
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

NERF2VEC: DEEP LEARNING ON NEURAL
RADIANCE FIELDS

CANDIDATE SUPERVISOR

Daniele Sirocchi Prof. Samuele Salti

CO-SUPERVISORS

Dr. Luca De Luigi

Dr. Pierluigi Zama Ramirez

Academic year 2022-2023

Session 3rd

AI is the new electricity.
Andrew Ng

ii

Abstract

Virtualization of 3D world remains a challenge, as a standardized technique

has yet to emerge. Neural Radiance Fields (NeRFs), a recent and promising

approach, have attracted a lot of excitement due to their speed and quality

reconstruction capabilities. Thus, NeRFs are poised to shape the future of

3D world modeling. However, a question arises about the potential use of

NeRFs as input and output data for other algorithms due to their neural net-

work nature. Additionally, since they have been introduced recently, there is

no publicly available large dataset of NeRFs suitable for training deep learning

models. Hence, in the initial phase of this thesis, a new and rigorously orga-

nized dataset of NeRFs was assembled. This dataset served as the bedrock

upon which the subsequent research was built. Besides, it brings considerable

value to the wider research community, paving the way for future advance-

ments in the field. The following stride involved the development of nerf2vec,

a new framework designed to learn embeddings that serve as compressed rep-

resentations of input NeRFs. This endeavor highlighted the capacity of these

embeddings to faithfully represent the underlyingNeRFs, maintaining high re-

construction quality. Moreover, this work showcased the direct applicability

of these embeddings within deep neural architectures, tackling tasks like clas-

sification, retrieval, embeddings interpolation, and adversarial generation. It

achieved noteworthy results comparable to state-of-the-art methods, while op-

timizing resource usage and eliminating the need for costly machinery. To the

best of our knowledge, this is the first work that introduces these approaches

for NeRFs and makes a significant contribution to the adoption of NeRFs as a

standard way to represent 3D scenes.

iii

Contents

1 Introduction 1

2 Related work 5

2.1 Deep Learning for 3D Scenes 5

2.2 Implicit neural representations 8

2.2.1 NeRFs . 9

2.3 Deep Learning on INRs . 13

3 Methodology 15

3.1 Dataset . 15

3.2 NerfAcc adaptations . 18

3.3 Learning NeRFs embedded representation 21

3.3.1 nerf2vec . 21

3.3.2 Occupancy grids . 26

3.3.3 Loss function . 27

3.3.4 Evaluation metrics 28

3.3.5 Ground truth retrieval 29

4 Experiments and results 31

4.1 Reconstruction quality . 31

4.2 Classification . 32

4.3 Embeddings interpolation . 36

4.4 Shape retrieval . 38

iv

4.5 Shape generation . 39

5 Conclusions and future work 43

Bibliography 45

Acknowledgements 56

A NeRF training 58

B Implementation and hardware 61

B.1 General settings . 61

B.2 Mixed precision . 61

B.3 Timings . 62

C NeRF weights removal comparison 63

v

List of Figures

1.1 nerf2vec framework overview 3

2.1 NeRF training pipeline . 10

3.1 Data augmentation samples 17

3.2 Building blocks . 19

3.3 NeRF architecture overview 21

3.4 Encoder architecture overview 22

3.5 Encoder’s input vector . 23

3.6 Decoder’s input vector . 25

3.7 Decoder architecture overview 26

4.1 nerf2vec reconstruction examples 33

4.2 Classifier architecture overview 34

4.3 Interpolation results . 37

4.4 Baseline interpolation results 38

4.5 Shape retrieval results . 40

4.6 Latent-GAN overview . 41

4.7 nerf2vec generations qualitative results 41

A.1 PSNR and training time formal comparisons 59

A.2 Qualitative comparisons of varying MLP capacity and encod-

ing types . 60

C.1 Comparisons of baseline and embeddings classifiers 64

vi

List of Tables

3.1 ShapeNetRenders class frequencies 16

4.1 Classifier results . 35

4.2 Encoding and inference timings of classifiers 35

4.3 Shape retrieval results . 39

vii

Chapter 1

Introduction

From the beginning of computer vision, the world around us has consistently

been portrayed through 2D images arranged in a two-dimensional grid of pix-

els. Nevertheless, the real world is inherently 3D, prompting the development

of various techniques aimed at capturing its complexity through more intri-

cate representations. Among these representations, voxels, point clouds, and

meshes are commonly employed today. Unlike 2D images, which benefit

from a multitude of neural architectures optimized for efficient use in vari-

ous deep learning tasks, these 3D representations present unique challenges,

including the need for specialized machinery and substantial computational

resources required for processing them.

A significant advancement in the field is exemplified by Implicit Neural

Representations (INRs). INRs possess the ability to model a continuous func-

tion that implicitly represents a signal of interest using a basic Multi-Layer

Perceptron (MLP). They are adept at encoding 3D objects by fitting various

functions, including the signed distance function, unsigned distance function,

and occupancy fields. A key advantage of INRs is that they decouple themem-

ory cost of the representation from the spatial resolution. This means that any

resolution can potentially be reconstructed from the fixed number of parame-

ters within the MLP.

Introduction 2

As extensively demonstrated in the inr2vec paper [41], the utilization of

INRs has proven highly effective for addressing deep learning tasks by directly

processing their weights within neural architectures. Additionally, this ap-

proach significantly reduces the computational resources required compared

to using the original 3D representations. However, inr2vec did not explore

a very recent and promising type of INR, namely Neural Radiance Fields

(NeRFs) [6]. They are a class of neural network models used for 3D scene

representation, which capture the 3D structure and appearance of scenes by

modeling the radiance (color) and occupancy at each point in space. NeRFs

can be very efficiently trained using datasets of images and corresponding

camera poses, allowing them to render novel views of scenes and synthesize

3D reconstructions, obtaining high-quality results.

At this point, a new research question arises, and it serves as the focal

point to which this thesis aims to provide a response: would it be possible to

directly integrate NeRFs within deep learning pipelines to solve downstream

tasks? While this integration has already been demonstrated with other types

of implicit representations such as unsigned distance functions, signed dis-

tance functions and occupancy fields, NeRFs remain uncharted territory for

such applications.

In the pursuit of answering this new research question, two key challenges

were addressed. The first challenge lies in the scarcity of suitable datasets

for NeRF-based research. In response, a new dataset was developed, building

upon ShapeNet [4], a well-known dataset of 3D objects. Renderings of each

3D object were captured from various viewpoints to form the image dataset

necessary to train NeRFs. Additionally, data augmentation techniques were

applied to enrich the newly established dataset. The second challenge is the

inherent parameters redundancy of NeRFs due to their MLP nature, and this

Introduction 3

could potentially lead to a notable increase in computational costs when de-

ploying naive solutions. Therefore, a new framework called nerf2vec was

developed with the primary objective of generating compact embedding rep-

resentations for each NeRF, while maintaining their original quality. Subse-

quently, the focus of the thesis shifted towards assessing the quality of the

embeddings generated by nerf2vec, directly utilizing them as inputs for neu-

ral architectures designed to tackle different deep learning tasks.

nerf2vec adopts an encoder-decoder architecture, shown in Figure 1.1.

Embeddings are extracted from the encoder’s output, while the decoder re-

constructs the original discretized representation used to train NeRFs, which

are images. These embeddings serve as inputs for neural networks meant to

tackle tasks such as classification and shape retrieval. Furthermore, this work

demonstrated the ability of nerf2vec to create a smooth and well-organized

latent space through embedding interpolation. This enabled the generation

of novel 3D objects by interpolating the embeddings of two different input

NeRFs. Moreover, leveraging nerf2vec’s embeddings, adversarial networks

were trained, ultimately attaining the ability to generate credible and previ-

ously unseen NeRFs.

Figure 1.1: nerf2vec framework overview.

To help the reader understand how the thesis is structured, here there is a brief

description of what each chapter entails:

• Related work: explore the advancements made in the research field,

offering insights and foundations for the development of this work.

Introduction 4

• Methodology: outline the steps employed for creating the dataset of

NeRFs, and provides details about the creation and training of the nerf2vec

framework.

• Experiments and results: provide a list of all conducted deep learning

tasks and their corresponding results.

• Conclusions and future work: wrap up, highlighting the positive re-

sults and suggesting areas for further improvements.

Chapter 2

Related work

This chapter will delve into the pertinent related work and background knowl-

edge upon which the current study is built. Special emphasis will be placed on

classical techniques that currently underpin the representation of 3D scenes,

as well as their applications within deep learning frameworks. Subsequently,

the chapter will scrutinize the representations of scenes that serve as the foun-

dation for this research, namely Implicit Neural Representations (INRs) and

Neural Radiance Fields (NeRFs). These latter representations offer numerous

advantages, but also present challenges when used as inputs for neural net-

works. It’s worth noting these challenges has been addressed by the current

work, and will be explained in-depth in the following chapter.

2.1 Deep Learning for 3D Scenes

In the realm of computer graphics and computer vision, 3D scene modeling

and view synthesis hold immense significance. These techniques serve as

foundational components in various applications, encompassing virtual real-

ity, augmented reality, autonomous navigation, and the creation of 3D con-

tent. Their overarching objective involves the reconstruction of intricate 3D

environments and the generation of fresh perspectives on scenes, facilitating

immersive visualization and interaction within virtual spaces.

2.1 Deep Learning for 3D Scenes 6

Unlike 2D images, which already have a standard way of being discretized

as 2D grids of pixels, 3D scenes have still many different ways to be repre-

sented. Many of these representations have been also used as input of neural

networks, allowing a vast variety of downstream tasks, further enhancing their

utility and versatility.

The following paragraphs delve into the essential methodologies that have

driven the advancement of 3D scene modeling and view synthesis, as well as

the deep neural networks adept at effectively harnessing these techniques.

Voxel-based methods employ 3D grids or volumetric representations to

model scenes. They discretize space into small cubic elements (voxels) and

associate properties such as color, occupancy, or material information with

each voxel. These voxels are an intuitive extension of 2D pixels in the 3D

space, capable of maintaining an ordered and regular structure. Therefore,

neural networks used to process 2D images can be easily adapted to work

with this 3D representation, both for discriminative [16, 12, 65] and genera-

tive tasks [61, 17, 19, 30, 80]. Nevertheless, in order to work with 3D space,

it is necessary to add a dimension to all the learning operators (e.g., convolu-

tion, pooling, etc.), which demands a huge increase of the amount of required

memory and computational costs. This aspect typically forces to decrease the

resolution of the 3D voxel grid, affecting the quality of the generated shapes.

There exist an active area of research whose goal is to increase the quality

of this representation, while keeping a reasonable amount of computational

costs. As an example, FPNN [75] effectively tackles the problem related to

the sparsity of the grid, which appears when the resolution is increased and

that causes unnecessary computation. Furthermore, to reduce the dimension-

ality of the input data, other researchers have explored encoding the voxel grid

using sparse and adaptive data structures like octrees [45, 14] and their vari-

ants [26, 55, 54].

2.1 Deep Learning for 3D Scenes 7

Point clouds have gained significant attention in recent years as an ex-

pressive representation of 3D scenes. They consist of a collection of 3D

points, each with a position in space. This heightened interest in point clouds

is greatly facilitated by the widespread adoption of acquisition devices that

directly output point clouds. The processing of point clouds is inherently

complex due to their lack of organization, making it far from straightforward.

Some studies involved the transformation of the initial point cloud data into

intermediary regular grid structures, such as voxels or images [63, 27]. Oth-

ers, such as PointNet [10] and its successor PointNet++ [11], successfully

processed point clouds by coping their unorganized nature with maxpooling

layers as symmetry functions. Additionally, many other works with the goal

of finding new aggregating operators have been created, and they are mostly

based on convolution [8, 76, 43, 66, 50, 28], graph [40] and attention [46].

Mesh-basedmethods leverage the underlying data structure used tomodel

3D objects and surfaces by interconnecting vertices, edges, and faces. Accord-

ing to the interconnection type, there are different kinds of representations:

• Vertex-based, which relies on defining the shape primarily through its

vertices. Each vertex represents a point in 3D space and often contains

information about its position and attributes. The connectivity between

vertices is used to derive edges and faces. Neural networks using this

representation as input capitalize on the presence of a structured domain

to capture information regarding the neighborhoods of points, either by

utilizing convolution or kernel functions [34, 20, 31, 77, 51, 33, 23, 21].

• Edge-based, that focuses on the edges that connect the vertices of a 3D

mesh. These edges define the structural elements of the mesh and rep-

resent pairwise relationships between vertices. Edge-based represen-

tations are used to emphasize the connectivity between vertices. The

2.2 Implicit neural representations 8

connectivity characteristic enables neural networks to handle this kind

of shape representation through various methods, including the appli-

cation of ordering-invariant convolution [59], navigating the shape’s

structure [25], or generating graphs based on input meshes [1].

• Face-based, which defines the mesh primarily by its faces, that are pla-

nar polygons covering the surface of themesh. Each face is composed of

vertices and edges, and they collectively describe the surface topology

and appearance of the object. Neural networks applied to this repre-

sentation operate by capturing and encoding information from adjacent

faces [15, 78, 74, 2].

One notable limitation of meshes is their lack of topology-invariance, which

can pose challenges for neural networks aiming to learn resilient mesh repre-

sentations. Furthermore, manipulating meshes with large number of vertices

and faces can be inherently difficult, due to the substantial amount of time and

memory required, making them inefficient for representation purposes.

2.2 Implicit neural representations

As discussed in the preceding section, the absence of a universally accepted

standard for discretizing 3D scenes has been a notable challenge in the field.

Consequently, researchers have been diligently exploring novel representa-

tions with the potential to establish a new standard for representing 3D scenes.

Among these emerging representations, Implicit Neural Representations (INRs)

have shown great promise. INRs belong to a class of deep learning models

specifically designed to represent complex, high-dimensional data, including

images, 3D scenes, point clouds, and meshes. What sets INRs apart is their

ability to capture such data without relying on explicit geometric or grid-based

representations.

2.2 Implicit neural representations 9

Expanding on the versatility of deep learning models, recent advances

have demonstrated the remarkable capacity ofMulti-Layer Perceptrons (MLPs)

to implicitly represent various types of data. Notable examples include objects

[38, 37, 29, 42, 44, 3], as well as scenes [73, 13, 67, 60]. Many of these works

have focused on representing 3D data using MLPs, relying on the fitting of

implicit functions tailored to specific data types. For instance, these functions

encompass unsigned distance representations for point clouds and signed dis-

tance representations for meshes [42, 29, 3, 73, 13, 67]. For voxel grids, the

focus has been on occupancy-based representations [39, 79].

Beyond shape representations, some of these models have been extended

to encode object appearance, as evidenced in [64, 73, 49, 47]. Additionally,

temporal information has been incorporated into certain models [48].

Among this diverse array of approaches, two notably stand out: Neural

Radiance Field (NeRF) [6], and Sinusoidal Representation Network (SIREN)

[72]. While SIREN leverages periodic activation functions to capture high-

frequency details within input data, NeRF has played a pioneering role in the

field of 3D scene representation by introducing the concept ofmodeling scenes

as continuous 3D radiance fields. It has been influential in synthesizing novel

views of scenes, enabling high-quality 3D reconstructions, and redefining how

scene representation is approached. NeRF serves as an essential component of

this study, and therefore more details on it are given in the upcoming section.

2.2.1 NeRFs

NeRFs [6] have depicted a significant advancement in the realm of synthesiz-

ing novel views of intricate scenes, characterized by complex geometry and

appearance. Its significance primarily lies in its ability to mitigate the compu-

tational challenges associated with discretized voxel grids, all while retaining

the capability to generate exceptionally high-resolution scenes.

2.2 Implicit neural representations 10

NeRF works by optimizing an underlying volumetric scene function, us-

ing a sparse set of input views. This function is represented by a MLP, whose

input is a 5D coordinate composed of a spatial location (x, y, z) and a viewing

direction (θ, ϕ); and whose output is the volume density and view-dependent

emitted radiance at that spatial location. The input is created by marching

camera rays through the scene, and the output is used to synthesize novel 2D

views through the usage of classic volume rendering techniques. Given the

fact that this process is naturally differentiable, the whole system is optimized

by leveraging the gradient descent, and minimizing the error between each

observed image (i.e., the ground truth) and the corresponding views obtained

at the end of the pipeline just described. Figure 2.1 shows the entire process.

Figure 2.1: NeRF training pipeline [6].

In order to obtain the best results, two important novelties has been introduced:

a fixed positional encoding of the input coordinates, which allows the MLP

to represent high frequency functions, and a hierarchical sampling procedure,

which permits to efficiently query this high-frequency scene representation.

While vanilla NeRF yielded remarkable results, it suffered from lengthy

training times. As a result, subsequent research endeavors have led to the

development of new methodologies for creating NeRFs that achieve signif-

icantly faster training times, while preserving quality. The following para-

graphs report notable examples that also contribute to a better understanding

of the presented work.

2.2 Implicit neural representations 11

instant-ngp [68] introduces a noteworthy innovation known asmultireso-

lution hash encoding. As for vanilla NeRFs, the encoding serves the purpose

of mapping neural network inputs to a higher-dimensional space, a key fac-

tor in extracting high-quality approximations from compact models like the

MLPs employed in training NeRFs. Essentially, it functions by mapping a

series of grids to fixed-size arrays of feature vectors. Each array is treated as a

hash table and indexed using a spatial hash function. Depending on the reso-

lution, multiple grid points may map to the same array entry, resulting in hash

collisions. During the training phase, these collisions lead to the averaging of

training gradients, with greater weight assigned to the largest gradients, which

ultimately dominate the loss function. This mechanism enables the model to

autonomously learn how to prioritize sparse regions that contain the majority

of intricate details.

It’s worth noting that the adoption of themultiresolution hash encoding entails

the learning of not only the parameters of the MLPs, but also those within the

hash tables. However, despite the increased memory requirements, the addi-

tional computational load introduced during the training stage remains min-

imal. Furthermore, the access time to the hash tables is very efficient, with

O(1) time-complexity.

Another significant contribution introduced by instant-ngp is the utilization

of an occupancy grid. This grid serves to provide a coarse mapping of empty

and non-empty space, leading to improved efficiency in the volume rendering

process.

NeRF Acceleration (NerfAcc) [62] successfully follows in the footsteps

of instant-ngp, with the former designed to address certain challenges posed

by the latter. These challenges include the reliance on specialized CUDA im-

plementations, and the need for high customization tailored to bounded static

2.2 Implicit neural representations 12

scenes. In particular, NerfAcc focuses on efficient volume rendering of radi-

ance fields, while supporting also dynamic and unbounded scenes. The vol-

ume rendering process is optimized by splitting it in two steps:

1. Ray marching, which involves the procedure of projecting a ray through

the scene, and producing discrete samples along the trajectory of that

ray. In order to optimize this step, the goal is to reduce as much as

possible the number of these samples. In particular, those samples that

occupy empty or occluded regions should be skipped, because they do

not contribute to the creation of the final rendering. Following the idea

of instant-ngp, an occupancy grid has been deployed to cache a binary

grid which is updated during the training, and whose goal is to map re-

gions that are empty or occluded. For understanding which part of the

space are empty or occluded, the density of the samples must be com-

puted along the ray, so as to compute transmittance. However, during

this phase, the computation of the gradients is disabled, greatly increas-

ing the efficiency.

2. Differentiable rendering, that is responsible of accumulating the color

of the samples along the rays, and to convert them into pixel colors.

During this phase, the computation of the gradients is enabled again,

and the training is supervised with the original RGB values of the pixels

coming from the ground truth.

Moreover, NerfAcc achieves the support for unbounded scenes by applying

a non-linear function to the coordinates of the occupancy grid. This function

maps the unbounded space into a finite grid. Finally, dynamic scenes are facil-

itated by introducing a new term derived from the ground truth. Specifically,

this term comprises the timestamp associated with a particular input sample.

Subsequently, it is incorporated as supplementary information provided to the

network during the training process.

2.3 Deep Learning on INRs 13

2.3 Deep Learning on INRs

The previous section emphasized the significance of INRs in accurately and

efficiently representing and synthesizing 3D scenes. Consequently, this has

given rise to a highly active research domain. Its primary objective is to ex-

plore the feasibility of employing INRs, namely neural networks, as direct

inputs for other neural networks to address a wide range of downstream deep

learning tasks.

In the earliest works that attempted the above mentioned approach, neural

networks were regarded simply as algorithms, with a primary focus on pre-

dicting certain properties, such as accuracy. Several examples align with this

approach. For instance, [70] endeavors to forecast classification accuracy by

directly inputting MLP weights into the model. Meanwhile, [36] employs a

self-supervised learning approach to predict various characteristics of the in-

put classifier. In a different vein, [9, 24, 32] employs a Graph Neural Network

(GNN) to process neural networks represented as computational graphs, which

allows it to predict optimal parameters or generate adversarial examples.

However, as previously discussed, the objective is to treat the input INRs as

3D shapes, which have specific features and properties, and only recently have

emerged novel approaches for achieving this. The following paragraphs will

provide examples of these novel approaches.

INRs that are to be thought of as data (functa) [22] represents the first

instance in which the processes of dataset creation and its subsequent utiliza-

tion as input for neural networks in deep learning tasks have been decoupled.

An intriguing aspect of this work is the introduction of modulations, which

are learnable parameters unique to each individual data point. Modulations

allow the network to learn the variations of each data point, while a shared

network learns the overarching structure common to them all. The decoupling

2.3 Deep Learning on INRs 14

of dataset creation and utilization has a number of benefits. For example, it

allows for the creation of datasets that are more efficient to train on, and it

makes it easier to transfer knowledge between different datasets. Neverthe-

less, this work also presents an important downside delineated by the necessity

of a shared MLP that must be used to fit new shapes. This aspect significantly

undermines the deployability of functa in the wild, favoring other works that

fit an individual network for each shape, such as [41].

Deep Weight Space Network (DWSNet) [5] has been designed with the

goal of finding the best architecture able to effectively learn and process neu-

ral models that are represented as sequences of weights and biases, such as

MLPs. Specifically, DWSNet is based on the symmetry property that char-

acterizes the weights of MLPs [57]. This property enables the processing of

inputMLPs with only three fundamental operations: broadcasting, pooling, or

standard linear layers, substantially reducing the number of parameters com-

pared to previous approaches.

inr2vec [41] is a significant precursor to the current work, providing an

efficient framework for creating compact representations of INRs. inr2vec

has demonstrated its versatility by encoding various input shapes, including

point clouds, triangle meshes, and voxel grids. These encodings have proven

successful in a range of deep learning tasks, such as classification, retrieval,

segmentation, and generation. Unlike functa, inr2vec utilizes individually

trained INRs, a strategy that has exhibited superior effectiveness in capturing

the underlying signal and offers enhanced practical deployability. It’s worth

highlighting that inr2vec plays a foundational role in shaping this research,

emphasizing its pivotal contribution to advancing deep learning applications

by enabling compact representations and effective utilization of input INRs.

Chapter 3

Methodology

This chapter will build upon the concepts previously introduced, elucidating

the central objectives of the current work. In particular, it will provide an

in-depth exploration of the methodology employed to construct the dataset of

NeRFs. Furthermore, it will exhibit the innovative architectural framework

devised within this research, referred to as nerf2vec, which serves as a pivotal

component in the encoding and processing of NeRFs.

3.1 Dataset

The initial challenge encountered during the development of this project is a

commonplace issue within the realm of artificial intelligence: the absence of

an appropriate dataset. Therefore, the first step was indeed to create a suitable

dataset of NeRFs. To generate it, a set of 2D images was required for each

3D object that needed to be implicitly represented through NeRFs. To address

this requirement, it was leveraged a rendering dataset originally created for

Deep Implicit Surface Network [56], which will be hereafter referred to as

ShapeNetRenders. It was generated by extracting 3D shapes from ShapeNet

[4], a comprehensive and extensive resource tailored for 3D shape understand-

ing and computer vision research. Table 3.1 contains a summary of the items

contained in ShapeNetRenders, and it reveals two significant observations.

3.1 Dataset 16

CLASS FREQUENCY
Airplane 4045
Bench 1813
Cabinet 1571
Cars 3514
Chair 6777
Display 1093
Lamp 2292
Speaker 1597
Rifle 2369
Sofa 3173
Table 8433
Phone 1050

Watercraft 1939

Table 3.1: ShapeNetRenders class frequencies.

Firstly, the total count of 3D objects is not particularly large, totaling 33296

elements. Secondly, there is a noticeable imbalance among the classes, which

has the potential to pose challenges in various deep learning tasks, such as

classification. Nevertheless, only the first problemwas addressed in this work,

while the second could be considered for future extensions.

In order to expand the dataset of NeRFs and include a greater number of

elements, offline data augmentation techniques were applied. Specifically, the

size of the dataset was tripled by creating two augmented versions of each ob-

ject from ShapeNetRenders, achieved through direct manipulating the corre-

sponding 3D shapes found in ShapeNet. In creating these augmented versions,

the shapes were subjected to random deformations while preserving their over-

all structure. Additionally, a random color was assigned to each component of

these augmented shapes, for further increasing diversity between each object.

Figure 3.1 depicts some of the created augmented samples.

In the end, a total of 36 renderings were generated for each 3D object, each

featuring a distinct camera pose. Specifically, the camera poses were adjusted

3.1 Dataset 17

Figure 3.1: Data augmentation samples. Column (a) contains the original
image taken for ShapeNetRenders. Columns (b) and (c) contain the augmented
versions.

3.2 NerfAcc adaptations 18

to complete a full rotation around the object’s horizontal axis, while introduc-

ing random variations in the vertical axis and camera-to-object distance. The

ability to rotate around the object was made possible by the unique charac-

teristic of the ShapeNet dataset, where each 3D object has its axes aligned,

providing a consistent reference position for rotation. Moreover, it’s impor-

tant to highlight that these renderings only captured the upper portion of the

object, aligning with the original ShapeNetRenders dataset. Furthermore, it’s

worth noting that ShapeNetRenders initially included 36 training images and

36 test images, but the latter were excluded due to their lower quality and ac-

curacy.

As a final note, it’s important to mention that the dataset was divided into

three distinct subsets: the training set, the validation set, and the test set. This

division aligns with common practices frequently engaged in deep learning

research. The training set is employed for updating the model weights, the

validation set is used to evaluate model performance on unseen data during

training, and the test set is exclusively reserved for assessing the final quality

of the model, without any involvement in the training process.

3.2 NerfAcc adaptations

Once the dataset of renderings explained in the previous section was ready, the

subsequent stage of this project was to create the actual database of NeRFs,

and NerfAcc [62] served as the chosen framework for constructing it. How-

ever, it is crucial to note that this work seeks to expand upon the previous

inr2vec research [41], which introduced specific constraints that must be ad-

hered to. These constraints necessitated modifications to the original NerfAcc

implementation, encompassing some aspects explained in the following para-

graphs.

3.2 NerfAcc adaptations 19

Figure 3.2: Building blocks used to increase readability of neural architecture
representations. (a) depicts the LR block, consisting of a sequence of two
operations: a Linear transformation followed by a ReLU activation. (b) is
an extension of (a), and it includes an additional computation, namely batch
Normalization, placed between the linear transformation andReLU activation.
In all these blocks, N represents the number of hidden units contained in the
linear layer.

Note that from this point on, specific building blocks will be introduced

and utilized to streamline the representation of neural network architectures.

Through the utilization of these predefined blocks, the aim is to enhance the

clarity and conciseness of neural network diagrams while ensuring consis-

tency throughout the rest of the thesis. Figure 3.2 contains a summary and an

explanation of these blocks.

A significantmodificationwas related to the input encoding. It was changed

from multiresolution hash encoding [68] to frequency encoding [6]. This

change was necessary because the inr2vec’s encoder was originally designed

to accept as input only the weights of MLPs, whereas themultiresolution hash

encoding would require additional parameters to be inputted and learned dur-

ing training. With the selected encoding method, the dimension of each 3D

coordinate provided as input to the network was expanded according to the

3.2 NerfAcc adaptations 20

following formula:

γ(p) = sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp) (3.1)

where p is the input coordinate, and L decides the dimensionality of the en-

coding, that was set to 24 for the present study.

Additionally, certain hyperparameters were adjusted to enhance perfor-

mance and quality. In particular, the axis-aligned bounding box size contain-

ing each 3D object was changed from 1.5 to 0.7. Regarding the background

color used during the training phase, it was set to random, following the ap-

proach detailed in [68].

The next step involved revising the architecture originally used to train

NeRFs, with two key changes deployed to respect inr2vec’s constraints. These

changes also aimed to reduce the complexity of the experiments onNeRFs em-

ployed in this thesis, leaving room for potential future enhancements.

The first modification entailed removing one of the two output layers com-

monly utilized in standard NeRF training architectures [6, 68], while ensuring

the preservation of high-quality results.

The second change reduced the dimension of the input used for trainingNeRFs,

which typically is 5D. More specifically, usually the input is composed of spa-

tial locations (x, y, z) and viewing directions (θ, ϕ), and the latter were even-

tually omitted from those inputs.

Figure 3.3 depicts the final architecture designed to learn NeRFs. It’s worth

noting that this architecture is based on FullyFusedMLP, a highly optimized

and exceptionally efficient MLP introduced by NVIDIA [69].

3.3 Learning NeRFs embedded representation 21

Figure 3.3: Visualization of the fully-connected architecture employed for
training NeRFs. All the intermediate layers are LR blocks. The frequency
encoding parameter L is set to 24, as defined in Equation 3.1. The output is
then processed by passing the RGB component, namely the color, through a
Sigmoid activation function; while the A component, namely the density, is
passed through an exponential activation function specifically tailored in [62].

3.3 Learning NeRFs embedded representation

The literature has demonstrated that INRs are a highly promising approach for

representing 3D shapes, and it also has explained how to use them within deep

learning pipelines. Notably, inr2vec [41] stands out as one of the most suc-

cessful examples of solving several deep learning tasks using directly INRs as

inputs. Yet, it’s important to note that inr2vec did not address NeRFs. Indeed,

the goal of current work is to extend the capabilities of inr2vec, and to explore

the feasibility of directly applying deep learning techniques to NeRFs, which

intrinsically encode 3D shapes.

3.3.1 nerf2vec

The framework developed in this work is called nerf2vec, and its architecture

is based on an encoder-decoder structure, summarized in Figure 1.1.

The encoder, detailed in Figure 3.4, takes the weights of a NeRF as input

and produces its embeddings, namely a compressed representation of the orig-

inal input. How to input the weights into the encoder was a critical first step,

3.3 Learning NeRFs embedded representation 22

Figure 3.4: Illustration of the whole encoder’s architecture, detailing how the
embeddings are created.

and it was achieved by following standard practices [72]. The employed tech-

niques involved stacking the weights of each layer of a NeRF to create a bidi-

mensional matrix that can be readily processed by the encoder. Nonetheless,

as previously discussed, each NeRF was trained using the FullyFusedMLP,

which has unique characteristics that need to be taken into account. Conse-

quently, it was essential to consider the following aspects in order to properly

prepare the encoder’s input:

• every layer within a FullyFusedMLP lacks of the bias term;

• the input and all the hidden layers have the same fixed feature dimension

H;

• any input/output dimension is automatically padded to the nearest multi-

ple of 16 to optimize both performance and efficiency. For example, the

output layer is automatically padded from dimension 4 (i.e., RGBA) to

16. This padding is afterward ignored internally while performing any

computation involving it.

This information permitted to manipulate the weights of each layer of a MLP

for creating the required bidimensional matrix by applying two subsequent

operations. The first was to add 0-padding to all those layers whose dimen-

sions were not a multiple of 16. In the current work, this occurred only for the

output layer, which received a padding of dimension (H − 16) ∗ H , where H

represents the feature dimension. Once the padding was added, it became pos-

sible to create W , which is a single tensor with all the layers’ weights stacked

3.3 Learning NeRFs embedded representation 23

together [72]. This preparation allowed for the proper execution of the second

operation, which involved reshaping W into a bidimensional matrix. This re-

shape was carried out by fixing its second dimension at feature dimension H .

Figure 3.5 provides a visual summary of this procedure.

Figure 3.5: Encoder’s input vector creation procedure. (a) shows the weight
matrices Wx of the layers that compose the MLP used to train a NeRF, as de-
picted in Figure 3.3, where x identify a specific layer. (b) shows the flattened
version of the weights, obtained by concatenating each flattened Wx. Further-
more, padding PAD has been incorporated to ensure proper weight distribution
during the application of the final reshape operation, which is necessary to
obtain the bidimensional matrix that ultimately expresses the encoder’s input
vector (c). This reshaping process sets the second dimension to a fixed value
of 64, representing the number of features.

The encoder’s primary goal is to construct a well-structured latent space

with strategically positioned embeddings for subsequent deep learning tasks.

It’s crucial to note that during the training of NeRFs, various random ele-

ments are at play, including the initialization of weights and data shuffling.

This randomness can result in a completely disordered latent space, scattering

weights that should ideally occupy similar positions across different areas.

3.3 Learning NeRFs embedded representation 24

The resulting disorganization in the latent space presents a significant chal-

lenge, rendering it ineffective for applying deep learning tasks. Therefore, a

critical step to address this issue was to ensure that all NeRFs were trained

with the same randomly generated initialization vector. This vector was used

to initialize the weights for every NeRF employed in the dataset creation. As

demonstrated in inr2vec, this simple yet highly effective practice promotes

weight alignment across various NeRFs, facilitating the convergence of the

proposed framework.

The second part of the architecture comprises an implicit decoder, which

draws inspiration from [29]. It earns the label implicitly by deviating from the

conventional auto-encoder paradigm, which typically would aim to replicate

the encoder’s input (i.e., NeRF weights). Instead, this decoder operates under

supervision to reconstruct the underlying function approximated by the input

NeRF, with its ultimate objective being the prediction of RGBA values for

specific 3D coordinates. To accomplish this, the decoder takes as input the

embeddings generated by the encoder, along with the 3D coordinates, in or-

der to predict the associated RGBA values. It’s important to note that these

3D coordinates are treated in the same manner as explained in Section 3.2,

involving an increase in dimensionality through the use of frequency encod-

ing. Figure 3.6 details how the decoder’s input is computed, while Figure 3.7

shows the architecture of the employed decoder.

A crucial technical aspect pertains to how the embeddings and 3D coordinates

are transmitted to the decoder, ultimately leading to the prediction of RGBA

values. In the training procedure employed for NerfAcc, the number of 3D

samples is notably large and it also grows during the training procedure, thanks

to the usage of occupancy grids able to filter out those coordinates already rec-

ognized as background. However, as detailed in Section 3.3.2, nerf2vec did

not use occupancy grids in the same way as NerfAcc did, and therefore dif-

ferent strategies were required. Additionally, nerf2vec was trained to learn

3.3 Learning NeRFs embedded representation 25

Figure 3.6: A visual representation of the decoder’s input computation pro-
cess. Specifically, the embeddings obtained by the encoder are concatenated
with the 3D coordinates, which have been previously encoded by means of
the frequency encoding.

multiple NeRFs simultaneously, and therefore it was essential to set a limit

on the number of 3D coordinates used as input for the decoder. This limit

was determined by considering the capabilities of the machine on which the

framework was trained, detailed in Appendix B, and with the aim of minimiz-

ing training time. Specifically, the limit for foreground coordinates was set to

25k, and 10k for the background.

Nonetheless, during the ray marching’s operation (see Section 2.2.1), two op-

posite scenarios can occur. In the first, the number of foreground coordinates

exceeds the limit of 25k, which was managed randomly selecting 3D points

until the limit is met. In the second, the count falls short of these coordinates,

and it was addressed by adding additional background coordinates as padding.

Intuitively, this is the most promising approach since NeRFs lacking of fore-

ground coordinates are typically associated with smaller and more compact

3D objects, and adding more background coordinates should facilitate faster

learning for these particular objects.

On the other hand, the 10k limit imposed for the background coordinates was

consistently met with ease. As discussed previously, this is because the vast

majority of the scenes consisted of background coordinates.

3.3 Learning NeRFs embedded representation 26

Figure 3.7: Presentation of the whole decoder’s architecture, showing how the
final RGBA predictions are computed. Refer to Figure 3.6 to see the details
about how the decoder’s inputs are created.

After training, embeddings obtained by the frozen encoder can be utilized

as inputs for any neural architecture to tackle various deep learning tasks, such

as classification and retrieval. Meanwhile, the frozen decoder can be em-

ployed for reconstructing the discrete representation of embeddings, namely

2D renderings. Therefore, it is well-suited for tasks like assessing the quality

of learned NeRFs and generating new 3D object views through the interpola-

tion of embeddings.

3.3.2 Occupancy grids

As referenced earlier, NerfAcc utilizes occupancy grids to significantly re-

duce the training time required for NeRFs. However, it’s worth mentioning

that these grids introduce additional parameters that must be learned, which

increase the overall complexity of the training process. In contrast, nerf2vec

aims for a simpler training procedure focused solely on learning the underlying

function approximated by NeRFs, without introducing more overhead. As a

result, occupancy grids were excluded from the learning pipeline. Yet, obtain-

ing pre-trained occupancy grids for each NeRF belonging to the dataset is a

straightforward and trivial operation [62]. Thus, the information they contain

was still exploited for the following two reasons:

3.3 Learning NeRFs embedded representation 27

1. provide an active support to the sampling of 3D points from the ground

truth data, which are then used to create the training batches. The goal

was to have approximately 40% of the sampled points in the scene’s

background, and the remaining 60% in the foreground. Given that back-

ground coordinates predominate in the scene, this approach promotes

a more balanced learning. These proportions were empirically deter-

mined for optimal scene representation and reconstruction;

2. increase efficiency of the ray marching algorithm, which is responsible

to return only 3D coordinates belonging to the 3D object (i.e., fore-

ground coordinates). This approach, as demonstrated in the NerfAcc

implementation, ensures smooth operation of the ray marching algo-

rithm without the need for nerf2vec to learn additional parameters.

3.3.3 Loss function

Another essential aspect regards the loss function used to train nerf2vec. Ner-

fAcc natively computes the loss on a batch of RGB values obtained by ran-

domly selecting N pixel values from all the training images, where N is a

hyperparameter. The following formula formalizes how the NerfAcc’s loss is

calculated:

loss = L1loss(rgbgt, rgbpred) (3.2)

where L1loss is the L1 loss computed between rgbgt,namely the RGB values

derived from the ground truth, and rgbpred, which are the predicted RGB val-

ues inferred by the MLP’s output.

The nerf2vec’s loss can be computed by adapting theNerfAcc’s loss to con-

sider an additional dimension, which represents the number of NeRFs trained

simultaneously, namely those contained in each training batch. However,

there was a critical concern to address. As already stated, occupancy grids

were removed from the learning pipeline, and therefore nerf2vecwas exposed

3.3 Learning NeRFs embedded representation 28

to an unacceptable limitation: the incapability to learn anything about the

background, and this was fundamentally detrimental to the process of NeRF

learning. For these reasons, the background coordinates were forcefully added

to the differentiable rendering process explained in Section 2.2.1. This addi-

tion enabled predictions for background coordinates to be factored into the

loss through a newly introduced term. Furthermore, knowing that the number

of background coordinates significantly exceeded the number of foreground

coordinates, the two terms in the loss were weighted differently to optimize

the learning process. Equation 3.3 shows how the new loss was eventually

computed.

fgloss = L1loss(fg_rgbgt, fg_rgbpred) ∗ fgweight

bgloss = L1loss(bg_rgbgt, bg_rgbpred) ∗ bgweight

totalloss = fgloss + bgloss

(3.3)

where fg means foreground, while bg stands for background. fgweight and

bgweight were set to 0.8 and 0.2, respectively. These values were determined

through a grid search using a subset of 10k elements from the dataset of

NeRFs, and were selected based on the best results achieved. totalloss was

the loss ultimately used for updating the gradients.

3.3.4 Evaluation metrics

The Peak Signal-to-Noise Ratio, often abbreviated as PSNR, is a fundamental

and widely adopted metric for quantifying the fidelity and quality of recon-

structed or compressed signals, such as digital images and videos. PSNRmea-

sures the similarity between a reference (original) signal and a reconstructed

or processed signal by assessing their pixel-wise differences. It is expressed

in decibels (dB) and provides a standardized and intuitive way to evaluate the

level of signal degradation or distortion, with higher PSNR values indicating

a higher degree of fidelity and lower signal distortion.

3.3 Learning NeRFs embedded representation 29

In the specific context of this study, PSNR served as a critical evalua-

tion metric for assessing the reconstruction quality of 3D scene renderings

produced by the nerf2vec framework. These renderings were generated by

performing inference on the trained nerf2vec model, utilizing known camera

poses extracted from the dataset, which also contained ground truth render-

ings. The comparison of nerf2vec-generated renderings to these ground truth

images using PSNR offered a quantitative measure of the reconstruction qual-

ity, helping to gauge the faithfulness of nerf2vec’s ability to model and render

3D scenes. From a formal point of view, PSNR is defined as follows:

MSE = 1
n

n∑
i=1

∥RGBpred[i] − RGBgt[i]∥2

PSNR = −10 loge

(
MSE

10

) (3.4)

where MSE is the mean squared error. RGBpred and RGBgt are respectively

the predicted and ground truth RGB images, and n indicates the number of

pixels.

3.3.5 Ground truth retrieval

Lastly, in this section, the critical aspect of meticulously executing ground

truth data retrieval to ensure the smoothest possible nerf2vec training is ad-

dressed.

In the initial development stage, a conventional approach was employed.

In particular, the ground truth was directly acquired from the 2D renderings

initially utilized as the training data for NeRFs. Nevertheless, this approach

proved to be inefficient due to the significant number of I/O operations re-

quired. EachNeRFwas trained on 36 different renderings, andmultipleNeRFs

were trained simultaneously, resulting in unacceptable I/O overloads. This

bottleneck led to a substantial delay in generating the batches necessary to

3.3 Learning NeRFs embedded representation 30

train nerf2vec, also threatening its scalability.

As a result, a new procedure was thoroughly studied and subsequently im-

plemented. This approach involved in obtaining the ground truth directly from

the trained NeRFs, rather than retrieving it from original renderings. Utiliz-

ing the high optimization and efficiency offered by the FullyFusedMLP, as

illustrated in Section 3.2, this method considerably improved the speed and

smoothness of ground truth retrieval when compared to the previously out-

lined conventional approach.

Chapter 4

Experiments and results

Upon completing the training of nerf2vec, a series of tasks were undertaken to

address the central question of this thesis about the possibility of using NeRFs

as input and output data for other algorithms, possibly involving other neu-

ral networks. These tasks encompassed quality reconstruction assessment,

classification, embedding interpolation, and shape retrieval, each of which is

exhaustively examined in the subsequent sections.

4.1 Reconstruction quality

One of the key aspects of nerf2vec involves learning embeddings for the input

NeRFs, which act as a compressed representation of these NeRFs. PSNR, as

introduced in section 3.3.4, was employed to assess the reconstruction quality

of nerf2vec during training. Specifically, PSNR helped to evaluate the dif-

ferences between the original input signal and the signal reconstructed by the

decoder, which utilized only embeddings and 3D coordinates as inputs. There-

fore, this metric was used to assess both the framework’s quality and the em-

beddings themselves. Thus, significant effort was devoted to fine-tuning the

many hyperparameters integrated into the framework with the aim of achiev-

ing the highest possible PSNR values. What follows is a concise summary of

the main hyperparameters that were chosen based on their ability to yield the

4.2 Classification 32

highest reconstruction quality, as measured by the PSNR:

• Number of epochs: 400

• Learning rate:

– First 400 epochs: Learning rate 10−4

– Last 100 epochs: Learning rate 10−5

• Batch size: 16

• Optimizer: Adam

• Weight decay: 10−2

• Encoder linear layer units (see Figure 3.4):

– First two: 512

– All others: 1024

• Embeddings size: 1024

• Decoder linear layer dimensions (see Figure 3.7): 1024

While the embeddings are significantly more compact compared to the orig-

inal NeRF weights, the shape reconstructions achieved with nerf2vec closely

resemble the original ground truth, preserving a good level of detail. In par-

ticular, the PSNR reached approximately 30 for the training set and approx-

imately 25 for the validation set. Figure 4.1 contains examples showing the

quality of these reconstructions.

4.2 Classification

As it is often the case, the very first real deep learning task applied to nerf2vec

involved shape classification. In this context, the embeddings generated by

the nerf2vec’s encoder, with its weights frozen, were passed through a new

4.2 Classification 33

Figure 4.1: nerf2vec reconstruction examples.

neural network, namely the classifier itself. The utilized architecture is rela-

tively straightforward, and an illustration of it can be found in Figure 4.2. It

underwent training on the complete dataset described in Section 3.1, employ-

ing the standard cross-entropy loss during the training process. The training

was completed after 150 epochs.

To better evaluate this classifier’s performance, two additional baseline

classifiers were trained for comparison and assessment.

The first baseline classifier leveraged the same architecture shown in Figure

4.2. However, differently from the architecture in the figure, this classifier

takes as inputs the same vectors used in training nerf2vec. Thus, the goal of

this classifier was to directly classify NeRF weights.

4.2 Classification 34

Figure 4.2: Classifier architecture overview. The input is represented by the
nerf2vec’s encoder output, while the final label is determined through softmax
applied to the last LNR block’s output logits. The dashed line identify the
dropout operation [6].

Conversely, the second classifier was based on a different dataset composed

of images, as opposed to NeRF weights or embeddings. These images were

generated by performing inferences on each NeRF. To be precise, a set of N

renderings for each NeRF were created. More specifically, N was set to 1 and

9, representing a single-view and a multi-view classifier, respectively. In the

latter case, the renderings were created by encompassing a 360-degree rotation

around each 3D object, following the same approach explained in Section 3.1.

Furthermore, the ultimate label for a given input is determined through a vot-

ing system that takes into account all theN renderings of each object, selecting

as the predicted class the one with the highest frequency count. Regardless

from the chosen value of N, this classifier utilized the ResNet50 architecture

[35], a widely recognized and standard framework for image classification.

The tests were carried out with both training the model from scratch, but also

starting from weights obtained by pre-training it on ImageNet [52].

The results in Table 4.1 underscore that the classifier directly leveraging

nerf2vec’s embeddings achieves comparable scores to the baselines. Addi-

tionally, while the pre-trained version of ResNet50 attains higher accuracy, it

incurs significantly longer processing times due to the rendering process, mak-

ing it unsuitable for real-time applications. Table 4.2 provides further insights

into classification time, highlighting the remarkable efficiency of nerf2vec in

4.2 Classification 35

Classifier Accuracy Classification time N. views
nerf2vec 87.28% 1 ms -
NeRF weights 84.53% 0.9 ms -
ResNet50-v1 (P*) 94.12% 11 ms 1
ResNet50-v2 86.88% 11 ms 1
ResNet50-v3 93.28% 100 ms 9

Table 4.1: Accuracy results for each employed classifier. The nerf2vec classi-
fier works on the embeddings produced by nerf2vec, while the NeRF weights
classifier directly classifies NeRF parameters. In contrast, the ResNet50 clas-
sifiers take images as input, with (P*) indicating pre-training on ImageNet.
Only for these latter classifiers, it is also reported the number of different views
portraying each classified NeRF. Finally, the table also includes details on the
average classification time, which comprises encoding and inference times,
the two operations necessary for labeling.

Method Encoding (ms) Inference (ms)
nerf2vec 0.75 ± 0.0678 0.28 ± 0.0000161
Baseline 4.63 ± 0.0213 6.21 ± 0.0748

Table 4.2: Encoding and inference timings of classifiers. All the values re-
ported in the table are in milliseconds (ms) and represent mean ± standard
deviation.

these operations. In particular, the table provides details about the time re-

quirements for essential classification tasks, namely encoding and inference.

This timing data holds pivotal significance in comparing the two previously

referenced methods adopted to implement the classifiers: the baseline, which

leverages the ResNet50 backbone, and the nerf2vec, based on the framework

developed for this work. In the baseline method, NerfAcc is engaged to en-

code input NeRFs into renderings, followed by the labeling process using the

ResNet50 architecture. To facilitate clarity, the baseline’s timings reported in

the table refer to a single rendering per NeRF. On the other hand, the nerf2vec

approach relies on the nerf2vec framework, specifically designed for gener-

ating embeddings from NeRFs. Subsequently, the labeling process in this

method incorporates the architecture depicted in Figure 4.2. Once again, these

outcomes solidify the credibility of nerf2vec’s embeddings, showcasing their

effectiveness and efficiency in representing NeRFs.

4.3 Embeddings interpolation 36

4.3 Embeddings interpolation

Another intriguing task that aided in evaluating the quality of the embeddings

generated by nerf2vec is the interpolation between different embeddings. Es-

sentially, the goal of this task is to demonstrate that getting two random em-

beddings and performing a linear interpolation between them results in a com-

pletely new embedding, from which it is possible to create novel views of a

plausible model leveraging the decoder’s capabilities. The following equation

details of how the interpolation was computed:

embeddingsAB = (1 − γ) ∗ embeddingsA + γ ∗ embeddingsB (4.1)

where γ ∈ [0.1, 0.9], embeddingsA and embeddingsB are the embeddings of

two randomly sampled NeRFs. Note that the lower the value of γ is, the more

similar the final interpolation will be to embeddingsA. Conversely, when γ

is very high, the result becomes more similar to embeddingsB. Thus, these

interpolations were more appreciated when the γ values fell within the middle

of the supported range.

The results in Figure 4.3 confirm the meaningfulness of the latent space

learned by nerf2vec, showing smooth color and shape changes during the in-

terpolation process. Further affirmation of this meaningfulness is evident in

Figure 4.4, highlighting the remarkable superiority in interpolating nerf2vec’s

embeddings over directly interpolating NeRF weights. Thus, this process

demonstrates its effectiveness in generating new radiance fields in the form

of nerf2vec’s embeddings.

4.3 Embeddings interpolation 37

Figure 4.3: Examples of new shapes obtained by gradually interpolating the
embeddings of 2 randomly sampled NeRFs.

4.4 Shape retrieval 38

Figure 4.4: Comparison of the results obtained by interpolating NeRF weights
and the embeddings created through nerf2vec.

4.4 Shape retrieval

Shape retrieval, typically associated with representation learning, involves ex-

tracting the nearest neighbors of a given input shape from a provided dataset

of shapes. This task was adapted and applied to the current work by consider-

ing embeddings rather than shapes, serving as another method to evaluate the

quality of the latent space produced by the proposed framework. More specif-

ically, neighbors of the embeddings of a given input NeRF were extracted

from the latent space, which contains all the NeRFs’ embeddings included in

the considered dataset.

The method employed is inspired by [4], and it uses the Euclidean dis-

tance to assess the similarity between embeddings of unseen NeRFs from the

test set introduced in Section 3.1. For each selected embedding, its k-nearest

neighbors are identified, then their classes are extracted, and finally they are

compared to the initially selected embedding’s class. When executing this

4.5 Shape generation 39

Method mAP@1 mAP@5 mAP@10
nerf2vec 72.38 91.89 95.96

Baseline single-view 74.65 91.52 95.10
Baseline multi-view (9) 82.74 91.66 93.79

Table 4.3: Shape retrieval mAP values are derived from retrieving the K near-
est neighbors of a query input NeRF and verifying label equivalence. The
value of K used for these experiments is specified after the@ character. Base-
line architectures utilized renderings of NeRFs as inputs, and applied the re-
trieval task on the feature vectors extracted by the ResNet50 backbone. The
number of views for the multi-view baseline is denoted within brackets.

task, the expectation is that the majority of the nearest neighbors share the

same class of the originally selected embedding, confirming the optimal orga-

nization of the latent space.

To compare the results obtained from the retrieval task using nerf2vec’s

embeddings, a similar task was executed using two baseline architectures.

These architectures utilized N renderings of NeRFs as input, each with vary-

ing camera poses. Following this input, feature vectors were extracted using

the ResNet50 backbone. Subsequently, the retrieval task was performed based

on these feature vectors. In the experiments, N was fixed to 1 and 9. Table 4.3

demonstrates that the retrieval task can be successfully applied to nerf2vec’s

embedding, showing high mean Average Precision (mAP) values, comparable

to those obtained by the baseline architectures. Moreover, as shown in Fig-

ure 4.5, the selected neighbors also exhibit similar structures and colors. This

finding served as an additional evidence that nerf2vec is proficient at creating

embeddings that effectively summarize significant shape information.

4.5 Shape generation

Previous task results have demonstrated the feasibility of utilizing embeddings

generated by nerf2vec as inputs for diverse deep learning architectures. This

4.5 Shape generation 40

Figure 4.5: Example of the first four nearest neighbors of a query NeRF, which
is the leftmost one in each row.

4.5 Shape generation 41

section aims to take a significant step forward by elaborating on another con-

ducted experiment. This experiment involved the generation of new embed-

dings within an adversarial framework. The ultimate objective was to evaluate

the potential for creating credible embeddings for previously unseen NeRFs.

The architecture employed for this taskwas a Latent-GAN [53], outlined in

Figure 4.6. This framework aimed to generate embeddings that closely resem-

bled those created by nerf2vec, beginning from random noise. Subsequently,

these newly generated embeddings could be decoded into discrete representa-

tions using the same implicit decoder utilized during the framework’s training.

Figure 4.6: Latent-GAN architecture overview. Both the discriminator and the
generator are composed of two fully connected layers, and adopting standard
activation functions. Additional details are provided in the original paper [53].

Figure 4.7: nerf2vec generations qualitative results.

4.5 Shape generation 42

Specifically, this task required training multiple adversarial networks, one

for each class, utilizing the dataset introduced in Section 3.1. Subsequently,

each trained Latent-GAN was utilized for inference to generate new embed-

dings for every class. Examples of these generated embeddings are presented

in Figure 4.7, showcasing a notable diversity and intricate detail. Once again,

these results highlight the applicability of embeddings generated by nerf2vec

within deep neural architectures.

Chapter 5

Conclusions and future work

This work was able to eventually provide an answer to the question presented

in Chapter 1: Would it be possible to directly integrate NeRFs within deep

learning pipelines to solve downstream tasks? As extensively shown in the

preceding chapters, the answer to this question is yes.

The proposed framework nerf2vec demonstrated the feasibility of embed-

ding NeRFs into a compact latent vector, creating a latent space for NeRFs

serviceable for various deep learning tasks. Specifically, employing these

embeddings for classification and shape retrieval yielded highly promising

results. Furthermore, the interpolation of these embeddings not only vali-

dated the well-organized nature of the learned latent space, but it also enabled

the generation of entirely new, previously unseen 3D objects. Similar out-

comes were achieved through the training of Latent-GAN networks, allowing

for the creation of novel NeRFs. In addition, this work added further credit to

the inr2vec framework [41] by exploring NeRFs, a type of INR that was not

treated before.

However, there are two main limitations that must be acknowledged, and

these can serve as the foundation for future work to further enhance the per-

formance of nerf2vec.

Conclusions and future work 44

First and foremost, while the reconstruction quality is notably high, it does lose

some level of detail compared to the original input NeRFs. Potential strategies

to enhance results include increasing the capacity of nerf2vec, exploring alter-

native architectures such as HyperNetworks [18], and increasing the number

of renderings used to train each NeRF.

Additionally, a potential constraint on the real-world deployment of this work

is the reliance on a common initialization vector for training NeRFs. In this

field, significant progress has already been made, as indicated by [5, 58] and

other sources. Integrating these advancements into nerf2vec could further en-

hance its capabilities.

Besides the known limitations, there are also several promising avenues

for future work and development:

• conducting ablation studies to optimize nerf2vec’s training time;

• exploring methods to eliminate the need of occupancy grids;

• adding also the view directions to the decoder’s input;

• investigating techniques for online data augmentation;

• expanding the dataset of NeRFs to include unbounded scenes;

• exploring other deep learning tasks, including segmentation and diverse

generative methodologies.

In conclusions, this thesis represents an important contributionwhich demon-

strates that NeRFs, and INRs in general, hold great promise as the standard and

unified approach for efficient 3D scene representation, and that it is possible

to leverage Artificial Intelligence to fully harness their capabilities.

Bibliography

[1] Alon Lahav andAyellet Tal.MeshWalker: Deepmesh understanding by

random walks. 2020. URL: https://arxiv.org/abs/2006.05353.

[2] Amir Hertz, Rana Hanocka, Raja Giryes and Daniel Cohen-Or. Deep

geometric texture synthesis. 2020. URL: https://dl.acm.org/doi/

10.1145/3386569.3392471.

[3] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon and Yaron Lip-

man. Implicit geometric regularization for learning shapes. 2020. URL:

https://arxiv.org/abs/2002.10099.

[4] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanra-

han, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shu-

ran Song, Hao Su, Jianxiong Xiao, Li Yi and Fisher Yu. ShapeNet: An

information-rich 3d model repository. 2015. URL: https://arxiv.

org/abs/1512.03012.

[5] AvivNavon, Aviv Shamsian, IdanAchituve, Ethan Fetaya, Gal Chechik

and Haggai Maron. Equivariant architectures for learning in deep

weight spaces. 2023. URL: https://arxiv.org/abs/2301.12780.

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Bar-

ron, Ravi Ramamoorthi and Ren Ng. NeRF: Representing scenes as

neural radiance fields for view synthesis. 2020. URL: https : / /

arxiv.org/abs/2003.08934.

[7] L. Biewald. Experiment tracking with weights and biases, 2020. URL:

https://www.wandb.com/.

https://arxiv.org/abs/2006.05353
https://dl.acm.org/doi/10.1145/3386569.3392471
https://dl.acm.org/doi/10.1145/3386569.3392471
https://arxiv.org/abs/2002.10099
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/2301.12780
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://www.wandb.com/

BIBLIOGRAPHY 46

[8] Binh-Son Hua, Minh-Khoi Tran and Sai-Kit Yeung. Pointwise convo-

lutional neural networks. 2018. URL: https://arxiv.org/abs/

1712.05245.

[9] Boris Knyazev, Michal Drozdzal, Graham W. Taylor and Adriana

Romero. Parameter prediction for unseen deep architectures. 2021.

URL: https://arxiv.org/abs/2110.13100.

[10] Charles R Qi, Hao Su, Kaichun Mo and Leonidas J Guibas. PointNet:

Deep learning on point sets for 3D classification and segmentation.

2017. URL: https://arxiv.org/abs/1612.00593.

[11] Charles R Qi, Hao Su, KaichunMo and Leonidas J Guibas. Pointnet++:

Deep hierarchical feature learning on point sets in a metric space. 2017.

URL: https://arxiv.org/abs/1706.02413.

[12] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan

and Leonidas J Guibas. Volumetric and multi-view cnns for object clas-

sification on 3d data. 2016. URL: https://arxiv.org/abs/1604.

03265.

[13] Chiyu Jiang, Avneesh Sud, AmeeshMakadia, Jingwei Huang, Matthias

Nießner, Thomas Funkhouser. Local implicit grid representations for 3d

scenes. 2020. URL: https://arxiv.org/abs/2003.08981.

[14] ChristianHäne, ShubhamTulsiani and JitendraMalik. Hierarchical sur-

face prediction for 3D object reconstruction. 2017. URL: https://

arxiv.org/abs/1704.00710.

[15] Chunfeng Lian, Li Wang, Tai-Hsien Wu, Mingxia Liu, Francisca

Durán, Ching-Chang Ko and Dinggang Shen. MeshSNet: Deep multi-

scale mesh feature learning for end-to-end tooth labeling on 3d dental

surfaces. 2019. URL: https://link.springer.com/chapter/10.

1007/978-3-030-32226-7_93.

https://arxiv.org/abs/1712.05245
https://arxiv.org/abs/1712.05245
https://arxiv.org/abs/2110.13100
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1604.03265
https://arxiv.org/abs/1604.03265
https://arxiv.org/abs/2003.08981
https://arxiv.org/abs/1704.00710
https://arxiv.org/abs/1704.00710
https://link.springer.com/chapter/10.1007/978-3-030-32226-7_93
https://link.springer.com/chapter/10.1007/978-3-030-32226-7_93

BIBLIOGRAPHY 47

[16] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. 2015 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS):922–

928, 2015.

[17] Danilo Jimenez Rezende, SM Eslami, Shakir Mohamed, Peter

Battaglia, Max Jaderberg and Nicolas Heess. Unsupervised learning of

3d structure from images. 2018. URL: https://arxiv.org/abs/

1607.00662.

[18] David Ha andrew Dai and Quoc V. Le. HyperNetworks. 2016. URL:

https://arxiv.org/abs/1609.09106.

[19] David Stutz and Andreas Geiger. Learning 3d shape completion from

laser scan data with weak supervision. Proceedings of the IEEEConfer-

ence on Computer Vision and Pattern Recognition:1955–1964, 2018.

[20] Davide Boscaini, Jonathan Masci, Emanuele Rodolà and Michael

Bronstein. Learning shape correspondence with anisotropic convolu-

tional neural networks. 2016. URL: https://arxiv.org/abs/1605.

06437.

[21] Dmitriy Smirnov and Justin Solomon. HodgeNet: learning spectral ge-

ometry on triangle meshes. 2021. URL: https://arxiv.org/abs/

2104.12826.

[22] Emilien Dupont, Hyunjik Kim, SM Ali Eslami, Danilo Jimenez

Rezende and Dan Rosenbaum. From data to functa: Your data point is

a function and you can treat it like one. 2022. URL: https://arxiv.

org/abs/2201.12204.

[23] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola,

Jan Svoboda and Michael M. Bronstein. Geometric deep learning on

graphs and manifolds using mixture model CNNs. 2016. URL: https:

//arxiv.org/abs/1611.08402.

https://arxiv.org/abs/1607.00662
https://arxiv.org/abs/1607.00662
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1605.06437
https://arxiv.org/abs/1605.06437
https://arxiv.org/abs/2104.12826
https://arxiv.org/abs/2104.12826
https://arxiv.org/abs/2201.12204
https://arxiv.org/abs/2201.12204
https://arxiv.org/abs/1611.08402
https://arxiv.org/abs/1611.08402

BIBLIOGRAPHY 48

[24] Florian Jaeckle and M Pawan Kumar. Generating adversarial examples

with graph neural networks. 2021. URL: https://arxiv.org/abs/

2105.14644.

[25] Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scara-

muzza and Luca Carlone. Primal-dual mesh convolutional neural net-

works. 2020. URL: https://arxiv.org/abs/2010.12455.

[26] Gernot Riegler, Ali Osman Ulusoy and Andreas Geiger. OctNet: Learn-

ing deep 3D representations at high resolutions. 2017. URL: https:

//arxiv.org/abs/1611.05009.

[27] Haoxuan You, Yifan Feng, Rongrong Ji and Yue Gao. PVNet: A joint

convolutional network of point cloud and multi-view for 3d shape

recognition. 2018. URL: https://arxiv.org/abs/1808.07659.

[28] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz

Marcotegui, François Goulette and Leonidas J Guibas. Kpconv: Flexi-

ble and deformable convolution for point clouds. 2019. URL: https:

//arxiv.org/abs/1904.08889.

[29] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe

and Steven Lovegrove. DeepSDF: Learning continuous signed distance

functions for shape representation. 2019. URL: https://arxiv.org/

abs/1901.05103.

[30] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman and Josh

Tenenbaum. Learning a probabilistic latent space of object shapes via

3d generative adversarial modeling. Advances in neural information

processing systems:29, 2016.

[31] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias

Nießner and Leonidas J Guibas. TextureNet: Consistent local

parametrizations for learning from high resolution signals on meshes.

2019. URL: https://arxiv.org/abs/1812.00020.

https://arxiv.org/abs/2105.14644
https://arxiv.org/abs/2105.14644
https://arxiv.org/abs/2010.12455
https://arxiv.org/abs/1611.05009
https://arxiv.org/abs/1611.05009
https://arxiv.org/abs/1808.07659
https://arxiv.org/abs/1904.08889
https://arxiv.org/abs/1904.08889
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1812.00020

BIBLIOGRAPHY 49

[32] Jingyue Lu andM. Pawan Kumar. Neural network branching for neural

network verification. 2019. URL: https://arxiv.org/abs/1912.

01329.

[33] Jonas Schult, Francis Engelmann, Theodora Kontogianni and Bastian

Leibe. DualConvMesh-Net: Joint geodesic and euclidean convolutions

on 3d meshes. 2020. URL: https://arxiv.org/abs/2004.01002.

[34] Jonathan Masci, Davide Boscaini, Michael Bronstein and Pierre Van-

dergheynst. Geodesic convolutional neural networks on riemannian

manifolds. 2018. URL: https://arxiv.org/abs/1501.06297.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep resid-

ual learning for image recognition. 2015. URL: https://arxiv.org/

abs/1512.03385.

[36] Konstantin Schürholt, Dimche Kostadinov and Damian Borth. Hyper-

Representations: Self-supervised representation learning on neural net-

work weights for model characteristic prediction. 2022. URL: https:

//arxiv.org/abs/2110.15288.

[37] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna and Thomas

Funkhouser. Local deep implicit functions for 3D shape. 2020. URL:

https://arxiv.org/abs/1912.06126.

[38] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William

T. Freeman and Thomas Funkhouser. Learning shape templates with

structured implicit functions. 2019. URL: https://arxiv.org/abs/

1904.06447.

[39] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian

Nowozin and Andreas Geiger. Occupancy networks: Learning 3d re-

construction in function space. 2019. URL: https://arxiv.org/

abs/1812.03828.

https://arxiv.org/abs/1912.01329
https://arxiv.org/abs/1912.01329
https://arxiv.org/abs/2004.01002
https://arxiv.org/abs/1501.06297
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2110.15288
https://arxiv.org/abs/2110.15288
https://arxiv.org/abs/1912.06126
https://arxiv.org/abs/1904.06447
https://arxiv.org/abs/1904.06447
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1812.03828

BIBLIOGRAPHY 50

[40] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang and Jie Shan.

Graph attention convolution for point cloud semantic segmentation.

2019. URL: https://ieeexplore.ieee.org/document/8954040.

[41] Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama

Ramirez, Samuele Salti and Luigi Di Stefano. Deep learning on implicit

neural representations of shapes. 2023. URL: https://arxiv.org/

abs/2302.05438.

[42] Matan Atzmon and Yaron Lipman. SAL: Sign agnostic learning of

shapes from raw data. 2020. URL: https://arxiv.org/abs/1911.

10414.

[43] Matan Atzmon, Haggai Maron and Yaron Lipman. Point convolutional

neural networks by extension operators. 2018. URL: https://arxiv.

org/abs/1803.10091.

[44] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Bak-

tashmotlagh and Anders Eriksson. Implicit surface representations as

layers in neural networks. 2020. URL: https://ieeexplore.ieee.

org/stamp/stamp.jsp?tp=&arnumber=9010266.

[45] Maxim Tatarchenko, Alexey Dosovitskiy and Thomas Brox. Octree

generating networks: Efficient convolutional architectures for high-

resolution 3D outputs. 2017. URL: https://arxiv.org/abs/1703.

09438.

[46] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph

R Martin and Shi-Min Hu. PCT: Point cloud transformer. 2021. URL:

https://arxiv.org/abs/2012.09688.

[47] Michael Niemeyer, Lars Mescheder, Michael Oechsle and Andreas

Geiger. Differentiable volumetric rendering: Learning implicit 3d rep-

resentations without 3d supervision. 2020. URL: https://arxiv.

org/abs/1912.07372.

https://ieeexplore.ieee.org/document/8954040
https://arxiv.org/abs/2302.05438
https://arxiv.org/abs/2302.05438
https://arxiv.org/abs/1911.10414
https://arxiv.org/abs/1911.10414
https://arxiv.org/abs/1803.10091
https://arxiv.org/abs/1803.10091
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9010266
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9010266
https://arxiv.org/abs/1703.09438
https://arxiv.org/abs/1703.09438
https://arxiv.org/abs/2012.09688
https://arxiv.org/abs/1912.07372
https://arxiv.org/abs/1912.07372

BIBLIOGRAPHY 51

[48] Michael Niemeyer, Lars Mescheder, Michael Oechsle and Andreas

Geiger. Occupancy flow: 4d reconstruction by learning particle dy-

namics. 2019. URL: https://ieeexplore.ieee.org/document/

9008276.

[49] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss

and Andreas Geiger. Texture fields: Learning texture representations in

function space. 2019. URL: https://arxiv.org/abs/1905.07259.

[50] Mutian Xu, Runyu Ding, Hengshuang Zhao and Xiaojuan Qi. PAConv:

Position adaptive convolution with dynamic kernel assembling on point

clouds. 2021. URL: https://arxiv.org/abs/2103.14635.

[51] Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron and Yaron

Lipman. Surface networks via general covers. 2019. URL: https://

arxiv.org/abs/1812.10705.

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet large

scale visual recognition challenge. 2015. URL: https://arxiv.org/

abs/1409.0575.

[53] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas and Leonidas

Guibas. Learning Representations and Generative Models for 3D Point

Clouds. 2018. URL: https://arxiv.org/abs/1707.02392.

[54] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu and Xin Tong. Adaptive

O-CNN: A patch-based deep representation of 3D shapes. 2018. URL:

https://arxiv.org/abs/1809.07917.

[55] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun and Xin

Tong. O-CNN: Octree-based convolutional neural networks for 3D

shape analysis. 2017. URL: https://arxiv.org/abs/1712.01537.

https://ieeexplore.ieee.org/document/9008276
https://ieeexplore.ieee.org/document/9008276
https://arxiv.org/abs/1905.07259
https://arxiv.org/abs/2103.14635
https://arxiv.org/abs/1812.10705
https://arxiv.org/abs/1812.10705
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1707.02392
https://arxiv.org/abs/1809.07917
https://arxiv.org/abs/1712.01537

BIBLIOGRAPHY 52

[56] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech and Ul-

rich Neumann. DISN: Deep implicit surface network for high-quality

single-view 3D reconstruction. 2021. URL: https://arxiv.org/

abs/1905.10711.

[57] R. Hecht-Nielsen. On the algebraic structure of feedforward network

weight spaces. Advanced Neural Computers:129–135, 1990.

[58] Rahim Entezari, Hanie Sedghi, Olga Saukh and Behnam Neyshabur.

The role of permutation invariance in linearmode connectivity of neural

networks. 2022. URL: https://arxiv.org/abs/2110.06296.

[59] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman

and Daniel Cohen-Or.MeshCNN: A network with an edge. 2019. URL:

https://arxiv.org/abs/1809.05910.

[60] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub,

Steven Lovegrove and Richard Newcombe. Deep local shapes: Learn-

ing local sdf priors for detailed 3d reconstruction. 2020. URL: https:

//arxiv.org/abs/2003.10983.

[61] Rohit Girdhar, David F Fouhey, Mikel Rodriguez and Abhinav Gupta.

Learning a predictable and generative vector representation for objects.

2016. URL: https://arxiv.org/abs/1603.08637.

[62] Ruilong Li, Matthew Tancik and Angjoo Kanazawa. NerfAcc: A gen-

eral NeRF acceleration toolbox. 2023. URL: https://arxiv.org/

abs/2210.04847.

[63] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiao-

gang Wang and Hongsheng Li. PV-RCNN: Point-voxel feature set ab-

straction for 3d object detection. 2020. URL: https://arxiv.org/

abs/1912.13192.

https://arxiv.org/abs/1905.10711
https://arxiv.org/abs/1905.10711
https://arxiv.org/abs/2110.06296
https://arxiv.org/abs/1809.05910
https://arxiv.org/abs/2003.10983
https://arxiv.org/abs/2003.10983
https://arxiv.org/abs/1603.08637
https://arxiv.org/abs/2210.04847
https://arxiv.org/abs/2210.04847
https://arxiv.org/abs/1912.13192
https://arxiv.org/abs/1912.13192

BIBLIOGRAPHY 53

[64] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima,

Angjoo Kanazawa and Hao Li. PIFu: Pixel-aligned implicit function

for high-resolution clothed human digitization. 2019. URL: https :

//arxiv.org/abs/1905.05172.

[65] Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal 3d

object detection in rgb-d images. 2016. URL: https://arxiv.org/

abs/1511.02300.

[66] Siqi Fan, Qiulei Dong, Fenghua Zhu, Yisheng Lv, Peijun Ye and Fei-

Yue Wang. SCF-Net: Learning spatial contextual features for large-

scale point cloud segmentation. 2021. URL: https://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=9577763.

[67] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys

and Andreas Geiger. Convolutional occupancy network. 2020. URL:

https://arxiv.org/abs/2003.04618.

[68] Thomas Müller, Alex Evans, Christoph Schied and Alexander Keller.

Instant neural graphics primitives with amultiresolution hash encoding.

2022. URL: https://arxiv.org/abs/2201.05989.

[69] Thomas Müller, Fabrice Rousselle, Jan Novák and Alexander Keller.

Real-time neural radiance caching for path tracing. 2021. URL: https:

/ / tom94 . net / data / publications / mueller21realtime /

mueller21realtime.pdf.

[70] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet

and IlyaO. Tolstikhin. Predicting neural network accuracy fromweight.

2021. URL: https://arxiv.org/abs/2002.11448.

[71] Tiny CUDA neural networks. URL: https://github.com/NVlabs/

tiny-cuda-nn.

https://arxiv.org/abs/1905.05172
https://arxiv.org/abs/1905.05172
https://arxiv.org/abs/1511.02300
https://arxiv.org/abs/1511.02300
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9577763
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9577763
https://arxiv.org/abs/2003.04618
https://arxiv.org/abs/2201.05989
https://tom94.net/data/publications/mueller21realtime/mueller21realtime.pdf
https://tom94.net/data/publications/mueller21realtime/mueller21realtime.pdf
https://tom94.net/data/publications/mueller21realtime/mueller21realtime.pdf
https://arxiv.org/abs/2002.11448
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn

BIBLIOGRAPHY 54

[72] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell

and GordonWetzstein. Implicit neural representations with periodic ac-

tivation functions. 2020. URL: https://arxiv.org/abs/2006.

09661.

[73] Vincent Sitzmann, Michael Zollhöfer and Gordon Wetzstein. Scene

representation networks: Continuous 3d-structure-aware neural scene

representations. 2020. URL: https://arxiv.org/abs/1906.01618.

[74] Xianzhi Li, Ruihui Li, Lei Zhu, Chi-Wing Fu and Pheng-Ann Heng.

DNF-Net: A deep normal filtering network for mesh denoising. 2020.

URL: https://arxiv.org/abs/2006.15510.

[75] Yangyan Li, Soeren Pirk, Hao Su, Charles R. Qi and Leonidas J. Guibas.

FPNN: Field probing neural networks for 3D data. 2016. URL: https:

//arxiv.org/abs/1605.06240.

[76] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng and Yu Qiao. Spider-

CNN: Deep learning on point sets with parameterized convolutional

filters. 2018. URL: https://arxiv.org/abs/1803.11527.

[77] Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu and Xin Tong. PFCNN: Con-

volutional neural networks on 3d surfaces using parallel frames. 2020.

URL: https://arxiv.org/abs/1808.04952.

[78] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao and Yue Gao.

MeshNet: Mesh neural network for 3d shape representation. 2018.

URL: https://arxiv.org/abs/1811.11424.

[79] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative

shape modeling. 2019. URL: https : / / arxiv . org / abs / 1812 .

02822.

[80] ZhirongWu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,

Xiaoou Tang and Jianxiong Xiao. 3D ShapeNets: A deep representation

https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/1906.01618
https://arxiv.org/abs/2006.15510
https://arxiv.org/abs/1605.06240
https://arxiv.org/abs/1605.06240
https://arxiv.org/abs/1803.11527
https://arxiv.org/abs/1808.04952
https://arxiv.org/abs/1811.11424
https://arxiv.org/abs/1812.02822
https://arxiv.org/abs/1812.02822

BIBLIOGRAPHY 55

for volumetric shapes. 2015. URL: https : / / ieeexplore . ieee .

org/document/7298801.

https://ieeexplore.ieee.org/document/7298801
https://ieeexplore.ieee.org/document/7298801

Acknowledgements

I would like to express my deepest gratitude to Professor Samuele Salti for his

continuous support and mentorship throughout my academic pursuit. Doctor

De Luigi Luca played an indispensable role in shaping the direction of my re-

search, offering invaluable insights, guidance, and consistent assistance dur-

ing the thesis composition. I am also thankful for the contributions of Profes-

sorsLuigi Di Stefano and Pierluigi ZamaRamirez, alongsideDoctorsAdriano

Cardace and Riccardo Spezialetti, whose expertise significantly enriched my

academic experience.

My utmost appreciation goes to my wife Serena and my daughter Sofia.

Your steadfast support, enduring patience, and constant presence have been

my pillars throughout this challenging journey. Through every hardship and

triumph, you stood byme, sharing the burdens and celebrating eachmilestone.

Your love and encouragement have been my guiding strength, enabling this

achievement. I’m profoundly grateful for your absolute trust in me, which

made this journey extraordinary.

I am also profoundly grateful to my parents, Gianni and Franca, for their

unwavering sustenance and relentless encouragement. Their consistent moti-

vation and invaluable guidance were instrumental in helping me achieve my

goals. Their belief in me has been an unshakable source of strength, shaping

me into the person I am today. Additionally, I extend heartfelt thanks to my

older twin, Simone, whose invaluable suggestions have been a guiding light

throughout my entire learning journey.

Francesco Abbo, your friendship, assistance, and resolute endorsement

have been priceless throughout this adventure; your presence has made this

academic pursuit infinitelymoremeaningful. I alsowish to expressmy sincere

appreciation to my mellon Mattia Carbognani, as well as my friends Mattia

Baccaro, and Andrea Righelli for their constant presence whenever a shoulder

was needed. Moreover, I cannot overstate my gratitude to Gaetano Signorelli,

who not only served as a significant colleague during exams but has also be-

come a good friend. Your encouragement and camaraderie have profoundly

impacted my path.

Finally, I extend my heartfelt gratitude to Gianfranco Sinesi, whose inspi-

ration many years ago ignited within me a fascination for the captivating and

boundless world of computers.

Appendix A

NeRF training

As detailed in chapter 3, the usedMLP to trainNeRFs is calledFullyFusedMLP.

However, this is not the only MLP available inside the Tiny CUDA Neural

Networks framework [71]. More specifically, another MLP was tested in the

presented work, and its name is CutlassMLP. Additionally, the Tiny CUDA

Neural Networks framework allows to straightforwardly use different types

of input encoding that were experimented so as to keep the training procedure

as simple as possible, while trying to preserve high quality results.

The CutlassMLP is notably slower compared to the FullyFusedMLP, but

it offers greater flexibility. For instance, it permits more customization of the

number of units in its linear layers and supports various activation functions.

Due to these advantages, the initial NeRFs were trained using theCutlassMLP

with linear layers and activation functions identical to those used by inr2vec

to train INRs. Additionally, an identity encoding was employed to keep the

training procedure in its simplest form. Despite these choices, the results were

disappointing, primarily due to the slow training and poor output quality. Fig-

ure A.1 illustrates the diverse PSNR scores achieved alongside the training

time needed for performing a fixed number of iterations. It accentuates the

superiority of frequency encoding, which attains higher PSNR values with

significantly fewer units per linear layer and markedly shorter training times.

Figure A.1: Comparison of PSNR values and training times for different num-
bers of units in the MLP’s linear layers, using identity and frequency encod-
ings.

Furthermore, Figure A.2 visually compares different unit-encoding com-

binations, emphasizing the superiority of frequency encoding over identity

encoding.

After selecting the main architecture for training NeRFs, a switch was

made fromCutlassMLP to FullyFusedMLP. The latter achieved similar PSNR

scores with respect to the former but significantly reduced training time. As

a result, FullyFusedMLP became the final choice for NeRF training. The re-

maining hyperparameters, including encoding dimension, hidden layer count,

and units per layer, were determined based on the highest achieved PSNR. It’s

worth noting that these hyperparameters were eventually selected to strike the

optimal balance between training time and final quality.

Figure A.2: Depiction of renderings showcasing diverse qualities influenced
by the number of units in each MLP layer and encoding methodologies.

Appendix B

Implementation and hardware

B.1 General settings

All experiments were primarily conducted using the PyTorch library on a

machine equipped with an Intel Core i7-9700K CPU and a single NVIDIA

GeForce RTX 3090 GPU. Visualizations and statistical data were generated

using WandB [7], a tool designed to efficiently track experiments, measure

model performance, and monitor the training processes.

B.2 Mixed precision

Compared to inr2vec, nerf2vec demands significantly more resources. Specif-

ically, a substantial amount of VRAM is required to train a single batch due to

the simultaneous training of multiple NeRFs. To address this, mixed precision

was employed during training, enabling nerf2vec to quickly learn each NeRF

by processing a larger volume of 3D coordinates at every iteration, thereby

expediting the overall training process, and hugely reducing the memory foot-

print required.

B.3 Timings

To train a single NeRF, which is an operation necessary to create the dataset

of NeRFs, the employed FullyFusedMLP required an average of 12 seconds

to train each NeRF, which is equivalent to roughly 1500 − 2000 iterations.

To train nerf2vec for a single epoch on the full training set, about 58 min-

utes were required. Note that the training set comprises approximately 90k

NeRFs.

Appendix C

NeRF weights removal comparison

Appendix I of the inr2vec paper [41] provides a detailed explanation for the

exclusion of input and output layers from the vector representation of each

INR used to train the framework. This exclusion was essential to reduce the

encoder’s input dimension and accelerate the training process. However, it’s

important to note that this technique, which involves removing input and out-

put layer weights of each NeRF, didn’t align with the goals of the presented

work, as became evident during the initial classification tasks. To reach this

conclusion, a comparison was made between the results of two different clas-

sifiers: the first one directly classified NeRF weights, while the second clas-

sified embeddings obtained by applying the aforementioned technique. As

illustrated in Figure C.1, the first classifier significantly outperforms the ac-

curacy of the second one, highlighting a potential weakness in the created

embeddings.

The most probable reason for this accuracy gap is that the number of

parameters in the MLPs used to train NeRFs in nerf2vec was significantly

smaller compared to those used in training INRs in inr2vec. As a result, the

removal of input and output layer weights was causing the loss of a substantial

amount of information. These considerations led to the decision of retraining

the nerf2vec framework from scratch, this timewithout removing the input and

Figure C.1: Accuracies achieved by the embeddings and baseline classifiers
on the validation set when the input and output layer weights were omitted
from the training of the nerf2vec framework.

output layer weights. Ultimately, this choice allowed the embeddings classi-

fier to even outperform the baseline classifier, as demonstrated in Chapter 4.

	Introduction
	Related work
	Deep Learning for 3D Scenes
	Implicit neural representations
	NeRFs

	Deep Learning on INRs

	Methodology
	Dataset
	NerfAcc adaptations
	Learning NeRFs embedded representation
	nerf2vec
	Occupancy grids
	Loss function
	Evaluation metrics
	Ground truth retrieval

	Experiments and results
	Reconstruction quality
	Classification
	Embeddings interpolation
	Shape retrieval
	Shape generation

	Conclusions and future work
	Bibliography
	Acknowledgements
	NeRF training
	Implementation and hardware
	General settings
	Mixed precision
	Timings

	NeRF weights removal comparison

