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Chapter 1

Introduction

The world of Artificial intelligence is booming, especially the fields of natural

language processing (NLP) and Computer Vision (CV). Recently the chatGPT

models from OpenAI have caused another shock-wave. This was a clear sign

to the world of what AI was capable of.

In our own environment we see the new course of Artificial Intelligence at

the University of Bologna (UniBo), currently in its fifth year since its incep-

tion, and the current hiring surge at PriceWaterhouseCoopers (PwC) among its

other investments in AI, as clear signs that the field is growing rapidly, both

in industry and in academics.

It is then also with these three parties that we entered in a curricular internship

agreement.

PwC has many projects dealing with text and documents, think about their

judicial-, tax- and audit branches, which provide plenty of possibilities for au-

tomation from an AI/NLP point of view. Currently they are using OpenAI’s

GPT models to automate many of these usecases.
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We personally chose to apply to PwC as we wished to gain industry perfor-

mance. As intern, we were required to select our thesis topic from the range

of subjects aligning with PwC’s interests, primarily in the field of NLP. This

constraint posed no issue for us, given our broad interests and the abundance

of engaging projects within this scope.

We ended up choosing a project with as goal to produce a Large Language

Model (LLM) tailored to the Italian language. Our reasons for choosing this

project are twofold.

Firstly we have a more personal reason. As an international student from the

Netherlands ourselves, we have been committed with learning Italian from the

day we arrived. In a time-span of two years we have learned Italian without

any prior knowledge up to about a C1 level. We are then also performing this

internship in Italian. So building an LLM fit for the Italian language seemed

the poetic cherry on top to conclude our academic journey.

Secondly, our motivation is driven by technical considerations. Developing

LLMs is a complex undertaking, ladenwith technical challenges owing to their

resource-intensive nature. At the project’s outset, we anticipated the need to

implement certain papers aimed at reducing this resource intensity. This ex-

pectation drew us towards the prospect of working at a low level with deep

neural network code, a prospect that we found utmost appealing.

In the course of our thesis, we engaged in extensive readings and practical

experiments. We commenced with a comprehensive literature review, delv-

ing into subjects such as the Transformer architecture and exploring recent

research papers, including ”Low Rank Adaptation (LoRA)” and ”Attention

with Linear Biases (ALiBi).” Subsequently, we initiated fine-tuning trials on
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our commercially licensed models, MPT and LLaMA 2, leveraging program-

ming libraries such as PEFT from Huggingface. Finally, we subjected our

fine-tuned and base models, alongside the current state-of-the-art model, GPT

3.5, to rigorous testing against a real-world PwC use case. This evaluation pro-

cess led to the analysis of 3,240 model responses.

This extensive endeavor yielded compelling results and findings.
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Problem description & Thesis Aim

Generative artificial intelligence has had a global impact, including within

the consultancy sector, also here in Italy. PricewaterhouseCoopers (PwC) has

identified numerous use-cases and opportunities that can be efficiently auto-

mated through the application of generative AI, both internally and externally.

In our role as intern, we have been exposed to various such use-cases, thus

gaining an immense appreciation for the implications of this technology.

Given PwC’s extensive operations, the majority of our use-cases originate

from various departments, such as Tax, Law, and Audit. As a result, nearly

all our use-cases are text-centric, making our AI-team predominantly focused

on text-generative AI.

Currently, we have two options to leverage generative AI. Firstly, we can uti-

lize service providers like OpenAI, which offer state of the art models. As

far as our knowledge goes, ChatGPT represents the current state of the art

(SOTA) in text generation. The alternative approach involves the in-house

development and -maintenance of large language models.

Both approaches have their respective advantages and disadvantages.
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The advantage of maintaining our own LLM instance is our independence

from external providers. However, a notable disadvantage is the considerable

challenge of achieving performance on par with, or superior to, the current

state of the art. Our practical experience has shown that the existing commer-

cially licensed pre-trained models do not exhibit the same performance quality

with Italian input as ChatGPT, thus leading to suboptimal results. Addition-

ally, the availability of models under commercial licenses is limited. Then,

perhaps most importantly, training an LLM from scratch can be prohibitively

expensive. Frequently the training of LLMs costs up to hundreds of thousands

of dollars. MPT, an LLM relevant for our thesis, incurred costs of approxi-

mately $200, 000 [23] for its pretraining.

Opting for a service provider offers the advantage of constant access to state-

of-the-art models with minimal maintenance requirements. On the flip side,

reliance on a service provider carries the risk of codebase entanglement with

their API, potentially leading to difficulties in case of price hikes.

PwC has chosen to primarily utilize the services of OpenAI while investigat-

ing the possibilities of maintaining in-house LLMs as a risk management strat-

egy. According to the AI department’s management, it is one thing to sever

ties with a service provider and face the consequences of disabling dependent

services, and quite another to have in-house LLMs as a fallback option, albeit

with (slightly) diminished performance.

Presented with the costs of pretraining, the current idea of building an Italian

LLM is that of finetuning an already pretrained- and commercially licensed

LLM on an Italian instruction dataset, hoping to achieve comparable perfor-

mance.
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This brings us to the objective of our thesis: ”Fine-tuning commercially li-

censed LLMs for application in PwC’s Italian language-based use-cases, aim-

ing for performance that does not significantly lag behind ChatGPT or other

service providers”.

This thesis, therefore, serves as the first steps of development of a ’safety

net’ for all of PwC’s AI applications.
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Related papers and Theory

This section provides an in-depth exploration of the theoretical foundations of

our model’s architecture and discusses relevant research papers individually.

It serves as supplementary material to aid newcomers in comprehending the

current state of the art, addressing knowledge gaps, and contextualizing the

discussed papers ([33, 19, 17, 12]).

3.1 Transformer Pipeline

In this subsection, we offer a comprehensive explanation of transformers, orig-

inally introduced in the ”Attention Is All You Need” paper [33]. We will cover

the topic from a high-level abstraction down to intricate details. In essence,

a transformer’s core function is to predict the next most likely word given a

sequence of words.

To provide more precision, it’s crucial to note that transformers operate on

tokens rather than full words. A token can be a character (’a’, ’b’, ’!’, etc),

a part of a word (’ba’, ’wal’, ’rol’, etc) or even an entire word (’cat’, ’bag’,

’wall’, etc). Then, a transformer does not predict the next token, instead for

all tokens it knows it calculates the probability that that specific token is in

fact the next token. Rephrasing our sentence from before it becomes: given a
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sequence of tokens a transformer calculates for each token known to the tok-

enizer that that token is in fact the next token.

A noteworthy observation is that transformers do not produce complete sen-

tences. When employed in a pipeline, they iteratively predict the next token,

extending the original input sequence by appending the predicted token. This

process continues until the desired sequence length is achieved or until the

model produces an end-of-sequence (EOS) token.

Transformers, therefore, use their previous predictions to make subsequent

predictions.

3.1.1 Tokenizer

The first component to dissect in the transformer pipeline is the tokenizer. This

crucial element converts textual input into numerical representations known

as tokens. For the sake of conceptual clarity, we can envision the tokenizer

as maintaining a mapping of character sequences to corresponding numerical

values, as exemplified in Table 3.1.

The general approach of a tokenizer to tokenize a string is to look up the first

character that does not belong to a token yet and see if it exists in the vocab-

ulary. If so save the corresponding token and continue looking if the current

character(s) plus the next new one exist in the vocabulary, if so save new to-

ken and repeat. Else output the current token and start a new search process

with the current character. Now having the vocabulary shown in table 1 and

the string ”abd” to tokenize, lets see the tokenizer would handle it.

The character ’a’ exists in our vocabulary, so for now we would output the

token 2. Now let’s check if ’ab’ exists in the vocabulary, it does! For now our
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Characters Token
... ...
a 2
b 3
c 4
d 5
... ...
z 28
A 29
B 30
... ...
Z 54
0 55
... ...
9 64
ab 65
abc 66

Table 3.1: An example of a tokenizer vocabulary.

output would be token 65. Now we check if ’abd’ exists in the vocabulary,

it does not. Now we actually output token 65. Then we look up character

’d’ separately, it is known as token 5. So for now our output would be token

5. Then our string ends. We now output token 5. Hence the output of the

tokenizer is 65 and 5.

3.1.2 The Transformer Itself

This section delves into the architecture of the transformer. We commence by

defining the relevant parameters, as presented in Table 3.2.

A transformer accepts input as a collection of b vectors, each containing n to-

kens. Here, b can be set to 1 or more, hence transformers can process one or

more sequences of tokenized text in parallel.
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Parameter Description
b How many sequences a transformer treats in parallel
n The length of a sequence in number of tokens

vocab_size How many tokens the tokenizer contains.
A typical value is 50432.

model_dimension The size of the embedding vector within the transformer
that represents a token. A typical value is 2048.

no_blocks
A transformer consist of pieces of repeating architecture,
blocks. This parameter denotes how many,
a typical value is 32.

no_attention_heads Blocks are among others divided into attention heads.
This parameter denotes how many, a typical value is 32.

attention_head_length The size of the embedding vector within an attention head.
A typical value is 64.

expansion_ratio
This parameter denotes how many times the embedding
vector grows in shape in the MLP. A typical value
for this parameter is 4.

Table 3.2: An overview of the parameters relevant for the transformer.

3.1.2.1 The Embedding Layer

Then the first thing that happens is that the this collection of vectors passes

through an embedding layer which transforms every token into a vector, re-

sulting in a matrix of b × n × model_dimension. If model_dimension were

equal to the vocabulary size (vocab_size) of the tokenizer, these vectors could

be one-hot vectors. But often the model_dimension is much smaller. In

this matrix the n dimension represents the time-steps or different tokens, the

model_dimension dimension represents the model-ready representation of

the tokens and lastly the b dimension represents the parallelisation of multiple

input vectors passing through the model at the same time. Keep in mind that in

order for inputs to be processed in parallel they should be of the same length,

being padded for example.

Now that we have concisely defined the input, we can also specify the ex-

act output the transformer provides. A transformer does not just provide one

prediction for the entire input. Instead it produces a prediction for every sub-

sequence starting at index 0, so for an input with a length of n tokens we
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get n predictions, one for each subsequence starting at index 0. Now we

show an example of how a transformer transforms its input to its output:

[token0 token1 token2 token3] −→ [token1 token2 token3 token4]. The out-

put here are predictions and are prone to errors. For illustration purposes we

wrote tokens here, but actually the model produces probability vectors, having

a value for each token in the vocabulary. At production time all these predic-

tions serve no use, as we are just interested in the last predicted token, but that

is just how transformers function.

3.1.2.2 Positional Encoding

Since the attention mechanism, which we will discuss later, does not capture

information about the distance between tokens, it is necessary to introduce a

”positional encoding” after the data has passed through the embedding layer.

Positional encoding involves adding numerical values to the data based on a

mathematical formula, which takes as input the position of the tokens. The

original paper [33] uses sines and cosines for this function, while other pa-

pers, such as [17], present alternative, more effective approaches.

The input data then passes through blocks that are repeated a fixed number of

times, typically around 32 repetitions. These blocks consist of specific compo-

nents: Multi-Head Attention, Masked Multi-Head Attention, Feed Forward,

and Add & Normalization, as illustrated in Figure 3.1. In this figure, the left

half is referred to as the encoder and the right half is referred to as the decoder.
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Figure 3.1: The original transformer architecture from the ’attention
is all you need’ [33] paper.

3.1.2.3 Multi-Head Attention

A Multi-Head Attention module takes an input vector of dimensions b × n ×

model_dimension and directs it throughno_attention_heads attention heads,

where no_attention_heads is a user-defined parameter that determines the

number of attention heads. Each attention head returns a vector of dimensions

b × n × attention_head_length, where

attention_head_length = model_dimension/no_attention_heads. These

vectors are then concatenated to produce an output vector with the original di-

mensions: b × n × model_dimension.
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3.1.2.4 Attention-Heads

Mathematically, the size of n has no bearing on the functioning of the attention

head. In an attention head, the input (of dimensions b×n×model_dimension)

is replicated to create three equal instances, each of which is processed through

its dedicated fully connected layer. These layers reduce themodel_dimension

to attention_head_length. The three resulting vectors are named K, Q, and

V , each with dimensions b × n × attention_head_length.

Next, a dot product is computed between K and Q, yielding a matrix of di-

mensions b×n×n. This matrix reveals the relevance between pairs of tokens.

For example, in the sentence ”Peter walks, and the dog stinks,” it will indicate

high relevance between ”Peter” and ”walks” and low relevance between ”Pe-

ter” and ”stinks.” An example matrix is shown in Table 3.3.

Peter walks and the dog stinks
Peter 0.56 0.3 0.07 0.02 0.04 0.01
walks 0.37 0.61 0.01 0.01 0 0
and 0.24 0.02 0.44 0.05 0.23 0.02
the 0.02 0.01 0.01 0.59 0.31 0.06
dog 0.01 0.01 0.03 0.06 0.64 0.25
stinks 0.03 0.01 0.02 0.04 0.37 0.53

Table 3.3: An example of the b × n × n matrix in the non masked attention
head.

This matrix is data-dependent because the fully connected layers for K and Q

are trained. This is where a lot of the power of a transformer lies. The matrix

is subsequently multiplied (dot product) by V , producing a vector of dimen-

sions b×n×attention_head_length. This vector then passes through a fully

connected layer before leaving the attention head.
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For a more intuitive understanding of the key, value and query vectors we

would like to share an analogy we found on an online forum [1]: ”The key/-

value/query concept is analogous to retrieval systems. For example, when you

search for videos on Youtube, the search engine will map your query (text in

the search bar) against a set of keys (video title, description, etc.) associated

with candidate videos in their database, then present you the best matched

videos (values)”.

The primary goal of the attention mechanism is to share information between

tokens. For example in the sentence ”Peter is born in Groningen, he ...”, we

want that in some way there is an information flow such that it becomes clear

that ’he’ refers to ’Peter’.

Looking at figure 3.1 an important remark we want to make regarding the

data flow within the transformer is that in almost every step all the data that

flows into a component comes from its previous component, but there is one

exception. In the non-masked attention head in the decoder, the key- and value

vectors always come from the exit point of the encoder. We include figure 3.2

as additional information for understanding the flow of data within transform-

ers.

3.1.2.5 Masked Attention-Heads

In the decoder section of the architecture, we employ a masked attention mod-

ule. Unlike the regular attention head, the masked version restricts the flow

of information from the future to the present. Specifically, token at index i

can only access tokens at indices smaller than i, accomplished by masking

the upper triangle of the dot product. For instance, the example in Table 3.3
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Figure 3.2: An alternate depiction of the dataflow within a transformer.

Peter walks and the dog stinks
Peter 1 0 0 0 0 0
walks 0.38 0.62 0 0 0 0
and 0.34 0.12 0.54 0 0 0
the 0.05 0.03 0.02 0.90 0 0
dog 0.01 0.01 0.03 0.11 0.84 0
stinks 0.03 0.01 0.02 0.04 0.37 0.53

Table 3.4: An example of the b × n × n matrix in the masked attention head.

transforms into the masked version as shown in Table 3.4. This design en-

forces learning by preventing the model from merely copying future tokens

from nearby entries and forcing it to make predictions and to learn.

For additional clarity we included Figure 3.3 from the original paper as il-

lustration of the attention mechanism.
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Figure 3.3: The original attention mechanism illustration from the ’at-
tention is all you need’ [33] paper.

3.1.2.6 Feed Forward

While the attention head’s primary function is to establish information flow

between tokens, the feed-forward component provides the space for the model

to process and ’think’ about this information. It employs a simple fully con-

nected layer, transforming the data from dimensions b × n × model_dim to

dimensions b × n × (expension_ratio ∗ model_dim) before returning it to

the original shape.

3.1.2.7 Add & Normalization

The ”Add & Norm” component serves two purposes. Firstly, it combines two

streams of the model, creating a skip or residual connection. Secondly, it ap-

plies layer normalization, specifically standardization, to the resulting values.

These layers play a crucial role in addressing issues like vanishing and ex-

ploding gradients commonly encountered in deep neural networks. In-depth

exploration of these topics and their solutions can be found in the paper that

introduced the skip connection [11] and the paper on layer normalization [6].
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3.1.2.8 Cleanup

At this stage of the transformer, two final steps remain. First, the data is trans-

formed from dimensions b × n × model_dimension to dimensions b × n ×

vocab_size. For each of the n predictions at each time step, this results in a

probability distribution over the tokens in the vocabulary. A softmax function

is then applied to ensure that these probabilities sum to one for each time step.

This concludes the description of the data flow within a transformer. For

further reading we recommend [13], a valuable resource for low level under-

standing of transformers.

3.1.3 Loss Functions for Transformers

Anoften overlooked aspect of transformers is their loss function, which, though

not particularly exciting, is necessary to mention.

The loss function used in transformers is the cross-entropy loss function, de-

fined as:

H(p, m) = −
∑

token∈vocab

p(x) · log2(m(x))

Here, x represents the input to the model, p(x) is the ground truth of the next

token, and m(x) is the model’s prediction of the next token. Both p(x) and

m(x) are vectors of length vocab_size. The summation is carried out over

each element of these vectors.

We note that the structure of p(x) is such that every element is zero, except
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for the actual next token. Indicating that the entire equation depends solely on

the model’s predicted value for the actual next token. We can now attribute

meaning to our loss values. See the table 3.5 below.

Loss Confidence
∞ 0%
3.32 10%
2.32 20%
1.74 30%
1.32 40%
1.00 50%
0.74 60%
0.51 70%
0.32 80%
0.15 90%
0.00 100%

Table 3.5: Loss values and their corresponding confidence levels.

For example, a loss value of 1.32 indicates that the model is 40% confident

that the ground truth token is indeed the next token.

In the field of NLP it is impossible for a model to be 100% sure. For example,

for the following phrase The lions eat the freshly caught {?}., both zebra and

antilope are correct.

The final loss is computed as the average of all sequence losses, which is,

in turn, defined as the average of the cross-entropy losses for all tokens in a

sequence.

3.1.4 Temperature

When generating responses with our models using libraries from Hugging-

Face, we are required to specify the ’temperature’. Although it is also possible

that the temperature is already set behind the screens for some functions. The
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temperature is a parameter passed to the softmax function at the final layer

of the transformer. It determines how flat or peaky the distribution over the

predicted tokens becomes. The higher we set this temperature the more we

flatten the distribution. The lower we set the temperature the more we make

the distribution peaky. The formula for the transformation of a single element

qi in the prediction vector q after the softmax is applied, is the following:

qi =
qi/τ∑

j∈q qj/τ

When the temperature is set closer to zero, the element with the highest proba-

bility approaches one. As the temperature approaches infinity, the distribution

becomes completely flat, making it entirely random. Setting the temperature

to one maintains the model’s predictions as they are.

The choice of which tokens to select from the probability distributions is often

determined by sampling methods such as top-k or top-p, but we won’t delve

into the details of these methods in this theoretical background as we consider

them out of scope.

3.2 Decoder-Only Transformer

The model we use follows a decoder-only structure, as introduced in [14],

which is identical to the encoder-decoder structure but omits the encoder part.

See to Figure 3.4 for an example of a decoder-only model.

Currently, there is no consensus on whether a decoder-only transformer ar-

chitecture is superior to an encoder-decoder architecture. The choice between

the two architectures depends on the task, with empirical evidence showing

that decoder-only architectures tend to perform better in chat and instruction-

related tasks [22].
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Figure 3.4: The decoder-only transformer architecture from the ’Im-
proving Language Understanding by Generative Pre-Training’ [19]
paper.

3.3 LoRA - low rank adaption

In the world of Artificial Intelligence it has become more and more common

to ’finetune’ a deep learning model. With finetuning, or more specifically, full

finetuning, is meant training the model for a second time on a different, and

often smaller, dataset. In this full finetuning all original model weights can,

and will be, modified. Finetuning is done to teach the model domain specific

knowledge or to increase its performance on a specific task.

An example of finetuning for a specific task is preparing an LLM for ques-

tion answering. Examples for teaching a model domain specific knowledge

is teaching a model which classifies pictures of cats and dogs the difference

between a Golden Retriever and a German Shepard. Or in our case, teaching

Italian to predominantly English trained LLM.
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However with the advent of bigger and more potent models (and all its pos-

sibilities) has also come a problem. Their incredible size of hundreds of bil-

lions of parameters makes them incredibly resource intensive to finetune. So

expensive in fact that full finetuning of such models is only at the disposal of

particularly wealthy parties such as big tech.

This where the authors of [12] come in. They tackle the resource problem

described above. Furthermore their technique allows their model checkpoints

to be stored at a minuscule fraction of current checkpoint sizes. Then, contrary

to the current state of the art, their method does not introduce any latency at

inference time. And, if that wasn’t enough, their method also outperforms full

finetuning in terms of loss.

In their proposed solution they freeze all the pretrainedweights, i.e. theweights

from the first training, and then add new weights themselves. The number of

new weights the authors add is orders of magnitudes smaller than the number

of pretrained weights. These newweights get added side by side to the already

existing (fully connected) layers. Then in the finetuning stage only the new

weights are updated.

A fully connected layer can be represented by a matrix multiplication of shape

d, k, being the input and output dimension respectively. Their idea is that this

multiplication can be approximated very accurately by twomatrices of a lower

rank B of shape d, r and A of shape r, k. Here r is the ’LoRA dimension’, a

parameter defined by the authors, with r << min(d, k). The authors found

that this already worked well for r as small as 1 or 2. These matrices then get

added to already existing flow of the model. See figure 3.5 for an illustration.
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Figure 3.5: The LoRA mechanism illustrated.

To put it formally, the full finetuning formula as shown below:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log(PΦ(yt|x, y<t))

With LoRA becomes:

max
Θ

∑
(x,y)∈Z

|y|∑
t=1

log(PΦ+∆Φ(Θ)(yt|x, y<t))

In these formulasZ is the dataset, with x being the input and y the correspond-

ing output of one arbitrary entry. Then Φ denotes the parameters of the model

of the pretraining/first training and Θ denotes the parameters of the LoRA

method.

Looking at these equations we can clearly see how LoRA leaves the weights

of the first training intact and only optimizes over the LoRA parameters.

The current state of the art methods for resolving the problem of too much
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memory usage when finetuning consist of Prefix-embedding tuning, Prefix-

layer tuning or Adapter tuning. These methods either inject new layers in

such a manner that causes increase in runtime during inference or reduce the

context length of the model as a side product. Inherent to how LoRA works, it

does not cause these issues. LoRA updates the model weights directly, leav-

ing the model architecture as it is, and not having any influence on the context

length.

Asmentioned before the LoRAmethod requires a parameter r as well as which

modules to apply LoRA to, to be defined. The question remains what actually

are good values for these parameters.

For the first question we look at table 6 from their paper. The authors ap-

ply finetuning with LoRA to various modules and various values of r (1,2,4,8

and 64), and we see that increasing r does not seem to have a correlation with

model performance. In fact low values of r already perform competitively.

Also figure 2 of their paper supports this, where performance does not im-

prove as r increases.

For the second question also look at table 6, we see that performance almost

always improves as we add more modules to LoRA. we look at table 5 from

their paper. In this table they keep the amount of LoRA parameters constant.

Then table 5 of their paper is interesting too. Here they test whether or not it is

better to keep a high LoRA dimension applied to a few modules, or whether it

is better to keep a low LoRA dimension applied to many modules. The answer

is the later. This is then also what we applied to our own finetuning.

Then somethings else, thanks to the small LoRA dimension the checkpoints

we have to save are very small, the checkpoint sizes are reduced about 10000

times. For example for GPT the new checkpoint size is reduced from 350GB
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Parameter Description

r In how many dimensions modules should be approximated.
Typically values such as 1 and 2 suffice

Alpha

The LoRA matrix is scaled by alpha, which is a parameter constant in r.
When optimizing with Adam, tuning alpha is roughly the same as
tuning the learning-rate. Hence during training this parameter is to be
kept constant.

Modules Which modules within the model to apply LoRA to
Dropout LoRA can be trained with dropout, here said ratio can be specified

Table 3.6: An overview of the LoRA parameters.

to 35MB. Then because we freeze the model weights we also do not have to

calculate the gradients or maintain the optimizer states for most parameters.

This reduces the RAM usage up to 2/3 times.

Something very interesting to see is that LoRA finetuning actually often out-

performs full finetuning, see e.g. table 4 of their paper. Why this actually is

the case is unknown, as why and how finetuning works in generally is cur-

rently unknown too. A theory as to why LoRA outperforms full finetuning is

that freezing the weights from the pretraining prevents the model from forget-

ting what it has learned in its pretraining. In their future works sections the

authors actually mention that they hope that their work will contribute to an

enhanced understanding of finetuning in general.

We conclude our section with table 3.6 explaining all parameters relevant to

LoRA and its HuggingFace implementation.

3.4 ALiBi - Attention with Linear Biases

One of the inherent limitations when working with LLMs is the restricted con-

text length. Expanding the model’s capacity to handle longer sequences usu-

ally requires increasing the model’s dimension, which, in turn, increases the
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number of parameters and overall cost. Moreover, longer sequences result in

extended training periods, further elevating costs.

However, as we discussed in a previous section on the transformer architec-

ture, context length is not dependent on the model’s architecture. This ob-

servation gives rise to the concept of extrapolation, where models can predict

sequences longer than those seen during training. TheALiBi paper [17] delves

into this very concept. Based on perplexity measurements, it concludes that

models trained with the original sine and cosine positional embeddings from

the ”attention is all you need” paper [33] do not extrapolate well. Instead, the

authors propose their own method, which exhibits excellent extrapolation ca-

pabilities. It allows for effective extrapolation on sequences 2-10 times longer

than those encountered during training, all while speeding up model training.

The authors make their claims based on perplexity measurements. Perplexity

is above all a measure of how confident a model is. Intuitively it is a measure

of how likely a model deems a certain sequence X with length n. The lower

the perplexity, the more the model deems a sequence likely. When comparing

models such a sequence is often an entire dataset. Mathematically perplexity

is defined as follows:

perplexity(X) = exp
(

− 1
n

n∑
i=1

log2(Pm(xi|x<i))
)

Here, Pm represents the probability assigned by the model m.

Perplexity provides a computationally efficient way to gauge amodel’s perfor-

mance and to identify potential overfitting, as overfitted models often exhibit

excessively high confidence. However we should note nomeasurement is per-

fect, perplexity (i.e. confidence) does not tell us how accurate a model is, or
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more metaphorically, a model can confidently make mistakes.

ALiBi achieves its goals by eliminating positional embeddings from trans-

formers. To encode positional information into transformers, they modify the

masking in the attention mechanism. They replace the conventional binary at-

tention mask of ones and zeros, as seen in Table 3.7, with their own as shown

in Table 3.4.

1
1 1
1 1 1
1 1 1 1
1 1 1 1 1

Table 3.7: Standard attention mask.

0
-1 0
-2 -1 0
-3 -2 -1 0
-4 -3 -2 -1 0

Table 3.8: ALiBi attention mask.

In the attention mechanism, this is multiplied by a scalar m (slope), where

each attention head has a unique slope. However, the set of slopes remains

the same in each block. This set of slopes, of size n, is defined as:

{2
−8
n , 2

−8
n

·2, 2
−8
n

·3, . . . , 2
−8
n

·n}

ALiBi operates on this simple premise but yields impressive results, as shown

in Figure 3.6. In this figure, the authors compare various extrapolation meth-

ods, including the one from the original transformer paper (sinusoidal embed-

dings), to their method. These methods are trained on 512- and 1024-token



3.4 ALiBi - Attention with Linear Biases 27

sequences, and their perplexity on significantly longer sequences is measured.

The original method demonstrates poor extrapolation with perplexity shoot-

ing up immediately. Other methods perform better, yet ALiBi outperforms

both of them. Remarkably, ALiBi leads to an initial decrease in perplexity,

followed by consistently low values, a remarkable outcome.

Figure 3.6: A comparison of various extrapolation methods.



Chapter 4

Models & Data used

To develop a commercially licensed language model that performs well in

Italian, two crucial components are required: an open-source, commercially

licensed model for fine-tuning and an appropriate dataset for the fine-tuning

process.

4.1 Models

At the beginning of this project, only one commercially LLM was available:

MPT-7B-Instruct [2]. However, around halfway through our project, another

commercially licensed LLM, LLaMA 2, was released [3]. These two models

serve as the focal points for our fine-tuning endeavors.

4.1.1 MPT-7B-Instruct

MPT, short for Mosaic Pretrained Transformer, is developed by Mosaic AI.

The company’s core business model revolves around providing software and
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tools that expedite the development of AI solutions for businesses. Con-

sequently, they released an open-source, commercially licensed LLM. Mo-

saic introduced several models simultaneously, encompassing a 30-billion-

parameter family and a 7-billion-parameter family. In our research, cost-

efficiency is a primary concern, so we exclusively focus on the 7-billion-

parameter family. This family includes various models: MPT-7B, MPT-7B-

Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+. The latter three are

fine-tuned variants of the MPT-7B model. Our primary interest lies in MPT-

7B-Instruct, as it is fine-tuned on an instruction dataset. While MPT-7B-Chat

might have been useful too, it lacks commercial licensing.

MPT-7B is a decoder-style transformer model, akin to OpenAI’s GPT, with

6.7 billion parameters and a context length of 2048, as well as its finetuned

variants, except for MPT-7B-StoryWriter-65k+, which boasts a context length

of 65,000. It was trained on 1 trillion tokens of text and code curated by Mo-

saic’s data team. The training data encompasses diverse datasets, including

mc4, C4, Semantic Scholar ORC, and others. Mosaic specifically opted to

utilize only the English subsets of these datasets. Another dataset they have

inlcluded is called ’The Stack’,this dataset concerns itself with coding ques-

tions and code itself and is most likely completely in English. Then lastly

Mosaic also uses the CommonCrawl, arXiv, Wikipedia, Books, and Stack-

Exchange subsets from the RedPajama dataset [32], which is an attempt to

replicate LLaMA’s training data. We know that this Wikipedia subset con-

tains some Italian data. Furthermore it is also possible that the Books subset

contains some Italian data. Concluding: it is hence possible and certainly not

excluded that MPT-7B is trained, if not only a little, on Italian data. We cannot

be sure as Mosaic makes no statements on this topic rather than ”This dataset

emphasizes English natural language text...” [23].

In general, LLMs trained on diverse text corpora tend to underperform in
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question-answering tasks. Therefore, after initial pretraining on a large text

corpus, these models undergo instruction training using a dataset designed

to teach them how to respond to questions. MPT-7B-Instruct is the result of

fine-tuning MPT-7B on a combination of the Dolly dataset [9] and a subset of

Anthropic’s Helpful & Harmless dataset [7].

After evaluation, Mosaic determined that MPT-7B-Instruct performs compa-

rably to LLaMA 1. In a comparative analysis across 12 benchmarks, MPT-

7B-Instruct outperformed other models on six benchmarks, while LLaMA 1

excelled on the remaining six, indicating similar performance between these

models.

4.1.2 LLaMA 2

LLaMA 2 (and LLaMA 1) are Large Language Models developed by Meta, a

company widely known as the parent company of social media platforms such

as Facebook, Instagram, and WhatsApp. The majority of Meta’s revenue is

generated through advertising on these platforms. However, Meta also main-

tains an AI division responsible for creating the LLaMA models.

The LLaMA 2 model family offers various variants, including models with

7 billion parameters, 13 billion parameters, and 70 billion parameters, all with

a context length of 4096 and trained on 2 trillion tokens. This training dataset

size is 40% larger than that of LLaMA 1. In our research, we focus on exper-

imentation while keeping costs in check, which leads us to concentrate solely

on the 7-billion-parameter model.

On Meta’s website, a comparative analysis is presented, encompassing var-

ious LLaMA 2 variants and models like MPT-7B and MPT-30B on 11 distinct
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benchmarks. LLaMA 2-7B outperforms MPT-7B on all benchmarks except

one, with the difference in performance ranging fromminor to significant. The

benchmark where MPT-7B performs better is ”HumanEval,” which evaluates

the ability to produce functional computer code. Interestingly, LLaMA 2-13B

also outperforms MPT-30B similarly, excelling across most benchmarks, ex-

cept in ”HumanEval,” where MPT-30B performs substantially better.

It’s crucial to clarify that while we occasionally mention LLaMA 1, our pri-

mary focus is on LLaMA 2, specifically the 7-billion-parameter variant. All

our experiments are executed on LLaMA 2. This choice is guided by two key

reasons: LLaMA 2 is the only commercially licensed model among the two,

and it consistently outperforms LLaMA 1.

Lastly we would like to know what languages LLaMA 2 is trained on, but

unfortunately very little information is released on this topic. We do know

that LLaMA 1 has seen some Italian in its pretraining, then given that at least

on an architectural level LLaMA 1 and 2 are not too different and given the

fact that the training set of LLaMA 2 is 40% bigger than that of the first ver-

sion, makes it not improbable that LLaMA 2 has seen Italian in its pretraining.

However we can not be sure, furthermore on Meta’s FAQ we have seen that

”the LLaMA models thus far have been mainly focused on the English lan-

guage” [4].

4.2 Data

The initial step in training a language model involves extensive training on a

diverse text corpus, with the model tasked with predicting the next word in

the text. This training dataset comprises hundreds of millions of words gath-

ered from various sources, including books, internet content, music lyrics, and

more.
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Following this initial phase, models often exhibit limited performance in question-

answering tasks. To improve their question-answering capabilities, a sub-

sequent training phase is employed, known as instruction training. During

this phase, models are trained on a dataset containing thousands to tens of

thousands of question-and-answer pairs, teaching them how to answer ques-

tions effectively. It’s important to note that both questions and answers in this

dataset can be quite lengthy.

BothMPT-7B-Instruct and LLaMA-2-7B-Chat have undergone these two train-

ing phases. However, in the first phase, both models had minimal exposure to

Italian text, if any at all. This exposure was most likely completely lacking in

the second training phase.

In our attempts to teach these models a sufficient Italian language profiency,

we aimed to train these models on an instruction dataset exclusively in Italian.

The dataset we selected for this purpose is known as Stambecco [15], the only

freely available Italian instruction dataset at the time of writing.

4.2.1 Exploring Stambecco

The Stambecco dataset comprises 51,713 entries, each containing three fields:

instruction, input, and output. Notably, the instruction and output fields are

always populated, while the input field may remain empty. The instruction

field provides the model with specific tasks, such as ”think of a name for my

kitten”, ”write an essay about penguins”, ”correct the following sentence”, or

”put the following list in alphabetical order”. The input field supplements the

task with contextual information, including phrases to be corrected, such as

”Mi name are Peter and I have 23 years,” or lists to be sorted, such as ”[Kiwi,
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Strawberry, Mango, Grape].” The output field represents the expected model

response, including corrected sentences, essays, or sorted lists.

Examples from the dataset, both with and without contextual input, can be

found in Table 4.1.

Id Instruction Input Output
0 Migliora la struttura grammaticale della frase data. Mi sorprendo per la buona notizia Sono rimasto sorpreso dalla buona notizia.
1 Componi una poesia selezionando a caso tre parole. Un fiume piange per sogni dimenticati in luoghi lontani.

2 Nomina gli eventi storici che portarono alla
Rivoluzione francese.

Le cause principali della Rivoluzione francese furono la
disuguaglianza tra la nobiltà e il clero da un lato e la gente
comune dall’altro, l’onere economico sulla popolazione causato
dalle tasse, i raccolti scarsi e l’aumento dei prezzi del cibo e
l’influenza dell’Illuminismo e la Rivoluzione americana.
Altri fattori includevano la cattiva gestione finanziaria del
re Luigi XVI, il crollo del commercio mediterraneo a causa
della guerra con la Gran Bretagna e i Paesi Bassi e il numero
crescente di contadini, artigiani e mercanti scontenti.

4 Modifica la frase data e assicurati che sia nella
voce passiva. Il cane ha inseguito il gatto. Il gatto è stato inseguito dal cane.

9 Elenca le fasi lunari in ordine.
Luna nuova, Mezzaluna crescente, Primo quarto,
Gibbosa crescente, Luna piena, Gibbosa calante,
Terzo quarto, Mezzaluna calante.

10 Vediamo quale carattere dall’input dato è il
più vecchio. Max, Antonio, Gina Max è il più vecchio dei tre personaggi.

12 Metti i seguenti elementi nell’ordine appropriato Taccuino, penna, righello Penna, righello, taccuino

15 Analizza la seguente frase nelle sue singole parole e
rimuovi tutta la punteggiatura. La comunicazione è fondamentale! comunicazione, è, chiave

18 Quale paese ha il maggior numero di laghi? Il paese con il maggior numero di laghi è il Canada, con
oltre 31.752 laghi.

Table 4.1: Entries from the Stambecco dataset.

The entry with the longest instruction has an instruction length of 1135 char-

acters. This entry starts with a question of how to call a lazy and authority

ignoring person, and then continues rambling on about how annoying a cer-

tain coworker is. The entry with the shortest instruction has an instruction

length of 9 characters. The entry is: ”6 + 3 = ?”. The average instruction

length is 67.6 characters and the median instruction length is 62 characters.

The entry with the longest input has an input length of 2925 characters. The

entry was a news article from the CNN. The instruction to the model was to

find a title for said article. The entry with the shortest input is the empty en-

try. The average input length is 26.2 characters and the median input length

is 0 characters. Our dataset contains 32667 entries with empty input, which

corresponds to 61.5% of the dataset. The average length of the inputs which
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are not empty is 71.1 and the median length is 42.

The entry with the longest output has an output length of 4522 characters.

The entry is the code for red-black tree implementation in C++. The entry

with the shortest output has an output length of 1 character. The output in

question is ”7”. The average output length is 312.6 characters and the median

output length is 220 characters.

4.2.2 Quality remarks on Stambecco

The Stambecco dataset contains useful entries from which we think a model

can gain a good comprehension of the Italian Language. Examples of such

entries are ’improve the sentence’ questions like entries 0 and 4 shown in ta-

ble 4.1. But also just general language understanding questions like entries

1,2 and 9. From what we have seen all entries are grammatically and syntac-

tically correct Italian.

However there are also entries that we think will throw the model off, like 10,

12, 15 and 18. Entry 10 asks specific information that cannot be assumed gen-

erally known without providing relevant context, basically asking the model

to hallucinate. Entry 12 asks the model the model to put items in the appropri-

ate order without specifying what appropriate is, it can only be assumed that

alphabetically is meant here. Entry 15 asks to remove punctuation from the

input, only to provide more punctuation in the output than originally present

in the input. Entry 18 gives a technically correct answer, but it would have

been better if they specified the actual number of lakes in Canada: 879800.

A future work could be to sift through the data and keep only a subset of

quality prompts, as we have seen in [35], also just a subset of 1000 prompts

can improve the model a lot. This paper also strongly suggest that almost all



4.2 Data 35

knowledge in large language models is learned during pretraining.

Concluding, just looking at the collection of random samples of table 4.1, we

see that Stambecco certainly, on a semantic level is not always a dataset of ut-

most quality, but currently there are no alternatives. We do want to emphasize

that the quality of the Italian language in these entries are grammatically and

syntactically correct.

4.2.3 The Conception of Stambecco

To understand the Stambecco dataset, it is essential to delve into its origins.

The dataset’s inception can be traced back to the paper ”SELF-INSTRUCT:

Aligning Language Models with Self-Generated Instructions” [34]. This pa-

per introduced a novel technique that employed bootstrapping, using a small

set of human-created instruction and answer pairs (approximately 175), and a

pretrained model to generate a new instruction dataset. In the initial experi-

ment, the ”Davinci”model, part of theGPT-3 series, was used as the pretrained

model. This technique proved effective in generating instruction datasets with

substantial volume, approximately 52,000 entries, and of reasonable quality

within the context of machine-generated data standards.

TheAlpaca project [21], an initiative by Stanford aimed at creating an instruction-

following LLaMA model, further refined this technique, making significant

enhancements. They upgraded themodel used for generation to ”Davinci003,”

part of the GPT-3.5 series. Although they largely retained the pipeline from

[34], they introduced simplifications and technical modifications that resulted

in a dataset of higher quality and at reduced cost.

The dataset underwent another transformation when the authors of [16] sought
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to enhance the answers within the Alpaca dataset. In this process, they dupli-

cated all instruction and input tuples and generated new outputs using GPT-4.

The dataset’s final phase involved cleaning and translation. The cleaning pro-

cess was undertaken by [5], who identified and removed entries with incorrect

outputs, missing outputs, or hallucinations attributed to external references.

The dataset’s translation was carried out by the authors of [15], leading to the

creation of Stambecco, with translation encompassing all instruction, input,

and output fields facilitated by GPT-3.5.

It’s important to note that Stambecco is a synthetic dataset, meaning that it

is generated by machines rather than humans. While synthetic datasets are

generally considered to be of lower quality than human-generated datasets,

in the current AI landscape, using entirely human-generated datasets may not

always be economically feasible.

Lastly it should be said that OpenAI does not allow their models (GPT etc)

to be used to create models that compete with GPT. This could include our

use of the Alpaca and Stambecco in our finetuning. However we are currently

doing research and so our models are not competing with OpenAI’s models.

4.3 Camoscio

During the course of our thesis research, we also became aware of the Camoscio

model [20]. Camoscio essentially represents LLaMA 1, fine-tuned on Alpaca

translated into Italian using GPT3.5, a configuration akin to Stambecco. How-

ever, LLaMA 1 is not commercially licensed, so we still had to train models

ourselves.

While Camoscio could have been used for testing and comparison, we chose
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not to do so due to time constraints. Our research focuses on fine-tuning

LLaMA 2, which outperforms LLaMA 1, making it more suitable for our re-

search goal.



Chapter 5

Pipeline & Practical insights

The transition from pre-trained languagemodels to practical applications often

necessitates resource-intensive fine-tuning processes. In this section, we delve

into how our project tackled these challenges, with a primary focus on har-

nessing the HuggingFace ecosystem, the ”PEFT” library, and the Low Rank

Adaptation (LoRA) technique.

5.1 HuggingFace and the PEFT Library

HuggingFace, a prominent entity within the AI community, serves multiple

roles. It acts as a repository for a vast collection of pre-trained machine learn-

ing models, thereby making these models accessible on a global scale. But

HuggingFace also provides an extensive suite of tools and programming li-

braries that facilitate the training and inference of these models, effectively

establishing itself as a central hub for the AI community.

Within this ecosystem, the ”PEFT” library, or Parameter-Efficient Fine-Tuning,

emerges as a pivotal resource. It is tailored specifically for the efficient adapta-

tion of pre-trained language models to a diverse range of downstream applica-

tions. What distinguishes PEFT is its ability to achieve this adaptation without

necessitating the fine-tuning of the entire model’s parameters. Instead, PEFT
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concentrates on fine-tuning a relatively small number of additional model pa-

rameters, thus leading to a significant reduction in computational and storage

costs. A substantial portion of these cost savings is achieved through the im-

plementation of LoRA, as elaborated in Section 3.3.

For our project we initially believed we would need to implement LoRA our-

selves. This would have involvedmaking profound low-level modifications to

model architectures and would have required a profound understanding of Py-

Torch’s functions. However, our journey took a fortuitous turn when we later

discovered that Hugging Face’s PEFT library had already integrated LoRA.

This alleviated the need for us to delve into the intricate low-level coding our-

selves.

5.2 MPT Architecture

Despite the assistance provided by PEFT, a deep understanding of the model

architectures designated for fine-tuning was imperative. At this stage, our pri-

mary focus was on the MPT model. The PEFT library required us to specify

the layers within MPT where the LoRA matrices would be injected.

MPT, adheres to the common transformer decoder-only architecture, as illus-

trated in Figure 3.4. However, one notable deviation is that MPT does not

use sinusoidal positional embeddings. Instead, it implements ALiBi, as elab-

orated in Section 3.4. MPT comprises 32 blocks, following the structure as

depicted in Figure 5.1.

The attention blocks within these repeating blocks adhere to the same atten-

tion mechanism, as illustrated in Figure 3.3. The feedforward block within

the repeating blocks consists of two layers following the shape transformation

dmodel → dmodel × expansion ratio → dmodel, where dmodel = 4096, and the
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Figure 5.1: The architecture of the repeating blocks of the MPT model.

expansion ratio is 4.

To facilitate fine-tuning across as many model components as possible, we

needed to pinpoint the instantiation of the Q, K, V, and the last linear layer of

the attention model within the MPT codebase, as well as the layers related to

the feedforward block.

In the MPT codebase, the q, k, and v layers are defined within the ”Multi-

headAttention” class in the ”attention.py” file. The instantiation is denoted as

follows:

1 self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=

device)

The outgoing linear projection layer for the attention block is implemented in

the same class, as shown below:

1 self.out_proj = nn.Linear(self.d_model, self.d_model, device=

device)

These definitions are situated in the same file within the ”layers” directory,
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which resides in the ”models” directory of the ”llm_foundry” directory in the

MPT codebase.

For the feedforward block, the structure is defined by two lines within the

”MPTMLP” class in the ”blocks.py” file, found in the same directory as the

”MultiheadAttention” class:

1 self.up_proj = nn.Linear(d_model, expansion_ratio * d_model,

device=device)

2 self.down_proj = nn.Linear(expansion_ratio * d_model, d_model

, device=device)

By identifying these layer names, we enable PEFT to conduct fine-tuning on

our MPT model.

Additionally, our exploration extended to the fine-tuning of the LLaMA 2

model. Interestingly, unlike MPT, LLaMA 2 did not necessitate specifying

the layers for injecting Low Rank Adaptation. In fact, any attempt to do so

resulted in errors. Unfortunately, there is also limited publicly available in-

formation regarding the architecture of LLaMA 2.

In summary, our approach to efficiently fine-tuning Large Language Mod-

els was empowered by the HuggingFace ecosystem, PEFT, and LoRA. These

components facilitated our experiments while optimizing resource utilization.

5.3 Practical Insights

Beyond the presentation of experimental results, our thesis offers valuable

practical insights and information pertinent to the development of the fine-

tuning pipeline.
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5.3.1 Infinite Generation Issue

An issuewe encountered during fine-tuning, both forMPT-Instruct and LLama2,

is that of infinite generation. During inference, a model should halt text gener-

ation when it reaches either the maximum token limit (a user-defined param-

eter) or an end-of-sequence (eos) token. The infinite generation bug occurs

when the model fails to produce the eos token and continues generating text

indefinitely, producing nonsense answers like this:

1 Gli eventi storici che portarono alla Rivoluzione francese

includono la caduta del primo re di Francia, il re Carlo

IX, nel 1792; la caduta del re Carlo X nel 1804; la caduta

del re Carlo XIV nel 1815; la caduta del re Carlo XVI nel

1815; la caduta del re Carlo XVI nel 1815; la caduta del

re Carlo XVI nel 1815; la caduta del re Carlo XVI nel

1815; la caduta del re Carlo XVI nel 1815; la caduta del

re Carlo XVI nel 1815; la caduta del re Carlo XVI nel

1815; la caduta del re Carlo XVI nel 1815; la caduta del

re Carlo XVI nel 1815; la caduta del re Carlo XVI nel

1815; la caduta del re Carlo XVI nel 1815; la caduta del

This is not an uncommon issue and we found that a three-step approach is

effective:

1. Explicitly Setting the Eos and Pad Token:

Ensure that the tokenizer has the eos and pad tokens explicitly set. The

padding token should be initialized with its value, text, and ID, as spec-

ified in the tokenizer configuration. Additionally, ensure that the eos

token is distinct from the padding token.

2. Adding the Eos Token to Training Data:

Append the eos token to each sentence in the training data. This helps

the model retain its ability to produce the eos token.

3. Strictly Following the Model’s Prompt Template:

To avoid incoherent predictions, ensure that the training data adheres to
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the prompt template used during pre-training. Any deviation from this

template structure can result in erratic model behavior.

Listing 5.1: The MPT prompt template

1 ### Instruction: {{prompt}}

2 ### Input: {{input}}

3 ### Response:{{gen}}

4

Listing 5.2: The LLaMA 2 prompt template

1 <s>[INST] <<SYS>>

2 {{system_prompt}}

3 <</SYS>>

4 {{user_msg_1}} [/INST] {{model_answer_1}} </s><s>[INST]

{{user_msg_2}} [/INST]

5

5.3.2 Memory Usage Considerations

During our training processes, we encountered recurrent issues with GPUs

running out of memory, even when employing LoRA. Although LoRA con-

tributes to substantial memory savings (2-3 times) by eliminating the need to

save optimizer states of the Large Language Models (LLMs), memory man-

agement remained a challenge.

An approximate formula for memory usage during full training of an LLM

can be described as:

M = Mmodel + Mactivations + Mgradients

Where:

Mactivations ≈ BT 2

4ND2
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In this equation:

1 M = memory

2 B = batch size

3 T = sequence length

4 N = # of attention heads

5 D = dimension per head

In the context of transformers, activations consume the majority of memory

resources.

To address memory challenges, we explored various techniques highlighted

in the HuggingFace documentation [10]. These techniques include:

• Model Quantization

Reducing Mmodel by storing the model in lower precision, such as 16, 8,

or 4 bits. However, this approach may substantially increase runtime,

which we observed in our experiments. Further investigation is needed

to determine whether this issue is inherent to quantization or specific to

our pipeline.

• Gradient Accumulation

Focuses on limiting memory usage related to gradients.

• Gradient Checkpointing

This technique aims to reduce the number of activations saved during

training. Given that activations are a significant source of memory us-

age in transformers, this approach proves highly beneficial. The article

by it is creators is an interesting read and can be found here [8].

• Mixed Precision Training

While primarily used to accelerate training, mixed precision training

increases memory usage by approximately 50 percent.
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• Batch Sizes

The batch size significantly influences memory usage. To mitigate out-

of-memory errors, it is advisable to keep the batch size low.

• Sequence Lengths

Explicitly specifying the sequence length is crucial. Failure to do so

may lead to increased memory usage, as models may rely on default

values or values from unidentified configuration files.

5.3.3 Background Processes

We conducted our experiments on Google Cloud Vertex AI, which offers an

environment similar toGoogle Colab but withmore powerful GPUs, improved

file management, and access to a terminal. While training our models, we ini-

tially employed a Jupyter notebook within the Jupyter environment. However,

this method posed a risk of disconnection from Jupyter due to minor network

issues, potentially disrupting the training process.

To address this concern, we transitioned to running our experiments as back-

ground processes through the terminal using the following command:

1 nohup python your_python_filename.py > your_output_filename.

txt &

In this command:

- The ampersand (&) places the process in the background.

- The ”nohup” command prevents the process from terminating when the ter-

minal is closed.

- The ”>” sign directs the terminal output to a specified file.

This approach ensured the continuity of experiments, even in the face of net-

work interruptions.
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In summary, this section not only presents experimental findings but also of-

fers practical insights relevant to the fine-tuning pipeline, including solutions

for issues like infinite generation, memory management, and the use of back-

ground processes in GPU-intensive experiments.
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Real business usecase: The Bandi

project

In this section, we introduce a significant project undertaken by the AI team

within PwC, in which we actively participated. The project, known internally

as the ”Bandi Project,” holds substantial importance as it serves not only as an

internal initiative but also has direct exposure to PwC’s clientele.

The term ”Bandi” originates from Italian, translating to ”tenders” in English.

Tenders are formal documents issued by government entities, outlining the el-

igibility criteria, purpose, and application conditions for accessing subsidies

from specific government funds.

For more comprehensive information about the project, readers are encour-

aged to visit the official website at [18].

6.1 Project Overview

The core challenge addressed by PwC within this project revolves around the

centralization and standardization of tender documents. These documents are
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dispersed across various government websites, including municipalities, re-

gional authorities, and national bodies. Furthermore, they often lack a con-

sistent structure, occasionally even requiring the aggregation of information

from multiple sources.

PwC’s role is to assist companies by comprehending their unique needs and

identifying potential business opportunities within the scope of available ten-

ders. This approach allows PwC to connect companies with tenders that align

with their specific needs.

Having provided an overview of the problem at a high level, we will now

delve into the technical intricacies and elucidate how the AI team contributes

value to the ”Bandi Project.”

6.2 Pre-AI Team Process

Prior to the involvement of the AI team, the process of monitoring tender doc-

uments encompassed a daily task. A group of five employees diligently sifted

through a collection of approximately 160 websites to check for newly up-

loaded tender documents.

Upon discovering new documents, these employees were tasked with the ex-

traction of specific data points, which were subsequently entered into a web

platform. Examples of such data points include the opening date of the tender,

expenses covered by the tender, size(s) of eligible companies, and region(s)

the tender is active in. It is essential to note that these documents were com-

posed in bureaucratic Italian, characterized by sophisticated language and fre-

quent use of jargon. Consequently, these tasks were already considered chal-

lenging for human operators.
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6.3 The AI Team’s Contribution

The AI team stepped in to alleviate the burden of data extraction, with the

primary aim of significantly reducing the workload for the aforementioned

five employees. While the technical architecture of our solution is outside

the scope of our thesis, the essence of our approach involves the application

of Large Language Models (LLMs) to snippets of text extracted from tender

documents.

Specifically, we employ LLMs to extract specific pieces of information, such

as the opening date of a tender. The effectiveness of our LLMs in responding

to these prompts serves as the metric for evaluating their performance.

6.4 Examples

In this section, we present a selection of text snippets (input) along with their

corresponding required outputs. To obtain the desired output, we utilize prompts,

as further elaborated in Section 7. It is noteworthy that the formatting of the

text snippets may appear irregular, featuring occasional newlines, misplaced

numbers, and other discrepancies. This is a testament to the challenges inher-

ent in extracting text from PDF documents and reflects the intricacies encoun-

tered in our pipeline and use case.

The examples provided pertain to the following topics: ”the opening date of a

tender”, ”the eligible expenses for a tender”, and ”the sizes of the companies

eligible for the tender”.
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1 Sviluppo temporale del progetto

2 La durata degli impegni è di 5 anni dalla approvazione degli

Accordi.

3 -> Indicazioni delle esigenze di consulenza

4 Descrivere dettagliatamente le esigenze di consulenza delle

aziende aderenti nel territorio di competenza , con la

dimostrazione della coerenza con le finalità dell'accordo.

Sulla base di tale descrizione sarà valutata la coerenza

dei progetti proposti dai richiedenti , rispetto all'

Accordo Agroambientale d'Area a cui si riferiscono.

5 6.1.2 Termini per la presentazione della domanda

6 La domanda di sostegno può essere presentata a partire dal

12/09/2023 e fino al 12/10/2023 ore 13:00, termine

perentorio. La domanda deve essere corredata di tutta la

documentazione richiesta dal presente bando al paragrafo

6.1.3.

7 Saranno dichiarate immediatamente inammissibili:

8 - le domande presentate oltre il termine;

9 - le domande sottoscritte da persona diversa dal legale

rappresentante o da soggetto delegato, o prive di

sottoscrizione.

10 La verifica viene effettuata entro 10 giorni decorrenti dal

giorno successivo alla scadenza di presentazione delle

domande

Listing 6.1: An example of the context for extracting the opening date

1 12/09/2023

Listing 6.2: The output corresponding to the opening date example

1 ARTICOLO 4

2 DANNI AMMESSI A CONTRIBUTO

3 1. Costituisce requisito essenziale di ammissibilità l'

esistenza del nesso di causalità del danno subito con gli

eventi calamitosi di cui al presente bando.
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4 2. Sono ammessi a contributo i danni relativi a macchinari ,

strutture e arredi, veicoli

5 aziendali , attrezzature , scorte di magazzino , spese per la

predisposizione di perizie per la

6 quantificazione dell'entità dei danni.

7 Non sono ammessi danni da lucro cessante (es. mancato

profitto, etc.).

8 2 Alfonsine , Bagnacavallo , Bagnara di Romagna, Brisighella ,

Casola, Valsenio , Castelbolognese , Cervia, Conselice ,

Cotignola , Faenza, Fusignano , Lavezzola , Lugo, Massa

Lombarda, Ravenna, Riolo Terme, Russi, Sant'Agata,

Solarolo

9 3 Argenta limitatamente alla frazione Campotto

10 3

11 3. Sono ammessi a contributo esclusivamente i danni

effettivamente subiti e quantificati entro la data di

scadenza del presente bando. I danni subiti dovranno

essere indicati al netto dell'IVA e/o di altre imposte e

tasse.

12 ARTICOLO 5

13 REGIME DI AIUTO

14 1. Gli aiuti di cui al presente bando sono concessi ai sensi

del Regolamento CE n. 1407/2013 del 18 dicembre 2013,

relativo all'applicazione degli articoli 107 e 108 del

trattato sul funzionamento dell'Unione europea agli aiuti

<de minimis >. Il Regolamento comporta che l'importo

complessivo degli aiuti in de minimis concessi ad una

medesima impresa, congiuntamente con altre imprese ad essa

eventualmente collegate nell'ambito del concetto di "

impresa unica", non debba superare euro 200.000 nell'arco

di tre esercizi finanziari. Suddetto limite massimo è

ridotto a euro 100.000 per le imprese appartenenti al

settore dei trasporti su strada

Listing 6.3: An example of the context for extracting the eligible expenses
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1 I danni relativi a macchinari , strutture e arredi, veicoli

aziendali , attrezzature , scorte di magazzino , spese per la

predisposizione di perizie per la quantificazione dell'

entità dei danni.

Listing 6.4: The output corresponding to the eligible expenses example

1 BANDO INNOVAZIONE DIGITALE 4.0

2 ANNO 2023

3 Approvato con Deliberazione della Giunta camerale del 30

maggio 2023

4 Art. 1 - OGGETTO E FINALITA '

5 La Camera di commercio della Maremma e del Tirreno intende

promuovere la diffusione della cultura e della pratica

digitale nelle Micro, Piccole e Medie imprese di tutti i

settori economici attraverso il sostegno economico alle

iniziative di digitalizzazione dei processi aziendali.

Nello specifico , con questa iniziativa , si propone di

promuovere l'utilizzo , da parte delle MPMI della

circoscrizione territoriale camerale, di servizi o

soluzioni focalizzati sulle competenze e tecnologie

digitali nell'ambito delle attività previste dal Piano

Transizione 4.01 a seguito del decreto del Ministro dello

Sviluppo economico del 12 marzo 2020 che ha approvato il

progetto "Punto Impresa Digitale" (PID).

6 Art. 2 - DOTAZIONE FINANZIARIA

7 La dotazione finanziaria iniziale a disposizione dei soggetti

beneficiari ammonta a euro 90.000,00.

8 Nel rispetto dell'art. 5 ter del D.L. 24 gennaio 2012, n. 1

modificato dal D.L. 24 marzo 2012, N. 29 e convertito , con

modificazioni , dalla L. 18 maggio 2012, n. 62 e tenuto

conto del D.M. 20 febbraio 2014, n. 57 (MEF-MiSE), viene

stabilita una riserva del 2% delle risorse finanziarie a

favore delle imprese in possesso del rating di legalità.

Listing 6.5: An example of the context for extracting the sizes of the eligible

companies
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1 Micro, Piccole e Medie imprese

Listing 6.6: The output corresponding to the sizes of the eligible companies

example



Chapter 7

Experiments run

7.1 Training Models

As explained in the preceding sections, our primary objective is the develop-

ment of an LLM optimized for the Italian language for application on PwC’s

Italian use cases. To accomplish this goal, we employ a finetuning approach

on the Stambecco dataset, followed by rigorous testing of our models against

the Bandi use case. It is imperative to emphasize that our finetuning is con-

ducted on the Stambecco dataset and not on the Bandi project.

The table of our most relevant trials is presented here, and we delve into a

comprehensive analysis of these trials in the subsequent sections.

In addition to the variable hyperparameters outlined in Table 7.1, it is essential

to highlight the constants within our experimental setup:

• Hyperparameters

The LoRA alpha value, a hyperparameter that is roughly equivalent to

the learning rate, is held constant throughout all training phases with

a value of 32. For further information on the hyperparameters, please

refer to Sections 3.3 and 5.3.2.

• Hardware Specifications
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Model Trail
No.

No.
epochs

Training
time
(hrs)

Batch
size

Gradient
acc. steps

Gradient
check-
pointing

LoRA
Finetune
moduels

Lora
dim.
(r)

Lora
dropout
rate

No.
LoRA
Params

MPT 1 15 17.5hrs 2 4 No
Wqkv,
up_proj,
down_proj

4 0.1 7340032

MPT 2 15 17.5hrs 2 4 No
Wqkv,
up_proj,
down_proj

2 0.2 3670016

MPT 3 15 17.5hrs 2 4 No

Wqkv,
up_proj,
down_proj,
out_proj

1 0.2 2097152

LLaMA 1 15 22.5hrs 4 2 Yes N.A. 2 0.2 1048576
LLaMA 2 25 37.5hrs 4 2 Yes N.A. 4 0.2 2097152
LLaMA 3 15 22.5hrs 4 2 Yes N.A. 8 0.1 4194304

Table 7.1: The hyperparameter differences between trials.

All training procedures are executed on a computational setup compris-

ing two A100 GPUs, each equipped with 40 gigabytes of RAM. The

market price of an A100 GPU is approximately 20, 000 dollars.

• Dataset and Split

All models are consistently trained on the exact same dataset, namely

the Stambecco dataset as described in Section 4.2. The train/test split

has also been the exact same for each trial: 90% training data and 10%

test data split, generated with a fixed seed of ’42’.

Variations in Hyperparameters Between LLaMA 2 and MPT

In our attempt to finetune LLaMA 2 we used the same pipeline as we used

for finetuning MPT. However, this caused memory issues. We found gradient

checkpointing as our solution, as already explained in section 5.3.2. Gradi-

ent checkpointing in theory would increase the training time by 20%, but in

practice it slowed down our training a bit more. However it did allow us to

run the experiments on the same hardware still. Then the extra memory that

technique freed up we could use to double the batch size and half the gradient

accumulation steps to speed up the training a bit again.
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7.1.1 Finetuning MPT

In our pursuit to finetune the MPT-Instruct-7B model, we conducted three

trials, each comprising 15 epochs. The training duration for each of these 15-

epoch trials was approximately 17.5 hours, with an hourly cost of $5.50 and

hence a total cost of $96.25 per trial.

(a) Our first trial. (b) Our second trial.

(c) Our third trial.

Figure 7.1: Both the training- and validation loss from our 3 MPT Finetuning
trials.

Before starting our training, the initial loss on the MPT model’s validation set

was measured at 2.0552. The performance of these three trials is summarized

as follows:

In Figure 7.1a, the results of the first finetuning trial are presented. The loss

after the first epoch was 1.2090, with the lowest validation loss occurring at

epoch 3, registering at 1.1658, and the final loss concluding at 1.3108.

Figure 7.1b illustrates the outcomes of the second finetuning trial. The initial
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loss after the first epoch was 1.2237, the lowest validation loss was observed

at epoch 4, with a value of 1.1816, and the final loss was recorded at 1.2281.

Figure 7.1c presents the results of the third finetuning trial. The initial loss

after the first epoch was 1.2383, the lowest validation loss occurred at epoch

7, registering at 1.1986, and the final loss was documented at 1.2115.

Additional tables with detailed information are available in Appendix A.

These figures unveil evident signs of overfitting, particularly noticeable in

the first two trials, and to a lesser extent in the third trial. The potential causes

of overfitting and its implications will be discussed in greater detail in the dis-

cussion section.

When trainingMPTwe aimed to insert LoRA in every possiblemodule. ’Wqkv’

represents the linear layers after the streams of V, K and Q in the attention

module as seen in the rightmost illustration in figure 3.3. ’out_proj’ repre-

sents the final linear layer after the concat connection in the same illustration.

’up_proj’ and ’down_proj’ represent the entire feed forward module as illus-

trated in figure 3.1.

Then note that in our first two trials the ’out_proj’ layer is not included (see

table 7.1), this is our mistake as we originally missed this while analysing the

MPT code. Adding this layer to the previous selection of LoRA layers in-

creases the number of trainable parameters by about 14%. It would have been

more scientifically correct to rerun trials 1 and 2 with these layers included

within the finetuning, as this way our models would be more equally compa-

rable. But given the cost of training we refrained from this. Also adding more

parameters to an already overfitted model would most likely increase overfit-

ting even more, so from this perspective it would also not have made much
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sense.

To mitigate overfitting, we implemented two critical changes: increasing the

dropout rate of the LoRA layers from 0.1 to 0.2 and reducing the LoRA di-

mension from 4 to 1. While the third trial still exhibited some overfitting,

further model simplification was avoided due to diminishing returns and time

constraints. Additionally, the release of LLaMA 2 prompted our interest in ex-

ploring finetuning on this model. For future research, potential adjustments,

such as increasing dropout rates or reducing LoRA modules, can be consid-

ered.

Ultimately, the final checkpoint from the third trial was chosen for subsequent

testing due to its stable training process with minimal overfitting.

7.1.2 Finetuning LLaMA 2

Finetuning LLaMA 2 comprised three trials: two 15-epoch trials and one 25-

epoch trial. The 15-epoch trials each took 22.5 hours, while the 25-epoch trial

required 37.5 hours. The hourly cost was 5.50, resulting in a cost of $123.75

for the 15-epoch trials and $206.25 for the 25-epoch trial.

Then we would like to point out that the modules used for LLaMA 2 in ta-

ble 7.1 are specified as ’N.A.’. This is not because LoRA is not applied to

LLaMA, it is, but this specific model did not allow us to specify which specific

modules to inject LoRA into. Attempting to specify these modules resulted in

error messages.

Before commencing training, the initial loss on the LLaMA 2 model’s val-

idation set was measured at 3.4196. The performance of the three trials is

summarized as follows:
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(a) Our first trial. (b) Our second trial.

(c) Our third trial.

Figure 7.2: Both the training- and validation loss from our 3 LLaMA 2 Fine-
tuning trials.

In Figure 7.2a, the results of the first finetuning trial are presented. The loss

after the first epoch was 0.7916, with the lowest validation loss occurring at

epoch 11, registering at 0.7678, and the final loss concluding at 0.7713.

Figure 7.2b displays the outcomes of the second finetuning trial. The initial

loss after the first epoch was 0.7816, with the lowest validation loss observed

at epoch 7, with a value of 0.7530, and the final loss documented at 0.7777.

In Figure 7.2c, the results of the third finetuning trial are presented. The initial

loss after the first epoch was 0.7847, with the lowest validation loss occurring

at epoch 6, registering at 0.7493, and the final loss concluding at 0.7681.

For more detailed information, please refer to the corresponding tables in Ap-

pendix A.
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Having seen the issues with overfitting in our previous 3 trials, we started

with a lower LoRA dimension and dropout than our first MPT trial. This re-

sulted in a very stable decreasing loss curve that is not overfitted. Having seen

these great results we increased the LoRA dimension as well as decreased the

LoRA dropout in search of better results. We did not find better results and

instead encountered overfitting. We then decided to bring the final checkpoint

of the first LLaMA trial into real use case testing.

During the course of our experiments, we conducted a longer 25-epoch train-

ing run to assess potential performance improvements. However, no signifi-

cant reduction in the loss was observed, leading us to revert to 15-epoch trials.

7.1.3 Summary

Upon reviewing these trials, we note that the loss curves of the MPT trials

demonstrate smoother progression compared to the LLaMA trials. Despite

these smoother curves, LLaMA models exhibit substantially lower losses.

LLaMA 2 achieved a final loss of 0.768, while MPT recorded a loss of 1.212,

marking a 37% difference.

We acknowledge that further research and resources could lead to models bet-

ter fitted on the data. Nevertheless, our current trials provide models that suf-

ficiently allow us to assess the effectiveness of our proposed methodology

towards achieving our research objectives.

The cumulative training cost includes three 15-epoch MPT trials, two 15-

epoch LLaMA trials, and one 25-epoch LLaMA trial, amounting to 3×96.25+

2 × 123.75 + 206.25 = $742.5.
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7.2 Evaluating Language Comprehension

We possess two datasets that are nearly identical in semantic content. One

is the Italian-translated variant, Stambecco, and the other is the original ver-

sion in English, Alpaca. As these datasets are equal, the difference in losses a

model m has on these datasets tells us something about difference of capabil-

ity of m in Italian and English. There are two variants of this experiment.

The less resource-intensive approach involves evaluating LLaMA 2 and MPT

on both the Alpaca and Stambecco datasets without prior finetuning on these

datasets. When testing these models on the entire datasets, LLaMA 2 ex-

hibits a loss of 2.602 on Stambecco and 1.822 on Alpaca. Conversely, MPT

demonstrates a loss of 2.048 on Stambecco and 1.688 on Alpaca. The notably

lower losses on the Alpaca dataset suggest that these models are better suited

for English, signaling potential limitations in their proficiency with the Italian

language. A more detailed discussion on these findings can be found in the

discussion section.

The second, perhaps more scientifically correct, but more resource intensive

experiment is to besides finetuning the models on Stambecco like we are al-

ready doing, to also finetune the models on the Alpaca dataset. We can then

compare the losses of the models finetuned on Alpaca to the losses of the mod-

els finetuned on Stambecco. Then these models having had the change to get

to ’know’ the data, we can judge their aptitude for the Italian- and English

language. However, due to time- and resource constraints we refrained from

this experiment.

Note that if one might want to undertake this experiment in a future work,

that the alpaca- and stambecco dataset do not have the same order of entries

and that the alpaca dataset contains 47 entries more.
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7.3 Evaluating Models on the Bandi Project

In this section we will explain how we evaluate our models at the hand of the

Bandi project. We want to emphasize that the tasks within the Bandi project

pose a considerable challenge, not only for deep learning models but also for

humans, given the complex and jargon-heavy juristic language used. In this

section, we will provide insights into the dataset we have curated, the vari-

ables under investigation, and the criteria for evaluating the model responses.

We also want to stress that perhaps causal language modelling might not be

the optimal technique for the Bandi usecase, instead one could look at purely

extractive models. However PwC has chosen to use the service of OpenAI

and hence causal language modelling in its software pipelines, for e.g. ease

of use. Given that we are experimenting on building a backup plan for these

services, it would not make sense to train a purely extractive model as this

could possibly be incompatible with other usecases. Hence it is not our goal

to build the best performing model on the Bandi usecase, our goal is to test our

finetuned models against a real usecase. Might one instead only aim to get the

best possible performance on the Bandi usecase, purely extractive question

answering definitely becomes a viable option.

Our dataset consists of 18 text-snippet and answer pairs extracted from the

Bandi project. These pairs are derived from six distinct tender documents,

each encompassing information related to three topics: the tender opening

date, the expenses financed through the tender, and the dimensions a com-

pany should have to be eligible to participate in the tender.

The tender documents we have selected are as follows:
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• Bandi di finanziamento - Agricoltura Sviluppo rurale e Pesca - Regione Marche [26].
This tender is used for the ’opening date’ and ’eligible expenses’ topics.

• Avviso per contributo a sostegno del collegamento marittimo Pescara - Croazia [25].
This tender is used for the ’opening date’ and ’eligible company sizes’ topics.

• BANDO DI CONTRIBUTO PER LA PARTECIPAZIONE A EVENTI FIERISTICI - Alessandria [24].
This tender is used for the ’opening date’, ’eligible expenses’ and ’eligible company sizes’ topics.

• Regione del veneto - BANDO PER LA CONCESSIONE DI CONTRIBUTI A SOSTEGNO DELLE AS-
SOCIAZIONI ENOGASTRONOMICHE - ANNO 2023 [31].
This tender is used for the ’opening date’, ’eligible expenses’ and ’eligible company sizes’ topics.

• Bollettino Ufficiale della Regione Puglia - n. 54 del 15-6-2023 37243 - DETERMINAZIONE DEL DIRI-
GENTE SEZIONE TURISMO E INTERNAZIONALIZZAZIONE 9 maggio 2023, n. 129 [29].
This tender is used for the ’opening date’ and ’eligible expenses’ topics.

• Piccole imprese per il territorio Camera di Commercio Parma [28].
This tender is used for the ’opening date’, ’eligible expenses’ and ’eligible company sizes’ topics.

• Bando Innovazione digitale 4.0 - Camera di Commercio Maremma e Tirreno [27].
This tender is used for the ’eligible company sizes’ topic.

• CONTRIBUTO STRAORDINARIO ALLE IMPRESE PER IL RISTORO DEI DANNI SUBITI DAGLI
EVENTI ALLUVIONALI DEL MAGGIO 2023 [30].
This tender is used for the ’eligible expenses’ and ’eligible company sizes’ topics.

Our context and answer pairs constitute our dataset. To enable the models

to provide accurate responses, we must formulate prompts or ”instructions”.

This is were the ’variables’ of our experiment come into play. We have learned

through experience at PwC that the phrasing of instructions can significantly

impact a model’s performance. For each topic, we have chosen to create three

distinct prompts to ensure robustness and statistical reliability in our assess-

ments. This approach helps avoid unjustly favoring or disfavoring a model

due to a specific prompt’s idiosyncrasies.

We aim to prevent any form of ”prompt engineering,” a practice that involves

designing prompts to produce favorable results for a specific model. This can

lead to biased comparisons. However, one exception to this is that for each

topic, we include one prompt derived from a formulation optimized for GPT.

This is based on prior work done by our colleagues on the project.
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Another consideration we address is whether the prompts should be written in

English or Italian. Both languages offer advantages: English aligns with the

primary training language of the models, while Italian matches the language

of the contextual documents. To comprehensively evaluate these factors, we

provide prompts in both English and Italian. This gives us 18 prompts in total:

we have 3 prompts per topic, and for each topic we have 3 different formula-

tions, both in Italian and English which gives us 2 ∗ 3 ∗ 3 = 18. All the 18

prompts can be found in this document, 4 are listed below and the others can

be found in appendix B. We have indicated as well if they are derived from a

GPT optimized formulation or not.

• Prompt 1 - Italian (GPT formulation, original): Immagina di essere un estrattore di metadati da bandi di
gara. Dal contesto fornito estrai la data di apertura del bando. La data di apertura del bando rappresenta il
giorno da cui il bando è attivo ed è possibile fare richiesta per accedere alle agevolazioni previste dall’ente
erogatore. La data di apertura del bando può essere scritta in diversi formati, ad esempio: dd month yyyy,
dd/mm/yy oppure dd month. All’interno del contesto fornito potresti trovare anche altre date che non sono
la data di apertura del bando: nessuna di queste deve essere riportata nella tua risposta. La data di apertura
del bando è spesso preceduta da stringhe come: ’dal giorno’ o ’dalle ore del giorno’. La data di apertura
del bando non è mai preceduta da stringhe come: ’entro il giorno’ o ’fino al’. Inserisci nella tua risposta
SOLAMENTE la data che rappresenta la data di apertura del bando nel formato dd/mm/yyyy. Se quella
data non è presente nel contesto fornito puoi rispondere ’ND’.

• Prompt 1 - English (GPT formulation, translated): Imagine you are a tender metadata extractor. From the
context provided, extract the opening date of the call. The opening date of the tender represents the day
from which the tender is active and it is possible to apply to access the facilities provided by the provider.
The opening date of the call can be written in different formats, for example: dd month yyyy, dd/mm/yy
or dd month. Within the context provided you may also find other dates that are not the opening date of
the call: none of these should be reported in your answer. The opening date of the announcement is often
preceded by strings such as: ’dal giorno’ or ’dalle ore del giorno’. The opening date of the call is never
preceded by strings such as: ’entro il giorno’ o ’fino al’. Insert ONLY the date that represents the opening
date of the call in the format dd/mm/yyyy. If such a date is not present in the context provided, you can
respond ’ND’.

• Prompt 2 - Italian: Sei un assistente AI che aiuta a estrarre dati da contesti specifici. Il contesto in questo
caso sono bandi: documenti forniti dal governo che spiegano chi può ricevere finanziamenti, per cosa e
a quali condizioni. Dal contesto che ti forniremo, vorremmo sapere quando apre il bando, cioè la data a
partire dalla quale gli enti (aziende o persone) possono presentare domanda per usufruire dei benefici offerti
dal bando. Se tale data non è fornita nel contesto, puoi rispondere ’ND’. Si precisa infine che i bandi sono
in lingua italiana.

• Prompt 2 - English: You are an AI assistant that helps extract data from specific contexts. The context in
this case are tenders: documents provided by the government explaining who can receive funding for what
and under which conditions. From the context we are going to provide to you, we would like to know when
the tender opens, i.e. the date from when entities (companies or people) can submit applications to make
use of the benefits offered by the tender. If such a date is not provided in the context, you can reply ‘ND’.
Lastly, note that the tenders are in Italian.

• ...
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After crafting these prompts, we realize that the language in which we request

model responses, either English or Italian, can also impact the outcomes. To

account for this, we append ”respond in English” or ”respond in Italian” to

our prompts in English and ”rispondi in Inglese” or ”rispondi in Italiano” to

our Italian prompts. This results in the following permutations:

• ”{Italian prompt} Rispondi in Inglese.”

• ”{Italian prompt} Rispondi in Italiano.”

• ”{English prompt} Respond in English.”

• ”{Italian prompt} Respond in Italian.”

These four phrases which specify in which language the model should answer,

we refer to as language addendums.

With the prompts ready to go, we face the question of where to position the

prompt relative to the input/context. We have identified three possible ar-

rangements: before the input, after the input, or both before and after the input.

The permutations of these prompt positions are as follows:

• ”{Prompt with language addendum} {Input}”

• ”{Input} {Prompt with language addendum}”

• ”{Prompt with language addendum} {Input} {Prompt with language addendum}”

This question has also been brought to our attention partly due to our col-

leagues working with prompt engineering, who have seen that this factor has

influence of the quality of the responses. With our experiments we hope to

draw conclusions on the influence of this factor sustained by statistically ro-

bust data, as we currently do not have any.

In summary, to evaluate the models effectively, we manipulate several key

factors: prompt language (English and Italian), prompt formulation (three

variations per topic), model response language (English and Italian), and prompt
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position relative to the input (before, after, or both). We perform this evalua-

tion for three topics across the six tender documents, resulting in 2 × 3 × 2 ×

3×3×6 = 648 prompt permutations, and equally many responses to analyze.

We assess the performance of five models: GPT, MPT Base, MPT Finetuned,

LLaMA 2 Base, and LLaMA Finetuned. This gives us a total of 5 × 648 =

3240 prompt permutations , and equally many responses to analyze.

7.3.1 Temperature

In the process of generating responses, some libraries require the specification

of the temperature hyperparameter. For GPT, we explicitly set a temperature

of 0.15 based on practical experience from our colleagues, which is found to

be optimal for the Bandi project. MPT also necessitates the specification of

the temperature, and we choose a temperature of 0. When it comes to gen-

erating responses, LLaMA abstracts away the temperature parameter, using

a default value of 0.9, specified in the ”generation_config.json” file in the

relevant HuggingFace repository. In the end where required we opted low

temperatures because in our use case we do extractive question answering, no

creativity is needed, the answer is ’there’ so to speak.

7.4 Analyzing Model Outputs

To quantify the performance of the models, we categorize every answer for the

3240 prompts into one of three categories: correct, semi-correct, or incorrect.

Each category is defined as follows:

• Correct: The model returns the requested data accurately, devoid of er-

rors, and with little to fuss/filler text around the answer.
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• Semi-correct: Themodel provides the requested data with an acceptable

amount of fuss/filler text around the answer. Any answer containing

falsehoods is not accepted in this category.

• Incorrect: Answers that contain falsehoods, excessive fuss/filler, or oth-

erwise rubbish.

By classifying the responses into these categories, we can quantitatively assess

and compare the performance of the models. We acknowledge that this pro-

cess is resource-intensive, but we believe it offers a deep understanding of the

model’s functionality. We explored alternatives, such as calculating loss over

the Bandi dataset or requiring models to respond in a standard format. How-

ever, these methods proved inadequate, as even the state-of-the-art model,

GPT 3.5, faces challenges in returning standard formats for straightforward

questions in our use case. Our chosen method provides a more comprehen-

sive evaluation.



Chapter 8

Results

As explained in the previous section, with our queries to the models we would

like to answer a variety of questions: how effective is finetuning for the Ital-

ian language? How does the language of the prompt influence the quality of

the responses of the model? Does the model give better responses in English

or in Italian? In extractive question answering, how does the location of the

prompt w.r.t. to the question’s context influence the response’s quality? And

also, can we see patterns in these responses for the different models? In this

section we will analyse our results and look for answers.

8.1 Exploratory analysis

In this section we want to provide some comments on how the models func-

tion, that are not necessarily specific to a certain section. We want to provide

a sense for how these models function, how they perform well, what are their

weakpoints and what are there peculiarities, basically we want to sketch an

image of what we are dealing with here.

We have seen that in general the models all have a tendency to generate a

lot of text, also when it is not necessary. For example regarding the question
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of the opening date of the call as answer just the date would suffice: ”dd/m-

m/yyyy”. However the models have much longer responses: ”The opening

date is dd/mm/yyyy as can be found in ...” or ”The tender is open from dd/m-

m/yyyy at hh:mm until from dd/mm/yyyy at hh:mm”. LLaMA 2, especially

the base variant, is an extreme example of this, it is almost like your aunt Betty

who does not stop talking.

Then we have seen that when models answer incorrectly they can do all kinds

of strange things. They can return ”N.A.” evenwhen there is an answer present

in the input/context, they can completely fabricate an answer e.g. name a date

that is not present in the input/context, they can return a completely irrelevant

piece of input/context or return the inverse of what we want to know e.g. the

expenses a tender does *not* cover instead of those that a tender covers.

Then for MPT we have seen that the infinite generation bug as described in

section 5 persists. Not only in the finetuned version, but also in the base ver-

sion. Could it be that the Bandi usecase is so confusing that the model loses

the ability to produce the eos token?

When analysing all these prompts one really becomes conscious of how these

models function and their unique quirks. For us it became really clear that for

how new and flashy AI is, training LLMs at its core still is a craft.

Lastly, we wanted to share a particular humorous response of finetuned ver-

sion of the MPT model. It was responding to a prompt to extract the opening

date from a snippet of text from the Parma tender. The response was ”Il bando

è in lingua italiana, quindi non è necessario rispondere.<|endoftext|>”. This

translates to ”The tender is in Italian, so there is no need to respond”.



8.2 Finetuning’s effectiveness 70

8.2 Finetuning’s effectiveness

The most straightforward thing to investigate if finetuning actually has effect

is to compare the number of (semi) correct answers of the finetuned models to

their base version. For this exact information we refer to figure 8.1. We also

included also our Baseline, GPT.

Figure 8.1: The number of correct, semi correct andwrong answers for
each model. The total number of questions answered for each model
is 648.

We see many things in this graph. Perhaps most importantly we see that

GPT outperforms all models by far, responding to more than 3 quarters of

all prompts (semi) correctly. The only model that perhaps comes close is the

MPT Base model.

This then also brings us to our second observation: the MPT Finetuned model

has both less correct- and semi-correct responses than the MPT Base version.

We find this unexpected and quite frankly disappointing, in the discussion we

will explore what might be the cause.
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This leads us to another unpleasant surprise: LLaMA 2 Base performs signif-

icantly worse than MPT Base. This is noteworthy as LLaMA 2 is pretrained

on twice as many tokens (2T) as MPT (1T). Although the LLaMA 2- and the

MPT base model losses on the validation sets are 3.42 and 2.06 respectively,

the losses of their finetuned versions are 0.75 and 1.20. We will again explore

possible causes in the discussion. LLaMA 2 also comes with a context length

(4096) twice as big as that of MPT (2048), but for our testing this is not rele-

vant as our prompts remain smaller then 2048 tokens.

We do see that finetuning LLaMA 2 has had a positive effect, as the fine-

tuned model sees an increased amount of correct responses of 19% at the cost

of less semi-correct responses w.r.t. to its base model.

Then we would also like to investigate how often these models actually re-

ply in the requested language. This data can be found in figure 8.2. The figure

shows for each model how many times the response of the model is actually

in the language that is requested. For each model we ask the model to answer

in English 324 times and to answer in Italian 324 times as well. So from this

figure we can conclude for example that GPT always responds in Italian when

asked to respond in Italian, and that LLaMA always responds in English when

asked to respond in English.

In figure 8.2 we again see that GPT outperforms all models, with LLaMA 2

finetuned perhaps being the runner up.

What is maybe the most interesting to see is that for both finetuning cases,

LLaMA 2 and MPT, the finetuned models respond more often in Italian when

the Italian language is required and less often in English when English is re-

quired w.r.t. to their base versions. We think this is proof that models do learn

Italian in the finetuning, but more on that in the discussion.
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Figure 8.2: We show for each model the number of times it responds
in the requested language, separated by the requested language itself.
The total number of questions answered for each model is 648.

Then lastly we want to note something very peculiar, we see that the LLaMA 2

Base almost never responds in Italian when requested, while MPT does. This

is peculiar because as elaborated on in section 4, we presume that both models

have seen some Italian in their pretraining. We will come back to this in the

discussion.

8.3 Prompt language and response quality

In order to see how the language performs on English prompts w.r.t. Italian

prompts we present figure 8.3. Here we show the number of correct answers

for each model separated by the language of the prompt.

What we see is that each model performs slightly better on English prompts

than on Italian prompts. That is, the number of correct answers on English

prompts is higher than the number of correct answers on the Italian prompts,

for each model. This is to be expected as all of these model have primarily
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Figure 8.3: We show for each model the number of correct answers
separated by the prompt language. The total number of questions an-
swered for each language/model combination is 324.

been trained on the English language.

8.4 Answer language and response quality

In order to see if the model performs better answers in Italian or in English,

we provide figure 8.4. This figure shows us the number of correct answers per

model separated by the requested language.

The fact that we ask to model to reply in a specific language, does not guaran-

tee that the model actually answers in that language. This separation is made

by the language in which we ask the model to answer.

We define the influence of the requested language (the language in which ask

the model to answer) by the difference in the number of correct answers be-

tween the requested languages.



8.4 Answer language and response quality 74

Figure 8.4: We show for each model the number of correct answers
separated by the language in which we ask the model to respond. The
total number of questions answered for each language/model combi-
nation is 324.

We see that this influence is minimal for every model except the LLaMABase,

which sees a 35% decline in number of correct answer when requested in Ital-

ian w.r.t. English.

The influence is also not the same between every model, for GPT, LLaMA

Finetuned and MPT Finetuned the difference is positive. Meaning that the

number of correct answers with the requested language Italian is higher w.r.t.

the same model with the requested language English. This influence is nega-

tive for LLaMA Base and MPT Base. This could indicate that finetuning does

enhance Italian language understanding, especially for LLaMA, but take note

that the total number of correct answers for MPT has gone down after fine-

tuning.
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8.5 Instruction location and response quality

In order to judge how different prompt locations influence the quality of a

models response, we provide figure 8.5. In this graph for every model we

provide for each prompt location the number correct answers.

We see that what makes a prompt location good is model specific. We also

see that the amount of influence that the prompt locations has, is different

for each model. Here with influence we mean the difference in the number

of correct answers between different prompt locations. GPT and MPT Fine-

tuned work best when the prompt comes both before and after the context,

while MPT Base, LLaMA Base and LLaMA Finetuned work best when the

prompt is only inserted before the context.

Interesting to note is that with respect to the other models MPT Finetuned

seems to be influenced little by the prompt location. Then we note as well that

no model works best with the prompt being inserted after the context only.

Figure 8.5: We show for each model the number of correct answers
separated by the prompt location. The total number of questions an-
swered for each location/model combination is 216.
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8.6 Instruction formulation and response quality

In order to judge how different prompt formulations influence the quality of a

models response, we provide figure 8.6. In these graphs we provide per ques-

tion topic the number of correct responses for each model separated by prompt

formulation.

(a) Opening date (b) Financed operations

(c) Company sizes

Figure 8.6: The number of correct responses for different prompt for-
mulations, shown for each topic. he total number of questions asked
for each prompt/model combination is 72

In this figure we can see that how much influence a prompt formulation has

on the response quality is highly topic- and model specific.

We define the influence of the prompt formulation as the difference in the

number of correct answers between different prompts. For example for the

’company sizes’ topic we see that the difference of the correct number of
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responses for the GPT model between prompt 7 (11 correct responses) and

prompt 8 (64 correct responses) is very big. In this case we say that the influ-

ence of the prompt formulation is big. On the other hand if we look at theMPT

Base model in the ’opening date’ topic, we see that the difference of the num-

ber of correct responses between prompts 1 (45), prompt 2 (43), and prompt

3 (43) is minimal. Hence in this case we also say that the prompt formulation

has minimal influence.

We should add a comment to this section however, as said before we use

prompts derived from a GPT optimized formulation. These are, in figure 8.6a

prompt 1, in figure 8.6b prompt 2 and in 8.6c prompt 2. These prompts some-

what skew the results, but it can be seen that even without these prompts that

GPT still outperforms the other models overall.

Then, we see that for the ’opening date’ topic, the prompt formulation has

a big influence on the GPT, LLaMA Base and the MPT finetuned model, that

for the ’financed operations’ topic the prompt formulation has a big influence

on the GPT model, and that for the ’company sizes’ topic the prompt formu-

lation has big influence on the GPT and the MPT Finetuned model.

We also see that for the ’opening date’ topic, the prompt formulation has little

influence on the LLaMA Finetuned and the MPT Base model, that for the ’fi-

nanced operations’ topic the prompt formulation has a little influence on the

LLaMA Finetuned model, and that for the ’company sizes’ topic the prompt

formulation has big influence on the MPT Base model.

Furthermore, we have seen that for every model there is at least one topic

for which different prompt formulations make a difference. Thus prompt en-

gineering seems to be worthwhile.
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Concluding, we see that prompt formulation has a big influence on especially

the performance of GPT. Our models are not immune to this influence either

but some of them, i.e. LLaMA finetuned and MPT Base, do seem more resis-

tant to this influence.

8.7 Correct answers per tender/topic pair

In order to gain insight in whether or not there are any particular difficult ten-

ders or topics we present figure 8.7. This figure shows for each model how

many correct answers that model gives for said combinations. This takes away

the influence of the prompt formulation and allows us to identify difficult test

cases. The maximum number of correct answers for each tender and topic pair

is 36.

Looking at these figures there is not something that particularly stands out.

We see that generally the topic of opening dates does well. Some models have

difficulties with a particular tender, but these cases are covered by another

model that does do well on that specific tender/topic combination. Albeit that

this ’saviour’ is often, but not always, GPT.

The above does come with one exception, there is one tender and topic pair

that does prove to be difficult for all models to answer: the financed operations

of Marche (interv_finan - Marche). There are models that do answer correctly

to this pair, but it does not occur too often.

Lastly we note that the distributions of LLaMA 2 and MPT did change af-

ter having been finetuned, but only by a little.
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(a) MPT Base (b) MPT Finetuned

(c) LLaMA Base (d) LLaMA Finetuned

(e) GPT

Figure 8.7: The number of correct responses for different instruc-
tion/bandi (input) pairs
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8.8 Patterns

Our final inquiry is whether any patterns can be observed across the various

topics and models. As discussed in the previous sections, some general trends

emerge:

• First of all we have seen that all models seem to function better, that is

give more correct answers when the prompt is given in English. This is

logical as all models are primarily trained on the English language

• It is model and topic specific howmuch the prompt’s location influences

the quality of the model’s response and which prompt location is best,

but putting the question after the context only is the worst option is every

case.

• We have seen that which prompts function well on a specific topic is

model specific. We have seen that on some topics different prompts

make no difference in the quality of the responses of a model. However

we have seen that for every model there is at least one topic for which

different prompt formulationsmake a difference. Hence we recommend

to always include prompt engineering in development pipelines.

In conclusion, our systematic observations provide a foundation for under-

standing the behavior of language models and their performance characteris-

tics. These insights can be invaluable to researchers and practitioners working

with large language models.



Chapter 9

Discussion

In this section we would like to discuss the 5 questions that came up in the

results section: How come that our two models suffer from overfitting? How

come our MPT finetuned model performs worse than our MPT Base model?

How come that MPT Base outperforms LLAMA 2 Base? After finetuning

both models respond more often in Italian, is this proof of learning? LLaMA

2 Base never responds in Italian while MPT Base does, how come? We will

find that the answer often comes back as lacking understanding of the Italian

language.

9.1 Base model comparison

We have seen that LLaMA 2 Base performed worse than MPT Base. We

certainly find this unexpected as LLaMA has been much more extensively

trained. Also on the website of LLaMA 2 it is shown how it outperforms

MPT on all but one benchmark. Here we will discuss if this should also be

considered strange or odd.

Arguments to consider this strange are twofold. First we have seen that the

LLaMA 2 Finetuned model achieved a loss 37% lower than MPT Finetuned.

This hints at an aptitude of LLaMA 2 for capability in the Italian language.
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Secondly we have the fact that LLaMA 2 has been pretrained on much more

data, on twice as many tokens as MPT. One would expect more extensively

trained model to be the more proficient one, also if the scope of their applica-

tions (a different language) fall partly outside the training data.

Arguments to consider this within the norms of the expected are also twofold.

First we have seen that before training MPT scored a much lower loss on the

validation set then LLaMA 2, having losses of 2.0552 and 3.4196 respectively.

Indicating clearly a higher base capability of MPT. Secondly we have seen in

our testing that the LLaMA 2 Base almost never responds in Italian when re-

quested, while MPT Base does. This is somewhat peculiar as we presumed

that both model have seen some Italian in their pretraining.

We conclude that this observation is within the norms of the expected. The

reasoning being that, at least in proportion, LLaMA 2must have seen less Ital-

ian in its pretraining than MPT, hence resulting in worse base performance on

the Italian language and consequently also on the Bandi usecase.

9.2 Models learning

In testing we have seen for the finetuned versions of both LLaMA 2 and MPT

that they respond more often in Italian when the Italian language is requested

and less often in Englishwhen English is requestedw.r.t. to their base versions.

In other words, finetuned models respond more often in Italian, both when

requested and when not requested. In some case it seems even to go as far as

that finetuning changes the default language in which the model answers to

Italian. Presented with this fact there is no doubt in our mind that during this

finetuning that learning is happening, the question remains whether or not the

model learns something worthwhile. This ties back in with our next question.
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9.3 Overfitting

We have seen in our finetuning graphs, figures 7.1a, 7.1b, 7.2b and 7.2c es-

pecially, that we are suffering quite a bit from overfitting. We want to know

why this is the case. Overfitting has three generally accepted causes: A too

complex/potent model, noisy and/or incorrect data, or an insufficient amount

of data. We will go over each of these motives and analyse which one might

cause our overfitting.

9.3.1 Too potent/complex model

This is the first cause we looked at during the finetuning of the MPT model.

We reached the point in which we were training with the minimal LoRA di-

mension (r = 1), but we were still suffering from overfitting. Dumming down

the model further was still possible by removing modules from the LoRA in-

jections, but looking at the loss curves we presumed that doing so would im-

pare the capacity of the model to learn from the dataset.

For LLaMA 2 we had the same problem, but we arrived from the opposite

side. We had a model with a relatively horizontal- and clean curve. Then

we rendered our model more complex/potent and the same overfitting as seen

when training MPT reappeared.

We therefore conclude that this finetuning showing overfitting is not the cause

of adding too many parameters using LoRA.

9.3.2 Insufficient amount of training data

Whether or not the amount of training data is sufficient is difficult to make

sustained claims about. We have seen that various instruction datasets are

about the same order of magnitude in size as Stambecco. So perhaps for a

pretrainedmodel to learn to respond to the question/answer formula is enough.
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But if a pretrained model also has to gain Italian language understanding it is

imaginable that this dataset is too small. Especially if one compares the size of

Stambecco to that of the size of the pretrain data: 50 thousand question/answer

pairs versus 2 trillion tokens.

9.3.3 A noisy/inaccurate dataset

We have not tried to hide the fact that we are not too fond of the quality of

the dataset. In section 4.2 we have illustrated diverse bad- but also good en-

tries. Although we do think the quality of Stambecco contributes to the subpar

performance of our models, we think it is too shortsighted to put the blame

(entirely) here.

9.3.4 Summary

In the above we have been focusing on the finetuning, which is done with

LoRA. But one should not forget that what a LoRA model returns, always has

the basemodel as a base to its answer: Answer(input) = Base_Model(input)+

LoRA(input). At this point we ask ourselves the question, how good is the

base model?

In order to answer this question we refer to our experiment in section 7.2 in

which we test our models on both the entire Alpaca and Stambecco dataset.

The difference in losses between these datasets tell us something about these

model’s capabilities between these languages. In table 9.1 we have gathered

all our loss data from different models, base- and finetuned versions, on Al-

paca and Stambecco.

The first thing we note regarding our testing of LLaMA 2 on Stambecco is

that the loss on the test set is much bigger than the loss of the entire training

set. For MPT this is not the case.
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Test set/

model
Stambecco Alpaca

MPT Base Entire set: 2.048
Test set: 2.055 Entire set: 1.688

MPT Finetuned
on Stambecco

Train set: 1.015
Test set: 1.212 N.A.

MPT Finetuned
on Alpaca N.A. ?

LLaMA 2 Base Entire set: 2.602
Test set: 3.420 Entire set: 1.822

LLaMA 2 Finetuned
on Stambecco

Train set: 0.617
Test set: 0.768 N.A.

LLaMA 2 Finetuned
on Alpaca N.A. ?

Table 9.1: Loss of various models on the Stambecco- and Alpaca dataset.

Then as already stated in section 7.2, both base models score a lot better on the

Alpaca dataset then on the Stambecco dataset. This indicates a much greater

aptitude of both models for the English language w.r.t. the Italian language.

Seeing this result we then also expect that if we were to finetune our models on

Alpaca, that these models would outperform those finetuned on Stambecco.

Simply because these models have seen a lot more English in their pretraining

in comparison.

We then also arrive at our conclusion: both MPT and LLaMA 2 have not seen

enough Italian in their pretraining to perform well on the Italian language. We

do not think that finetuning with LoRA on Stambecco can resolve this: all our

models suffer from overfitting sooner or later. The quality of the Stambecco

dataset does not help, but it is certainly not the primary cause of the subpar

performance. In our opinion the solution lies with doing more pretraining on

the Italian language. The pretraining of both models has after all been focused

on the English language. This conclusion is also in line with [35] that strongly

suggest that almost all knowledge in LLMs is learned during pretraining.
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9.4 Results finetuning

This then also brings us to our final observation: the MPT Finetuned model

has both less correct- and semi-correct responses than the MPT Base version.

We find this unexpected and quite frankly disappointing. It is difficult to say

what could have been the cause of this problem, especially given the fact that

we do not have this problem with LLaMA 2. Also MPT having smooth loss

curves does not explain this, the contrary actually. For an answer we look to

our previous conclusion, that the model is not pretrained sufficiently well on

the Italian language. Although finetuning does improve the loss on the Stam-

becco dataset, apparently this leads the model to unlearn certain capabilities

that helped with our Bandi usecase.



Chapter 10

Conclusion

In this thesis, our goal was to develop a commercially licensed LLM tailored

for application on PwC’s Italian language-based use-cases, with performance

comparable to ChatGPT and other service providers. While we did succeed

in training such models, regrettably, we did not achieve the performance we

had aspired to.

Our findings suggest that fine-tuning an LLM on a language with limited rep-

resentation in the training set does not adequately equip the model to operate

effectively in that language. As a result, we advocate for the necessity of a

commercially licensed LLM that is pre-trained on the Italian language, or any

other new language for that matter.

The decision to initiate this fine-tuning process was both logical and cost-

effective. Training an entirely new language model requires a substantial fi-

nancial investment, whereas our fine-tuning experiments were relatively low-

cost, yet offered the potential for significant returns. Therefore, these prelim-

inary experiments served as a prudent and necessary first step in our explo-

ration.

Through these experiments, we derived several sustained conclusions that we
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believe hold value for the broader AI community, particularly in the context

of extractive question answering:

• When a model must respond to context-based questions in a new lan-

guage, it tends to deliver superior results when the instruction is in its

primary pretraining language rather than the new language.

• The influence of instruction location relative to the input on perfor-

mance varies based on the model and topic, with no consistent best

practice for instruction placement. However, placing the instruction af-

ter the input consistently yields the least favorable results.

• Prompt engineering, may not consistently impact the quality of model

responses. Its effectiveness varies depending on the model and topic,

but when it does have an impact, it is often substantial. Therefore, we

endorse the inclusion of prompt engineering in development pipelines.

In summary, we have taken the initial steps towards building LLMs suitable

for the Italian language. In doing so, we conducted an exploratory analysis of

LLM performance in Italian, made novel discoveries, provided evidence for

previously unproven best practices, and underscored the need for commer-

cially licensed LLMs pre-trained on specific languages. This is particularly

significant in the context of the predominantly English-focused NLP land-

scape and even more so within the open-source NLP domain.

While we acknowledge that our results did not meet our high expectations,

these findings contribute to the growing body of knowledge in the field of nat-

ural language processing and guide the way toward more effective language

model development. Our work serves as a foundation for future research and

the continued pursuit of high-performance LLMs for diverse languages and

applications.



Chapter 11

Future work

We conclude our paper by outlining potential future work. These encompass

experiments we were unable to undertake due to time and resource constraints,

ideas that can contribute to PwC’s business strategy, and new projects that

could benefit Italian speakers in general.

• Creation of a Language Model Pretrained on Italian

We believe that the development of an open-source, commercially li-

censed Language Model pretrained primarily on the Italian language

could greatly benefit the Italian-speaking community. Such a model is

expected to surpass the currently available open-source models andmay

even compete with GPT. We strongly recommend the creation of such

a Language Model.

• Finetuning MPT and LLaMA 2 on the Alpaca Dataset

As elaborated in our paper, we intended to finetune MPT and LLaMA

2 on the Alpaca dataset to compare these models’ capabilities on differ-

ent languages. Regrettably, we were unable to conduct this experiment.

While we do not anticipate extraordinary results, performing such a con-

trol experiment is recommended for thorough analysis.

• Development of a High-Quality Instruction Dataset in Italian

Presently, Stambecco is the only instruction dataset in Italian and, as
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indicated in our thesis, we think there is room for improvement. We

would then also encourage the creation of a high quality variant of such

a dataset.

• Finetuning on Specific Use Cases

In pursuit of building Language Models that function well on PwC’s

use cases, direct finetuning on these specific use cases could be worth-

while. However, this necessitates the creation of datasets and training

tailored to each use case. Although it is a labor-intensive effort, it has

the potential to yield promising results and can also serve as a basis for

further pre-/finetuning an Italian Language Model.

• Finetuning on Larger Models

As detailed in Section 4, themodels we have finetuned have larger coun-

terparts with more parameters, which perform better across all bench-

marks. Replicating our finetuning experiments on these larger models

is an idea worth exploring. Nevertheless, we suspect that even these

models may not have seen enough Italian in their pretraining, resulting

in comparable performance.

In conclusion, artificial intelligence is a rapidly evolving field, and we have

much to learn, improve, and build, referring to us as authors, but also referring

to the scientific community as a whole.
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Appendix A

Tables of finetuning losses

Epoch Train Loss Val Loss
1 1.2102 1.209008694
2 1.1393 1.176738739
3 1.0951 1.165756583
4 1.0317 1.165969729
5 0.9951 1.173580408
6 0.9545 1.180489421
7 0.9186 1.189377546
8 0.8955 1.208033204
9 0.8616 1.221395493
10 0.8347 1.240166068
11 0.8148 1.25161159
12 0.7943 1.266140103
13 0.7682 1.281847715
14 0.7547 1.300261617
15 0.7376 1.310849309

Table A.1: The table of the training- and validation losses corresponding to
the first MPT trial, figure 7.1a.
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Epoch Train Loss Val Loss
1 1.2239 1.223728776
2 1.1688 1.195912719
3 1.1391 1.186287999
4 1.0909 1.181571603
5 1.0684 1.182962537
6 1.042 1.183759451
7 1.0195 1.186593294
8 1.0092 1.195128202
9 0.9871 1.19621563
10 0.9701 1.202170968
11 0.9624 1.20488596
12 0.9507 1.213654399
13 0.9303 1.217672586
14 0.9232 1.224497676
15 0.9118 1.228129387

Table A.2: The table of the training- and validation losses corresponding to
the second MPT trial, figure 7.1b.

Epoch Train Loss Val Loss
1 1.239 1.238278389
2 1.1952 1.214365363
3 1.1762 1.208330274
4 1.1366 1.201288223
5 1.1216 1.200346112
6 1.1031 1.200184226
7 1.0856 1.198607326
8 1.084 1.19994092
9 1.0665 1.200973392
10 1.0533 1.202574372
11 1.051 1.203165054
12 1.0431 1.20519495
13 1.0252 1.206318259
14 1.0226 1.209497333
15 1.0149 1.211533308

Table A.3: The table of the training- and validation losses corresponding to
the third MPT trial, figure 7.1c.
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Epoch Train Loss Val Loss
1 0.7694 0.7916440368
2 0.7562 0.7881999612
3 0.7487 0.7799901962
4 0.7297 0.7799584866
5 0.7245 0.7784932852
6 0.7172 0.777428329
7 0.7063 0.7768800259
8 0.7064 0.7763211131
9 0.7057 0.7714284658
10 0.6981 0.769372642
11 0.6993 0.7678364515
12 0.7003 0.7712532878
13 0.6937 0.7726595998
14 0.6923 0.7714828849
15 0.6945 0.7713136673

Table A.4: The table of the training- and validation losses corresponding to
the first LLaMA trial, figure 7.2a.
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Epoch Train Loss Val Loss
1 0.7662 0.7815913558
2 0.7486 0.772269845
3 0.7377 0.7660132051
4 0.7143 0.7583094835
5 0.7063 0.7612097263
6 0.6965 0.7680630088
7 0.6833 0.7530135512
8 0.6818 0.7678575516
9 0.6782 0.7607021332
10 0.6691 0.7647323012
11 0.6687 0.7683621049
12 0.6692 0.7697759867
13 0.6603 0.7702064514
14 0.6577 0.7680479288
15 0.6586 0.7687986493
16 0.6564 0.7713423967
17 0.6454 0.7741293311
18 0.6476 0.7697276473
19 0.6436 0.7679331303
20 0.6473 0.7728589773
21 0.6398 0.7761081457
22 0.6399 0.7776685357
23 0.6373 0.7768996358
24 0.6409 0.7766670585
25 0.6309 0.7776957154

Table A.5: The table of the training- and validation losses corresponding to
the second LLaMA trial, figure 7.2b.
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Epoch Train Loss Val Loss
1 0.7628 0.7847151756
2 0.742 0.7636311054
3 0.7273 0.7571750283
4 0.7003 0.7562611699
5 0.6884 0.7503700852
6 0.6748 0.7493066788
7 0.6584 0.7612172365
8 0.6533 0.7583049536
9 0.647 0.7661053538
10 0.6352 0.7607308626
11 0.6329 0.7607308626
12 0.6312 0.7673183084
13 0.621 0.7660494447
14 0.6173 0.7646733522
15 0.6169 0.7680584788

Table A.6: The table of the training- and validation losses corresponding to
the third LLaMA trial, figure 7.2c.



Appendix B

Remaining prompts used for

testing

• Prompt 3 - Italian: Sei un assistente AI. Ti forniremo un testo estratto da un bando di gara. Un bando di gara è
un documento fornito dal governo che specifica chi può presentare domanda per usufruire di un determinato
fondo pubblico, a cosa e a quali condizioni. È tuo compito estrarre da tale contesto il momento di apertura
del bando (la data di apertura), cioè la data a partire dalla quale enti, persone e organizzazioni, possono
presentare domanda per usufruire dei benefici del bando. Tieni presente che nel contesto potrebbero essere
fornite più date. In quel caso è fondamentale riportare solo la data di apertura del bando. La data di apertura
dell’annuncio è spesso preceduta da stringhe del tipo: ’dal giorno’ oppure ’dalle ore del giorno’. La data
di apertura del bando non è mai preceduta da stringhe del tipo: ’entro il giorno’ o ’fino al’. Se nel contesto
non è presente una data di apertura, una cosa molto plausibile, si può rispondere con ‘ND’.

• Prompt 3 - English: You are an AI assistant. We will provide you with a piece of text extracted from a tender
document. A tender document is a document provided by the government specifying who can apply to make
use of a certain public fund, what for and at which conditions. It is your job to extract from that context when
the tender opens (the opening date), i.e. the date from which entities, people and organizations, can apply
to make use of the tender’s benefits. Note that in the context multiple dates could be provided. In that case
it is crucial that you only report the date in which the tender opens. The opening date of the announcement
is often preceded by strings such as: ’dal giorno’ or ’dalle ore del giorno’. The opening date of the call is
never preceded by strings such as: ’entro il giorno’ o ’fino al’. Should no opening date be present in the
context, you can respond with ‘ND’.

• Prompt 4 - Italian: Sei un assistente AI che aiuta a estrarre i dati dai bandi: documenti forniti dal governo
che spiegano chi può ricevere finanziamenti per cosa e a quali condizioni. Dal contesto che andiamo a
fornirti, vorremmo sapere quali sono le spese coperte da quello specifico bando. Vorremmo che i risultati
fossero presentati in un elenco. Se non ci sono spese coperte dal bando puoi rispondere ’ND’.

• Prompt 4 - English: You are an AI assistant that helps extract data from tenders: documents provided by the
government explaining who can receive funding for what and under which conditions. From the context we
are going to provide to you, we would like to know which are the expenses covered by that specific tender.
We would like to have your results presented in a list. If there are no expenses covered by the tender you
can reply ‘ND’.

• Prompt 5 - Italian (GPT formulation, original): Immagina di essere un estrattore di metadati da bandi di
gara. Estrai le spese ammissibili finanziate dal bando, se presenti nel contesto. Per spese Ammissibili si
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intendono le spese che si possono sostenere grazie ai finanziamenti forniti dal bando. Nel contesto potresti
trovare anche cifre o percentuali che non devono essere inserite all’interno dell’output. Fornisci come tua
risposta una una lista di stringhe aventi come valore le spese ammissibili estratte dal contesto fornito, se
presenti. Un esempio: [’spese di pubblicità e promozione’, ’spese per la gestione di spazi’, ’costi per il
personale e compensi professionali’]. Se nel contesto fornito non è presente alcuna spesa ammissibile puoi
rispondere ’ND’.

• Prompt 5 - English (GPT formulation, translated): Imagine you are a tender metadata extractor. Extract
the eligible expenses financed by the tender, if present in the context. By Eligible expenses we mean the
expenses that can be supported due to the funding provided by the tender. In the context you may also
find figures or percentages that should not be inserted into the output. Provide as your response a list of
strings having as their value the eligible expenses extracted from the context provided, if any. An example:
[’spese di pubblicità e promozione’, ’spese per la gestione di spazi’, ’costi per il personale e compensi
professionali’]. If there are no eligible expenses in the context provided you can reply ’ND’.

• Prompt 6 - Italian: Sei un assistente AI che aiuta a estrarre dati da frammenti di testo. Riceverai frammenti di
testo dei documenti di bandi italiani. I bandi sono documenti che descrivono come, chi e a quali condizioni
si può accedere ai fondi pubblici. Descrivono in modo molto specifico per quali attività/spese e obiettivi
i fondi possono essere utilizzati. È qui che entri in gioco tu. Vorremmo che tu indichi dal frammento di
testo che forniamo quali attività/spese sono sovvenzionate dal rispettivo documento di gara. Se non riesci
a trovare alcuna attività/spesa puoi rispondere ’ND’.

• Prompt 6 - English: You are an AI assistant helping extract data from text snippets. You will receive
snippets of text of Italian tender documents. Tenders are documents describing how, who and under what
conditions one can access public funds. They describe very specifically for which activities/expenses and
goals the funds can be used. This is where you come in. We would like you to tell us from the text snippet
we provide which activities/expenses are subsidized by the respective tender document. If you cannot find
any activities/expenses you can reply ‘ND’.

• Prompt 7 - Italian: Immagina di essere un estrattore di metadati dei bandi. Estrai dal contesto fornito
le dimensioni che un’azienda deve avere per poter beneficiare dei fondi del bando. I valori validi per la
dimensione aziendale sono i seguenti: ’Micro impresa’, ’Piccola impresa’, ’Media impresa’, ’Mid Cap’,
’Grande impresa’. Se nel contesto fornito trovi uno o più valori di ’dimensione’, forniscili tutti nella tua
risposta. Un esempio di risposta valida è [’Microimpresa’, Grande impresa’]. A volte nel contesto fornito
troverai l’acronimo ’PMI’, in questo caso la risposta dovrebbe contenere almeno le seguenti dimensioni:
[’Microimpresa’; ’Piccola impresa’; ’Media impresa’]. Se nel contesto fornito non sono presenti i valori
descritti sopra, puoi rispondere ’ND’.

• Prompt 7 - English: Imagine you are a tender metadata extractor. Extract from the context provided the
size(s) a company must have in order to be eligible to receive the funds from the tender. Valid values
for the company size are the following: ’Micro impresa’, ’Piccola impresa’, ’Media impresa’, ’Mid Cap’,
’Grande impresa’. If in the context provided you find one or more ’size’ values, provide them all in your
answer. An example of a valid answer is [’Micro impresa’, Grande impresa’]. Sometimes in the context
provided you will find the acronym ’PMI’, in this case the answer should contain at least the following
sizes: [’Micro impresa’; ’Piccola impresa’; ’Media impresa’]. If there are values as described above in the
provided context, you can answer ’ND’.

• Prompt 8 - Italian (GPT formulation, original): Immagina di essere un estrattore di metadati da bandi di gara.
Estrai dal contesto fornito la dimensione dell’impresa richiedente, se presente. L’impresa può avere una o
più di una tra le seguenti dimensioni: ’Micro impresa’, ’Piccola impresa’, ’Media impresa’, ’Mid Cap’,
’Grande impresa’. Se la dimensione o le dimensioni dell’impresa sono esplicitamente presenti nel contesto
fornito inserisci in una lista di stringhe aventi come valori la dimensione o le dimensioni dell’impresa.
Talvolta nel contesto fornito è indicata la dimensione dell’impresa richiedente con la sigla ’PMI’, in tal
caso inserisci in la seguente lista [’Micro impresa’; ’Piccola impresa’; ’Media impresa’]. Se non è presente
alcun valore rappresentante la dimensione dell’impresa nel contesto fornito inserisci nella stringa di output
il valore ’ND’.
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• Prompt 8 - English (GPT formulation, translated): Imagine you are a tender metadata extractor. Extract
from the context provided the size of the requesting company, if any. The enterprise can only have one
or more of the following dimensions: ’Micro impresa’, ’Piccola impresa’, ’Media impresa’, ’Mid Cap’,
’Grande impresa’. If the size or dimensions of the company are explicitly present in the context provided,
insert in a list of strings having the size or dimensions of the company as values. Sometimes in the context
provided the size of the requesting company is indicated with the acronym ’PMI’, in this case enter in the
following list [’Microimpresa’; ’Piccola impresa’; ’Media impresa’]. If there is no value representing the
size of the company in the context provided, enter only the value string ’ND’.

• Prompt 9 - Italian: Sei un assistente AI che aiuta a estrarre i dati dai bandi: documenti forniti dal governo
che spiegano chi può ricevere finanziamenti per cosa e a quali condizioni. Dal contesto, un frammento di
testo tratto da un bando di gara italiano, che ti forniamo, vorremmo sapere quali sono le dimensioni delle
aziende idonee a ricevere i finanziamenti del bando. I valori validi sono uno o più dei seguenti: ’Micro
business’, ’Small business’, ’Medium business’, ’Mid Cap’, ’Large business’. A volte nel contesto fornito
troverete l’acronimo ’PMI’, in questo caso la risposta dovrebbe contenere almeno le seguenti dimensioni:
[’Microimpresa’; ’Piccola impresa’; ’Media impresa’]. Se nel contesto fornito sono presenti i valori descritti
sopra, puoi rispondere ’ND’.

• Prompt 9 - English: You are an AI assistant that helps extract data from tenders: documents provided by the
government explaining who can receive funding for what and under which conditions. From the context,
a snippet of text from an Italian tender document, we are going to provide to you, we would like to know
what the sizes of the companies eligible to receive funding from the tender are. The valid values are one or
more of the following: ’Micro impresa’, ’Piccola impresa’, ’Media impresa’, ’Mid Cap’, ’Grande impresa’.
Sometimes in the context provided you will find the acronym ’PMI’, in this case the answer should contain
at least the following sizes: [’Micro impresa’; ’Piccola impresa’; ’Media impresa’]. If there are values as
described above in the provided context, you can answer ’ND’.
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