 front: bool = False,

224 inplace: bool = False,

225 wrap: bool = False):

226 ’’’Compose global circuit with ‘other‘ circuit or instruction’’’

227 return gc_global.global_qc.compose(other, qubits, clbits, front, inplace, wrap)

228

229

230 def tensorGlobal(other: "QuantumCircuit", inplace: bool = False):

231 ’’’Calls tensor function for global circuit’’’

232 return gc_global.global_qc.tensor(other, inplace)

233

234 def ancillasGlobal():

235 ’’’Returns a list of ancilla bits in global circuit’’’

236 return gc_global.global_qc.ancillas

237

238

239

240 def lenGlobal():

241 ’’’Returns number of instructiond in global circuit’’’

242 return gc_global.global_qc.__len__

243

244

245

A Code 61

246 def appendGlobal(

247 instruction: Union[Operation, CircuitInstruction],

248 qargs: Optional[Sequence[QubitSpecifier]] = None,

249 cargs: Optional[Sequence[ClbitSpecifier]] = None,):

250 ’’’Append one or more instructions to global circuit’’’

251 return gc_global.global_qc.append(instruction, qargs, cargs)

252

253

254 def add_bitsGlobal(bits: Iterable[Bit]):

255 ’’’Add bits to global register’’’

256 gc_global.global_qc.add_bits(bits)

257

258 def find_bitGlobal(bit : Bit):

259 return gc_global.global_qc.find_bit(bit)

260

261 def to_instructionGlobal(

262 parameter_map: Optional[Dict[Parameter, ParameterValueType]] = None,

263 label: Optional[str] = None):

264 ’’’Create an Instruction out of global circuit’’’

265 return gc_global.global_qc.to_instruction(parameter_map, label)

266

267 def to_gateGlobal(

268 parameter_map: Optional[Dict[Parameter, ParameterValueType]] = None,

269 label: Optional[str] = None):

270 ’’’Create a Gate out of global circuit.’’’

271 return gc_global.global_qc.to_gate(parameter_map, label)

272

273

274 def decomposeGLobal(

275 gates_to_decompose: Optional[

276 Union[Type[Gate], Sequence[Type[Gate]], Sequence[str], str]

277] = None,

278 reps: int = 1):

279 return gc_global.global_qc.decompose(gates_to_decompose, reps)

280

281 def qasmGlobal(

282 formatted: bool = False,

283 filename: Optional[str] = None,

284 encoding: Optional[str] = None

285):

286 ’’’ Return OpenQASM string of global circuit’’’

287 return gc_global.global_qc.qasm(formatted, filename, encoding)

288

289

290 def sizeGlobal(

291 filter_function: Optional[callable] = lambda x: not getattr(

292 x.operation, "_directive", False)):

62 CONCLUSIONI

293 ’’’Returns total number of instruction in global circuit’’’

294 return gc_global.global_qc.size(filter_function)

295

296

297 def depthGlobal(

298 filter_function: Optional[callable] = lambda x: not getattr(

299 x.operation, "_directive", False)):

300 ’’’Return global circuit depth (i.e, length of critical path)’’’

301 return gc_global.global_qc.depth(filter_function)

302

303 def widthGlobal():

304 ’’’Return number qubit plus cibits of global circuit’’’

305 return gc_global.global_qc.width()

306

307 def num_qubitsGlobal():

308 ’’’Return the number of qubits in global circuit’’’

309 return gc_global.global_qc.num_qubits()

310

311 def num_ancillasGlobal():

312 ’’’Return the number of ancilla qubits in global circuit’’’

313 return gc_global.global_qc.num_ancillas()

314

315 def num_clbitsGlobal():

316 ’’’Return number of classical bits in global circuit’’’

317 return gc_global.global_qc.clbits()

318

319 def count_opsGlobal():

320 ’’’Count each operation kind in the global circuit’’’

321 return gc_global.global_qc.count_ops()

322

323

324 def num_nonlocal_gatesGlobal():

325 return gc_global.global_qc.num_nonlocal_gates()

326

327

328 def get_instructionGlobal(name: str):

329 return gc_global.global_qc.get_instructions(name)

330

331

332 def num_connected_componentsGlobals(unitary_only: bool = False):

333 return gc_global.global_qc.num_connected_components(unitary_only)

334

335

336 def num_unitary_factorsGlobal():

337 return gc_global.global_qc.num_unitary_factors()

338

339

A Code 63

340 def num_tensor_factorsGlobal():

341 return gc_global.global_qc.num_tensor_factors

342

343

344 def copyGlobal(name: Optional[str] = None):

345 ’’’Copy the global circuit’’’

346 return gc_global.global_qc.copy(name)

347

348

349 def copy_empty_likeGlobal(name: Optional[str] = None):

350 ’’’Return a copy of global circuit with the same structure but empty’’’

351 return gc_global.global_qc.copy_empty_like(name)

352

353 def clearGlobal():

354 ’’’Clear all instructions in global circuit’’’

355 gc_global.global_qc.clear()

356

357

358 def resetGlobal(qubit: QubitSpecifier):

359 return gc_global.global_qc.reset(qubit)

360

361 def setQubits(params, qubits = None):

362 return gc_global.global_qc.initialize(params, qubits)

363

364

365

366 def Measure(qubit: QubitSpecifier, cbit: ClbitSpecifier):

367 ’’’Measure quantum bit into classical bit on global circuit’’’

368 gc_global.global_qc.measure(qubit, cbit)

369

370

371 def Measure_active(inplace: bool = True):

372 ’’’Adds measurement to all non-idle qubits in global circuit’’’

373 return gc_global.global_qc.measure_active(inplace)

374

375

376 def Measure_all(inplace: bool = True, add_bits: bool = True):

377 ’’’Adds measurement to all qubits in global circuit’’’

378 return gc_global.global_qc.measure_all(inplace, add_bits)

379

380

381 def Remove_final_measurements(inplace: bool = True):

382 ’’’Removes final measurements and barriers on all qubits if they are present’’’

383 return gc_global.global_qc.remove_final_measurements(inplace)

384

385

386 def global_phaseGlobal():

64 CONCLUSIONI

387 ’’’Return the global phase of the global circuit in radians.’’’

388 return gc_global.global_qc.global_phase

389

390 def parametersGlobal():

391 ’’’The parameters defined in the global circuit’’’

392 return gc_global.global_qc.parameters

393

394

395 def num_parameters():

396 ’’’The number of parameter objects in the circuit’’’

397 return gc_global.global_qc.num_parameters

398

399

400 def assign_parametersGlobal(

401 parameters: Union[Mapping[Parameter, ParameterValueType], Sequence[ParameterValueType]],

402 inplace: bool = False):

403 ’’’Assign parameters to new parameters or values.’’’

404 return gc_global.global_qc.assign_parameters(parameters, inplace)

405

406

407 def bind_parametersGlobal(values: Union[Mapping[Parameter, float], Sequence[float]]):

408 return gc_global.global_qc.bind_parameters(values)

409

410

411 def Barrier(*qargs: QubitSpecifier, label=None):

412

413 if not qargs:

414 global_barrier = gc_global.global_qc.barrier(label=label)

415 else:

416 global_barrier = gc_global.global_qc.barrier(qargs, label)

417 return global_barrier

418

419 def delayGlobal(

420 duration: ParameterValueType,

421 qarg: Optional[QubitSpecifier] = None,

422 unit: str = "dt"):

423 ’’’Calls delay on global circuit’’’

424 return gc_global.global_qc.delay(duration, qarg, unit)

425

426

427 def CH(

428 control_qubit: QubitSpecifier,

429 target_qubit: QubitSpecifier,

430 label: Optional[str] = None,

431 ctrl_state: Optional[Union[str, int]] = None):

432 dynamic_lifting(gc_global.global_qc.ch(control_qubit, target_qubit, label, ctrl_state))

433

A Code 65

434

435

436 def I(qubit: QubitSpecifier):

437 dynamic_lifting(gc_global.global_qc.i(qubit))

438

439

440

441 def ID(qubit: QubitSpecifier):

442 dynamic_lifting(gc_global.global_qc.id(qubit))

443

444

445

446 def Ms(theta: ParameterValueType, qubits: Sequence[QubitSpecifier]):

447 dynamic_lifting(gc_global.global_qc.ms(theta, qubits))

448

449

450

451 def P(theta: ParameterValueType, qubit: QubitSpecifier):

452 dynamic_lifting(gc_global.global_qc.p(theta, qubit))

453

454

455 def Cp(

456 theta: ParameterValueType,

457 control_qubit: QubitSpecifier,

458 target_qubit: QubitSpecifier,

459 label: Optional[str] = None,

460 ctrl_state: Optional[Union[str, int]] = None):

461 dynamic_lifting(gc_global.global_qc.cp(

462 theta, control_qubit, target_qubit, label, ctrl_state))

463

464

465

466 def Mcp(

467 lam: ParameterValueType,

468 control_qubits: Sequence[QubitSpecifier],

469 target_qubit: QubitSpecifier):

470 dynamic_lifting(gc_global.global_qc.mcp(lam, control_qubits, target_qubit))

471

472

473 def R(

474 theta: ParameterValueType, phi: ParameterValueType, qubit: QubitSpecifier):

475 dynamic_lifting(gc_global.global_qc.r(theta, phi, qubit))

476

477

478

479 def Rv(

480 vx: ParameterValueType,

66 CONCLUSIONI

481 vy: ParameterValueType,

482 vz: ParameterValueType,

483 qubit: QubitSpecifier):

484 dynamic_lifting(gc_global.global_qc.rv(vx, vy, vz, qubit))

485

486

487

488 def Rccx(

489 control_qubit1: QubitSpecifier,

490 control_qubit2: QubitSpecifier,

491 target_qubit: QubitSpecifier):

492 dynamic_lifting(gc_global.global_qc.rccx(control_qubit1, control_qubit2, target_qubit))

493

494 def Rcccx(

495 control_qubit1: QubitSpecifier,

496 control_qubit2: QubitSpecifier,

497 control_qubit3: QubitSpecifier,

498 target_qubit: QubitSpecifier):

499 dynamic_lifting(gc_global.global_qc.rcccx(control_qubit1, control_qubit2, control_qubit3,

target_qubit))

500

501

502 def Rx(theta: ParameterValueType, qubit: QubitSpecifier, label: Optional[str] = None):

503 dynamic_lifting(gc_global.global_qc.rx(theta, qubit, label))

504

505

506 def Crx(

507 theta: ParameterValueType,

508 control_qubit: QubitSpecifier,

509 target_qubit: QubitSpecifier,

510 label: Optional[str] = None,

511 ctrl_state: Optional[Union[str, int]] = None):

512 dynamic_lifting(gc_global.global_qc.crx(theta, control_qubit, target_qubit, label,

ctrl_state))

513

514

515 def Rxx(theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier):

516 dynamic_lifting(gc_global.global_qc.rxx(theta, qubit1, qubit2))

517

518

519 def Ry(theta: ParameterValueType, qubit: QubitSpecifier, label: Optional[str] = None):

520 dynamic_lifting(gc_global.global_qc.ry(theta, qubit, label))

521

522

523 def Cry(theta: ParameterValueType,

524 control_qubit: QubitSpecifier,

525 target_qubit: QubitSpecifier,

A Code 67

526 label: Optional[str] = None,

527 ctrl_state: Optional[Union[str, int]] = None,):

528 dynamic_lifting(gc_global.global_qc(theta, control_qubit, target_qubit, label, ctrl_state))

529

530

531 def Ryy(theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier):

532 dynamic_lifting(gc_global.global_qc(theta, qubit1, qubit2))

533

534

535 def Rz(phi: ParameterValueType, qubit: QubitSpecifier):

536 dynamic_lifting(gc_global.global_qc.rz(phi, qubit))

537

538

539 def Crz(theta: ParameterValueType,

540 control_qubit: QubitSpecifier,

541 target_qubit: QubitSpecifier,

542 label: Optional[str] = None,

543 ctrl_state: Optional[Union[str, int]] = None):

544 dynamic_lifting(gc_global.global_qc.crz(theta, control_qubit, target_qubit, label,

ctrl_state))

545

546

547 def Rzx(theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier):

548 dynamic_lifting(gc_global.global_qc.rzx(theta, qubit1, qubit2))

549

550

551 def Rzz(theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier):

552 dynamic_lifting(gc_global.global_qc.rzz(theta, qubit1, qubit2))

553

554

555 def Ecr(qubit1: QubitSpecifier, qubit2: QubitSpecifier):

556 dynamic_lifting(gc_global.global_qc.ecr(qubit1, qubit2))

557

558 def S(qubit: QubitSpecifier):

559 dynamic_lifting(gc_global.global_qc.s(qubit))

560

561 def Sdg(qubit: QubitSpecifier):

562 dynamic_lifting(gc_global.global_qc.sdg(qubit))

563

564 def Cs(

565 control_qubit: QubitSpecifier,

566 target_qubit: QubitSpecifier,

567 label: Optional[str] = None,

568 ctrl_state: Optional[Union[str, int]] = None):

569 dynamic_lifting(gc_global.global_qc.cs(control_qubit, target_qubit, label, ctrl_state))

570

571 def Csdg(

68 CONCLUSIONI

572 control_qubit: QubitSpecifier,

573 target_qubit: QubitSpecifier,

574 label: Optional[str] = None,

575 ctrl_state: Optional[Union[str, int]] = None):

576 dynamic_lifting(gc_global.global_qc.csdg(control_qubit, target_qubit, label, ctrl_state))

577

578 def Swap(qubit1: QubitSpecifier, qubit2: QubitSpecifier):

579 dynamic_lifting(gc_global.global_qc.swap(qubit1, qubit2))

580

581

582 def Iswap(qubit1: QubitSpecifier, qubit2: QubitSpecifier):

583 dynamic_lifting(gc_global.global_qc.iswap(qubit1, qubit2))

584

585 def Cswap(

586 control_qubit: QubitSpecifier,

587 target_qubit1: QubitSpecifier,

588 target_qubit2: QubitSpecifier,

589 label: Optional[str] = None,

590 ctrl_state: Optional[Union[str, int]] = None):

591 dynamic_lifting(gc_global.global_qc.cswap(control_qubit, target_qubit1, target_qubit2,

label, ctrl_state))

592

593 def Fredkin(

594 control_qubit: QubitSpecifier,

595 target_qubit1: QubitSpecifier,

596 target_qubit2: QubitSpecifier):

597 dynamic_lifting(gc_global.global_qc.fredkin(control_qubit, target_qubit1, target_qubit2))

598

599 def Sx(qubit: QubitSpecifier):

600 dynamic_lifting(gc_global.global_qc.sx(qubit))

601

602 def Sxdg(qubit: QubitSpecifier):

603 dynamic_lifting(gc_global.global_qc.sxdg(qubit))

604

605 def Csx(

606 control_qubit: QubitSpecifier,

607 target_qubit: QubitSpecifier,

608 label: Optional[str] = None,

609 ctrl_state: Optional[Union[str, int]] = None):

610 dynamic_lifting(gc_global.global_qc.csx(control_qubit, target_qubit, label, ctrl_state))

611

612 def T(qubit : QubitSpecifier):

613 dynamic_lifting(gc_global.global_qc.t(qubit))

614

615 def Tdg(qubit: QubitSpecifier):

616 dynamic_lifting(gc_global.global_qc.tdg(qubit))

617

A Code 69

618 def U(

619 theta: ParameterValueType,

620 phi: ParameterValueType,

621 lam: ParameterValueType,

622 qubit: QubitSpecifier):

623 dynamic_lifting(gc_global.global_qc.u(theta, phi, lam, qubit))

624

625 def Cu(

626 theta: ParameterValueType,

627 phi: ParameterValueType,

628 lam: ParameterValueType,

629 gamma: ParameterValueType,

630 control_qubit: QubitSpecifier,

631 target_qubit: QubitSpecifier,

632 label: Optional[str] = None,

633 ctrl_state: Optional[Union[str, int]] = None):

634 dynamic_lifting(gc_global.global_qc.cu(theta, phi, lam, gamma, control_qubit, target_qubit,

label, ctrl_state))

635

636

637 def Cx(

638 control_qubit: QubitSpecifier,

639 target_qubit: QubitSpecifier,

640 label: Optional[str] = None,

641 ctrl_state: Optional[Union[str, int]] = None):

642 dynamic_lifting(gc_global.global_qc.cx(control_qubit, target_qubit, label, ctrl_state))

643

644 def Cnot(

645 control_qubit: QubitSpecifier,

646 target_qubit: QubitSpecifier,

647 label: Optional[str] = None,

648 ctrl_state: Optional[Union[str, int]] = None):

649 dynamic_lifting(gc_global.global_qc.cnot(control_qubit, target_qubit, label, ctrl_state))

650

651 def Dcx(qubit1: QubitSpecifier, qubit2: QubitSpecifier):

652 dynamic_lifting(gc_global.global_qc.dcx(qubit1, qubit2))

653

654

655 def Ccx(control_qubit1: QubitSpecifier,

656 control_qubit2: QubitSpecifier,

657 target_qubit: QubitSpecifier,

658 ctrl_state: Optional[Union[str, int]] = None):

659 dynamic_lifting(gc_global.global_qc.ccx(control_qubit1, control_qubit2, target_qubit,

ctrl_state))

660

661 def Toffoli(

662 control_qubit1: QubitSpecifier,

70 CONCLUSIONI

663 control_qubit2: QubitSpecifier,

664 target_qubit: QubitSpecifier):

665 dynamic_lifting(gc_global.global_qc.toffoli(control_qubit1, control_qubit2, target_qubit))

666

667 def Mcx(

668 control_qubits: Sequence[QubitSpecifier],

669 target_qubit: QubitSpecifier,

670 ancilla_qubits: Optional[Union[QubitSpecifier,Sequence[QubitSpecifier]]] = None,

671 mode: str = "noancilla"):

672 dynamic_lifting(gc_global.global_qc.mcx(control_qubits, target_qubit, ancilla_qubits, mode))

673

674 def Mct(

675 control_qubits: Sequence[QubitSpecifier],

676 target_qubit: QubitSpecifier,

677 ancilla_qubits: Optional[Union[QubitSpecifier,

678 Sequence[QubitSpecifier]]] = None,

679 mode: str = "noancilla"):

680 dynamic_lifting(gc_global.global_qc.mct(control_qubits, target_qubit, ancilla_qubits, mode))

681

682 def Y(qubit: QubitSpecifier):

683 dynamic_lifting(gc_global.global_qc.y(qubit))

684

685 def Cy(

686 control_qubit: QubitSpecifier,

687 target_qubit: QubitSpecifier,

688 label: Optional[str] = None,

689 ctrl_state: Optional[Union[str, int]] = None):

690 dynamic_lifting(gc_global.global_qc.cy(control_qubit, target_qubit, label, ctrl_state))

691

692 def Z(qubit: QubitSpecifier):

693 dynamic_lifting(gc_global.global_qc.z(qubit))

694

695 def Cz(

696 control_qubit: QubitSpecifier,

697 target_qubit: QubitSpecifier,

698 label: Optional[str] = None,

699 ctrl_state: Optional[Union[str, int]] = None):

700 dynamic_lifting(gc_global.global_qc.cz(control_qubit, target_qubit, label, ctrl_state))

701

702 def Ccz(

703 control_qubit1: QubitSpecifier,

704 control_qubit2: QubitSpecifier,

705 target_qubit: QubitSpecifier,

706 label: Optional[str] = None,

707 ctrl_state: Optional[Union[str, int]] = None):

708 dynamic_lifting(gc_global.global_qc.ccz(control_qubit1, control_qubit2, target_qubit, label,

ctrl_state))

A Code 71

709

710

711 def Pauli(pauli_string: str,

712 qubits: Sequence[QubitSpecifier]):

713 dynamic_lifting(gc_global.global_qc.pauli(pauli_string, qubits))

714

715

716 def Add_calibration(

717 gate: Union[Gate, str],

718 qubits: Sequence[int],

719 # Schedule has the type ‘qiskit.pulse.Schedule‘, but ‘qiskit.pulse‘ cannot be imported

720 # while this module is, and so Sphinx will not accept a forward reference to it. Sphinx

721 # needs the types available at runtime, whereas mypy will accept it, because it handles the

722 # type checking by static analysis.

723 schedule,

724 params: Optional[Sequence[ParameterValueType]] = None):

725 gc_global.global_qc.add_calibration(gate, qubits, schedule, params)

726

727 def Qubit_start_time(*qubits: Union[Qubit, int]):

728 return gc_global.global_qc.qubit_start_time(qubits)

729

730

731 def Qubit_duration(*qubits: Union[Qubit, int]):

732 return gc_global.global_qc.qubit_duration(qubits)

733

734

735 def Qubit_start_time(*qubits: Union[Qubit, int]):

736 return gc_global.global_qc.qubit_start_time(qubits)

737

738

739 def Qubit_stop_time(*qubits: Union[Qubit, int]):

740 return gc_global.global_qc.qubit_stop_time(qubits)

72 A Code

Bibliography

[1] Ibm quantum platform. https://quantum-computing.ibm.com/. [Online;
accessed 19/11/2023].

[2] The python language reference. https://docs.python.org/3/

reference/compound_stmts.html#the-with-statement. [Online; ac-
cessed 15/11/2023].

[3] The python language reference. https://docs.python.org/3/reference/

lexical_analysis.html#identifiers. [Online; accessed 19/11/2023].

[4] Qiskit documentation. https://docs.quantum-computing.ibm.com/. [On-
line; accessed 19/11/2023].

[5] Qiskit gates library. https://docs.quantum-computing.ibm.com/api/

qiskit/circuit_library. [Online; accessed 19/11/2023].

[6] Quantum circuits get a dynamic upgrade with the help of con-
current classical computation. https://research.ibm.com/blog/

quantum-phase-estimations. [Online; accessed 15/11/2023].

[7] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pages 11–20, 1993.

[8] Andrea Colledan and Ugo Dal Lago. On dynamic lifting and effect typing in
circuit description languages. In 28th International Conference on Types for

73

74 A Code

Proofs and Programs (TYPES 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2023.

[9] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap,
Lev S Bishop, Steven Heidel, Colm A Ryan, Prasahnt Sivarajah, John Smolin,
Jay M Gambetta, et al. Openqasm 3: A broader and deeper quantum assem-
bly language. ACM Transactions on Quantum Computing, 3(3):1–50, 2022.

[10] David Deutsch. Quantum theory, the church–turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 400(1818):97–117, 1985.

[11] David Elieser Deutsch. Quantum computational networks. Proceedings of the
royal society of London. A. mathematical and physical sciences, 425(1868):73–
90, 1989.

[12] Peng Fu, Kohei Kishida, Neil J Ross, and Peter Selinger. Proto-quipper
with dynamic lifting. Proceedings of the ACM on Programming Languages,
7(POPL):309–334, 2023.

[13] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger,
and Benoît Valiron. Quipper: a scalable quantum programming language. In
Proceedings of the 34th ACM SIGPLAN conference on Programming language
design and implementation, pages 333–342, 2013.

[14] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[15] Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. Concrete
Categorical Model of a Quantum Circuit Description Language with Mea-
surement. In FSTTCS 2021, volume 213 of LIPIcs, pages 51:1–51:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[16] Qiskit contributors. Qiskit: An open-source framework for quantum comput-
ing, 2023.

BIBLIOGRAPHY 75

[17] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[18] Peter W Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[19] Robert Wille and Lukas Burgholzer. Verification of quantum circuits. Hand-
book of Computer Architecture, pages 1–28, 2022.

[20] A Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993 IEEE
34th Annual Foundations of Computer Science, pages 352–361. IEEE, 1993.

