Multi-Task Reconstruction Strategies for Unsupervised 3D Domain Adaptation

Donati, Matteo (2023) Multi-Task Reconstruction Strategies for Unsupervised 3D Domain Adaptation. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

This thesis addresses the challenge of domain shift in 3D point cloud data through innovative Unsupervised Domain Adaptation (UDA) methods. Focusing on enhancing existing techniques for point cloud classification to minimize distribution shifts, the research integrates insights from UDA approaches and deep learning for 3D point cloud representations. The proposed methods are rigorously evaluated on benchmark datasets, demonstrating competitive performance with existing UDA methods. The findings contribute to advancing UDA methodologies for 3D point clouds, providing valuable insights for future research and applications in real-world scenarios.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Donati, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Unsupervised Domain Adaptation,Deep Learning,Point Cloud Classification,Multi-Task Learning,Distribution Shift,Pseudo-Labels
Data di discussione della Tesi
16 Dicembre 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^