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Abstract

After a quick review of the fundamentals of N = 1 supergravity theories and inflationary
cosmology, we focus on a class of promising inflation models built within the framework
of warped compactifications of type IIB string theory on Calabi-Yau orientifolds. In these
models the inflaton is an orientifold-odd closed string axion whose potential is induced
by an NS5-brane wrapped on a 2-cycle of the compactification space. This system enjoys
a monodromy property that breaks the periodic nature of the axion potential, generating
a linear axion potential that can drive inflation with the prediction of large primordial
tensor modes. We show that this class of models can be combined with successful moduli
stabilization in the Large Volume Scenario improving both their theoretical robustness
and the accordance of their predictions with current bounds from CMB observations. A
crucial effect which we exploit is the flattening of the axion potential due to the moduli
backreaction.
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Introduction

Current observations of the universe imply that we live in a spatially almost homoge-
neous, isotropic and almost spatially flat universe at large scales. Furthermore, measure-
ments of the Cosmic Microwave Background (CMB) provide us, with strong evidence,
that regions in our universe which we now see to be causally disconnected have been
correlated in the past.
One of the most successful models addressing these issues with predictions confirmed
by the experiments is the scenario of cosmological inflation, which describes a period
of the early universe when space underwent extremely rapid exponentially accelerated
expansion.
One of the characteristics of this model is that such an epoch of accelerated expansion
is determined by the dynamics of a scalar field and, in particular, of its scalar potential.
This field is called inflaton, and, by now, there have been many proposed candidates.
More precisely, for successful inflation to happen, the inflaton dynamics has to satisfy
certain constraints. These can be rather easily accommodated in the case of inflationary
models where the inflaton traverses a large field range between beginning and the end
of inflation. This class of models constitutes one of the least fine-tuned mechanisms of
inflation and assumes the inflaton traversing a trans-Planckian field space.
Furthermore, the inflationary dynamic is intrinsically sensitive to the assumptions about
the physics at energies far above those probed by particle colliders at the moment. That
means that even if we have the best of the effective field theories, which has been proven
with success at low energy, if we want to describe inflation, we need to make some as-
sumptions on the UV completion of our theory. Therefore inflation provides a good
framework in which we can test any UV complete theory of gravity. We might say that
one of the most promising quantum gravity theory that we have at the moment is string
theory which can reproduce, in the low energy limit, Standard Model-like constructions
and Einstein gravity.

In this thesis we will therefore explore the possibility to realize inflation in the frame-
work of the effective field theories coming from the compactification of ten-dimensional
supergravity theories which correspond to the massless spectrum of certain types of string
theories.
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To be more precise, we will work with ten-dimensional type IIB supergravity theo-
ries, compactified on six-dimensional Calabi-Yau orientifolds, in order to obtain a four-
dimensional effective field theory description.

We will develop a model of large-field-inflation in which the inflaton is an axion field
with a linear potential.
We recall that the axion is in general a scalar field which enjoys a shift symmetry, that in
supergravity theory arises after dimensional reduction from the integration of a p-form
over a p-cycle in the compactification space. In our case we are going to consider a 2-form
axion coming from the C2 2-form.
In order to construct the above mentioned linear potential, we will consider a monodromy
introduced by an NS5-brane wrapped on the same 2-cycle which is the domain of the
2-form field in the compactification space. This monodromy will explicitly break the
periodic nature of the C2 axion and give a viable potential to drive inflation.

In order to write the inflaton potential, we will have to stabilize all the moduli fields
arising from the compactification, which are scalar fields associated to the geometry of
the compactification space. In more detail, we will assume that the axio-dilaton and the
complex structure moduli are stabilized supersymmetrically, while we will explicitly sta-
bilize the Kähler moduli in the large volume scenario where the compactification space
volume turns out to be large in Planck units.

The thesis is organized in four chapter: in the first we will discuss the general features
of supersymmetry and supergravity theories; in the second chapter we will explain all
the background concerning inflationary cosmology, specifying the relevant experimental
constraints that our model has to satisfy; in the third chapter we will discuss the com-
pactification of type IIB theories on Calabi-Yau orientifolds; and in the fourth chapter
we will present our model discussing moduli stabilization and comparing its predictions
with the measured values of the main cosmological observables.
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Chapter 1

4D N = 1 Supersymmetry and
Supergravity Effective Actions

In the writing of this chapter I followed the following main references [WB83; FP12;
QKS10], which summarize the work done in the field of supersymmetric field theories.

1.1 Supersymmetry in 4D

1.1.1 Poincaré Algebra and Representations

The Poincaré group is the symmetry group of special relativity, which any kind of QFT
has to satisfy and it acts on spacetime coordinates xµ as follows:

xµ 7→ x′µ = Λµν︸︷︷︸
Lorentz

xν + aµ︸︷︷︸
translation

(1.1)

The generators of the Poincaré group are Mµν and P σ with the following algebra:
[P µ, P ν ] = 0

[Mµν , P σ] = i (P µηνσ − P νηµσ)

[Mµν ,Mρσ] = i (Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ)

(1.2)

Where a 4-dimensional matrix representation for the Mµν is given by:

(Mρσ)µν = i (ηµνδρν − ηρµδσν) (1.3)

Let us remind us some properties of the Lorentz group, i.e. SO(3, 1). First we might
say that:

SO(3, 1) ∼= SU(2)⊕ SU(2) (locally) (1.4)
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In fact we can express the generators of rotations Ji and the ones of the boosts Ki

as: {
Ji = 1

2
ϵijkMjk

Ki =M0i

(1.5)

Then we might consider the following linear combinations of Ai and Bi:{
Ai = 1

2
(Ji + iKi)

Bi = 1
2
(Ji − iKi)

(1.6)

Then from the Poincaré algebra we may find:
[Ji, Jj] = iϵijkJk

[Ji, Kj] = iϵijkKk

[Ki, Kj] = −iϵijkKk

⇒


[Ai, Aj] = iϵijkAk

[Bi, Bj] = iϵijkBk

[Ai, Bj] = 0

(1.7)

Which is nothing but the SU(2) algebra. Furthermore under parity transformations
we have that:

P =

{
x0 7→ x0

x 7→ −x
⇒

{
Ji 7→ Ji

Ki 7→ −Ki

⇒ Ai ↔ Bi (1.8)

Thus we can interpret J = A + B as the physical spin.

Let us recall the following homeomorphism between SO(3, 1) and SL(2,C) :

SO(3, 1) ∼= SL(2,C) (1.9)

In order to see such homeomorphism, let us take a 4-vector X and a corresponding
2× 2-matrix x̃:

X = xµe
µ = (x0, x1, x2, x3) x̃ = xµσ

µ =

[
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

]
(1.10)

Where σµ is the 4-vector of Pauli matrices, that we recall to be:

σµ =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
(1.11)

Under SO(3, 1) transformations, i.e. X 7→ ΛX where: Λ ∈ SO(3, 1), |X|2 is an
invariant:
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|X|2 = x20 − x21 − x22 − x23 (1.12)

Under SL(2,C) transformations, i.e. x̃ 7→ Nx̃N † where: N ∈ SL(2,C), det x̃ is an
invariant:

det x̃ = x20 − x21 − x22 − x23 (1.13)

The map between SL(2,C) is not an isomorphism, since N = ±1 both correspond
to Λ = 1. That means that it is a 2 7→ 1 map. Since SL(2,C) is also simply connected,
then SL(2,C) is said to be the universal covering group.

The relevant representations of SL(2,C) for our discussion are:

• The fundamental representation

ψα 7→ ψ′
α = Nα

βψβ where: α, β = 1, 2 (left-handed Weyl Spinor) (1.14)

• The conjugate representation

χ̄α̇ 7→ χ̄′
α̇ = N∗β̇

α̇ χ̄β̇ where: α̇, β̇ = 1, 2 (right-handed Weyl Spinor)
(1.15)

• The contravariant representation{
ψα 7→ ψ′α = ψβ (N−1)β

α

χ̄α̇ 7→ χ̄′α̇ = χ̄β̇ (N∗−1)β̇
α̇

(1.16)

The fundamental and conjugate are irreducible representations of SL(2,C), while the
contravariant is not.
In order to raise and lower indices, we have no more the metric tensor ηµν = (ηµν)

−1,
which is invariant under SO(3, 1), but in SL(2,C) we must consider this other invariant:

ϵαβ = ϵα̇β̇ =

(
0 1
−1 0

)
= −ϵαβ = −ϵα̇β̇ (1.17)

Which we might prove to be explicitly invariant as follow:

ϵ′αβ = ϵρσNρ
αNσ

β = ϵαβ · detN = ϵαβ (1.18)

Therefore we can use ϵ to raise and lower spinor indices:
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{
ψα = ϵαβψβ

χ̄α̇ = ϵα̇β̇χ̄β̇
(1.19)

Hence we have explicitly showed that contravariant representations are not indepen-
dent.
In order to handle mixed SO(3, 1) and SL(2,C) indices, recall that the transformed
components xµ should look the same, whether we transform the vector X via SO(3, 1)
or the matrix x̃ = xµσ

µ, then:

(xµσ
µ)αα̇ 7→ Nβ

α (xνσ
ν)βγ̇ N

∗γ̇
α̇ = Λµ

νxνσ
µ ⇒

{
(σµ)αα̇ = Nβ

α (σν)βγ̇ (Λ
−1)

µ
νN

∗γ̇
α̇

(σ̄µ)α̇α = ϵαβϵα̇β̇ (σµ)ββ̇ = (1,−σ⃗)
(1.20)

Let us define the generators of SL(2,C) by the tensors σµν and σ̄µν , which are anti-
symmetrized products of σ matrices:{

(σµν)α
β = i

4
(σµσ̄ν − σν σ̄µ)α

β

(σ̄µν)α̇ β̇ = i
4
(σ̄µσν − σ̄νσµ)α̇ β̇

(1.21)

Which satisfy the Lorentz algebra:[
σµν , σλρ

]
= i
(
ηµρσνλ + ηνλσµρ − ηµλσνρ − ηνρσµλ

)
(1.22)

Then, under a finite Lorentz transformation parametrized by ωµν , Weyl spinors trans-
form as follows: {

ψα 7→ exp
(
− i

2
ωµνσ

µν
)
α
βψβ (left-handed)

χ̄α̇ 7→ exp
(
− i

2
ωµν σ̄

µν
)α̇

β̇χ̄
β̇ (right-handed)

(1.23)

Now, for completeness, let us relate these spinors to the SU(2) representation spanned
by the Ai and Bi:{

ψα : (A,B) =
(
1
2
, 0
)

=⇒ Ji =
1
2
σi Ki = − i

2
σi

χ̄α̇ : (A,B) =
(
0, 1

2

)
=⇒ Ji =

1
2
σi Ki = + i

2
σi

(1.24)

Let us now mention some useful relations starting from the so called self-duality
and anti-self-duality relations:{

σµν = 1
2i
ϵµνρσσρσ

σ̄µν = − 1
2i
ϵµνρσσ̄ρσ

(1.25)

At this point we are able to define the product of two Weyl spinors as:
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{
χψ = χαψα = −χαψα

χ̄ψ̄ = χ̄α̇ψ̄
α̇ = −χ̄α̇ψ̄α̇

(1.26)

Furthermore, if we chose ψα to be anti-commuting Grassmann variables we gain:

ψψ = ψαψα = ϵαβψβψα = ψ2ψ1 − ψ1ψ2 = 2ψ2ψ1 = −2ψ1ψ2 (1.27)

Now we can define the adjoint and the complex conjugate as follows:{
ψ†
α = ψ̄α̇

ψ̄α̇ = ψ∗
β(σ

0)βα
⇒

{
(χψ)† = χ̄ψ̄

(χσµψ̄)† = χσµψ̄
(1.28)

1.1.2 Supersymmetry Algebra and Representations

Let us introduce the concept of graded algebra. Let us consider Oa to be an operator
of a Lie algebra, then we can define a graded algebra as follows:

OaOb − (−1)ηaηbOaOb = iCe
abOe where: ηa =

{
0 if Oa is bosonic
i if Oa is fermionic

(1.29)

In the case of supersymmetry, the generators of the algebra are: the Poincaré gener-
ators P µ, Mµν and the spinor generators QA

α , Q̄A
α̇ , where: A = 1, . . . ,N . In case N = 1

we speak of a simple SUSY, in case N > 1 of an extended SUSY.
For the sake of simplicity, let us work in the N = 1 case, i.e. we can forget about the
index A, an focus only on the spinorial nature of Qα and Q̄α̇. Considering Qα as a Weyl
spinor implies that it transform according to SL(2,C):

Qα 7→ Q′
α = exp

{
− i

2
ωµνσ

µν

}
α

βQβ ∼
(

1 − i

2
ωµνσ

µν

)
α

βQβ (1.30)

Furthermore, since it is a spinor it has also to transform under Lorentz transforma-
tions of the type: U = exp

{
− i

2
ωµνM

µν
}
, then:

Qα 7→ Q′
α = U †QαU ∼

(
1 − i

2
ωµνM

µν

)
Qα

(
1 − i

2
ωµνM

µν

)
(1.31)

Then, since we have fermionic operators the SUSY algebra is a graded algebra, i.e.
we have both commutators and anti-commutators depending on the nature of the op-
erator. Since knowing the algebra of a theory means knowing its commutation and
anti-commutation relations, now we have all the tools to calculate all these quantities:
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
[Qα,M

µν ] = (σµν)α
βQβ

[Qα, P
µ] = [Q̄α̇, P

µ] = 0

{Qα, Qβ} = 0

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ

(1.32)

And this, added to the Poincaré algebra, is the N = 1 SUSY algebra, or to be more
precise the N = 1 super-Poincaré algebra 1. Let us comment the last relation in which
the factor 2 is arbitrary, but we take it to be 2 for future convenience. That means that
acting on a state with QQ̄ only produce a translation in the state, more explicitly we
can say that if we take into the account a bosonic state |B⟩ and a fermionic state |F ⟩:{

Qα|F ⟩ ∼ |B⟩
Q̄β̇|B⟩ ∼ |F ⟩

⇒ QQ̄|B⟩ = |B⟩translated (1.33)

And this relation implies that in every supermultiplet the number of fermions nF
is equal to the number of bosons nB:

nF = nB (1.34)

As we are used to do in QFT, after having obtained the algebra of the group under
which our theory has to be invariant, we want to find the operators which commute with
all the generators of the group, in order to be able to define the states.
In the case of the Poincaré group we obtain the two Casimir operators which we remind
us to be:

C1 = P µPµ C2 = W µWµ (1.35)

Where Wµ is the Pauli-Ljubanski vector which we recall to be:

Wµ =
1

2
ϵµνρσP

νMρσ (1.36)

However we can imagine that due to the new commutation relations introduced just
above those Casimir operator have to be a bit modified. More in the detail, since Pµ
commutes with the fermion generators, the first Casimir will not change, but the second
will. Then we can write the two Casimir operators of the super-Poincaré group to be
the following:

C1 = P µPµ C̃2 = CµνC
µν (1.37)

1We have not mentioned the commutators between generic internal symmetry generators Ti, which
are not always vanishing, e.g. in the case of N = 1 we can consider the U(1) automorphisms of the
SUSY algebra, known as R-symmetry, but we do not need them explicitly in our present work
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Where Cµν is defined as follows:

Bµ = Wµ −
1

4
Q̄α̇(σ̄µ)

α̇βQβ Cµν = BµPν −BνPµ (1.38)

Now we are ready to define a massless super-multiplet for an N = 1 SUSY. Then
we know from special relativity that without loss in generality we can think about its
momentum as pµ = (E, 0, 0, E), hence both the Casimirs are vanishing. But to construct
the multiplet let us explicitly consider the anti-commutator between the Q’s:

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ = 2E(σ0 + σ3)αβ̇ = 4E

[
1 0
0 0

]
αβ̇

(1.39)

which means that Q2 is zero in the representation, since:{
Q2, Q̄2̇

}
= 0 ⇒

〈
pµ, λ

∣∣Q̄2̇Q2

∣∣ p̃µ, λ̃〉 = 0 ⇒ Q2 = 0 (1.40)

On the other hand the Q1 satisfies instead:
{
Q1, Q̄i

}
= 4E. Then we can define the

ladder operators to be a and a†:

a =
Q1

2
√
E

a† =
Q̄1̇

2
√
E

such that:

{{
a, a†

}
= 1

{a, a} = 0 =
{
a†a†

} (1.41)

Furthermore, since [a, J3] = 1
2
(σ3)11 a = 1

2
a, then we can calculate:

J3 (a |pµ, λ⟩) =
(
aJ3 −

[
a, J3

])
|pµ, λ⟩ =

(
aJ3 − a

2

)
|pµ, λ⟩ =

(
λ− 1

2

)
a |pµ, λ⟩ (1.42)

From which we might conclude that: a |pµ, λ⟩ has helicity λ − 1
2
, and by similar

reasoning, we can find that the helicity of a† |pµ, λ⟩ is λ+ 1
2
.

Hence we have understood that such ladder operators change the helicity of the state of
1/2, thus in order to build the representation we have to start from a vacuum state of
minimum helicity λ, which we define as |Ω⟩.
Since a|Ω⟩ = 0 and a†a†|Ω⟩ = 0|Ω⟩ = 0, then the whole multiplet consists of two states:

|Ω⟩ = |pµ,±λ0⟩ a†|Ω⟩ = |pµ,±(λ0 + 1/2)⟩ (1.43)

In which we have not specified the sign to include also the CPT the conjugate states.
Then depending on λ we can define:

• chiral multiplet, λ0 = 0, (λ = 0, λ = 1/2), (e.g. squark/quark)

• vector multiplet, λ0 = 1/2, (λ = 1/2, λ = 1), (e.g. photino/photon)
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• gravity multiplet, λ0 = 3/2, (λ = 3/2, λ = 2), (e.g. gravitino/graviton)

Let us see what happens when we enlarge the SUSY, i.e. we consider N > 1. Then
let us take back into the account the indices A,B = 1, . . . ,N . The anti-commutator
between the Qs will change accordingly and furthermore we have also to introduce the
concept of central charges as follows:{{

QA
α , Q̄β̇B

}
= 2(σµ)αβ̇Pµδ

A
B{

QA
α , Q

B
β

}
= ϵαβZ

AB
(1.44)

Where ZAB are the central charges, such that: they are anti-symmetric in the indices
(i.e. ZAB = −ZBA) and commute with all the other generators.

Now we can discuss the massless multiplets also when N > 1. As we did in the case
of N = 1, we will start from pµ = (E, 0, 0, E), from which (similar to the N = 1), we
can derive the following relation:

{
QA
α , Q̄β̇B

}
= 4E

(
1 0
0 0

)
αβ̇

δAB ⇒ QA
2 = 0 ⇒

{
QA
α , Q

B
β

}
= ϵαβZ

AB = 0 ⇒ ZAB = 0

(1.45)
In analogy with what we have done before, in order to obtain the full representation,

we can define N creation- and annihilation-operators, since QA
1 ̸= 0 and A = 1, . . . ,N :{

aA =
QA

1

2
√
E

aA† =
Q̄A

1̇

2
√
E

such that:
{
aA, a†B

}
= δAB (1.46)

Then i order to get all the states we have to start to a vacuum state |Ω⟩, which is
annihilated by all the aA, and start to increase by 1/2 its helicity, by the use of the ladder
operators:
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states helicity number of states

|Ω⟩ λ0 1 =
(N
0

)
aA†|Ω⟩ λ0 +

1
2

N =
(N
1

)
aA†aB†|Ω⟩ λ0 + 1 1

2!
N (N − 1) =

(N
2

)
aA†aB†aC†|Ω⟩ λ0 +

3
2

1
3!
N (N − 1)(N − 2) =

(N
3

)
...

...
...

aN†a(N−1)† . . . a1†|Ω⟩ λ0 +
N
2

1 =
(N
N

)
Thus it is easy to see that the total number of states is given by:

N∑
k=0

(
N
k

)
= 2N (1.47)

Also in this case we can name the multiplets and we can give some examples for the
N = 2 multiplets:

• vector multiplet, (λ0 = 0)

λ = 0
λ = 1

2
λ = 1

2

λ = 1
(1.48)

It is easy to see that this N = 2 multiplet can be decomposed in terms of N = 1
multiplets: one N = 1 vector and one N = 1 chiral multiplet.

• hyper multiplet,
(
λ0 = −1

2

)
λ = −1

2

λ = 0 λ = 0
λ = 1

2

(1.49)

Also in this can be decomposed in terms of two N = 1 chiral multiplets, and we
will see it explicitly in the developing of the work

We will not treat the SUSY algebra in the context of the massive states and the BPS
condition, since even if we are going to use branes (which are BPS objects), we will
never explicitly use the BPS constraint between their mass and charge.
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1.2 Superspace and Superfields

1.2.1 Superspace

By now we have always assume to describe one-particle states, but since we want to
describe interactions, that is not enough.
In QFT what we call "particles" are the quantum fields, e.g. φ(x), where: xµ belongs
to the Minkowski space, and the fields φ(x) transform according to the Lorentz group
as tensors. Since we are taking into the account Lie groups, then we can say that the
elements of the groups span a smooth Manifold by the so called exponential map Λ:

Λ : G 7→ MG ⇐⇒ Λ(g ∈ G) :
{
g = eiαaTa} 7→ {αa} (1.50)

In this sense we can define the Minkowski spacetime as the quotient between the
Poincaré group and the Lorentz group:

R1,3 =
{ωµν , aµ}
{ωµν}

= {aµ} (Minkowski-generators) (1.51)

Then we may think that also the superspace, e.g. for an N = 1 theory might be
defined in the same way by quotienting the super-Poincaré group with the Lorentz’s one.
And indeed we can define it as such co-set:{

ωµν , aµ, θα, θ̄α̇
}

{ωµν}
=
{
aµ, θα, θ̄α̇

}
(superspace-generators) (1.52)

Where the most generic element of the super-Poincaré group might be written as:

g = exp
{
i
(
ωµνMµν + aµPµ + θαQα + θ̄α̇Q̄

α̇
)}

(1.53)

Where θα and θ̄α̇ are Grassmann variables. Then the anti-commutation relation,
between the Qs becomes a commutation relation when we add such parameters:

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ ⇒
[
θαQα, Q̄β̇ θ̄

β̇
]
= 2θαQα(σ

µ)αβ̇ θ̄
β̇Pµ (1.54)

1.2.2 Superfields

From now on we will work in the superspace and hence we will have to see how the fields
transform in such space.
Let us start to evaluate the translations which are presents also in the Minkowski space.
Let us recall that a scalar fields φ (xµ) is a function of the spacetime coordinates xµ. Then
treating φ as an operator, let us see how it transforms under translation of a parameter
aµ:
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φ 7→ exp{−iaµP µ}φ exp{iaµP µ} (1.55)

Since φ (xµ) is also an Hilbert vector in some function space F , then:

φ (xµ) 7→ exp{−iaµPµ}φ (xµ) = φ (xµ − aµ) ⇒ Pµ = −i∂µ (1.56)

In other words P is a representation of the abstract operator P µ acting on F . Com-
paring the two transformation rules to first order in aµ we can find:

(1− iaµP
µ)φ (1 + iaµP

µ) = (1− iaµPµ)φ ⇒ i [φ, aµP
µ] = −iaµPµφ = −aµ∂µφ

(1.57)
And this is true also in the SUSY case since we also have the translations in the

superspace. Then we now have to evaluate the same type of transformations in the case
of the θs.
The most the general form to write a scalar superfield S

(
xµ, θα, θ̄α̇

)
can be obtained by

expanding in powers of θα, θ̄α̇ with a finite number of non-vanishing terms:

S
(
xµ, θα, θ̄α̇

)
=φ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x) +

(
θσµθ̄

)
Vµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθ)(θ̄θ̄)D(x)
(1.58)

Then, we have to evaluate the transformation of S
(
xµ, θα, θ̄α̇

)
under the θs, firstly as

a field operator, taking ϵ and ϵ̄ as parameter of the transformation:

S
(
xµ, θα, θ̄α̇

)
7→ exp

{
−i(ϵQ+ ϵ̄Q̄)

}
S exp

{
i(ϵQ+ ϵ̄Q̄)

}
(1.59)

And secondly as an Hilbert space vector:

S
(
xµ, θα, θ̄α̇

)
7→ exp

{
i(ϵQ+ ϵ̄Q̄)

}
S
(
xµ, θα, θ̄α̇

)
= S

(
xµ − ic

(
ϵσµθ̄

)
+ ic∗ (θσµϵ̄) , θ + ϵ, θ̄ + ϵ̄

)
(1.60)

Where: Q a representation of the spinorial generators Qα acting on functions of θ, θ̄,
and c is a constant, which is involved in the translations:

xµ 7→ xµ − ic
(
ϵσµθ̄

)
+ ic∗ (θσµϵ̄) (1.61)

Hence we find in analogy with the previous case that:
Qα = −i ∂

∂θα
− c (σµ)αβ̇ θ̄

β̇ ∂
∂xµ

Q̄α̇ = +i ∂
∂θ̄α̇

+ c∗θβ (σµ)βα̇
∂
∂xµ

Pµ = −i∂µ
(1.62)
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We can determine Re{c} from the commutation relation which has to hold in any
representation: {

Qα, Q̄α̇

}
= 2 (σµ)αα̇Pµ ⇒ Re{c} = 1 (1.63)

Then for convenience we set c = 1.
Following the same logic by comparing the two transformations at first order in ϵ we can
get the commutation relation of S with Qα, and hence its variation δS:

i[S, ϵQ+ ϵ̄Q̄] = i(ϵQ+ ϵ̄Q̄)S = δS (1.64)

Furthermore, since we explicitly know Q, Q̄ and S, we can get how the different parts
of S change under the Qs action:

δφ = ϵψ + ϵ̄χ̄

δψ = 2ϵM + σµϵ̄ (i∂µφ+ Vµ)

δχ̄ = 2ϵ̄N − ϵσµ (i∂µφ− Vµ)

δM = ϵ̄λ̄− i
2
∂µψσ

µϵ̄

δN = ϵρ+ i
2
ϵσµ∂µχ̄

δVµ = ϵσµλ̄+ ρσµϵ̄+
i
2
(∂νψσµσ̄νϵ− ϵ̄σ̄νσµ∂

νχ̄)

δλ̄ = 2ϵ̄D + i
2
(σ̄νσµϵ̄) ∂µVν + iσ̄µϵ∂µM

δρ = 2ϵD − i
2
(σν σ̄µϵ) ∂µVν + iσµϵ̄∂µN

δD = i
2
∂µ
(
ϵσµλ̄− ρσµϵ̄

)

(1.65)

However we may prove that the scalar superfield S is not an irreducible representation
of the N = 1 SUSY algebra, so we can eliminate some of its components maintaining
it still as a superfield. In general we can impose consistent constraints on S, leading to
smaller superfields that can be irreducible representations of the supersymmetry algebra.
In order to introduce such reductions on the general scalar field, let us introduce the
following covariant derivative:{

Dα = ∂α + i(σµ)αβ̇ θ̄
β̇∂µ

D̄α̇ = −∂̄α̇ − iθβ(σµ)βα̇∂µ
(1.66)

Since we have constructed such derivative in a way such that it anti-commutes with
all the Q, Q̄, we gain that:[

Dα, ϵQ+ ϵ̄Q̄
]
= 0 ⇒ DαS is a superfield (1.67)

Hence we can define a chiral-superfield, as a field Φ, such that D̄α̇Φ, which takes
the general form:
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Φ
(
xµ, θα, θ̄α̇

)
=φ(x) +

√
2θψ(x) + θθF (x) + i

(
θσµθ̄

)
∂µφ(x)

− i√
2
(θθ)θ̄λ̄(x) + (θ̄θ̄)∂µψ(x)σ

µθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ(x)
(1.68)

Off shell, there are 4 bosonic (complex φ, F ) and 4 fermionic (complex ψα) compo-
nents, which belong to a chiral multiplet, and that is why this superfield is named in this
way.

1.3 4D N = 1 Supergravity

1.3.1 Chiral Superfield Lagrangian

In order to write a Lagrangian for a chiral field L(Φ) such that δL is a total derivative
under supersymmetry transformation, we recall that:

• For a general scalar superfield S = . . .+ (θθ)(θ̄θ̄)D(x), the D term transforms as:

δD =
i

2
∂µ
(
ϵσµλ̄− ρσµϵ̄

)
(1.69)

• For a chiral superfield Φ = . . .+ (θθ)F (x), the F term transforms as:

δF = i
√
2ϵ̄σ̄µ∂µψ (1.70)

From these facts, the most general Lagrangian for a chiral superfield Φ can be written
as:

L = K
(
Φ,Φ†) ∣∣∣

D
+ [W (Φ) + h.c. ]

∣∣∣
F

(1.71)

Where |D refers to the D term of the corresponding superfield, while |F is stands for
the F term.

• The function K is known as the Kähler potential, it is a real function of Φ and
Φ†. Considering to have more than one superfield Φ, that we can denote as Φi we
can expand K(Φi,Φj†) around Φi = φi as:(

∂2K

∂φi∂φȷ̄

)
∂µφ

i∂µφȷ̄ = Kiȷ̄∂µφ
i∂µφȷ̄ (1.72)
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Where Kiȷ̄ is called Kähler metric, and in the next sections we will describe the
space in which this metric is defined, which is called Kähler manifold. Further-
more by the no-go theorem we know that it can get corrections at the pertur-
bative and non-perturbative level (in particular we will consider the perturbative
corrections).

• W (Φ) is known as the superpotential, it is a holomorphic function of the chiral
superfield Φ (and therefore is a chiral superfield itself). In this case in order to
obtain the F term we Taylor expand W (Φ) around Φ = φ:

W (Φ) = W (φ) + (Φ− φ)︸ ︷︷ ︸
···+θθF+...

∂W

∂φ
+

1

2
(Φ− φ)2︸ ︷︷ ︸

···+(θψ)(θψ)+...

∂2W

∂φ2
(1.73)

Also in this case the no-go theorem tell us that the super potential may get only
non-perturbative corrections, and we will see in the developing of the work what
kind of non-perturbative corrections we will consider.

• The part of the Lagrangian depending on the auxiliary field F (x) takes the form:

L(F ) = FF ∗ +
∂W

∂φ
F +

∂W ∗

∂φ∗ F
∗ (1.74)

Since the action is quadratic and without any derivatives, then the field F (x) does
not propagate. We can it explicitly by eliminating F using its field equations:{

δS(F )

δF
= 0 =⇒ F ∗ + ∂W

∂φ
= 0

δS(F )

δF ∗ = 0 =⇒ F + ∂W ∗

∂φ∗ = 0
(1.75)

That we can directly plug into the Lagrangian, to find:

L(F ) 7→ −
∣∣∣∣∂W∂φ

∣∣∣∣2 = −VF (φ) (1.76)

This defines a positive definite scalar potential VF (φ).

1.3.2 N = 1 Supergravity in Superspace

When we refer to supergravity (SUGRA) we means a supersymmetric theory which in-
cludes gravity. As Minkowski space is only a local description of the curved spacetime,
we can say the same for the superspace that we have defined in the previous sections.
In other words we can say that supergravity is a supersymmetric theory in which the
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supersymmetry is not global, but local, and in this sense it is a gauge theory. That means
that we can formulate supergravity in terms of superfields, generalising the superfield
formulation of global supersymmetry.

Let us start by consider that under diffeomorphisms, the superspace coordinates
zM =

{
xµ, θα, θ̄α̇

}
, in general transform as: zM = zM + ζM .

In order to achieve the invariance of the action under such transformations, we have to
include the supergravity multiplet into the Lagrangian as a superfield with components:
{eµa , ψµα,M, ba}. eµa is the vierbein describing the metric gµν = eaµeaν , ψµα is the grav-
itino, M is a complex scalar auxiliary field and ba a real vector auxiliary field.

We can generalize the vierbein in the superspace by EM
A . Then we have to define

a superspace tensor density, which generalize
√
−g = e = det eµa to the superspace, i.e.

detEM
A ≡ E. Then, we can write the supergravity action (in Planck units M2

P = 1 ) as:

SSG = −3

∫
d8zE = −1

2

∫
d4xe

{
R− 1

3
M̄M +

1

3
baba

+
1

2
ϵµνρσ

(
ψ̄µσ̄νDρψσ − ψµσνDρψ̄σ

)}
(1.77)

Where we have written: d8z = d4xd4θ and D is the covariant derivative. The non-
propagating auxiliary fields (which in the SUSY Lagrangian seen before are the analogous
of the F (x) auxiliary field) complete the supergravity multiplet providing an off-shell in-
variant action. As before, integrating them out by their field equations give rise to
the Einstein-Hilbert plus the Rarita-Schwinger actions, which describe respectively the
graviton (λ = 2) and the gravitino (λ = 3/2).

Let us now see some relevant properties of N = 1 supergravity actions coupled to
matter. then we can write the total Lagrangian as the sum of supergravity contribution
LSG and the SUSY Lagrangian discussed before:

L = LSG + L(K,W ) (1.78)

Where the second term is understood to be covariantized under general coordinate
transformations. Then we can write the full action in analogy of the previous SUSY
Lagrangian as:

S = − 3

κ2

∫
d4x d4θEe−

κ2

3
K +

(∫
d4x d4θEW + h.c.

)
(1.79)

Where we have restored MP and defined κ2 = 8πG
(4)
N = 1/M2

pl. As for SSG, E is the
determinant of the super-vierbein, while on the other hand E is defined by 2RE = E,
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where R is the curvature superfield (having components R,ψµ,M, ba ), which we can see
as a supersymmetric generalization of the Ricci scalar. Let us notice that the first term
of this action, when expanded in powers of κ2 includes the pure supergravity action plus
the standard kinetic term for matter fields:

e−
κ2

3
K = 1− κ2

3
K +O

(
κ4
)

(1.80)

Now is easy to see that the flat space-time limit corresponds to κ → 0,
∫
d2θ̄E → 1,

and E → 1 and the flat space global supersymmetric action from in terms of K and W
is reproduced.

Since for any finite value of κ K appears explicitly in the pure supergravity part of
the action, then the coefficient of the Einstein-Hilbert term, which is the effective Planck
mass, depends on the chiral matter fields as in Brans-Dicke-like theories.
In order to go to the Einstein frame (i.e. MP = const) we need to rescale the metric. If
we want to rescale the metric, we then have to rescale the fermionic fields accordingly.
Since we have a local SUSY, such a rescaling will complicate substantially the derivation
of the action in components. In order to overcame these complications we can add an
extra auxiliary superfield φ, known as Weyl compensator field. The introduction of
such field makes the action invariant under conformal transformations.Then the action
after having added the compensator field looks like:

S = −3

∫
d4x d4θEφφ̄e−K/3 +

(∫
d4x d4θEφ3W + h.c.

)
(1.81)

This action is invariant under rescalings of the metric such that: E → e2(τ+τ̄) and
E → e6τE+ · · · with τ a chiral superfield. Furthermore all the matter fields are invariant
under φ→ e−2τφ.

After having computed the action in components, we can fix φ by imposing that the
Einstein-Hilbert term is canonically normalized, then we brake the fictitious conformal
invariance that we have before after the addiction of the compensator. More precisely φ
has to be fixed to φφ̄e−K/3 =M2

pl, breaking explicitly the (artificial) conformal invariance
and leaving the physical fields properly normalised with standard kinetic terms.

In the following section we will derive the full component action in the case of a type
IIB SUGRA, but at this level we are interested in obtaining the scalar potential which
will play a very important role in our discussion. In order to see it we can consider the
case of a flat spacetime, i.e. E = 1,

∫
d2θ̄E = 1, and the covariant derivatives reduce to

the global covariant derivatives, then the above action becomes simpler:

S = −3

∫
d4x d4θφφ̄e−K/3 +

(∫
d4x d2θφ3W + h.c.

)
(1.82)
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From which we can derive, in a similar way of the global SUSY case, the scalar
potential in supergravity:

VF = e
K

M2
P

[(
K−1

)iȷ̄
DiWDȷ̄W̄ − 3

|W |2

M2
P

]
(1.83)

Where the covariant derivative Di is defined as:

DiW = ∂iW +
1

M2
P

(∂iK)W (1.84)

Let us notice that in the limit in which MP → ∞ gravity is decoupled and the global
supersymmetric scalar potential VF is restored. Let us notice that for finite values of the
Planck mass, the scalar potential is no longer positive definite, where the extra negative
piece ∝ 3 |W |2

M2
P

comes from the Weyl compensator. However from now on we will use only
Planck units, i.e. MP = 1.
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Chapter 2

Basics of Inflationary Cosmology

In the writing of this chapter I followed the following main references [Bau22; BM15],
which are very complete and exhaustive reviews of cosmology.

2.1 Friedmann-Lemaitre-Robertson-Walker Metric
Our current interpretation of Gravity is as a manifestation of the spacetime geometry.
Since the purpose of cosmology is the explanation of the origin and evolution of the
universe, we have to take into the account its geometry. In other words we need a metric
which describes the universe and allow us to do some physical considerations, within the
validity regime of general relativity.
As always when we are dealing with geometry, the symmetries guide our research for
a metric. More in the detail from the cosmological observations we can infer that our
universe is homogeneous and isotropic at large scale. This fact implies that we can foliate
our spacetime with space-like slices which are homogeneous and isotropic. Then we can
write the most general metric of such spacetime in the following form:

ds2 = −dt2 + a2(t)dl2 where: dl2 = γij(x)dx
idxj (2.1)

where a(t) is called scale factor, and we have elevated it to the square just for
further computational convenience. Let us now discuss the different possibilities for the
spatial metric: γij(x). In particular the isotropy and homogeneity conditions tell us that
we should have a constant curvature for our 3D space, which can be negative, zero or
positive, which lead to hyperbolic (H3), flat (E3), or spherical (S3) spaces respectively.
Hence we can write such a metric in the spherical coordinates as:
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dl2 =
dr2

1 + k
(

r
R0

)2 + r2dΩ2 where: dΩ2 = dθ2+ sin(θ)dϕ2 and


k = −1 if H3

k = 0 if E3

k = +1 if S3

(2.2)

Then we can now write the complete Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric as:

ds2 = −dt2 + a2(t)

 dr2

1 + k
(

r
R0

)2 + r2dΩ2

 (2.3)

Let us make a couple of comments on such a metric. First of all we can immediately
see that it is invariant with respect to the following rescaling:

a(t) −→ λa(t)

r −→ r
λ

R0 −→ R0

λ

(2.4)

Usually we refer to r as the comoving coordinate, and a(t)r as the physical
coordinate, since we cannot measure directly a(t), in fact we can e.g. measure the
speed of an object to be:

vphysical =
drphysical

dt
= ȧr + aṙ =

ȧ

a
rphysical + aṙ = Hrphysical + aṙ (2.5)

where H is usually called the Hubble parameter. Furthermore we can define
Hrphysical as the Hubble flow and vpeculiar = aṙ is the so called peculiar velocity,
which is the velocity measured by an observer moving in the Hubble flow.

Let us now rewrite the metric in a more compact form, using the following substitu-
tion:

dχ =
dr√

1 + k
(

r
R0

)2 (2.6)

Then after this substitution we can write the metric in the following form:

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
2
]

where: Sk(χ) = R0


sinh

(
χ
R0

)
if k = −1

χ
R0

if k = 0

sin
(
χ
R0

)
if k = +1

(2.7)
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In order to write our metric in a conformal way, let us define the conformal time to
be:

dτ =
dt

a(t)
(2.8)

with this substitution we end up with the following metric:

ds2 = a2(τ)
[
−dτ 2 + dχ2 + S2

k(χ)dΩ
2
]

(2.9)

2.2 Friedmann Equations
The Friedman equations, are nothing else but the Einstein equations for a perfect fluid
in the FLRW metric background. Thus let us recall the Einstein equations to be in the
most general form the following:

Gµν + Λgµν = 8πGTµν (2.10)

Sometimes we may prefer to put the cosmological constant term Λgµν into the
energy-momentum tensor defining a kind of vacuum energy:

TΛ
µν =

Λ

8πG
gµν = ρΛgµν (2.11)

which is often called dark energy1, since it is measured to be a lot smaller than the
expected vacuum energy of the quantum fields of the Standard Model. This opens the
cosmological constant problem, which is beyond the scope of the present work.

After this initial remark let us proceed with the derivations of the Friedmann equa-
tions. Let us start by calculating the Einstein tensor, which we recall to be:

Gµν = Rµν −
R

2
gµν (2.12)

Let us assume to work with the FLRW metric in the form: gµν = −dt2+a2(t)γijdxidxj.
Since we can define the Levi-Civita connections as functions of the metric, we recall the
famous relation between the metric and the Christoffel symbols:

Γαµν =
gαβ

2
(∂µgβν + ∂νgβµ − ∂βgµν) (2.13)

from which we can calculate:
1We know that in general, when people talk about dark energy, they are referring to a more general

fluid than the one which appear in the same form of a vacuum energy, but, for the purpose of our work,
we will not make any distinction
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
Γ0
ij = aȧγij

Γi0j = ȧ
a
δij

Γijk = γil

2
(∂kγlj + ∂jγlk − ∂lγjk)

(2.14)

Hence we now have all the tools to calculate the Riemann tensor and therefore the
Ricci tensor:

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
λµ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
ρν (2.15)

Hence in our case the only non vanishing components of such tensor are:{
R00 = −3 ä

a

Rij =
[
ä
a
+ 2

(
ȧ
a

)2
+ 2 k

(aR0)2

]
gij

(2.16)

while the components R0i = 0, since the metric is isotropic, therefore all the 3-vectors
must vanish. Now we can calculate the Ricci scalar as:

R = gµνRµν = −R00 +
Rij

a2
= 6

[
ä

a
+

(
ȧ

a

)2

+
k

(aR0)2

]
(2.17)

Hence we can write the non-vanishing Einstein tensor components in the form:
gµαGαν = Gµ

ν as follows: G
0
0 = −3

[(
ȧ
a

)2
+ k

(aR0)2

]
Gi
j = −

[
2 ä
a
+
(
ȧ
a

)2
+ k

(aR0)2

]
δij

(2.18)

At this point let us evaluate the RHS of the Einstein equations. Hence we have to
find the description of matter which is homogeneous and isotropic, which in the most
general case corresponds to a perfect fluid. Let us recall its energy-momentum tensor to
be:

Tµν = (ρ+ P )UµUν + Pgµν (2.19)

where P is the pressure, ρ is the density and Uµ is the 4-speed. This implies that in
the comoving frame of the cosmological flow Uµ = (1;0). Hence we assume T νµ to be in
this frame: T 0

0 = −ρ, while: T ij = Pgij.
Then finally we can write the Friedmann equations to be:

{
G0

0 = 8πGT 0
0 −→

(
ȧ
a

)2
= 8πG

3
ρ− k

(aR0)2
(Friedmann equation)

Gi
j = 8πGT ij −→ ä

a
= −4πG

3
(ρ+ 3P ) (Raychaudhuri equation)

(2.20)
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where ρ is the density matter and energy of the universe, e.g. matter, radiation, dark
matter and dark energy.
We can easily see that the Raychaudhuri equation is nothing but the time derivative
of the Friedmann equation, if we take the expression for ρ̇ coming from the continuity
equation of the fluid which we recall to be: ∇µT

µ
ν = 0 −→ ρ̇+ 3 ȧ

a
(ρ+ P ) = 0.

2.3 Slow-roll Inflation
In order to formulate a theory of Big-Bang cosmology which ends up with an homoge-
neous isotropic and almost flat universe, we need to tune in a very special way the initial
conditions. However if we take into account inflation, so a very early epoch of extremely
fast expansion of the space, we can start with a more generic setup to obtain the same
result.
More in technical terms we can say that inflation is a simple solution to 3 fundamental
problems coming from cosmological observations:

• Horizon problem

• Flatness problem

• Super-horizon correlations

Let us now analyze qualitatively those problems and see how inflation solves them all in
an elegant way.

2.3.1 Horizon problem

Let us define the concept of the particle horizon, which is the comoving distance at
which light can reach an observer at a certain time t. Hence the particle horizon tells
us about the causal horizon between the different patches of spacetime, and give us the
maximal distance from which a particle can be influenced by all the past events.
Let us suppose that the Big Bang starts with its singularity at ti = 0 on a space-like
hyper-surface, then we can write the particle horizon of a point in spacetime at time t
as:

dh(τ) = τ − τi =

∫ t

ti

dt

a(t)
=

∫ a

ai

da

aȧ
=

∫ ln(a)

ln(ai)

(aH)−1d [ln(a)] (2.21)

Conventionally τi is set to zero in order to identify the conformal time and the par-
ticle horizon, and the size of the horizon could be found simply intersecting the past
light-cone of the observer at time τ with the singularity hyper-surface. This formula
shows furthermore how to relate the particle horizon to the comoving Hubble radius,
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which is defined by: (aH)−1, in which: ai = 0 corresponds to the Big-Bang singularity.

Before addressing the horizon problem let us introduce the concept of the last scat-
tering surface, which is the space-like hyper-surface at which the universe becomes
transparent, i.e. photons from this moment on can propagate without scattering, and
this is possible only if the density of our cosmological fluid decreases to a certain valour.
The photons coming from that surface generate thermal radiation, called the Cosmic
Microwave Background (CMB) with a temperature today measured to be about 3K.
The problem is that, since the time from the Big Bang singularity to the last scattering
surface is very short compared to the current age of the universe, in principle exists
different areas of the universe which are not in causal contact. More in the detail if we
look at the CMB from the earth only regions with less angular separation than 2◦ are in
causal contact, so why is the temperature so uniform in all the directions?

2.3.2 Flatness Problem

Next, we are considering the spatial curvature. Let us consider the the Friedman equation
written in terms of the Hubble parameter:(

ȧ

a

)2

= H2 =
8πG

3
ρ− k

(aR0)2
(2.22)

Let us denote the quantities at our time with the 0 subscript, e.g our time t = t0. If
the universe would be completely flat k = 0, then we can define a critical density, by
measuring the current Hubble constant:

ρcritical,0 =
3H2

0

8πG
(2.23)

Then we can define for each type of substance a dimension-less density parameter as:

Ωi,0 =
ρi,0

ρcritical,0
where: i = r,m,Λ (2.24)

Let us now recall that all the fluids that appear in the energy-momentum tensor of
the Einstein equations have to satisfy a continuity equation ∇µT

µν = 0. We look at
3 types of fluid which are relevant in cosmology and are characterized by the following
equation of state:

Pi = ωiρi where:


ωm ∼ 0 matter
ωr = 1/3 radiation
ωΛ = −1 dark energy

(2.25)

Hence the continuity equation turns out to be the following:
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ρ̇

ρ
= −3(1 + ωi)

ȧ

a
⇒ ρ ∝ a−3(1+ωi) (2.26)

Then, defining Ωk,0 = − k
(a0R0H0)2

, we can rewrite the Friedmann equation as functions
of these density parameters which we can measure now:(

H

H0

)2

= Ωr,0a
−4 + Ωm,0a

−3 + Ωk,0a
−2 + ΩΛ,0a

0 (2.27)

Hence if we evaluate this expression at the present time, assuming a(t0) = a0 = 1,
we obtain:

1 = Ωr,0 + Ωm,0 + Ωk,0 + ΩΛ,0 = Ω0,0 + Ωk,0 ⇒ Ωk,0 = − k

(R0H0)2
= 1− Ω0,0 (2.28)

where we have defined: Ω0,0 = Ωr,0+Ωm,0+ΩΛ,0. Hence the Friedmann equation tell
us that we can measure now Ω0,0 to obtain information about Ωk,0, which is bounded by
CMB observations to be: |Ωk,0| < 0.005. The flatness problem consists in the fact that
this value of Ωk,0 ∼ 0. In order to understand, why that is a problem let us derive an
expression for Ω̇k(t). Hence:

Ω̇k(t) =

(
− k

R2
0

)
d

dt

(
1

a2H2

)
=

2k

(R0aH)2

(
Ḣ

H
+
ȧ

a

)
= −2HΩk(t)

(
Ḣ

H2
+ 1

)
(2.29)

Let us calculate Ḣ
H2 , recalling the Raychaudhuri equation:

Ḣ

H2
=

1

H2

[
ä

a
−
(
ȧ

a

)2
]
= −4πG

3H2
(ρ+ 3P )− 1 (2.30)

Then, summing over fluids:

Ḣ

H2
+ 1 = −4πG

3H2

∑
i

(1 + 3ωi) ρi = −1

2

∑
i

(1 + 3ωi) Ωi(t) (2.31)

Thus we have found:

Ω̇k(t) = HΩk(t)
∑
i

(1 + 3ωi) Ωi(t) ∼ HΩk(t) [Ωm(t) + 2Ωr(t)] (2.32)

where in the last section we have neglected the dark energy contribution which dom-
inates only in a brief time of the history of the universe. Then from this equation we
can understand the nature of the problem, since all the terms on the RHS that multiply
Ωk(t) are positive, therefore if Ωk(t) ̸= 0 its derivative becomes always more positive or
negative depending on the sign of Ωk(t), i.e. this will led to runaways in both cases.
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2.3.3 Super-Horizon Correlations

The previous 2 problems which we have depicted might be bypassed arguing that the
flat, homogeneous and isotropic spacetime is the most symmetric solution which has to
be the starting point for the Big Bang. However in the CMB we can see that in that
very uniform radiation background there are some fluctuations which are of the order of
0.01% of the temperature (dipole fluctuations). The analysis of such fluctuations shows
that they are not random, but are instead are correlated. The problem consists in the
fact that these correlations should exist only between causally connected points of the
universe, but that is not the case, in fact these correlations exist also between causally
disconnected regions.
To give a qualitative idea of what is happening let us suppose to have a fluctuation with
a wave-length λ. Let us consider to be in the comoving frame, then λ remains fixed
in time, while the Hubble radius (aH)−1 increases as the particle horizon does. Obser-
vations show the existence of correlations with wave-length λ greater than the particle
horizon radius at the surface of last scattering.

In a certain sense this is analogous to the previous horizon problem, but in this
case, since correlations exist between causally disconnected regions, we cannot avoid the
problem by assuming that we do not need causal contact between the different patches
of spacetime in order to have the same temperature.

2.3.4 Inflationary Solution

Let us define the inflation as a period, before the hot Big Bang, of accelerated expansion
of the universe. i.e. ä > 0.
We can see the consequence of this fact on the comoving Hubble sphere, in particular
let us consider:

d

dt

[
(aH)−1

]
=

d

dt

(
1

ȧ

)
= − ä

ȧ2
< 0 (2.33)

Hence we can say that if the expansion accelerates, then the comoving Hubble sphere
is shrinking.

Let us now clarify in physical terms the distinction between the Hubble and the par-
ticle horizon. Let us suppose to have two observers, namely A and B. Let us further
suppose that they are separated by the Hubble radius, then, if A send a light ray to B
now, the light will never reach B, since all the points on the Hubble sphere are receding
at light-speed, however if A would have sent the light ray just before finding himself
at the Hubble radius the light would have reached B, hence the observer B would have
concluded that at the time he has received the ray, B would have passed the Hubble
radius.
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By this interpretation of the horizon we can immediately see why accelerated expansion
will lead to shrinking of the Hubble sphere.
From the cosmological perspective: the Hubble radius tells us if two observers at a given
time could ever be in causal contact in the future, while the particle horizon tells us
if two observers have ever been in causal contact, in the past. Then returning to our
example the fact that the observer A finds himself at a given time outside the Hubble
radius of the observer B does not imply that in an early time the two observers were not
in causal contact. However if A is at a given time is outside the particle horizon of B
this implies that they have never been in causal contact, and they will never be in causal
contact in the future. In this sense we can say that the Hubble radius is always smaller
than the particle horizon distance.

Let us now see how by assuming inflation we can solve the previous problems. Let us
start from the Horizon problem: let us recall the definition by which the particle horizon
is defined:

dh(τ) =

∫ ln(a)

ln(ai)

(aH)−1d [ln(a)] (2.34)

Then, if (aH)−1, is an increasing quantity, since the integral is an infinite weighted
sum, we can argue that the integral would almost be of the same order of the integrand
function evaluated at late time: dh(τ) ∼ (aH)−1. In the case (aH)−1 is decreasing on
the other hand the situation is the opposite and the integral will take the value of the
integrand function at early time: dh(τ) ∼ (aiHi)

−1 ≫ (aH)−1. I.e. the particle horizon
is much bigger than the Hubble horizon at a given time.
Let us now give a more quantitative explanation of this phenomenon. Let us assume
to have a perfect cosmological fluid in a flat spacetime background. Hence under these
assumption the Friedmann equations become:

{(
ȧ
a

)2
= 8πG

3
ρ(

ä
a

)
= −4πG

3
ρ (1 + 3ω)

⇒ ȧ = (const)a−
1+3ω

2 ⇒ (aH)−1

(a0H0)−1
= a

1+3ω
2 (2.35)

Hence, if we plug this expression into the integral to calculate the particle horizon
distance, we find:

dh(τ) = τ − τi =
2H−1

0

1 + 3ω

(
a

1+3ω
2 − a

1+3ω
2

i

)
(2.36)

Since before we have said that the Big Bang starts at τi = 0, if we want to keep this
convention also with ai = 0, then we have to impose a kind of "inverse" strong energy
condition (SEC) for our fluid but with a different sign: 1 + 3ω > 0 → 1 + 3ω < 0.
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τi =
2H−1

0

1 + 3ω
a

1+3ω
2

i −→ −∞ (when: ai → 0) (2.37)

In other words, inflation puts the original Big Bang singularity to −∞ in conformal
time. In terms of the ordinary time coordinate it remains at t = 0, but the light-cones
are extremely stretched. Hence, it is simpler to reason in terms of conformal time where
the light-cones are at 45◦ angles always.
In this way we can explain the homogeneity and isotropy of the CMB, since all the
patches of the spacetime were initially in causal contact.

Let us come to the solution of the flatness problem provided by inflation. Let us con-
sider a cosmological fluid, and let us recall the relation between the density parameters:

Ωk(t) =

(
aiHi

aH

)2

Ωk(ti) (2.38)

Next, let us consider the Friedman equations in the full form(without setting k = 0):

{(
ȧ
a

)2
= 8πG

3
ρ− k

(aR0)2(
ä
a

)
= −4πG

3
ρ (1 + 3ω)

⇒
(
aiHi

aH

)2

=

[
(1− Ωk,i)

(ai
a

)1+3ω

+ Ωk,i

]−1

(2.39)

Then we can rewrite the previous equation as:

Ωk(t) =
Ωk,i

(1− Ωk,i)
(
ai
a

)1+3ω
+ Ωk,i

(2.40)

If we define the number of e-folds as: N = ln
(
a
ai

)
, then we end up with a more

useful expression, which is:

Ωk(t) =
Ωk,ie

(1+3ω)N

(1− Ωk,i) + Ωk,ie(1+3ω)N
(2.41)

Since in this period the cosmological fluid has to follow the inverse SEC, then for
sufficiently large N we find Ωk = 0 is a reasonable (stable) solution, since we have expo-
nential suppression.

For what does it concern the super-horizon correlation we have already seen that the
shrinking of the Hubble sphere enlarge the particle horizon and allows to have such type
of correlation. A pictorial way of seeing that is by imagine that the fluctuations which
were inside the Hubble radius during inflation go out of the sphere at a certain point
(since the radius is shrinking), but when the Hubble radius (after inflation) restart to
grow they will appear again to our sight, and in fact were detected.
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2.3.5 Slow-roll Parameters

The key feature of the physical description of inflation is that all the quantities involved
are slowly varying except from the space expansion, parameterized by a(t).
Before to describe how inflation works, let us fix by an estimation, some bounds for on
the time that inflation has to last in order to solve the previous described problems. A
reasonable assumption to set all the universe in causal contact before inflation starts, is
that the Hubble radius has to be bigger than the universe’s size when inflation starts,
i.e let us set:

(a0H0)
−1 < (aiHi)

−1 (2.42)

Let us assume that the Hubble parameter does not varies much during inflation and
let us set to Hi ≈ He, where the subscript e stand for end (of inflation). the parameter
which tell us how the Hubble sphere shrinks during inflation could be the number of
e-folds: N = ln

(
ai
ae

)
. It can be showed, but we wouldn’t, that the amount by which the

Hubble radius has grown during the hot Big Bang evolution depends on the maximal
temperature of the thermal plasma at the beginning of the hot Big Bang: the reheating
temperature, which we will denote as TR. Since we are giving an estimation, let us
assume to be only in the radiation dominated era, then: H ∝ a−2, thus:

a0H0

aRHR

=
a0
aR

(
aR
a0

)2

=
aR
a0

∼ T0
TR

∼ 10−28

(
1015 GeV

TR

)
(2.43)

where 1015 GeV is a typical scale for the reheating temperature, then we will also assume
that the energy density at the end of inflation is converted quickly into the particles of
the thermal plasma, so that the Hubble radius do not grows significantly between the
end of inflation and the beginning of the hot Big Bang, i.e. (aeHe)

−1 ∼ (aRHR)
−1. Then

we can rewrite the previous inequality as:

aiHi > 10−28

(
1015 GeV

TR

)
(aeHe)

−1 ∼ 10−28

(
1015 GeV

TR

)
(aeHi)

−1 (2.44)

Hence we can set the bound on the e-fold to be:

N = ln

(
ae
ai

)
> 64 + ln

(
TR

1015 GeV

)
(2.45)

Which from a more careful analysis might be proven to be 60 e-folds, which is the
value which we will use during the whole discussion, even if we know that there are other
models in which this number is about 40, which depend on which reheating temperature
we are considering, as shown in the formula qualitative formula above.

By now we have presented a qualitatively very promising solution, but let us now
develop a physical model which describes inflation.
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Let us start to rewrite the time derivative of the Hubble radius in terms of a slow-roll
parameter ϵ, defined by:

ϵ = − Ḣ

H2
= − d

dN
(lnH) since: dN = d(ln a) = Hdt (2.46)

Thus:
d

dt

[
(aH)−1

]
= −aḢ + ȧH

(aH)2
= −1− ϵ

a
(2.47)

Since the inflation corresponds to keep this quantity negative, then we have to impose
that ϵ < 1, and we will see more in the details that ϵ ≪ 1, because of the near scale
invariance observed in the CMB fluctuations, Furthermore we can say that we recover De
Sitter spacetime in the limit of ϵ→ 0, i.e H is constant and the metric is transnational
invariant:

ds2 = −dt2 + e2Htdx2 (2.48)

This parameter will remain different from zero and small for the whole period of
inflation, that is why the inflationary time is often called quasi-De-Sitter period.

However ϵ is not enough to describe inflation since we need an other slow roll param-
eter which tells us that inflation lasts for a sufficient amount of time. We will call this
parameter η, and we will see that a good definition of it is the following:

η =
d

dN
(ln ϵ) =

ϵ̇

ϵH
(2.49)

Hence for |η| < 1 we ensure that the the change of ϵ̇
ϵ

is sufficiently small to keep ϵ
small and non vanishing for the whole duration of inflation.

2.3.6 Slow-rolling Inflaton Field

The most simple model to describe inflation is by the use of a scalar field called the
inflaton, then let us recall the action form of a generic scalar field:

S[ϕ] =

∫
dtdx

[
1

2
ϕ̇2 − 1

2
(∇ϕ)2 − V (ϕ)

]
(2.50)

From which, following the minimum action principle we can find the Klein-Gordon
equation:

ϕ̈− (∇ϕ)2 = −∂V
∂ϕ

(2.51)

However in our case we have not Minkowski spacetime, but the FLRW metric, hence
the action becomes:
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S[ϕ] =

∫
dtdxa3

[
1

2
ϕ̇2 − 1

2a2
(∇ϕ)2 − V (ϕ)

]
(2.52)

from which always following the least action principle we end up with thee following
equation:

ϕ̈+ 3Hϕ̇ = −∂V
∂ϕ

(2.53)

The second term of the equation is called the Hubble friction term, since it appears
with a dependence in the first derivative of the field.

Let us now assume that in this first period of the universe this scalar field dominates
over all the other fields, then its energy density might be read from the action to be the
sum of the kinetic and potential energy:

ρϕ =
1

2
ϕ̇+ V (ϕ) (2.54)

Having in mind the continuity equation which every cosmological fluid has to satisfy:
ρ̇ = −3H(ρ+ P ), then we can calculate:

ρ̇ =

(
ϕ̈+

∂V

∂ϕ

)
ϕ̇ = −3Hϕ̇2 ⇒ Pϕ =

1

2
ϕ̇− V (ϕ) (2.55)

Then we obtain that, if the kinetic energy of the field is negligible with respect to
its potential energy (slow-roll approximation), then: Pϕ ∼ −ρϕ. In this sense we might
interpret it as a temporary cosmological constant.

Let us now explain in what it consist the slow-rolling of the inflaton field, by the use of
the already defined slow-rolling parameters. Let us recall the two relevant equation in the
description of the process, which are the first Friedmann equation and the Klein-Gordon
equation: {

H2 = 1
3M2

P

(
1
2
ϕ̇+ V

)
−3Hϕ̇ = ϕ̈+ ∂V

∂ϕ

⇒ Ḣ = −1

2

(
ϕ̇

MP

)2

(2.56)

Where, in order to simplify the notation we have defined the 4D Plank’s mass as:
MP =

√
1

8πG
. The the slow-roll parameter ϵ becomes:

ϵ = − Ḣ

H2
=

1
2
ϕ̇2

(MPH)2
=

1
2
ϕ̇2

M2
P

1
3M2

P

(
1
2
ϕ̇2 + V

) =
3
2
ϕ̇2

1
2
ϕ̇2 + V

=
3
2
ϕ̇2

ρϕ
(2.57)

Hence now is clear why having a slow-rolling scalar field in which 1
2
ϕ̇2 ≪ V , imply:

ϵ≪ 1.

35



Since we want that the inflation, to last for a sufficient amount of time, then, having in
mind the Klein-Gordon equation, we can define a dimensionless acceleration per Hubble
time to be:

δ = − ϕ̈

Hϕ̇
(2.58)

Hence we can say that when δ is small in the Klein-Gordon equation the friction term
becomes dominant and the velocity of inflation is purely determined by the slope of the
potential.
At this point we are able to calculate the other slow-roll parameter η, previous introduced,
hence:

η =
ϵ̇

ϵH
= (ϵH)−1

[
ϕ̇ϕ̈

(MPH)2
− ϕ̇2Ḣ

H(MPH)2

]
= 2

(
ϕ̈

Hϕ̇
− Ḣ

H2

)
= 2(ϵ− δ) (2.59)

This implies that: if {ϵ, |δ|} ≪ 1, then {ϵ, |η|} ≪ 1. Hence, in other words if the
velocity and acceleration of the inflaton field are small, inflation will last for a sufficient
long period.

Let us now apply the slow-roll approximation to simplify the equation of motion for
the inflaton field:

{ϵ, |δ|} ≪ 1 ⇒

{
H2 ∼ V

3M2
P

3Hϕ̇ ∼ −V,ϕ
⇒ ϵ =

1
2
ϕ̇2

(MPH)2
∼ M2

P

2

(
V,ϕ
V

)2

(2.60)

Then, taking the derivative with respect to the field of the approximate version of
the Klein-Gordon equation, we can find:

3

(
Ḣ +

Hϕ̈

ϕ̇

)
∼ −V,ϕϕ ⇒ −3H2

(
Ḣ

H2
+

ϕ̈

Hϕ̇

)
∼ V,ϕϕ ⇒ δ + ϵ =M2

P

V,ϕϕ
V

(2.61)
Then we can define new slow-roll parameters for the potential in a more useful way

to be:

ϵV =
M2

P

2

(
V,ϕ
V

)2

, ηV =M2
P

V,ϕϕ
V

(2.62)

Then, now we are able to calculate the number of e-folding as a function of the
parameter ϵV :
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N =

∫ ae

ai

d(ln a) =

∫ te

ti

H(t)dt =

∫ ϕe

ϕi

H

ϕ̇
dϕ ∼

∫ ϕe

ϕi

|dϕ|
MP

√
2ϵV

(2.63)

Then this expression give us certain bounds that the potential should satisfy, e.g. sup-
posing to have a potential, which is linear in the field: V (ϕ) = ξϕ, we obtain:

ϵV =
M2

P

2

(
V,ϕ
V

)2

=
M2

P

2
ϕ−2 ⇒ N ∼

∫ ϕe

ϕi

|dϕ|
MP

√
2ϵV

=
ϕ2
e − ϕ2

i

2M2
P

∼ 60 (2.64)

For completeness, since in our current time we do not see any inflaton field, we must
say that the inflaton decay into the Standard model particle. This is what is called
reheating, which we can see in an approximate version as a dumped oscillation of the
inflaton potential around its minimum, reached when the inflation ends, hence when the
inflaton’s kinetic energy, overcomes its potential one and the fields stabilize in a certain
amount of time to its VEV. This process set up the initial conditions for the hot Big-
Bang thermal bath, but in the present work we are not interested in the treatment of
this phenomenon.

2.3.7 Effective Field Theory perspective

In absence of a UV complete theory of gravity, we might try to tackle the problem of
inflation by an effective field theory (EFT) approach, based on what we claim to be
a viable theory of quantum gravity (in our discussion we assume string theory to be such
kind of theory). In general when we are dealing with an EFT, we can always write the
Lagrangian of our system in the following form:

LEFT [ϕ] = L0[ϕ] +
∑
n

cn
On[ϕ]

Λδn−4
(2.65)

Declined to our case: L0[ϕ] is the Lagrangian of the chosen inflationary model, On[ϕ]
are operators which parameterize corrections coming from the couplings to additional
high-energy degrees of freedom, while cn are O(1) constants and Λ is the cut-off scale of
the EFT. By now we have seen that, in order to have a slow rolling scalar field, we have
to require a flat potential (in Planck’s scale units). However when we treat inflation in
terms of an effective field theory we have to be careful since it is intrinsically sensitive
even to effect smaller than the Planck scale, in fact:

LEFT [ϕ] = −1

2
(∂µϕ)

2 − V (ϕ)−
∑
n

cnV (ϕ)
ϕ2n

Λ2n
−
∑
n

dn
(∂µϕ)

2n

Λ4n
+ ... (2.66)
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Assuming |ϕ| ≪ Λ, i.e. the value of the inflaton field is much smaller than the cut-off
scale, we can argue that the leading contribution comes from the term:

∆V = c1V (ϕ)
ϕ2

Λ2
≪ V (ϕ) ⇒ ∆ηV =

MP

V
∆V,ϕϕ ∼ 2c1

(
MP

Λ

)2

> 1 (2.67)

Then we have encountered what is called the η-problem, from which all the EFT
model of inflation are affected. The possible solutions to this problem might come from
an enlargement of the symmetries of the inflaton field. Naively one can expect that
imposing a supersymmetry (SUSY) can help us to cancel the corrections of the EFT,
however it turns out that, even if it will mitigate the problem, it does not solve the
problem, since we know that SUSY must be broken during inflation. Thus we will end
up with a massive inflaton, with a mass of the scale of the Hubble parameter H, which
will still give us a first order correction ∆ηV ∼ 1. Hence also in this case we cannot avoid
the fine-tuning on the mass of ϕ
A more natural (without fine-tuning) solution comes from imposing a shift-symmetry
(also called Peccei-Quinn symmetry), which consist in imposing that the inflaton field
ϕ is invariant under the following transformation:

ϕ −→ ϕ+ c ∀c ∈ R (2.68)

In other words we are imposing that the inflaton field is an axion.

2.3.8 Problems of Inflation

Even if we believe that a fine tuning of the starting conditions of the universe can occur
in nature, we might agree that the explanation for the a-causal correlations measured
can only come from a shrinking of the Hubble sphere (always assuming an interpretation
of the spacetime in the general relativity framework). We can then reasonably move
some critics about the dynamic of inflation: why we consider a scalar field? Are rea-
sonable all the assumption on its potential? These questions have not an answer, but
we might say that this is the simplest model found in agreement with the current obser-
vations, however we can ask more precise questions even assuming this model to be valid.

Assuming that the dynamic of inflation is given by the action of a scalar field, we can
in fact ask: why it have to start to the top of a certain potential? Why it has to slowly
roll?
In order to answer the first question let us e.g. assume that the inflaton field has only
a minimum, and in different regions of the space this scalar field takes different values,
then we can say that the regions in which the value of the field finds on the top of this
potential will experience inflation and, weighting them by their volume, we can say that
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globally we obtain an inflationary process, since most of the volume is made up by the
regions in which inflation occurs. Let us now assume that the inflaton potential have
more than a minimum, then let us suppose for simplicity that it has 2 minima, then
there will be one at higher energy which we define to be the false vacuum, and one at
lower energy, which we will call the true vacuum. Then, since we are working in the
quantum mechanic framework, tunnelling effects might occur, then also in this case if
we give different values of the inflaton field to different regions of the space, the places
in which inflation occur will become dominant on the regions in which it does not.
To answer the second question, the slow-rolling assumption implies that the kinetic en-
ergy is much smaller than the potential one, then, we might try to overcome such problem
assuming the inflaton field to be large, in such a way that the Hubble friction term can
effectively slow down the speed of the field, i.e. the slow-rolling solution enjoys an at-
tractor behaviour.
We might furthermore say that the large-field inflationary model can mitigate also the
problems of perturbations to the field, which are under control under such an assumption.

A more subtle problem is the so called eternal inflation problem. Let us come
back to the case in which we have at least 2 vacua: inflation can still occur even if we are
approaching the false vacua. The problem occurs when the inflation rate is larger than
the the tunnelling rate from the false to the true vacuum, since inflation continues to
enlarge the space and forbid the tunnelling to the real vacuum, hence it becomes eternal.
An other case in which we end up with the eternal inflation, even only with a minimum,
is when the quantum fluctuations dominates over the classical slow-rolling dynamics,
since in that case the inflaton field could always be placed to the top of the potential to
roll, then inflation does not end.

Despite all these problems inflation is by now the best known and tested model that
we have for cosmology, and we will assume to be true for the rest of the present work in
particular working with an axionic inflaton in the large-field approximation, since both
the conditions give us a better control on the inflationary dynamics.

2.4 Gravitational Perturbation Theory
In this section we will treat how the inflationary mechanism described in term of a sin-
gle slow-rolling scalar field provides a natural source to primordial density fluctuations.
Such fluctuations are built-in the theory, since we define a scalar field in the context of
QFT, which is nothing but a relativistic generalization of Quantum Mechanics. In very
simple terms we can imagine the inflaton field as a clock which tell us in which part of
the inflationary period we are, but it is a quantum clock, hence we have to take into the
account Heisenberg’s principle.
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In the GR formulation we have two tensors from which we can reconstruct the dy-
namic of the system: the metric gµν and the stress-energy tensor Tµν , then let us express
them as derived by a combination of a perturbative and non-perturbative contribution:{

gµν(t,x) = ḡµν + δgµν(t,x)
Tµν(t,x) = T̄µν + δTµν(t,x)

(2.69)

What we now will derive is what comes from the expansion of the continuity and
Einstein equations keeping the terms only up to the linear order, hence we will derive
the linear perturbations of such tensors, which will be useful in the analysis of the
primordial perturbations.

2.4.1 Metric Perturbations

In order to simplify the analysis which can be in principle very general let us assume the
FLRW to be our background metric, then we can perturb the metric at the linear order
in the following way:

ds2 = a2(τ)
[
−(1 + 2A)dτ 2 + 2Bidx

idτ + (δij + 2Eij)dx
idxj

]
(2.70)

Where A, Bi and Eij are functions of the space and conformal time, δij is the 3D
Euclidean metric and the 2 factors will simplify the calculations.
Let us perform what is called: scalar-vector-tensor (SVT) decomposition of the per-
turbations for later convenience, which consists in the following decomposition:

Bi = ∂iB + B̂i where: ∂iB̂i = 0 (2.71)

And:

Eij = Cδij + ∂(i∂j)E + ∂{iÊj} + Êij where:


∂iÊi = ∂iÊij = Êi

i = 0

∂(i∂j)E =
(
∂i∂j − δij

3
∇2
)
E

∂{iÊj} =
1
2

(
∂iÊj + ∂jÊi

) (2.72)

Then from such a decomposition we have rearranged the 10 metrics degrees of freedom
as:

• 4 scalars d.o.f. : A, B, C, E

• 4 vectors d.o.f. : B̂i, Êi

• 2 tensors d.o.f. : Êij

40



The beauty of such SVT decomposition lies in the fact that at the linear order in
perturbations, for the FLRW metric, we do not have any mixing between the scalar,
vector and tensor modes in the Einstein equation, then we can treat them separately.
According to the inflationary mechanism depicted in the previous pages we might show
that the vectors perturbations are not produced, and even if they were produced by
other types of inflationary mechanisms they would decay quickly during the universe’s
expansion. On the other hand scalar and tensor perturbations are produced even if our
focus will be for obvious reasons on the scalar modes.

However even if such a decomposition helps us in solving the perturbation analysis we
have a more difficult problem given by the nature of GR. If we want to give a description of
the perturbations, we have to find a description which is invariant under diffeomorphisms,
which is the GR gauge group. Implicitly in the previous presentation we have assumed
a particular time-slice, however we can imagine that a change of coordinates will lead to
a change in the perturbations, hence we can have 2 possible situations: by a coordinate
transformation we add some new fictitious perturbations, or we lost some of the relevant
ones. In other words we want to find a way to distinguish a perturbation from a slight
change of coordinate, thus let us start to consider a generic coordinate transformation
in the form:

xµ(q) 7→ x̃µ(q) ≡ xµ(q) + ξµ(q) where:

{
ξ0 = T

ξi = Li = ∂iL+ L̂i
(2.73)

Where ξµ is small and can therefore be treated as a perturbation. The function
T (τ,x) defines the hyper-surfaces of constant time in the new coordinates, while Li(τ,x)
determines the spatial coordinates on these hyper-surfaces. We also in this case we have
split the spatial shift Li into a scalar, L, and a divergenceless vector, L̂i.
In order to determine the transformation of the metric let us remind that the spacetime
interval is an invariant:

ds2 = gµν(x)dx
µdxν = g̃αβ(x̃)dx̃

αdx̃β ⇒ gµν(x) =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃) (2.74)

Then we can explicitly workout the transformation matrix to be:

∂x̃α

∂xµ
=

(
∂τ̃/∂τ ∂τ̃/∂xi

∂x̃i/∂τ ∂x̃i/∂xj

)
=

(
1 + ∂0T ∂iT
∂0L

i δij + ∂jL
i

)
(2.75)

We can show, that, after applying such transformation we obtain in terms of the SVT
decomposition the following transformations of the perturbations’ d.o.f.:
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
A 7→ A− ∂0T −HT
B 7→ B + T − ∂0L B̂i 7→ B̂i − ∂0L̂i

C 7→ C −HT − 1
3
∇2L

E 7→ E − L, Êi 7→ Êi − L̂i Êij 7→ Êij

(2.76)

where: H is the Hubble parameter in conformal time, i.e. H = a′

a
.

However we might see that some combinations of the perturbations’ variables are in-
variant under change of coordinates. Such invariant quantities are defined to be the
Bardeen coordinates:

Êij

Φ̂i = B̂i − ∂0Êi

Φ = −C + 1
3
∇2E −H(B − ∂0E)

Ψ = A+H(B − ∂0E) + ∂0(B − ∂0E)

(2.77)

Then now we have a good base to write all the perturbations, and then we can chose
the Gauge which we most prefer in order to perform the calculations. We can as example
make the following gauge choices:

A = E = 0 Synchronous gauge
B = E = 0 Newtonian gauge
C = E = 0 Spatially flat gauge

(2.78)

We will see that in order to compute the inflaton field’s perturbations, the most
convenient gauge is the spatially flat gauge.

2.4.2 Matter Perturbations

Let us write the relativistic perfect fluid energy momentum tensor at the linear order in
pressure and density perturbations as follows:

{
ρ = ρ̄+ δρ

P = P̄ + δP
⇒


T 0
0 = −(ρ̄+ δρ)

T 0
i = (ρ̄+ P̄ )vi = −T i0 (Ti0 = T0i)

T ij = (P̄ + δP )δij +Πi
j Πi

i = 0

(2.79)

Where vi is called: bulk velocity, while Πi
j is the anisotropic stress. Let us also

introduce the momentum density to be qi = (ρ̄ + P̄ )vi. Let us now decompose SVT
components also the energy momentum tensor, then:

42




vi = ∂iv + v̂i

qi = ∂iq + q̂i

Πij = ∂(i∂j)Π+ ∂{iΠ̂j} + Π̂ij

(2.80)

Where we define the "parentheses in the indices" as we have done in the case of
the metrics perturbations. Let us furthermore introduce the velocity divergence:
θ = ∂iv

i = ∇2v, and the density contrast to be: δ = δρ
ρ
. In particular this last param-

eter, will tell us when is possible to do a perturbative expansion or not.

Also for the stress energy tensor the gauge fixing will play a crucial role in the
discussion of the perturbations then let us remind that such tensor transforms in the
following way:

T µν (x) =
∂xµ

∂x̃α
∂x̃β

∂xν
T̃αβ (x̃) (2.81)

We have already obtained the direct transformations’ matrix, and since we are sup-
posing infinitesimal coordinates’ transformations, we can consider the direct matrix as
1 + ϵ and its inverse as 1 − ϵ , i.e. :

∂xµ

∂x̃α
=

(
1− ∂0T −∂iT
−∂0Li δij − ∂jL

i

)
(2.82)

then at the linear order in the perturbation theory, we might explicitly found the
following transformation limit: 

δρ 7→ δρ− T∂0ρ̄

δP 7→ δP − P̄ ∂0T

qi 7→ qi +
qi
vi
∂0Li

vi 7→ vi + ∂0Li

Πij 7→ Πij

(2.83)

Also in this case we can find the analogous of the Bardeen coordinates, i.e. some
gauge invariant variables, which will help us in the discussion:

comoving density contrast: ρ̄∆ = δρ+ (v +B)∂0ρ̄

curvature perturbations:

{
ζ = −C + 1

3
∇2E +H δρ

∂0ρ̄

R = −C + 1
3
∇2E +H(v +B)

(2.84)

And we can easily check that these 3 perturbations are related by the following
equation:
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ζ = R− H
∂0ρ̄

ρ̄∆ (2.85)

Also in this case we can chose the gauge that we prefer which will makes the compu-
tations easier, i.e. :{

δρ = 0 −→ δgij = a2(1− 2ζ)δij uniform density gauge
q = 0 −→ δgij = a2(1− 2R)δij comoving gauge

(2.86)

However there are more version of such gauges depending on which of the metric
fluctuations is set to zero, but for future convenience we will chose: E = 0, in order to
have the metric spatial part isotropic.

2.4.3 Primordial Perturbations

As we have said before the slow-rolling inflation is characterized by the dynamic of a
scalar field which is supposed to dominates over the other fields during the inflationary
period, then let us start from the inflaton action which appears in the following form:

S =

∫
d4x

√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
(2.87)

Immediately we can see that if we suppose inflaton perturbations δϕ we will have
to couple them to the metric perturbations δgµν , furthermore, as we might expect this
mixing is gauge dependent, then for our purposes is useful to work in the spatially flat
gauge in which the line element is defined as:

ds2 = a2(τ)
[
−(1 + 2A)dτ 2 + 2∂iBdx

idxτ + δijdx
idxj

]
(2.88)

In order to derive the equations of motions for the inflaton perturbations let us remind
the Klein-Gordon equation in a generic spacetime (derived by imposing the vanishing of
the variations of the previous equation) to be:

1√
−g

∂µ
(√

−ggµν∂νϕ
)
= V,ϕ (2.89)

Then expanding ϕ = ϕ̄+ δϕ, and hence expanding V (ϕ),ϕ, we can find from the field
equation of motion also the equations of motion for the perturbations at the linear order:

δϕ′′ + 2Hδϕ′ −∇2δϕ = (A′ +∇2B)ϕ̄′ − 2a2V,ϕA− a2V,ϕϕδϕ (2.90)

Where we have substituted the partial derivatives with respect to the conformal time
with the prime, in order to simplify the notation for further manipulations. In fact, since
we want to obtain the equation of motion for the field perturbation we had better to
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express the metric perturbations as function of the inflaton one. in other words we have
to use the linearized version of the Einstein equation in the spatially flat gauge. Let us
start from the definition of the the 2 slow-roll parameters:{

ϵ = − Ḣ
H2 = 1− H′

H2 = 4πG (ϕ̄′)2

H2

δ = −
¨̄ϕ

H ˙̄ϕ
= 1− ϕ̄′′

Hϕ̄′
(2.91)

In order to use the Einstein’s equation, let us remind the stress-energy tensor of a
scalar field to be:

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
(2.92)

Then, since we just need to calculate A and ∇2B, we do not need to solve all the
equations. Let us tart to compute A, then let us consider:

δG0
i = −2H

a2
∂iA = 8πGδT 0

i = −8πG
ϕ̄′

a2
∂iδϕ ⇒ A = 4πG

ϕ̄′

H
δϕ = ϵ

H
ϕ̄′ δϕ (2.93)

While for calculating ∇2B we need to consider:

δG0
0 =

2H
a2
(
3HA+∇2B

)
= 8πGδT 0

0 = −8πG

[
ϕ̄′δϕ′ − (ϕ̄′)2A

a2
+ V,ϕδϕ

]
(2.94)

In order to solve the equation, let us plug in the expression for A, and also use the
Klein-Gordon equation for the background field, which we remind to be:

− ϕ̄
′′ + 2Hϕ̄′

a2
= V,ϕ (2.95)

Thus, we end up with:

∇2B = −ϵH
ϕ̄′ [δϕ

′ + (δ − ϵ)Hδϕ] (2.96)

Then by a substitution of the results for A and ∇2B into the original equation for
the field perturbations we can arrive to the following equation, which is only function of
the scalar field:

δϕ′′ + 2Hδϕ′ −∇2δϕ =

[
2ϵ(3 + ϵ− 2δ)− a2V,ϕϕ

H2

]
H2δϕ (2.97)

Furthermore by deriving an other time with respect to the field the scalar the Klein-
Gordon equation and writing it in terms of the slow roll parameters, we can bring the
previous equation in the following form:
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δϕ′′ + 2Hδϕ′ −∇2δϕ =

[
2ϵ(3 + ϵ− 2δ)− δ′

H

]
H2δϕ (2.98)

We can go further and write this equation even in a nicer form, making the following
substitutions:

{
f = aδϕ

z = a ϕ̄
′

H
⇒ f ′′ +

(
k2 − z′′

z

)
f = 0 Mukhanov-Sasaki equation (2.99)

In which we have hidden a more complicated quantity in k2, which however is a
square. We have written it as k since we have in mind a Fourier expansion of f, hence k
has to be seen as a wave number. In order to make such consideration more explicit we
could have started directly from the scalar field action:

S =

∫
dτdx

√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
where: ϕ(τ,x) = ϕ̄+

f(τ,x)
a(τ)

(2.100)

Obtaining an action for the field f , which represent the inflaton’s variations. And if
we perform all the previous substitutions of variables we will end up with the following
action:

S =

∫
dτdx

[
(f ′)2 − (∇f)2 + z′′

z
f 2

]
where: f(τ,k) =

∫
dx

(2π)3/2
f(τ,x)e−ixk (2.101)

Hence, by imposing the vanishing of the variations, we will recover the same form of
the Mukhanov-Sasaki equation.
Before to proceed in the quantization of the theory, let us make a few comment on
such equation. By now we have not made any assumption about the parameters which
regulate the dynamics of the fluctuations, but now let us assume to be in the slow-roll
approximation, i.e. let us consider H, ∂tϕ̄, approximately constant, thus:

z′′

z
∼ a′′

a
∼ 2H2 (2.102)

Let us furthermore define:

ω2(τ, k) = k2 − z′′

z
(2.103)

Then we can say that at early times H−1 will be large and all the modes will be
inside the horizon, hence ω2(τ, k) ∼ k2, then MS equation reduces to the equation of an
harmonic oscillator:
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f ′′ + k2f = 0 ⇒ f ∝ e±ikτ (sub-horizon) (2.104)

At a later time, when the comoving horizon shrinks, then it can happen that we
can pass from the regime in which k2 ≫ | z′′

z
| to one in which: k2 ≪ | z′′

z
|, then the MS

equation becomes:

f ′′ − z′′

z
f = 0 ⇒ f ∝

{
z growing mode
z−2 decaying mode

(super-horizon) (2.105)

Both those situations are extremal, but let us consider a more refined version of the
sub-horizon limit of the MS equation in the slow-roll approximation, then we will have
to treat H ∼ constant , and consequently a ∼ −(Hτ)−1, hence we will consider the MS
equation in the following form:

f ′′+

(
k2 − 2

τ 2

)
f = 0 ⇒ f(τ, k) = fk(τ) =

1√
2k

(
1− i

kτ

)
Bunch-Davies mode

(2.106)
Upon the quantization of f we might define the following operator:

f̂(τ,x) =
∫

d3k

(2π)3

[
fk(τ)âk + f ∗

k (τ)â
†
-k

]
eikx (2.107)

In which {âk, â
†
-k} are the usual ladder operators which satisfy the canonical commu-

tation relations. Then we can define a vacuum state |0⟩ as the state such that: âk|0⟩ = 0
∀k. Hence it is not difficult to see that: ⟨f̂⟩ = ⟨0|f̂ |0⟩ = 0, however its square will be
non vanishing:

⟨|f̂ |2⟩ =⟨0|f̂(τ,0)f̂(τ,0)|0⟩ =

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
⟨0|
[
fk(τ)âk + f ∗

k (τ)â
†
-k

] [
fk′(τ)âk′ + f ∗

k′(τ)â
†
-k′

]
|0⟩ =

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
fk(τ)f

∗
k′(τ)⟨0|[â-k′ , â†-k′ ]|0⟩ =

∫
d3k

(2π)3
|fk(τ)|2 =

=

∫
d[ln k]

k3

2π2
|fk(τ)|2 =

∫
d[ln k]∆2

f (τ, k)

(2.108)

Where ∆2
f (τ, k) is called the power spectrum, and is a dimensionless quantity.

Then rephrasing such quantity in terms of the inflaton’s fluctuations (f = aδϕ) we can
write the inflaton’s zero point power spectrum as:
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∆2
δϕ(τ, k) =

∆2
f (τ, k)

a2(τ)
=

(
H

2π

)2 [
1 + (kτ)2

]
⇒ lim

kτ→0
∆2
δϕ(τ, k) =

(
H

2π

)2

(2.109)

Let us notice that in the super-horizon limit we lose the momentum dependence,
hence we obtain a scale-invariant power spectrum. In order to remain in the above limit,
let us evaluate such power spectrum at horizon crossing, i.e. k = aH(t), then:

∆2
δϕ(k) ∼

(
H(t)

2π

) ∣∣∣∣
k=aH(t)

(2.110)

From this evaluation we might see that we have lost the scale invariance, since H(t)
decreases during inflation. Thus long-wave-length fluctuations, which exit the horizon
at the beginning of inflation, will be slightly larger.

At this point let us find out the explicit relation between the curvature and the field
perturbation in the spatially flat gauge (C = E = 0). Let us recall that in such gauge
we have the curvature perturbation are:

R =
H

ρ̄+ P̄
δq (2.111)

Furthermore let us remind from our previous calculations that:

δT 0
i = ∂iδq = g0µ∂µϕ∂iδϕ = g00∂0ϕ̄∂jδϕ = − ϕ̄′

a2
∂iδϕ (2.112)

Since: a2(ρ̄+ P̄ ) = (ϕ̄′)2, then:

R = −H
ϕ̄′ δϕ ⇒ lim

kτ→0
R = constant (2.113)

In other words we can say that R = Hδt, which tell us that the curvature perturba-
tions are induced by the time delay at the end of inflation. This relation is also important
because allow us to relate the curvature and field power spectrum in the following way:

∆2
R(k) =

(
H
˙̄ϕ

)2

∆2
δϕ ∼

(
H2

2π ˙̄ϕ2

)2 ∣∣∣∣
k=aH

=
1

8π2ϵ

H2

M2
P

∣∣∣∣
k=aH

(2.114)

Moreover we could have arrived to a more general conclusion, by starting to solve
explicitly the MS equation arriving to express:

∆2
R(k) = As

(
k

k∗

)ns−1

where

{
As = 1

8π2ϵ∗

H2
∗

M2
P

scalar amplitudes

ns = 1− 2ϵ∗ − η∗ spectral index
(2.115)
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Where the quantities with the star are supposed to be fixed. The current experimental
bounds are: As = (2.098± 0.023)× 10−9, ns = 0.9603± 0.0073, when k∗ = 0.05Mpc−1.
And this tell us that, as we expect, the power spectrum is not scale-invariant (i.e. ns ̸= 1),
because of the time dependence which we have already mentioned.

2.4.4 Primordial Gravitational Waves

An other relevant prediction of inflation is a spectrum of primordial gravitational waves.
In the language of gravitational perturbation theory these are just tensor perturbations
to the spatial metric, hence we can write:

ds2 = a2(τ)
[
−dτ 2 + (δij + hij)dx

idxj
]

where: ∂ihij = 0 hii = 0 (2.116)

We might show that the tensor fluctuations satisfy, in the FLRW background the
following wave equation:

h′′ij + 2Hh′ij −∇2hij = 0 . (2.117)

We can derive this from the Einstein-Hilbert action expanded to 2nd order in the
tensor perturbation hij and derivatives ∂µ as an action of the following form:

S =
M2

P

8

∫
dτdx3a2(τ)

[
(h′ij)

2 − (∇hij)2
]

(2.118)

In order to perform the calculations is useful to use rotational symmetry to align the
z-axis of the coordinate system with the momentum of the mode, i.e. k = (0, 0, k) (where
k is the wave-vector), and write the perturbations in function of the 2 polarizations f+
and f× :

MP

2
a(τ)hij =

1√
2

 f+ f× 0
f× f+ 0
0 0 0

 (2.119)

thus we can now rewrite the above action as:

S =
1

2

∑
λ=+,×

∫
dτdx3a2(τ)

[
(f ′
λ)

2 − (∇fλ)2 +
a′′

a
f 2
λ

]
(2.120)

Which is simply the double of the Mukhanov-Sasaki equation for the massless scalar
field. Then since we have already done the calculation for power spectrum of the scalar
perturbations, we can re-use such results to calculate the tensor fluctuations, rescaling
the previous derivation according to the action normalization, hence:
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∆2
h(k) = 2× 4

M2
P

×∆2
δϕ(k, τ)

∣∣∣∣
k=aH

=
2

π2

(
H

MP

) ∣∣∣∣
k=aH

(2.121)

And as before we can show that we can write such fluctuations as function of an
amplitude At and a spectral index nt (in the slow-roll approximation) in the following
way:

∆2
h(k) = At

(
k

k∗

)nt

where

{
At = 2

π2

H2
∗

M2
P

nt = −2ϵ∗
(2.122)

However observational constraints on the tensor amplitude are usually expressed in
terms of the tensor-to-scalar ratio, which is simply the ratio between the tensor and
scalar amplitude.

r =
At
As

= 16ϵ∗ (2.123)

Since the amplitude of scalar fluctuations has been measured, while a primordial
tensor signal so far has not been seen, we express its amplitude in terms of the tensor-
to-scalar ratio r. A detection of this quantity might be seen as a direct measurement
of the slow roll parameter ϵ. From current observations the bound on this ratio is
r < 0.038 (95%).
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Chapter 3

Type IIB Fluxed Orientifold
Compactifications

3.1 Towards Calabi-Yau Manifolds

3.1.1 Definition of Calabi-Yau Manifolds

Let us recall that the Calabi-Yau manifolds are a very special type of complex differ-
ential manifolds. Let us recall the definition of a n-dimensional complex differential
manifold M as a generalization of a 2n-dimensional real differential manifold. Hence we
can define an Atlas on it in the form:⋃

i

(ϕi, Ui) where: ϕi : M ⊃ Ui → ϕi(Ui) ⊂ Cn (3.1)

Hence as a real n-dimensional manifold looks locally as Rn, we expect that an n-
dimensional complex manifold looks locally as Cn, i.e. it should be invariant under the
group of complex diffeomorphisms, which we can explicitly write as:

z′
i
= z′

i
(z1, ..., zn) (3.2)

Hence having in mind the analogy between a 2n-dimensional real and an n-dimensional
complex differential manifold, we can define a basis for the tangent and co-tangent space
for all points of the manifold M respectively as:{

∂

∂zi
,
∂

∂z̄ ı̄

}
i=1,...,n

;
{
dzi, dz̄ ı̄

}
i=1,...,n

(3.3)

However, already from what we know from the relation between R2 and C we need to
implement and generalize the notion of the multiplication by i. The proper way of doing
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this operation is by the introduction of a 2-form, called almost complex structure J ,
which might be written in the previous defined basis to be:

J = idzi ⊗ ∂

∂zi
− idz̄ ı̄ ⊗ ∂

∂z̄ ı̄
=

[
i1 0
0 −i1

]
⇒ J2 = −1 (3.4)

Such structure define an almost complex manifold, and if, after a coordinate
transformation, we can always bring the tensor J ∀Up ∈ M (where: Up is a neigh-
bourhood of a point p ∈ M) in the canonical form just described, then we can define
many sets of holomorphic coordinates. Since the coordinates are defined in every
point’s neighbourhood, we can hence define an holomorphic atlas and this gives to
the manifold a complex structure, which induces the almost complex structure. We
can furthermore prove under such assumptions that the complex structure is unique and
coincide with the almost complex structure, which guaranties integrability. Further-
more, the Newlander–Nirenberg theorem, tell us that if the Nijenhuis tensor NJ

1 of an
almost complex structure is vanishing, then it is integrable, hence the almost complex
structure is promoted to a complex structure.
Then we can define an n-dimensional complex manifold as a 2n-dimensional real
manifold with a complex structure, which e.g. is what we are implicitly doing when we
consider the Argan-Gauss plane and not R2.

Now that we have introduced the notion of a complex manifold, we can be even
more restrictive in our choice of the complex manifold, more in the detail we can ask to
this complex manifold to have a Riemann structure, i.e. a metric, and that makes
our complex manifold an Hermitian manifold. Furthermore if we require also that
our manifold have a symplectic structure, i.e. a closed, non degenerate and smooth
2-form, then our Hermitian manifold become a Kähler manifold. Since the complex
structure, the metric and the symplectic structure are all 2-forms and they have to be
compatible one to an other, that means that they have to be related. In fact in a Kähler
manifolds the symplectic form is named Kähler form defined as follows:

ωKähler = giȷ̄(Jdz
i) ∧ dz̄ ȷ̄ = igij̄dz

i ∧ dz̄ ȷ̄ (3.5)

Those property imply that we can express the metric of a Kähler manifold locally as:

giȷ̄(p) =
∂2K(p)

∂zi∂z̄ ȷ̄
where: p ∈ M (3.6)

Since we have a metric we know that the Levi-Civita connection exists and is unique,
hence we can parallel transport the tangent vectors to the manifold. Hence we can define

1Let us recall the definition of: NA(X,Y ) = −A2[X,Y ] +A([AX,Y ] + [X,AY ])− [AX,AY ], hence:
NJ(X,Y ) = [X,Y ] + J([JX, Y ] + [X, JY ]) − [JX, JY ], where X,Y are smooth vector fields and A a
generic rank 2 tensor.
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an holonomy group of the manifold. Let us consider a point p ∈ M, and any closed
curve γi ∈ M, such that p ∈ γi

Hol(M) =
⋃
i

R(γi) where: R(γi) : Tp → Tp (3.7)

If we furthermore assume that M is connected and orientable (but orientability is
guaranteed by the existence of the complex structure), then we can argue thatHol(M) ⊂
SO(2n). Let us notice that Hol(M) does not depend op the choice of the point
p but only on the geometrical properties of M. It can be shown that require that
Hol(M) = U(n) ⊂ SO(2n) is equivalent to require that M is Kähler.

Now we can define a Calabi-Yau manifold(n-fold) as a Kähler manifold such that
Hol(M) = SU(n). Let us recall that:

U(n) = SU(n)× U(1) (3.8)

Thus we can think the connection to be the direct sum of a SU(n) and U(1) part,
hence we can imagine a Calabi-Yau manifold as Kähler manifold with a vanishing "field
strength" Fij̄ associated to the U(1) part of the connection. More explicitly we can con-
struct such field strength starting from the Riemann tensor, and the complex structure:

Fiȷ̄ = (Riȷ̄)
α
βJ

β
α = i(Riȷ̄)

k
k − i(Riȷ̄)

k̄
k̄ = 2i(Riȷ̄)

k
k = −2iRiȷ̄ (3.9)

At this point it might be clear that Hol(M) = SU(n) ⇐⇒ Rij̄ = 0, hence asking
that the holonomy group of a Kähler manifold to be SU(n) is equivalent to impose the
Ricci flatness condition.

Let us now give an alternative definition of Calabi-Yau manifold by the use of the
so called Chern classes. Hence let us consider the tangent bundle of a generic Kähler
manifold, it can naturally be viewed as a complex vector bundle in which the curvature
is determined by the Riemann tensor R k

ij̄ l. Then let us define the following 2-form:

R(TM) = dzi ∧ dz̄ ȷ̄R k
iȷ̄ l (3.10)

Then let us write the following multiform:

c(M) = det [1 +R(TM)] (3.11)

Let us expand it:

c(M) = 1 + Tr{R(TM)}+ Tr
{
R(TM) ∧R(TM)− 2Tr

[
R(TM)2

]}
+ ...

= 1 + c1(M) + c2(M) + ...
(3.12)

53



Let us define the kth Chern class as the 2k-form ck(M). As we might guess from
our previous considerations we might be interested to the vanishing of the first Chern
Class in order to restrict the homology group of the Kähler manifold to SU(n). More
precisely we can require the first Chern class to be an exact 2-form, i.e. it is zero in
cohomology. Furthermore, since we have defined the Chern classes starting from the
metric, they will be invariant (up to exact forms) under smooth metric’s variations. In
other words they represent topological invariant. This naive guess is well formulated in
the Yau’s theorem [Nak03]:

Theorem 1 Let M be a Kähler manifold and ωK its Kähler form. If the 1st Chern class
vanishes, then it is possible to define a Ricci flat metric, with correspondent Kähler form
ω′
K in the same cohomology class. This metric is the Calabi-Yau metric and is unique.

3.1.2 Hodge Theory

Let us first recap some concept coming from real differential geometry in order to extend
them to the complex manifolds.

Let us recall the definition of p-chain belonging to a compact manifold M

cp =
∑
i

αiSp,i where: αi ∈ R, Sp,i p-dimensional subsets (divisors) ∈ M (3.13)

Let us define the boundary operator ∂ as the nihilpotent operator such that:

∂Sp,i = S(p−1),i ∂2Sp,i = 0 (3.14)

Then we can define the p-cycles as the p-chains without boundaries, i.e. ∂cp = 0.
Furthermore we can define an homology group as follows:

Hp =
Ker{∂cp}
Im{∂cp+1}

=
p-cycles

boundaries of (p+ 1)-chains
. (3.15)

The elements of Hp are classes of cycles, called homology classes.
Let us introduce the p-form ad dual objects to the p-chains, where the duality relation

is given by:

ωp(cp) =

∫
cp

ωp =
∑
i

αi

∫
Sp,i

ωp (3.16)

Let us now introduce the exterior derivative d as the nilpotent dual operator of ∂
for the forms:

d : ωp → dωp = ωp+1 such that: d2ωp = 0 (3.17)
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Let us remind that an form is said to be closed when dωp = 0, and exact when
ωp = dωp−1 (hence all the exact forms are closed). Thus in a similar way as before we
can define the so called de Rham co-homology as:

Hp =
Ker{dωp}
Im{dωp−1}

=
Ker{dp}
Im{dp−1}

=
closed p-forms
exact p-forms

(3.18)

In order to see that Hp(M) = Hp(M)∗, let us consider that the pairing between the
forms and chains:

ωp(cp) =

∫
cp

ωp (3.19)

And we can show explicitly that: if we take 2 representatives of the homology and
co-homology classes respectively [cp] and [ωp], such pairing does not depend on the rep-
resentative:

∫
cp

ωp + dωp−1 =

∫
cp

ωp +

∫
∂cp

ωp−1 =

∫
cp

ωp =

∫
cp

ωp +

∫
cp+1

dωp =

∫
cp+∂cp+1

ωp (3.20)

Since this pairing between the classes is non degenerate, i.e. we have a one to one
correspondence between closed non exact forms and cycles, we might prove that Hp(M)
and Hp(M) are dual vector spaces (de Rham’s theorems). This duality implies that they
will have the same dimension, which is expressed by the so called Betti numbers as
follows:

bp(M) = dim{Hp(M)} = dim{Hp(M)} (3.21)

Let us now define an other duality in the forms’ realm, namely the Poincaré duality.
Let us suppose to have a real compact n-dimensional manifold M, and let us define the
following pairing operation between representative of the co-homology classes:

[ωp][ωn−p] =

∫
M
ωp ∧ ωn−p (3.22)

We might prove that such pairing is non degenerate, hence there is a duality between
Hp(M) and Hn−p(M). Thus, this implies that Hp(M) is dual to Hn−p(M), i.e we have
found a so called canonical isomorphism, and this one is defines the Poincaré duality.
More explicitly we can say that a p-form ωp is Poincaré dual to an (n− p)-cycle cn−p if:∫

cn−p

ωn−p =

∫
cn−p

ωp ∧ ωn−p ∀ωn−p (3.23)

Furthermore if we can provide to our manifold even a metric, we can define the
famous Hodge star operator as follows:
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∗ : ωp → (∗ω)n−p where: (∗ω)µp+1...µn =

√
g

p!
ϵµ1...µnω

µ1...µp (3.24)

Hence we now are able to define a scalar product between forms as:

(ωp, αp) =

∫
X

ωp ∧ ∗αp (3.25)

Furthermore we can define the co-differential d†, which is the adjoint of d:

d† = (−1)p(∗)−1d(∗) (3.26)

Then we are able to properly define the Laplace operator as:

∆ = d†d+ dd† (3.27)

In our case this operator is fundamental since it allow us to define the harmonic
forms, which are the forms ω such that: ∆ω = 0. At this point we can introduce the
Hodge decomposition theorem:

Theorem 2 Let M, be a real compact manifold, then any form defined on M has a
unique decomposition in an exact, co-exact and harmonic piece:

ω = dα + d†β + γ where: ∆γ = 0 (3.28)

As a corollary we can show that if ω is closed, then β = 0. This implies that every
representative of a cohomology class has a unique decomposition in terms of an exact
and harmonic form.

Let us now extend all this machinery that we have developed for real manifolds to
the complex manifolds. Let us start by reminding that we can always decompose a one
form in the following way:

ω(z, z̄) = ω(z, z̄)idz
i + ω(z, z̄)ı̄dz̄

ı̄ = ω(1,0) + ω(0,1) (3.29)

And following a similar reasoning we have can expand a 3-form as:

ω3 = ω(3,0) + ω(2,1) + ω(1,2) + ω(0,3) (3.30)

Let us extend to the complex field the exterior derivative, in the following way:

d = dzi
∂

∂zi
+ dz̄ ı̄

∂

∂z̄ ı̄
= ∂ + ∂̄ where: i = 1, ..., n (3.31)
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Since both: the holomorphic ∂ and anti-holomorphic ∂̄ are nihilpotent (i.e ∂2 =
∂̄2 = 0), we can define a cohomology. Conventionally we use to define such cohomol-
ogy which goes under the name of Dolbeault cohomology by the operator ∂̄ in the
following way:

Hp,q =
Ker{∂̄ω(p,q)}
Im{∂̄ω(p,q−1)}

=
Ker{∂̄p,q}
Im{∂̄p,q−1}

(3.32)

Which we might understand as a more refined version of the de Rham cohomology,
since it gives us also an information about the relation between the non trivial cycles
and the complex structure of the manifold. more explicitly we can represent as follows
the relation between the 2 cohomologies:

Hk =
⊕
p+q=k

Hp+q (3.33)

At this point we can define the Hodge numbers to be the dimensions of the Dol-
beault cohomology groups (similarly to the Betti numbers for the relal manifolds):

h(p,q)(M) = dim{Hp,q(M)} (3.34)

Usually such Hodge numbers are arranged in a beautiful way named the Hodge
diamond. We present here the case of a 3-dimensional complex manifold, since is the
type of manifold in which we will work:

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

(3.35)

3.1.3 Calabi-Yau 3-folds and their Moduli Space

The compactification spaces that we are going to consider are the so called Calabi-Yau
3-folds, in 3 complex dimensions, which under the previous considerations we can see as
a particular kind of 6D real manifold [Heb20]. The reason why we are choosing such space
is because we want to not break a certain amount of SUSY during the compactification.
More precisely since we are considering the compactification of a type IIB theory, we want
to start with a space in which are preserved the original N = 2 SUGRA corresponding
to the SUSY in which are organized the multiplets of the mass-less spectrum of the type
IIB string theory.
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We know that every SUSY correspond to a conserved supercharge, then in our case we
want to conserve locally 2 10D supercharges. We Know that such supercharges operators
transform as spinors in 10D (SO(1, 9) = SO(6)×SO(1, 3)), and we know by the Einstein
equivalence principle that locally the 4D manifold is flat. That implies that, in order to
conserve these supercharges, we have to impose that the 6D part of a spinor is conserved
in the compactification space, which in general is not flat. In other words we are requiring
the existence of covariantly constant spinors, i.e. spinors which does not rotate under
Hol(M), when they are parallely transported along a closed curve. More explicitly we
can define a covariant constant spinor ξ as:

∇aξ = 0 (3.36)

Since: SO(6) ∼= Spin(6)/Z2
∼= SU(4)/Z2, then we might say that the presence of

a covariantly constant spinor in the compactification space correspond to require that
the holonomy group of the compactification space is smaller than SU(4), thus SU(3) is
the greatest holonomy group that we can have (even that in other situation to enhance
SUSY is taken a smaller group, e.g. SU(2)).

The fact thatHol(M) = SU(3), lead to some simplifications to the previous discussed
Hodge diamond of a generic 3-dimensional complex manifold, which will take the form:

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

(3.37)

Let us notice that such diamond is symmetric along the 2 diagonal, and that is a
symmetry enjoyed by all the Calabi-Yau n-folds. The fact that h(0,0) = h(3,3) = 1, comes
from the connectedness of the space, while h(3,0) = h(0,3) = 1 is peculiar of the 3-fold.
This last property implies, by the Hodge decomposition theorem, the existence of a
unique holomorphic 3-form, which usually is called Ω. The presence of such form might
be seen as a defining property of the Calabi-Yau 3-fold, since it is related to the SU(3)
holonomy group of the manifold.
Hence the Hodge diamond of a Calabi-Yau 3-fold is characterized only by two numbers:
h(1,1) and h(2,1).

Let us now discuss the importance of these 2 numbers in the geometrical description
of the 3-fold, i.e. let us introduce the concept of moduli space.
In order to define the moduli space let us start from the metric of the Calabi-Yau space
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and ask if is possible to deform it keeping the space Ricci flat. By the Yau theorem
we know that that might be possible only if we change accordingly also the Kähler
class or the complex structure of the manifold. The possibility of existence of such
deformations imply the existence of the manifold’s moduli space spanned by these metric
deformations. But let us see what are these possible metric’s deformations, which are
also called breathing modes for obvious reasons:

giȷ̄dz
idz̄ ȷ̄ −→ giȷ̄dz

idz̄ ȷ̄ + δgiȷ̄dz
idz̄ ȷ̄ + δgijdz

idzj + h.c. (3.38)

From what is our previous definition of the Kähler form, we can suppose that δgij̄
will be accompanied with a change of the harmonic representative of the Kähler class,
and therefore are called Kähler deformations. It is straightforward to guess that the
number of such deformations correspond to the number of possible representative of the
H1,1 cohomology (h(1,1)), since the Kähler form is a (1, 1)-form. Hence the the Kähler
moduli space will be a h(1,1) space and its dimension will always be greater than one,
since it is always possible to rescale the metric.
On the other hand the other type of deformations δgij break explicitly the Hermitian
structure of the manifold, and therefore will be related to a change in the complex
structure of the manifold. Those deformations are therefore called complex structure
deformations.
In order to count this this type of deformation it is useful to define the following (2, 1)-
form:

δχ = Ω k̄
ij δgk̄l̄dz

i ∧ dzj ∧ dz̄ l̄ (3.39)

In other words what we have done is relate the H2,1 cohomology group to the complex
structure deformations, and we can show that this correspondence is in fact a one-to-
one map, by the uniqueness of the Ω. Hence the possible complex deformations will be
counted by h(2,1)
More in the details, by our previous consideration, we can parameterize both the defor-
mations in the following way:{

δgiȷ̄ = iva(ωa)iȷ̄ where: a = 1, ..., h(1,1)

δgij =
i

∥Ω∥2 z̄
k(χ̄k)īıȷ̄Ω

ı̄ȷ̄
j where: k = 1, ..., h(2,1)

(3.40)

Where: ωa is a basis of H1,1, while χk is a basis of H2,1 (hence χ̄k is a basis of H2,1).
On the other hand va and zk are respectively real and complex scalar fields which span
the moduli space of the Calabi-Yau 3-fold, which therefore might be seen as a Kähler
manifold M, such that:

M = Mh(1,2)

cs ×Mh(1,1)

K (3.41)
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After this brief discussion we might have understood that our compactification space
has to be treated as a dynamical geometrical object in which its geometry varies accord-
ing to its moduli space and the main focus of the present work is on the stabilization of
this moduli space, since we want to have a certain control on the geometry an hence on
the dynamics of the fields.
This idea is very similar to one of General Relativity in which the massive objects moves
according to the spacetime geometry, but also tell to the spacetime how to curve mod-
ifying its geometry. In this sense we might say that Sting Theory is in some sense an
extension of GR in which we want to include in our geometry not only massive object,
but also charged objects under some gauge group like e.g. the Standard Model fields.
We might say that this is the same idea that guided Theodor Kaluza and Oskar Klein in
the proposal of a unifying theory of Gravity and Electromagnetism, which is therefore
called Kaluza–Klein theory.

We will see in the next section how String Theory Compactifications inherit the ideas
of these two mathematicians, who were the first to add one space compact dimension
(S1) in order to obtain a U(1) gauge field coming directly from an Einstein–Hilbert-like
action in 5D. In fact e.g. in order to connect M-theory, who lives in 11D, to the other
coherent 10D String Theories is explicitly used a S1 compactification. In other contexts,
e.g. F -theory are employed toroidal compactifications, but in our present discussion we
will focus only on compactifications in Calabi-Yau 3-folds, which from now on we will
call as Y .

3.2 Type IIB Compactifications

3.2.1 Scalar Field in R1,3 × S1

Before to tackle the problem of the compactification for the mass-less sector of the type
IIB String Theory, let us treat the simplest example that we have in which we can see
all the key features of the compactification procedure.
The example consists in a scalar field in 5D, where the extra dimension is represented
by a circle S1 of radius R., i.e. M = R1,3 × S1. Let us start by writing its action:

S5D =

∫
M
d5x∂iϕ(x)∂iϕ(x) where: i = 0, 1, 2, 3, 4 (3.42)

Without loss in generality let us impose the condition that x4 correspond to a compact
circle of radius R:

x4 = y where: y = y + 2πR (3.43)
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The periodicity in the y direction allow us to expand in Fourier series the field as
follows:

ϕ(x) = ϕ(xµ, y) =
∞∑

n=−∞

ϕn(x
µ)e

iny
R where: µ = 0, 1, 2, 3 (3.44)

Let us reason on the equations of motions, obtained by imposing the vanishing of the
action’s variation:

∂i∂iϕ(x) = 0 ⇒
∞∑

n=−∞

(
∂µ∂µ −

n2

R2

)
ϕn(x

µ)e
iny
R = 0 ⇒ ∂µ∂µϕn(x

µ)− n2

R2
ϕn(x

µ) = 0

(3.45)
In other words we have obtained an infinite series of massive scalar fields, in which

the mass is given by m2
n =

(
n
R

)2. This series of massive states goes under the name of
Kaluza–Klein tower and we can notice that the only non-massive state correspond to
n = 0.
Let us now substitute the Fourier expansion also in the 5D action:

S5D =

∫
d4x

∫
dy

∞∑
n=−∞

(
∂µϕn(x

µ)∂µϕ
∗
n(x

µ)− n2

R2
|ϕn(xµ)|2

)
=

= 2πR

∫
d4x [∂µϕ0(x

µ)∂µϕ
∗
0(x

µ) + ...] = S4D + ...

(3.46)

Thus we see also from the action that in 4D we and up with the action for a massless
scalar field and a tower of massive states. Hence if we consider states with an energy
smaller then 1/R, i.e. we impose this energy to be the cut-off of out theory, then we can
truncate all the massive fields and we have dimensional reduced the system.

This will be the leitmotiv of our analysis and in our case, but instead of using cir-
cle we will use cycles and harmonic forms belonging to a certain cohomology of the
compactification space.

3.2.2 Type IIB Action

Let us now recall that the low energy massless spectrum of a type IIB ST, is a 10D N = 2
SUGRA, since we will develop out inflationary model in this theory, let us remind its
bosonic content. Since we will use a boson to drive inflation and we have SUSY that
allow us to relate bosons and fermions uniquely, we will just focus on the bosonic content
of the theory, neglecting the fermionic part.
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Let us recall that in string theory, in the target space, we need 2 coordinates to
parameterize the world–sheet (in which the string moves), which are called τ and σ.
When we add world-sheet fermions to the theory, i.e. we add a fermionic action to the
Polyakov action, thus formulating a superstring theory, we also need to specify their
boundary conditions:

ψM(τ, σ+2π) =

{
+ψM(τ, σ) ∈ Ramond sector (R)

−ψM(τ, σ) ∈ Neveu–Schwarz sector (NS)
where: M = 0, . . . , 9

(3.47)
However, since we have both left-moving and right-moving fermions on the world-

sheet, we can have 4 possible combinations, which in type IIB give raise to:

spacetime bosons:

{
NS −NS

R−R
spacetime fermions:

{
NS −R

R−NS
(3.48)

After this clarification, let us recall that in the massless bosonic spectrum of type IIB
theory we find in the NS-NS sector: the dilaton ϕ̂, the metric ĝ and a two-form B̂2, while
in the R-R sector we have: axion l̂, a two-form Ĉ2 and a four-form Ĉ4. Then, by the use
of the form notation, the type IIB low energy effective action in the D = 10 Einstein
frame is given by:

S
(10)
IIB = −

∫ (
1

2
R̂ ∗ 1+

1

4
dϕ̂ ∧ ∗dϕ̂+

1

4
e−ϕ̂Ĥ3 ∧ ∗Ĥ3

)
− 1

4

∫ (
e2ϕ̂dl̂ ∧ ∗dl̂ + eϕ̂F̂3 ∧ ∗F̂3 +

1

2
F̂5 ∧ ∗F̂5

)
− 1

4

∫
Ĉ4 ∧ Ĥ3 ∧ F̂3

(3.49)

In which the field strengths are defined as:

Ĥ3 = dB̂2 F̂3 = dĈ2 − l̂dB̂2

F̂5 = dĈ4 −
1

2
dB̂2 ∧ Ĉ2 +

1

2
B̂2 ∧ dĈ2

(3.50)

Where we have put a hat on all the fields to remind that they are in 10D. Let us
furthermore remind that the self-duality condition F̂5 = ∗F̂5 must be imposed at the
level of the equations of motion, in order not to spoilt the dimensional reduction.

The assumption that we do in Calabi-Yau compactifications is that the 10-dimensional
background metric is block diagonal or in other words the line element to take the form:

ds2 = gµνdx
µdxν + giȷ̄dy

idȳȷ̄ where: µ, ν = 0, . . . , 3 i, ȷ̄ = 1, . . . , 3 (3.51)
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Where gµν is the Minkowski metric and giȷ̄ is the metric on the Calabi-Yau manifold
Y . Let us remind from the previous section that deformations of this metric which
respect the Calabi-Yau condition correspond to scalar fields in 4D. The deformations of
the Kähler form J = igij̄dy

i ∧ dȳj̄ give rise to h(1,1) real scalar fields vA(x), hence we can
expand the Kähler form, which is usually called J as:

J = vA(x)ωA, A = 1, . . . , h(1,1) (3.52)

where as before ωA are harmonic (1, 1)-forms on Y which form a basis of the coho-
mology group H(1,1)(Y). Let us also recall that the complex structure deformations are
parameterized by complex scalar fields zK(x) and are in one-to-one correspondence with
harmonic (1, 2)-forms:

δgij =
i

∥Ω∥2
z̄K (χ̄K)īıȷ̄Ω

ı̄
j j, K = 1, . . . , h(1,2) (3.53)

Using the our metric Ansatz for the gauge potentials appearing in the Lagrangian,
we can expanded them in terms of harmonic forms on Y as:

B̂2 = B2(x) + bA(x)ωA, Ĉ2 = C2(x) + cA(x)ωA, A = 1, . . . , h(1,1),

Ĉ4 = DA
2 (x) ∧ ωA + V K̂(x) ∧ αK̂ − UK̂(x) ∧ β

K̂ + ρA(x)ω̃
A, K̂ = 0, . . . , h(1,2).

(3.54)

Where the ω̃A are harmonic (2, 2)-forms which form a basis of H2,2(Y) dual to the
(1, 1)-forms ωA. While

(
αK̂ , β

L̂
)

are harmonic three-forms and form a real, symplectic
basis on H3(Y) i.e. they satisfy the following relation:∫

Y
αK̂ ∧ βL̂ = δL̂

K̂

∫
Y
αK̂ ∧ αL̂ =

∫
Y
βK̂ ∧ βL̂ = 0 (3.55)

In the following tabular we resume the relevant cohomologies to perform the dimen-
sional reduction, that we can also read from the previous Hodge diamond, that we have
written in the previous section:

cohomology group dimension basis
H1,1 h(1,1) ωA
H2,2 h(1,1) ω̃A

H3 2h(2,1) + 2
(
αK̂ , β

L̂
)

H2,1 h(2,1) χK

The 4D fields appearing in the expansions are: the scalars bA(x), cA(x) and ρA(x),
the one-forms: V K̂(x) and UK̂(x) and the two-forms: B2(x), C2(x) and DA

2 (x). The
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self-duality condition of F̂5 eliminates half of the degrees of freedom in Ĉ4 and we choose
to eliminate DA

2 and UK̂ in favor of ρA and V K̂ . There are also the two type IIB scalars
ϕ̂, l̂ which also appear as scalars in D = 4 and therefore we drop the hats henceforth and
denote them by ϕ, l.

Altogether the masslessD = 4 spectrum consists of the gravity multiplet with bosonic
components (gµν , V

0) , h(2,1) vector multiplets with bosonic components
(
V K , zK

)
, h(1,1)

hypermultiplets with bosonic components
(
vA, bA, cA, ρA

)
and one double-tensor multi-

plet 44 with bosonic components (B2, C2, ϕ, l) which can be dualized to an additional
(universal) hypermultiplet. We summarize the bosonic 4D massless spectrum in the
following table:

gravity multiplet 1 (gµν , V
0)

vector multiplets h(2,1)
(
V K , zK

)
hypermultiplets h(1,1)

(
vA, bA, cA, ρA

)
double-tensor multiplet 1 (B2, C2, ϕ, l)

If we careful plug all our decomposition into the full 10D Lagrangian and we integrate
the compact part expanded in harmonic forms we can show that we will end up with the
following 4D Lagrangian:

S
(4)
IIB =

∫
−1

2
R ∗ 1+

1

4
ReMK̂L̂F

K̂ ∧ F L̂ +
1

4
ImMK̂L̂F

K̂ ∧ ∗F L̂

−GKLdz
K ∧ ∗dz̄L −GABdv

A ∧ ∗dvB − 1

4
d lnK ∧ ∗d lnK − 1

4
dϕ ∧ ∗dϕ

− 1

4
e2ϕdl ∧ ∗dl − e−ϕGABdb

A ∧ ∗dbB − eϕGAB

(
dcA − ldbA

)
∧ ∗
(
dcB − ldbB

)
− 9GAD

4K2

(
dρA − 1

2
KABC

(
cBdbC − bBdcC

))
∧ ∗
(
dρD − 1

2
KDEF

(
cEdbF − bEdcF

))
− K2

144
e−ϕdB2 ∧ ∗dB2 −

K2

144
eϕ (dC2 − ldB2) ∧ ∗ (dC2 − ldB2)

+
1

2

(
dbA ∧ C2 + cAdB2

)
∧
(
dρA −KABCc

BdbC
)
+

1

4
KABCc

AcBdB2 ∧ dbC ,
(3.56)

This action might seems complicated, but is already a simplified version of the action
in which we have rearranged the terms in order to define some metrics and matrices.

First of all let us say that we have defined the field strength F K̂ as:

F K̂ = dV K̂ (3.57)

Then we have introduced the gauge kinetic matrix MK̂L̂, which is related to the
metric on H3(Y ) as follows:
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∫
αK̂ ∧ ∗αL̂ = −

(
ImM+ (ReM)(ImM)−1(ReM)

)
K̂L̂∫

βK̂ ∧ ∗βL̂ = −(ImM)−1K̂L̂∫
αK̂ ∧ ∗βL̂ = −

(
(ReM)(ImM)−1

)L̂
K̂

(3.58)

Let us recall that we can expand the holomorphic three-form Ω(z) in terms of the so
called periods XK̂ and FK̂ :{

XK̂ =
∫
Y Ω ∧ βK̂

FK̂ =
∫
Y Ω ∧ αK̂

⇒ Ω(z) = XK̂(z)αK̂ −FK̂(z)β
K̂ (3.59)

Where both XK̂(z) and FK̂(z) depend holomorphically on the complex structure
deformations zK and it has been shown that FK̂ is the derivative of a holomorphic
prepotential F , i.e. FK̂ = ∂F

∂XK̂
.

Hence which we can define the period matrix to be:

FK̂L̂ =
∂FK̂

∂X L̂
=

∂2F
∂XK̂∂X L̂

(3.60)

Then we are able to define MK̂L̂ in terms of the period matrix as:

MK̂L̂ = F̄K̂L̂ + 2i
(ImF)K̂M̂X

M̂(ImF)L̂N̂X
N̂

XN̂(ImF)N̂M̂X
M̂

(3.61)

Furthermore we can define a set of special coordinates in which: XK̂ =
(
1, zK

)
.

This simplification allow us to write the metric GKL(z, z̄) defined in the complex
structure moduli space as:

GKL =
∂2Kcs

∂zK∂z̄L
where: Kcs = − ln

[
−i
∫
Y
Ω ∧ Ω̄

]
= − ln

[
i
(
X̄K̂FK̂ −XK̂F̄K̂

)]
(3.62)

Then we are left over with the other metric GAB, and the Ks, and we might notice
that they both belong to the Kähler moduli space and are in fact related. Let us define
the K’s to be: 

KABC =
∫
Y ωA ∧ ωB ∧ ωC

KAB =
∫
Y ωA ∧ ωB ∧ J = KABCv

C

KA =
∫
Y ωA ∧ J ∧ J = KABCv

BvC

K =
∫
Y J ∧ J ∧ J = KABCv

AvBvC

(3.63)
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And therefore we can write the Kähler metric GAB to be:

GAB =
3

2K

∫
Y
ωA ∧ ∗ωB = −3

2

(
KAB

K
− 3

2

KAKB

K2

)
(3.64)

Then according to our conventions in the Ks definition, we will express the volume
of the Calabi-Yau as:

V(Y) =
K
6

=
1

6

∫
Y
J ∧ J ∧ J =

1

6
KABCv

AvBvC (3.65)

For completeness we mention that is possible to work out a more beautiful action by
dualizing the 2-forms B2 and C2 to scalar fields, so that the tensor multiplet becomes
an hypermultiplet, and we can express the the action in a more compact way by the
use of a metric defined on a quaternionic manifold, but since we do not need it for our
discussion, we will not comment forward.

3.3 Type IIB Orientifold Action

3.3.1 Orientifold Projection in type IIB Theories

Before to work out the the type IIB orientifold action let us define what we meant by
the orientifold projection.
Let us remind that until now we have considered oriented strings, i.e. we are parame-
terizing in the world-sheet a string which goes from one point to an other. Let us call
the world-sheet coordinates as {τ, σ}, where τ represent the time coordinate, while σ the
space coordinate [Zwi04]. In order to in vert the string orientation we might think to a
transformation which keeps τ invariant and change the sign of σ, and hence we define
the so called world-sheet parity transformation to be Ωp:

Ωp =

{
τ −→ τ

σ −→ −σ
(3.66)

Furthermore on a Calabi-Yau threefold Y one can define an isometric holomorphic
involution σ, such that it leaves unchanged the 4D Minkowskian manifold as the Kähler
form J unchanged, but might act non-trivially on the holomorphic 3-form Ω. More in the
detail when we want to consider the action of σ on Ω, we have to consider its pull-back,
that acts on forms which we will denote as σ∗. In this context the pull-back of σ acting
on a generic k-form αM1...MK

(x) as follows:

σ∗αM1...Mk
(x) = ∂M1σ

N1 . . . ∂Mk
σNkαN1...Nk

(x) (3.67)
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Requiring that σ is an involution2 means that the square of its action correspond
to the identity, while requiring it to be an isometry means that it keeps the metric and
the complex structure invariant (thus also the Kähler form will be invariant to), but the
action of σ∗ on the holomorphic 3-form is not completely fixed [Tom22]:

(σ∗)2Ω = 1Ω ⇒

{
σ∗Ω = +Ω

σ∗Ω = −Ω
(3.68)

At this point we might think to combine both the transformations, Ωp and σ, to define
in a consistent way the orientifold projection as an holomorphic isometric involution. By
the previous argument we can have 2 possibilities:

O1 = (−1)FLΩpσ
∗ if σ∗Ω = −Ω

O2 = Ωpσ
∗ if σ∗Ω = +Ω

(3.69)

The reason why we have putted the factor (−1)FL in front of the first projection is
because of consistency arguments. FL stands for the number of left moving fermions
on the world-sheet, hence each time that we encounter an odd number of world-sheet
fermions it will give us a minus sign which is needed to make O1 an involution.

At this point we might think to use these 2 isometries to quotient our compactifi-
cation space in order to reduce the amount of SUSY from N = 2 to N = 1, without
changing the compactification’s space geometry, and this is what we are going to do.
Furthermore we can say that there will be some fixed points in such construction, which
more in the detail correspond to planes called O-planes. Since σ act holomorphically
on the coordinate we might argue that the possible dimension of the O-planes will only
be even. Since the only time direction is unaffected by such transformations, then we
indicate, including the time direction, the On-planes in which n tell us only about the
spatial direction which is preserved. Since the Minkowski 4D space is left invariant, then
the O-planes will be always spacetime-filling. Hence the smallest O-plane is an O3-plane,
and since we can have only even dimensional O-planes, the only possible O-planes are:
O3-, O5-, O7- ,O9-planes.

Let us see how we can obtain this type of reflection planes, by studying the action of
σ∗ on the holomorphic 3-form Ω.
Let us define {yi}i=1,2,3 to be the coordinates of Y , without loss in generality we might
think Ω ∝ dy1 ∧ dy2 ∧ dy3. Let us act with σ∗ on dy1 ∧ dy2 ∧ dy3, then we might obtain:

2In general we define an involution as a function f(x), such that f(x)2 = 1, hence it does not only
consists in a change of sign, e.g. also f(x) = 1

x is an involution, but it has to be an isometry it will just
correspond at most to a change in sign
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{
−(dy1 ∧ dy2 ∧ dy3) if σ∗(dy1) = −dy1 or σ∗(dyi) = −dyi ∀i = 1, 2, 3

+(dy1 ∧ dy2 ∧ dy3) if σ∗(dyi) = −dyi ∀i = 1, 2 or σ∗(dyi) = +dyi ∀i = 1, 2, 3

(3.70)
Then quotienting with respect to O1 we obtain, as suggested by the previous formula,

respectively O7-, O3-planes, while for O2 we will have respectively O5-, O9-planes.
In the present work we will only consider the projection O1 which we will simply

denote as O, from now on. After having defined O, we can see what changes it brings
to the cohomologies classes, modding out all the forms which are not invariant under its
action.

Let us start by analyzing the behaviour of the type IIB fields under the action of:
(−1)FLΩp, then:

(−1)FLΩpϕ̂ = ϕ̂ (−1)FLΩpl̂ = l̂

(−1)FLΩpĝ = ĝ (−1)FLΩpĈ2 = −Ĉ2

(−1)FLΩpB̂2 = −B̂2 (−1)FLΩpĈ4 = Ĉ4

(3.71)

Then, since we want to keep only the fields which are invariant under O, we will have
to keep only the field which transform under σ∗ in the following way:

σ∗ϕ̂ = ϕ̂ σ∗l̂ = l̂

σ∗ĝ = ĝ σ∗Ĉ2 = −Ĉ2

σ∗B̂2 = −B̂2 σ∗Ĉ4 = Ĉ4

(3.72)

Furthermore, since the holomorphic involution σ∗ is such that σ∗Ω = −Ω, then
the cohomology groups H(p,q), and thus the harmonic (p, q)-forms, will split into two
eigenspaces under the action of σ∗, which we denote as follow:

Hp,q = Hp,q
+ ⊕Hp,q

− ⇒ h(p,q) = h
(p,q)
+ + h

(p,q)
− (3.73)

Where the + denotes the even eigenspace of σ∗, while − the odd one.
Since σ preserves the orientation and the metric of Y , then the ∗-operator commutes
with σ∗, and thus we can argue that h(1,1)± = h

(2,2)
± . The holomorphicity of σ implies that

h
(2,1)
± = h

(1,2)
± . The fact that σ∗Ω = −Ω leads to h(3,0)+ = h

(0,3)
+ = 0 and h(3,0)− = h

(0,3)
− = 1,

which in a certain sense we might see as the survival of just one SUSY.
Since the volume-form which is proportional to Ω ∧ Ω̄, then it is invariant under σ∗,
hence: h(0,0)+ = h

(3,3)
+ = 1, while h(0,0)− = h

(3,3)
− = 0.

In order to be clear, let us express all the relevant cohomologies in the following table:
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cohomology group dimension basis
H1,1

+ H1,1
− h

(1,1)
+ h

(1,1)
− ωα ωa

H2,2
+ H2,2

− h
(1,1)
+ h

(1,1)
− ω̃α ω̃a

H2,1
+ H2,1

− h
(2,1)
+ h

(2,1)
− χκ χk

H3
+ H3

− 2h
(2,1)
+ 2h

(2,1)
− + 2 ακ, β

λ αk̂, β
l̂

Now we can find the 4D invariant spectrum by using the Kaluza-Klein expansion
according to the modification of the cohomologies. We see immediately that both the
4D scalar fields arising from ϕ̂ and l̂ remain in the spectrum and as before we denote
them by ϕ and l.
Since σ∗ leaves the Kähler form J invariant, then, only the h(1,1)+ even Kähler deformations
vα remain in the spectrum, hence we can expand:

J = vα(x)ωα where: α = 1, . . . , h
(1,1)
+ (3.74)

On the other hand the transformation rule for Ω implies that the complex structure
deformations kept in the spectrum correspond to elements belonging to H1,2

− , thus we
might write:

δgij =
i

∥Ω∥2
z̄k (χ̄k)īıȷ̄Ω

ı̄ȷ̄
j where: k = 1, . . . , h

(1,2)
− (3.75)

From what does it concern the other fields, we can say, according to our previous
discussion, that in the expansion of B̂2 and Ĉ2 only odd elements survive, while for Ĉ4

only even elements are kept, then:

B̂2 = ba(x)ωa Ĉ2 = ca(x)ωa where: a = 1, . . . , h
(1,1)
−

Ĉ4 = Dα
2 (x) ∧ ωα + V κ(x) ∧ ακ + Uκ(x) ∧ βκ + ρα(x)ω̃

α where: κ = 1, . . . , h
(1,2)
+

(3.76)
As before by imposing the self-duality at the level of the equation of motion on F̂5, we

eliminate half of the degrees of freedom in the expansion of Ĉ4. For the one-forms V κ, Uκ
this corresponds to the choice of electric instead of magnetic gauge potentials. An other
freedom is in the choice of the two forms Dα

2 or the scalars ρα, which determines the
structure of the N = 1 multiplets to be respectively either a linear or a chiral multiplet,
but we will treat the chiral multiplet case.

According to the explained choices, the resulting N = 1 spectrum assembles into a
gravitational multiplet, h(2,1)+ vector multiplets, h(2,1)− + h(1,1) + 1 chiral multiplets, and
h
(1,1)
+ chiral or linear multiplets (but we will chose the chiral multiplet representation).

For the sake of clarity we present the spectrum of our N = 1 type IIB SUGRA in the
following table:
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gravity multiplet 1 gµν

vector multiplets h
(2,1)
+ V κ

chiral multiplets
h
(2,1)
− zk

1 (ϕ, l)

h
(1,1)
− (ba, ca)

chiral/linear multiplets h
(1,1)
+ (vα, ρα)

We can now compare the previous N = 2 spectrum of the Calabi-Yau compactifi-
cation: we see that the graviphoton is projected out of the gravitational multiplet, the
h(2,1) N = 2 vector multiplets are now decomposed into h(2,1)+ N = 1 vector multiplets
plus h(2,1)− chiral multiplets. Furthermore, the h(1,1) +1 hypermultiplets lost half of their
physical degrees of freedom since they are reduced to h(1,1) + 1 chiral multiplets. We
might also notice that the two 4D two-forms B2 and C2 present in the N = 2 compact-
ification have been projected out leaving in the expansion of B̂2 and Ĉ2 only the scalar
fields ca, ba.
We can see the non-vanishing of ca, ba and V κ as related to the presence of O3- and
O7-planes. More in the detail let us recall that the presence of O3-planes implies that
the fixed points locus of Y is zero dimensional, i.e all the tangent vectors to Y are odd
under the action of σ, while the 2-form are even under the action of σ∗. The appearance
of O7-planes, i.e. having a 2 complex dimensional fixed locus under the orientifold pro-
jection gives the support to the harmonic forms belonging to H1,1

− and H2,1
+ , and hence

ensures the non vanishing of ca, ba and V κ.

3.3.2 Type IIB Orientifold Action with O3/O7-planes

After having discussed the new cohomologies groups which survive to the O projection,
let us do once again the Kaluza-Klein procedure, hence let us expand the fields in 4D
fields and harmonic forms, which belong to the orientifolded Y [GL04]:

Ĥ3 = dba ∧ ωa +H3 F̂3 = dca ∧ ωa − ldba ∧ ωa + F3 − lH3

F̂5 = dDα
2 ∧ ωα + dV κ ∧ ακ − dUκ ∧ βκ + dραω̃

α − 1

2
(cadbb − badcb) ∧ ωa ∧ ωb

(3.77)

where we notice that we allowed for the presence of background fluxes H3 and F3,
which we see as background fluxes of the compactification space which are terms that
might be present since they are not ruled out by the orientifold projection. In principle
we could expect that these 3-form fluxes influence also the 5-form field-strength, however
the only possibility to obtain such contribution is to couple to them with the 2-forms
B2 or C2, which however are projected out. Hence such 3-form fluxes do not affect the
5-form, and furthermore the self duality constraint prevent us to insert a background
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flux for the 5-form.

At this point we just have to insert the new expansion of the field-strengths in the
action and integrate over Y . In order to do so we first need to reconsider the complex
structure and Kähler metrics, and the intersection numbers which have been modified
by the orientifold projection.

Let us start with the complex structure deformations. Let us recall that:

H(3) = H
(3)
+ ⊕H

(3)
− ⇒

{
αK̂ , β

L̂
}
=
{
ακ, αk̂, β

λ, β l̂
}

(3.78)

Where, as before we have used symplectic basis, such that the only non vanishing
pairing are: ∫

ακ ∧ βλ = δλκ

∫
αk̂ ∧ β

l̂ = δ l̂
k̂

(3.79)

Furthermore, since from the previous h(2,1) complex structure deformation zK only
h
(2,1)
− (denoted by zk ) survive, then the three-form Ω will be an element of H(3)

− , and
thus might be expanded according to:

Ω
(
zk
)
= X k̂αk̂ −Fk̂β

k̂ where: k̂ = 0 . . . , h
(1,2)
− (3.80)

Where the only non vanishing periods are: X k̂ and Fk̂, which we remind to be:

X k̂ =

∫
Y
Ω ∧ β k̂ Fk̂ =

∫
Y
Ω ∧ αk̂ (3.81)

Hence the metric on the space of complex structure deformations reduces to:

Gkl =
∂2Kcs

∂zk∂z̄l
where: Kcs = − ln

[
−i
∫
Y

Ω ∧ Ω̄

]
= − ln

[
i
(
X̄ k̂Fk̂ −X k̂F̄k̂

)]
(3.82)

Let us now analyze the Kähler deformations. let us remind that:

H1,1 = H1,1
+ ⊕H1,1

− ⇒ {ωA} = {ωα, ωa} (3.83)

Thus also the decomposition of the intersection numbers KABC will be different. In
fact under the orientifold projection only Kαβγ and Kαbc can be non-zero, while Kαβc and
Kabc vanish. Furthermore, since the Kähler-form J is invariant under O, then Kαb =
Ka = 0. To sum up, the vanishing intersection numbers are:

Kαβc = Kabc = Kαb = Ka = 0 (3.84)
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While the non-vanishing intersection numbers are:

Kαβ = Kαβγv
γ Kab = Kabγv

γ Kα = Kαβγv
βvγ K = Kαβγv

αvβvγ (3.85)

Which allow us to write the Kähler metric as follow:

Gαβ = −3

2

(
Kαβ

K
− 3

2

KαKβ

K2

)
Gab = −3

2

Kab

K
Gαb = Gaβ = 0 (3.86)

At this point we are ready to calculate the 4D action by plugging in all the derived
expansions into the original 10D type IIB action. Furthermore in order to impose the
self-duality condition F̂5 = ∗F̂5 we can add the following total derivative to the action:

δS
(4)
O3/O7 =

1

4
dV κ ∧ dUκ +

1

4
dDα

2 ∧ dρα (3.87)

In other words we are saying that the equation of motions for Dα
2 and Uκ (or equiva-

lently for ρα, V κ ) coincide with the self-duality condition, therefore we can consistently
eliminate Dα

2 and Uκ (or ρα, V κ) by inserting their equations of motions into the action.
As we said before keeping V κ corresponds to the choice of expressing the action in terms
of an electric instead of a magnetic gauge potential Uκ. Choosing to eliminate Dα

2 or ρα
corresponds to the choice of expressing the action in terms of linear or chiral multiplets.
Since the standard N = 1 supergravity formulation uses the chiral multiplets it is more
convenient to eliminate Dα

2 in favor of ρα and express everything in terms of chiral mul-
tiplets.
Then, after having eliminated Dα

2 and Uκ by its equations of motion and having per-
formed a Weyl rescaling of the four-dimensional metric gµν → K

6
gµν to obtain the canon-

ically normalized Einstein-Hilbert term, we arrive to write the following 4D action:

S
(4)
O3/O7 =

∫
−1

2
R ∗ 1−Gkldz

k ∧ ∗dz̄l −Gαβdv
α ∧ ∗dvβ − 1

4
d lnK ∧ ∗d lnK

− 1

4
dϕ ∧ ∗dϕ− 1

4
e2ϕdl ∧ ∗dl − e−ϕGabdb

a ∧ ∗dbb

− eϕGab (dc
a − ldba) ∧ ∗

(
dcb − ldbb

)
− 9Gαβ

4K2

[
dρα −

1

2
Kαab

(
cadbb − badcb

)]
∧ ∗
[
dρβ −

1

2
Kβcd

(
ccdbd − bcdcd

)]
+

1

4
ImMκλF

κ ∧ ∗F λ +
1

4
ReMκλF

κ ∧ F λ − V ∗ 1,
(3.88)

Where, as before: F κ = dV κ and Mκλ is the N = 2 gauge kinetic matrix already
defined, evaluated at zκ = z̄κ = 0.
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In the last term we have defined the potential V , which is manifestly positive semi-definite
and in a more explicit form is given by:

V =
18ieϕ

K2
∫
Ω ∧ Ω̄

(∫
Ω ∧ Ḡ3

∫
Ω̄ ∧G3 +Gkl

∫
χk ∧G3

∫
χ̄l ∧ Ḡ3

)
(3.89)

In which we see the 3-form G3, which we define to be:

G3 = F3 − SH3 where: S = e−ϕ + il (3.90)

Now we have to understand by which change of coordinates we can bring the present
4D action into the standard N = 1 SUGRA form, where it is expressed in terms of a
Kähler potential K, a holomorphic superpotential W and the holomorphic gauge-kinetic
coupling functions f as follows:

S(4) = −
∫

1

2
R∗1+KIJ̄DM

I∧∗DM̄ J̄+
1

2
Re fκλF

κ∧∗F λ+
1

2
Im fκλF

κ∧F λ+V ∗1 (3.91)

Where we define the coordinates {M I} to denote all complex scalars in the theory
and KIJ̄ as the Kähler metric such that: KIJ̄ = ∂I ∂̄J̄K(M, M̄). Furthermore the scalar
potential V is expressed in terms of the Kähler-covariant derivative DIW = ∂IW +
(∂IK)W as:

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
+

1

2

[
(Re f)−1

]κλ
DκDλ (3.92)

However we will never consider the gauge kinetic functions in our discussion, since we
will never treat gauge interactions, hence we can immediately set them to zero obtaining:

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
(3.93)

In order to define a metric which is manifestly Kähler, we first need to find a complex
structure on the space of scalar fields. As we saw by the definition of the complex
structure deformations’ metric, the zk are already good Kähler coordinates. For the
remaining fields the definition of the Kähler coordinates is more involved, and is suggested
by a the action expressed not by the use of the linear multiplets instead of the chiral
ones, but we will not discuss it. We can verify that a good definition for the remaining
Kähler coordinates is the following:

S = e−ϕ + il

Ga = S̄ba + ica

Tα = iρα +
1
2
Kα(v)− 1

2
ζα(S, S̄, G, Ḡ)

= iρα +
1
2
Kαβγv

βvγ + 1
2(S+S̄)

KαbcG
b(G+ Ḡ)c

(3.94)
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Then we can explicitly write the Kähler potential as the sum of the sum of the
complex structure moduli’s Kähler potential Kcs and the Kähler moduli’s one as follow:

K = Kcs(z, z̄) +Kk(S, T,G) (3.95)

Where:

{
Kcs = − ln

[
−i
∫
Ω(z) ∧ Ω̄(z̄)

]
Kk = − ln

(
S + S̄

)
− 2 ln

[
1
6
K(S, T,G)

]
= − ln

(
S + S̄

)
− 2 lnV

(3.96)

Furthermore, we may show that the superpotential W , from which we obtain V might
be written in the following form:

W (S, zk) =

∫
Y
Ω ∧G3 (3.97)

Hence we can explicitly calculate the covariant derivatives of such potential with
respect to all the Kähler coordinates, having in mind that DzkΩ = iχk:

DSW = ieϕ

2

∫
Y Ω ∧ Ḡ3 + iGabb

abbW

DzkW = i
∫
Y χk ∧G3

DGaW = KGaW = 2iGabb
bW

DTαW = KTαW = −2vα

K W

(3.98)

From which we can find the previous potential V . Let us furthermore stress that W
depend only on the axio-dilaton and the complex structure moduli, and on the back-
ground fluxes, hence having fixed those quantities allow us to have a Kähler potential
which is only function of the Kähler moduli.

3.4 Fluxes and Warped compactifications in type IIB
SUGRA

3.4.1 Flux Quantization

In the previous section we have mentioned the possibility to have the 3-form fluxes H3

and F3, which can be combined into the imaginary self dual G3, such that dH3 = dF3 = 0.
However, as we can imagine, such fields cannot take continuous real values, but they are
quantized [IU12].

Let us now show how a q-form flux Fq might be quantized by the Dirac quantiza-
tion procedure, which refers to the way in which Dirac quantized the magnetic charge
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as consequence of the quantization of the electric charge, but which in a wider sense we
can think as a Path Integral quantization.
The considered flux Fq, will have support on an integer cohomology q-cycle an is such
that dFq = 0. Let us consider a d-dimensional compact manifold M in which exist Σq

as support of Fq. Let us consider a trivial (q − 1)-cycle Πq−1 ⊂ Σq. In general such
cycle split Σq in 2 parts Σ+ and Σ−, such that Σ+ − Σ− = Σq (we have putted a minus
sign since we are considering the surface’s orientation). Hence, that means that both the
boundaries of the 2 regions will be such that ∂Σ+ = ∂Σ− = Πq−1.
Let us consider the (q − 1)-form field Cq−1 associated to the Fq field strength, i.e. such
that: Fq = dCq−1. Let us furthermore suppose that exist an object that is charged under
such gauge field, which wraps Πq−1 and has a charge of Qe. In string theory these states
are the branes and in our example we have to consider a (q − 2)-Euclidean D-brane
(an ED(q− 2)-brane), since we want a (q− 1)-dimensional object. In fact in the branes’
description we indicate only the space-dimension (q − 2), and implicitly one dimension
refers to the time, but for Euclidean-branes the time dimension is converted into a space
dimension (through Wick’s rotation).

Let us now take into the account path integral quantization: we can describe am-
plitudes in 2 ways, by the use of the gauge potential Cq−1 or the field strength by the
Gauss theorem in the following way:

Γ ∝ exp

{
iQe

∫
Πq−1

Cq−1

}
or Γ′ ∝ exp

{
iQe

∫
Σ±

Fq

}
(3.99)

Where we can chose either Σ+ or Σ− since we are in a compact space. However this
choice differs by a phase, since from the above decomposition of Σq we have that:

Qe

∫
Σq

Fq = Qe

(∫
Σ+

Fq −
∫
Σ−

Fq

)
(3.100)

Since we want that both the amplitudes describe the same process, i.e. Γ = Γ′, this
difference in phase is not arbitrary but has to be a multiple of 2π. As analogy we can
think about the double slit experiment: in which the interference pattern is given by light
rays that arrive in the same point, coming from one slit or the other, with an integer
number of wave-length difference.
Thus in our case we can state that:

Qe

∫
Σq

Fq = 2πZ (3.101)

This is the quantization condition which all the fluxes that we can consider has to
satisfy, and it can be shown that that implies the BPS quantization of the branes’
"electric" and "magnetic" charge.
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3.4.2 Fluxes and Warping

In order to stabilize the moduli space of Y and find a viable potential we will consider
some hierarchies between the different terms in the potential and this construction can
be realized in the context of flux compactifications [GKP02; CQS05]. To be more precise
the to in pose such hierarchies we are considering warped metrics in which the warping
factor will make some contributions higher or smaller. For warped metrics we mean
metrics of following form:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gij̄dy

idyj̄ (3.102)

Calabi-Yau manifolds are generically non-singular, but at special values of the pa-
rameters they can develop singularities. The most generic singular space is a conifold.
The basic idea is that locally in the vicinity of a conifold point, we can find solutions
with fluxes that generate smooth supergravity solutions with large relative warpings.
Locally a conifold singularity can be described as the sub-manifold of C4 defined by:

w2
1 + w2

2 + w2
3 + w2

4 = 0 (3.103)

It is easy to see that such sub-manifold is singular at (w1, w2, w3, w4) = 0. This
singularity can be regarded as a cone, whose base has the topology of S3 × S2. At the
singular point, both the S3 and the S2 shrink to zero size. This decomposition tell us
that the conifold can be smoothed into a non-singular point in two ways: we can blow-up
S2 or S3 to finite size. Let us discus the second possibility that will be relevant for us.
The deformed conifold might be described by the following sub-manifold:

w2
1 + w2

2 + w2
3 + w2

4 = z where: z ∈ R (3.104)

Where z is the modulus which controls the size of the S3.
Dirac quantization implies that these fluxes, integrated over all of the three-cycles of Y ,
have to be multiple of integers numbers. In the neighbourhood of the conifold, there are
two relevant cycles which we will denote as A and B, such that they intersect each other
only once. Let us call A the cycle which vanishes as z → 0, that can be constructed
taking all the {wi} ∈ R. On the other hand we can construct the B cycle in order to
intersect A only once to be simply the cycle in which all the {wi} are purely imaginary
except for one, that we take to be w4 without loss in generality.

According to the Klebanov-Strassler construction in the context of type IIB N = 1
supergravity theories (that we know is done for non-compact manifolds, but it can be
embedded in compact ones) we can put M units of the flux F3 on the A cycle and K
units of the flux H3 on the dual cycle B, then:

1

2πα′

∫
A

F3 = 2πM
1

2πα′

∫
B

F3 = −2πK (3.105)

76



Where the minus sign arises from the Poincaré duality. Furthermore, taking into the
account the equation of motion of F5 in the Einstein frame (i.e. its Bianchi identity) we
obtain:

dF5 = H3 ∧ F3 +
(α′)2

(2π)4
ρloc3 = 0 ⇒ (2π)4

(α′)2

∫
Y
H3 ∧ F3 +Qloc

3 = 0 (3.106)

Which is nothing but the conservation of the D3-brane condition. Then we can write
in our case Qloc

3 to be entirely given by the fluxes, i.e:

(2π)4

(α′)2

∫
Y
H3 ∧ F3 =MK (3.107)

Thus by this condition we can use Poincaré duality to write:

F3 = (2π)2α′M [B] H3 = (2π)2α′K[A] (3.108)

Now we have the element to fix the superpotential of type IIB theory to be given as:

W =

∫
Y
G3 ∧ Ω = (2π)2α′

(
M

∫
B

Ω− SK

∫
A

Ω

)
. (3.109)

Here
∫
A
Ω and

∫
B
Ω are the periods defined above, which in this case describe the

conifold complex structure. It has been shown that we can write the A period as z,
where z is a complex structure modulus (an we just take one for the sake of simplicity),
and that implies:

z =

∫
A

Ω ⇒
∫
B

Ω = G(z) = z

2π
ln z + fholomorphic(z) (3.110)

This implies that we are able to write W as follows:

W = (2π)2α′ [MG(z)− SKz] (3.111)

We have already discussed that the complex structure moduli and the axio-dilaton
are said to be stabilized supersymmetrically, then let us consider theirs covariant deriva-
tives. Without entering in the details of the axio-dilaton stabilization let us set it to its
expectation value, i.e. gs, and let us just consider the derivative with respect to the only
complex structure modulus z:

DzW ∝M∂zG(z)− SK + ∂zKcs [MG(z)− SKz] (3.112)

In order to obtain a large hierarchy, we might think to take K/gs ≫ 1 to have z
exponentially small, then we can write the dominant terms of the derivative to be:
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DzW ∝ M

2π
ln z − K

gs
+O(1) (3.113)

Hence, if K/(Mgs) ≫ 1, we obtain the desired exponential relation:

z ∼ exp

{
−2πK

Mgs

}
(3.114)

In order to relate this modulus to the warped metric, one in principle should solve
the 10-dimensional Einstein equation, but we will not do it.
Instead, we can recall a relation which was derived in order to give an estimation of the
value of the warped factor in the neighbourhood of a stack of N coincident D3-branes:

e−4A(y) ∼ 4πgsN

r4
(3.115)

Where r is the distance in terms of the giȷ̄ metric of Y from the D3-branes. Is easy
to guess that in our case r ∝ w

2/3
i ∝ z1/3, and then to conclude that:

ea ∝ z
1
3 ∼ e−

2πK
3Mgs (3.116)

An then in this sense we have understood by a simple example that the fluxes can
fix the axio-dilaton and the complex structure, which are related to the warping factor,
which will turn out to be crucial in our discussion.
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Chapter 4

Moduli Stabilization: LVS and Axion
Monodromy

4.1 Kähler Metrics of Type IIB Orientifolds
In order to give a concrete example of the realization of inflation due to the C2 axion,
let us consider a Calabi-Yau threefold Y , orientifolded with a particular choice in the
cohomologies and its splitting.
Since we will consider that the complex structure moduli and the dilaton are stabilized
supersymmetrically, we are interested only in H1,1(Y) and its splitting under the action
of the previously described orientifold action O.
More in the detail, for the sake of simplicity, let us assume the following cohomology
structure:

H1,1(Y) = H1,1
+ (Y)⊕H1,1

− (Y) such that: dim
{
H1,1

+ (Y)
}
= 2 dim

{
H1,1

− (Y)
}
= 1
(4.1)

In other words, we are supposing that dim {H1,1(Y)} = h1,1 = 3 and that, after orien-
tifold projection, we obtain h1,1+ = 2 and h1,1− = 1, having in mind the explicit example
of P4

[1,1,1,6,9] [CCQ08].
Let us start by expressing the 4-cycles volumes as a function of the Tα and Ga fields,
following the definition of such Kähler coordinates given in the previous chapter, which
we rewrite here: 

S = 1
gs
+ il

Ga = S̄ba + ica = ba

gs
+ i (ca − lba)

Tα = iρα +
1
2
Kα(v)− 1

2
ζα(S, S̄, G, Ḡ)

= iρα +
1
2
Kαβγv

βvγ + gs
4
KαbcG

b(G+ Ḡ)c

(4.2)
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From which we can find an analytical expression for the 4-cycles volumes τα to be:

τα =
1

2
Kαβγv

βvγ = Tα + T̄α +
gs
4
Kαab(G+ Ḡ)a(G+ Ḡ)b . (4.3)

In our case we know the topology of the manifold Y , i.e. we are supposing to know all
the intersection numbers Kαab. Since h1,1+ = 2, we define the 2 possible Greek indices as
(L,+), while, since we can have only one Latin index (since h1,1− = 1), we will denote it
as −. The choice of the name is due to the fact that in the LVS procedure we always
suppose to have at least a big and a small 2-cycle which give rise to the so called Swiss-
cheese Calabi-Yau. In our case L will denote the big cycle and + the small one.
Hence we are interested only in 2 intersection numbers with mixed indices, namely K+−−
and KL−−.

In order to know the metric of the compactification manifold, and hence perform the
stabilization of the Kähler moduli, we have to start from considering the Kähler potential
which we have already defined in the previous chapter and we rewrite here:

K = Kcs(z, z̄) +Kk(S, T,G) = K ′
cs − 2 ln(V) , (4.4)

where we have defined K ′
cs to include all the already fixed contributions, i.e. K ′

cs =
Kcs − ln

(
S + S̄

)
. In other words, the unfixed part of the Kähler potential depend only

on the volume of Y . We may then consider different ways to write the volume, according
to a certain choice of the intersection numbers. In the present work we will consider 3
cases:

• G− is coupled to the small cycle, i.e. K+−− = 1 and KL−− = 0

• G− is coupled to the big cycle, i.e. K+−− = 0 and KL−− = −1

• G− is coupled to both cycles, i.e. K+−− ̸= 0 and KL−− ̸= 0

We are aware that the intersection numbers are not always 1, but to simplify the cal-
culations we will set them to 1, because we are mainly interested in the possibility of
developing a viable model which can be refined and applied also to more complex topolo-
gies in the future. However the sign of the intersection numbers is fixed by the fact that
the kinetic energy has to be positive definite, i.e. KGḠ

0 > 0.

At this point we are ready to calculate in the 3 mentioned cases the resulting Kähler
metrics corresponding to a different definition of the volume form. We will define them
by the notation (K0)AB, since we will see in the developing of the work that the Kähler
potential will acquire perturbative corrections.
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Let us start by analysing the first case in which K+−− = 1 and KL−− = 0. Let us
write the volume of Y as:

V = (TL + T̄L)
3
2 − [(T+ + T̄+) + g+(G

− + Ḡ−)2]
3
2 , (4.5)

where we have implicitly defined: g+ ≡ gs
4
K+−−. To proceed in the calculations with a

more compact notation, let us make the following substitutions:
TL + T̄L = T̃L

T+ + T̄+ = T̃+

G− + Ḡ− = G̃−

(4.6)

so that the volume reads:

V = (T̃L)
3
2 − [T̃+ + g+(G̃

−)2]
3
2 (4.7)

Furthermore, let us also define T̃+ + g+(G̃
−)2 ≡ T̃S in order to obtain the familiar

form of the volume written as V = (T̃L)
3
2 − (T̃S)

3
2 .

From this volume form we can now work out the Kähler metric starting from the Kähler
potential in the following form:

(K0)AB̄ = ∂A∂B̄K0 = ∂A∂B

(
−2 ln

{
(T̃L)

3
2 − [T̃+ + g+(G̃

−)2]
3
2

})
(4.8)

After an explicit calculation we find the following metric:

(K0)AB̄ =

3

V2
√
T̃S



√
T̃s
T̃L

(
T̃

3/2
L +

T̃
3/2
S

2

)
−3

2

√
T̃LT̃S −3g+G̃

−
√
T̃LT̃S

−3
2

√
T̃LT̃S

T̃
3/2
L

2
+ T̃

3/2
S 2g+G̃

−
(
T̃

3/2
L

2
+ T̃

3/2
S

)
−3g+G̃

−
√
T̃LT̃S 2g+G̃

−
(
T̃

3/2
L

2
+ T̃

3/2
S

)
2g+

[
2g+G̃

−
(
T̃

3/2
L +

T̃
3/2
S

2

)
+ VT̃+

]


(4.9)

The inverse of this metric takes instead the form:

(K0)
AB̄ =


2
√
T̃L
3

(
T̃

3/2
S +

T̃
3/2
L

2

)
T̃LT̃S 0

T̃LT̃S

2

[
g+(G̃−)2V+T̃S

(
T̃

3/2
L +

T̃
3/2
S
2

)]
3
√
T̃S

− G̃−V
3
√
T̃S

0 − G̃−V
3
√
T̃S

V
6g+

√
T̃S

 (4.10)
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Let us now calculate the Kähler metric in the second case where K+−− = 0 and
KL−− = 1. Thus we will have the following volume form:

V = [T̃L + gL(G̃
−)2]

3
2 − (T̃+)

3
2 , (4.11)

where in this case gL ≡ gs
4
KL−−. After defining T̃gL ≡ T̃L + gL(G̃

−)2 in the same way as
before, we can work out the explicit form of the Kähler metric to be:

(K0)AB̄ =

3

V2

√
T̃gL


T̃

3/2
gL +

T̃
3/2
+

2
−3

2

√
T̃+T̃gL 2gLG̃

−
(
T̃

3/2
gL +

T̃
3/2
+

2

)
−3

2

√
T̃+T̃gL

√
T̃gL
T̃+

(
T̃

3/2
gL

2
+ T̃

3/2
+

)
−3gLG̃

−
√
T̃+T̃gL

2gLG̃
−
(
T̃

3/2
gL +

T̃
3/2
+

2

)
−3gLG̃

−
√
T̃+T̃gL 2gL

[
2gLG̃

−
(
T̃

3/2
gL

2
+ T̃

3/2
+

)
− VT̃L

]


(4.12)

and its inverse is the following:

(K0)
AB̄ =


2

[
gL(G̃

−)2V+T̃gL

(
T̃
3/2
gL
2

+T̃
3/2
+

)]
3
√
T̃gL

T̃gLT̃+
G̃−V

3
√
T̃gL

T̃gLT̃+
2
√
T̃+
3

(
T̃

3/2
gL +

T̃
3/2
+

2

)
0

G̃−V
3
√
T̃gL

0 − V
6gL

√
T̃gL

 (4.13)

where we can see a clear similarity with the previous functional form.

Now we can move to the more general case where both K+−− ̸= 0 and KL−− ̸= 0.
Before showing the result, let us recall the previous conventions, in order to present a
cleaner form of the metric: 

g+ =
gs
4
K+−−

gL =
gs
4
KL−−

T̃S = T̃+ + g+(G̃
−)2

T̃gL = T̃L + gL(G̃
−)2

V = (T̃gL)
3
2 − (T̃S)

3
2

(4.14)

Focusing on the tree-level Kähler potential K0 = −2 ln(V), we can write the Kähler
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metric (K0)AB̄ as:

(K0)LL̄ =
3

V2

 1√
T̃gL

(
T̃

3/2
gL +

T̃
3/2
S

2

)
(K0)L+̄ =

3

V2

[
−3

2

√
T̃ST̃gL

]
= (K0)+L̄

(K0)L−̄ =
3

V2

 G̃−√
T̃gL

[
gL

(
2T̃

3/2
gL + T̃

3/2
S

)
− 3g+T̃gL

√
T̃S

] = (K0)−L̄

(K0)++̄ =
3

V2

[
1√
T̃S

(
T̃

3/2
S +

T̃
3/2
gL

2

)]

(K0)+−̄ =
3

V2

√ T̃gL

T̃S

(
g+T̃gL − 3gLT̃S

)
+ 2g+T̃S

 G̃− = (K0)−+̄

(K0)−−̄ =
6

V2

(G̃−)2
(
gL

√
T̃gL − gL

√
T̃gL

)2

+
gL

(
T̃gL + gL(G̃

−)2
)

√
T̃gL

+
g+

(
T̃S + g+(G̃

−)2
)

√
T̃S


(4.15)

We can see that the analytic expression starts to be a bit involved, and so we expect
its inverse to be even more complicated. Therefore, before performing a brute force
calculation, we systematically approximate the metric in order to simplify its form and
then calculate its inverse. However, during the following discussion, we will see that, due
to the stabilization of G−, the two previous results will converge to a unique solution,
and we expect also the third case to converge to the same result in the large volume
limit.

4.2 Supergravity and Large Volume Scenario

4.2.1 Kähler Potential and Superpotential

Let us recall that the N = 1 F-term supergravity 4D scalar potential is given by:

V = eK

( ∑
i=T,S,z

Kij̄DiWDj̄W̄ − 3|W |2
)
. (4.16)

Here we denote by T the Kähler moduli, S is the axio-dilaton, and z are the com-
plex structure moduli. We furthermore recall the definition of the covariant derivative
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appearing in the above expression:{
DiW = ∂iW +W∂iK,

Dj̄W̄ = ∂j̄W̄ + W̄∂j̄K
(4.17)

Since classically the superpotential does not depend on the Kähler moduli, the sum over
the Kähler moduli gives:

∑
i,j

(
∂2K0

∂Ti∂T̄j

)−1(
W
∂K0

∂Ti

)(
W̄
∂K0

∂T̄j

)
= 3|W |2 (4.18)

This term cancels the second term in the potential. This process is called no-scale
cancellation and gives rise to the following tree-level no-scale potential:

Vno-scale = eK0

(∑
i=S,z

Kij̄
0 DiWDj̄W̄

)
(4.19)

This implies that at the semi-classical level we can only stabilize supersymmetrically
the dilaton and complex structure moduli, imposing vanishing covariant derivatives:
DSW = DzW = 0.
Hence at semi-classical level the Kähler moduli are flat directions in the potential which
can be lifted however by including quantum corrections.

Let us first discuss the non-perturbative corrections to the superpotential, since by
the non-renormalization theorem we cannot have perturbative ones.
Let us now call the minimum of the superpotential that stabilizes the complex moduli
and the axio-dilaton at tree-level as:

W0 = ⟨Wtree ⟩ =
〈∫

Y
G3 ∧ Ω

〉
(4.20)

The exact value of such superpotential depends on the flux choice that we make to sta-
bilize the complex structure moduli and the axio-dilaton, but in our discussion we will
always consider it as a parameter of O(1). Since the choice of fluxes can be very broad,
we will fix this value in the developing of our discussion according to the possible values
founded in literature.

Having in mind instanton effects and gaugino condensation, these non-perturbative
corrections to W appear as exponentials in the Kähler moduli. Therefore we can write
the superpotential as:

W = W0 +
∑
i

Ai e
−aiTi (4.21)
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where the Ai are coefficients which, in general, depend on the stabilized value of the axio-
dilaton and complex structure moduli determined by the flux choice, while ai = 2π/Ni

(with Ni = 1 for stringy instantons while Ni is the rank of the condensing gauge group
for gaugino condensation). In our work we will treat them as O(1) coefficients, and
we will fix them when we will consider a concrete example. There may additionally be
higher instanton effects, but these can be neglected as long as each Re(Ti) is stabilised
such that: aiRe(Ti) ≫ 1.

Let us now see what type of corrections to introduce for the Kähler potential in order
to stabilize the Kähler moduli. In this case we do not have any non-renormalization
theorem which forbids perturbative corrections. The first leading order correction is in
fact given by α′3 effects [Bec+02]. Other subleading order corrections appear at one-loop
order in the gs expansion, but for our purposes we assume to work in a regime where
we can neglect them, i.e. the volume of the small cycle is sufficiently large and gs is
sufficiently small.
Assuming to have stabilized all complex structure moduli and the axio-dilaton allow us
to write the full Kähler potential, including the first order α′3 corrections as:

K =

〈
− ln

(
−i
∫
Y

Ω ∧ Ω̄

)〉
− ln

(
2

gs

)
− 2 ln

(
V +

ξ

2g
3/2
s

)

= Kcs − ln

(
2

gs

)
− 2 ln

(
V +

ξ

2g
3/2
s

)

= K ′
cs − 2 ln

(
V +

ξ

2g
3/2
s

)
. (4.22)

Here we recall that ξ = ζ(3)χ(Y)
2(2π)3

depends on the topology of the compactification manifold
Y . Furthermore, in the last equality we have redefined the complex structure term in
the same way as above. In the rest of the discussion we will refer to K ′

cs as Kcs.

To sum up the results, defining ξ̂ ≡ ξ/g
3/2
s , by now we have found the Kähler and

superpotential in the following form:
K = Kcs − 2 ln

(
V +

ξ̂

2

)
W = W0 +

∑
i

Ai e
−aiTi

(4.23)

At this point we can plug in these expressions into the original equation for the scalar
potential, assuming as always supersymmetric stabilization of the complex structure
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moduli and the axio-dilaton by fluxes: DSW = DzW = 0.
Then we see that the previous summation runs only over the Kähler moduli. The no-
scale cancellation will still occur, but we get 3 more terms, which give us a non-vanishing
potential. Since we have added α′3 corrections to the Kähler potential, one of these terms
will be [BB04]:

Vα′ = 3eK ξ̂

(
ξ̂2 + 7ξ̂V + V2

)
(V − ξ̂)(2V + ξ̂)2

|W |2 . (4.24)

Meanwhile, from the non perturbative corrections to the superpotential, we obtain 2
additional terms:{

Vnp1 = eKKjkajAjakĀk e
−(ajTj+akT̄k)

Vnp2 = eKKjk
(
ajAje

−ajTjW̄∂T̄kK + akĀke
−akT̄kW∂TjK

) (4.25)

Gathering all the terms, we end up with the following potential:

VLVS = Vnp1 + Vnp2 + Vα′ =

= eK

{
Kjk

[
ajAjakĀke

−(ajTj+akT̄k) −
(
ajAje

−ajTjW̄∂T̄kK + akĀke
−akT̄kW∂TjK

)]
+

+ 3ξ̂

(
ξ̂2 + 7ξ̂V + V2

)
(V − ξ̂)(2V + ξ̂)2

|W |2
}

(4.26)
This is the starting point to discuss the large volume limit, and that is why we have
denoted such potential as VLVS. So far we have considered the full expression of the
scalar potential, but now we start to focus on the large volume limit.

4.2.2 Large Volume Limit

Let us see explicitly what we mean by taking the large volume limit of the scalar potential,
and let us discuss if it is reasonable.
After defining as τi the size of the 4-cycles of a generic Calabi-Yau Y , we can state the
large volume limit ansatz in the following way [CCQ08]:

∃Nsmall ∈ N < h1,1(Y) :


τi remains small ∀i = 1, ..., Nsmall

τi → ∞ ∀i = Nsmall + 1, ..., h1,1(Y)

V(Y) → ∞
(4.27)

The small τi have to be thought off as blow-up cycles resolving point-like singu-
larities of Y , without altering the geometry of the bulk of the Calabi-Yau which we are
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considering to be much bigger. In this limit, our starting forms of the Kähler potential
and superpotential become:{

K = Kcs − 2 ln
(
V + ξ̂

2

)
W = W0 +

∑Nsmall

i Ai e
−aiTi

(4.28)

Since the corrections coming from the cycles whose volume goes to infinity will be expo-
nentially damped in this limit, we just have to perform the sum over the small cycles.
For instance, we can immediately see a simplification in the Kähler potential K, because
in our limit V ≫ ξ̂/2:

K = Kcs − 2 ln

(
V +

ξ̂

2

)
≃ Kcs − 2 ln (V) = Kcs +K0 (4.29)

Then we can immediately say that the exponential of the Kähler potential in this
limit becomes:

eK ≃ eKcs+K0 =
eKcs

V2
(4.30)

In fact, due to this argument, in the following calculations we will use the tree-level
inverse metrics which we have already computed for our case of interest. Then we can
rewrite the full potential as [Bal+05]:

VLVS =
eKcs

V2

{
Kjk

0

[
ajAjakĀke

−(ajTj+akT̄k) −
(
ajAje

−ajTjW̄∂T̄kK0 + akĀke
−akT̄kW∂TjK0

)]

+ 3ξ̂

(
ξ̂2 + 7ξ̂V + V2

)
(V − ξ̂)(2V + ξ̂)2

|W |2
}

(4.31)
Let us start to analyze the different contributions, beginning from Vα′ :

Vα′ =
eKcs

V2

3ξ̂
(
ξ̂2 + 7ξ̂V + V2

)
(V − ξ̂)(2V + ξ̂)2

|W |2 ∼ eKcs

V2

3ξ̂

4V
|W |2+O

(
1

V4

)
=

3ξ̂|W |2eKcs

4V3
+O

(
1

V4

)
(4.32)

Let us now consider the first non-perturbative correction. More in the detail, let
us restrict to our model in order to simplify consistently the calculations. In fact, in
our case we have only one small cycle which size is given by T+, and the only Kähler
coordinates are {TL, T+, G−}. We can write our model in the large volume limit as:{

K(TL, T+, G
−) = Kcs − 2 ln [V(TL, T+, G−)] = Kcs +K0(TL, T+, G

−)

W (T+) = W0 + A+ e
−a+T+

(4.33)
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Let us evaluate directly Vnp1 + Vnp2 computing first the explicit expressions of the
covariant derivatives involved. As first thing we can immediately say that ∂TLW =
∂T̄LW̄ = ∂G−W = ∂Ḡ−W̄ = 0 since W = W (T+). Then we can directly calculate:
DTLW = −2W

V ∂TLV
DT+W = −a+A+e

−a+T+ − 2W
V ∂T+V

DG−W = −2W
V ∂G−V


DT̄LW̄ = −2W̄

V ∂T̄LV
DT̄+W̄ = −a+Ā+e

−a+T̄+ − 2W̄
V ∂T̄+V

DḠ−W̄ = −2W̄
V ∂Ḡ−V

(4.34)
Since in the end we are only taking derivatives of the volume form, we can say that all

the derivatives with respect to the bar-fields will be equal to the unbar-fields, since they
always appear in the form Ti + T̄i, and this leads to some simplifications of Vnp1 + Vnp2
which takes the form:

Vnp1 + Vnp2 =
eKcs

V2

(
Kij̄

0 DiWDj̄W̄ − 3|W |2
)
=

=
eKcs

V2

{
K
T+T̄+
0 |a+A+|2e−a+(T++T̄+)+

+
4Re

{
W̄
(
a+A+e

−a+T+
)}

V

(
K
TLT̄+
0 ∂TLV +K

T+T̄+
0 ∂T+V +K

G−T̄+
0 ∂G−V

)
+

+
4|W |2

V2

[
KTLT̄L

0 (∂TLV)
2 +K

T+T̄+
0

(
∂T+V

)2
+KG−Ḡ−

0 (∂G−V)2
]
+

+
8|W |2

V2

[
K
TLT̄+
0 ∂TLV∂T+V +KTLḠ

−

0 ∂G−V∂TLV +K
T+Ḡ−

0 ∂T+V∂G−V
]
− 3|W |2

}
(4.35)

Due to the no-scale cancellation, the last 2 lines sum to zero:

Vnp1 + Vnp2 =
eKcs

V2

(
Kij̄

0 DiWDj̄W̄ − 3|W |2
)
=

=
eKcs

V2

{
K
T+T̄+
0 |a+A+|2e−a+(T++T̄+)+

+
4Re

{
W̄
(
a+A+e

−a+T+
)}

V

(
K
TLT̄+
0 ∂TLV +K

T+T̄+
0 ∂T+V +K

G−T̄+
0 ∂G−V

)}
(4.36)

Now let us assume that when the big cycle and the volume go to infinity, in order
to preserve the volumes hierarchy, the small cycle goes like a+T+ ∼ ln(V). The validity
of this assumption will be checked a-posteriori using the main features of the LVS sta-
bilization procedure. We now use it to have an idea of the magnitude of the different
terms. This implies that in this regime we can consider:

W = W0 + A+e
−a+T+ ∼ W = W0 +

A+

V
∼ W0 +O

(
1

V

)
(4.37)
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Another remark that is necessary to make is on the sign of the term:

4Re
{
W̄
(
a+A+e

−a+T+
)}

V
(4.38)

Let us recall that Im(T+) = ρ+. Then, since we have to minimize the potential, we
can argue that this phase leads to a minus sign, fixing the value of ρ+.
After these remarks, we are able to write the non-perturbative corrections to the scalar
potential as:

Vnp1 + Vnp2 =
eKcs

V2

(
Kij̄

0 DiWDj̄W̄ − 3|W0|2
)
=

=
eKcs

V2

[
K
T+T̄+
0 |a+A+|2

V2
+

−
4Re

{
a+A+W̄0

}
V2

(
K
TLT̄+
0 ∂TLV +K

T+T̄+
0 ∂T+V +K

G−T̄+
0 ∂G−V

)] (4.39)

The full LVS potential, including α′3 effects, turns out to be:

VLVS = Vnp1 + Vnp2 + Vα′ =

=
eKcs

V2

[
K
T+T̄+
0 |a+A+|2

V2
−

4Re
{
a+A+W̄0

}
V2

(
K
TLT̄+
0 ∂TLV +K

T+T̄+
0 ∂T+V +K

G−T̄+
0 ∂G−V

)]
+

+
3ξ̂|W0|2eKcs

4V3

(4.40)

4.3 Axion-Monodromy Inflation

4.3.1 Axion Field Normalization

Before introducing the concept of monodromy, let us consider the correct normalization
for the axion field which comes from the axion kinetic terms in the Lagrangian. Let us
take into the account the axion c which enters in the 2-form decomposition:

C2 = ca(x)ω
a (4.41)
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Its kinetic terms are given by the square of its associated field-strength in the form:

Skin,c = −
∫
d10X

gs
√

− det(GMN)

2(2π)7α′4 |dC2|2

= −
∫
d10X

gs
√

− det(GMN)

2(2π)9(6!)α′4 Gµν∂µca∂νcbω
a
ijω

b
ı̄ȷ̄G

īıGjȷ̄

⊃ −1

2

∫
d4x
√

det(gµν)γ
abGµν∂µca∂νcb (since: a = b = −)

= −1

2

∫
d4x

√
gf 2(∂µc)

2 = −1

2

∫
d4x

√
g(∂µϕ)

2

(4.42)

Since in the Einstein frame we have the following relation:

α′M2
P =

V
π

(4.43)

we can write:
f 2

M2
P

=
gs

48π2V

[∫
ω ∧ ∗ω

(2π)6α′3

]
=

gs
8π2

√
T̃S
V

(4.44)

There the canonically normalized C2-axion field becomes:

c2 =
ϕ2

f 2
=

8π2

gs

V√
T̃S

(
ϕ

MP

)2

(4.45)

From now on, we will just express the field ϕ in Planck units [Fla+10].

4.3.2 5-brane Potential and the Axion-monodromy

At this point let us remind that the main goal of our discussion is to provide a mech-
anism to drive inflation by the use of axions which couple to branes that are objects
with NS-NS or R-R charge (or both). In our model, since we have already fixed the
axio-dilaton and the C4 axion, we are left with the R-R axion c and the NS-NS axion b,
which are both 2-form axions.
Let us recall that the action of a brane consists of the so-called Dirac-Born-Infeld
action SDBI and the Chern-Simons action SCS. Since the Chern-Simons action is
topological, we are interested in the DBI-piece of the brane action. Since we have 2-form
axions, if we want to couple them to a brane, this brane has to wrap a 2-cycle in the
compactification space Y . This is the case of spacetime-filling 5-branes which are 6D
objects with 2 dimensions in Y since they wrap a 2-cycle.
For our purposes, we can have an NS5-brane in the case of c, and a D5-brane in the case
of b. In this sense we can argue that these are S-dual descriptions, due to the SL(2, Z)
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symmetry which allows us to exchange the fields (up to a sign) but we will not comment
further on this duality.
From a historical point of view, the DBI action was first applied to Maxwell’s electro-
magnetism and in fact we can see the DBI action for branes as a generalization of this
idea to more than 4D where we can see the R-R and NS-NS charges as the electric and
magnetic charges, which are nothing but dual manifestations of the electromagnetic in-
teraction.

In our specific model, however, we have lost such duality since in the Kähler potential
we can see the explicit appearance of b in the G− fields. Therefore, during the stabiliza-
tion this will set such field to a certain value, breaking its shift symmetry. Furthermore,
this will set η ∼ 1 obstructing inflationary dynamics (we refer to such issue as the η-
problem). On the other hand, we have the c field whose shift-symmetry is not spoiled in
our potential. Hence this axion can be used as a good candidate for inflation [MSW10;
McA+14].1

Let us remind that the DBI action for a generic NSp-brane in the Einstein-frame
coupled to the 2-form C2 for an unwarped metric is [Pol98]:

SNSpDBI = −
∫

(α′)−
p−1
2

(2π)p
e−2Φdp+1ξ

√
det
{
(GMN + CMN)∂αXM∂βXN

}
(4.46)

where GMN is the 10D metric and CMN is the 2-form related to the c field. ξ are
the coordinates on the brane denoted by α, β, while XI = XI(ξ) (where I= M,N) are
the coordinates of 10D spacetime. In other words, under the square root we have the
determinant of the pullback of the sum of the metric and the other 2-form on the brane,
that we have indicated in a more explicit way.
Let us now decline such action in the context of the NS5-brane, with a warped metric of
the form:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gij̄dy

idyj̄ (4.47)

With respect to the previous DBI action, we have to include a warp factor:

SNSpDBI = −e4A
∫

(α′)−2

(2π)5
g−2
s d6ξ

√
det(GMN + CMN)∂αXM∂βXN (4.48)

We can then derive the following contribution to the potential for the NS5-brane:

VNS5(c) =
ϵ

g2s(2π)
5(α′)2

√
l4 + (gsc)2 (4.49)

1Axion monodromy inflation can also be described in 4D effective field theory in terms of 4-form
field strength coupled to the axion [KS09]. This is very useful as all known string models of axion
monodromy reduce to this 4D EFT description.
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where the warp factor is hidden in the small prefactor ϵ. In our case we have constructed
our compactification space, therefore we can explicitly calculate the size of the 2-cycle
by the 4-cycles volume. Furthermore, since α′M2

P = V/π, we can rewrite the potential
as dependent on the inverse of the compactification volume V as follows:

VNS5(c) =
ϵ

V2

√
T̃S + g2sc

2 (4.50)

where we have redefined ϵ in order to include all the other constants involved, and T̃S,
depending on the choice of the volume form, can be equal to T̃S or T̃+, since we will
suppose that our 5-brane wraps always the small cycle which size changes according to
the value of the G field.

Then including the canonical normalization of the field, we can express the NS5-brane
potential as:

VNS5(ϕ) =
ϵ

V2

√
T̃S + 8π2gs

V√
T̃S

ϕ2 (4.51)

4.3.3 Axion Monodromy

Without the NS5-brane the axion potential would have been periodic with a period of
2πf due to instanton effects which produce a cosine dependence, and a discrete shift
symmetry would have been preserved. However, the introduction of the NS5-brane
potential explicitly breaks the shift symmetry and the periodicity of the potential.
As in the case of complex analysis with a spiral staircase when the configuration space
is a circle but the system changes upon transport by 2π, and therefore we say that a
function is monodromic (which in Greek means in fact "one value"), something very
similar occurs in the scalar potential for axions. In fact, the coupling with the NS5-
brane realizes a potential which always take a different value ∀ values of ϕ. Axion
monodromy consists exactly in this phenomenon.

It is easy to see that in the large volume limit this potential becomes linear in ϕ:

lim
V→∞

VNS5(ϕ) = µϵ ϕ , (4.52)

where µϵ is a constant defined by the value of the volume which we obtain after the
compactification. Hence this might be a good model if we want to implement linear
inflation driven by an axion field.

At this point we have to specify a specific setup of branes defined in a warped throat,
since we want to have a warped metric.
To be more precise, since we have to wrap an NS5-brane on a 2-cycle, by charge conser-
vation we must have another object which cancels its charge, i.e. an anti-NS5-brane, and
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we have to keep them at distance, because otherwise, as 2 electric charges of opposite
sign would do, they would annihilate. Then we might think that in our orientifold Y
we do not realize a typical Klebanov-Strassler warped throat [KS00], but a double
warped throat where the warping keeps the 2 5-branes distant from each other. In fact,
each brane will wrap a 2-cycle in one of the 2 maximally warped regions.
In order to have charge cancellation, we must have that both 2-cycles wrapped by the
5-branes belong to a family of homologous 2-cycles, and by the Gauss theorem we have
the flux cancellation outside the throat, which is what we need not to spoil the other
regions of the Calabi-Yau.

What we have in mind is to realize a mechanism in which our field starts at ∼ 11MP

(a little bit less since the potential is not completely linear), and then decreases its value
until it vanishes and the reheating starts to give rise to the hot Big-Bang.

4.4 LVS and Axion Monodromy
Now we have finally all the elements to write and discuss the full potential of our model
gathering the different contributions, i.e. VLVS and VNS5:

V = VLVS + VNS5 =

=
eKcs

V2

[
K
T+T̄+
0 |a+A+|2

V2
−

4Re
{
a+A+W̄0

}
V2

(
K
TLT̄+
0 ∂TLV +K

T+T̄+
0 ∂T+V +K

G−T̄+
0 ∂G−V

)]
+

+
3ξ̂|W0|2eKcs

4V3
+

ϵ

V2

√
T̃S + 8π2gs

V√
T̃S
ϕ2

(4.53)
Now what we are left to do is just to check how this potential behaves calculating each
volume derivative depending on the chosen volume form.

Let us begin from the first case where V = (T̃L)
3
2 − (T̃S)

3
2 . Let us recall the relevant

derivatives and calculate the partial derivatives involved:
KTLT̄+ = T̃LT̃S

KT+T̄+ = 2

3
√
T̃S

[
g+(G̃

−)2V + T̃S

(
T̃

3/2
L +

T̃
3/2
S

2

)]
KG−T̄+ = − G̃−V

3
√
T̃S


∂TLV = 3

2

√
T̃L

∂T+V = −3
2

√
T̃S

∂G−V = −3g+G̃
−
√
T̃S

(4.54)
If we carefully plug in such expressions and the one for the inverse metric calculated at
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the beginning of this chapter, we find the following expression:

VI =
2eKcs

V4

{
|a+A+|2

3
√
T̃S

[
g+(G̃

−)2V + T̃S

(
T̃

3
2
L +

T̃
3
2
S

2

)]
− T̃SV Re{a+A+W̄0}

}

+
3ξ̂|W0|2eKcs

4V3
+

ϵ

V2

√
T̃S + 8π2gs

V√
T̃S
ϕ2

(4.55)

Substituting (T̃L)
3
2 ≃ V , the potential becomes:

VI =
2eKcs

V3

{
1

3
|a+A+|2

[√
T̃S + g+

(G̃−)2√
T̃S

]
− T̃S Re{a+A+W̄0}+

3

8
ξ̂|W0|2

}

+
ϵ

V2

√
T̃S + 8π2gs

V√
T̃S
ϕ2

(4.56)

Let us perform the same calculation on the second volume form, V = T̃
3
2
gL− T̃

3
2
+ . The

relevant metric components and the derivatives of the volume form are:
KTLT̄+ = T̃gLT̃+

KT+T̄+ =
2
√
T̃+
3

(
T̃

3/2
gL +

T̃
3/2
+

2

)
KG−T̄+ = 0


∂TLV = 3

2

√
T̃gL

∂T+V = −3
2

√
T̃+

∂G−V = 3gLG̃
−
√
T̃gL

(4.57)

from which we can find the following potential:

VII =
2eKcs

V4

{√
T̃+

3

(
T̃

3
2
gL +

T̃
3
2
+

2

)
|a+A+|2 − Re{a+A+W̄0}T̃+V

}
+

3ξ̂|W0|2eKcs

4V3

+
ϵ

V2

√√√√T̃+ + 8π2gs
V√
T̃+

ϕ2

(4.58)

Substituting (T̃gL)
3
2 ≃ V , the potential simplifies to:

VII =
2eKcs

V3

{
1

3
|a+A+|2

√
T̃+ − Re{a+A+W̄0}T̃+ +

3ξ̂|W0|2

8

}

+
ϵ

V2

√√√√T̃+ + 8π2gs
V√
T̃+

ϕ2

(4.59)
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Let us now write the 2 versions of the potential obtained by the different volume
forms and discuss the stabilization of the G− field:

VI = 2eKcs

V3

{
|a+A+|2

3
√
T̃S

[
g+(G̃

−)2 + T̃S

]
− T̃S Re{a+A+W̄0}+ 3ξ̂|W0|2

8

}
+

+ ϵ
V2

√
T̃S + 8π2gs

V√
T̃S
ϕ2

VII = 2eKcs

V3

{√
T̃+
3

|a+A+|2 − Re{a+A+W̄0}T̃+ + 3ξ̂|W0|2
8

}
+ ϵ

V2

√
T̃+ + 8π2gs

V√
T̃+
ϕ2

(4.60)

The first thing that we have to check is that when G̃− = 0 we should recover the
same potential, otherwise we have made some errors in the calculations, and we see that
this statement is verified. At this point we can discuss the stabilization of the G− field,
or the b− axion since G̃− = 2b−/gs.
In the case of VI we have an explicit quadratic dependence in the first term which fixes
b = 0. For VII we seem to have lost the dependence in G̃. However, if we had been more
careful, we would have obtained also a quadratic term which fixes again b = 0, as shown
in [CSS22].

Thus we end up with the same form of the potential for both cases, which we denote
simply by V :

V =
eKcs

V3

(
2

3
|a+A+|2 − 2Re{a+A+W̄0}T̃+ +

3

4
ξ̂|W0|2

)
+

+
ϵ

V2

√√√√T̃+ + 8π2gs
V√
T̃+

ϕ2
(4.61)

Until now we have assumed a logarithmic relation between the total volume and the
small cycle size without justifying this assumption. Hence, let us now make a step back
and understand better the approximation in which we are working. More in the detail,
let us re-express the potential treating the volume V and the size of the 4-cycle T̃+ as 2
independent quantities, and see if we can work out such a logarithmic relation.
In order to simplify the notation let us introduce 2τ+ = T̃+, obtaining:

V = eKcs

(
2
√
2

3V
|a+A+|2

√
τ+ e

−2a+τ+ − 4Re{a+A+W̄0}
V2

τ+ +
3ξ̂|W0|2

4V3

)

+
ϵ
√
2τ+
V2

√
1 +

4π2gsV
τ
3/2
+

ϕ2

(4.62)
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In order to simplify the calculations, let us give some typical numerical values to the
constants involved which in principle should come from a complete stabilization also of
the axio-dilaton and complex structure moduli, which we are not going to discuss in the
present work:

eKcs ∼ 1
2
√
2

3
|a+A+|2 = 8π2

√
2

3
A2

+ (a+ = 2π, A+ ∈ R)

4a+Re{A+W̄0} = 8πW0A+ (W0 ∈ R)
3
4
|W0|2ξ̂ = 3

4
ξ̂W 2

0

(4.63)

We obtain:

V =
8π

√
2A2

+

3V
√
τ+e

−4πτ+ − 8πW0A+

V2
τ+e

−2πτ+ +
3ξ̂W 2

0

4V3
+
ϵ
√
2τ+
V2

√
1 +

4π2gsV
τ
3/2
+

ϕ2 (4.64)

At this point we might be tempted to stabilize the volume and τ+ by imposing the
vanishing of their derivatives, since we do not want that our Calabi-Yau decompactifies:

∂V

∂V
=
∂V

∂τ+
= 0 (4.65)

This might be a good idea. However we cannot solve these equation analytically, and so
we tackle the problem in a different way.
Let us notice that in the ϵ→ 0 limit, we recover the LVS potential. Then we can use the
LVS stabilization which gives us a relation between the volume and τ+ which we know to
be exponential. In other words, for consistency reasons, since we have always assumed
an exponential dependence, we have to consider a negligible contribution coming from
the NS5-brane potential. In order to realize this approximation, we might think that,
because of the warping in the throat, ϵ is set to a small value. This is plausible since we
have set the NS5-brane at the bottom of the throat.
Then let us stabilize the LVS part of the potential. Let us simplify the notation by
introducing the following variables:

λ ≡ 8π
√
2A2

+

3

µ ≡ 8πW0A+

ν ≡ 3ξ̂W 2
0

4

(4.66)

The LVS contribution to the potential looks like:

VLVS(V , τ+) =
λ

V
√
τ+e

−4πτ+ − µ

V2
τ+e

−2πτ+ +
ν

V3
(4.67)
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We can find the minimum of such potential by imposing the vanishing of the partial
derivatives:

∂VLVS

∂V
=
∂VLVS

∂τ+
= 0 (4.68)

From the derivative with respect to the volume we find:

V =
µ

λ

√
τ+e

2πτ+

(
1±

√
1− 3νλ

µ2τ
3
2
+

)
(4.69)

while from the derivative with respect to τ+ we obtain:

λVe−2πτ+

√
τ+

(
1

2
− 4πτ+

)
− µ (1− 2πτ+) = 0 (4.70)

Combining the 2 equations we find:(
1±

√
1− 3νλ

µτ
3
2
+

)(
1

2
− 4πτ+

)
= (1− 2πτ+) (4.71)

In order to solve it in a simpler way, we require a+τ+ ≫ 1, which is the assumption that
we have done until now to be able to ignore higher instanton corrections. By solving
these equations we end up with:

τ+ =
(

4νλ
µ2

) 2
3

V = µ
2λ

(
4νλ
µ2

) 1
3
e
2π
(

4νλ
µ2

) 2
3

= µ
2λ

√
τ+e

2πτ+ ∼
(

1−2πτ+
1
2
−4πτ+

)
µ
λ

√
τ+ e2πτ+

(4.72)

In this setup the volume and the 4-cycle size τ+ are fixed, but these values do not take into
the account the presence of the NS5-brane potential. However, this analysis gives us a
relation between the two variables which we can use to find the minimum of the previous
potential. Then, let us plug such expression for the volume into the full potential:

V (τ+, ϕ) =

(
2λ

µ
e−3πτ+

)2
(
2λν

µ
τ
− 3

2
+ − µ

2
+
ϵ
√
2e2πτ+

τ+

√
τ+ +

2π2µgs
λ

e2πτ+ϕ2

)
(4.73)

In order to check if we have obtained a viable inflationary potential, we can set
A+ = W0 = 1 and gs = 0.2, which are generic values that such variables can take, and
we can begin to require some properties to this potential. We want that the volume of
the 4-cycle does not decompactify, i.e. it has to minimize the potential. Furthermore
we want that the minimum of our potential is zero at ϕ = 0. We also want enough field
range to inflate, that we have estimated before to be almost 11 Planck units to have
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60-efoldings (even if we expect a smaller field range since our potential is linear only
asymptotically).
Hence we can start to impose V (τmin+ , ϕ) = 0 in order to fix ϵ, finding numerically ϵ =
0.00295589. Substituting this value in the potential, we can calculate the maximum field
value, i.e. the value where the minimum in τ is lost, that in this case is ϕ = 0.0068763,
as shown in Fig. 4.1. We then conclude that inflation cannot occur.

0.8 0.9 1.0 1.1 1.2 1.3
τ

10-14

10-12

10-10

10-8

10-6

V

Figure 4.1: Logarithmic plot of V (τ+, ϕ) for ϕ = 0 (the blue line), and for ϕ = 0.0068763
(the orange line)

Furthermore, having a value for ϵ ∼ 10−3 means that we cannot neglect consistently
the contribution of the NS5-brane when we compute the relation between the volume
and τ+. In fact, we have a back-reacted value of τ+ = 1.02184 at ϕ = 0 against the LVS

value τ+ =
(

4νλ
µ2

) 2
3
= 0.879024, i.e. an almost 15% of discrepancy.

In order to enlarge the field range, we have to introduce a contribution which sub-
stitutes the uplifting given by the NS5-brane, and make the NS5-part of the potential
negligible for the volume stabilization.

4.5 Potential Uplifting
The most simple solution which we can consider in order to solve the criticality of the
previously proposed potential, is to consider an uplifting term of the following form:

Vup ∼
ϵ̃

V2
(4.74)
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where ϵ̃ is a small and tunable parameter. We know from the literature that such an up-
lifting term can be provided by the effect of a D̄3-brane in a different Klebanov-Strassler
throat [KPV02], a T-brane [CQV16] or non-zero F-terms of the complex structure mod-
uli [Cic+22]. Note that we need ϵ ≪ ϵ̃ ≪ 1. Adding this contribution, our potential
becomes:

V (V , τ+, ϕ) =
λ

V
√
τ+e

−4πτ+ − µ

V2
τ+e

−2πτ+ +
ν

V3
+
ϵ
√
2τ+
V2

√
1 +

4π2gsV
τ
3/2
+

ϕ2 +
ϵ̃

V2
(4.75)

As we have seen before, with such a strong uplifting we cannot trust anymore the LVS
stabilization of the volume. However, since we are imposing that the highest contribution
is given by the uplifting term, we can consistently neglect the NS5-brane contribution in
the volume stabilization. Thus, we consider the following potential:

V (V , τ+) = VLVS + Vup =
λ

V
√
τ+e

−4πτ+ − µ

V2
τ+e

−2πτ+ +
ν

V3
+

ϵ̃

V2
(4.76)

Let us minimize V with respect to the volume and τ+ to find a relation between them:
∂V
∂V = 0 ⇒ V =

(
µ
√
τ+
λ
e2πτ+

)[(
1− ϵ̃ e2πτ+

µτ+

)
±
√(

1− ϵ̃ e2πτ+

µτ+

)2
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µ2τ
3
2
+

]
∂V
∂τ+

= 0 ⇒
(

λ
µ
√
τ+
e−2πτ+

)
V
(
1
2
− 4πτ+

)
= (1− 2πτ+)

(4.77)

Gathering the equations we end up with the following expression in τ+:(1− ϵ̃ e2πτ+

µτ+

)
±

√√√√(1− ϵ̃ e2πτ+

µτ+

)2

− 3νλ

µ2τ
3
2
+

(1

2
− 4πτ+

)
= (1− 2πτ+) (4.78)

Since we are assuming a+τ+ = 2πτ+ ≫ 1, this equation, similarly to the previous case
without uplifting, reduces to:

±

√√√√(1− ϵ̃ e2πτ+

µτ+

)2

− 3νλ

µ2τ
3
2
+

=

(
ϵ̃ e2πτ+

µτ+
− 1

2

)
(4.79)

However this time, because of the presence of the ϵ̃ term, taking the square of both sides
does not help in the calculation which still has to be done numerically. In any case this
expression is still useful since we can evaluate the sign of the solution for the volume
form which we have to consider.
Since by previous experience we expect ϵ̃ ∼ 0.001 and τ+ ∼ 1, we can consider the first
term on the RHS of (4.79) to be:

ϵ̃ e2πτ+

µτ+
∼ 0.001× e2π

8π
∼ 0.0213 ≪ 1

2
(4.80)
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This result tells us that we have to consider the solution with the minus sign. Thus we
can rewrite the previous system of equations, which fixes the value of the volume and τ+
uniquely, as:

V(τ+) =
(
µ
√
τ+
λ

e2πτ+
)[(

1− ϵ̃ e2πτ+

µτ+

)
−
√(

1− ϵ̃ e2πτ+

µτ+

)2
− 3νλ

µ2τ
3
2
+

]
V(τ+) =

(
1−2πτ+
1
2
−4πτ+

)
µ
√
τ+
λ

e2πτ+

(4.81)

As before, such equations do not take into account the NS5-brane contribution, but they
give us a reasonable relation between the total volume and the size of the 4-cycle τ+. In
fact, the first relation gives us a more precise estimate of the value of the volume, while
the second is the same as before where we have not approximated 2πτ+ ≫ 1, and that
is straightforward since the uplifting term does not depend explicitly on τ+.

At this point we have to fix the values for ϵ and ϵ̃. Hence, let us retake into account
the full potential, assuming the previous relation between V and τ+:

V (τ+, ϕ) =
λ

V
√
τ+e

−4πτ+ − µ

V2
τ+e

−2πτ+ +
ν

V3
+
ϵ
√
2τ+
V2

√
1 +

4π2gsV
τ
3/2
+

ϕ2 +
ϵ̃

V2

where V(τ+) =
(
1− 2πτ+
1
2
− 4πτ+

)
µ
√
τ+

λ
e2πτ+

(4.82)

In order to fix these quantities, we can impose the conditions that V (τmin+ , ϕ = 0) = 0

and that the potential has a minimum in τ+ up to V (τ inf+ , ϕ = 11) where the minimum
turns into an inflection point.
The numerical values that we have found are ϵ = 3.1 × 10−7 and ϵ̃ = 0.00449811. If
we want our model also to match the observed properties of the spectrum of primordial
perturbations, we have to require also that V (τ ∗+, ϕ

∗) ∼ 2×10−9 where ∗ denotes the field
values at CMB horizon exit. However, in our case we arrive just to V = 6.38825×10−10.
In order to satisfy this phenomenological requirement, we can set A+ = W0 =

√
2.

Given that we have a quadratic dependence in the potential, we will increase its value
almost by a factor of 4, readjusting also the warping factors. In fact, we can find that
for ϵ = 6.5 × 10−6 and ϵ̃ = 0.0179924 we obtain a potential at horizon exit of order
V ∼ 1.4 × 10−9. We will not proceed further in the refinement of this result since one
should consider the fluxes in order to give values to gs, A and W , and we are supposing
the most simple example that we can consider. However Fig. 4.2 shows how, by the use
of the uplifting term, we have increased the field range up to the desired value to realize
a working inflationary model.

After moduli stabilization, all the flat directions have become a valley in which the
inflaton field ϕ can slow-roll and drive inflation as shown in Fig. 4.3.
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Figure 4.2: Logarithmic plot of V (τ+, ϕ) between ϕ = 0 and ϕ = 11 (which are the upper
and lower blue lines)

Figure 4.3: 3D plot of the inflationary potential V (τ+, ϕ) where τ+ is on the x-axis and
ϕ on the y-axis.

4.6 Flattening
When we are referring to flattening [Don+11; Lan+17] in the context of axion mon-
odromy, we refer to the fact that the "inflation valley" that we have seen before is not
a straight line, as we expect from an asymptotically linear potential, but it is slightly
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curved. The reason behind this phenomenon is the fact that the potential for τ+ tends
to increase while the value of ϕ increases, until it decompactifies. That means that the
values of the negative exponentials in the LVS part of the potential, which we have con-
sidered to be the dominant part of the potential, decrease a bit the asymptotically linear
behaviour of the axion potential, and this effect increases until the cycle is destabilized.
In other words, this effect is given by the back-reaction of the NS5-brane which varies a
bit the size of the 4-cycle.
To be more clear, indicating with τmin+ the value of τ+ which minimizes the potential, we
have:

τmin+ = τmin+ (ϕ) and V (τ+, ϕ) = V (τmin+ (ϕ), ϕ) = V (ϕ) (4.83)

In Fig. 4.4 we see clearly this effect, by comparing V (ϕ) to the black line, which is
V (τmin+ (0), ϕ). To be more precise the red line comes from an interpolation of points ob-
tained by setting a value for ϕ, calculating the value of τ+ which minimizes the potential,
and then evaluating the potential for such values of ϕ and τ+.
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Figure 4.4: The plot in red corresponds to V (τ+(ϕ), ϕ), that is the value of the potential
obtained by setting τ+ to its minimal value which depends on the choice of ϕ; the plot
in black is instead the value of the potential with the volume set to its value at the
minimum where ϕ = 0.

Having the back-reacted potential V = V (ϕ) allow us to compute numerically all the
parameters relevant for inflation. Let us start from the slow roll parameter ϵV in Planck
units, from which we can calculate the number of e-foldings:

ϵV (ϕ) =
1

2

(
V,ϕ
V

)2

⇒ N =

∫ ϕ∗

ϕi

dϕ√
2ϵV (ϕ)

(4.84)

where ϕ∗ is the point where we reach 60-efoldings. From a numerical calculation we find
that in our model ϕ∗ ≃ 10.366 which, as expected, is smaller than the 11 because of the
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flattening effect.

Now that we have calculated ϕ∗ we can furthermore calculate the amplitude of the
scalar perturbations recalling the relation between the Hubble constant H and V (ϕ) in
Planck units in the slow-roll approximation:

H2(ϕ) ∼ V (ϕ)

3
⇒ As =

H2(ϕ∗)

8π2ϵ(ϕ∗)
∼ V (ϕ∗)

24π2ϵV (ϕ∗)
≃ 2.0044× 10−9 . (4.85)

This is consistent with the observed value up to 2 error-bars; we recall that As = (2.098±
0.023) × 10−9. Moreover, we compute the other slow-roll parameter ηV and the scalar
spectral index as:

ηV (ϕ) =
V,ϕϕ
V

⇒ ns = 1− 2ϵ∗ − η∗ = 1− 6ϵV (ϕ∗) + 2ηV (ϕ∗) ≃ 0.966 (4.86)

As we could have expected from the previous results, this is in agreement with the mea-
sured value of ns = 0.9603± 0.0073.

We also calculate the tensor-to-scalar ratio, finding:

r = 16ϵV (ϕ∗) ≃ 0.046 . (4.87)

This value is comparable to the size of the current experimental upper bound r <
0.038 (95%), but still not acceptable. We may at first try to argue that this problem
comes from the fact that we have not chosen the right parameters, e.g. in the choice of
the values of A+ or W0. However, by varying parameter choices we find that this problem
persists even in more refined models. A possible way to address this issue discussed in
the literature [DKL18; DKW21; DKW22] is to consider higher derivative kinetic terms
which additionally suppress the value of r. The application of this possibility to our
present model we leave for future work.
However is remarkable that neglecting the flattening, we would have obtained a value of
≃ 0.067, which cannot be fixed by taking into account the already mentioned corrections.
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Conclusions

In this thesis we have shown, supporting our ideas with precise calculations, that the
class of models of large field inflation coming from string compactifications provide us a
viable solution for inflation. In particular, we have shown that if we take into account
axion monodromy, we can reconstruct the inflationary dynamics with almost no fine-
tuning of the parameters involved in the description of the model.
Furthermore, we have shown that is possible to stabilize the Kähler moduli coming from
a type IIB orientifold compactification not only in the KKLT-framework [Kac+03], in
which the fluxes have to stabilize the value of the superpotential W0 ≪ 1, but also in the
large volume scenario in which we also include perturbative corrections to the Kähler
potential.

We claim that we have obtained a viable class of models since, with a very simple
and general model, we have found a good agreement with the current experimental data,
without strong fine-tuning. We recall that we have obtained a value of As = 2.0044×10−9

for the amplitude of the scalar primordial perturbations, with a spectral index ns = 0.966,
and a tensor-to-scalar ratio r = 0.046.
From such values, we may conclude that As and ns can be compatible with the observa-
tions (after a more refined analysis of background fluxes), while the value of r is larger
than present cosmological bounds from observations.

In fact, we may argue that we can be satisfied by the results obtained by our simple
model, but at the same time we have understood that the limitation of this study stays
also in its simplicity. To be more explicit, we have neglected higher instantons corrections
or higher derivative kinetic terms contributions, e.g. coming from one-loop calculations.
The introduction of these corrections could improve the agreement with observations,
especially regarding the amplitudes of the tensor modes.

Our work represents however a very important step forward in this direction, since it
provides the first explicit embedding of axion monodromy inflation in a model with full
moduli stabilization following the LVS procedure and realizing a flattening effect.
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