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1

Abstract

Clinical entities are terms used by specialist doctors to address specific biomed-

ical concepts. Nowadays, NLP tasks have received a boost due to the develop-

ment of large language models that can understand the semantics of a sentence

and reason on it. A key feature of large languagemodels is their ability to learn

during training and apply this knowledge as needed, a capability crucial for

biomedical natural language analysis.

Entity extraction is a task that given an unstructured text, aims to locate

and classify the concepts in order to use the retrieved information in a subse-

quent task. This is a well-known task in the literature known as Named Entity

Recognition (NER). The state-of-the-art models perform very well when pro-

vided with enough data and when the entities are generic.

We investigate the efficacy of various techniques for NER in the clinical

domain, where the amount of available data to train models is limited. In

this challenging domain, MAPS S.P.A. developed a rule-based pipeline that

extracts concepts from unstructured text. This pipeline uses a “suggester” to

produce candidates that will be later filtered and processed to return desired

concepts.

The aim of this project is to study the accuracy of the “suggester” in vari-

ous environments to derive general conclusions that can be adapted to Italian

clinical documents.

Our investigation encompasses three distinct methods to tackle the prob-

lem: the EntityRecognizer, the SpanCategorizer, and various generative ap-

proaches.



Chapter 1

Introduction

1.1 Motivation

This project aims to evaluate various techniques for extraction and categoriza-

tion of clinical terms in unstructured documents. The purpose of this study is

to assist automated systems operating in the biomedical domain by highlight-

ing relevant terms inside a document. Extracting entities from unstructured

texts is a necessary step to allow automated systems to draw conclusions or

perform logical reasoning in a verifiable manner even in highly specific med-

ical contexts. Assigning automated systems the task of analyzing documents

to uncover hidden information can significantly aid medical personnel in their

work.

Recently new technologies, and in particular generative AI, allow auto-

matic analysis and basic reasoning over text, audio and images. These tech-

nologies open the door to new types of automation that previously were not

possible.

One of the main problems with automated systems is that they should not

be used as standalone products because they cannot guarantee correct answers,

lack verification of reasoning, and have limited usage of structured data. This

last issue is particularly relevant in this domain because basing reasoning on
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specialized knowledge, such as human anatomy or chemical formulas, is re-

quired to produce accurate results.

The biomedical domain requires the usage of background knowledge to

correctly perform reasoning. For this reason, it is advisable to create auto-

mated systems that do not use AI as the main source of reasoning but instead

use a rule-based automated system only to assist humans. A rule-based auto-

mated system gives the developer more control over reasoning, thus adding

verifiability and explicability, and can make use of AI just as a tool for specific

and closed tasks.

The topic of this research is to study the potential of existing techniques

for the extraction of biomedical terms in unstructured documents.

1.2 Contents

The content of this document is organized in seven chapters:

• Chapter 2 - Background: In this chapter, a comprehensive foundation

is established through the discussion of relevant theoretical concepts

and existing research. It begins with a detailed exploration of various

representations in the field, such as Named Entity Recognition and To-

ken Embedding, and moves on to discuss encoder-only models. The

chapter also examines generative models and their application in pro-

cessing clinical documents, concluding with an overview of the Unified

Medical Language System (UMLS)

• Chapter 3 - Datasets, Metrics, and Scoring: Here, the focus shifts to

the practical aspects of research methodology. The chapter discusses

various datasets used in the study, namely MedMentions, EBM NLP,

I2B2 2010, and a dataset in Italian called IT Dataset. It also explains the

metrics employed to measure dataset characteristics like size and den-

sity. Additionally, it introduces the scoring function used in the study,
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particularly emphasizing its role in supervised learning performance

• Chapter 4 - Methods and Technologies: This chapter delves into the

specific methods and technologies employed in the research. It provides

an in-depth look at spaCy and its components, such as Tok2Vec, Enti-

tyRecognizer, and SpanCategorizer. The chapter also discusses encoder-

only architectures, mentioning three pre-trained models, and introduces

decoder-only models, including techniques like prompt tuning and fine-

tuning

• Chapter 5 - Experimental Setting: This chapter describes the exper-

imental setup and the various approaches tested. It covers a range of

methods, from a naive baseline, used to obtain additional metrics, to

state-of-the-art techniques and GPT-based approaches. It also discusses

the implications of different techniques in entity extraction and classi-

fication, as well as the impact of dataset size scaling

• Chapter 6 - Discussion of the results: This chapter presents the find-

ings of the study, focusing on the performance of different methods in

entity extraction and classification. It provides a comparative analy-

sis of various techniques and their effectiveness in handling different

datasets. The chapter concludes with a summary of key takeaways and

insights gained from the experimental results

• Chapter 7 - Conclusions: The final chapter synthesizes the entire re-

search, summarizing the major findings and contributions of the project.

It discusses the implications of the results and suggests potential areas

for future research. The chapter aims to provide a comprehensive clo-

sure to the study, encapsulating its significance and impact in the field



Chapter 2

Background

2.1 Well-known techniques

This section reports the main sources to understand well-known techniques

for entity extraction and entity classification.

2.1.1 Named Entity Recognition

Named Entity Recognition (NER) is a task in natural language processing that

involves identifying and categorizing key information in text, such as names

of people, organizations, and locations. A pivotal point in NER research was

the CoNLL-2003 shared task, which standardized the evaluation of NER sys-

tems as detailed in the paper by Tjong Kim Sang and De Meulder [30]. The

advent of deep learning further refined NER, with neural network architec-

tures, especially LSTM combined with CRFs, as shown by Lample et al. [16],

significantly enhancing performance. The introduction of transformer models

like BERT, by Devlin et al. [11], marked a revolution in NER by leveraging

pre-training on large text corpora for superior context understanding.
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2.1.2 Token Embedding

Token embedding, such as Glove by Pennington et al.[26] or Word2Vec by

Mikolov et al.[21], create static vectors representations for each token in the

vocabulary using unstructured documents for training. These techniques do

not allow for unknown words or new terms to be used because they cannot

represent words not seen during training. For this reason, techniques that aim

to solve this problem have better performances. Peters et al.[27] used recurrent

Neural Networks, and in particular LSTM, to compute embedding for tokens

using the entire context, enhancing generalization and performance for out-

of-vocabulary words.

Vaswani et al.[34] created a new architecture called Transformer used for

Machine Translation. After its successful applications inmany tasks, Devlin et

al.[11] used the encoder part to compute automatic token embeddings for NER

tasks, making encoder-only, or BERT-like, architectures the de facto standard

for NER.

2.1.3 Encoder-only models

After the successful applications of BERT, subsequent research has been con-

ducted to increase the performance and, possibly, to understand the main fac-

tors contributing to its effectiveness. Y Liu et al.[19] showed that tuning the

training hyperparameters, such as size of the training dataset, different tok-

enizer algorithm, training time, etc. allows for additional performance in-

creases, leading to the release of a new model called RoBERTa. Subsequent

BERT based models, such as AlBERT by Lan et al.[17] or ELECTRA by Clark

et al.[9], have also been developed using different strategies to increase the

embedding expressiveness.

RoBERTa and subsequent BERT based models are trained using datasets

with general knowledge. To enhance performance in a closed domain, it

is possible to fine-tune the models using domain-specific datasets to let the
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model learn knowledge on the subject. For example, BioBERT by Lee et

al.[18] is a model trained on biomedical datasets comprising a total of 18 bil-

lion tokens.

2.2 Generative models

Since the inception of Natural Language Processing the long-term goal has

been to build an intelligent dialog agent. Weston[36] investigates techniques

for dialog-based language learning, focusing on creating models that mimic

“how human learn, where language is both learned by, and used for, commu-

nication”.

McCann et al. [20] created a benchmark (decaNLP) and a model (MQAN)

for multitask learning and question answering. They frame all tasks as ques-

tion answering, giving the model more flexibility and, using the context in the

question, zero-shot capability on new and unseen tasks.

Radford et al. [28], with GPT-1, a decoder-only Transformer, improved

the generalization ability by pre-training the model using lots of text in an

unsupervised setting, then fine-tuning it with supervised learning. Radford et

al. [29] created GPT-2[29] increasing the dataset for pre-training and showed

that it performs surprisingly well in zero-shot setting on a large amount of

tasks without the need for supervised learning.

Brown et al. [6] scaled GPT-2 to 175 billion of parameters, creating GPT-

3, that “shows strong performance on many NLP tasks and benchmarks in

the zero-shot, one-shot, and few-shot settings, in some cases nearly matching

the performance of state-of-the-art fine-tuned systems”. GPT-3 is trained with

a subset of Common Crawl 1 with the objective of generating the next most

likely token given the previous. The original task referenced by Weston[36]

is to produce the most correct answer and this has some ethical implication:
1Dataset containing nearly unlimited text from the web. There are various versions, the

last one’s size (as in 2023) is 390 TiB.
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generate formal, truthful, nontoxic, and non harmful responses.

Ouyang et al. [24] created a new version of GPT called InstructGPT or

GPT-3.5, showing that an aligned model is better at human evaluation com-

pared to 100x misaligned models. Another desired feature of InstructGPT

is the ability to follow instructions, a precise description of tasks to follow.

This feature is obtained with Instruction Tuning, i.e., fine-tuning the model

with prompts to produce the desired response. Zhang et al. [39] performed a

survey on techniques for Instruction Tuning.

OpenAI[23] studied the scalability of their architecture and released an-

other model calledGPT-4, but the implementation details are not public. From

the paper the results that matter to this project is that GPT-4 outperforms the

previous version and has better performance in Italian than GPT-3.5 in En-

glish.

After the release ofGPT-3 other research teams (Chinchilla by Hoffman et

al. [14], PaLM by Chowdhery et al. [8]) created their own version of decoder-

only Transformer. The most relevant research for this project is by Touvron

et al. [31], by MetaAI, where they focus on smaller models trained on more

data. They released four versions (7B, 13B, 30B, 65B of parameters) with

a noncommercial licence on the code and weights. LLaMA 13B outperforms

GPT-3 onmost benchmarks despite being ten times smaller. After LLaMA, the

same team released LLaMA 2 by Touvron et al. [31], by MetaAI, with chat

alignment using Reinforcement Learning from Human Feedback (RLHF).

LLaMA demonstrated that it is possible to have relative small models that

match or outperform big models likeGPT-3.5, especially if fine-tuned on cus-

tom datasets. Zhou et al. [40] released a model called UniNER (Universal

NER) based on LLaMA and instruction tuned specifically for NER across var-

ious domains (General, Biomeds, Clinics, STEM, Programming, Social me-

dia, Law, Finance, Transport). UniNER outperformed other instruction tuned

models, like ChatGPT and Vicuna[7].
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Chain-of-Thought (CoT) prompting is a technique that can be used to im-

prove the reasoning capabilities of large language models (LLMs). It was

introduced by Wei et al. [35]. By providing LLMs with examples of how to

chain multiple pieces of information together to solve a problem, CoT prompt-

ing can help LLMs learn to reason more effectively. This can be particularly

useful for tasks that require multiple steps or require the LLM to consider

multiple factors.

2.3 Clinical documents

In this study we focus on applications within the clinical domain, specifically

concerning human medicine. Clinical documents, which are typically au-

thored by and intended for medical professionals, pose significant challenges

for analysis.

An automated system designed for processing these documents must ad-

dress several key issues:

• The scarcity of databases and established benchmarks for training

• The syntactic peculiarities unique to this domain

• The necessity for generalization capabilities to ensure satisfactory per-

formance across various and unseen domains

• The prevalence of unstructured text, poor grammar, and the use of ab-

breviations, synonyms, and overlapping entities

• Lack of knowledge and training data in languages other than English

Fig 2.1 and 2.2 illustrate the diversity of entities and domains encountered

in this field. The first figure presents an abstract from a scientific paper an-

notated with biomedical entity classes, while the second displays an Italian

radiology report, further exemplifying the linguistic and contextual variety.
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In Chapter 3 there will be a complete evaluation of the available datasets,

showing the pros and cons and the motivation of the chosen datasets.

DCTN4 Chemicals & Drugs as a modifier of chronic Pseudomonas aeruginosa infection Disorders in cystic fibrosis Disorders

Pseudomonas aeruginosa (Pa) infection Disorders in cystic fibrosis Disorders ( CF Disorders ) patients Living Beings is associated with

worse long-term Concepts & Ideas pulmonary disease Disorders and shorter survival Concepts & Ideas , and chronic Pa infection Disorders (

CPA Disorders ) is associated with reduced lung function Disorders , faster rate of lung decline Disorders , increased rates Concepts & Ideas

of exacerbations Disorders and shorter survival Concepts & Ideas . By using exome sequencing Procedures and extreme phenotype design

Activities & Behaviors , it was recently shown that isoforms Chemicals & Drugs of dynactin 4 Chemicals & Drugs ( DCTN4 Chemicals & Drugs )

may influence Pa infection Disorders in CF Disorders , leading to worse respiratory disease Disorders . The purpose of this study Procedures

was to investigate Concepts & Ideas the role of DCTN4 Chemicals & Drugs missense Disorders variants Chemicals & Drugs on Pa infection

Disorders incidence Concepts & Ideas , age Physiology at first Pa infection Disorders and chronic Pa infection Disorders incidence

Concepts & Ideas in a cohort Living Beings of adult Living Beings CF Disorders patients Living Beings from a single centre Objects [...]

Figure 2.1: Example of document from MedMentions

XX/XX/XXXX XX:XX XXX TORACE TARGET Una proiezione AP TARGET in esiti di lobectomia superiore TARGET dx si conferma opacamento TARGET della regione apico

sottoclaveare TARGET di dx con minimo ispessimento pleurico parietale TARGET omolaterale Marcata sopraelevazione TARGET della cupola diaframmatica TARGET di dx con

disventilazione basale TARGET omolaterale Ombra mediana TARGET in asse

Figure 2.2: Example of document from the Italian dataset

2.4 Unified Medical Language System (UMLS)

Although UMLS is not the main focus of this project, an introduction is re-

quired to understandMedMentions, one of the four datasets used in this project.

We begin by delving into the concept of ontologies, fundamental elements

in the domain of knowledge representation. The term ‘ontologies’, borrowed

from philosophy, refers to the formal representation of a set of concepts within

a domain and the relationships among those concepts. Ontologies are es-

sential for the sharing and reuse of knowledge bases, enabling different sys-

tems to ‘understand’ and process information based on the same knowledge

base. In the biomedical domain there are various thesauri for different appli-

cations, which encompass many different concepts. For example, the Italian

National Health Service uses ICD9CM (International Classification of Dis-

eases, Ninth Revision, Clinical Modification), a thesaurus containing many
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types of concepts (i.e., Diseases, Diagnostic procedure, Therapeutic Proce-

dure, etc.). Even if ICD9CM is widely used, it is not sufficient for many use

cases. For this reason, it became necessary to unify the biomedical thesauri

into one meta-thesaurus.

UMLS[4], or Unified Medical Language System, is the main knowledge

base used for many applications. It merges concepts frommany thesauri main-

taining or creating new relationships. Many concepts with the same meaning

are merged keeping all the attributes, and thus giving different labels to the

same concept. Each concept is identified with a unique code calledCUI (Con-

cept Unique Identifier).

For example, the concept “Femoral Neck Fractures” (identified with

the CUI C0015806) hasmany labels: “Femoral Neck Fractures”, “Fractured

femoral neck”, “fractura de cuello de fémur”, “Frattura del collo

del femore”, etc.

UMLS has some drawbacks given by the immense volume of data:

• many concepts are redundant

• many thesauri have language adaptation but are not exhaustive

• scarcity of Italian concepts

• many relationships make it difficult to navigate the graph

• different levels of precision across different thesauri

• non-standard relationship rules

Fig. 2.3 shows a bar plot of UMLS concepts grouped by languages. En-

glish is the main source while the contribute of other languages is almost neg-

ligible. In Italian there are only 262k concepts that correspond to the 1.67%

of the total amount, but a smart system may use English as the main graph and

search for the nearest and correct concept in the desired language.
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Figure 2.3: Concepts of UMLS grouped by languages.

In Table 2.4 there is a list of Semantic Groups with the number of concepts

associated with each of them.

Even though UMLS has many problems, it is considered the best meta-

thesaurus because it is the most complete one and can be used to solve some

thesaurus specific problems.
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Semantic Group Concepts %

Living Beings 1951563 42.61%

Chemicals & Drugs 929935 14.24%

Disorders 642428 8.61%

Procedures 435413 5.37%

Physiology 169310 1.98%

Anatomy 153633 1.76%

Concepts & Ideas 92476 1.04%

Genes & Molecular Sequences 80501 0.90%

Devices 68811 0.76%

Objects 24770 0.27%

Phenomena 15035 0.16%

Activities & Behaviors 5741 0.06%

Geographic Areas 4633 0.05%

Organizations 4050 0.04%

Occupations 2074 0.02%

Table 2.1: Concept of UMLS grouped by semantic groups



Chapter 3

Datasets, Metrics and Scoring

3.1 Datasets

In many research fields the datasets for training and testing are closed source,

due to privacy reasons and because it is usually costly to produce good data.

Significant improvement is often achievable by increasing the quality of the

dataset. Hence, the datasets are usually kept private.

These challenges are particularly present in the biomedical domain. Datasets

can include patients’ clinical information, and anonymizing this data is not a

trivial task. Under the General Data Protection Regulation (GDPR), Article

4(1)[2], the definition of personal data is as follows:

‘personal data’ means any information relating to an identified or

identifiable natural person (‘data subject’); an identifiable natu-

ral person is one who can be identified, directly or indirectly, in

particular by reference to an identifier such as a name, an iden-

tification number, location data, an online identifier or to one or

more factors specific to the physical, physiological, genetic, men-

tal, economic, cultural or social identity of that natural person;

This clause indicates that even indirect identification qualifies as personal
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data and must be treated accordingly. For this reason, due to the aforemen-

tioned privacy concerns, the availability of open-source resources is limited.

Another problem with clinical datasets is that they are costly to produce

since they require specialized personnel from different disciplines to annotate

the data correctly and thoroughly, especially with UMLS. For this reason, the

clinical datasets in this project are not annotated with UMLS concepts, but

with simpler classes, eliminating the need for specialist input to ensure quality.

To address these issues, we expanded our research beyond clinical data

to include other biomedical sources, and we investigated the correlations be-

tween various dataset types and qualities and their impact on the observed

results.

For this project we evaluated four different datasets:

1. MedMentions: 4392 biomedical paper abstracts annotated with UMLS

concepts.

2. EBM NLP: 4,993 paper abstracts annotated with three classes.

3. I2B2 2010: 169 clinical documents annotated with three classes.

4. IT-Target Guesser: 468 clinical reports from radiology department. Uses

only one class (TARGET).

3.1.1 MedMentions

MedMentions[22] is a dataset composed of 4392 biomedical papers, selected

randomly from the PubMed database in 2016. All papers are in English.

PubMed is a search engine, operated by the United States National Li-

brary of Medicine (NLM) at the National Institutes of Health, which uses the

MEDLINE database to find relevant literature for healthcare professionals, re-

searchers, and scholars.

For the annotation process, a group of experts with a background in the

biomedical field was hired to annotate all UMLS entities present in the titles
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and in the abstracts of the selected papers.

The quality of MedMentions is assessed by measuring the agreement be-

tween two groups of annotators, which shows an estimated precision of 97.3%.

InMedMentions, given the presence of UMLS, the high precision and fre-

quency of entities, we investigate the influence of a high-quality dataset by

comparing the results on a truncated version. This truncation involves omit-

ting entities associated to concepts that do not have an Italian or Spanish label.

Table A.2 presents a list of classes with the count of entities from the com-

plete and the truncated versions.

3.1.2 EBM NLP

EBM NLP is a dataset composed of 4,993 paper abstracts. This dataset con-

tains sixteen classes organized in three macro groups, namely Participants,

Interventions and Outcomes.

The training labels are created using AMT workers[1], and then aggre-

gated to reduce the noise. The test set is annotated by medical professionals

to have a better reference.

This dataset contains some overlap between entities. For our studies we

decided to remove the overlap by considering only the longer entity. This

decision facilitates a clearer comparison of algorithms that do not permit entity

overlap.

The task assigned to AMT workers involves extracting and classifying

data into seventeen distinct categories, as detailed in Table 3.1.2.

We decided to use only the macro groups in order to have a dataset that

bridges the gap between MedMentions and I2B2 2010, retaining paper ab-

stracts but focusing on three classes similar to those in I2B2 2010.

Another advantage of this approach is the resolution of certain class im-

balances. Table A.2 report the class counts with the macro groups.
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Participants Interventions Outcomes

Age Surgical Physical

Sex Physical Pain

Sample size Drug Mortality

Condition Educational Adverse effects

Psychological Mental

Other Other

Control

Table 3.1: Class of entities of EBM-NLP

3.1.3 I2B2 2010

I2B2 2010[32] is a multipurpose dataset (originally created by NIH-funded

National Center for Biomedical Computing (NCBC)) known as i2b2, or Infor-

matics for Integrating Biology and the Bedside. It was created for a challenge

with three main objectives: 1. Extraction of medical problems, tests, and treat-

ments. 2. Classification of assertions made on medical problems. 3. Relations

between classes.

The source data includes discharge summaries from MIMIC II database,

provided by Beth Israel Deaconess Medical Center. MIMIC II is a database,

containing anonymized clinical data from a medical center, collected between

2001 and 2008.

The dataset is licensed and must be used for research only. The licence

also prohibits its use with external tools such as ChatGPT, GPT 3.5 or GPT 4.

The documents are quite long, but we decided against any form of data

augmentation, such as splitting them into sections, to better assess the effec-

tiveness of the methods used on long documents.

The dataset contains only three classes: Problem, Test, and Treatment.
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3.1.4 IT dataset

The IT dataset, created for internal use byMAPSS.P.A., comprises 468 anonymized

radiology reports.

The dataset was created by manually annotating fifty documents and then

using a trained spaCy’s span categorizer to annotate and correct the mistakes

in the remaining 418 documents.

The entities are only extracted; that is, the sole class associated with these

entities is TARGET.

3.2 Metrics

The project focuses on studying available techniques for entity extraction and

classification in four different biomedical datasets. It also aims to identify

metrics and draw conclusions that are applicable to other datasets. As a result,

the study includes a review of available metrics for evaluating dataset quality.

Themainmetrics used to evaluate the datasets are reported in the following

sections.

3.2.1 Size of the datasets

The size of the dataset is quantified in terms of the number of documents.

Table 3.2.1 contains the number of documents available for the four different

datasets, differentiating between training and test sets.

Generally, having more data increases the performance; however, beyond

a certain threshold, the improvement does not justify the cost of acquiring

additional data. For this reason, we investigated how scalability is affected by

varying the size of the datasets, by adjusting the size of the training sets and

measuring the models’ performance outcomes.
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Name Training Validation

MedMentions 2634 878

EBM NLP 4801 191

I2B2 2010 136 33

IT dataset 375 93

Table 3.2: Number of documents available for the datasets

3.2.2 Density

This metric is computed by looking at the number of entities over the number

of documents. Table 3.2.2 reports the average densities, with the standard

deviation, of the datasets; it also includes the minimum and maximum value

found in the dataset.

This value indicates the average density of a document. Additionally, we

investigated the effectiveness of the techniques used, given the varying den-

sities of annotations. A dataset with low density may be more difficult for the

model to learn from due to the scarcity of data in the training batch. On the

other hand, a dataset with a high density of annotations may pose a greater

learning challenge for the model due to the task’s complexity. This effect will

be assessed by comparing MedMentions with two different versions.

Name Avergage Min Max

MedMentions 0.29 (±0.05) 0.19 0.41

MedMentions Truncated 0.20 (±0.04) 0.11 0.30

EBM NLP 0.06 (±0.02) 0.02 0.15

I2B2 2010 0.08 (±0.03) 0.02 1.12

IT dataset 0.21 (±0.03) 0.14 0.29

Table 3.3: Density of the datasets
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3.2.3 Entities length

The number of tokens the entities are composed of may represent a challenge

for sequential techniques. Table 3.2.3 reports the average number of tokens,

with the standard deviation, of the entities.

The datasets are simplified by cutting the entities that exceed a token thresh-

old. In any case, these cuts remove only a small portion of the annotated en-

tities (less than 0.3%)

The complexity of a sentence is measured by counting the number of to-

kens it contains, while the complexity of a document is assessed by the number

of sentences it includes.

The two metrics tend to vary significantly across the datasets. In particu-

lar, I2B2 2010 has long sentences and lengthy documents, which may affect

the results. We decided not to split the documents into sentences or sections.

This approach allows us to measure the effectiveness of the proposed methods

across differently structured datasets without the need for additional augmen-

tation or preprocessing.

Name Avergage Min Max

MedMentions 1.30 (±0.54) 1 3

EBM NLP 2.56 (±1.72) 1 8

I2B2 2010 2.00 (±1.18) 1 6

IT dataset 1.65 (±0.68) 1 4

Table 3.4: Size of the entities

3.3 Score function

Comparing different methods requires a unified algorithm capable of comput-

ing scores independently of the techniques employed.

In entity extraction, metrics based solely on entities are not considered

insufficient for effective comparison. Therefore, additional metrics have been
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developed to address imprecise extraction, focusing on examining the entities’

tokens. Comparing scores both by entities and by tokens provides insights into

the precision with which the method identifies and centers around the entities.

3.3.1 Supervised learning performance

In supervised learning, a confusion matrix is used to measure the performance

of an algorithm. The confusion matrix represents the discrepancies between

the actual outcomes (ground truth) and the algorithm’s predictions. For each

prediction, the confusion matrix is updated by incrementing the value in the

cell corresponding to the true class index (row) and the predicted class index

(column). The ideal model has a confusion matrix where all values greater

than zero are located on the main diagonal.

In the case of binary classification, the confusion matrix is two by two and

has four values called:

• True Positives (TP): instances correctly predicted as positive

• False Positives (FP): instances incorrectly predicted as positive

• True Negatives (TN): instances correctly predicted as negative

• False Negatives (FN): instances incorrectly predicted as negative

From the confusion matrix, it is possible to extract the Precision, Recall,

and F1 scores. The precision measures how much we can trust the algorithm

if it predicts true, while the recall indicates how good the algorithm is at iden-

tifying the positive cases. Precision and recall are often in a trade-off rela-

tionship; improving one can led to a decrease in the other. The F1 score, the

harmonic mean of precision and recall, provides a single metric that balances

both aspects.

Equation 3.1 presents the formulas for Precision, Recall, and F1
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Precision = TP
TP + FP

Recall = TP
TP + FN

F1 = 2TP
2TP + FP + FN

(3.1)

These formulas can be extended to multi-class settings by computing the

metrics for each class and then aggregating the results. There are two types of

aggregation:

• Micro: a weighted average based on the counts of true labels for each

class, assigning less importance to less represented classes

• Macro: a uniformly weighted average that treats all classes with equal

importance, regardless of their representation



Chapter 4

Methods and technologies

4.1 spaCy

spaCy is an open-source software library for NLP, written in Python. It is

specifically designed for production use, offering the most efficient imple-

mentation of common algorithms. It is designed with extensibility in mind,

allowing for the addition of custom tokenization rules, custom components

and models, and integration with deep learning frameworks like TensorFlow

or PyTorch. It is easily integrable with HuggingFace’s Transformers, making

it compatible with a large number of pre-trained models.

For our experiments, we mostly use spaCy’s functionalities to standardize

the process and offer results independent of our ability to train and evaluate the

models. spaCy can be used for almost all use cases, and it comes with built-in

components for various NLP tasks. The majority of these tools can be trained

for specific use-cases and then adapted to different languages or contexts.

Processing natural language usually involves several steps. For example,

dependency parsing requires POS tagging, and POS tagging requires a vector

representation of the tokens. For this reason, spaCy manages the cascade of

processes into a single object called pipeline.
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Pipeline

The pipeline is composed of twomain parts: the tokenizer, and the list of com-

ponents. The tokenizer is the first essential step of the pipeline; it separates

the document into tokens, i.e., groups of characters that represent a semantic

unit.

SpaCy implements a custom word-based tokenizer. “Word-based” means

that it tokenizes the document into words and punctuation. This approach is

human-manageable and useful for rule-based systems. However, it does have

some drawbacks, including a large vocabulary and an inability to process out-

of-vocabulary terms

The tokenization takes a text as input and returns a Doc object. The list

of components is applied in a cascade, where each component takes in input

a Doc, saves the results, and outputs the same Doc object.

Doc

TheDoc object represents a tokenized document. Apart from the list of tokens,

it also contains other data:

• Span: a contiguous group of tokens with an assigned label, used to store

entities that have been extracted and classified

• SpanGroup: organizes multiple spans under a single name

• Entities: represent a unique, non-overlapping group of spans, forming

a special SpanGroup specifically for NER components

• Extensions: additional data can be added to the previous categories,

including tokens. For example, a variable can be added to the Span to

store the CUI of entities.
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4.1.1 Tok2Vec

Many components require a vector representation of tokens to process the

text effectively. SpaCy has implemented an embedding function known as

Tok2Vec [15]. It was implemented prior to the Transformer architecture by

Vaswani et al.[34], necessitating the development of sophisticated logic to

achieve good results.

Vectorization is achieved in two steps:

1. Embed: convert each token into a context-independent vector

2. Encode: provide context to each token vector.

Embed

The algorithm used is calledMultiHashEmbed; it relies on another algorithm

called HashEmbed and is designed to solve the problem of out-of-vocabulary

terms.

HashEmbed The HashEmbed algorithm operates through a series of steps

for each token:

1. the token is hashed multiple times with different seeds

2. each hash is modularized with the size of the embedding table to gen-

erate indexes

3. the indexes are mapped to 96-dimension vectors using the embedding

table

4. the vectors are summed to produce a singular vector for each token.

This algorithm has several advantages:

• flexibility in the size of the embedding table

• the ability to encode out-of-vocabulary tokens
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• a potentially smaller embedding table compared to traditional, sequentially-

numbered tables

• the elimination of the need to store a vocabulary mapping from token

to vector due to the index generation through token hashing

Instead of hashing the same token with different seeds, MultiHashEmbed

uses four different variants of the token— like prefix, suffix, shape, and origi-

nal— and four seeds for each variant. Each variant uses a different embedding

table with different sizes. The process for embedding a word is illustrated in

Image 4.1.

Castle

ORTH

SHAPE

PREFIX

SUFFIX

Castle

Xxxxxx

Ca

le

ORTH

PREFIX

SUFFIX

SHAPE

5000 rows

2500 rows

2500 rows

2500 rows

Hash

Hash

Hash

Hash

Figure 4.1: Example of MultiHashEmbed using four seed for four variants

Encode

The encoding process provides context to the tokens, i.e., it adds informa-

tion about the entire document to each token vector. SpaCy’s default encod-

ing model is a convolutional neural network with residual connections, layers

normalization and maxout activation. For completeness, these techniques are

discussed hereafter; however, for simplicity, many concepts are not explored

in depth.

Residual connections Introduced by K. He et al.[13], residual connections

have enhanced the performance of convolutional neural networks. Research
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has shown that residual connections enhance the performance of convolutional

neural networks, providing more stability during training, especially in deep

architectures.

With residual connections, the blocks (i.e., groups of three layers of con-

volutions) can be considered as perturbations of the input. In our case the

blocks output can be seen as context information being added to the vector.

Layer normalization Layer Normalization is a technique that standardizes

the inputs across features within a layer by normalizing the inputs for each

sample independently. This is achieved using scaling and shifting parame-

ters, making it effective for recurrent and Transformer networks, regardless

of batch size.

Maxout activation Themaxout activation function, as introduced by Good-

fellow et al.[12], operates by splitting the inputs into groups. It applies a learn-

able linear transformation to each group and then takes the maximum value

across the transformed outputs of each group.

4.1.2 Entity Recognizer

EntityRecognizer is a spaCy component that performs sequence labeling for

NER. Sequence labeling is a type of task with the objective of assigning a

label to each element in a sequence. Entity extraction can be accomplished by

using three classes: (B)egin, (I)nside and (O)utside. The label (B) indicates

the beginning of an entity and also marks the end of another entity; the label

(I), in conjunction with (B) or another (I), indicates that the previously started

entity continues; the label (O) indicates that the token does not belong to any

entity and also marks the end of the previous entity.

For multi-class sequence labeling, distinct (B)egin and (I)nside labels are

employed for each class, allowing for precise categorization of entities into

different classes.
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Figure 4.2 shows an example of sequence labeling for entity extraction

and classification.

Why

O

O

do

O

O

Dutch

B

B-Persons

people

I

I-Persons

use

O

O

dietary

B

B-Objects

supplements?

I

I-Objects

Figure 4.2: Example of Sequence labeling for Entity Extraction and Entity
Classification. In this example the entities are “Dutch people” and “dietary
supplements”

SpaCy uses another standard, called BILUO, for sequence labeling that

adds two classes, namely (L)ast and (U)nit. (B) indicates the beginning of an

entity composed of two or more tokens, (I) indicates the inside of an entity

composed of three or more tokens, (L) indicates the end of an entity of two or

more tokens, and (U) indicates an entity composed of only one token.

With this technique, it is not possible to extract entities with overlaps, and

this method may have some difficulties in extracting long entities with lots of

tokens. Unlike other techniques, sequence labeling cannot be used solely for

entity classification, as it would also extract the entities.

The focus of optimization is to increase the accuracy of entire entities.

Therefore, if there is low annotation agreement on the boundaries of the enti-

ties, this component will likely perform poorly.

4.1.3 Span Categorizer

This component is designed to address the limitations of the entity recognizer,

particularly its inability to allow overlaps.

The standard NER task does not include overlapping entities. As ex-

plained in Chapter 3, Section 3.2.3, we removed entities that overlap from

our datasets. However, this technique has some important advantages:

• Two distinct steps: one for entity extraction and one for entity classifi-

cation
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• The problem of entity lengths is mitigated by a pooling strategy

• Gives a confidence score to the generated entities

• It is less sensitive to the boundaries of entities

This component is composed of two distinct sub-components called Span-

Suggester and EntityLabeler.

SpanSuggester

This component performs entity extraction for all entities independent of their

classes. While SpaCy employs several techniques, for our tests we utilized

only two: the Ngram Suggester and the SpanFinder.

Ngram suggester TheNgramSuggester sends all spanswith specific lengths

to the EntityLabeler, which will later classify these spans as entities of a par-

ticular class or discard them. Although this mechanism is simple, it is quite

effective, mainly due to the classifier’s ability to discriminate between good

and bad candidates.

Themain problemwith this technique is that if the dataset has long entities,

it generates a lot of candidates, thereby increasing the time required to process

the document.

SpanFinder This component is designed to use a more sophisticated tech-

nique than the Ngram suggester.

The SpanFinder is similar to the entity recognizer and uses only three

classes: (B)egin, (L)ast, and (O)utside. It marks as candidates all the possible

spans that start and end in correspondence with the marked tokens.

This technique generates fewer candidates with more precision, offering

the advantage of making the EntityLabeler significantly faster during both

training and testing by providing only a fraction of the candidates compared

to the Ngram suggester.
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EntityLabeler

This component is composed of two parts: the reducer and the scorer. The

default reducer mixes the average and max pool, then sends them to a linear

layer, which adjusts the vector’s length. The scorer is a multi layer perceptron

with a softmax that predicts whether a candidate is a discard, or it is an entity

that is classified into one of the predefined classes.

4.2 Encoder-only architecture

This section explains the Transformer architecture, focusing on the encoder-

only, or BERT-like, architecture. The decoder-only architecture is explained

in Section 4.4, dedicated to generative approaches.

Primarily used for automatic token embedding, the BERT model serves as

an alternative to the Tok2Vec model, offering advanced contextual capabili-

ties.

Similar to Tok2Vec, the encoder-only architecture includes two sections:

an embedding section, which converts each token into a vector representation,

and an encoding section, which adds context information to the token vectors.

Figure 4.3 provides a diagram of the architecture.

4.2.1 Embedding

BERT utilizes an embeddingmatrix, also known as an embedding table, which

stores the vector representation of each token in the vocabulary as rows. The

matrix is initially randomized and subsequently refined through learning. The

size of the vector scales from 128 in the ’tiny’ version to 2048 in the ’xlarge’

version.

By construction, the transformer architecture is not a sequence model. To

enable it to process sequential data, a positional embedding is added, provid-

ing information about the position of each token in the sequence. Positional
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BERT
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T[s]

Embedding
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Embedding
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Self Attention Layer
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Tn

Embedding
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Figure 4.3: BERT architecture

embeddings for each position are learned during model training. Vaswani et

al.[34] noted that the quality difference between using fixed or learned po-

sitional embeddings is minimal. Nonetheless, BERT and subsequent models

employ learned positional embeddings.

4.2.2 Encoding

Encoding is achieved through repeated application of the attention mecha-

nism. The Transformer architectures employ an attention mechanism known

asMulti-Head Attention. It can be applied to the same input vectors, known as

self-attention, or jointly with different inputs, known as cross-attention. Fig-

ure 4.4 and 4.5 illustrate the operational flow of Multi-Head Attention 1.

1Images from the paper ’Attention is All You Need’ by Vaswani et al. [34]
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Figure 4.4: Multi-Head Attention
mechanism. The input vectors un-
dergo parallel processing in several
Dot-product attention layers

Figure 4.5: Scaled Dot-product At-
tention layer. In self-attention, the
matrices K (Key), V (Value), andQ
(Query) are derived from the same
input vectors. For cross-attention,
K and V matrices are sourced from
different inputs

4.3 Encoder-only models

For our experiments, we tested five different encoder-only, or BERT-like,

models for automatic token embeddings, namely RoBERTa-base, MedBERT,

Coder, UmBERTo, and xml-RoBERta-base. The models have similar num-

ber of parameters, which makes them comparable and trainable with the same

hardware resources.

4.3.1 RoBERTa-base

RoBERTa is one of the most famous encoder-only models freely available.

It was published in 2019 by Y. Liu et al. [19], in a replication study that

performed hyperparameter tuning in order to study the potential of encoder-

only models. RoBERTa gives us insights on the extent to which a model can
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be effective without deep medical knowledge.

RoBERTa was trained with particular care in evaluating all the hyperpa-

rameters, and it has some important improvements compared to other BERT

variants:

• ImprovedHandling of Longer Sequences: RoBERTa has been trained

on longer sequences and can process long texts more effectively

• Greater efficiency in zero-shot and few-shot learning: RoBERTa can

generalize better from limited data, which is crucial for tasks where an-

notated data is scarce

• Better Handling of Ambiguity in Language: RoBERTa’s ability to

understand and interpret ambiguous language is enhanced, making it

more effective in tasks where the meaning of text depends heavily on

context

• ImprovedRobustness to Noisy Data: RoBERTa exhibits enhanced ro-

bustness to noisy or unstructured data, thanks to its training on a diverse

and extensive corpus

RoBERTa comeswith four variations, for our experiments we usedRoBERTA-

base, with the following hyperparameters:

• Hidden Size: 768

• Intermediate Size: 3072

• Attention Heads: 12

• Layers: 12

• Max Sequence Length: 512

• Batch Size: between 32 and 128

• Total Parameters: 1̃25 million
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4.3.2 MedBERT

MedBERT by Vasantharajan et al. [33] is a pre-trained model for biomedi-

cal NER. It is initialized with BIO_ClinicalBERT, another BERT-like model

trained with additional data in the medical domain, and fine-tuned with four

additional datasets in the biomedical domain:

• N2C2 corpus: articles in the biomedical domain, from the N2C2 2018

and 2022 challenges

• BioNLP: articles released for the BioNLP project. The articles vary

around bio-molecular sciences (molecular biology, DNAmodifications,

habitats of bacteria mentioned, etc.)

• Colorado Richly Annotated Full Text(CRAFT):67 biomedical arti-

cles from PubMed that cover a wide range of the biomedical domain

• Wikipedia Corpus: a curated dataset of selected biomedical-related

articles from Wikipedia

MedBERT is used to test how much prior knowledge in the biomedical

domain affects performance.

4.3.3 Coder

CODER byYuan et al. [38], is a model designed to cluster terms that represent

the same UMLS concepts. This is a different approach compared to other

BERT-like models since it is not trained to produce text.

Contrastive learning is a technique that involves the learning of embedding

vector, and bring positive samples closer and moving negatives ones further

away in a multi dimensional space. The samples are taken from UMLS: the

concept with a relationship that indicates closeness is considered positive and

the concepts that do not have a relationship with the anchor are considered

negatives. CODER has a good representation of UMLS and can be used for
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semantic search (by encoding a string and searching for the closest vector from

UMLS).

CODER is used to test the difference between EntityRecognizer and Span-

Categorizer. The hypothesis is that SpanCategorizer, when usedwith CODER,

will outperform sequential labeling techniques because it is trained on entire

entities.

4.3.4 UmBERTo

UmBERTo, developed by Parisi et al.[25], is a model derived from RoBERTa-

base. It includes several enhancements and is specifically trained on Italian

documents.

There exist two versions of thismodel, each trainedwith a different corpus:

• wikipedia-uncased: trained with a small corpus (7 GB) composed of

Wikipedia articles

• commoncrawl-cased: trained on a larger dataset (69 GB), encompass-

ing a more diverse range of texts

4.3.5 xml-RoBERTa-base

The xml-RoBERTa-base, a multilingual version of RoBERTa-base developed

by Conneau et al. [10], is trained on 2.5 TB of data encompassing one hundred

languages.

4.4 Decoder-only models

Decoder-onlymodels, such asGPT-likemodels, can autoregressively compute

the next token in a sequence. These models are used to generate text and when

instruction-tuned, they serve as versatile, general-purpose tools.

The Decoder-only’s architecture is similar to encoder-only with the differ-

ence that the attention is not bidirectional.
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Using large language models (LLMs) for entity extraction and classifica-

tion offers an alternative to traditional methods. These models excel in mem-

orizing and retrieving knowledge. Consequently, we investigated their effi-

cacy in analyzing biomedical documents. Similar to many language-related

tasks, both entity extraction and classification can be approached as question-

answering problems. This is achieved by providing a generative system with

the relevant documents and task descriptions.

4.4.1 Prompt tuning

Entity extraction and classification tasks can be approached in various ways,

each necessitating a unique task description. Research focusing on these vary-

ing approaches is known as prompt engineering.

Since GPT-like models are general purpose, it is necessary to correctly

submit the task in order to maximize the results while at the same time reduc-

ing, if possible, the “token consumption”. Token consumption refers to the

number of tokens necessary to solve the task. Reducing the number of tokens

necessary for a task has two advantages: it reduces costs and helps the model

by not spreading information across the entire context.

One of the main techniques to enhance prompt performance is to include

examples in the prompt. This technique is called few-shot learning.

The context size limit is more relevant for decoder-only models because a

larger context size allows the use of more examples, and longer document in

the prompt. OpenAI models have a context size limit ranging from 4,191 to

128,000 tokens.

4.4.2 Fine-tuning

Large Language Models can be retrained on new data. This process is called

fine-tuning and is used to adapt the model to a downstream task.

In the paper by Bhatia et al. [3], it is shown that prompt engineering, which
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focuses only on task representation, does not change the reasoning abilities

of LLMs. The paper also demonstrates that the performance gap is due to

their inability to perform simple probabilistic reasoning tasks. This limitation

can be solved through fine-tuning, which involves training the model with a

specialized and smaller dataset.

OpenAI recently released an API that gives access to fine-tuning utilities

for training GPT-3.5. The API requires a dataset containing a list of dialogues

between the model and the user. It is also possible to set the number of epochs

(number of times each sample is used to train the model) in order to use small

datasets more effectively.



Chapter 5

Experimental setting

In this chapter, we report all the experiments designed to study the problem

as completely as possible. The focus of this research is to discover which

techniques give good results and the reasons behind their success across four

distinct datasets, each representing different environments. This chapter be-

gins by introducing a straightforward technique aimed at enhancing our under-

standing of the datasets. It then proceeds to detail the experiments conducted

to compare various available technique.

5.1 Naive Baseline

Many characteristics of the datasets determine the complexities of the tasks.

To measure each dataset’s complexity, we created a simple model and com-

pared the results across the datasets.

This model is implemented using spaCy Matcher, which builds a dictio-

nary that maps from spans of text to their classes using the training set. This

model then searches for exact matches in both the validation and training sets

to perform entity extraction.
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5.1.1 Entity Extraction - Precision

The precision is the ratio of correctly extracted entities to the total extracted

entities. A high value indicates high consistency between training and test

annotations.

If the precision of tokens is much higher than that of entities, it indicates

agreement on the extracted entities but not on their boundaries. For exam-

ple, consider the sentence “He also noted a 23 pound weight loss [...]” (where

a 23 pound weight loss is an entity). In the test set, this might appear as “The

patient shows 23 pound weight loss [...]”. Here, the entity is marked both as

a false positive and as a false negative due to boundary disagreements. How-

ever, only one token (‘a’) is a false positive, while the rest are true positives.

Hence, a marked difference between the precision of the tokens and entities

indicates that there is a low boundary agreement.

Low precision, both for entities and tokens, can be attributed to two sce-

narios. This may indicate either a qualitative deficiency in the annotation of

entities or a context-dependent extraction of entities. For instance, in EBM

NLP, where entities are classified as Participants, Interventions, and

Outcomes, an entity identified as an Outcome at the beginning of a document

might actually represent an initial illness rather than an outcome.

Determining whether the issue comes from the first or the second scenario

can be challenging. However, if a technique that proficiently uses context

yields a low score, this outcome is likely due to either the low quality of the

dataset or the inherent difficulty of the task.

5.1.2 Entity Extraction - Recall

Recall is calculated by dividing the number of entities correctly extracted by

the total number of present entities, which includes both those missed and

those caught.
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A recall value near one indicates that the training and test sets are very sim-

ilar, containing mostly identical data. In this scenario, generalization abilities

are not as necessary, whereas the ability for memorization becomes crucial.

5.2 Embedding based

This section covers the experiments conducted with conventional techniques,

such as EntityRecognizer and SpanCategorizer.

5.2.1 Entity Extraction vs Entity Classification

We decided to split the task into two different sub-tasks for several reasons:

• The Italian dataset can only be tested on Entity Extraction

• The two sub-tasks may require different abilities of the model or tech-

nique (e.g., syntactical analysis, biomedical knowledge, memory, gen-

eralization, ...)

• The SpanCategorizer may be improved by developing a smart Span-

Suggester

5.2.2 EntityRecognizer vs SpanCategorizer

This experiment is used to compare the twomain techniques offered by spaCy,

namely the EntityRecognizer, explained in Chapter 4 Section 4.1.2, and the

SpanCategorizer, detailed in Section 4.1.3.

The SpanCategorizer is designed for a different task of EntityRecognizer

but can be adapted. Hence, this experiment measure which technique is supe-

rior.
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5.2.3 SpanCategorizer overlap filters

The SpanCategorizer, designed to identify overlapping entities, led us to de-

velop two algorithms for isolating non-overlapping entities. This allows a

direct comparison between the EntityRecognizer and SpanCategorizer.

We created two different filters:

• Longest entities: This filter selects the longest entity among the over-

lapping entities

• Highest score: The SpanCategorizer can return the confidence scores

of the classified candidates. This filter uses the score to select the entity

with the highest confidence score among the overlapping entities

5.2.4 Ngram vs SpanFinder

The spaCy documentation suggests that the SpanFinder is a faster alternative

to the SpanCategorizer. However, their tests show it yielding slightly worse

results. We wanted to validate spaCy’s results within the biomedical domain.

5.2.5 Mix Entity Extraction and Entity Classification

The SpanCategorizer has two distinct sub-components, one that returns can-

didates, called SpanSuggester, and another that classifies them. It is logical

to assume that a better SpanSuggester would increase the performance of the

SpanCategorizer. Therefore, we investigated two different approaches to in-

crease the quality of the SpanSuggester:

• using an EntityRecognizer as a SpanSuggester using the same embed-

ding component as the SpanCategorizer

• using a standalone pipeline pre-trained only for entity extraction
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Shared embedding component

The SpanSuggester and SpanCategorizer are trained on the same documents

but with different annotations. The former is trained to extract only one class

of entities, whereas the latter is trained to classify all the candidates without

discarding any.

The advantage of having only one embedding component, either Tok2Vec

or BERT-like model, is that both sub-tasks can properly guide the gradients

and can improve the models’ comprehension of the task. However, due to

budget constraints, this technique has not been tested.

Standalone pipeline

The two sub-tasks use different embedding components, and for this reason

the classifier can be trained in a second phase.

The already existing models trained for entity extraction, can be used as

SpanSuggesters. Hence, this experiment is only about creating a good model

for entity classification, takingwithout any adaptation the best model for entity

extraction.

The SpanCategorizer is trained giving only ground truth candidates, in

order to not mix entity extraction and entity classification. This allows the

learning to focus solely on the classification task, ignoring the entity extraction

part.

Another advantage of mixing models for entity extraction and entity clas-

sification is that we can use different transformer models for the two tasks,

making it possible to leverage, for example, RoBERTa’s ability in syntactical

analysis and MedBERT’s or CODER’s biomedical knowledge.
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5.3 GPT based

There are several decoder-only models available that we could have used for

the experiments, but we focused our research only on three models: GPT-3.5,

GPT-4, and UniversalNER.

GPT-3.5 andGPT-4 are general-purpose, whereasUniversalNER is trained

specifically for NER.

OpenAI models are frequently updated; in the last six months, a lot has

changed. For example, when this project started, GPT-4 had not yet been re-

leased, and the maximum context size for GPT-3.5 was limited to 4191 tokens,

with no options for fine-tuning available

UniversalNER, a.k.a UniNER, is designed for off-the-shelf use, requiring

users to specify only the classes of entities they wish to extract.

We used three different ways to frame the task of NER:

• All-in-one: ask the model to perform entity extraction and entity clas-

sification of all the entities in a single message

Entity extraction: ask the model to only return a list of entities

Entity classification: given the document and a candidate, return the

class of the candidate

5.3.1 All-in-one

This formulation asks the model to perform both entity extraction and entity

classification.

With MedMentions, we also experimented with generating additional in-

formation like the definition and the preferred label (a standard label for the

concept), to facilitate additional analysis of the model’s comprehension of the

entities.

We utilized an external tool named “CUI Guesser”, developed by Bollino
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et al. [5], to investigate the process of generating the preferred label and defi-

nition. This tool employs CODER and a pool strategy to create a vector repre-

sentation of a concept candidate, followed by a search for the closest matching

concept within a densely compiled representation of all the concepts of inter-

est.

This task requires the output to follow a certain format in order to pro-

grammatically extract the information.

The prompt that produces the best results is:

Extract medical and clinical entities and their details

from text. For each entity, you have to extract the

following information: the original text span, definition,

semantic group, and the preferred label. Retrieve and

return precise information for the entities mentioned in

the text.

The semantic group of the entity must be one of the

following: Organizations, Activities & Behaviors, Genes

& Molecular Sequences, Chemicals & Drugs, Geographic

Areas, Living Beings, Disorders, Occupations, Procedures,

Anatomy, Concepts & Ideas, Devices, Objects, Phenomena,

Physiology.

Use the sentences as context to extract a good definition.

Use the original text and the definition to extract the

preferred label. The entities must be reported without any

change compared to the original text. The output must be

in this format:

| span | definition | semantic group | preferred label |

This prompt consumes 179 tokens using the OpenAI tokenizer. Since the

task is to generate a definition, the semantic group (the class), and the preferred

label, each entity consumes a lot of tokens reducing the space for few-shot
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techniques.

5.3.2 Entity Extraction

This formulation asks the model only to extract the entities. This task has

less token consumption compared to All-in-one since it just lists the entities,

without the definition, semantic group, and preferred label.

This task has been explored on MedMentions, EBM NLP, and IT dataset.

This task requires the generation of fewer tokens, and it is possible to pro-

vide more examples in the prompt.

Here is reported the prompt that produces the best results:

You are a system that performs Named Entity Extraction in

text.

Given a text, create a list of all the entities from

specific classes.

The classes of entities to extract are: [LIST OF SEMANTIC

GROUP]. The text may contain repetitions; in this case,

also repeat the extracted entities.

The output must be in this format: entity1 || entity2 ||

entity3 || ...

This prompt consumes 122 tokens (for MedMentions) but requires far

fewer tokens for the examples compared to All-in-one.

5.3.3 Entity Classification

This formulation requires in input the document and a candidate. The task is

to classify the candidate using information and context from the document. To

classify all the entities in the document the model must be prompted several

times, one for each entity.

The prompt per se is quite short but the request, with the documents and
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eventually the examples, increasing by several folds the token consumption.

For this prompt we wanted to investigate the Chain-of-Thought approach.

The prompt asks the model to produce additional information, like the pre-

ferred label, the definition, and finally the semantic group. The idea is that if

the model generates additional information, it can reuse the information for a

more guided classification. This approach ideally can only be used for Med-

Mentions because we have UMLS knowledge, but wemanually annotated one

or two examples for EBM NLP.

Here is reported the prompt that produce the best results:

You are a system that performs Named Entity

Classification and Information Generation for a given

entity in a document.

Given the document and the entity, you have to classify

and generate an appropriate preferred label and definition

for the specified entity.

To classify the entity, you must use the information

generated for the preferred label and the definition.

The class must be one of the following: [LIST OF SEMANTIC

GROUP].

The output must be in this format: | preferred label |

definition | class |

To measure the influence of Chain-of-Thought we evaluated the perfor-

mance of the above mentioned prompt and another prompt that ask directly to

output the class.

5.3.4 Fine-Tuning

As said in Chapter 5, Section 4.4.2, GPT-3.5 can be trained with custom data

to specialize the model to a task.

This experiment shows how GPT-3.5 performances scale with more data
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rather than few example in the prompt. However, this experiment is costly

and, for this reason, we fine-tuned GPT-3.5 only for entity extraction on Med-

Mentions, EBM NLP, and IT dataset. Additionally, we wanted to test how the

performances would change with half data availabel.

On MedMentions truncated and EBM NLP we trained two variants, one

with a dataset composed of one hundred manually selected documents and

trained for five epochs, and another variant with fifty documents for three

epochs.

5.4 Dataset scaling

This experiment responds to the questions: how much do the performances

scale with datasets size? Can GPT-3.5 be used when the dataset is very small?

What is the threshold after which is better to use traditional techniques?

This experiment is designed to compare the generative approach to tra-

ditional techniques. It measure how much the datasets can be expanded to

increase the results.

The process of annotating a dataset is very costly and with a knowledge

on the increases of performance with additional data, is possible to measure

how much data, and money, is required to reach a certain quality.

This experiment requires the training of several different models on dif-

ferent subsets of the same dataset. For this reason, we trained only EntityRec-

ognizer with RoBERTa-base.

The experiment is performed only on MedMentions truncated and EBM

NLP because they have a large training set.

The datasets are created by using the n-first documents from the training

set and keeping intact the validation set. Both MedMentions and EBM NLP

are selected with the same cuts: 20, 40, 50, 75, 100, 150, 200, 250, 300, 400,

600, 800, 100, 1300, 1600, 1900.



Chapter 6

Discussion of the results

In our experiments involving various models, we observed significant perfor-

mance variability, particularly in MedMentions truncated and EBM NLP. We

hypothesize that spaCy’s training phase, which seems sensitive to random-

ness, especially with low-quality datasets, may contribute to this variability.

Consequently, these results are unsuitable for a much depth analysis of the

characteristics that might favor one technique over others.

Although we did not explore the effects of randomness in training exten-

sively, its impact became evident in our dataset scaling experiments. These

results will be explained later in this chapter, but the final outcome is that

fluctuations are quite relevant, especially for entity extraction.

The comparison between datasets cannot be proven by looking at the re-

sults of generative approaches because the results are not reliable. They are

black box oracles; therefore, it is not possible to obtain any relevant metrics

that reflect some characteristics of the dataset. Hence, the discussion on the

results of generative approach does not include an explanation of the results,

but offer only some ideas that justify the results.
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6.1 Naive baseline results

In Table 6.1 are reported the scores obtained using the naive baseline on the

datasets.

Entities Tokens

Name Precision Recall Precision Recall

MedMentions 0.40 0.66 0.68 0.80

MedMentions Truncated 0.32 0.66 0.53 0.78

EBM NLP 0.07 0.34 0.28 0.62

I2B2 2010 0.52 0.49 0.85 0.49

IT dataset 0.73 0.64 0.93 0.67

Table 6.1: Results of the naive baseline across all tested datasets

MedMentions and MedMentions truncated The scores of MedMentions

are quite good, indicating that the training set is representative and has good

agreement on entity boundaries

The results show that the truncated version has more false positives for

both tokens and entities. This implies that numerous entities sharing identical

text possess different CUIs, some are included in the dataset while others are

not. This inconsistency might confuse the final model, subsequently dimin-

ishing the results.

EBM NLP This dataset has the lowest scores for entities and an average

score for the recall of tokens. This indicates that the training set is fairly rep-

resentative, though there is low agreement on entity boundaries. The low pre-

cisionmay also indicate that entity extraction is context-dependent, the dataset

quality is low, or that the task is inherently hard.

The quality of the dataset can be assessed by measuring the performance

using more sophisticated technique: if they have a low score, it means that the

quality is low, or that the dataset is difficult to manage.
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I2B2 2010 This dataset has the same recall for entities and tokens, indicating

that the training set is representative. The precision gap between entities and

tokens suggests a low entities boundary.

IT dataset The scores of this dataset suggest that it is more manageable.

The training set is representative, and extensive generalization ability is not

required. The results from the naive baseline suggest that, with this dataset,

spaCy’s components are likely to achieve good scores.

6.2 Entity extraction

These experiments have been conducted with a total of 81 different models

across five datasets, 32 of which are specifically for entity extraction.

Figure 6.1 contains the main results of entity extraction and is followed by

a description of the results focusing on each dataset.

MedMentions              MedMentions
Truncated

EBM NLP I2B2 2010 IT Dataset

0

0.2

0.4

0.6

0.8

1
EntityRecognizer

SpanCat.(Length)

SpanFinder(Length)

GPT-3.5 fine-tuned

Entity extraction - on RoBERTa and GPT-3.5 fine-tuned

Figure 6.1: Entity extraction results across all datasets, comparing traditional
techniques with RoBERTa trained for entity extraction and GPT-3.5
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6.2.1 MedMentions

It can be observed that, by comparing the results of models trained for entity

extraction with those trained for entity classification, the models trained for

entity extraction systematically outperform those trained for entity classifica-

tion.

For both entity extraction and entity classification, the best results are ob-

tained using EntityRecognizer with RoBERTa-base, as indicated by the F1

scores for entities and tokens.

Given that RoBERTa-base consistently outperforms other models, it sug-

gests that in this dataset, text manipulation capability is more crucial than

biomedical knowledge.

6.2.2 MedMentions truncated

By removing some entities from the dataset, we observed the emergence of

some outlier models. In this truncated dataset, the difference between En-

tityRecognizer and SpanCategorizer is negligible, but the former exhibits a

slightly better ability at extracting the tokens.

This version shows a decrease in performance, with a 6-point drop in the

F1 score for entities and a 13-point reduction for tokens.

6.2.3 EBM NLP

The naive baseline yields lower performance metrics on this dataset due to

a very low precision (0.07). The baseline’s performance, confirmed by the

entity extraction results, suggests a low quality of this dataset.

Additionally, the low quality of dataset leads to numerous outliers. For in-

stance, various models trained for entity classification outperform their coun-

terparts in entity extraction. This phenomenon is unique to this dataset and

has not been observed in other datasets.
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6.2.4 I2B2 2010

The primary issue with this dataset is its limited size, comprising only 136

documents for training and 33 for validation. The surprising effectiveness

observed may be caused by the specific structure of the documents and the

high quality of the annotations. The entities are primarily presented in lists,

and the models seems to exploit this format quite proficiently.

Another important observation is the performance gap between models

trained for entity extraction and those for entity classification. This phenomenon

may be attributed to the different skill requirements. The data suggests that,

for structured documents, the task of entity extraction and entity classification

is very different. Unfortunately, this is the only dataset tested that has this

structure, hence this phenomenon cannot be verified.

6.2.5 IT dataset

The naive baseline shows that has similar results compared to I2B2 2010.

However, due to the high quality of I2B2 2010, and the language difference,

there is a notable nine-point gap.

The results of entity extraction using traditional techniques follow the

baseline results. In particular, the models exhibit a very high F1 score for

tokens.

The results on this dataset are overall good, but there is an unexpected

outcome: In Italian Tok2Vec excels using EntityRecognizer, while the Span-

Categorizer shows similar results of BERT-based models.

A common model used across this and other datasets is CODER, which

generally underperforms. However, this indicates that the strange score is

not due to the overall performance of the Italian models but rather to the ex-

ceptionally high performance of Tok2Vec combined with EntityRecognizer in

Italian.
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6.2.6 Entity extraction conclusion

This experiment demonstrates the performance boost obtained by training a

model specifically for entity extraction, as depicted in Figure 6.2, which shows

the improvement on EntityRecognizer.

The performancemarginally increases in theMedMentions and EBMNLP

datasets, whereas in the I2B2 2010 dataset, there is a notable growth of 6 to 9

points in performance, varying by model.

In the EBMNLP dataset, an unexpected phenomenon was observed when

using the SpanCategorizer: a performance decline of up to 2 points. This

decline may be attributed to the lower quality of the dataset, which benefits

from the additional information provided by the classification task.

MedMentions     MedMentions
Truncated

EBM NLP I2B2 2010

0

0.02

0.04

0.06

0.08
RoBERTa

MedBERT

CODER

Entity extraction - Entity classification
With EntityRecognizer. Subtraction of Entities F1

Figure 6.2: Comparison of entities F1 on EntityRecognizer with three different
models for each dataset

6.3 Entity classification

For these experiments, we trained a total of 57 models: 16 each for the Enti-

tyRecognizer and the normal SpanCategorizer, 9 for the SpanFinder, and 16
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for the SpanCategorizer Mix.

Figure 6.3 reports the main results and is followed by a description of the

results for each dataset.

MedMentions     MedMentions
Truncated

EBM NLP I2B2 2010

0

0.2

0.4

0.6

0.8
EntityRecognizer

SpanCat.(Score)

SpanCat.Mix

SpanFinder(Score)

GPT-3.5 fine-tuned

Entity classification - RoBERTa-base and GPT-3.5

Figure 6.3: Results of entity classification for all the datasets and all the tra-
ditional techniques with RoBERTa and the GPT-3.5

6.3.1 MedMentions

MedMentions has a F1 weighted average of 0.51 using SpanCategorizer with

RoBERTa-base. RoBERTa-base shows better performance compared to other

models. This suggests that with MedMentions, even entity classification re-

quires textual analysis skills.

The SpanCategorizer with RoBERTa-base shows marked better perfor-

mances compared to the EntityRecognizer with the same model. This phe-

nomenon is unique to this dataset and has not been observed in other datasets,

for this reason it is considered an outlier.
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6.3.2 MedMentions truncated

The truncated version of MedMentions exhibits marginally inferior perfor-

mance in comparison to the complete version, contrary to entity extraction. In

entity extraction, this version loses 6 F1 points, while for classification, the

score is almost the same.

Given that the performance of SpanCategorizer mirrors that of the Enti-

tyRecognizer, it is plausible that the SpanCategorizer’s superior results with

RoBERTa-base on the complete MedMentions may represent an outlier.

6.3.3 EBM NLP

In the section on entity extraction, it has been shown that the quality of this

dataset is low, and the classification reflects similar results. The results of

the EntityRecognizer show that RoBERTa is the best model. However, when

using the SpanCategorizer, MedBERT emerges as the best model for the three

variants tested.

Notably, the SpanCategorizerMix produces the best results for both RoBERTa-

base and CODER models.

6.3.4 I2B2 2010

The results reaffirm the high quality of the dataset. The classification achieves

a weighted average F1-score of 0.89.

The entity extraction experiments indicate differing skill requirements be-

tween entity extraction and entity classification within this dataset. The Span-

Categorizer Mix was specifically developed for this purpose. It increases the

weighted average F1 by 10 points.

This substantial improvement primarily indicates that separating entity ex-

traction and entity classification can be beneficial, particularly when there is a

noticeable performance disparity between models trained specifically for each

task.
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6.3.5 Entity classification conclusion

The conclusions from the task of entity classification are as follows:

• The SpanCategorizer and the EntityRecognizer have similar score

• It is not clear which is superior between the normal SpanCategorizer

and the SpanCategorizer with SpanFinder

• The SpanCategorizer Mix can be a powerful tool if the dataset exhibits

differing scores in entity extraction between model trained specifically

for entity extraction and model for entity classification

• The performance of entity classification follows the results of entity ex-

traction, i.e., the quality of the dataset or the difficuly of the task influ-

ence both entity extraction and entity classification

• Whereas for entity extraction, the scores gap of MedMentions truncated

compared to the complete version is evident, for entity classification the

gap is minimal

6.4 EntityRecognizer vs SpanCategorizer

Figures 6.1 and 6.3 compare the results of EntityRecognizer and SpanCate-

gorizer. It is particularly noticeable that the results for both extraction and

classification are very similar.

The final outcome indicates that the performance difference is minimal.

6.5 SpanCategorizer overlaps filter

Figure 6.4 illustrates the performance differences betweenmodels using length-

based and score-based filters. The results show that the length-based filter

performs slightly better, though its impact on the overall score is not signifi-

cant.
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Figure 6.4: Comparison of overlap filters in SpanCategorizer across all
datasets

6.6 SpanFinder as SpanSuggester

The training for the SpanCategorizer with SpanFinder requires additional vram

compared to other techniques, necessitating the use of an AWS machine. To

reduce the costs of this experiment, we focused solely on training models for

entity classification. Consequently, SpanFinder can only be compared with

other models trained specifically for entity classification.

Figure 6.5 illustrates the difference in weighted average F1 scores between

the standard SpanCategorizer and the SpanCategorizer integrated with Span-

Finder. The final outcome indicates that there is no clear evidence to determine

which technique is superior.
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Figure 6.5: Mathematical subtraction of SpanCategorizer with Ngram sug-
gester and SpanCategorizer with SpanFinder

6.7 Mix entity extraction and entity classification

This experiment leverage the distinct skills required for extracting and clas-

sifying entities. Therefore, an improvement in performance is expected only

when this experiment is applied to datasets exhibiting these characteristics.

I2B2 2010 dataset shows a marked improvement of the performance.

Another important aspect is that while with other techniques the bestmodel

is most of the times RoBERTa-base, with this technique the best model is al-

ways MedBERT. This can be intuitively attributed to the background biomed-

ical knowledge, which significantly influences classification ability.

The final outcome indicates that this technique proves advantageous in

scenarios where there is a discernible difference in F1 scores between models

trained specifically for extraction and those trained for classification.
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6.8 Generative approach

The results of the experiments using generative approaches are reported here

since the outcomes are applicable across all three tested datasets.

6.8.1 UniNER

This model yielded no usable results. The performance of the 7B version was

too low to be useful. The results are reported in Appendix B.

6.8.2 All-in-one

The performance of this technique, reported in Figures 6.6 and 6.7, was sig-

nificantly lower compared to other tasks. Consequently, it was only tested on

MedMentions truncated and then discarded.

The All-in-one approach was designed also to assess the model’s com-

prehension of UMLS, but this experiment yielded no useful results. For this

reason, our attention shifted to more promising tasks.

For entity classification, All-in-one achieved bad results, similar toUniNER

and scored twenty points lower than other methods.

6.8.3 Entity extraction

The findings show that traditional techniques outperform the generative ap-

proach in entity extraction. However, fine-tuning can establish a competitive

baseline, with relatively small datasets.

Performance improves in few-shot scenarios, particularly when examples

are carefully chosen to minimize token consumption. Our research into opti-

mal prompting revealed that prompts should be kept below 4000 tokens, in-

corporating two or three examples that are concise yet comprehensive.

Fine-tuning consistently enhances performance. For instance, a fine-tuned

GPT-3.5 outperforms GPT-4 in a one-shot scenario. However, in the Italian
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language, GPT-4 in a one-shot setting achieves similar results to that of a fine-

tuned GPT-3.5

Performance is further enhanced when fine-tuning is combined with few-

shots, leveraging the strengths of both approaches.
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Figure 6.6: Results of GPT prompts for entity extraction. For comparison, the
figure includes the dataset’s top-performing model for entity extraction

6.8.4 Entity classification

During the development of this experiment, we attempted to include several

candidates in the prompt, but the model sometimes overlooked the entities

and produced mixed results. Consequently, the final prompt asks for only one

candidate at a time, even if this increases the cost.

For the evaluation of this task, we utilized the best-performing model for

entity extraction for each dataset. This approach allows us to isolate and com-

pare the classification task more effectively.

Figure 6.7 shows the result of this task using generative approaches.

The Chain-of-Thought prompt performs worse than the simple prompt,
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a phenomenon for which we currently lack an explanation. This may be at-

tributable to the prompt’s design, which excludes the document from the rea-

soning context, causing GPT-3.5 to underperform when relying solely on the

definition. However, this theory cannot be verified.

The scores of MedMentions truncated are similar to EBM NLP. However,

considering that MedMentions entities are presumably easier to classify ac-

cording to traditional techniques, the results suggest that a greater number of

classes may adversely affect performance. Again, while this cannot be con-

clusively proven, it stands as the most plausible explanation available.
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6.9 Dataset scale

Measuring the model’s performance when trained with identical hyperparam-

eters on different subsets of the dataset can clarify the influence of randomness

during the training phase. However, the primary focus of this experiment is

not the impact of randomness but rather the scalability of models relative to

document .
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This experiment is considered a success if the results show that GPT-3.5,

fine-tuned with fewer than 100 documents, performs better than the traditional

techniques trained with more than 100 documents.

The scaling has been tested for entity extraction and entity classification

with a total of 64 different models.

This experiment reveals interesting findings on MedMentions Truncated

and less encouraging results on EBM NLP.

6.9.1 MedMentions truncated

Figure 6.8 shows the results of this experiment.

Comparing the models trained for entity extraction with those trained for

entity classification indicates fluctuating performance levels.

The performance scaling does not consistently increase, possibly because

some documents in the training subset adversely affect the overall perfor-

mance. With a dataset size of 1300 documents, the model surpasses the F1

score threshold for entity recognition. Givingmore documents seems toworsen

the performances, but using the full dataset ultimately delivers the most effec-

tive results.

6.9.2 EBM NLP

GPT-3.5, when fine-tuned for EBM NLP, demonstrates a significantly lower

score compared to the best-performingmodel. Themodel surpasses the thresh-

old F1-score over the entities with a dataset of only 150 documents. Al-

though the experiment yielded positive results, the marginal difference does

not clearly indicate the superiority of one technique over the other.

Performance oscillation is more pronounced in this dataset, particularly for

the Tokens F1 metric. This may demonstrate that the dataset’s quality indeed

influences the impact of randomness during training.
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6.9.3 Dataset scale conclusions

The outcomes of this experiment indicate that in the case of small datasets

(fewer than 100 documents), generative approaches offer a viable alternative

to traditional techniques.

The effectiveness of this technique cannot be determined a priori, as it

significantly depends on the characteristics of the dataset.

It remains unclear how GPT-3.5 will scale with an increased volume of

fine-tuning data, for example using a thousand documents.

While the use of Large Language Models in this approach is limited by

monetary costs, it serves as a viable substitute when other approaches fail due

to a small dataset.
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Chapter 7

Conclusions

This thesis reports the techniques, with their performance, for entity extrac-

tion and classification of biomedical entities. Alongside the evaluation of the

techniques, we also conducted several experiments designed to test the mod-

els in various contexts, and to search for characteristics that help understand

the success of certain techniques over others.

We also explored how Large Language Models can be effectively used for

entity extraction and classification, as seen in Chapter 6, Section 6.8. Our find-

ings suggest they are best used off-the-shelf when data limitations preclude

the training of traditional techniques. In scenarios where data is sufficient for

fine-tuning Large Language Models, but inadequate for traditional methods,

these models exhibit promising results and can serve as an effective alterna-

tive, as seen in Chapter 6, Section 6.9. In all other cases, where the dataset is

sufficiently large, traditional methods are the best choice.

Our experiments demonstrated that the quality and type of datasets has a

significant impact on performance, thus complicating the prediction of out-

comes.

Some datasets require different skills for entity extraction and entity clas-

sification, and learning one compromises the other. In such cases, disentan-

gling the two tasks can be achieved by training separate models exclusively

for entity extraction and entity classification, thereby harnessing the strengths
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of both models.

7.1 Future works

In this research, we concentrated on applying Large Language Models exclu-

sively to tasks traditionally handled by other techniques, specifically entity

extraction and entity classification.

They can be used for many different tasks, for example translating the

IT dataset in English, using Large Language Models for navigating and po-

tentially enhancing the UMLS graph, paraphrasing a document, solving ab-

breviations, and more. However, a significant limitation in exploring these

possibilities is the challenge of assessing performance due to the scarcity of

available data in the biomedical field. This underscores the need for expanded

data collection and analysis to fully leverage the potential of Large Language

Models in biomedical research.
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Appendix A

Dataset additional data

A.1 Dataset examples

Datasets

DCTN4 Chemicals & Drugs as a modifier of chronic Pseudomonas aeruginosa infection Disorders in cystic fibrosis Disorders

Pseudomonas aeruginosa (Pa) infection Disorders in cystic fibrosis Disorders ( CF Disorders ) patients Living Beings is associated with

worse long-term Concepts & Ideas pulmonary disease Disorders and shorter survival Concepts & Ideas , and chronic Pa infection Disorders (

CPA Disorders ) is associated with reduced lung function Disorders , faster rate of lung decline Disorders , increased rates Concepts & Ideas

of exacerbations Disorders and shorter survival Concepts & Ideas . By using exome sequencing Procedures and extreme phenotype design

Activities & Behaviors , it was recently shown that isoforms Chemicals & Drugs of dynactin 4 Chemicals & Drugs ( DCTN4 Chemicals & Drugs )

may influence Pa infection Disorders in CF Disorders , leading to worse respiratory disease Disorders . The purpose of this study Procedures

was to investigate Concepts & Ideas the role of DCTN4 Chemicals & Drugs missense Disorders variants Chemicals & Drugs on Pa infection

Disorders incidence Concepts & Ideas , age Physiology at first Pa infection Disorders and chronic Pa infection Disorders incidence

Concepts & Ideas in a cohort Living Beings of adult Living Beings CF Disorders patients Living Beings from a single centre Objects [...]

Figure A.1: Example of document from MedMentions



DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection Disorders in cystic fibrosis Disorders

Pseudomonas aeruginosa (Pa) infection Disorders in cystic fibrosis Disorders ( CF Disorders ) patients Living Beings is associated with worse long-term pulmonary disease

Disorders and shorter survival, and chronic Pa infection Disorders ( CPA Disorders ) is associated with reduced lung function, faster rate of lung decline, increased rates of

exacerbations and shorter survival. By using exome sequencing Procedures and extreme phenotype design, it was recently shown that isoforms Chemicals & Drugs of dynactin 4

(DCTN4) may influence Pa infection Disorders in CF Disorders , leading to worse respiratory disease Disorders . The purpose of this study was to investigate Concepts & Ideas

the role of DCTN4 missense variants Chemicals & Drugs on Pa infection Disorders incidence Concepts & Ideas , age Physiology at first Pa infection Disorders and chronic Pa

infection Disorders incidence Concepts & Ideas in a cohort of adult Living Beings CF Disorders patients Living Beings from a single centre Objects . Polymerase chain

reaction Procedures and direct sequencing were used to screen DNA samples Anatomy for DCTN4 variants Chemicals & Drugs . A total of 121 adult Living Beings CF Disorders

patients Living Beings from the Cochin Hospital CF centre Objects have been included, all of them carrying two CFTR defects: 103 developed at least 1 pulmonary infection Disorders

with Pa Living Beings , and 68 patients Living Beings of them had CPA Disorders . DCTN4 variants Chemicals & Drugs were identified in 24% (29/121) CF Disorders patients

Living Beings with Pa infection Disorders and in only 17% (3/18) CF Disorders patients Living Beings with no Pa infection Disorders . Of the patients Living Beings with

CPA Disorders , 29% (20/68) had DCTN4 missense variants Chemicals & Drugs vs 23% (8/35) in patients Living Beings without CPA Disorders . Interestingly, p.Tyr263Cys

Chemicals & Drugs tend to be more frequently observed in CF Disorders patients Living Beings with CPA Disorders than in patients Living Beings without CPA Disorders

(4/68 vs 0/35), and DCTN4 missense variants Chemicals & Drugs tend to be more frequent in male Physiology CF Disorders patients Living Beings with CPA Disorders bearing

two class II mutations Physiology than in male Physiology CF Disorders patients Living Beings without CPA Disorders bearing two class II mutations Physiology (P = 0.06).

Our observations reinforce that DCTN4 missense variants Chemicals & Drugs , especially p.Tyr263Cys Chemicals & Drugs , may be involved in the pathogenesis Disorders of CPA

Disorders in male Physiology CF Disorders .

Figure A.2: Example of document from MedMentions Truncated

Efficacy O and safety O of repeated use of ulipristal acetate I in uterine fibroids. P

OBJECTIVE To investigate the efficacy O and safety O of repeated 12-week courses of 5 or 10 mg daily of ulipristal acetate I for intermittent treatment of symptomatic uterine

fibroids. P

DESIGN Double-blind, randomized administration of two 12-week courses of ulipristal acetate I .

SETTING Gynecology centers. P

PATIENT(S) A total of 451 P patients with symptomatic uterine fibroid(s) and heavy bleeding P .

INTERVENTION(S) Two repeated 12-week treatment courses of daily 5 or 10 mg of ulipristal acetate I .

MAIN OUTCOME MEASURE(S) Amenorrhea, controlled bleeding, fibroid volume, quality of life (QoL) O , pain O .

RESULT(S) In the 5- and 10-mg treatment groups (62% and 73% of patients, respectively) achieved amenorrhea O during both treatment courses. Proportions of patients achieving

controlled bleeding O during two treatment courses were >80%. Menstruation resumed O after each treatment course and was diminished compared with baseline. After the

second treatment course, median reductions from baseline in fibroid volume O were 54% and 58% for the patients receiving 5 and 10 mg of ulipristal acetate, respectively. Pain O

and QoL O improved in both groups. Ulipristal acetate was well tolerated O with less than 5% of patients discontinuing treatment due to adverse events. O

CONCLUSION(S) Repeated 12-week courses of daily oral ulipristal acetate (5 and 10 mg) effectively control bleeding O and pain O , reduce fibroid volume O , and restore

QoL O in patients with symptomatic fibroids.

CLINICAL TRIAL REGISTRATION NUMBER NCT01629563 (PEARL IV).

Figure A.3: Example of document from EBM NLP

XX/XX/XXXX XX:XX XXX TORACE TARGET Una proiezione AP TARGET in esiti di lobectomia superiore TARGET dx si conferma opacamento TARGET della regione apico

sottoclaveare TARGET di dx con minimo ispessimento pleurico parietale TARGET omolaterale Marcata sopraelevazione TARGET della cupola diaframmatica TARGET di dx con

disventilazione basale TARGET omolaterale Ombra mediana TARGET in asse

Figure A.4: Example of document from IT Target Guesser



Figure A.5: Example of document from I2B2 2010.



A.2 Dataset class statistics

Semantic group Count Count
truncated % Truncated %

Chemicals & Drugs 30349 22047 10.89 % -27.36 %

Disorders 35067 26972 12.58 % -23.08 %

Living Beings 24855 20904 8.91 % -15.90 %

Concepts & Ideas 92471 58905 33.17 % -36.30 %

Procedures 29120 19508 10.44 % -33.01 %

Activities & Behaviors 9598 4056 3.44 % -57.74 %

Physiology 19603 12793 7.03 % -34.74 %

Objects 5412 4353 1.94 % -19.57 %

Anatomy 15538 13369 5.57 % -13.96 %

Genes & Molecular Sequences 4427 2194 1.59 % -50.44 %

Devices 2264 1607 0.81 % -29.02 %

Phenomena 5829 3697 2.09 % -36.58 %

Geographic Areas 2398 2293 0.86 % -4.38 %

Organizations 732 283 0.26 % -61.34 %

Occupations 1143 989 0.41 % -13.47 %

Table A.1: Class Count of MedMentions



Super class Class Count %

Participants Age 2536 2.89%

Participants Condition 10077 11.49%

Participants Sample size 4598 5.24%

Participants Sex 1033 1.18%

Interventions Physical 5391 6.15%

Interventions Drug 19771 22.54%

Interventions Control 3041 3.47%

Interventions Surgical 1806 2.06%

Interventions Educational 2834 3.23%

Interventions Psychological 469 0.53%

Interventions Other 1036 1.18%

Outcomes Physical 19242 21.94%

Outcomes Other 7238 8.25%

Outcomes Pain 981 1.12%

Outcomes Mental 4322 4.93%

Outcomes Mortality 1361 1.55%

Participants - 18244 21%

Interventions - 34348 40%

Outcomes - 33144 39%

Table A.2: Class Count of EBM-NLP



Super class Count %

Problem 7056 43%

Test 4605 25%

Treatment 4839 29%

Table A.3: Class Count of I2B2 2010



Appendix B

Experimental Results

All the experiments results are reported here.

B.1 Entity extraction

B.1.1 MedMentions

Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec EntityRec. EE 0.652 0.706 0.678 0.877 0.870 0.874

Tok2Vec EntityRec. EC 0.621 0.645 0.633 0.861 0.787 0.822

RoBERTa EntityRec. EE 0.699 0.770 0.733 0.874 0.942 0.907

RoBERTa EntityRec. EC 0.696 0.758 0.726 0.872 0.924 0.897

MedBERT EntityRec. EE 0.702 0.718 0.710 0.892 0.896 0.894

MedBERT EntityRec. EC 0.688 0.725 0.706 0.881 0.899 0.889

CODER EntityRec. EE 0.691 0.714 0.702 0.891 0.891 0.891

CODER EntityRec. EC 0.674 0.717 0.695 0.874 0.894 0.884

Table B.1: Results of entity extraction for EntityRecognizer on MedMentions



Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec SpanCat.(Score) EE 0.697 0.643 0.668 0.887 0.748 0.811

Tok2Vec SpanCat.(Score) EC 0.707 0.498 0.584 0.895 0.538 0.672

Tok2Vec SpanCat.(Length) EE 0.696 0.642 0.668 0.887 0.750 0.813

Tok2Vec SpanCat.(Length) EC 0.709 0.499 0.586 0.895 0.544 0.677

RoBERTa SpanCat.(Score) EE 0.711 0.754 0.732 0.889 0.866 0.877

RoBERTa SpanCat.(Score) EC 0.759 0.653 0.702 0.911 0.732 0.812

RoBERTa SpanCat.(Length) EE 0.712 0.755 0.733 0.888 0.873 0.881

RoBERTa SpanCat.(Length) EC 0.759 0.653 0.702 0.911 0.735 0.814

MedBERT SpanCat.(Score) EE 0.715 0.710 0.713 0.898 0.805 0.849

MedBERT SpanCat.(Score) EC 0.716 0.635 0.673 0.887 0.721 0.796

MedBERT SpanCat.(Length) EE 0.716 0.711 0.714 0.898 0.811 0.852

MedBERT SpanCat.(Length) EC 0.716 0.636 0.674 0.887 0.726 0.798

CODER SpanCat.(Score) EE 0.699 0.698 0.699 0.886 0.837 0.861

CODER SpanCat.(Score) EC 0.695 0.653 0.673 0.878 0.751 0.809

CODER SpanCat.(Length) EE 0.699 0.698 0.699 0.885 0.841 0.863

CODER SpanCat.(Length) EC 0.695 0.653 0.674 0.877 0.755 0.811

Table B.2: Results of entity extraction for SpanCategorizer on MedMentions



B.1.2 MedMentions truncated

Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec EntityRec. EE 0.570 0.631 0.599 0.711 0.708 0.709

Tok2Vec EntityRec. EC 0.608 0.591 0.600 0.744 0.663 0.701

RoBERTa EntityRec. EE 0.629 0.716 0.670 0.736 0.810 0.771

RoBERTa EntityRec. EC 0.658 0.665 0.662 0.754 0.733 0.743

MedBERT EntityRec. EE 0.652 0.632 0.642 0.765 0.707 0.735

MedBERT EntityRec. EC 0.651 0.613 0.631 0.759 0.697 0.726

CODER EntityRec. EE 0.600 0.684 0.639 0.718 0.829 0.769

CODER EntityRec. EC 0.618 0.661 0.639 0.731 0.768 0.749

Table B.3: Results of entity extraction for EntityRecognizer on MedMentions

truncated



Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec SpanCat.(Score) EE 0.662 0.489 0.562 0.774 0.493 0.602

Tok2Vec SpanCat.(Score) EC 0.656 0.527 0.585 0.779 0.560 0.652

Tok2Vec SpanCat.(Length) EE 0.662 0.489 0.562 0.774 0.494 0.603

Tok2Vec SpanCat.(Length) EC 0.656 0.527 0.585 0.778 0.563 0.653

RoBERTa SpanCat.(Score) EE 0.675 0.661 0.668 0.775 0.687 0.728

RoBERTa SpanCat.(Score) EC 0.667 0.626 0.646 0.763 0.658 0.707

RoBERTa SpanCat.(Length) EE 0.674 0.661 0.667 0.774 0.688 0.729

RoBERTa SpanCat.(Length) EC 0.667 0.626 0.646 0.762 0.660 0.707

MedBERT SpanCat.(Score) EE 0.645 0.650 0.648 0.751 0.701 0.725

MedBERT SpanCat.(Score) EC 0.671 0.570 0.616 0.774 0.613 0.684

MedBERT SpanCat.(Length) EE 0.645 0.650 0.647 0.751 0.703 0.726

MedBERT SpanCat.(Length) EC 0.670 0.570 0.616 0.773 0.616 0.685

CODER SpanCat.(Score) EE 0.613 0.669 0.639 0.734 0.748 0.741

CODER SpanCat.(Score) EC 0.645 0.589 0.616 0.764 0.634 0.693

CODER SpanCat.(Length) EE 0.612 0.669 0.639 0.734 0.751 0.742

CODER SpanCat.(Length) EC 0.646 0.590 0.616 0.763 0.636 0.694

RoBERTa SpanFinder(Score) EC 0.675 0.633 0.653 0.778 0.655 0.711

RoBERTa SpanFinder(Length) EC 0.674 0.633 0.653 0.777 0.659 0.713

MedBERT SpanFinder(Score) EC 0.645 0.625 0.635 0.760 0.669 0.711

MedBERT SpanFinder(Length) EC 0.644 0.624 0.634 0.758 0.675 0.714

CODER SpanFinder(Score) EC 0.671 0.575 0.619 0.781 0.624 0.694

CODER SpanFinder(Length) EC 0.670 0.575 0.619 0.780 0.628 0.696

Table B.4: Results of entity extraction for SpanCategorizer on MedMentions

truncated



Entites Tokens

Model Technique Task Prec. Rec. F1 Prec. Rec. F1

UniNER 0-shot EE 0.484 0.010 0.019 0.648 0.021 0.041

UniNER 0-shot EC 0.468 0.086 0.146 0.657 0.183 0.286

GPT-3.5 0-shot All 0.648 0.090 0.158 0.885 0.208 0.336

GPT-3.5 1-shot All 0.637 0.105 0.180 0.878 0.243 0.380

GPT-3.5 2-shot All 0.631 0.122 0.204 0.870 0.284 0.428

GPT-3.5 3-shot All 0.586 0.113 0.189 0.874 0.289 0.434

GPT-3.5 0-shot EE 0.472 0.152 0.230 0.624 0.313 0.417

GPT-3.5 1-shot EE 0.457 0.243 0.317 0.629 0.499 0.557

GPT-3.5 2-shot EE 0.449 0.255 0.326 0.618 0.510 0.559

GPT-4 1-shot EE 0.449 0.473 0.461 0.600 0.853 0.704

GPT-3.5 ft. 100 doc - 5 ep. EE 0.692 0.621 0.654 0.876 0.880 0.878

GPT-3.5 ft. 50 doc - 3 ep. EE 0.671 0.618 0.643 0.874 0.885 0.880

Table B.5: Results of entity extraction for GPT-based prompt onMedMentions

Truncated. The evaluation is performed on a subset of 50 documents.



B.1.3 EBM NLP

Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec EntityRec. EE 0.516 0.311 0.388 0.663 0.279 0.393

Tok2Vec EntityRec. EC 0.532 0.227 0.318 0.683 0.229 0.343

RoBERTa EntityRec. EE 0.548 0.431 0.482 0.740 0.454 0.563

RoBERTa EntityRec. EC 0.536 0.437 0.482 0.719 0.490 0.583

MedBERT EntityRec. EE 0.566 0.393 0.464 0.765 0.428 0.549

MedBERT EntityRec. EC 0.483 0.447 0.464 0.673 0.573 0.619

CODER EntityRec. EE 0.495 0.428 0.459 0.690 0.499 0.579

CODER EntityRec. EC 0.462 0.437 0.449 0.654 0.568 0.608

Table B.6: Results of entity extraction for EntityRecognizer on EBM NLP



Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec SpanCat.(Score) EE 0.599 0.268 0.370 0.719 0.164 0.267

Tok2Vec SpanCat.(Score) EC 0.625 0.212 0.317 0.699 0.193 0.303

Tok2Vec SpanCat.(Length) EE 0.597 0.267 0.369 0.718 0.164 0.267

Tok2Vec SpanCat.(Length) EC 0.623 0.211 0.315 0.697 0.195 0.304

RoBERTa SpanCat.(Score) EE 0.521 0.438 0.475 0.717 0.481 0.575

RoBERTa SpanCat.(Score) EC 0.528 0.439 0.480 0.680 0.489 0.569

RoBERTa SpanCat.(Length) EE 0.520 0.437 0.475 0.715 0.482 0.576

RoBERTa SpanCat.(Length) EC 0.523 0.434 0.474 0.675 0.491 0.569

MedBERT SpanCat.(Score) EE 0.479 0.446 0.462 0.680 0.490 0.570

MedBERT SpanCat.(Score) EC 0.563 0.423 0.483 0.726 0.440 0.548

MedBERT SpanCat.(Length) EE 0.476 0.442 0.459 0.676 0.492 0.570

MedBERT SpanCat.(Length) EC 0.560 0.420 0.480 0.723 0.444 0.550

CODER SpanCat.(Score) EE 0.544 0.378 0.446 0.715 0.374 0.491

CODER SpanCat.(Score) EC 0.514 0.421 0.463 0.683 0.452 0.544

CODER SpanCat.(Length) EE 0.544 0.379 0.447 0.714 0.375 0.492

CODER SpanCat.(Length) EC 0.511 0.419 0.461 0.681 0.454 0.545

RoBERTa SpanFinder(Score) EC 0.540 0.382 0.448 0.725 0.336 0.460

RoBERTa SpanFinder(Length) EC 0.533 0.378 0.442 0.721 0.338 0.460

MedBERT SpanFinder(Score) EC 0.576 0.373 0.453 0.747 0.313 0.441

MedBERT SpanFinder(Length) EC 0.568 0.369 0.447 0.742 0.314 0.441

CODER SpanFinder(Score) EC 0.508 0.388 0.440 0.710 0.343 0.462

CODER SpanFinder(Length) EC 0.506 0.386 0.438 0.707 0.345 0.463

Table B.7: Results of entity extraction for SpanCategorizer on EBM NLP



Entites Tokens

Embedding Component Prec. Rec. F1 Prec. Rec. F1

UniNER EE 0-shot 0.176 0.016 0.030 0.392 0.067 0.114

UniNER EC 0-shot 0.193 0.044 0.071 0.364 0.056 0.096

GPT-3.5 0-shot 0.102 0.012 0.021 0.283 0.031 0.057

GPT-3.5 1-shot 0.164 0.167 0.166 0.334 0.334 0.334

GPT-3.5 2-shot 0.180 0.217 0.197 0.353 0.404 0.377

GPT-4 1-shot 0.193 0.192 0.193 0.308 0.542 0.393

GPT-3.5
ft. 100 doc

5 ep. 1-shot
0.338 0.438 0.381 0.451 0.620 0.522

GPT-3.5
ft. 50 doc

3 ep. 1-shot
0.370 0.457 0.409 0.483 0.580 0.527

Table B.8: Results of entity extraction for GPT-based prompt on EBM NLP.

The evaluation is performed on a subset of 50 documents.



B.1.4 I2B2 2010

Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec EntityRec. EE 0.933 0.926 0.930 0.957 0.942 0.950

Tok2Vec EntityRec. EC 0.853 0.829 0.840 0.905 0.859 0.881

RoBERTa EntityRec. EE 0.958 0.954 0.956 0.971 0.969 0.970

RoBERTa EntityRec. EC 0.914 0.867 0.890 0.950 0.876 0.912

MedBERT EntityRec. EE 0.956 0.954 0.955 0.973 0.968 0.971

MedBERT EntityRec. EC 0.900 0.870 0.885 0.935 0.897 0.916

CODER EntityRec. EE 0.946 0.942 0.944 0.963 0.963 0.963

CODER EntityRec. EC 0.869 0.847 0.858 0.920 0.886 0.903

Table B.9: Results of entity extraction for EntityRecognizer on I2B2 2010



Entites Tokens

Embedding Component Task Prec. Rec. F1 Prec. Rec. F1

Tok2Vec SpanCat.(Score) EE 0.947 0.882 0.913 0.963 0.840 0.898

Tok2Vec SpanCat.(Score) EC 0.877 0.792 0.832 0.925 0.761 0.835

Tok2Vec SpanCat.(Length) EE 0.947 0.882 0.913 0.962 0.841 0.897

Tok2Vec SpanCat.(Length) EC 0.877 0.792 0.833 0.923 0.763 0.836

RoBERTa SpanCat.(Score) EE 0.963 0.927 0.945 0.973 0.879 0.924

RoBERTa SpanCat.(Score) EC 0.913 0.848 0.879 0.953 0.814 0.878

RoBERTa SpanCat.(Length) EE 0.962 0.927 0.944 0.973 0.880 0.924

RoBERTa SpanCat.(Length) EC 0.913 0.848 0.879 0.952 0.815 0.878

MedBERT SpanCat.(Score) EE 0.952 0.928 0.940 0.973 0.877 0.923

MedBERT SpanCat.(Score) EC 0.908 0.858 0.883 0.953 0.827 0.886

MedBERT SpanCat.(Length) EE 0.955 0.931 0.943 0.972 0.880 0.924

MedBERT SpanCat.(Length) EC 0.906 0.856 0.880 0.951 0.829 0.886

CODER SpanCat.(Score) EE 0.954 0.905 0.929 0.971 0.862 0.913

CODER SpanCat.(Score) EC 0.894 0.813 0.852 0.942 0.794 0.862

CODER SpanCat.(Length) EE 0.955 0.905 0.929 0.970 0.864 0.914

CODER SpanCat.(Length) EC 0.897 0.816 0.854 0.941 0.798 0.864

RoBERTa SpanFinder(Score) EC 0.908 0.839 0.872 0.945 0.750 0.836

RoBERTa SpanFinder(Length) EC 0.907 0.838 0.871 0.944 0.751 0.837

MedBERT SpanFinder(Score) EC 0.911 0.836 0.872 0.945 0.751 0.837

MedBERT SpanFinder(Length) EC 0.909 0.834 0.870 0.943 0.754 0.838

CODER SpanFinder(Score) EC 0.885 0.794 0.837 0.936 0.727 0.818

CODER SpanFinder(Length) EC 0.887 0.796 0.839 0.935 0.730 0.820

Table B.10: Results of entity extraction for SpanCategorizer on I2B2 2010



B.1.5 IT dataset

Entites Tokens

Embedding Component Prec. Rec. F1 Prec. Rec. F1

Tok2Vec EntityRec. 0.860 0.867 0.863 0.952 0.931 0.941

xlm-RoBERTa-base EntityRec. 0.672 0.672 0.672 0.808 0.817 0.813

UmBERTo EntityRec. 0.672 0.657 0.664 0.815 0.795 0.805

CODER EntityRec. 0.668 0.668 0.668 0.799 0.807 0.803

Table B.11: Results of entity extraction for EntityRecognizer on IT dataset

Entites Tokens

Embedding Component Prec. Rec. F1 Prec. Rec. F1

Tok2Vec SpanCat.(Score) 0.876 0.843 0.859 0.960 0.863 0.909

Tok2Vec SpanCat.(Length) 0.877 0.844 0.860 0.957 0.873 0.913

xlm-RoBERTa-base SpanCat.(Score) 0.864 0.858 0.861 0.954 0.888 0.920

xlm-RoBERTa-base SpanCat.(Length) 0.862 0.857 0.859 0.949 0.895 0.921

UmBERTo SpanCat.(Score) 0.868 0.719 0.787 0.955 0.775 0.856

UmBERTo SpanCat.(Length) 0.872 0.723 0.791 0.952 0.785 0.861

CODER SpanCat.(Score) 0.871 0.843 0.857 0.956 0.863 0.907

CODER SpanCat.(Length) 0.874 0.846 0.860 0.952 0.870 0.909

Table B.12: Results of entity extraction for SpanCategorizer on IT dataset



Entites Tokens

Embedding Component Prec. Rec. F1 Prec. Rec. F1

UniNER 0-shot 0.667 0.037 0.069 0.917 0.048 0.091

GPT-3.5 1-shot 0.722 0.544 0.620 0.891 0.718 0.795

GPT-4 1-shot 0.790 0.750 0.770 0.858 0.916 0.886

GPT-3.5
ft. 50 doc

3 ep. 0-shot
0.761 0.730 0.745 0.884 0.903 0.893

GPT-3.5
ft. 50 doc

3 ep. 1-shot
0.796 0.772 0.784 0.902 0.913 0.908

Table B.13: Results of entity extraction for GPT-based on IT dataset.



B.2 Entity Classification

B.2.1 MedMentions

Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec EntityRec. 0.361 0.369 0.354

RoBERTa EntityRec. 0.451 0.485 0.466

MedBERT EntityRec. 0.440 0.463 0.451

CODER EntityRec. 0.428 0.452 0.438

Table B.14: Results of entity classification forMedMentions using EntityRec-

ognizer



Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec SpanCat.(Score) 0.496 0.364 0.417

Tok2Vec SpanCat.(Length) 0.497 0.365 0.419

RoBERTa SpanCat.(Score) 0.551 0.478 0.511

RoBERTa SpanCat.(Length) 0.551 0.478 0.511

MedBERT SpanCat.(Score) 0.505 0.448 0.473

MedBERT SpanCat.(Length) 0.506 0.449 0.474

CODER SpanCat.(Score) 0.477 0.444 0.458

CODER SpanCat.(Length) 0.477 0.445 0.458

Tok2Vec SpanCat-mix 0.428 0.466 0.444

RoBERTa SpanCat-mix 0.449 0.493 0.469

MedBERT SpanCat-mix 0.453 0.493 0.471

CODER SpanCat-mix 0.445 0.487 0.464

Table B.15: Results of entity classification for MedMentions using SpanCat-

egorizer



B.2.2 MedMentions Truncated

Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec EntityRec. 0.395 0.382 0.386

RoBERTa EntityRec. 0.448 0.453 0.449

MedBERT EntityRec. 0.452 0.426 0.438

CODER EntityRec. 0.396 0.423 0.408

Table B.16: Results of entity classification for MedMentions truncated using

EntityRecognizer



Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec SpanCat.(Score) 0.473 0.383 0.420

Tok2Vec SpanCat.(Length) 0.473 0.384 0.420

RoBERTa SpanCat.(Score) 0.477 0.446 0.459

RoBERTa SpanCat.(Length) 0.476 0.446 0.459

MedBERT SpanCat.(Score) 0.484 0.418 0.446

MedBERT SpanCat.(Length) 0.484 0.418 0.446

CODER SpanCat.(Score) 0.450 0.414 0.429

CODER SpanCat.(Length) 0.450 0.414 0.429

RoBERTa SpanFinder(Score) 0.479 0.450 0.462

RoBERTa SpanFinder(Length) 0.479 0.449 0.462

MedBERT SpanFinder(Score) 0.446 0.433 0.438

MedBERT SpanFinder(Length) 0.445 0.432 0.437

CODER SpanFinder(Score) 0.482 0.417 0.446

CODER SpanFinder(Length) 0.481 0.416 0.445

Tok2Vec SpanCat-mix 0.349 0.388 0.359

RoBERTa SpanCat-mix 0.392 0.442 0.414

MedBERT SpanCat-mix 0.400 0.453 0.424

CODER SpanCat-mix 0.395 0.447 0.419

Table B.17: Results of entity classification for MedMentions truncated using

SpanCategorizer



Weighted avg.

Embedding Component Prec. Rec. F1

UniNER 0-shot 0.343 0.052 0.090

GPT-3.5 All-in-one 0-shot simple 0.382 0.054 0.095

GPT-3.5 All-in-one 1-shot simple 0.351 0.047 0.083

GPT-3.5 All-in-one 2-shot simple 0.540 0.045 0.083

GPT-3.5 All-in-one 3-shot simple 0.540 0.038 0.071

GPT-3.5 Best EE + 0-shot simple 0.332 0.331 0.320

GPT-3.5 Best EE + 1-shot simple 0.347 0.350 0.339

GPT-3.5 Best EE + 0-shot CoT 0.354 0.305 0.318

GPT-3.5 Best EE + 1-shot CoT 0.335 0.328 0.320

Table B.18: Results of entity classification for MedMentions Truncated. The

evaluation is performed on a subset of 50 documents.

B.2.3 EBM

Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec EntityRec. 0.425 0.186 0.259

RoBERTa EntityRec. 0.369 0.316 0.337

MedBERT EntityRec. 0.321 0.301 0.310

CODER EntityRec. 0.302 0.288 0.294

Table B.19: Results of entity classification for EBM NLP using EntityRecog-

nizer



Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec SpanCat.(Score) 0.433 0.187 0.250

Tok2Vec SpanCat.(Length) 0.431 0.186 0.249

RoBERTa SpanCat.(Score) 0.353 0.315 0.326

RoBERTa SpanCat.(Length) 0.349 0.310 0.321

MedBERT SpanCat.(Score) 0.406 0.317 0.355

MedBERT SpanCat.(Length) 0.404 0.315 0.352

CODER SpanCat.(Score) 0.348 0.299 0.317

CODER SpanCat.(Length) 0.346 0.297 0.315

RoBERTa SpanFinder(Score) 0.396 0.287 0.333

RoBERTa SpanFinder(Length) 0.391 0.283 0.328

MedBERT SpanFinder(Score) 0.439 0.292 0.350

MedBERT SpanFinder(Length) 0.432 0.287 0.344

CODER SpanFinder(Score) 0.363 0.281 0.317

CODER SpanFinder(Length) 0.361 0.280 0.315

Tok2Vec SpanCat-mix 0.383 0.308 0.339

RoBERTa SpanCat-mix 0.390 0.316 0.346

MedBERT SpanCat-mix 0.390 0.316 0.346

CODER SpanCat-mix 0.389 0.314 0.344

Table B.20: Results of entity classification for EBM NLP using SpanCatego-

rizer



Weighted avg.

Embedding Component Prec. Rec. F1

UniNER 0-shot 0.062 0.028 0.039

GPT-3.5 0-shot simple 0.399 0.255 0.307

GPT-3.5 1-shot simple 0.414 0.304 0.345

GPT-3.5 0-shot CoT 0.391 0.246 0.292

GPT-3.5 1-shot CoT 0.399 0.273 0.313

Table B.21: Results of entity classification for EBM NLP. The evaluation is

performed on a subset of 50 documents.

B.2.4 I2B2

Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec EntityRec. 0.724 0.704 0.714

RoBERTa EntityRec. 0.825 0.783 0.804

MedBERT EntityRec. 0.807 0.779 0.793

CODER EntityRec. 0.745 0.726 0.736

Table B.22: Results of entity classification for I2B2 2010 using EntityRecog-

nizer



Weighted avg.

Embedding Component Prec. Rec. F1

Tok2Vec SpanCat.(Score) 0.773 0.698 0.733

Tok2Vec SpanCat.(Length) 0.774 0.699 0.734

RoBERTa SpanCat.(Score) 0.829 0.769 0.798

RoBERTa SpanCat.(Length) 0.828 0.769 0.797

MedBERT SpanCat.(Score) 0.823 0.779 0.800

MedBERT SpanCat.(Length) 0.820 0.776 0.797

CODER SpanCat.(Score) 0.798 0.725 0.760

CODER SpanCat.(Length) 0.802 0.729 0.764

RoBERTa SpanFinder(Score) 0.820 0.757 0.787

RoBERTa SpanFinder(Length) 0.818 0.755 0.785

MedBERT SpanFinder(Score) 0.829 0.761 0.794

MedBERT SpanFinder(Length) 0.825 0.758 0.790

CODER SpanFinder(Score) 0.784 0.703 0.741

CODER SpanFinder(Length) 0.787 0.705 0.744

Tok2Vec SpanCat-mix 0.876 0.873 0.874

RoBERTa SpanCat-mix 0.878 0.877 0.878

MedBERT SpanCat-mix 0.891 0.890 0.891

CODER SpanCat-mix 0.877 0.876 0.877

Table B.23: Results of entity classification for I2B2 2010 using SpanCatego-

rizer



B.3 Dataset Scaling

B.3.1 MedMentions Truncated

Embedding DS size Task Entities F1 Tokens F1

RoBERTa-base 20 EE 0.579 0.795

RoBERTa-base 40 EE 0.589 0.788

RoBERTa-base 50 EE 0.583 0.765

RoBERTa-base 75 EE 0.603 0.794

RoBERTa-base 100 EE 0.624 0.804

RoBERTa-base 150 EE 0.620 0.780

RoBERTa-base 200 EE 0.619 0.782

RoBERTa-base 250 EE 0.619 0.777

RoBERTa-base 300 EE 0.615 0.774

RoBERTa-base 400 EE 0.613 0.782

RoBERTa-base 600 EE 0.634 0.781

RoBERTa-base 800 EE 0.625 0.770

RoBERTa-base 1000 EE 0.642 0.802

RoBERTa-base 1300 EE 0.657 0.814

RoBERTa-base 1600 EE 0.639 0.784

RoBERTa-base 1900 EE 0.637 0.774

Table B.24: Results of entity extraction for EntityRecognizer trained for entity

extraction on MedMentions truncated and cutted



Embedding DS size Task Entities F1 Tokens F1 Weighted avg.

RoBERTa-base 20 EC 0.544 0.754 0.262

RoBERTa-base 40 EC 0.556 0.754 0.314

RoBERTa-base 50 EC 0.565 0.751 0.327

RoBERTa-base 75 EC 0.560 0.736 0.348

RoBERTa-base 100 EC 0.588 0.762 0.362

RoBERTa-base 150 EC 0.582 0.734 0.379

RoBERTa-base 200 EC 0.598 0.750 0.397

RoBERTa-base 250 EC 0.596 0.750 0.393

RoBERTa-base 300 EC 0.584 0.722 0.400

RoBERTa-base 400 EC 0.582 0.718 0.409

RoBERTa-base 600 EC 0.599 0.728 0.420

RoBERTa-base 800 EC 0.608 0.735 0.428

RoBERTa-base 1000 EC 0.613 0.736 0.432

RoBERTa-base 1300 EC 0.629 0.774 0.434

RoBERTa-base 1600 EC 0.624 0.760 0.438

RoBERTa-base 1900 EC 0.606 0.721 0.449

Table B.25: Results of entity extraction for EntityRecognizer trained for entity

classification on MedMentions truncated and cutted



B.3.2 EBM NLP

Embedding DS size Task Entities F1 Tokens F1

RoBERTa-base 20 EE 0.361 0.599

RoBERTa-base 40 EE 0.386 0.556

RoBERTa-base 50 EE 0.393 0.602

RoBERTa-base 75 EE 0.407 0.590

RoBERTa-base 100 EE 0.415 0.570

RoBERTa-base 150 EE 0.426 0.576

RoBERTa-base 200 EE 0.429 0.606

RoBERTa-base 250 EE 0.422 0.597

RoBERTa-base 300 EE 0.420 0.596

RoBERTa-base 400 EE 0.424 0.592

RoBERTa-base 600 EE 0.434 0.624

RoBERTa-base 800 EE 0.423 0.574

RoBERTa-base 1000 EE 0.453 0.573

RoBERTa-base 1300 EE 0.455 0.641

RoBERTa-base 1600 EE 0.475 0.592

RoBERTa-base 1900 EE 0.468 0.600

Table B.26: Results of entity extraction for EntityRecognizer trained for entity

extraction on EBM NLP cutted



Embedding DS size Task Entities F1 Tokens F1 Weighted avg.

RoBERTa-base 20 EC 0.368 0.509 0.236

RoBERTa-base 40 EC 0.397 0.604 0.221

RoBERTa-base 50 EC 0.408 0.580 0.259

RoBERTa-base 75 EC 0.396 0.566 0.244

RoBERTa-base 100 EC 0.403 0.607 0.234

RoBERTa-base 150 EC 0.405 0.584 0.260

RoBERTa-base 200 EC 0.416 0.629 0.245

RoBERTa-base 250 EC 0.430 0.602 0.273

RoBERTa-base 300 EC 0.430 0.608 0.270

RoBERTa-base 400 EC 0.432 0.630 0.266

RoBERTa-base 600 EC 0.449 0.533 0.321

RoBERTa-base 800 EC 0.449 0.627 0.270

RoBERTa-base 1000 EC 0.463 0.577 0.323

RoBERTa-base 1300 EC 0.454 0.629 0.282

RoBERTa-base 1600 EC 0.479 0.653 0.307

RoBERTa-base 1900 EC 0.466 0.632 0.306

Table B.27: Results of entity extraction for EntityRecognizer trained for entity

classification on EBM NLP cutted



Appendix C

Others

C.1 Color palette

In Chapter 6 the colors for the graph are for colorblind. The colors are picked

from a paper by Bang Wong[37].

The elements in the graph are mapped with these colors:



Element Color HEX

GPT-3.5 dark grey #525975

GPT-4 orange #E69F00

GPT-3.5 fine-tuned bright azure #56B4E9

UniNER pink #CC79A7

GPT-3.5 EC simple blue #0072B2

GPT-3.5 EC CoT bright orange #D55E00

GPT-3.5 All-in-one yellow #F0E442

EntityRecognizer yellow #F0E442

SpanCategorizer blue #0072B2

SpanFinder pink #CC79A7

SpanCategorizer Mix bright orange #D55E00

RoBERTa-base and xml-RoBERTa-base yellow #F0E442

MedBERT blue #0072B2

CODER bright orange #D55E00

UmBERTo pink #CC79A7

Entities yellow #F0E442

Tokens blue #0072B2

Training loss yellow #F0E442

Training accuracy bright orange #D55E00

Validation loss blue #0072B2

Validation token accuracy pink #CC79A7

Table C.1: Map of elements in the graph to color



C.2 GPT-3.5 fine-tuning loss
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Figure C.1: MedMentions truncated fine-tuning loss and accuracy using 100
documents for 5 epochs
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Figure C.2: MedMentions truncated fine-tuning loss and accuracy using 50
documents for 3 epochs
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Figure C.3: EBMNLP fine-tuning loss and accuracy using 100 documents for
5 epochs
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Figure C.4: EBM NLP fine-tuning loss and accuracy using 50 documents for
3 epochs
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Figure C.5: IT dataset fine-tuning loss and accuracy using 50 documents for
3 epochs



C.3 Machine specification

Themajority of training has been made on a single machine offered byMAPS.

S.P.A.

In Table C.3 are reported the main characteristic of the machine.

Specification Value

Operating System Ubuntu 16.04

CPU Intel(R) Xeon(R) CPU E5-2620 v4

Number of Cores 8

Clock Speed (GHz) 2.10GHz

Installed RAM 94GB - 2133 MHz

Graphics Card NVIDIA TITAN Xp

CUDA Version 11.3

Table C.2: Machine Specifications
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