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Abstract

The evaluation of the recent concept of turnaround radius could be helpful in discrimi-
nating between the various theories of gravity; after a recap of the scalar-tensor theories,
with particular relevance to the Horndeski’s theory, the concept of mass is exploited in
order to give an alternative definition to the turnaround radius. This recent definition
has proven more useful than the standard one, mainly because it turned out to be gauge-
invariant. Despite its unshakable differences with the standard definition using radial
time-like geodesics, the hope is that such differences, as underlined in simpler cases, are
small compared to the cosmological quantities involved. Thus, one can compare these
simpler (and gauge-independent) predictions of the turnaround radius for the various
theories of gravity with future data, finally finding which one will fits better them.
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Introduction

The Einstein’s General Relativity is one of the most successful physical (or, better,
scientific) theories of human being; its results were fundamental in the explanation of
some phenomena that previously did not have with the only help of the Newtonian gravity
and even more are the applications to our technologies and space research. However, as
any other scientific theory, it could be not enough to describe the whole behaviour of our
Universe, even though, nowadays, a big effort both in theoretical and experimental setup
is made in order to preserve this status. The General Relativity is extremely accurate
when we talk about our Solar system (it correctly predicts the Mercury’s perihelion
precession, the deflection of a far star’s light ray by the Sun and, as one of the latest
outcomes, it finally has found confirmation in gravitational waves) but its predictability
is starting to be weaker, specially when we look at larger scales. The prediction of the
rotation velocity of the low surface brightness galaxies (simply LSB galaxies) is only one
of the main problems that the theory has encountered on his way: the observed mass
is not enough to justify the very large velocity of such galaxies [1]. The attempt to
explain such a strange effect still on the light of General Relativity naturally leads to
the conclusion that, probably, the actual mass of such systems has to be larger than
the observed one: this is how dark matter was born. Many experimental attempts
tried and continue to try to find a sign of the existence of this type of matter that
exhibits no interaction with the electromagnetic spectrum and even more effort was
made only to provide it of a theoretical particle composition, since, by definition, no
particles of the Standard Model are useful to the scope [2]. Another way to explain
the observational issues found in LSB galaxies’ rotation and strong gravitational lensing,
is to reject the General Relativity as the fundamental theory of gravity. This would
be a strong requirement given the exceptional result that this theory has brought to
humanity but, at the same time, opens a new and very vast scenario; indeed, there
are pletora of modified gravity theories which nowadays try to explain dark matter
effects (and even dark energy) without the need of adding it. The problem is how one
could choose between the various theories of gravity, General Relativity included, and
why. In this thesis, after a recap of one of the most prominent extended theories of
gravity, the scalar-tensor theories, we first give a definition to the mass in the context
of a generic gravity theory and then we define the turnaround radius, in the hope that
a comparison between its predicted value in the various theories and its observed one
may help to understand the way to the ”correct” theory of gravity. The turnaround
radius, in a certain celestial cluster, is nothing else than that radius value (from an
appropriate centre of mass) in which the gravitational attraction due to local sources
and the expansion of the Universe cancel each other; therefore, the natural definition of
such a quantity is given by considering radial geodesics, evaluating so where the radial
acceleration vanishes. However, some discussions about the gauge-invariance of such
an approach (since the radial acceleration is calculated in a perturbed FLRW metric,
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which is a more realistic metric than the standard FLRW, that does not consider local
inhomogeneities), lead to define the turnaround radius in a slighter different way by the
use of the mass definition. Despite the fact that the results of such a calculation are
mathematically different from the ones made by using the standard definition, one can
argue that such difference, specially in astronomical observations and measurements, is
not too large to be detected. The advantages of this alternative definition, on the other
hand, are that the calculation is simpler but, most of all, the result is certainly gauge-
invariant (the mass is a scalar).
The goal of such a thesis therefore is to calculate, whenever possible, the turnaround
radius by using the standard definition and compare it with the one computed with
the alternative mass definition, with a final application to the Horndeski’s theory. The
hope, so, is that in the near future the various and different predictions on the turnaround
radius made by different gravitational theories, i.e. General Relativity (plus dark matter)
and scalar-tensor theory, may be compared with the observations: if one of these will
match better, then maybe we could say that we are on the right way to discover the
true theory of gravity. However, before becoming too enthusiastic, one should keep his
foot on the ground because we have to remind the fact that we do not have a theory
of gravity that matches both with data and the realm of Quantum Mechanics; in fact,
the theories of gravity are here treated as classical, in the sense that we describe them
with a Lagrangian and their field equations are obtained by means of the Hamilton’s
least action principle. Thus, even if a classical theory of gravity will be found, what will
remains is understanding how to quantize it.
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Chapter 1

Scalar-tensor theories

One of the major benefits that Einstein took with his theory is the geometrical interpre-
tation of the gravity. Until then, Newton’s law was the universally accepted theory of
gravity and, even in its later formulation, which can be resumed by the Poisson equation,
the gravity was thought as a scalar field potential. Slighter modifications of Newtonian’s
theory began to appear, specially after the discover of Special Relativity, trying to build
up a covariant formulation of the gravity and, mainly, solve the problem of the instan-
taneous change of the scalar potential, forbidden by the emergent theory: a natural
guess, made by Nordstrom, was to modify the laplacian of the Poisson equation into a
dalambertian. However, still no relationship appears between the gravity and the whole
geometry of the space-time.
One of the most discussed statements in Newtonian mechanics was the equivalence of
inertial and gravitational masses: when they face up by means of Newton’s second law,
they simplify each other; however, the only reason to do it was of experimental nature,
that is, the mass observed in the kinematical motions has the same value of that under-
going gravitational forces. The starting point of Einstein’s General Relativity returns to
this discussion, formulating the well known Equivalence Principle. Today, one can state
at least two formulations of this principle, a stronger and a weaker one:

Strong Equivalence Principle: in any gravitational field, there always exists a
local reference frame in which all gravitation effects vanish.

Weak Equivalence Principle: the inertial mass, that is the property of any
material body to react to motion variations, and the gravitational mass, that
is the property of any material body to be a source of or suffer a gravitational
field, are numerically equivalent.

The strong automatically satisfies the weak but the viceversa is not true. In particu-
lar, the strong formulation assigns to the gravity a pure geometrical formulation: there
is no space for scalar fields, because if one exists, it cannot be gauged away by a simple
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transformation of coordinates. So, Einstein formulates its famous field equations assum-
ing as the only dynamical field the metric tensor. Nevertheless, the strong principle is
in disagreement with another general statement, the Mach’s principle:

Mach’s principle: the inertia of every systems is the result of the interaction
of the system itself with the rest of the Universe.

In a local inertial system, however, by means of Strong Equivalence Principle, it seems
that no interaction appears. The solution is to sacrifice one of the two principles (pre-
serving anyway the Weak Equivalence Principle). Neglecting the strong formulation, the
natural way to restore the Mach’s principle is reintroducing, beyond the metric tensor,
the scalar field, as Dicke and his PhD student Brans made for the first time: this was
the birth of the scalar-tensor theories of gravity [3].
In the first section, the Einstein field equations, the way how they are obtained and
its slighter modifications are briefly discussed; in the second one, the main features of
scalar-tensor theories are explored, with particular relevance to the possible origins of
such a scalar field; in the final section, some limitations to these theories are considered,
leading to the general Horndeski’s theory.

1.1 Einstein General Relativity and beyond

The Einstein equations were derived in two different ways and almost in the same period
by Einstein and Hilbert; the reason why General Relativity is universally attributed
to Einstein is accountable to the fact that Hilbert formulation was a pure mathematical
construction with no physical consequences derived. The Einstein’s derivation concerned
conservation law and the recast of the Newtonian theory in weak field limit whereas
Hilbert used the variational principle. However, both agree on what the gravity field
strenght should be, namely something that at least contains second derivatives of the
metric and that is able to distinguish between flat and curved space-times unambiguously,
that is the Riemann tensor. Moreover, a well known theorem, sometimes attributed to
Vermeil, claims:

Vermeil’s theorem: the Ricci scalar is the only invariant linear in the second
derivatives of the metric tensor.

This is the starting point of both approaches. Following the Hilbert one will be useful to
have a precise procedure to derive field equations also in modified gravity theories. The
variational principle make use of the action of the theory to derive its field equation by
requiring that the action is stationary; in a 4-dimensional spacetime, the action, provided
by its volume invariant is

S =

∫
d4x

√
−gL (1.1)
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where L is the Lagrangian density of the theory. One can split it in two components,
one concerning the geometry and one the matter contribution: as known, its variation
leads naturally to the definition of the energy-momentum tensor. By means of Vermeil’s
theorem, the choice of the Lagrangian density falls back up Ricci scalar and so one can
write

L =
1

2χ
R + LM (1.2)

where χ represents a coupling constant. The procedure to obtain the field equations is
so outlined: let’s make use of least action principle

δS = 0 (1.3)

The matter Lagrangian LM is a function of the metric field gµν as well as the Ricci scalar;
thus, the variation can be made with respect to this tensor field as

δS =

∫
d4x

∂
(√

−g
(

1
2χ
R + LM

))
∂gµν

δgµν =

=

∫
d4x

√
−g 1√

−g

∂
(√

−g
(

1
2χ
R + LM

))
∂gµν

δgµν = 0

(1.4)

Then, the field equations can be obtained by the arbitrariness of
√
−gδgµν as

1√
−g

∂
(√

−g
(

1
2χ
R + LM

))
∂gµν

= 0 (1.5)

Applying the Leibniz rule, one gets

∂R

∂gµν
+

R√
−g

∂ (
√
−g)

∂gµν
= −2χ

1√
−g

∂ (
√
−gLM)

∂gµν
(1.6)

The variation of right-hand side term with respect to the metric field, as already said,
yields the energy-momentum tensor Tµν

−2χ
1√
−g

∂ (
√
−gLM)

∂gµν
= χTµν (1.7)

The second term on the left-hand side

R√
−g

∂ (
√
−g)

∂gµν
=

R

2 (−g)
∂ (−g)
∂gµν

= −1

2
gµνR (1.8)

since
∂g

∂gµν
= −ggµν (1.9)
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The first term is
∂R

∂gµν
=
∂ (gµνRµν)

∂gµν
= Rµν + gµν

∂Rµν

∂gµν
(1.10)

In particular, for the last term we know

Rµν =
(
Γρµν
)
;ρ
−
(
Γρρν
)
;ν

(1.11)

Defining

V ρ ≡ gµνΓρµν

W ν ≡ gµνΓρρµ
(1.12)

then

Rµν =
1

4
gµν
(
V ρ
;ρ −W ρ

;ρ

)
≡ 1

4
gµνU

ρ
;ρ (1.13)

So

gµν
∂Rµν

∂gµν
= gµν

∂Rµν

∂gµν
=

1

4
gµνU

ρ
;ρ (1.14)

However, a divergence of the vector U ≡ V −W can be neglected by integrating at the
action level and assuming that it vanishes at the borders. Thus, putting all together,
finally Einstein field equations are obtained

Rµν −
1

2
Rgµν = χTµν (1.15)

The trace of this yields
R = −χT (1.16)

The coupling constant can be recovered by requiring that Einstein theory reproduces
Newtonian one at weak field limit, easily finding that χ = 8πG in c = 1 units. The
field equations can be completed by adding by hand a term which could explain the
expansion of the Universe: in fact, the equations (1.15) are not enough to describe such
an expansion in spatially flat space-times and so they can be modified into

Rµν −
1

2
Rgµν − Λgµν = χTµν (1.17)

Admitted from Einstein himself as the biggest mistake of his life, nowadays the cos-
mological constant is considered as the dark energy ingredient that allows the General
Relativity to describe the expansion [4]. One of the main goals of the Extended theories
of gravity, however, is to allow such a situation without adding by hand any term. Thus,
the ways that one can proceed are two: keeping the Einstein theory of General Relativity
as the fundamental theory of gravity, fine tuning Λ and introduce dark matter or trying
to go beyond it, analyzing other possible theories.
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The ”simplest” extensions of Einstein theory are the so-called f(R) theories; indeed,
one can consider any function of the Ricci scalar as Lagrangian density, maybe relaxing
the linearity of second derivatives of metric tensor. In other words, the new Lagrangian
density (apart from volume invariant) will be

L =
1

2χ
f(R) + LM (1.18)

Having already described the variational principle method to get the field equations, one
has to repeat the same steps taking care of the last term seen; in order to do not disturb
the flow of the argumentation, the whole calculation is performed in the Appendix A
and here the field equations are directly shown

f ′(R)Rµν −
1

2
f(R)gµν = χTµν + f ′(R);µν − gµν2f

′(R) (1.19)

where a prime denotes a differentiation with respect to the curvature scalar R; the
following, instead, is the trace equation

f ′(R)R− 2f(R) + 32f ′(R) = χT (1.20)

Rewriting all in terms of the Einstein tensor Gµν ≡ Rµν − 1
2
Rgµν , the field equations can

be written as

Rµν −
1

2
Rgµν =

1

f ′(R)

[
1

2
gµν (f(R)− f ′(R)R) + f ′(R);µν − gµν2f

′(R)

]
+

χ

f(R)
Tµν

(1.21)
Looking at them from this perspective, the field equations so written seem like a sort
of ”effective” Einstein equations, introducing an extra term which one can call in full
generality as

T curvµν ≡ 1

2
gµν (f(R)− f ′(R)R) + f ′(R);µν − gµν2f

′(R) (1.22)

giving raise to

Rµν −
1

2
Rgµν =

1

f ′(R)

(
χTMµν + T curvµν

)
(1.23)

In other words, the extra contribution can act as a source, namely as a sort of fluid which
could explain several phenomena, like the expansion of Universe or the possible presence
of more matter in our Universe than that observed. Another big difference with the
Einstein equations is that the f(R) field equations are of the fourth order (not second)
and this comes clear with the following theorem which will be the starting point of the
final section
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Lovelock’s theorem: the Einstein field equations with cosmological constant
are the only possible second-order Euler-Lagrange equations derived from a
Lagrangian scalar density in 4 dimensions depending only on the metric ten-
sor.

Another similar but equivalent approach to obtain the field equations is using the so-
called Palatini formalism [5]. The suggestion is to assume the Lagrangian depending
separately on the metric tensor and on the connection; the field equations are so com-
puted first varying the action with respect to the first and then varying with respect to
the other: the result is the same but this alternative way has the advantage that we do
not need to specify the connection, in a generic theory of gravity and, so, can differ from
the Levi-Civita.

1.2 Reintroducing the scalar field

Hitherto, even in the f(R) theories, the gravity was treated as a pure geometric theory;
to make agreement with Mach’s principle, the first suggestion is to reintroduce a scalar
field, sacrificing the strong formulation of the Equivalence principle. Thus, beyond the
metric tensor which represents a tensor field, the idea is to consider a scalar but what kind
of field should it represent? To answer this question, Dicke suggested that the possible
scalar field could be the inverse of the (effective) gravitational constant [6], attempting
the following argument: the first Friedmann equation is

3

(
H2 +

k

a2

)
= 8πGρ (1.24)

from which the value of the spatial curvature can be fixed by

k

H2a2
=

ρ

ρcrit
− 1 (1.25)

with ρcrit =
3H2

8πG
. What it is well known is that the Universe can be considered flat,

namely k = 0 because the ratio ρ
ρcrit

∼ 1 by current observations [7]. In other words

ρ

ρcrit
=

8πGρ

3H2
∼ GM

R
∼ 1 (1.26)

where ρ = M
4
3
πR3 and H ∼ 1

R
are used and R is the radius of the visible Universe. This

would mean that
1

G
∼ M

R
(1.27)
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and so the gravitational constant is actually dependent of time as the radius of the
Universe. This argumentation leads Dicke to consider the scalar field as the inverse of
the gravitational constant, which now it is assumed as effective

ϕ =
1

Geff

(1.28)

From a theoretical point of view, the introduction of a scalar in the theory occurs at the
level of the Lagrangian, which now should depend on both metric field and scalar field
(and, in principle, on their derivatives)

L = L (gµν , ϕ) (1.29)

The part of Lagrangian depending on the metric field should be the same of General
Relativity (1.2) (in order to obtain field equations which contain second derivatives of
metric tensor), but there is a little but relevant difference: the gravitational constant,
which naturally enters in χ = 8πG, is now effective and represented by the scalar field
ϕ, so at Lagrangian level, it represents the non-minimal coupling between the metric
and the scalar field. Thus, the most general form of the Lagrangian of the scalar-tensor
theories will be

LST =
1

16π
ϕ (R + Lϕ) + LM (gµν , ϕ, ψ) (1.30)

where ψ stays for non-gravitational fields. However, in order to restore at least the Weak
Equivalence Principle, the matter Lagrangian must not depend on the scalar field, so let
us assume

LM (gµν , ϕ, ψ) = LM (gµν , ψ) (1.31)

The form of Lϕ can be chosen as usual as a function of the field and only its first
derivative, that is Lϕ = L (ϕ, ϕ;µ): this choice is done in order to obtain, when Euler-
Lagrange are applied, second order equations. Since the Lagrangian is a scalar, then the
most general form of Lϕ is

Lϕ = −ω(ϕ)
ϕ2

gµνϕ;µϕ;ν − V (ϕ) (1.32)

where ω(ϕ) is a parameter that initially was set constant in the Brans-Dicke theory, V (ϕ)
is a function of ϕ and the scalar field at the denominator is used to restore the right unit
dimensionality. Thus, the Lagrangian for scalar-tensor theories can be considered as [8]

LST =
1

16π

(
ϕR− ω(ϕ)

ϕ
gµνϕ;µϕ;ν − V (ϕ)

)
+ LM (gµν , ψ) (1.33)

The field equations of such a theory can be got, as usual, by applying the principle of least
action; this time, however, the variation is with respect to both metric field and scalar

11



field and so there will be a couple of field equations plus a trace equation. Combining
them, as shown in the Appendix B, the field equations are

Rµν −
1

2
Rgµν =

8π

ϕ
TMµν −

ω(ϕ)

ϕ2

(
ϕ;µϕ;ν −

1

2
gµνϕ

;σϕ;σ

)
+

+
1

ϕ
(ϕ;µν − gµν2ϕ)−

V

2ϕ
gµν

(1.34)

2ϕ =
1

2ω + 3

(
8πTM − dω

dϕ
ϕ;σϕ;σ + ϕ

dV

dϕ
− 2V

)
(1.35)

So written, the field equations assume the form of ”effective” Einstein equations, since
one can identify

T curvµν = −ω(ϕ)
ϕ2

(
ϕ;µϕ;ν −

1

2
gµνϕ

;σϕ;σ

)
+

1

ϕ
(ϕ;µν − gµν2ϕ)−

V

2ϕ
gµν (1.36)

as the modification of the energy-momentum tensor due to modified gravity. From
these equations and the Lagrangian (1.33), it is an easy computation recasting the f(R)
theories [9], that are now considered as a subclass of the more general scalar-tensor
theories, with the scalar field and the potential that respectively are

ϕf(R) = f ′(R) (1.37)

V (ϕ)f(R) = ϕR− f(R) (1.38)

It is important to outline that the present equations are obtained in the so-called Jordan
frame; this clarification is due to the possibility of perform a conformal transformation
such that one obtains, at Lagrangian level, a complete decouple of the Ricci scalar from
the scalar field, leading to the so-called Einstein frame. In this frame the field equations
appear ”easier” and several results are obtained using this frame instead of Jordan one
(e.g. the Birkhoff’s theorem to the first order in spherically symmetric space-time) [10].
At this point, one can ask from where such a scalar field can come from; the first hint
came from the Kaluza-Klein theory [11]: the dimensional reduction of a pure geometrical
higher-dimensional theory of gravity results in the appearance of a scalar field, known
in the literature as the dilaton. There are many other possible origins for the scalar
field, such as supergravity models or string theory; in the current inflationary models,
moreover, a scalar field with very low kinematical energy at early times, called inflaton,
could be the responsible of the inflation [12].
To end this section, it is important to remark that the choice of the Lagrangian (1.33)
was made in order to obtain ”simple” equations, namely again the Ricci scalar was
considered, by means of Vermeil’s theorem, and only first derivatives of scalar field are
considered (since the most desired form of a Lagrangian for a scalar field is basically
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composed by the kinetic energy and the potential); however, one could consider in full
generality

L = L
(
gµν , gµν;λ1 , gµν;λ1λ2 , ..., gµν;λ1λ2...λp , ϕ, ϕ;λ1 , ϕ;λ1λ2 , ..., ϕ;λ1λ2...λq

)
(1.39)

so one can go further than the second derivatives of gµν (and linear in them) and the
first derivatives of ϕ. Of course, the field equations will be much more involved and
the question of whether such theories are somewhat physical is the main argument of
the next section. Finally, one could proceed further and add to the theory also other
spin-type fields, such as a vector, obtaining a scalar-vector-tensor theory.

1.2.1 An application to LSB galaxies

The rotation velocity of some galaxies, called Low Surface Brightness or simply LSB,
has highlighted that there are notable differences between the predictions of General
Relativity and the observed data [1]. These discrepancies, among others, led the scientific
community to consider the possible existence of more matter than that is effectively seen.
Considering spiral galaxies, such as the ”near” Andromeda or the NGC 5023, we can
predict the value of the rotation of the galaxy as follows.

(a) Andromeda (b) NGC 5023

Figure 1.1: Two examples of spiral galaxies

We first consider a star which is located at the edges of the galaxy, in order to consider
the weak field limit and so, one can write

g00 = 1 +
2Φ

c2
(1.40)

where Φ is the gravitational potential. Considering also the Schwarzschild metric

ds2 =

(
1− Rs

r

)
c2dt2 − dr2(

1− Rs

r

) − r2dθ2 − r2sin2θdψ2 (1.41)

13



Comparing the two previous equations, one has that the gravitational potential in the
weak field limit is

Φ(r) = −Gm
r

(1.42)

Since the Birkhoff’s theorem is satisfied, the potential does not depend on time. More-
over, given a central potential, the rotational velocity modulus can be calculated as

v2c (r) = r
dΦ

dr
=
Gm

r
(1.43)

This formula is in agreement with Kepler’s law and it is obtained considered the star as
a point but it is valid also in the case of extended objects, because the Gauss’s theorem
ensures that the flux of the gravitational field depends solely on the mass of the internal
sources and not upon their relative positions.
However, what is found is that the asymptotic behavior of the speed, correctly described
by the Kepler’s law, is not even measured but it seems that there is a sort of plateau,
as if there were additional mass. Thus, this is one of the reasons which led scientists

Figure 1.2: Rotation velocity: prediction and observation.

to introduce dark matter; however, another explanation can come from using another
theory of gravitation, beyond the General Relativity. For instance, one can consider a
f(R) theory; the field equations and their trace are written in (1.21) and (1.20) and the
matter energy-momentum is considered vanishing. Again, we make use of the spherical
symmetry and, moreover, we assume that Birkhoff’s theorem holds in such theories, so
we forget about time dependencies

ds2 = A(r)dt2 −B(r)dr2 − r2dΩ2 (1.44)

Moreover, let us assume that, as well as for General Relativity, the following is true

A(r) =
1

B(r)
= 1 +

2Φ(r)

c2
(1.45)
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in the weak field limit. Considering the 00-component of the (1.21) and the (1.20), one
gets

f ′(R)

(
3
R00

g00
−R

)
+

1

2
f(R)− 3

f ′(R);00
g00

= 0 (1.46)

In particular, considering a power law theory

f(R) = f0R
n (1.47)

and substituting in the previous equation, one finds

R00(r) =
2n− 1

6n
A(r)R(r)− n− 1

B(r)

dA(r)

dr

d (lnR(r))

dr

2Rn−1(r) =
2− n

3n
Rn(r)

(1.48)

For n = 1, the equation reduces to R = 0 and so R00(r) = 0, which corresponds to
Schwarzschild solution. These differential equations have solutions in A(r) and so, in
Φ(r). In order to determine the solution, one can consider the following Ansatz

Φ(r) = −Gm
2r

[
1 +

(
r

rc

)β]
(1.49)

where β e rc are some parameters of the theory. The Newtonian potential is regained
when β = 0; this is a sort of corrective potential so, what is remaining, is to determine
β from the system (1.48). It is shown in [13] that

β(n) =
12n2 − 7n− 1−

√
36n4 + 12n3 − 83n2 + 50n+ 1

6n2 − 4n+ 2
(1.50)

Moreover, we can neglect those values that make the square root negative, that is the
interval n ≃ [−1.9135,−0.0194] and, from a physical point of view, one can require that,
even if slowed down, the asymptotic behaviour is recovered, at least at far distances, so
β < 1; moreover, to avoid strong increases of this potential, one can assume also β > 0
which, together with the previous condition, implies n > 1. Thus, the rotational velocity
is

v2c (r) = r
dΦ

dr
=
Gm

2r

[
1 + (1− β)

(
r

rc

)β]
(1.51)

where for β = 0 General Relativity is recovered. This formula says that the rotation
velocity is the sum of two contributions, one of which is Newtonian and the second has
a corrective nature. Tuning the two parameters, it is possible to recover the trend of the
measured curve; the first one, β, selects the value of n and so choose among all possible
(power law) f(R) theories whereas the critical radius, rc, is added to take into account
extended objects: in fact, now, given this form of potential, Gauss’s theorem is no longer
valid and, in principle, the gravitational field can depend on the mass distribution [14].
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1.3 Horndeski’s theory

We have already cited the Lovelock’s theorem at the end of first section which states
that the only possible second-order field equations derived from a Lagrangian density
depending solely on the metric are the Einstein ones. At the light of the scalar-tensor
theories, now one can ask what are the equations that are field equations derived from
a Lagrangian density depending not only on the metric but also on the scalar field. On
the other hand, however, the question is: why we need such restrictions? The answer
lies in the so-called Ostrogradsky instability [15]:

A non-degenerate higher derivative Lagrangian suffers from ghost-like insta-
bilities.

In order to understand what are these ghosts or instabilities, let us consider a simple
example of a Lagrangian depending on a scalar field, its derivative and second derivative
with respect to the time

L = L
(
ϕ, ϕ̇, ϕ̈

)
(1.52)

where ϕ is the scalar field and the dot represents a time derivation. The equations of
motion, namely the Euler-Lagrange equations, are so

d

dt

∂L
∂ϕ̇

− d2

dt2
∂L
∂ϕ̈

=
∂L
∂ϕ

(1.53)

Considering the following Lagrangian, for instance

L =
a

2
ϕ̈2 − V (ϕ) (1.54)

the equations of motion therefore are

a
....
ϕ =

∂V (ϕ)

∂ϕ
(1.55)

Now, in order to reproduce a standard Lagrangian, that is with a canonical kinetic term
depending on first derivative (not second) in time, the trick is to consider an auxiliary
variable ψ and write the former Lagrangian as

L = aψϕ̈− a

2
ψ2 − V (ϕ) (1.56)

where our Lagrangian is re-obtained for ψ = ϕ̈. Using the Leibniz rule

L = a
d

dt

(
ψϕ̇
)
− aψ̇ϕ̇− a

2
ψ2 − V (ϕ) (1.57)
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The first term, at action level, does not contribute to Euler-Lagrange equations and so
can be neglected. Finally, substituting q = ϕ+ψ√

2
and Q = ϕ−ψ√

2
, one gets

L = −a
2
q̇2 +

a

2
Q̇2 − U(q,Q) (1.58)

which is the canonical form of a Lagrangian but we immediately notice the minus sign
for the kinetic term of variable q: this represents something non-physical and it is called
ghost term.
This kind of instabilities could affect also theories of gravity; General Relativity is ex-
empt from them because, by construction, it depends at maximum on second derivatives
(and linear in them) of the metric tensor and no scalar fields are included. f(R) theories,
instead, can include such things and, more generally, scalar-tensor theories are not con-
strained by anything to satisfy these criteria. The attempt to find a Lagrangian of type
(1.39) that fulfills the criterion of having just second-order field equations led Gregory
Horndeski to formulate its Lagrangian density in 1973 [16]. However, it went unnoticed
until the last decade when it was re-discovered through an apparently very different ap-
proach, the generalized Galileon [17], whose Lagrangian was shown to be equivalent to
the original Horndeski’s [18]. Thus, when talking about the Horndeski’s theory, we refer
to the following Lagrangian

L =G2 (ϕ,X)−G3 (ϕ,X)2ϕ+G4 (ϕ,X)R+

+G4,X (ϕ,X)
[
(2ϕ)2 − ϕ,µνϕ,µν

]
+G5 (ϕ,X)Gµνϕ,µν

− G5,X (ϕ,X)

6

[
(2ϕ)3 − 32ϕϕ,µνϕ,µν + 2ϕ,µνϕ

,νλϕµ,λ
] (1.59)

where X = −1
2
ϕ,µϕ

,µ.
Now, one could be interested in the field equations; instead of fully deriving them, which
could be rather long, we try to write them in form of effective Einstein equations, like
(1.34), without worrying about the form of the effective energy-momentum tensor. Thus,
we are interested in the variation with respect to the metric field only of the action, that
is

δgS =

∫
d4x

√
−g
(
−1

2
gµνL+

δL
δgµν

)
δgµν (1.60)

The terms of (1.59) which, by means of the previous variation, can contribute to the
Einstein tensor are those with G4 and G5; in particular, for G4 term, the variation of Ricci
scalar gives the Ricci tensor and a term that does not contribute to Einstein tensor and
then we have to add the contribution of the variation of the volume invariant which gives
exactly the Einstein tensor, that is adding them up we get a term G4

(
Rµν − 1

2
gµνR

)
. For

the G5 term, the variation of Einstein tensor should vanish by diffeomorphism invariance,
so we are left with the volume invariant variation which gives a term −1

2
G5ϕ,µνgµνG

µν =
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1
2
G5ϕ,µνR. Thus, in the end, the effective Einstein equations for the Horndeski’s theory

should be something like

G4Rµν −
1

2
(G4gµν −G5ϕ,µν)R = 8πTMµν + THornµν (1.61)

and, for the moment, we are not interested on the form of THornµν . The left hand side can
be also modified as

G4Rµν −
1

2
(G4gµν −G5ϕ,µν)R =G4Rµν −

1

2
G4

(
gµν −

G5

G4

ϕ,µν

)
R =

=G4

(
Rµν −

1

2
g′µνR

) (1.62)

where now we have a modified metric g′µν (gµν , ϕ) = gµν − G5

G4
ϕ,µν . Thus, the Horndeski’s

effective Einstein equations are rewritten as

G4 (ϕ,X)

(
Rµν −

1

2
g′µν (gµν , ϕ)R

)
= 8πTMµν + THornµν (1.63)

Moreover, we can consider also the Ricci tensor in the new metric by including the extra
terms again in the unknown THornµν

G4 (ϕ,X)

(
R′
µν −

1

2
g′µν (gµν , ϕ)R

)
= 8πTMµν + THornµν (1.64)

Thus, instead of calculating directly the field equations, one can directly consider the
effective Einstein equations which will be much more useful in calculating the mass in
Horndeski’s theory and then, the turnaround radius.
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Chapter 2

A new mass definition

The concept of what is a mass in General Relativity is gaining prominence because it
provides an alternative way to calculate the turnaround radius [19]. The main problem,
however, is that there is no a universal accepted definition of mass in General Relativity
(and, of course, in any other extended theories of gravity), neither of what we know as
gravitational energy.
In Newtonian Mechanics, there were no doubts on what mass is; considering the Poisson
equation

∇2ϕ(x) = 4πGρ(x) (2.1)

where ϕ(x) is the gravitational field potential and ρ(x) is the matter density, a definition
of the mass directly occurs through an integration of the matter density over the whole
space

M ≡
∫
V

dτρ(x) (2.2)

Moreover, because of the Poisson equation, one can always reduce the integral over the
3-dimensional space to an integration over a surface

M =

∫
V

dτρ(x) =
1

4πG

∫
V

dτ∇⃗ ·
(
∇⃗ϕ(x)

)
=

1

4πG

∫
∂V

dΣ∇⃗ϕ(x) · n⃗ =
Mint

4πG
(2.3)

where it is been defined

Mint ≡
∫
∂V

dΣ∇⃗ϕ(x) · n⃗ (2.4)

which represents a first definition of ”quasi-local” mass since there is no need to measure
mass through the entire space but it is enough to know the gravitational flux on the
2-dimensional surface. In particular, given the Newton’s gravitational law

∇⃗ϕ(x) = G
M

r2
r̂ (2.5)
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one can easily check that, being in the hypotheses of Gauss theorem, the quasi-local
mass definition is equivalent to that of the mass itself. However, an analogous quasi-
local definition of the potential energy cannot be obtained since there is no a Poisson-like
equation which links the potential energy to the Laplacian of some function.
In the context of General Relativity, the situation is completely different: there is no
Poisson equation but only Einstein field equations (1.15) (or effective ones (1.34), in the
case of scalar-tensor theories). A natural definition of mass should, however, belong to
the 00-component of the energy-momentum tensor but now there is no general formula
which relates this to some potential (that, in this case, translates in something coming
from the metric itself). Moreover, any local definition of the gravitational energy would
be wrong, because of the Equivalence Principle: a single observer can always put himself
in a system where no gravity is felt, not distinguishing between gravitational effect from
kinematical ones, so two observers are needed to measure a pure gravitational effect,
that is the geodesic deviation

D2xα

Ds
= Rα

µνλu
µuνxλ (2.6)

In order to solve these issues, one can consider a simple case, like spherical symmetry,
and then try to analyse the problem from a full perspective: indeed, the need of at least
two observers suggests that studying the evolution of 2-surfaces will surely contain the
information of some quasi-local energy, since 1-dimensional ones (lines) are not neces-
sarily measuring it, given a possible geodesical observer. So, the chapter is organised
as follows: in the first section, there is an attempt to define mass in presence of spher-
ical symmetry; in the second one, the 2+2 formalism is introduced in order to find a
quasi-local definition of the energy; in the third section, a natural generalization of such
a definition for scalar-tensor theories is given with some examples and the application to
Horndeski’s theory is discussed.

2.1 The spherically symmetric case

Consider, for instance, the simplest example of spherically symmetric space-time, the
Schwarzschild metric

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 (2.7)

where, as usual, dΩ2 = dθ2 + sin2θdφ2; here, there are no ambiguities on the concept of
mass, represented by the mass m, so one can say that the mass is constant throughout
the entire space-time. A different situation appears in the Reissner-Nordström metric

ds2 = −
(
1− 2m

r
+
Q2

r2

)
dt2 +

(
1− 2m

r
+
Q2

r2

)−1

dr2 + r2dΩ2 (2.8)

20



which describes a massm charged byQ: in this case one does not have a trivial analogy as
in the previous case but what one finds is that the mass is no longer constant everywhere
because of the electromagnetic energy-momentum tensor. In order to be more precise, a
generic spherically symmetric metric is considered

ds2 = −A (t, r) dt2 +B (t, r) dr2 − 2C (t, r) dtdr +D2 (t, r) r2dΩ2 (2.9)

Performing a change of coordinates (t, r, θ, φ) → (t, R, θ, φ) : R = D (t, r) r, one can
express the metric in terms of the areal radius R

ds2 = −A′ (t, R) dt2 +B′ (t, R) dR2 − 2C ′ (t, R) dtdr +R2dΩ2 (2.10)

and, since the unknown functions are in general functions of the time also one can try to
find another coordinate transformation such that (t, R, θ, φ) → (T,R, θ, φ) : C (T,R) = 0
so that

ds2 = −A′′ (T,R) dT 2 +B′′ (T,R) dR2 +R2dΩ2 (2.11)

At this point, without loss of generality, one can re-express the two unknown functions
A′′, B′′ → A,B in terms of other two unknown functions, m,ψ, so built

A (T,R) = e2ψ(T,R)

(
1− 2m (T,R)

R

)
B (T,R) =

(
1− 2m (T,R)

R

)−1 (2.12)

ds2 = −e2ψ(T,R)

(
1− 2m (T,R)

R

)
dT 2 +

(
1− 2m (T,R)

R

)−1

dR2 +R2dΩ2 (2.13)

The advantage of making so is that now a natural definition of mass can be obtained:
indeed, an easy computation of the

(
0
0

)
Einstein equation yields

∂m (T,R)

∂R
= 4πGR2T 0

0 (2.14)

As we know, the
(
0
0

)
-component of the energy-momentum tensor represents the energy

density and so can lead to a natural description of a mass; in practice, T 0
0 has the role

that matter density had in Poisson equation, that is

M(R) ≡ G

∫
V

dτT 0
0 (2.15)

Due to spherical symmetry and inserting (2.14), we get

M(R) = 4πG

∫ R

0

dR′T 0
0 = 4πG

∫ R

0

dR′ 1

4πGR′2
∂m

∂R′ =

∫ R

0

dR′ ∂m

∂R′ = m(R) (2.16)
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and so the function m will play the role of the effective mass function. This has been
possible thanks to the actual form of the metric, without which we would never have
achieved the Einstein equation (2.14). So, in the end, the mass function can be deter-
mined by analysing the g11, obtaining

m (T,R) =
R

2G

(
1− gRR

)
=

R

2G
(1−R;µR

;µ) (2.17)

where we want to stress out the fact that the areal radius can be in general a function
not only of the radius but also of the time.
In our former examples, the areal radius coincides with the radius itself; in the Schwarzschild
case, one consistently finds

m (t, r) = const = m (2.18)

whereas in the Reissner-Nordström case

m (t, r) = m (r) = m− Q2

2r
(2.19)

which means that the mass is no longer a constant of the space-time but varies throughout
it in a way that an observer, ideally sitting at infinity, would measure a constant value. A
similar (but not equivalent) situation can be encountered in the Schwarzschild-de Sitter
space-time

ds2 = −
(
1− 2m

r
− Λr2

)
dt2 +

(
1− 2m

r
− Λr2

)−1

dr2 + r2dΩ2 (2.20)

where the mass function results to be

m (t, r) = m (r) = m+
Λ

2
r3 (2.21)

so we found again a change of the value of mass measured but this time an observer
at infinity would measure an infinite mass, due to expansion. An example of areal ra-
dius dependent on time is given by the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(2.22)

The areal radius is so dependent of time because of the scale factor

R(t, r) = a(t)r (2.23)

Applying the (2.17), one easily gets

m (t, r) =
R3

2G

(
H2 +

k

a2

)
(2.24)
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where H(t) = a,t
a

is the usual Hubble parameter; so, in this case, the concept of mass is
entirely related to the expansion of the Universe. In the flat Universe, one has

m (t, r) =
H2R3

2G
=

4πR3

3
ρ (2.25)

where in the last line Hamiltonian constraint, i.e. the first Friedmann equation, is applied.
This formula is in agreement what one expects: the mass is nothing else than the matter
density contained in a spherical volume. A more realistic situation is described by the
perturbed FLRW metric; considering the conformal time t → η : dt = adη, the (flat)
FLRW metric becomes

ds2 = a2(η)
(
−dη2 + dr2 + r2dΩ2

)
(2.26)

The perturbed FLRW metric is introduced in order to describe inhomogeneities caused
by the presence of matter; considering only the scalar perturbations in the Newtonian
gauge, the perturbed FLRW metric is

ds2 = a2(η)
[
− (1 + 2ψ(t, r)) dη2 + (1− 2ϕ(t, r))

(
dr2 + r2dΩ2

)]
(2.27)

One further simplification comes from the Birkhoff’s theorem, that allows us to write

ψ(t, r) = ϕ(t, r) = ϕ(r) (2.28)

A remark here on what we mean for Birkhoff’s theorem: of course the metric will depend
on time (scale factor) so cannot be meant as static (as well as the theorem states) but
what is interesting is that the two scalar perturbations, as result of Einstein equations, are
independent of time; thus, the idea is to consider a sort of generalized Bhirkhoff’s theorem
which is not applying to the entire metric solution but only to its some components.
Thus, the mass function, whose calculation is performed in the Appendix C, results

m (t, r) =
1

G

[
−
r3ϕ2

,r

2
(1− 2ϕ)−

3
2 + r2ϕ,r (1− 2ϕ)−

1
2

]
a+

H2R3

2G (1 + 2ϕ)
(2.29)

We immediately notice that the zeroth order in perturbation coincides with the mass of
FLRW metric (2.24) (with k = 0); the interpretation of this is simple: one can address to
the first term a ”local” behaviour, due to clumping and gravitational attraction exercised
by matter structures, and to the second term a ”cosmological” behaviour, due to the
expansion. At the first order in the perturbation

m (t, r) ≃ r2ϕ,ra

G
+
H2R3

2G
(1− 2ϕ) +O(ϕ2) (2.30)
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To understand why the first term is responsible of gravitational attraction, one can try
to calculate ∇2ϕ and consider the first order in the perturbation, finding (see Appendix
C)

∇2ϕ ≃ 1

a2r2
d

dr

(
r2ϕ,r

)
(2.31)

In other words, the perturbation represents a generalization of the Newtonian gravita-
tional field and, at first order, it can be integrated as made for Poisson equation

mN =

∫
V

dτ∇2ϕ = 4π

∫ r

0

dr′r′2∇2ϕ =
4π

a2

∫ r

0

dr′
d

dr′
(
r′2ϕ,r′

)
=

4π

a2
r2ϕ,r (2.32)

and redefining mN → a2

4πG
mN , we finally get

m (t, r) ≃ mNa+
H2R3

2G
(1− 2ϕ) (2.33)

which clearly shows the different and opposite nature of the two terms.

2.2 The 2+2 formalism and the Hawking-Hayward

mass

The previous discussion was possible because spherical symmetry allows the mass func-
tion to be directly related to the energy density via Einstein equation but one can ask
what is a mass in general, that is when such a useful relation is no longer found. The
main idea is again trying to find a prescription for the energy and if, from a Lagrangian
point of view, the equation of motion are not useful, one may consider the Hamiltonian
formalism and try to calculate the Hamiltonian density as a prescription of the so-called
”quasi-local” energy. However, in doing so, a 3+1 decomposition of the metric (like
ADM) can lead to something that has nothing to do with gravitational energy because,
as said in the introduction, at least a 2-dimensional surface is needed: that’s why a 2+2
decomposition of the metric could yield a correct gravitational energy without ambigui-
ties.
So, instead having a 3-spatial surface and an evolution vector, in the 2+2 formalism

there is a 2-dimensional surface evolving by means of two commuting evolution vectors
uα = d

dξ
,vα = d

dη
, forming so a basis e⃗µ = (∂ξ, ∂η, ∂2, ∂3); since the main goal of de-

composition is to write the metric, it is always useful to split the evolution vectors in a
component normal to the 2-dimensional surface and a shift vector and choose as basis
the normal ones: in other words, calling these normal components nα = d

dτ
and lα = d

dσ
,

and so choosing a basis e⃗a = (∂τ , ∂σ, ∂2, ∂3), the mixing components of the metric vanish

g (n⃗, ∂2,3) = g
(
l⃗, ∂2,3

)
= 0 (2.34)
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Figure 2.1: A graphical illustration of the 2+2 formalism

Moreover, in general we have

g (n⃗, n⃗) = a

g
(
l⃗, l⃗
)
= b

g
(
n⃗, l⃗
)
= −em

g (∂a, ∂b) = hab

(2.35)

If the 2-dimensional surface is null, many calculation will be simplified in the context of
integrability conditions and a = b = 0 can be set [20]. Thus, now it is easy to write the
most general line element by means of the following metric tensor

gab =

 rcr
c rcs

c − e−m rb
rcs

c − e−m scs
c sb

ra sa hab

 (2.36)

where r⃗ and s⃗ are the shift vectors, that is ra = habu
b and sa = habv

b. Now, what one has
to do is to compute the Lagrangian which now appears at the action level as

S =

∫
S×U×V

λR =

∫
U
dξ

∫
V
dη

∫
S

L (2.37)

where S is the 2-dimensional surface and λ is the volume form. Once done, the conjugate
momenta have to be calculated in order to develop the Hamiltonian density. After much
effort, it can be shown that the Hamiltonian density can be expressed in terms of extrinsic
fields as [21]

8πGH = −µ
(
R+ θθ̃ − 1

2
σabσ̃

ab − 2ωaω
a

)
(2.38)
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where µ is the area 2-form and R is the Ricci scalar relative to the 2-dimensional surface
S, namely it is made of hab. Since we are interested in the energy itself and not a
density, the previous has to be integrated over; in a 2+2 context, the integration has to
be performed over the 2-surface and so, in the end, one has to add a factor of lenght
units to get the right energy units

E = −
√

A

16π

∫
S

H (2.39)

where A =
∫
S
µ and the factor has been chosen for agreement with the Schwarzschild

mass. Thus, taking into account 2.38, the searched expression for the energy could be
[22]

E =
1

8πG

√
A

16π

∫
S

µ

(
R+ θθ̃ − 1

2
σabσ̃

ab − 2ωaω
a

)
(2.40)

This is the so-called Hawking-Hayward mass, so called after Hayward revised the previous
definition given by Hawking in [23]: indeed, the Hawking definition of mass was similar

MH =
1

8πG

√
A

16π

∫
S

µ
(
R+ θθ̃

)
(2.41)

However, the lack of twist and, mainly, of shear caused this old definition to be incom-
patible with the simplest case, the flat space-time: in fact, from the contracted Gauss
equation

R+ θθ̃ − 1

2
σabσ̃

ab = hachbdRabcd (2.42)

since flat space-time is such that Rabcd = 0 and ωa = 0, the MHH of (2.40) vanishes
whereas the MH of (2.41) does not. Other definitions of mass are also given in literature
([24]) but at present time this is the universally accepted one.
Interesting is the case of spherical symmetry (2.11): the 2-surface is a sphere and so
shear and twist naturally disappears; the area is A = 4πR2 and the Ricci scalar of the
surface is R = 2

R2 ; so the integration over the surface S yields a factor 4πR2 since the
Ricci scalar and the expansions do not depend on the variables which form the basis of
S. Instead of calculating the expansion scalars, one can also use the contracted Gauss
equation (2.42) and find that

R+ θθ̃ = hachbdRabcd =
2

R2
(1−R;µR

;µ) (2.43)

So, in the end, the Hawking-Hayward mass in spherical symmetry is

MHHs =
1

8πG

√
4πR2

16π
4πR2 2

R2
(1−R;µR

;µ) =
R

2G
(1−R;µR

;µ) (2.44)
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in agreement with (2.17). In this special case, the Hawking-Hayward is known as the
Misner-Sharp-Hernandez mass [25]. We recall once again that the radial coordinate is
represented by the areal radius which in general can depend on time and so, the covariant
derivative can lead to something less trivial than expected.

2.3 The scalar-tensor generalization

The Hawking-Hayward mass is derived in the context of General Relativity: in fact, in
deriving the Hamiltonian (2.38), the action (2.37) was used, where the Lagrangian density
is simply the volume form multiplied by the Ricci scalar. If one wants to generalize it
to any scalar-tensor theory, he should replace the Lagrangian with the appropriate one
(1.33) but, if the actual derivation of the Hamiltonian using the simplest Einstein-Hilbert
action is already rather long, the new derivation would be an endless dive in calculations.
So, rather than follow such a hopeless construction, an alternative way was suggested in
[26]: assuming that the (2.40) is still the correct expression for the mass, the effective
Einstein equations (1.34) must be considered. Thus, considering the decomposition of
the Riemann tensor into Weyl tensor

Rabcd = Cabcd + ga[cRd]b − gb[cRd]a −
R

3
ga[cRd]b (2.45)

making use of the contracted Gauss equation (2.42) and the effective Einstein equations,
one finds

hachbdRabcd =h
achbdCabcd +

8π

ϕ
hachbd

[
ga[cTd]b − gb[cTd]a −

T

2

(
ga[cgd]b − gb[cgd]a

)]
+

+
ω

ϕ2
hachbd

(
ga[c∇d]ϕ∇bϕ− gb[c∇d]ϕ∇aϕ

)
+

+
1

ϕ
hachbd

(
ga[c∇d]∇bϕ− gb[c∇d]∇aϕ

)
+

+
2ϕ+ V

2ϕ
hachbd

(
ga[cgd]b − gb[cgd]a

)
+

+

(
8πT

3ϕ
− ω

3ϕ2
∇cϕ∇cϕ− 2ϕ

ϕ
− 2V

3ϕ

)
hachbdga[cgd]b

(2.46)

Since
hachbd

(
ga[cAd]b − gb[cAd]a

)
= habAab (2.47)

where Aab will be at turn the terms Tab, ∇aϕ∇bϕ, ∇a∇bϕ, gab that appear in the previous
expression and considering by means of the Mach principle the field ϕ as the effective
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gravitational constant, one can consider as the mass prescription for the scalar-tensor
theories the following

MST =
1

8π

√
A

16π

∫
S

µϕ

[
hachbdCabcd − 2ωaω

a +
8π

ϕ
habTab −

16πT

3ϕ
+
hab∇a∇bϕ

ϕ
+

+
ω

ϕ2

(
hab∇aϕ∇bϕ− 1

3
∇cϕ∇cϕ

)
+
V

3ϕ

]
(2.48)

Again, one of the simplest frameworks in which it is comfortable to work is the spherical
symmetry; a simple guess [27] can be a natural generalization of the Misner-Sharp-
Hernandez mass (2.17) by considering an effective gravitational constant represented by
the scalar field ϕ = 1

Geff

MSTs =
ϕR

2
(1−R;µR

;µ) (2.49)

However, in order to be careful, let us apply directly the diagonal spherically symmetric
metric in the mass prescription above: this means considering a vanishing twist, an area
A = 4πR2 and an integrand indipendent of integration domain, which returns an extra
factor 4πR2, so the scalar-tensor mass in spherical symmetry should be

MSTs =
ϕR3

4

[
hachbdCabcd +

8π

ϕ
habTab −

16πT

3ϕ
+
hab∇a∇bϕ

ϕ
+

+
ω

ϕ2

(
hab∇aϕ∇bϕ− 1

3
∇cϕ∇cϕ

)
+
V

3ϕ

] (2.50)

Looking at it, it seems that it has nothing to do with Misner-Sharp-Hernandez mass or
even with the (2.49); however, one can show that in several cases, like the FRLW metric,
by making use of the Hamiltonian constraint (i.e. field equations), one can obtain the
searched relationship. In fact, if one consider the starting point of the previous mass
derivation

MST =
1

8π

√
A

16π

∫
S

µϕ

(
R+ θθ̃ − 1

2
σabσ̃

ab − 2ωaω
a

)
(2.51)

and the diagonal spherically symmetric metric (2.11), assuming that the scalar field ϕ is
a function of t and R, then it can be extracted out, obtaining [28]

MST =
1

8π

√
A

16π
ϕ(t, r)

∫
S

µ

(
R+ θθ̃ − 1

2
σabσ̃

ab − 2ωaω
a

)
(2.52)

At this point, as in the previous section, the metric allows to neglect shear and twist
and, again using contracted Gauss equation, one gets the generalization of the Misner-
Sharp-Hernandez mass. An alternative way to see the validity of this prescription is by
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means of the arguments shown in the first section: considering the metric with explicit
mass function, one would have

∂m (T,R)

∂R
= 4πR2

(
T 0
0

ϕ
+ T 0curv

0

)
(2.53)

So, considering the energy-momentum tensor as the sum of two contributions, a matter
contribution and a curvature one, then we have the same result (2.14) of the section one,
with a precise and unambiguous definition of the mass, which is indeed the (2.49).

2.3.1 Examples

Applications of the prescription (2.49) to the Schwarzschild, Reissner-Nordström and
Schwarzschild-de Sitter metrics are straightforward: indeed, the only modification con-
cerns the effective gravitational constant which naturally appeared in the cited metrics
considering m(t, r) = GM(t, r). So, the scalar-tensor mass prescription for those metrics
respectively are

MST (t, r) =ϕ(t, r)m

MST (t, r) =ϕ(t, r)

(
m− Q2

2r

)
MST (t, r) =ϕ(t, r)

(
m+

Λ

2
r3
) (2.54)

Of particular relevance is the fact that, in general, when considering theories which go
beyond the Einstein’s General Relativity, even the Schwarzschild mass, i.e. the mass of a
static, chargeless and asymptotically flat black hole, is no longer a constant through the
space-time; this fact can be directly connected to the failure of the Gauss’s law: in the
General Relativity case, the Newtoninan potential, by means of the diagonal spherically
symmetric metric with mass function, was simply ϕN = m

r
and so the hypotheses of the

law (i.e. the inverse squared behaviour of the flux) are satisfied, ensuring that, outside
the source, an observer will always measure the whole internal mass, no matter where
or how it is distributed; in extended theories of gravity, a simple analytical solution of
the effective Einstein equations (1.34) is not found and, moreover, there is no proof that
Birkhoff’s theorem holds even in this simplest case. Thus, unlike the General Relativity,
the Newtonian potential cannot be ensured to be of the best form (i.e. an inverse radius
behaviour) and so the Gauss’s law does not hold. The other cases treated in the first
section concern the FLRW metric; in the standard (flat) FLRW metric, the calculation
of the mass is straightforward

MST (t, r) =
H2R3ϕ

2
(2.55)
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However, the Hamiltonian constraint is quiet different, because, by means of the effective
Einstein equations, extra terms appear in the Friedmann equation

H2 =
8πρ

3ϕ
−H

ϕ̇

ϕ
+
ω

6

(
ϕ̇

ϕ

)2

+
V

6ϕ
≡ 8π (ρ+ ρϕ)

3ϕ
(2.56)

These extra terms can be considered as the contribution to the energy density of the
curvature modifications induced by modified gravity; thus, the mass results

MST (t, r) =
H2R3ϕ

2
=

4πR3

3
(ρ+ ρϕ) (2.57)

So, now the mass is not simply the matter contained in a sphere but one has to take
into account the effect of the gravity modification induced by the scalar field: the result
would be a prediction of the mass larger than that observed, which could be of main
interest in understanding the true nature of the dark matter. The same result can be
obtained applying directly the (2.50). In order to proceed further, let us consider the
more realistic metric (2.27); however, to not make confusion between the scalar field and
the scalar perturbation of the FLRW metric, the metric is rewritten as

ds2 = a2(η)
[
− (1 + 2A(η, r)) dη2 + (1− 2B(η, r))

(
dr2 + r2dΩ2

)]
(2.58)

Unlikely, there is no certainty that Birkhoff’s theorem holds now and so a simplification
like the (2.28) is no longer available. Thus, one has to treat the two scalar perturbations
as distinct functions and both to be intended as functions of the time also. What one
can say is, by means of [29], the Birkhoff’s theorem holds only at zeroth order in the
Jordan frame and till the first order in the Einstein frame: however, the prescription of
mass given naturally lies in the Jordan frame and so one has to consider the conformal
transformation, with a subsequent modification of the mass prescription (2.49); more-
over, even at zero order, the maximum that one can say is that the two functions are
independent of time but, in general, they are not the same function. Again, one can use
either the (2.50) or (2.49); following the easier one, namely the second, it is shown in the
Appendix D that

MST (t, r) =ϕ

[
−
r3B2

,r

2
(1− 2B)−

3
2 + r2B,r (1− 2B)−

1
2

]
a+

− ϕa2Hr3B,η

√
1− 2B

1 + 2A
+
ϕ

2
ar3B2

,η

1

(1 + 2A)
√
1− 2B

+

+
ϕH2R3

2 (1 + 2A)

(2.59)

where all dipendencies of ϕ, A and B are implicit. Notice that the result is again a first
term, composed by two parts, possibly responsible of the gravitational potential and so,
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exhibiting a ”local” behaviour, and three terms that can be addressed as ”cosmological”
[30]: the last term is already encountered in (2.29) (as well as for the first two terms
in the square brackets) whereas the other two terms are new and take into account the
variation of the scalar perturbation with respect to the (conformal) time. At first order
in the scalar perturbations

MST (t, r) ≃ ϕr2B,ra− ϕa2Hr3B,η +
ϕH2R3

2
(1− 2A) (2.60)

Calculating ∇2B as done in the first section, one can show that, at first order (check
again Appendix D)

∇2B ≃ 1

a2

[
1

r2
d

dr

(
r2B,r

)
− 1

a2
d

dη

(
a2B,η

)]
(2.61)

The second term does not allow a similar definition for mN as in the (2.32); however, at
this level of approximation, the Birkoff’s theorem hold and so one can neglect that term,
allowing for a correct Newtonian mass definition, leading to the following

MST (t, r) ≃ ϕmNa+
ϕH2R3

2
(1− 2A) (2.62)

where now even A is a function of r only. This expression is comparable to the (2.33).
However, here, there is another thing that can be expanded at the first order of approx-
imation, the scalar field

ϕ(t, r) = ϕ(0)(t, r) + δϕ(t, r) (2.63)

Moreover, one can apply the Hamiltonian constraint and obtain an expression which has
to be compared with the one obtained using the general prescription (2.50), whose result
is computed in the [31] and shown below

MST (t, r) =
H2

(0)R
3
(0)ϕ(0)

2
(1− 3B) +

R3
(0)ϕ(0)

4

{
2

3a2

(
A,r
r

+
B,r

r
− A,rr −B,rr

)
+

+
16π

3

[
−4
(
ρ(0) + P(0)

)
A+ δρ− 2P(0)B

]
+
ω0,rδϕ− 2ω0A

3a2ϕ(0)

ϕ2
(0),η+

+
4a,η
a3

ϕ(0),ηA+
2δϕ,r
a2r

+
V0,r
3
δϕ

} (2.64)

2.3.2 Horndeski’s mass

The way we have calculated the field equations in (1.64) is very useful to understand
what is mass function in such a theory, at least in the hypothesis of spherical symmetry.
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Indeed, one can repeat the same argumentation of the first section, or even refer to the
(2.53), and consider a metric with explicit mass function like the (2.13), finding

∂m (T,R)

∂R
= 4πR2

(
T 0
0

G4 (ϕ,X)
+ T 0Horn

0

)
(2.65)

However, a little clarification has to be made here; the metric that one refers to is, again
by means of (1.64), g′µν = gµν − G5

G4
ϕ,µν ; in practice, the mass function now is

m (T,R) =
G4R

2

(
1− g′RR

)
=
G4R

2

(
1− gRR +

G5

G4

ϕ,RR
)

(2.66)

Thus, the convenience of using the (1.64) without regarding whatever form the energy-
momentum acquires is manifest in the simple and analog prescription that one assigns
to mass.
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Chapter 3

Turnaround radius

There is a wide range of applications for the scalar-tensor theories; the final goal is to
understand which effectively is the ”true” theory of gravity. In particular, what actually
the area of research is aiming to is finding, from one hand, confirmations of the existence
of dark matter and, in the other, possible tests that could make manifest the authenticity
of a theory rather than another. At this point, it could be helpful remarking that we are
not considering Quantum Mechanics at all: indeed, General Relativity as well as scalar
tensor theories are treated classically and we are far from consider a Quantum theory
of gravity. However, until we remain indifferent to Early Universe and singularities
formation, we can forget about quantum effects. Having made this clarification, one can
proceed to list the possible tests that can reveal us which is the most authentic theory of
gravity (at least, for large scales and not early times); there are plethora as, only to cite
some, the measurement of the rotational velocity of LSB galaxies and the gravitational
lensing. However, another test is gaining prominence in these last years, that is the
measurement of the so-called turnaround radius.
The turnaround radius is defined as that point (or better, that 2-surface) of any celestial
structure (such as galaxies, clusters) in which the gravitational attraction due to the
presence of massive objects is perfectly counterbalanced by the effect of departure due
to the expansion of the Universe. Measuring the location of such a radius and comparing
it with the predictions made by the various theories of gravity (including the most
fundamental one, the General Relativity) could help to identify the most promising
theory.
Defining the turnaround radius should be something very familiar: the only thing that
one has to do in order to calculate it is considering the radial geodesics and demanding
whether and where the radial acceleration vanishes, as it will be illustrated in the first
section; however, when the realistic perturbed FLRW metric (2.27) is analysed, the
computation is rather involved and the result is highly gauge dependent (in fact, the
metric used the Newtonian gauge). This yields to consider another definition of the
turnaround radius which makes use of the definition of mass given in the previous chapter:
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Figure 3.1: A simple visualization of the turnaround radius

even if the two definitions are not perfectly equivalent, their difference is shown to be
small [32], specially considering the impossibility to measure such differences in the large
cosmological scales. Finally, we try to calculate the turnaround radius in the context of
the Horndeski’s theory. These will be the topics of the second section. In the final section,
there is a new suggestive way to calculate the turnaround radius, which surprisingly make
contact with the alternative definition through mass.

3.1 A natural definition

As already said, the most naturally definition for the turnaround radius is that value
in which the radial acceleration of a geodesic observer becomes vanishing. A geodesic
observer satisfies

D2r

Ds2
=
d2r

ds2
+ Γ1

µν

dxµ

ds

dxν

ds
= r̈ + Γ1

µν

dxµ

ds

dxν

ds
= 0 (3.1)

where the dot indicates · = d
ds
. Therefore, the turnaround radius is that value of r that

satisfies the following second-order differential equation

r̈ = −Γ1
µν

dxµ

ds

dxν

ds
(3.2)

Let us consider some examples in spherically symmetric space-times; first consider the
case in which the metric is independent of time

ds2 = −f(r)2dt2 + dr2

f(r)
+ r2dΩ2 (3.3)
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The calculation of (3.2) in this case yields

r̈ =− Γ1
µν

dxµ

ds

dxν

ds
= −1

2
g1λ (gµλ,ν + gλν,µ − gµν,λ)

dxµ

ds

dxν

ds
=

= −1

2
g11 (gµ1,ν + g1ν,µ − gµν,1)

dxµ

ds

dxν

ds
=

= −1

2
g11
(
g11,1

dx1

ds

dx1

ds
+ g11,1

dx1

ds

dx1

ds
− g00,1

dx0

ds

dx0

ds
− g11,1

dx1

ds

dx1

ds

)
=

= −1

2
g11
(
g11,1ṙ

2 − g00,1ṫ
2
)

(3.4)

From normalization condition (time-like geodesic observer)

gµν
dxµ

ds

dxν

ds
= −1 ⇒ ṙ2 = f(r)2ṫ2 − f(r) (3.5)

then

r̈ = = −1

2
g11
(
g11,1ṙ

2 − g00,1ṫ
2
)
=

= −1

2
f(r)

[
−∂rf(r)
f(r)2

(
f(r)2ṫ2 − f(r)

)
+ ∂rf(r)ṫ

2

]
=

= −1

2
∂rf(r)

(3.6)

So, in this particular case, calculating the turnaround radius is simple since in the pre-
vious equation every 4-velocities disappear at the right hand side; thus, the turnaround
radius is that value rt for which the following is satisfied

∂rf(r)|rt = 0 (3.7)

For instance, one can apply this to the particular cases of Schwarzschild and Reissner-
Nordstrom space-times, even if there is no correlation with cosmology. In the first case,
f(r) = 1− 2m

r
and so turnaround radius satisfies

m

r2t
= 0 (3.8)

that is, there is no solution, since, in such simple space-time, the unique effect is that
of gravitational attraction. In the Reissner-Nordstrom space-time, f(r) = 1− 2m

r
+ Q2

r2
,

then
2m

r2t
− 2Q2

r3t
= 0 (3.9)
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A solution exists, namely the presence of charge causes an effect of repulsion, and the
point in which this repulsion and the gravitational attraction are equal is

rt =
Q2

m
(3.10)

Of more cosmological interest is the Schwarzschild-de Sitter space-time, which belongs
to this category of metrics with f(r) = 1− 2m

r
−Λr2; the turnaround radius therefore is

2m

r2t
− 2Λrt = 0 ⇔ rt =

3

√
m

Λ
(3.11)

Thus, the equilibrium point is reached very far from the centre of gravity of the massive
object, since the cosmological constant, sourcing the dark energy and so the expansion,
should be ”small”.
More involved are the cases in which the metric explicitly depends on time coordinate,
such as the FLRW standard metric and the perturbed one. In this more general case, the
computation of the Christoffel symbols is longer and there will be no a final simplification
of first derivatives through the normalization condition. For example, considering the
(flat) FLRW metric (2.22), it is convenient to rewrite it in terms of the areal radius
R = a(t)r, in order to keep track of the evolving 2-surfaces (spheres) but this introduces
a mixed term when coordinates (t, R, θ, φ) are considered. Let us then consider the most
general spherically symmetric metric (2.9); as said, it is better to express the metric in
terms of areal radius R = D(t, r)r, so that one has the metric (2.10) provided that

A′ =A− 2C
RD,t

D2
−B

R2D2
,t

D4

B′ =B

(
1

D
− RD,R

D2

)2

C ′ =C

(
1

D
− RD,R

D2

)
+B

(
1

D
− RD,R

D2

)
RD,t

D2

(3.12)

Then, in order to compute the turnaround radius by means of (3.2) (with now R as radial
coordinate), one has to compute the Christoffel symbols taking into account the fact that
there is a mixed term and, in general, the various functions depend on time also. With
the help of the software Maple, it is shown that the radial acceleration, provided by the

36



normalization of time-like geodesics, is

R̈ =− 1

2A′B′ + 2C ′2

[(
A′A′

,R − 2A′C ′
,t + C ′A′

,t +
A′2B′

,R

B′ +
A′C ′B′

,t

B′ +
2A′C ′C ′

,R

B′

)
ṫ2+(

2A′B′
,t + 2C ′A′

,R +
2A′C ′B′

,R

B′ +
2C ′2B′

,t

B′ +
4C ′2C ′

,R

B′

)
ṫṘ

−
(
A′B′

,R

B′ +
C ′B′

,t

B′ +
2C ′C ′

,R

B′

)]
(3.13)

So, the turnaround radius can be calculated requiring this to be zero. The resulting
equation is a differential equation which, in general, will depend on the background and
the time evolution.
Now, applying to FLRW metric (2.22) one has

A =1

B =a2(t)

C =0

D =a(t)

(3.14)

such that

A′ =1−H2R2

B′ =1

C ′ =HR

(3.15)

Then, applying to these the (3.13), one gets

R̈ = H2R +RH,tṫ
2 =

H2

R2
R3 +RH,t (3.16)

where the reason why there is a rearrangement of the first term becomes clear in the next
example. In general, the turnaround radius requires to solve a differential equation and
so, even in this case it depends on the particular background, that is, the form of scale
factor a(t). In the hypothesis of de Sitter expansion, however, we know that a(t) = eHT

and H is a constant, such that the second term in the (3.16) vanishes: in such a scenario
no turnaround radius exists.
Another examples, not cited yet, that can account for a generalization of the Schwarzschild-
de Sitter metric are the so-called McVittie metrics [33], which include a time dependent
Hubble parameter instead of the cosmological constant. The form of this metric is

ds2 = −
(
1− m

2u

1 + m
2u

)
dt2 + a2

(
1 +

m

2u

)4 (
dr2 + r2dΩ2

)
(3.17)
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where u ≡ ar. It can be shown that, provided that the areal radius is

R = u
(
1 +

m

2u

)
(3.18)

the transformation of coordinate r → R modifies the metric into [34]

ds2 = −
(
1− 2m

R
−H2R2

)
dt2 +

(
1− 2m

R

)
dR2 − 2HR√

1− 2m
R

dtdR +R2dΩ2 (3.19)

Applying the (3.13), one finds that the radial acceleration is

R̈ =
H2

R2

(
R3 − m

H2

)
+RH,t

√
1− 2m

R
ṫ2 (3.20)

Comparing to the standard Schwarzschild-de Sitter metric, by considering Λ = H2, the
previous can rewritten as

R̈ =
H2

R2

(
R3 −R3

t

)
+RH,t

√
1− 2m

R
ṫ2 (3.21)

where Rt indicates the turnaround radius in the Schwarzschild-de Sitter space-time, as
shown in (3.11). It coincides with the value of turnaround radius of this generalized
McVittie space-time only if, for instance, the expansion of the Universe is of de Sitter
type, such that the Hubble parameter is a constant and the second term vanishes. How-
ever, for this generalization of space-time, there is a remaining dependence to the time
evolution which can modify the effective value of the turnaround radius.
Now, it is worth to consider the more realistic metric (2.27); then, in general

A =1 + 2ψ(η, r)

B =a2(t) (1− 2ϕ(η, r))

C =0

D =a(t)
√

1− 2ϕ(η, r)

(3.22)

By means of Birkhoff’s theorem, one can simplify this as done in (2.28) but only if
General Relativity is considered as the actual theory of gravity; assuming that this is
the case (so ψ(η, r) = ϕ(η, r) = ϕ(r)), then the previous transforms, considering as areal
radius R = ar

√
1− 2ϕ, into

A′ =a2
(
1 + 2ϕ− H2R2

a2

)
B′ =

(
1 +

Rϕ,R
1− 2ϕ

)2

C ′ =HR
(
1 +

Rϕ,R
1− 2ϕ

) (3.23)
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where a H is introduced to refer to the conformal time η. The calculation of the radial
acceleration is not trivial; by means of (3.13), one expects at least three terms, one of
which could identify the turnaround radius in the case of no time evolution or special
situations in which extra terms disappear and the other two concerning the evolution of
the background. Neglecting so the ”evolution” terms in ṫ2 and ṫṘ, one could show that,
at first order in scalar perturbations, and given the definition of Newtonian mass (2.32)
that

R̈ = H2R (1− 2ϕ) +
mNa

R2
(3.24)

which yields a turnaround radius of

Rt = 3

√
mNa

H2 (1− 2ϕ)
(3.25)

Thus, instead of showing the result of a rather long derivation, it is more meaningful to
notice the limits of such an approach: nevertheless the assumption of Birkhoff’s theorem,
the turnaround radius, results, in general, as the solution of a differential equation which
depends on the background metric and could be not trivial; moreover, considering the
metric (2.27), the choice made was to adopt the Newtonian gauge but, however, with
another gauge one could find another result: so, the standard approach, at least for the
realistic perturbed FLRW metrics, is highly gauge dependent [31]. Finally, but not less
important, the Birkhoff’s theorem holds in General Relativity context but not when one
is considering other theories of gravity, so, the standard definition of turnaround radius,
nevertheless it is certainly correct from a theoretical point of view, could be not enough
to give results in some practical contexts.

3.2 A definition through the mass

In order to avoid gauge-dependence problems and highly involved calculations, some
slightly different definitions of turnaround radius are being proposed in the literature.
One of these, outlined in [19], goes through the definition of mass given in the previous
chapter, that is the Hawking-Hayward mass (or Misner-Sharp-Hernandez mass in the
case of spherical symmetry). As seen in the previous examples where there are both
a gravitational effect and a repulsion one (that is, excluding the Schwarzschild case),
the mass results in a sum of a least two terms: one is called ”local”, since it accounts
for the effect of attraction due to matter, and the other is called ”cosmological”, in the
sense that is mostly generated by the expansion of the Universe and so, from our actual
cosmological model. The suggestion of [19] is to define the turnaround radius as that
value for which these two terms, the local and the cosmological one, are equal in modulus.
In other words, if the mass prescription yields

MHH =Mlocal +Mcosm (3.26)
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then the turnaround radius r′t can be defined as that value of radius for which

|Mlocal| = |Mcosm| (3.27)

where a prime is used to distinguish between the two different definitions. The reason
behind this is rather intuitive: since the turnaround radius identifies the 2-surface in
which the net gravitational effect is perfectly counterbalanced by the expansion, then
one could expect that on this surface the two contributions to the mass, that are very
different from a physical point of view, are equal. However, what one discovers is that
the value found with this definition differs from the one obtained using the standard
definition; the hope is that such a difference is not so large, in the sense that it can be
neglected compared to the accuracy of our observations. From a theoretical point of
view, instead, the only reason why this definition is still used, despite its discrepancy
with the standard one, is that the calculation is rather ”simpler” and, in the realistic
situation of the perturbed FLRW metric, it exhibits no gauge dependence.
Thus, moving to our examples, we can start directly with the Schwarzschild-de Sitter
case, since the Schwarzschild and the Reissner-Nordstrom ones are related to ”local”
effects, due to the gravitational field source (even in the second case, the charge, being
possibly responsible of a repulsion, is stored in the source and it is not representing any
cosmological counterpart); recalling that the mass function in the (2.20) metric is

m(r) = m+
Λ

2
r3 (3.28)

the new turnaround radius prescription (3.27) gives

r′t =
3

√
2m

Λ
(3.29)

The difference between the two definition is then clear; indeed, comparing this with
(3.11), the ratio of the two obtained turnaround radii is

r′t
rt

=
3
√
2 (3.30)

So, the difference is net and cannot be completely canceled (it is a mathematical constant
that cannot in any way be removed) but can be neglected since such a value is not
appreciated on cosmological scale observations.
In the case of FLRW metric, through this definition, there is no turnaround radius, since
only a cosmological term appears in (2.24), as expected and so one can directly analyze
the realistic case of perturbed FLRWmetric. This can be done either considering General
Relativity or any scalar-tensor theory for gravity; in the first case, it is convenient to
rewrite the mass function, at first order in scalar perturbation, in G = 1 units

m (t, r) ≃ mNa+
H2R3

2
(1− 2ϕ) (3.31)
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Then, the turnaround radius, through the prescription (3.27), is easily found as the
solution of the following

mNa =
H2R′3

t

2
(1− 2ϕ) (3.32)

that is

R′
t =

3

√
2mNa

H2 (1− 2ϕ)
(3.33)

which is the result found in (3.25) with again an extra factor

R′
t

Rt

=
3
√
2 (3.34)

Moreover, one can provide the Hamiltonian constraint 3H2 = 8πρ such that

R′
t =

3

√
3mNa

4πρ (1− 2ϕ)
(3.35)

At this point we can restore the G constant in order to make a future comparison with
the modified gravity result

R′
t =

3

√
3mNa

4πGρ (1− 2ϕ)
(3.36)

This procedure becomes very useful when modified gravity is considered; as said, no
Birkhoff’s theorem holds and very long calculations are behind the standard definition
of turnaround radius; moreover, the result could be gauge-dependent and, in general,
one has to consider even the terms in ṫ2 and ṫṘ in the game. The advantage of consider
the turnaround radius definition through the mass is to be a gauge-invariant result, since
mass naturally is. Therefore, one can use the mass prescription (2.62) and the turnaround
radius, at this level of approximation, turns to be the solution of the following

mNa =
H2R′3

t

2
(1− 2A) =

4π (ρ+ ρϕ)R
′3
t

3ϕ(t, r)
(1− 2A) (3.37)

such that

R′
t =

3

√
3mNaϕ(t, r)

4π (ρ+ ρϕ) (1− 2A)
(3.38)

Notice the similarity with (3.36) (assuming Birkhoff’s theorem holds at this level of
perturbations even for scalar-tensor theories); the slight difference is that the previous
has no gravitational constant but this varies through the space-time and, moreover, the
density term at the denominator should be larger due to the presence of the scalar field.
The goal of observations should be to find which of these two expressions best fits the
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data; the previous expression, however, could in principle account for dark matter effects
without adding it a priori: in fact, in the context of General Relativity, the existence of
dark matter should decrease the value of the turnaround radius (since more gravitational
force has to be considered) with respect to the case in which there is no dark matter
whereas, adopting scalar-tensor theories, such a reduced value can be obtained directly
without adding it. Finally, for completeness, one could calculate the turnaround radius
also from (2.64) [31]

H2
(0) =

2

3a2

(
A,r
r

+
B,r

r
− A,rr −B,rr

)
+

+
16π

3

[
−4
(
ρ(0) + P(0)

)
A+ δρ− 2P(0)B

]
+

+
ω0,rδϕ− 2ω0A

3a2ϕ(0)

ϕ2
(0),η+

+
4a,η
a3

ϕ(0),ηA+
2δϕ,r
a2r

+
V0,r
3
δϕ

}
(3.39)

A final remark is worth to take place: even the last formula is performed in the context of
spherical symmetry; indeed, the question whether is possible to calculate the turnaround
radius in a more general symmetry goes beyond our scopes. In principle, one has more
involved geodesic equations, if first definition is used, or the mass prescription (2.40)
should be considered in its full generality, if the second definition is adopted, and so
there is no longer Misner-Sharp-Hernandez mass (2.49); however, if one attempts such a
calculation, he must specify also the angles because the value of this more involved
turnaround radius does not change with respect to the radial coordinate (and time
coordinate) only but also with respect to the angular ones.

3.2.1 Horndeski’s turnaround radius

The time has come to calculate the turnaround radius in Horndeski’s theory (in the
hypothesis of spherical symmetry), considering the perturbed FLRW metric. As already
said, the first definition (3.13) is not useful in practical calculation, so one can directly
proceed with the definition through mass. Thus, we can consider the Horndeski’s mass
prescription given in (2.66): this tells us that there is no difference with the Misner-Sharp-
Hernandez mass prescription (2.49) except for the fact that the metric is redefined and
instead of a generic scalar field, there is G4 as effective G−1

eff . Thus, we should have the
same result of any other scalar-tensor theory (3.38), that is

R′
t =

3

√
3mNa′G4 (ϕ,X)

4π (ρ+ ρHorn) (1− 2A′)
(3.40)
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where, instead of the scalar field ϕ, there is G4, the generic ρϕ is substituted with ρHorn
which represent the extra term coming from the Hamiltonian constraint of the effective
energy-momentum tensor and a prime indicates that those quantities are part of the
redefined metric g′µν = gµν − G5

G4
ϕ,µν .

3.3 A suggestion: surface gravity

There is a vastity of literature concerning surface gravity and, somewhat like the mass,
there is no a true universal definition but only some most accreditated ones. In Newtonian
mechanics, there is no ambiguity of what surface gravity is: by means of Newton’s
gravitational law, a test particle with mass much smaller than that of a massive object
suffers an acceleration

g =
GM

R2
surf

(3.41)

where the equivalence between gravitational and inertial mass is again assumed and
Rsurf indicates the radius of a 2-surface that feels this acceleration. This is the surface
gravity in Newtonian mechanics and it is measured by units of g ∼ 9.8 m/s2. In
General Relativity, there is no a single scalar field that expresses the gravity through a
definite law but the space-time is responsible for it. Let us restrict again ourselves to the
spherically symmetric case and let us consider the following definition of surface gravity

g =

√∣∣∣∣gµν (√|ξαξα|
)
,µ

(√
|ξαξα|

)
,ν

∣∣∣∣
∣∣∣∣∣
Rsurf

(3.42)

where ξα is a Killing vector. In order to make some comparison, consider the following
metric

ds2 = −f(r)2dt2 + dr2

f(r)
+ r2dΩ2 (3.43)

Due to Birkhoff’s theorem, a possible Killing vector is ξα = (1, 0, 0, 0); then, through
(3.42), the surface gravity results

g =
1

2
∂rf(r)|rsurf (3.44)

which is equivalent to the radial acceleration found in (3.6). In particular, for Schwarzschild
space-time f(r) = 1− 2m

r
, the surface gravity is

g =
m

r2surf
(3.45)

which is equivalent to the Newtonian definition (3.41) (since m = GM). Thus, in
agreement with the Newtonian definition, the surface gravity even in this case represents
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the (radial) acceleration felt at a certain radius. The problems arise when there is no
time-independence in the metric and the vector used in the previous derivation is no
longer a Killing one. But before considering such a case, it is worth to repeat the
derivation but using a different Killing vector, since it is not the unique possible one.
Indeed, one can likewise consider the following: ξα = (0, 0, 0, 1). This yields the following
(by using θ = π

2
)

g =
√
f(r) (3.46)

This seems to tell us nothing but, assuming that we can expand f(r), we can write

g =
√
f(r) =

√
1 + (f(r)− 1) ≃ 1 +

1

2
(f(r)− 1) (3.47)

Recalling the Misner-Sharp-Hernandez definition for the mass, one can surprisingly find
that

M ≃ −R (g − 1) (3.48)

This can be useful in situations in which there is no other choices of Killing vectors. This
is the case of the perturbed FLRW metric (2.27); so, using the same Killing vector due
to rotational invariance, the surface gravity can be obtained as (Appendix E)

g =

√
1 + r2ϕ2

,r (1− 2ϕ)−2 − 2rϕ,r (1− 2ϕ)−1 −H2r2
1− 2ϕ

1 + 2ϕ
(3.49)

Assuming that expansion is allowed and reintroducing R = ar
√
1− 2ϕ and H = aH,

therefore

g ≃ 1 +
1

2
r2ϕ2

,r (1− 2ϕ)−2 − rϕ,r (1− 2ϕ)−1 − H2R2

2 (1 + 2ϕ)
(3.50)

Thus, at this point, it is simple to check that

−R (g − 1) ≃ −1

2
ar3ϕ2

,r (1− 2ϕ)−
3
2 + ar2ϕ,r (1− 2ϕ)−

1
2 +

H2R3

2 (1 + 2ϕ)
=M (3.51)

is equivalent to (2.29), in agreement with (3.48).
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Conclusions

Most probably, we are still far from the true theory of gravity; despite the numerous
attempts, there is no a single theory that matches with observations and, specially, with
the other fundamental physical theory nowadays, the Quantum Mechanics. General
Relativity is still considered the fundamental theory of gravity, maybe because it is the
”simplest” geometric theory, in the sense of Lovelock’s theorem, and perhaps because its
predictions were too strong to think that such a theory could be sat aside. However, such
predictions, that were shown to be successful in the context of our solar system (Mercury’s
perihelion precession, light rays deflected by the Sun), revealed to be inaccurate on
larger scales (we have seen, for instance, the problems about the rotation velocity of
some galaxies): this led physicists to consider the presence of a type of matter that
does not emit light, the dark matter. The introduction of extended theories of gravity,
like the scalar-tensor theories, was made in order to avoid such a prescription and to
try to explain the observed data within the theory itself. The subleading principle of
such theories is that gravity does not merely have to do with the geometry but a scalar
field has to be reintroduced; this can be associated to the inverse of the gravitational
constant which now can be considered as, at least, time dependent. The rise of such a
scalar field can be justified in several ways: it can be associated to the dilaton emerging
from the reduction of higher dimensional theories or even with the need to introduce
the inflaton, a scalar field that could drive the inflation. The interesting fact, however,
is that, despite the fact that the resulting field equations are more difficult and, then,
less treatable from an analytical point of view, they can reproduce some predictions that
General Relativity does not without adding dark matter. Nevertheless, the new question
is how one can choose between the various possible scalar-tensor theories; this led, for
example, Horndeski to consider only second-order field equations and one can naturally
guess that the solution is finding the theory which best fits with the data (General
Relativity plus dark sector included). This is one of the aim of this thesis: introducing
a new observable, the turnaround radius, and making predictions of such a value in the
context of the various theories of gravity, with the hope that a future research could
compare these with observational data. In making such predictions, another concept is
exploited, the mass function (and so the quasi-local energy) in a general theory of gravity;
motivated by the need of uniquely describing a gravitational energy, the 2+2 formalism
is developed in order to unambiguously obtain an Hamiltonian which naturally contains
gravity. After showing the connection with the natural concept of mass in Newtonian
theory, at least in spherical symmetry, it is shown that, in cosmological context, the
mass function is always the sum of two very different contributions, a local one, that
is responsible for the attraction of local massive sources, and a cosmological one, which
stays for the expansion of Universe (but in general, on the basis of the cosmological model,
it can represent whatever the Universe is shown to do, either expanding or contracting).
This suggests to define the turnaround radius in an alternative way, that is the point in
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which these two contributions are equal. Despite its small difference with the standard
definition, the relative simplicity with which it can be calculated, together with the fact
that the result is certainly gauge-independent, promotes this alternative definition of the
turnaround radius to the most useful one.
At this point, it is important to remark that scalar-tensor theories are only a possible
extension of the General Relativity but the truth is that there could be many others, as,
for instance, the scalar-vector-tensor theories [35] (in practice, one can think at gravity
not only as a spin-2 field). More remarkably, is the fact that all these theories, General
Relativity theory included, are classical: the field equations are obtained by means of
the least action principle. Indeed, we are very far from a complete theory of Quantum
Gravity, despite of numerous attempts nowadays are made [36], [37], [38]. In this thesis,
indeed, the realm of Quantum Mechanics is neglected, and this can, in principle, be done
if no Early Universe and no singularities are analysed in detail. So, even if a theory could
be chosen among all, the next step would be quantizing it; however, are we sure of the
correcteness of our quantizing methods? Quantum Field Theories and all its extensions
provide a very interesting framework, where miraculous particle experiments confirmed
many predictions [39], but it is right treating gravity merely as a spin-2 field? After
all, gravity has always had a behaviour of a very different type of force: it seems to be
only attractive and it has to do with the structure of the space-time itself; with these
premises, is it really possible to connect it with other forces without losing anything?
These are the questions that in the future we have to answer; String Theory, among
many other promising theories, claims that we already have an answer but, at present
time, it is impossible to test even only one of its predictions [40]. Moreover, are we even
sure of its theoretical fundations? As it always has been, the scientific research has to
proceed step-by-step and there is still much that we can learn from General Relativity,
even if one day it will be surpassed: humility is the main ingredient of a physical, or
better, scientific theory and there could be something that we did not even think about.

46



Appendices

47



Appendix A

f(R) theory’s field equations

Let us start with the following Lagrangian in vacuum

Lvacuum = f(R) (A.1)

As usual, the field equations are obtained varying the metric with respect to the metric
field

δS = δ

∫
d4x

√
−gf(R) = 0 (A.2)

Denoting f ′(R) = df(R)
dR

and using the (1.9), then

δS = δ

∫
d4x

√
−gf(R) =

∫
d4x

[
δ
(√

−g
)
f(R) +

√
−gδ (f(R))

]
=

=

∫
d4x

[
−1

2

√
−ggµνf(R)δgµν +

√
−gf ′(R)δR

]
=

=

∫
d4x

[
−1

2

√
−ggµνf(R)δgµν +

√
−gf ′(R)Rµνδg

µν +
√
−gf ′(R)gµνδRµν

]
=

=

∫
d4x

√
−g
[
f ′(R)Rµν −

1

2
gµνf(R)

]
δgµν +

∫
d4x

√
−gf ′(R)gµνδRµν

(A.3)

Recalling the definition given in (1.12) and integrating by parts, the second integral
becomes ∫

d4x
√
−gf ′(R)gµνδRµν =

∫
d4x

√
−gf ′(R)W σ

;σ =

=

∫
d4x

[√
−gf ′(R)W σ

]
;σ
−
∫
d4x

[√
−gf ′(R)

]
;σ
W σ =

= −
∫
d4x

[√
−gf ′(R)

]
;σ
W σ

(A.4)
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From the definition of Christoffel symbols, one finds that

W σ ≡ gµνδΓσµν − gµσδΓνµν = (gµνδg
µν),σ − (gµνδg

σν),µ (A.5)

so the previous integral becomes

−
∫
d4x

[√
−gf ′(R)

]
;σ
W σ =

∫
d4x

[√
−gf ′(R)

]
;σ
[(gµνδg

σν);µ − (gµνδg
µν);σ] (A.6)

Integrating by parts, canceling the divergence terms that do not contribute and rela-
belling appropriately the indices, one gets∫

d4x
√
−g
[
f ′(R)Rµν −

1

2
gµνf(R) + gµν

(√
−gf ′(R)

);σ
;σ
− gσν

(√
−gf ′(R)

);σ
;µ

]
δgµν

(A.7)
Because of the arbitrariness of

√
−gδgµν , the field equations (1.21) are regained.
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Appendix B

Scalar-tensor theories’ field
equations

Let us now consider the following Lagrangian in vacuum

LST =
1

16π

(
ϕR− ω

ϕ
gµνϕ;µϕ;ν − V (ϕ)

)
(B.1)

where, for simplicity, as in the Brans-Dicke theory, the parameter ω is assumed indepen-
dent from the scalar field. The field equations are now derived first varying with respect
to the metric field and then, to the scalar field; proceeding with the first variation, one
gets

δgS = δg

∫
d4x

√
−g
[
ϕR− ω

ϕ
gµνϕ;µϕ;ν

]
=

=

∫
d4xϕδg

(√
−gR

)
−
∫
d4x

ω

ϕ
δg
(√

−ggµν
)
ϕ;µϕ;ν = 0

(B.2)

The first integral gives exactly the Einstein tensor, as seen in the derivation of the Ein-
stein equations, for arbitrariness of

√
−gδgµν ;even the second integral can be expressed

in terms of
√
−gδgµν , by means of the (1.9)

− ω

ϕ
δg
(√

−ggµν
)
ϕ;µϕ;ν = −ω

ϕ
δg
(√

−g
)
gµνϕ;µϕ;ν −

ω

ϕ

√
−gδg (gµν)ϕ;µϕ;ν =

= −ω
ϕ

(
−1

2
gµνg

µνϕ;µϕ;ν + ϕ;µϕ;ν

)√
−gδgµν = −ω

ϕ

(
ϕ;µϕ;ν −

1

2
gµνϕ;αϕ

;α

)√
−gδgµν

(B.3)

So, for the arbitrariness of
√
−gδgµν , one gets the (1.34) (in the case of constant param-

eter ω.

50



In order to find the (1.35), one has to vary with respect to ϕ, so

δϕS = δϕ

∫
d4x

√
−g
[
ϕR− ω

ϕ
gµνϕ;µϕ;ν

]
=

=

∫
d4x

√
−gRδϕϕ−

∫
d4x

√
−gωgµνδϕ

(
1

ϕ
ϕ;µϕ;ν

)
= 0

(B.4)

Manipulating the second integral as follows

−
∫
d4x

√
−gωgµνδϕ

(
1

ϕ
ϕ;µϕ;ν

)
=

= −
∫
d4x

√
−gωgµν

(
−ϕ;µδϕϕ

ϕ2
ϕ;µϕ;ν +

1

ϕ
δϕ (ϕ;µ)ϕ;ν +

1

ϕ
ϕ;µδϕ (ϕ;ν)

)
=

= −
∫
d4x

√
−gωgµν

(
1

ϕ2
ϕ;µϕ;ν −

2

ϕ
ϕ;ν
;µ

)
δϕϕ =

=

∫
d4xω

(
− 1

ϕ2
ϕ;µϕ

;µ +
2

ϕ
ϕ;µ
;µ

)√
−gδϕϕ

(B.5)

Substituting, one obtains∫
d4x

(
R− ω

ϕ2
ϕ;µϕ

;µ +
2ω

ϕ
ϕ;µ
;µ

)√
−gδϕϕ = 0 (B.6)

For arbitrariness of
√
−gδϕϕ, the field equations (1.35) are regained (in the hypothesis

of constant ω).

51



Appendix C

Mass function in perturbed FLRW
metric: the General Relativity case

Let us calculate the mass function in the context of the following perturbed FLRWmetric

ds2 = a2(η)
[
− (1 + 2ϕ(r)) dη2 + (1− 2ϕ(t, r))

(
dr2 + r2dΩ2

)]
(C.1)

through the Misner-Sharp-Hernandez prescription

m (t, r) =
R

2G
(1−R;µR

;µ) (C.2)

The areal radius, in this case, is

R(η, r) = a(η)r
√

1− 2ϕ(r) (C.3)

Thus, by direct calculation, one finds

R;µR
;µ = gηηR,ηR,η + grrR,rR,r =

= −
(
a,ηr

√
1− 2ϕ

)2
a2 (1 + 2ϕ)

+

(
a
√
1− 2ϕ− arϕ,r√

1−2ϕ

)2
a2 (1− 2ϕ)

=

= −H2r2
1− 2ϕ

1 + 2ϕ
+ 1 +

r2ϕ2
,r

(1− 2ϕ)2
− 2rϕ,r

1− 2ϕ

(C.4)

where H(η) = a,η(η)

a(η)
. Knowing that H(η) = a(t)H(t), one obtains

m (t, r) =
1

G

[
−
r3ϕ2

,r

2
(1− 2ϕ)−

3
2 + r2ϕ,r (1− 2ϕ)−

1
2

]
a+

H2R3

2G (1 + 2ϕ)
(C.5)

which is the (2.29). To the first order in ϕ

m (t, r) ≃ r2ϕ,ra

G
+
H2R3

2G
(1− 2ϕ) +O(ϕ2) (C.6)
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The first term can be written in a slightly different way, using the divergence

∇2ϕ =
1√
−g

∂a
(√

−ggab∂bϕ
)
=

=
1

a4 (1 + 2ϕ)
1
2 (1− 2ϕ)

3
2 r2sinθ

∂r

[
a4 (1 + 2ϕ)

1
2 (1− 2ϕ)

3
2 r2sinθ

1

a2 (1 + 2ϕ)
ϕ,r

]
=

=
1

a2 (1 + 2ϕ)
1
2 (1− 2ϕ)

3
2 r2

∂r

[
(1 + 2ϕ)

1
2 (1− 2ϕ)

1
2 r2ϕ,r

]
=

=
ϕ2
,r

a2 (1 + 2ϕ) (1− 2ϕ)
−

ϕ2
,r

a2 (1− 2ϕ)2
+

2ϕ,r
a2 (1− 2ϕ) r

+
ϕ,rr

a2 (1− 2ϕ)

(C.7)

At the first order, one simply has

∇2ϕ ≃ 2ϕ,r
a2r

+
ϕ,rr
a2

=
1

a2r2
d

dr

(
r2ϕ,r

)
(C.8)

It therefore follows that, by following the (2.32), the mass function can be written, at
first order, as

m (t, r) ≃ mNa+
H2R3

2G
(1− 2ϕ) (C.9)
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Appendix D

Mass function in perturbed FLRW
metric: the scalar-tensor theories
case

Now, the general perturbed FLRW metric (in Newtonian gauge) is written as

ds2 = a2(η)
[
− (1 + 2A(η, r)) dη2 + (1− 2B(η, r))

(
dr2 + r2dΩ2

)]
(D.1)

due to the fact that there is no certainty that Birkoff’s theorem holds. The areal radius
is now

R(η, r) = a(η)r
√

1− 2B(η, r) (D.2)

In calculating the mass function via the Misner-Sharp-Hernandez prescription (2.49),
one needs of

R;µR
;µ = gηηR,ηR,η + grrR,rR,r =

= −

(
a,ηr

√
1− 2B − arB,η√

1−2B

)2
a2 (1 + 2A)

+

(
a
√
1− 2B − arB,r√

1−2B

)2
a2 (1− 2B)

=

= −H2r2
1− 2B

1 + 2A
+

2Hr2B,η

1 + 2A
−

r2B2
,η

(1 + 2A) (1− 2B)
+

+ 1 +
r2B2

,r

(1− 2B)2
− 2rB,r

1− 2B

(D.3)
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Again by knowing that H(η) = a(t)H(t), what one finds is that

MST (t, r) =ϕ

[
−
r3B2

,r

2
(1− 2B)−

3
2 + r2B,r (1− 2B)−

1
2

]
a+

− ϕa2Hr3B,η

√
1− 2B

1 + 2A
+
ϕ

2
ar3B2

,η

1

(1 + 2A)
√
1− 2B

+

+
ϕH2R3

2 (1 + 2A)

(D.4)

and, at the first order in scalar perturbations

MST (t, r) ≃ ϕr2B,ra− ϕa2Hr3B,η +
ϕH2R3

2
(1− 2A) (D.5)

The first term are shown to be something related again to the divergence

∇2B =
1√
−g

∂a
(√

−ggab∂bB
)
=

=
1√
−g

∂r
(√

−ggrr∂rB
)
+

1√
−g

∂η
(√

−ggηη∂ηB
) (D.6)

This time the function B depends also on (conformal) time and so the calculation is
more involved in the sense that one has to add a piece to the divergence calculated in
the previous Appendix, coming from the time dependence. Proceeding in a similar way
for the second term, one gets

1√
−g

∂η
(√

−ggηη∂ηB
)
=

− 2a,ηB,η

a3 (1 + 2A)
+

A,ηB,η

a2 (1 + 2A)2
+

3B2
,η

a2 (1 + 2A) (1− 2B)
− B,ηη

a2 (1 + 2A)

(D.7)

At the first order

1√
−g

∂η
(√

−ggηη∂ηB
)
≃ −2a,ηB,η

a3
− B,ηη

a2
= − 1

a4
d

dη

(
a2Bη

)
(D.8)

from which one recovers the (2.61) and then, (2.62).

55



Appendix E

Surface gravity in perturbed FLRW
metric

In order to correctly use the definition given in (3.42), let’s define the intermediate vector

lµ =
(√

ξαξα
)
,µ

(E.1)

Considering the perturbed FLRW metric (in Newtonian gauge)

ds2 = a2(η)
[
− (1 + 2ϕ(r)) dη2 + (1− 2ϕ(t, r))

(
dr2 + r2dΩ2

)]
(E.2)

one firstly has, considering ξα = (0, 0, 0, 1)

ξαξ
α = gαβξ

αξβ = g33 = a2 (1− 2ϕ) r2sin2θ (E.3)

then, selecting the plane identified by θ = π
2
,√

ξαξα = ar
√
1− 2ϕ (E.4)

Thus, one has

lµ =

[
a,ηr

√
1− 2ϕ, a

(√
1− 2ϕ− rϕ,r√

1− 2ϕ

)
, 0, 0

]
(E.5)

The norm of such a vector therefore turns out to be

lµl
µ = gµνlµlν = −

a2,ηr
2 (1− 2ϕ)

a2 (1 + 2ϕ)
+
a2
(√

1− 2ϕ− rϕ,r√
1−2ϕ

)2
a2 (1− 2ϕ)

=

= 1 + r2ϕ2
,r (1− 2ϕ)−2 − 2rϕ,r (1− 2ϕ)−1 −H2r2

1− 2ϕ

1 + 2ϕ

(E.6)

Since
g =

√
lµlµ (E.7)

one finally gets the (3.49).
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