
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Image Processing and Computer Vision

NIGHT2DAY - AI ENHANCEMENT
OF NIGHT PHOTOGRAPHY

CANDIDATE SUPERVISOR

Davide Perozzi Prof. Luigi Di Stefano

Academic year 2022-2023

Session 3rd



Contents

1 Introduction 1

2 Objectives 3

3 Methodology 4

4 Literature Review 5

5 Implementation 7

6 Data Collection and Preprocessing 11

7 Experiments 16

8 Results 18

9 Discussion 24

10 Conclusions and Recommendations 26

Bibliography 28

Acknowledgements 31

ii



List of Figures

5.1 AU-GAN architecture . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Unpaired Day and Night dataset samples . . . . . . . . . . . . 12

6.2 24/7 Tokyo dataset samples . . . . . . . . . . . . . . . . . . . 13

6.3 Aachen Day-Night dataset samples . . . . . . . . . . . . . . . 13

6.4 Dark Zurich dataset samples . . . . . . . . . . . . . . . . . . 14

8.1 Plot of training metrics. Batches processed as x axis . . . . . . 18

8.2 Samples of qualitative good results. . . . . . . . . . . . . . . 22

8.3 Samples of qualitative bad results. . . . . . . . . . . . . . . . 23

iii



List of Tables

6.1 Datasets images distribution. . . . . . . . . . . . . . . . . . . 14

8.1 Comparison of models trained on single-domain datasets and

multi-domain dataset. . . . . . . . . . . . . . . . . . . . . . . 20

8.2 Comparison of models trained on multi-domain dataset with

and without encoder freezed. . . . . . . . . . . . . . . . . . . 20

8.3 Comparison of models trained on multi-domain dataset with

different layers freezed. . . . . . . . . . . . . . . . . . . . . . 21

iv



Chapter 1

Introduction

Night photography often poses challenges due to reduced light availability,

resulting in images with compromised details and colours. This can pose

difficulty in the usability of this images across a wide range of applications

(e.g. object detection, segmentation, environment description… ) or just for

qualitative human judgement. In response to this, artificial intelligence (AI)

algorithms designed for images can come in hand leveraging their ability of

features encoding and domain translation to be able to generate a day version

of a night photo. This could enlarge the usability domain of the image, not

just technical but also artistic.

We can just think about security cameras where a day conversion of the im-

ages would certainly help a lot the operator job without the need of using a

more expensive night vision camera.

In this paper, we will describe our work revolved around the implementation

of an AI algorithm designed for images translation able to receive as input a

night image and convert it to the counterpart daytime version while maintain-

ing the same context and structure of the original input.

The entire work has been conducted at the premises of CYENS - Centre of

Excellence in Nicosia, Cyprus under the supervision of Dr. Alessandro Ar-

tusi, Xenios Milidonis and the help of the whole DeepCamera team.

In this paper wewill illustrate the carried out work going through all the phases
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from the objectives definition to the results evaluation.
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Objectives

Our initial objective was to build an AI algorithm able to receive as input a

night image and output the daytime version maintaining the same context and

structure of the original input.

The system could have been developed in-house but, due to the limitation

in available time, we focused on leveraging open-source model architectures

provided by the research community.

The main pillar of our objectives was to have a good generalization ability

of the model to gain good performance for a wide range of images domains,

since the models we encountered were all specialized on car dash cam view

images. So, one of our goal was to collect a big amount of high quality images

belonging to different domains.

Our performance goal was to maintain the metric scores of base model pro-

vided by literature (more in Chapter 5) and to get as close as possible to the

visual performance of BrighterAI work shown by NVIDIA in their blog post

”Brighter AI Uses Deep Learning to Shed Light on Nighttime Video Footage”

[3].

In general we aimed to reduce to the most the loss in context, details and in-

formation due to the translation and enhance generalization ability over more

domains.
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Methodology

Our work started structuring a general timeline that gone through the months

we had at disposal to give a pace to the work and deadline to be sure to opti-

mize and do not waste time.

We started with a deep search in the literature of AI systems of night images

enhancement, we have gone through several approaches comparing their spe-

cific peculiarities and performance.

At the same time, we were conducting a parallel investigation on available

datasets of nighttime and daytime images, paired and unpaired ones. These

phases gave us the clarity to choose the right approach for our case (discussed

in details in Chapter 5).

Stated this, we collected datasets of different image domains to be able to give

a wide representation of images distribution. We tried to collect the most data

available possible while maintaining the higher quality standard. For our ex-

periments we had at our disposal a NVIDIA GPUs cluster provided by the

Municipality of Nicosia.

The months spent on this work were punctuated by weekly or bi-weekly meet-

ings where problems, new ideas and next step to take were analyzed and dis-

cussed.
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Literature Review

The public literature proposes several approaches for the night to day task but

we judged promising two main task domains and we focused on them: low-

light image enhancement and image translation systems.

For the former the is a huge variety of architectures and models. The SOTA

includes a huge variety of models, we analysed equalizers like Zero-DCE [5]

(#1 on DICM and MEF datasets), encoder-decoder based architectures like

LLFLOW [17] (#1 on LOL), GAN based architectures like EnglightenGAN

[7] (#2 onDICMandMEF), transformer based architectures like LLFormer [16].

Despite this, all these proposals were not applicable to our case since we need

a model able to fix the lights and color tones but also to adapt the output where

information were missing (e.g. dark areas). Also a big obstacle we will talk

about later is the lack of paired nigh to day datasets. These arguments leaded

us to direct our focus to a more generative approach.

Image translation is a tasks domain more coherent with our goals. For this

category there is not a proper SOTA since part of the metrics used to asses

model performance are subjectives (e.g. visual evaluation).

We investigated Image-to-ImageDiffusionModels like ControlNet [20], Palette

[12] and BBDM [9], but despite the promising performance and the exhibi-

tion of remarkable adaptability to various use cases, we were not convinced

by the immature technology and the reliance on paired datasets.
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For these reasons, we focused on the more mature and battle tested systems

proposed by the literature for Image-to-Image translation: basically were all

a version of GAN or CycleGAN architectures.

ToDayGAN(2018) [2] is a ComboGAN-based model specifically trained for

translation of images from night to day. It uses ComboGAN as the base image-

to-image translation model, which is equivalent to CycleGAN in the case of

two domains only.

AU-GAN(2021) [8] (Asymmetric andUncertainty-awareGAN) is a CycleGAN-

basedmodel able to translate images from night to day and is particularly adapt

to handle adverseweather conditions. This proposal is reported to perform bet-

ter than base CycleGAN and toDayGAN and moreover it is technically more

prone to adapt to a more various input domain, like we want.



Chapter 5

Implementation

The literature review described in Chapter 4 and data research described in

Chapter 6 gave us the clarity that the best approach to choose was the unsuper-

vised learning over aGANarchitecture, specificallywe choose the CycleGAN-

based AU-GAN architecture.

First of all, let’s describe the CycleGAN system:

CycleGAN, or Cycle Generative Adversarial Network, is a deep learning ar-

chitecture that, unlike traditional paired image translationmethods that require

labeled training data, can learn to translate images between two domains with-

out the need for explicit correspondences between the input and output images.

This makes it versatile for a wide range of applications, including style trans-

fer, colorization, and object manipulation.

The CycleGAN architecture consists of two main components:

• Generator Networks: CycleGANemploys two generator networks, each

responsible for translating images from one domain to the other. For

instance, one generator might translate images from horses to zebras,

while the other translates zebras to horses. It consists of an encoder-

decoder architecture. The encoder extracts features from the input im-

age and compresses them into a latent representation. The decoder then
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reconstructs the image from the latent representation, but in the target

domain.

• Discriminator Networks: Alongside the generators, there are two dis-

criminator networks, each tasked with distinguishing between real and

translated images in its respective domain. The discriminators provide

feedback to the generators, helping them improve their translation ac-

curacy. The discriminator consists of a convolutional neural network

(CNN) architecture with several convolutional layers, followed by pool-

ing layers and fully connected layers.

The key innovation of CycleGAN is in its incorporation of cycle consistency

loss. This loss function ensures that images are translated consistently across

both domains. In other words, if an image from Domain A is translated to

DomainB and then back toDomainA, the final output should closely resemble

the original image. This cyclic consistency constraint prevents the generators

from producing unrealistic or distorted translations.

We have different losses for the generator and discriminator components.

The generator loss consists of two components:

• Adversarial Loss: This loss measures the generator’s ability to fool the

discriminator. It is calculated using a binary cross-entropy loss function,

where the generator aims to minimize the loss while the discriminator

aims to maximize it.

• Cycle Consistency Loss: This loss ensures that images are translated

consistently across both domains. It is calculated by comparing the orig-

inal image to the image obtained after translating it back to the original

domain. This loss encourages the generator to produce translations that

are consistent and realistic.

The overall generator loss is the sum of the adversarial loss and the cycle con-

sistency loss.
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The discriminator loss is also a binary cross-entropy loss function. The dis-

criminator’s objective is to maximize the loss, distinguishing real images from

translated ones. This loss encourages the discriminator to become more adept

at identifying real images and rejecting translated ones.

During training, the generator and discriminator networks are optimized alter-

nately. The generator is updated to minimize its loss, while the discriminator

is updated to maximize its loss. This adversarial training process helps both

networks improve their performance, leading to more accurate and realistic

image translations.

Like said before, AU-GAN is based on CycleGAN but has several peculiar-

ities that let this implementation to be more aligned with our objectives (see

Fig. 5.1).

These are the main differences with CycleGAN:

• Asymmetric Architecture: AU-GAN adopts an asymmetric architecture

where only one generator (GN→D) is enhanced with a transfer network

(T-net). This allows for better handling of imbalanced information be-

tween domains. The T-net helps eliminate artifacts and other unwanted

effects caused by adverse conditions, still allowing for an accurate trans-

lation.

• Feature Matching Loss: AU-GAN uses a feature matching loss that pe-

nalizes differences between encoded features from input images and

their translated counterparts using different encoders.

• Uncertainty-aware Cycle-Consistency Loss: To address regional uncer-

tainty, AU-GAN proposes an uncertainty-aware cycle-consistency loss

that considers uncertainties present in reconstructed images. Incorpo-

rating the confidence map into the reconstruction loss, areas with higher

uncertainty are given less weight in determining how well an image has
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been reconstructed. This allows for more accurate assessment of recon-

struction quality and helps to mitigate potential issues caused by arti-

facts or missing details.

This model is reported to achieve FID score of 38.6 on BDD100K testset.

For our experiments we used the pretrained version of this model provided

by the author itself in his GitHub [6], pretrained on BDD100K dataset [19].

More on this in Chapter 9.

Figure 5.1: AU-GAN architecture



Chapter 6

Data Collection and Preprocessing

In parallel to the literature review, we were conducting an investigation on

available datasets of nighttime and daytime images. We specifically searched

for paired, unpaired and single domain dataset:

• Single domain dataset are the most common form of dataset because

can be used for a huge variety of tasks. The problem using these datsets

is the presence of unwanted images and it could take a lot of effort to

filter them out for your needs.

• Unpaired dataset are formed by two sets of images respectively cap-

tured during night and day but are not coupled by any relation. The sets

can also contain an uneven number of elements. Usually these kind of

datasets have a common characteristic for the entire dataset (e.g. same

city, same capture mode).

• Paired datasets are the most scarse type of datasets due to the difficulty

on building them. For paired images we mean two images of the same

exact subject (e.g. a building, a cityview) taken in the two versions

night and day. It is fundamental that the two images have to be captured

in the same position in order to have a nearly perfect matching of the

pixels between the two versions. These kind of datasets are usefull for
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a supervised learning approach but a lot of them are synthesized with

algorithms starting from one of the two domain.

Based on our search there is a shortage of paired datasets and most of them are

either synthetic (N2D250K[11], MIT-Adobe FiveK[10]) or contain too many

images of domains we are not interested in and/or are taken with low exposure

instead of during real night (LOL[18], SID [4]). A real day and night paired

dataset is the Day-night Dataset but the quality of the images is too low. The

unpaired category is the most promising one and we selected the following

datasets based on image domain quality and size:

• Unpaired Day and Night cityview images [15], 549 images, panoramic

cityview images (see Fig. 6.1)

Figure 6.1: Unpaired Day and Night dataset samples

• 24/7 Tokyo [14], 1125 images, perspective of a pedestrian in a city (see

Fig. 6.2)

• Aachen Day-Night [1], 3401 images, perspective of a pedestrian in the

city (see Fig. 6.3)

• Dark Zurich [13], 8779 images, perspective of a car dash cam (see Fig.

6.4)
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Figure 6.2: 24/7 Tokyo dataset samples

Figure 6.3: Aachen Day-Night dataset samples

These research gave us the clarity that the best approach to choose was the

unsupervised learning, since the shortage of paired datasets were difficult to

handle and we had not the time and resources to build a new one from scratch.

For the preprocessing phase we opted for sampling to reduce size, removal

of unwanted category and resizing to normalize dimensions.

Dark Zurich is a big dataset that is built from frames of videos, so there are a

lot of redundant images since lot of the sequential images are nearly the same.

To address this, we sampled 1 image each 4 ending up with a subset of 1/4 of
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Figure 6.4: Dark Zurich dataset samples

the original size without compromising the general information content of the

dataset.

For 24/7 Tokyo dataset we removed all the images taken in sunset since we

wanted only a binary dataset of night and day images.

Aachen Day-Night and Unpaired Day Nigh datasets were untouched.

We ended up with the number of elements shown in Table 6.1:

dataset/category Day Night Total
24/7 Tokyo 375 375 750
Aachen 833 206 1039

Unpaired Day Night 522 227 749
Dark Zurich 760 1334 2094

Table 6.1: Datasets images distribution.

After the preprocessing, we merged all the datasets to form a general big

dataset of 4632 images (2490 day images + 2142 night images) called Om-

niset. We merged together the datasets with same domain: 247 Tokyo and

Aachen Day-Night.

For testing purposes, we randomly extrapolated a small testset of 5 images

from each single datasets (20 total). To maximize the size of the training set,

we deliberately opted for a minimal number of elements in the test set. While

we acknowledge that the test set’s size can influence the FID score (more on

FID score in Chapter 8), our primary focus was to assign greater significance
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to human evaluation.
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Experiments

After the collection of the data we needed, we started with the training phase

during which we conducted several experiments.

Specifically:

• Single-domain Continue Training:

We trained different instances of the model over each of the four single-

domain datasets. We wanted to asses the impact on performance of each

domain. We performed a Continue Training since the model provided

by the author was already pretrained over BDD100K dataset.

• Multi-domain Continue Training:

We trained the model over the Omniset dataset.

• Multi-domainContinueTraining -UncertaintyAwarenessDisabled:

We trained the model over the Omniset disabling the uncertainty aware-

ness. We decided to perform this experiment due to the results of the

previous experiments. More on this in Chapter 9.

• Multi-domain Fine-tuning - Generator Encoder Freezed:

We trained the model over Omniset without updating the Generator En-

coder weights. We wanted to asses the learning capacity of the archi-

tecture freezing this single component, letting him to use his prelearned



Experiments 17

capacity of encoding the features of the input image.

• Multi-domain Fine-tuning -GeneratorEncoder SingularLayer Freezed:

We trained different instances of the model over Omniset freezing for

each one a different layer of the Generator Encoder. We wanted to ana-

lyze the importance of each layer in the encoding capacity of the model.

The hyper-parameters we used for each training are:

epochs: 5,

batch size: 8,

input image height: 256.

Such a low number of epochs was mandatory due to the enormous amount

of time needed to train, near 10 days for a 5 epochs session. Despite we had

at our disposal a GPU cluster, the training code provided by the author was

not compatible with a multi-GPU training. While adapting the code for multi-

GPU usage could have reduced the training time, unfortunately we had no

time to invest in a code conversion so we opted for a single-GPU training.
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Results

Starting from the training, we can clearly see a slight descent of the losses and

then the appearance of a plateau (see Fig. 8.1). We can not determine if this

Figure 8.1: Plot of training metrics. Batches processed as x axis

is a local plateau or a global one since the number of epochs is very small and

can not be enlarged due to the training duration.
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We performed both quantitative and qualitative tests on our trained mod-

els.

For the former, we choose to use the Fréchet inception distance (FID) metric:

FID(x, g) = ||µx − µg||2 + Tr(Σx + Σg − 2(ΣxΣg)1/2) (8.1)

The Fréchet Inception Distance (FID) is a metric used to assess the quality of

generated images produced by generative models, like GANs. FID is based

on feature vectors extracted from a pre-trained neural network (Inception in

our case). It measures the similarity between the distributions of feature vec-

tors for real and generated images. Lower FID values indicate better image

quality.

For the qualitative tests, we conducted an internal human judgment evaluation

with our team.

Both quantitative and qualitative tests have been conducted using:

• single-domain testsets, to assess granularity of performance in each do-

main.

• omniset testset (single-domain testsets merged), to assess generalization

ability.

• 1000 images subset of BDD100K testset, to compare performance with

the pre-trained model in the paper.

The models’ name in tables refers to the domain over which they have been

trained.

• pre-t refers the pretrained model provided by the author,

• pedestrian refers the model trained over 247Tokyo and Aachen Day-

Night,
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• dashcam refers the model trained over Dark Zurich,

• cityview refers the model trained over Unpaired Day and Night,

• omniset refers to the model fine-tuned over Omniset,

• omniset EF refers to the model fine-tuned freezing the encoder layers

of the generator,

• omniset -UA refers to the model with confidence marix disabled,

• omniset Ln refers to the model with layer n of the encoder freezed dur-

ing training.

The results of the FID metric are the following:

testset / model pre-t pedestrian dashcam cityview omniset
omniset 581.68 577.03 576.26 575.13 509.48
BDD100K 220.52 218.95 218.19 220.24 188.44
247tokio 673.73 628.13 635.68 647.26 511.10
darkzurich 548.63 544.73 543.74 541.79 615.42

unpaired day night 675.62 671.79 665.26 688.64 631.53
aachen 505.32 521.78 538.19 516.05 411.07

Table 8.1: Comparison of models trained on single-domain datasets andmulti-
domain dataset.

testset / model omniset omniset EF
omniset 509.48 534.39
BDD100K 188.44 191.16
247tokio 511.10 569.00
darkzurich 615.42 552.10

unpaired day night 631.53 642.09
aachen 411.07 425.63

Table 8.2: Comparison of models trained on multi-domain dataset with and
without encoder freezed.
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testset model omniset omniset -UA omniset L1 omniset L2 omniset L3
omniset 509.48 532.55 555.82 558.56 591.43

Table 8.3: Comparison of models trained on multi-domain dataset with dif-
ferent layers freezed.
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Regarding the qualitative test, in Figure 8.2 are shown some good results

of the model full-trained on Omniset:

Figure 8.2: Samples of qualitative good results.



Results 23

In Figure 8.3 are shown some bad results:

Figure 8.3: Samples of qualitative bad results.
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Discussion

The results confirmed the behaviour we were expecting. The training over a

wider domains range enhanced the generalization ability of the model; this is

clearly enlightened by the superior performance of the multi-domain trained

model against the pre-trained base model and the single-domain finetuned

models on any testset (except for Dark Zurich testset).

The superior performance of the model with the freezed encoder against full-

trained model on Dark Zurich testset we suppose can be due to the pretraining

on the same image domain (BDD100K dataset, car dash cam perspective),

this could have played a relevant role in enhancing the ability of handling the

context of that kind of domain.

Also the experiment on freezing single layer gave us some insights on pre-

learned capability. The fine-tuning freezing single layers determined a de-

crease of FID performance with the freezing of lower layers (L2 and L3), this

could indicate a L1’s stronger role in feature extraction since the model per-

form better when it is kept as pre-trained instead of L2 or L3. Despite this,

updating all the layers is confirmed to bring the best results. Moreover, The

ablation study of the confidence matrix confirmed its role in enhancing the

performance when enabled, since the FID score decrease when it is not used.

Despite these findings, the model performance we ended up with are not

satisfactory. The generalization ability is effectively enchanced but the best
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visual performance are still with the domain used for pre-training, car dash

cam view. The model struggles on images with bright and saturated colours

having difficulty in handling tonality, also it has difficulty with light reflec-

tions (e.g., on water) and some large black regions (i.e. it fills them creatively

or confusing them for the sky). Also, some blurry effects and distortions are

noticeable in regular pattern zones (e.g. windows, bricks). We though this

could be due to the confidence matrix but the previously shown results con-

futed our idea.

The probable reasons of these poor results are to address to the small dimen-

sion of the datasets used but the most to the original performance of the base

model.

In that regard, we strongly believe that the pre-trained model provided by the

author in his GitHub is not the same mentioned and tested in the presentation

paper, since the results we have with it are orders of magnitude worse than the

ones shown in the paper.
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Conclusions and

Recommendations

This work gave us the opportunity to build a system from the idea to the actual

testing phase in a real professional environment. Also we were able to put the

hands on a big model like a CycleGAN and asses its powers but also its draw-

backs. In these months of developing a lot of work have been done but a lot

more could be done.

There a several improvements that can be implemented in future works.

• We suggest to enlarge the dataset with waymore samples from the wider

range of domains possible while maintaining high the quality of the im-

ages, the size and the quality of the dataset could be the main factors to

achieve satisfying results.

• Retrain the base model from scratch with the new enlarged dataset, this

should give the model a good generalization ability from the begin.

• Fine-tune the base model on some specific domain based on the future

model application.

• Adapt the code to be able to train on multi-GPU in order to increase the
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number of epochs and asses if the training metrics plateau is local or

general.
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