Exploiting and Benchmarking Hardware Acceleration for Computer Vision on Industrial Embedded Devices

Giannatempo, Loris (2023) Exploiting and Benchmarking Hardware Acceleration for Computer Vision on Industrial Embedded Devices. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

In this thesis, readily available commercial solutions for AI at the edge are discussed, and two Systems on a Chip (SoC) with integrated AI accelerators from two distinct producers are assessed. Capabilities, performance, flexibility and the systems as a whole will be evaluated and depicted in the broader context of state-of-the-art innovations. Furthermore, an analysis will be conducted on a tensor-oriented algorithm needed as a post-processing step for a particular AI model. Optimizations will be conducted to improve performance on lower-end CPUs present on embedded devices, whose features include standard and widespread ISA extensions like Arm® Neon™ so that a speedup can be obtained by taking advantage of vector and SIMD instructions. This thesis work is the result of a four-month internship experience at Deep Vision Consulting (www.deepvisionconsulting.com).

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Giannatempo, Loris
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INGEGNERIA INFORMATICA
Ordinamento Cds
DM270
Parole chiave
Computer Vision,HW Accelerators,Embedded,SoC,Vision-AI
Data di discussione della Tesi
16 Dicembre 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^