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Abstract

Gamma-ray bursts (GRBs) have been a great astrophysical mystery since their
discovery in the late 60’s. It was only in the early 90’s that high-energy tele-
scopes (e.g. BATSE, BeppoSAX ) unveiled their cosmological origin and then
discovered the X-ray afterglows which follow the main γ-ray events.

A new breakthrough came with the Swift satellite which was able to ob-
serve the X-ray afterglow at unprecedentedly early times. This led to a flurry
of discoveries, and to the definition of a "canonical shape" for X-ray afterglow
light-curves, likely reflecting the changing physical conditions in the emitting
region: an initial steep decay marking the switching off of the prompt emis-
sion, followed by a shallow phase (so-called "plateau") which then transitions
to a characteristic power-law flux decay. While the latter is in agreement with
the theory of synchrotron emission by a relativistic shock, the plateau could
not be explained in the same framework, requiring additional physics.

Plateaus occur in ∼ 50% of long GRBs, i.e. those associated to the col-
lapse of massive stars. Short GRBs (SGRBs), associated to binary neutron
star (BNS) mergers (and possibly neutron star-black hole mergers), proved
harder to study: to date, the frequency of plateaus in SGRBs is uncertain.

In this Thesis, we study the most complete sample of SGRBs with known
redshift, in order to confidently identify or rule out the presence of a shallow
phase in each of them, and to derive physical constraints on its origin. The
sample contains 85 bursts detected by Swift from May, 2005 to December,
2022: for each GRB, a detailed analysis of the X-ray afterglow light-curve is
carried out. Our study finds 15 SGRBs with a robust plateau in their X-ray
afterglow light-curve, implying a "plateau" fraction 0.176 < fplateau < 0.375.

The 15 SGRBs were used to test the magnetar model, one of the leading
theoretical interpretations for the plateau in terms of an extra energy injec-
tion in the afterglow shock, due to magnetic dipole radiation of a millisecond-
spinning magnetar which was formed in the BNS merger producing the SGRB.
Fitting X-ray afterglow light-curves with the magnetar model we estimated
the magnetar birth spin period (P ) and dipole magnetic field (B): 12 bursts
gave good magnetar candidates, with parameters perfectly in line with theo-
retical expectations (P ∼ 1−10 ms, B ∼ 1014−1015 G), implying a magnetar
fraction 0.141 < fmag < 0.245. Interestingly, 3 of the 15 SGRBs were incon-
sistent with the magnetar model, and call for further study.

Finally, we used fmag to constrain the maximum mass Mmax of a stable NS
in the framework of the magnetar model, assuming that (i) all SGRBs origi-
nate from BNS mergers, and (ii) only stable NS remnants can be associated to



X-ray plateaus whose typical duration is ∼ 103 s. In this case, fmag reflects
exactly the fraction of stable NS formed in BNS mergers. By simulating a
population of 105 mergers, with a characteristic mass distribution for both
NS components, we derive a range of values for Mmax corresponding to the
fmag range found above, namely 2.20 < Mmax/M⊙ < 2.31. Our result could
be tested by the upcoming scientific runs of Advanced LIGO and Virgo, and
may be directly confirmed with the advent of the Einstein Telescope, which
will be able to observe a large population of BNS mergers.



Contents

1 Gamma-ray bursts 3
1.1 Historical context . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Standard classification . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Ambiguities in the standard classification . . . . . . . . 8
1.3 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Prompt emission and fireball model . . . . . . . . . . . 10
1.3.2 Afterglow emission . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Jet evolution . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.4 Plateau incidence . . . . . . . . . . . . . . . . . . . . . 23
1.3.5 Magnetar model . . . . . . . . . . . . . . . . . . . . . . 26

1.4 The case of GRB 170817 . . . . . . . . . . . . . . . . . . . . . 30
1.5 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Swift Mission and Swift-XRT repository 36
2.1 The Swift GRB Mission . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 The Swift-XRT GRB Repository . . . . . . . . . . . . . . . . 40

2.2.1 Standard count-to-flux conversion . . . . . . . . . . . . 41
2.2.2 XRT repository count-to-flux conversion . . . . . . . . 42

2.3 XRT data reduction and light-curve extraction . . . . . . . . . 43
2.3.1 XRT pipeline . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Count rate light-curve extraction . . . . . . . . . . . . 45

3 Data analysis 48
3.1 The SGRB sample . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Classification of "uninformative" events . . . . . . . . . . . . . 50

3.2.1 SNR-rejected events . . . . . . . . . . . . . . . . . . . 51
3.2.2 Extended emission-only (EE-only) cases . . . . . . . . 52
3.2.3 Special case: GRB 150101B . . . . . . . . . . . . . . . 53

3.3 Light-curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 The F -test . . . . . . . . . . . . . . . . . . . . . . . . . 56

1



2

3.4 Plateau identification . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Discussion and "plateau" fraction . . . . . . . . . . . . . . . . 65

4 Testing the magnetar model 71
4.1 Building the luminosity light-curves . . . . . . . . . . . . . . . 71
4.2 Derivation of magnetar parameters . . . . . . . . . . . . . . . 74
4.3 Considerations on the "EE-only" sample . . . . . . . . . . . . 80

4.3.1 Lp,min-criterion . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 κ′-criterion . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 "Magnetar" fraction . . . . . . . . . . . . . . . . . . . . . . . 85

5 Astrophysical implications 89
5.1 BNS merger remnants . . . . . . . . . . . . . . . . . . . . . . 89
5.2 NS semi-universal relation . . . . . . . . . . . . . . . . . . . . 91
5.3 BNS merger simulation . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Maximum stable mass range . . . . . . . . . . . . . . . . . . . 97

6 Conclusions and outlook 100

A Appendices 105
A1: Eiso values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A2: Results obtained from the light-curve fitting . . . . . . . . . . . 107
A3: "EE-only" isotropic luminosity light-curves . . . . . . . . . . . 110
A4: Mmax computation python code . . . . . . . . . . . . . . . . . 112

Bibliography 116

Acknowledgments 126



Chapter 1

Gamma-ray bursts

Gamma-ray bursts (GRBs) are one of the most intriguing events in modern
high energy astrophysics. One of the reasons making them so compelling
is that they represent the most luminous known phenomena in the Universe
spanning a redshift range from the local Universe to z ∼ 9 (as GRB 090429B,
Cucchiara et al., 2011), making them very important cosmological probes too.
Indeed, despite the fact that they originate in extremely compact regions (of
sizes ≲ 102 km), they release huge amounts of energies (up to ∼ 1052 ergs) in
extremely short time scales (ranging from less than 1 s to ∼ 102 s). Moreover,
thanks to the recent association of GRB 170817 with the binary neutron star
(BNS) merger GW 170817, observed in gravitational waves (GW) by the
Advanced LIGO/Virgo detectors, GRBs have heralded the new era of multi-
messenger astrophysics.

In the following, we provide a brief historical introduction and a summary
of the main theoretical results that were fundamental for the work carried
out in this Thesis.

1.1 Historical context
GRBs were serendipitously discovered by the Vela military satellite system
in the late 1960s. The original aim of these satellites, launched by the U.S.
Department of Defense, was to monitor nuclear activity of the Soviet Union
and prevent the detonation of nuclear devices in space, safeguarding the
Nuclear Test Ban Treaty. On July 2, 1967 the very first GRB was detected,
GRB670702, but the first paper about this discovery was published only
six years later (Klebesadel et al., 1973), likely because of the complicated
analysis process.
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1.1. Historical context 4

In the same years, two other new types of objects were discovered: Active
Galactic Nuclei (AGN) and neutron stars (NS). While research on these
latter sources saw a rapid progress, the theoretical understanding of GRBs
proceeded extremely slowly. Indeed, the gamma-ray detectors available in
that period had poor spatial resolution, making it impossible to identify
electromagnetic counterparts at lower energies for GRBs. Consequently, even
though more than 500 GRBs were detected in the eighteen years from 1973
to 1991, they remained mysterious phenomena and a huge number of theories
and models were proposed to interpret them (e.g. Colgate, 1974; Ruderman,
1975).

A first step forward occurred in 1991 thanks to the Burst And Transient
Source Experiment (BATSE), one of the four instruments carried by the
Compton Gamma-Ray Observatory (CGRO). BATSE managed to detect
thousands of GRBs (Fourth BATSE Gamma-Ray Burst Catalog, Paciesas
et al., 1999), and even though it was not possible to find a low-frequency
counterpart for any of them, it allowed to make great improvements in un-
derstanding their nature. In particular, the all-sky survey showed that GRBs
were isotropically distributed, suggesting for the first time their cosmolog-
ical origin. Moreover, the observed bimodal distribution of burst duration
(Kouveliotou et al., 1993, see Section 1.2) gave strong confirmation to the
previously only hypothesized existence of two separate classes of GRBs: the
long and the short GRBs, with a clear separation around ∼ 2s.

The real barrier that prevented a further comprehension of GRBs was the
lack of information about distances, something that could be obtained only
after finding a counterpart at longer wavelengths. This indeed was achieved
in 1997 thanks to the Italian-Dutch BeppoSAX satellite for X-ray astron-
omy, that featured a wide-field X-ray camera with a much better localization
capability relative to γ-ray detectors: in this way, it was possible to find the
first X-ray counterpart of a GRB (GRB 970228, Costa et al., 1997). This
counterpart was called afterglow, using the name that was previously given
to it in a theoretical work by P. Meszaros and Rees (1993). Thanks to this
discovery, optical and radio afterglows were observed for the first time too,
and this eventually led to the first accurate identification of the host galaxy
and to the first measurement of a GRB redshift (z = 0.835 for GRB 970508)
(M. R. Metzger et al., 1997), confirming their cosmological origin. This new
possibility of carrying out multi-wavelength observations of GRBs allowed a
deeper comprehension of the physics underlying these events and led to the
association, for the first time, of a long GRB with the death of a special
category of massive stars (Type Ic supernova, Galama et al., 1998).

Another breakthrough was achieved in 2004 when the Swift observatory
was launched (Gehrels, Chincarini, et al., 2004). The unique feature of Swift
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(that has been officially renamed Neil Gehrels Swift Observatory in 2015)
is that it carries a γ-ray, an X-ray and a UV telescope all together on the
same satellite, with an extremely fast automatic repointing of the X-ray
and optical-UV telescopes every time that a burst is observed by the γ-
ray detector Burst Alert Telescope (BAT). Swift made it possible to study
the faint afterglow of short GRBs, something that was not viable before its
launch. This led to the realisation that short GRBs are indeed not linked to
the death of massive stars as long GRBs, but more likely to the coalescence of
two neutron stars or a black hole and a neutron star. Moreover, by its ability
to carry out much earlier observations of GRB afterglows than ever before,
Swift demonstrated that the separation between long and short GRBs is not
so sharp, presenting some degree of overlap at the interface between the two
duration distributions.

The launch of Fermi Gamma-Ray Space Telescope in 2008 increased even
more the number of GRBs that were to be discovered from that year on.
In particular, thanks to its two main instruments, the Large Area Tele-
scope (LAT: 20 MeV−300 GeV) and the Gamma-ray Burst Monitor (GBM:
8 keV−40 MeV), Fermi allowed to study the spectral properties of GRB
prompt emission in an unprecedented detail, covering more than 7 orders of
magnitude in the high energy range and leading to the discovery of > 100
MeV emission (or simplified as "GeV" emission) in several GRBs (Ackermann
et al., 2010). Nevertheless, it is important to recall that Fermi GRBs are
poorly localized (Meegan et al., 2009).

In 2017, the theories predicting that short GRBs were associated to the
coalescence of compact binary systems, and should thus be sources of copious
GWs, were finally confirmed: the detection of the binary neutron star merger
GW 170817, made by the interferometers LIGO and Virgo, and its direct
association with GRB 170817 (see Section 1.4) formally marked the beginning
of the "multi-messenger era" of GRBs (Abbott et al., 2017).

1.2 Standard classification
Even though at the time BATSE was launched the theoretical understanding
of GRBs was still in an early stage, the great number of events observed by
BATSE allowed to discover a bimodality in the GRBs duration distribution
(Kouveliotou et al., 1993). Upon defining T90 as the time interval between
the instants at which 5% and 95% of the total fluence1 are detected, the
distribution of the GRBs observed by BATSE showed a clear bimodality

1The fluence is defined as the time integral of the flux and is expressed in units of erg
cm−2
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(Fig. 1.1a): the dip around T90 ∼ 2 s suggested a distinction between short
GRBs (SGRBs, with T90 peaking at 0.2−0.3 s) and long GRBs (LGRBs, with
T90 peaking at 20−30 s).

(a) (b)

Figure 1.1: (a) Distribution of T90 for the 222 GRBs of the first BATSE catalog. Solid
line is the histogram of raw data, while dotted line is the error-convolved histogram,
obtained considering for each T90 a Gaussian with width δT90 and adding to each bin the
overlapping areas of all the Gaussian falling within the bin boundaries (Kouveliotou et al.,
1993). (b) 2D diagram reporting T90 on the x-axis and the hardness ratio HR32, calculated
in the energy range 3 (50−100 keV) and energy range 2 (25−50 keV), on the y-axis, using
data from the Third Swift/BAT Catalogue (1388 burst, Lien et al., 2016): it is evident
how the bimodality of bursts is not only in duration but also in the softness/hardness of
the prompt emission, with SGRBs (in red) appearing on average harder with respect to
LGRBs (in blue, Salmon et al. (2022)).

It is important to keep in mind that, as explained by Kumar and B.
Zhang (2015), T90 is an arbitrary definition and it is very subjective: it
strongly depends on the sensitivity and energy range of the instruments, it
does not take into account the differences in redshift between the different
bursts, it does not discriminate between prompt emission and early afterglow
emission and between different light-curves morphologies. Nevertheless, T90

is the most commonly used parameter to describe the duration of GRB main
(prompt) emission. Contextually, a bimodality in the GRB hardness ratio
(HR) distribution was also discovered, with long GRBs being on average
softer than SGRBs2 (see Fig. 1.1b). This resulted in a further and more
complete (but not ultimate) classification into the two classes "long/soft"

2We recall that the hardness ratio (HR) is the normalized difference of the counts in
two different energy bands A (high energy) and B (low energy), and it is typically defined
as HR = (A−B)/(A+B).
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and "short/hard" GRBs.
Swift observations introduced a revolution in the field, enabling multi-

wavelength studies that demonstrated that these two GRB classes were as-
sociated to two different source classes, which were linked to two types of
progenitor systems (but its important to point out that the progenitor class
is not univocally defined by the duration).

Long GRBs were the first class for which the nature of the progenitor
was discovered: they were proposed to originate during the death of a spe-
cial type of massive stars, as proposed for the first time by S. E. Woosley
(1993). This was confirmed for the first time in 1998, when a Type Ic super-
nova3 discovered in a nearby galaxy at z = 0.0085, SN 1998bw, was found
out to lie in the error box of GRB 980425, a burst detected by BeppoSAX
(Galama et al., 1998). Initially, this was classified as just a "probable" as-
sociation, but this hypothesis was later strengthened by the discovery that
long GRBs are mainly found in regions of intense star formation in distant
galaxies (Paczyński, 1998) and by observing the presence of ’bumps’ in the
optical afterglow light-curves attributable to a supernova (Castro-Tirado, A.
J. & Gorosabel, J., 1999). All these observations supported but did not
conclusively prove the association between the death of massive stars and
LGRBs. Eventually, the first strong evidence was obtained by Hjorth et
al. (2003), with the discovery of a very energetic supernova light-curve, SN
2003dh, emerging from the afterglow of GRB 030329, at z = 0.1685: they
were temporally and spatially coincident, and this conclusively confirmed the
association.

In the following years, the Swift satellite led to the detection of a large
number of short GRBs and, in particular, of their faint afterglows. This al-
lowed the association of SGRBs with their host galaxies, showing a larger het-
erogeneity with respect to the LGRBs hosts. In particular, Gehrels, Sarazin,
et al. (2005) discovered that the short burst GRB 050509b was located in
close proximity of an elliptical, non star-forming galaxy at z=0.225: this was
very different from what observed for long GRBs and was instead expected
if short GRBs were originated from an evolved progenitor system, not asso-
ciated to recent star formation, like a population of compact objects binary
systems. In support of this hypothesis, the fact that SGRBs occur on average
five time farther from the center of their host galaxies compared to LGRBs
(W. Fong, Berger, & Fox, 2010) is consistent with progenitors like compact
object binaries, that have a long time (typically of the order of 0.1− 10 Gyr,

3A Type Ic supernova is a supernova for which the spectrum lacks hydrogen lines present
instead in Type II, silicon lines present instead in Type Ia and helium lines present instead
in Type Ib: essentially, they are originate by star which lost most of their envelope before
the collapse.
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Eichler et al., 1989; Nakar, 2007) to travel far from the galactic center before
merging. Recently, the discovery of the BNS merger GW 170817 made by
Advanced LIGO and Virgo detectors, of its associated GRB 170817 made by
Fermi GBM, and of its multi-wavelength counterparts from X-ray to radio
bands, provided a spectacular confirmation of the compact binary scenario.
A deeper analysis of this GW 170817 will be given in Section 1.4. Today the
leading model proposes short GRBs to be consistent with the coalescence
between two neutron stars (NS-NS) or between a neutron star and a black
hole (NS-BH), as theorized at first in Paczynski (1986) and Eichler et al.
(1989).

Several works have proposed, even until recent years (Mukherjee et al.,
1998; Ripa and A. Meszaros, 2015), that a third class of events in the T90

distribution might exist, so-called intermediate GRBs. However there is no
clear evidence that this additional class has a distinct physical origin.

The continuous detection of new GRBs has led to the conclusion that this
classification is by the way too simplistic to account for the heterogeneity of
these events. In a large number of cases, it is not possible to securely fit an
event in one of the two categories presented above. Two main exceptions to
the "long/soft" and "short/hard" classification are reported in the following.

1.2.1 Ambiguities in the standard classification

In 2006, the Swift satellite detected GRB 060614, at z = 0.125: its duration of
T90 = 102 s left no doubt in classifying it as a long GRB. However, observing
it in more detail, it was not possible to associate to it any supernova light-
curve (as expected for long GRBs) despite its low redshift and, moreover, it
showed many features typical of short GRBs (like its low luminosity, Gehrels,
Norris, et al., 2006). In addition to that, it was also associated with a
kilonova-like feature (Yang et al., 2015), which is a type of emission expected
in the case of a binary neutron star merger. This led to classifying it in a
class called "hybrid GRBs", which are characterized by a long duration but
lack the association with a supernova.

An even more striking case is represented by GRB 211211A, at z =
0.0763: it was characterized by an undoubtedly long duration (∼ 60 s),
but the lack of an association with a supernova emission and several other
short GRB-like features made it another case of hybrid GRB. Additionally,
a kilonova emission was later possibly associated to this GRB (Rastinejad
et al., 2022), adding evidence to the scenario according to which compact
merger events can give birth to long γ-ray emission too.
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Extended emission (EE) SGRBs

The standard classification is complicated even further if we consider a frac-
tion of short GRBs which, after the initial short/hard spike, occasionally show
a softer and prolonged emission, lasting tens of seconds: these are labelled as
short GRBs with extended emission (SEE, Norris and Bonnell, 2006; Norris,
Gehrels, et al., 2010). EE is characterized by a very strong flux and spectral
time variability. In particular, during EE the value of the photon index Γ is
expected to increase: this means that the power-law spectrum is becoming
stepper and this is commonly referred to as "spectral softening", because less
high energy photons are produced. The apparently long duration make SEE
similar to LGRBs but during the first seconds, corresponding to the spike
phase, they show spectral features that are likely associated to SGRBs. In
this perspective, EE is often interpreted as the component of the prompt
emission coming from larger angles that, because of relativistic effects, takes
more time to reach us and thus is observed at later times. These ambiguous
cases are not well understood yet, but discovering their origin could provide
powerful means to deeper understand the nature of GRBs progenitors.

1.3 Theoretical framework
Gamma-ray bursts are the most powerful explosions in the Universe (Band
et al., 1993; Kouveliotou et al., 1993; P. Meszaros, 2006). The advent of
BeppoSAX in 1997 made it evident that these extreme events can happen
at enormous distance from us and the fact that we are able to observe them
even from cosmological distances (the most distant burst ever detected is
GRB 090429B at z = 9.4, Cucchiara et al., 2011) ascertained the fact that
GRBs are originated by the sudden release of a huge amount of energy, even
capable to outshine their host galaxy, on very small scales (suggesting the
stellar origin of their progenitors).

This vast and concentrated energy release gives rise to two types of emis-
sion. Prompt gamma-rays, having markedly a non-thermal spectrum, are
thought to originate from internal shocks within a relativistic outflow. The
same outflow later impacts against the external medium, driving a relativis-
tic forward shock into it, which sweeps up the circumburst material until it
eventually starts to decelerate, giving rise to the long-lived emission called
afterglow (Fig. 1.2). The following sections provide a schematic description
of the physics behind prompt and afterglow emissions.
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Figure 1.2: Cartoon portraying the GRB fireball model. Here, the event is generated by
the collapse of a massive star, while the cases of binary neutron stars merger or neutron
star-black hole merger are not shown. A huge amount of energy is funneled into a jet
("fireball"). Part of the jet kinetic energy is dissipated by internal shocks, producing the
gamma-ray "prompt" emission (red arrows). When the jet impacts with the surrounding
medium, external shocks are generated, the remaining kinetic energy heats up the medium
and produces emission at lower frequencies (X-ray, optical and radio, orange and light blue
arrows), that is what is commonly called "afterglow" (Mészáros & Rees, 2014).

1.3.1 Prompt emission and fireball model

The prompt emission is the primary component of GRBs and the one that
was first discovered in the ’60s. A good definition of the prompt emission is
given in B. Zhang (2018): "the prompt emission is the temporal phase during
which excessive sub-MeV emission is detected by the GRB triggering detectors
above the instrumental background emission level". The T90 (Section 1.2) is
typically used to characterize the duration of this phase but what strikes
mostly in the prompt light-curves of GRBs is their diversity: some appear
to be very smooth while others show a strong time variability on very short
timescales, together with the presence of several peaks, and the values of T90

span a wide from milliseconds to thousands of seconds, as shown for example
in Fig 1.3.

The few salient features mentioned above make already possible to in-
fer important constraints on the physics underlying GRB emission. Starting
from the short timescale variability and using causality arguments, one can
easily prove that the gamma-ray production must happen in a very compact
region: indeed, supposing a temporal variability on timescales δT = 10 ms, it
is reasonable to impose as an upper limit to the source scale Ri < cδT ≃ 3000
km. This is the starting assumption of the so called "fireball model", first
proposed by Cavallo and Rees (1978). This model predicts that a fireball
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Figure 1.3: GRB light-curves of the prompt emission of some of the bursts detected
during the BATSE mission: it is clear how each burst has its own peculiar time evolution,
showing a clear heterogeneity of features (Fishman et al., 1994).

concentrated in such a compact region would imply photon energies so large
to make it opaque to radiation due to electron positron pair creation: this
would mean that the fireball would expand and cool up to the point at which
the photon energy goes below the pair production limit, making the out-
flow optically thin and allowing a soft thermal spectrum to emerge. As the
spectrum we observe from GRBs is non thermal and typically quite hard
spectrally, this discrepancy is what has become known as the "GRB com-
pactness problem".

To solve the compactness problem, we must take into account relativistic
effects (Piran, 1999). Let us consider a source with fluence S at a distance
D: the energy output we expect from this source will be given by:

E = 4πD2S = 1050ergs

(
D

3000Mpc

)2(
S

10−7 ergs cm−2

)
, (1.1)

where cosmological effects can be neglected in first approximation. From
observations we know that the observed spectrum contains a large number
of high energy γ-ray photons. Suppose a high energy photon (with energy
E1) interacts with a lower energy photon (with energy E2): if

√
E1E2 >

mec
2 they will produce electron positron pair via the pair production process

γγ → e+e−. If we call fp the fraction of photons matching this condition, we
can express the average optical depth of this process as:

τγγ =
fpσTSD

2

R2
imec2

. (1.2)
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where σT is the Thomson cross-section while Ri < cδT is the approximate size
of the source derived from causality arguments, starting from its temporal
variability δT . And here is exactly were the problem arises: this optical depth
is extremely large, so we should expect that photons are not able to escape
up to a certain point at which they will give origin to a thermal spectrum,
while what we observe is instead a non-thermal spectrum that suggests us
that the source must be optically thin to such high energy photons.

This apparent contradiction can be solved if we suppose that the source
of radiation (the fireball) is moving towards us with a relativistic velocity
v, so that the Lorentz factor γ =

√
1− v2/c2 ≫ 1. This would imply that

the photons we observe are blue shifted and their energy at the source is
hνobs/γ ≪ hνobs = Eobs (h is the Planck constant): this means that fewer
photons will be able to undergo pair production, in particular the fraction
of photons that could produce pairs at the source will be fpγ

−2α where α is
the high-energy photon spectral index (see Eq. 1.4). At the same time, the
scale of the emitting region will be larger by a factor γ2 with respect to the
original estimate Ri, because of relativistic effects4. The new expression for
the optical depth will be then given by:

τγγ =
fp

γ(2α+4)

σTSD
2

R2
imec2

≃ 1013

γ(2α+4)
fp

(
S

10−7 ergs cm−2

)(
D

3000Mpc

)2(
δT

10ms

)−2

. (1.3)

One can then show that the compactness problem can be solved if the fireball
is moving towards us with a Lorentz factor γ > 1013/γ(2α+4) ≃ 102.

The solution to the compactness problem imposes the requirement that
the emitting region should have relativistic motion. However, in order to ob-
serve gamma-rays, the huge kinetic energy of this outflow must be somehow
converted to radiation, and this can be achieved in two ways. If the rela-
tivistic outflow contains baryonic material (baryon loading), internal shocks
within the outflow itself are expected to dissipate part of the kinetic en-
ergy of the baryons transferring it to the electrons, which will then irradiate
it efficiently through fundamental mechanisms (synchrotron, Inverse Comp-
ton (IC) scattering). The alternative is that this conversion happens via
magnetic reconnection events, which however require an electromagnetically
dominated outflow to take place, and so a relatively low baryon loading con-
tribute (Usov, 1992). As already stated above, a pure pair-photon bubble
would produce a nearly thermal spectrum and would not let high-energy
photons to escape.

4If relativistic matter is beamed (see Section 1.3.3) we can define the jet angle θj = 1/γ
and the upper limit on the radius will also have to take into account the beaming correction,
so that R′

i < cδt(1− cos θj) ∼ cδt θ2j/2 = cδt/(2γ2).
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Even though a conclusive interpretation of the mechanisms responsible
for GRBs prompt emission is still eluding us, Band et al. (1993) were able to
derive, analyzing a large number of BATSE GRBs, an empirical function that
faithfully describes the spectrum of the prompt, the so called Band function
(or GRB function). It consists of a smoothly-joined broken power-law with
an exponential cut-off at low energies. The photon spectrum is expressed as:

NE(E) =

A
(

E
100keV

)α
exp(− E

E0
), E < (α− β)E0,

(A
(

(α−β)E0

100keV

)α−β

exp(β − α)
(

E
100keV

)β
, E > (α− β)E0,

(1.4)

where A is a normalization constant, α and β are both negative and represent
the low-energy and high-energy photon spectral indices respectively5, while
E0 is the break energy which separates the two power-law slopes.

Despite the apparent universality of the Band function, the two spectral
indices α, β and the break energy E0 do show a relatively wide dispersion
within the GRB population. In the bright BATSE GRBs (which consist of a
total of 156 bursts with 5500 spectra) the two spectral indices are distributed
around the values α ∼ −1 ± 1 and β ∼ −2+1

−2 (Preece et al., 2000), while
the peak energy Ep = (2 + α)E0 is primarily concentrated in the 200−300
keV range (Preece et al., 2000; Goldstein, Preece, et al., 2013). These values
were roughly confirmed in more recent works: Tsvetkova, Frederiks, Golenet-
skii, et al. (2017), analyzing the Konus-Wind catalog, found distributions of
the indices peaking around the values α ∼ −1 and β ∼ −2.5, while the
distributions derived by Poolakkil et al. (2021) studying the bursts detected
by the Fermi Gamma-Ray Burst Monitor (GBM) peaked around the values
α ∼ −1.1 and β ∼ −2.1 .

The Band function is still the best analytical model to date capable of
reproducing accurately the spectral shape of the prompt emission, although
a satisfactory theoretical interpretation is still lacking.

1.3.2 Afterglow emission

Even though before the launch of BeppoSAX in 1997 no instrument had
ever observed GRBs emission outside the gamma-rays, theoretical work al-
ready predicted the existence of emission at lower energies: Mészáros and
Rees (1997) assumed an extragalactic origin of GRBs and discussed how rel-
ativistic internal shocks would be originated within the relativistic outflow

5These should not be confused with the indices used in Section 1.3.2 for the temporal
evolution of the flux density of the afterglow, Fν(t, ν) ∝ t−αν−β , where α is the temporal
decay index while β is the flux density spectral index. Despite the ambiguity of this
notation, we keep the conventions widely adopted in the literature.
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by the time variation of the Lorentz factor of the ejecta and would dissipate a
fraction of the bulk kinetic energy. Moreover, this relativistically expanding
material would eventually hit the surrounding medium, often defined circum-
burst medium (CBM), and this belated interaction would drive an external
shock in the CBM, leading to particle acceleration and local magnetic field
amplification. This would create the perfect conditions for the release of
the (external) shock kinetic energy via synchrotron emission, over a longer
timescale and over a wide range of lower energies, from X-rays to the optical,
infrared and radio band: this is commonly referred to as the GRB afterglow.
This prediction was soon after confirmed on February 28, 1997 when Bep-
poSax observed the X-ray afterglow associated to GRB 970228 (Costa et al.,
1997).

Prior to the launch of the Neil Gehrels Swift observatory in 2004 (see
Section 2.1), the study of X-ray afterglows proved to be extremely difficult
because of the elapsed time between the detection of the prompt gamma-
rays and the pointing of an X-ray telescope in the same direction. Thanks
to the rapid slewing capability of the X-ray telescope (XRT) onboard Swift,
revolutionary results were achieved: indeed, more than 95% of Swift GRBs
turned out to have an X-ray afterglow, with a very peculiar light-curve evo-
lution starting at early times. Just six months after Swift started its activity,
an observational canonical X-ray afterglow light-curve was proposed by B.
Zhang, Fan, et al. (2006), identifying five different characteristic phases of
the afterglow (see Fig. 1.4).

In the following years, several systematic studies were carried out to disen-
tangle the physical origin of each phase and, from these preliminary studies,
the hypothesis that the prompt emission and the afterglow are originated
by two different physical phenomena was confirmed by strong evidence com-
ing from the early-time afterglow data. This led to the association of the
prompt emission with internal shocks occurring within the jet, as result of
the collisions between relativistic shells with different Lorentz factors Γ, while
afterglow emission was instead connected to external shocks originated by the
interaction between the jet and the external medium.

The theory behind acceleration mechanisms in relativistic shocks and the
origin of afterglow emission is presented in the following sections.

Acceleration mechanism

When the outflowing material interacts with the CBM, relativistic shocks
take place. Free electrons get accelerated to relativistic energies at these
shocks, thus producing the synchrotron emission which gives rise to the after-
glow. The so-called diffusive shock acceleration (DSA) model (Blandford &
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Figure 1.4: The five component X-ray afterglow light-curve as proposed in B. Zhang,
Fan, et al. (2006). Segment 0 represents the tail of the prompt emission. Segments I (steep
decay) and III (normal decay) are the most common, and so they are represented by solid
lines, while segments II (shallow decay), IV (jet break) and V (flares) are present only in
a fraction of bursts, and so they are marked by dashed lines. Expected values for the time
decay indices are reported too.

Ostriker, 1978) provides the standard picture for describing this complicated
process: it assumes that particles are confined in a narrow region straddling
the shock because of magnetic irregularities (Alfvén waves) and then acceler-
ated, as a result of repeated crossings of the shock surface. This represents a
particular realisation of a generic type-II Fermi process: at each shock cross-
ing cycle (i.e., from upstream to downstream and back, or vice-versa), an
electron gains some energy ∆E and has a probability Pesc of escaping (leak-
ing off) the shock, which increases with the particle’s energy. As a result of
the interplay between these two factors, electrons will acquire a power-law
distribution in energy, in the form:

N(E)dE ∝ E−pdE. (1.5)

The DSA model cannot formally be applied in GRBs because the diffu-
sion approximation for spatial transport does not apply strictly for relativistic
shocks, i.e. when the shock Lorentz factor Γs ≫ 1. However, Achterberg et al.
(2001) first demonstrated that, under particular conditions (i.e., strong mag-
netic fluctuations in the upstream and downstream media), it is explained
that the energy spectrum of particles accelerated in ultra-relativistic shock
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would still follow a power-law as in Eq. 1.5, where the power-law slope p is:

p = 1 +
ln(1/Pret)

ln⟨Ef/Ei⟩
, (1.6)

with Pret = 1−Pesc the average probability per cycle that a particle crosses
again the shock returning upstream and Ef/Ei = 1 + ∆E/Ei is the final
vs initial energy ration per cycle. Angular brackets indicate that values
represent an average over the population. Through numerical simulations
and analytic calculations, several studies were able to compute a "universal"
value for the power-law slope p ∼ 2.2−2.3, although the value of this spectral
index is still an open problem, given that the microphysical mechanisms
involved in the particle acceleration via relativistic shocks are still far from
being completely understood. In the following we will use the results obtained
by Achterberg et al. (2001) as a standard reference.

Standard spectra and light-curves of GRB afterglows

In order to calculate the afterglow spectra and light-curve evolution from
synchrotron emission of shock-accelerated electrons, we present here the re-
sults obtained by Sari, Piran, and Narayan (1998). We start by rewriting the
energy distribution of Eq. 1.5 in terms of the Lorentz factor of the electrons
γe:

N(γe) dγe ∝ γ−p
e dγe, (1.7)

where γe ≥ γm and γm is the Lorentz factor corresponding to the minimum
electron energy: notice that we adopted lower-case γ for the particles Lorentz
factor to differentiate it from upper-case Γs, the Lorentz factor of the shocked
material.

The relativistic forward shock propagates into a cold surrounding medium
with constant number density n. At the beginning, the shock undergoes a
free expansion into the ambient medium sweeping a volume of radius r = ct.
At some time td the shock has swept up enough mass to equal the initial
energy of the shock (Mswept = Γ2

s M0,ej) and the expansion starts decelerating,
triggering the conversion of the shock kinetic energy into internal energy, and
then to radiation, giving rise to the afterglow. The corresponding deceleration
radius is defined as rd = ctd. Due to relativistic effects, and to the factor 4
increase of density downstream of the shock, we can define the total shock
energy as e = 4Γ2

s nmp c
2. By making the simple assumption that a constant

fraction ϵe of the shock energy is transferred to the accelerated electrons, then
γm is directly related to ϵe through:

γm = ϵe

(
p− 2

p− 1

)
mp

me

Γs ≃ 610 ϵe Γs, (1.8)
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where the second result is taken considering the standard choice p = 2.5 (Sari,
Narayan, et al., 1996), which is close to the theoretically expected value of
2.2−2.3 (see above) and, when integrating in time the synchrotron emission,
returns exactly the high energy index β = 2.25 of the radiative power-law
spectrum derived by Band et al. (1993). An additional assumption is that
another constant fraction ϵB of the shock energy goes in the energy of the
magnetic field in the downstream medium,

B2

8π
= ϵBe = ϵB(4 Γ

2
s nmp c

2), (1.9)

from which it is possible to derive the B-field strength as a function of ϵB, n
and Γs. With these assumptions, it is possible to calculate the synchrotron
luminosity and spectrum emitted by a population of electrons.

We recall that a single relativistic electron in the presence of a magnetic
field would emit with a radiation power that in the observer frame will take
the form:

P (γe) =
4

3
σT cγ

2
e

B2

8π
Γ2
s, (1.10)

where σT is the Thomson cross section while the factor Γ2
s is introduced to

convert from the comoving to the observer frame. Moreover, synchrotron
characteristic frequency for the single electron in the observer frame is given
by:

ν(γe) = γ2
e

qeB

2πmec
Γs. (1.11)

The behaviour of the spectral power Pν (power per unit frequency, erg s−1

Hz−1) is the standard synchrotron one, showing a maximum at ν(γe), a
power-law behaviour ∝ ν1/3 at low frequencies and an exponential cut-off
at high frequencies. It is then important to define γc as the critical energy
above which radiation losses of the electron become important. It can be
defined with the condition γcmec

2Γ2
s = P (γc)t, where t is the time in the

observer frame. For energies of the electron γe > γc, cooling by synchrotron
are not negligible and the spectral power is modified.

To obtain the total spectrum from the whole electron population, dis-
tributed following a power-law, we need to integrate over all the values of γe.
It is important to distinguish two different cases:

– fast cooling (γm > γc): the minimum energy of the electron population
is larger than the critical energy, implying that all the electrons are
allowed to cool down to γc;

– slow cooling (γm < γc): the minimum energy of the electron population
is lower than the critical energy, implying that only the electrons above
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the critical value will cool down and radiate energy within a timescale
comparable with the dynamical timescale, while the majority will take
much longer time.

Fast cooling is expected to happen in the first phase of the GRBs, because
in this phase relativistic shocks should emit their energy efficiently; slow
cooling instead is expected to take place during the early afterglow/ late-
prompt emission, in the initial stages of the forward shock. This is why in
the following we will only focus on the slow cooling case.

The flux density in the observer frame in the slow cooling case will be
given by:

Fν =


(ν/νm)

1/3Fν,obs, ν < νm,

(ν/νm)
−(p−1)/2Fν,obs, νm < ν < νc,

(νc/νm)
−(p−1)/2(ν/νc)

−p/2Fν,obs, ν > νc.

(1.12)

where νm ≡ ν(γm), νc ≡ ν(γc) and Fν,obs is the value of the flux density
at the peak. In addition, at lower frequencies (ν < νa, with νa self absorp-
tion frequency), synchrotron self-absorption causes a steep cut-off, showing
a behaviour either as ν2 or ν5/2 (Katz, 1994), but this does not affect X-ray
radiation. The corresponding spectrum is portrayed in Fig. 1.5.

The spectrum derived above is an instantaneous spectrum, it does not
include any time evolution. To build a light-curve, instead, it is important to
understand how the different quantities evolve in time. The following discus-
sion is done considering a simplified case: we assume a spherical relativistic
shell with radius R(t) which expands into a surrounding medium with con-
stant number density n, so that the total number of swept up electrons is
Ne = 4/3πR(t)3n. Moreover, we distinguish two limit cases:

– fully radiative: the whole energy created in the shock is radiated away.
This happens if both these two condition are fulfilled:
1) the fraction of shock energy going into electrons is large, ϵe → 1;
2) we are in fast cooling regime, γm > γc.
If one of these two condition is not matched, we are in the fully adiabatic
case;

– fully adiabatic: the energy of the spherical shock remains constant in
time.

Since in this work we mainly focus in the slow cooling regime, that means
γm < γc, we limit the following discussion to the adiabatic case. It can be
shown that it is possible to write the time dependencies of both R(t) and
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Figure 1.5: Synchrotron spectrum produced by a relativistic shock with a power-law
distribution of electrons in the slow cooling regime case, that is when the minimum energy
of the electron population is lower than the synchrotron critical energy, γm < γc, and only
electrons at higher energies are able to cool efficiently: this is expected to happen at late
times. The spectrum consists of 4 segments: F, G and H correspond to the 3 behaviours
described in Eq. 1.12, while segment E is linked to synchrotron self-absorption. Arrows
show the temporal behaviour of each characteristic frequency (Sari, Piran, and Narayan,
1998).

Γs(t), that can be then used to derive the time evolution of the following
quantities:

νc ∝ t−1/2

νm ∝ t−3/2

Fν,obs = const.

(1.13)

It is clear that νm decreases in time faster than νc (this can be proven also in
the radiative case): so, if we start with γm > γc (fast cooling), at a certain
point we will reach an instant t0 such that ν0 ≡ νc(t0) = νm(t0), that will
define the transition from the fast cooling to the slow cooling regime (that is
when t > t0 and νm < νc < ν0).

If we now consider a fixed observing frequency ν, since νc and νm de-
crease with time, there will be two instants, called tc and tm respectively, in
which the characteristic frequencies νc and νm coincide with the observing
frequency. In the case in which the observing frequency is smaller than the
transition frequency, ν < ν0 (low frequency case), the three critical times t0,
tc and tm, computed according to Eq. 1.13, will be ordered as t0 < tm < tc.
For each time range, the corresponding segment of the slow cooling spectrum



1.3. Theoretical framework 20

in Fig. 1.5 is taken into account in order to extract the temporal evolution of
the emission in that specific time range: this is how the afterglow light-curve
in Fig. 1.6 is built.

Figure 1.6: Light-curve showing how the observed flux originated by the synchrotron
emission of a relativistic shock evolves in time, in the low frequency case (ν < ν0). It is
composed by four segments, labeled with letters corresponding to the associated spectral
segment in Fig. 1.5. We focus only on the adiabatic case so we don’t consider what happens
before t0 (segment B,Sari, Piran, and Narayan, 1998).

The time interval in which we are most interested is when t > t0, that is
after the transition to slow cooling regime takes place. Given that X-ray af-
terglow emission is always observed to decrease in time (apart from the case
of GRB 170817, for the reasons explained in Section 1.4), it is clear that the
two leading time dependencies we expect for the flux density Fν ∼ t−α in case
of afterglows are characterized either by α = 3(p−1)/4 or by α = (3p−2)/4.
These two values give the time behaviour we expect to observe in afterglow
light-curves if synchrotron emission is the only mechanism at work. The
majority of afterglows, at late times (> 12 h, typical of BeppoSAX ) satisfies
these predictions; however this is not true during the early afterglow evolu-
tion: the divergences from this model are carefully described in Section 1.3.4.

1.3.3 Jet evolution

The previous calculations were based on the assumption of spherical symme-
try, but the temporal dependence of the break frequency and of the normal-
ization are strongly dependent on the hydrodynamical evolution of the blast
wave. This means that the light-curve produced by a spherical shock may
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Figure 1.7: The burst launches a jet of relativistic material with a certain opening angle
θj . The material moves almost at the speed of light, its Lorentz factor Γs being ∼ 200:
because of special relativity effects, observer can initially see only a portion of the jet
(in blue) and this makes it impossible to distinguish if emission comes either from a jet
or from a sphere. As the jet encounters the surrounding material, it slows down and a
larger fraction of the jet becomes visible (in yellow) up to when Γs ∼ θ−1

j and the whole
jet becomes visible (in green, in this case corresponds to Γs ∼ 10. From this moment
on, no new matter will become visible and the brightness of the afterglow will start to
decline more rapidly: this is the so called brake time tjet. At later times, jet is slow enough
(Γs ∼ 2, in orange) to allow to observe matter from a much larger area (S. Woosley, 2001).

differ significantly from that produced by other structures, like an expanding
jet-like shell. Several works (Sari, Piran, and Halpern, 1999; Rhoads, 1999;
Frail et al., 2001 suggested that a jet geometry provides a more accurate
description of the dynamics of the blast wave with respect to a spherical one.

Typically, in the literature, two main types of jets are defined:

– uniform jets: in this case the jet is modeled as a cone with a sharp edge
and a uniform distribution of energies and Lorentz factor Γs;

– structured jets: this model assumes an angular distribution of Lorentz
factor Γs and energies.

Even though the recent observations of GRB 170817 and its atypical light-
curve evolution have given strong support to the structured jet hypothesis
(see Sec. 1.4), in this work we report just some of the results related to
the simplest case. The relativistic jet can be described by its half opening
angle θj and by its Lorentz factor Γs(θ) too. Due to relativistic beaming
effects, only the emission coming from within a solid angle ∼ 1/Γs cone is
observable. In Sari, Piran, and Halpern (1999) it was shown that, in the early
phase and as long as the condition Γs > θ−1

j is satisfied, the jet material does



1.3. Theoretical framework 22

not have enough time to expand laterally in its own rest frame and hence
the jet hydrodynamics will not be different from the spherical case. Things
change substantially when, on account of the jet deceleration, Γs ≃ θ−1

j is
reached: at this stage the side expansion will not be negligible anymore and
two-dimensional simulations are needed to properly model the evolution of
the jet in this phase.

The existence of a jet-like structure is suggested by the occurrence in
some bursts of a steepening at very late times (typically beyond 105 s or
even later) of the decay index of the afterglow light-curve: this is called "jet-
break" (see also segment IV in Fig. 1.4) and it can generally be originated
by two different effects: the side way expansion and the edge effect. The
former arises when Γs ∼ θ−1

j and the jet starts to decelerate exponentially
(Rhoads, 1999); the latter is instead generated by the lack of emission due
to the fact that, when Γs < θj, it is not possible to observe flux coming
from angles larger than θj with respect to an observer in the line-of-sight of
the jet (Granot, 2006). Both these effects are due only to relativistic and
hydrodynamic mechanisms, and so they will affect equally all the frequencies,
resulting in an achromatic steepening (break) in the light-curve (see Fig. 1.7).
Starting from the observed jet break time tjet, it is possible to compute the
half opening angle θj in the case of an Interstellar Medium (ISM)-like CBM
(which implies a constant density and is opposed to a stellar wind medium,
Frail et al., 2001):

θj,ISM =

(
tjet
1 d

)3/8(
1 + z

2

)−3/8(
Eγ,iso

1052 erg

)−1/8 ( ηγ
0.2

)1/8 ( n

0.1 cm−3

)1/8
(1.14)

where z is the GRB redshift, n is the mean density of the CBM, Eγ,iso is
the isotropic-equivalent prompt energy release and ηγ is the efficiency of the
fireball in converting the energy of ejecta into gamma-rays. In the case of
long GRBs, opening angles are found in the range between 3 and 10 degrees
(Harrison et al., 1999), while for short GRBs it is more challenging to measure
them, particularly because the afterglows are fainter (Kann, 2013).

The presence of a jet would also "relax" some of the energetic require-
ments needed to explain bursts: indeed, the typically observed isotropic-
equivalent luminosity Lγ,iso ∼ 1052 erg s−1 is several orders of magnitude
higher than the Eddington luminosity of a ∼ 10M⊙ black hole, but these
extremely high values become much easier to explain if collimation processes
take place. For example, a beaming of θj ∼ 0.1 would diminish the energetic
requirement by a factor of 200 (Sari, Piran, and Halpern, 1999).
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1.3.4 Plateau incidence

From the day it was launched, the Swift satellite revolutionized our under-
standing of GRB afterglows thanks to its unique rapid slewing capability:
this allowed the X-ray telescope on board (XRT, Gehrels, Chincarini, et al.,
2004) to identify the never observed early afterglow evolution (from ∼ 102

to ∼ 104 seconds after the burst trigger) bringing to light features that could
not be seen with previous late time observation. This soon allowed to dis-
tinguish different phases of the afterglow light-curves at early times, each
of them characterized by a particular time dependence. In their works, B.
Zhang, Fan, et al. (2006) and Nousek et al. (2006) proposed a "canonical
behaviour" for the X-ray afterglow light-curves, according to which the flux
density Fν evolves like a multi-segment power-law going as:

Fν(t, ν) ∝ t−αν−β (1.15)

where α is the temporal decay index and β = Γ − 1 is the spectral index,
whereas Γ is the photon index. In a large fraction of the analyzed cases,
three main phases were identified (Fig. 1.8): an initial steep decay slope
(3 ≲ α1 ≲ 5), followed by a so called shallow decay (0.5 ≲ α2 ≲ 1) that
eventually transitions to a later decay phase (1 ≲ α3 ≲ 1.5), steeper than
the second phase but shallower than the first.

Figure 1.8: Schematic representation of an early X-ray afterglow light-curve showing
a "canonical behaviour" as proposed in Nousek et al. (2006) after having analyzed Swift
GRBs. The flux evolves with time and frequency as Fν(t, ν) ∝ t−αν−β and the light-
curve is composed by three power-law segments, separated by two break times tbreak,1
and tbreak,2 : (1) an initial steep decay (3 ≲ α1 ≲ 5), (2) a very shallow decay phase
(0.5 ≲ α2 ≲ 1) and (3) a later decay, steeper than the second one (1 ≲ α3 ≲ 1.5).
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In particular, analyzing the huge amount of GRBs detected by Swift
in the years following these preliminary works, it has been shown that a
significant fraction of GRBs show evidence of the shallower decay phase,
that started to be defined as "plateau". In the majority of LGRBs, a plateau
is observed; when considering short GRBs, instead, their brief duration and
the fact that they are much fainter than long GRBs (Kann, 2013) makes
it harder to understand if a plateau is present or not, but in general the
fraction appears to be much lower than in the case of long ones. Anyway,
giving a physical interpretation to this plateau phase resulted in being a
very complex challenge. This was not true for the initial steep decay phase,
which has been interpreted as the low energy tail of the prompt emission,
where the first break time tbreak,1 marks the transition happening when the
afterglow emission, which is characterized by a slower decay with respect to
the rapid decaying prompt emission, starts to be dominant (see B.-B. Zhang
et al. (2007) for a detailed discussion). For what concerns the plateau phase
instead, some aspects seemed to be in contrast with the predictions made
by the standard afterglow models based on synchrotron emission proposed
by Sari, Piran, and Narayan (1998). The main inconsistencies were the
following:

– A) The observed values α2, the time decay index of the shallow phase,
were often too small to be adequately explained by the adiabatic ex-
pansion of a forward shock with constant energy like in the model of
Sari, Piran, and Narayan (1998): indeed, as previously shown in Sec-
tion 1.3.2, the shallowest decay index we would expect in this case
would be α2 = 3(p − 1)/4 (or α2 = (3p − 2)/4 in the radiative case,
which is even steeper), recalling that p is the slope of the power-law
describing the accelerated electrons distribution. Remembering the as-
sumption p > 2, it is easy to calculate that in the adiabatic case, we
would obtain values of the decay index α2 > 0.75. In many cases,
instead, the observed values of α2 are much flatter than 0.75, with
α2 ∈ [0,∼ 0.7] (Ronchini et al., 2023) .

– B) The spectral index, in the standard afterglow model, is expected
to change at tbreak2 , when we transition from shallow to normal decay
phase, because breaks are interpreted as characteristic frequencies of
the synchrotron spectrum crossing the observing frequency band, caus-
ing a change of decay rate in the light-curve. Instead, when observing
plateaus, the X-ray spectral slope remains constant before and after
the break tbreak,2.

One of the possible interpretations that can be given to the shallow decay
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phase and does not involve spectral variation, is the presence of a gradual
and long-lasting energy injection into the external shock that originates the
afterglow, attributable to a long-lived central engine. Several hypothesis were
proposed to explain the nature of a central engine able to provide a contin-
uous energy injection. One of them is the formation of a black hole in the
center, surrounded by a torus made of ejected material: matter falling back
into the black hole would provide the extra energy. These models were deeply
explored in several works (Narayan et al., 1992; S. E. Woosley, 1993) but are
not taken into account for the scope of this Thesis work. An alternative
central engine is instead a rapidly spinning neutron star (Usov, 1992), char-
acterized by an extremely intense magnetic field (B > 1014 − 1015 G, Usov,
1992; Duncan and C. Thompson, 1992; Blackman and I. Yi, 1998; Dall’Osso
et al., 2011). The energy release would be powered by the magnetic-dipole
spin down through which the newly formed neutron star would lose its huge
initial spin energy (see Section 1.3.5 for a deeper description).

A totally different interpretation, instead, tries to explain the plateau
phase relying on geometric arguments. This is the so called high latitude
emission (HLE) from a structured jet model. even though this model was
already theorized in the past, for years energy and velocity distribution in
GRB jets were approximated as constant within the solid angle of the jet.
This changed when the off-axis observation of the emission of GRB 170817
(see Section 1.4 for more details), highlighted the complex structure of GRB
jets, showing a decreasing distribution of energies and velocities going to-
wards the edges. GRB jets’ structured nature can be used to interpret the
extra-emission we observe a late times (Oganesyan et al., 2020; Beniamini,
Gill, et al., 2022).

Since the discovery of the shallow phase in X-ray light-curves of GRBs,
several works have been carried out with the purpose of giving an interpre-
tation to this distinctive time behaviour, both in the case of short and long
GRBs. For what concerns the short cases, the ones we focus on in this Thesis
work, multiple efforts were done in the process of finding a physical expla-
nation to plateaus. To cite one of the most comprehensive works, Rowlinson
et al. (2013) took a sample including all the short GRBs observed by the
Swift satellite until 2012 May (for a total of 43 cases) and proceeded in the
search of plateau features in their afterglow light-curves, finding that about
half of them showed evidence of plateau. Despite showing several analogies
with the analysis carried out in this Thesis work, there are some fundamental
discrepancies with respect to the procedure described in Chapter 3:

– the sample they analysed is for obvious reasons much smaller than the
one used for this Thesis, making it less representative of the nature of
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the phenomenon;

– they looked for plateaus considering together both BAT and XRT data,
but this can be problematic because, as explained in Chapter 2, these
two instruments onboard Swift work in two different energy band and
extrapolating data in a band different than the native one can introduce
errors. In addition, considering also BAT data means to include in the
analysis also the prompt emission, while plateau are expected to hap-
pen in the afterglow phase. Moreover, they did not exclude extended
emission phase whilst fitting the light-curves.

In this work instead we perform the analysis on a larger sample of SGRBs,
increasing the statistics, we fit only the XRT data, which are the ones de-
scribing the afterglow, using BAT data only as a reference, and we treat
separately the cases that we are able to classify as pure extended emission
since they do not provide any information about the afterglow. The details
regarding this procedure are outlined in Chapter 3.

1.3.5 Magnetar model

As mentioned in Section 1.3.4, one of the possible explanation of the extra
energy required to give birth to the X-ray "plateau" in GRB afterglows is a
long-lasting energy injection produced by the central engine. Among several
hypotheses on the nature of the central engine, the formation of a rapidly
rotating neutron star with strong surface magnetic field, called millisecond
magnetar is one of the most promising.

Magnetars as central engines of GRBs were first proposed by Usov (1992)
and further elaborated by Dai and Lu (1998), B. Zhang and Mészáros (2001),
Bucciantini et al. (2006), and B. D. Metzger, Giannios, et al. (2011). Dall’Osso
et al. (2011) developed the first model self-consistent calculation of the after-
glow light-curve with energy injection from a millisecond spinning magnetar,
and subsequent applications of the magnetar model to real data gave encour-
aging results (Rowlinson et al., 2013; Stratta et al., 2018). In the following,
we summarize the afterglow model as presented in Dall’Osso et al. (2011)
and Stratta et al. (2018).

If the GRB central engine is a magnetar, the afterglow emission will be
modified because the spin-down of the magnetar will inject extra energy in
the environment and in particular in the external shock. Due to magnetic
dipole radiation, the NS will lose its rotational energy, presumably in the
form of a strongly magnetised particle wind, with a luminosity that is given,
in the ideal magnetohydrodynamics (MHD) approximation, by (Spitkovsky,
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2006):

Lsd =
µ2

c3
Ω4(1 + sin2 θ), (1.16)

where µ = BR3/2 is the magnetic dipole moment, B the (dipole) magnetic
field strength at the NS pole, R the NS radius, Ω = 2πν is the NS spin rate
and θ the angle between the rotation and magnetic axes. Because the spin-
down luminosity can be expressed as Lsd = IΩΩ̇, where I is the moment of
inertia of the NS, an usual way to describe a generic NS spin-down is through
the relation:

Ω̇ ∝ Ωn, (1.17)

where n is called the "braking index": n = 3 for the ideal MHD case above,
while non-ideal effects generally imply n ⩽ 36. The general problem of NS
spin-down with non-ideal MHD effects is not well understood yet, however
Contopoulos and Spitkovsky (2006) have proposed a particular parameterized
relation:

LN−I
sd = Lsd

(
Ω

Ωi

)−2α

, (1.18)

where "N− I" labels the non ideal case, 0 < α < 1 is directly linked to the
braking index n = 3− 2α and the subscript i indicates the initial time.

Because of the relativistic motion of the emitting region (internal shocks
for the prompt emission, external shock in the case of the afterglow), in
calculating the temporal evolution of GRB light-curves it is crucial to define
the relation between the time t, measured in the central engine rest frame
(the NS), and the time T measured by the observer. The infinitesimal time
variations dt and dT can be connected through:

dT = (1− β(t))dt ≃ dt

2Γ2
s(t)

, (1.19)

where Γs(t) =
√

1− β2(t) is the Lorentz factor of the blast wave as a function
of time.

In order to derive the expected temporal evolution for the light-curve, we
write the energy balance of the relativistic shock wave including radiative
losses and the rate of energy injection by the spinning-down magnetar. In
the NS rest frame it can be written as:

dE

dt
= (1− β(t))Lsd

[
t− r(t)

c

]
− k

E

t
. (1.20)

6Different spin-down mechanisms may even correspond to larger braking indexes. For
example, gravitational-wave driven spin-down corresponds to n = 5.
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Here, the first term represents the energy injected in the shock at time t
and also accounts for the time that this energy, in the form of relativistic
wind with velocity β(t), took to reach the shock at r(t), while the second
term represents the radiation losses, with k = 4ϵe and ϵe the fraction of the
total energy transferred to electrons. Using Eq. 1.19, we can rewrite Eq. 1.20
relative to the observer’s time T :

dE

dT
= Lsd(T )− k

E

T

(
d ln t

d lnT

)
. (1.21)

The first term in Eq. 1.21 can be directly obtained from Eq. 1.18:

Lsd(T ) =
Lsd,i[

1 + (1− α)
T

τi

]2−α
1−α

=
Espin,i

τi

[
1 + (1− α)

T

τi

]2−α
1−α

, (1.22)

where Espin = (1/2)IΩ2 is the NS spin energy, τ = Ω/2Ω̇ is the spin-
down timescale and the subscript i refers to the initial time. The second
term in Eq. 1.21 depends on (d ln t/d lnT ), which encloses the hydrody-
namical evolution of the shock. However, one can show that (4 + k)−1 <
(d ln t/d lnT ) < 1/2 thus, in a first-order approximation, we can consider the
quantity k′ = k(d ln t/d lnT ) ≃ const: this free parameter contains all our
ignorance about the density profile of the ambient medium and about the
microphysics.

With all the assumptions described above, Eq 1.21 has the solution:

E(T ) =
Li

T k′

∫ T

T0

T k′

(1 + aT 2)
dT + E0

(
T0

T

)k′

, (1.23)

where T0 is any time chosen as initial condition, a = 2KΩ2
i and K =

4µ2/(6Ic3). The integral in Eq. 1.23 can be rewritten in terms of the hy-
pergeometric function 2F1(a, b; c; z), where z = (1 + aT )−1. In this way, we
obtain the expression for E(T ) and we can use it to calculate the total (bolo-
metric) luminosity of the shock-wave, that corresponds to the radiative term
in Eq. 1.21, i.e. L(T ) = k′E(T )/T .

It is well known that core-collapse supernovae (CCSNe) mostly give birth
to NS and presumably a fraction ≲ 10% of these NS are magnetars (Gaensler
et al., 2005; Beniamini, Hotokezaka, et al., 2019). Indeed, from observation
it is possible to estimate that in our Galaxy the observed rate of CCSNe is
approximately ṄCC ∼ (102 yr)−1, while the minimum magnetar birth rate is
expected to be Ṅmag ∼ (103 yr)−1 ≈ 0.1 ṄCC.
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Moreover, as previously said in Section 1.3.3, GRB emission is expected
to be beamed: this means we only observe GRBs when the angle between
their beam and our line of sight is relatively small, namely ≲ 10 degrees:
computing the probability to observe inside this beam compared to observing
isotropic emission, one finds that we are able to observe only ∼ 1% of the
GRBs happening in the Universe. Taking this into account, the fact that the
rate of observed GRBs for a low-redshift Milky Way-like galaxy is expected
to be ṄGRB,obs ∼ (106 yr)−1 (B. Zhang & Mészáros, 2001) translates in a real
GRB rate of ṄGRB,real ∼ (104 yr)−1. Comparing this rate with the observed
rate of CCSNe, one can roughly derive ṄGRB,real ≈ 0.01 ṄCC.

The population of magnetar associated to CCSNe appears to be com-
patible with the rate of LGRBs, if anything slightly larger. This links with
the hypothesis that sees magnetars as potential central engines of LGRBs,
but it is important to pay attention: this does not lead to any strong asso-
ciation between magnetars and LGRBs, but just entails that the magnetar
hypothesis cannot be excluded.

On the other hand, linking the magnetar hypothesis to SGRBs is more
complicated: in the case of BNS mergers, the fate of the merger remnant is
indeed strongly dependent on the NS equation of state (EOS), which is still
very far from being completely understood (Lattimer, 2021, see Chapter 5)
While for cold and non-rotating NS the Tolman–Oppenheimer–Volkoff mass
limit (or MTOV) stands, the maximum stable mass can change if millisecond
rotation is present. Assuming an EOS, depending on its mass the remnant
originated by the merger can be either stable or unstable: in the latter case,
it will directly collapse into a BH (Margalit & B. D. Metzger, 2017). This
suggests that only a small fraction of BNS mergers gives birth to a stable NS
able to emit radiation for relatively long times. Nevertheless, the standard
BH-disk accretion scenario was proven to struggle to explain the long nature
of X-ray afterglows in the case of SGRBs, since the relatively small amount of
ejected material produced by the merger results in a short accretion timescale
of the debris disk onto the BH (∼ seconds, Ciolfi et al., 2017). Instead, the
formation of a stable, long-lived magnetar can naturally account for high
energy emission on longer timescales.

For these reasons, the magnetar model outlined above is the model used
in Chapter 4 to fit the light-curves of the SGRBs which resulted in showing
clear evidence of plateau and to derive physical parameters of the magnetar
central engine.
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1.4 The case of GRB 170817

(a) (b)

Figure 1.9: (a) Joint multi.messenger detection of GRB 170817 and GW 170817. Top
two panels are Fermi/GBM light-curves, respectively in the 10-50 keV and in the 50-300
keV energy range, while third panel is INTEGRAL/SPI-ACS light-curve in the 100 keV -
80 Mev range. Bottom panel is the time-frequency map of GW 170817 obtained by LIGO
(Abbott et al., 2017). (b) Results of the multi-wavelength follow-up campaign of the EM
counterpart of GW 170817, up to 1273 days after the merger. The X-ray evolution . The
peculiar X-ray afterglow evolution (in blue) detected by Chandra X-ray observatory (CXO,
azure circles) shows a peculiar behaviour (gradually increasing during the first ∼ 150 days,
reaching a peak emission and decreasing at later times): this is well explained by the off-
axis jet afterglow model (blue line). At very late times (> 900 days), where the X-ray
emission excess can be interpreted as the emerging synchrotron radiation coming from
the kilonova afterglow (grey region is the kilonova afterglow calculated through numerical
relativity simulations, while dashed lines represent semi-analytical model, Hajela et al.,
2022).

On August 17, 2017 the gravitational wave detectors Advanced LIGO and
Virgo detected the gravitational wave event GW 170817. Only 1.74 seconds
later, independent observations by the Fermi Gamma-ray Burst Monitor
(GBM) and by the SPectrometer on board INTEGRAL Anti-Coincidence
Shield (SPI-ACS) detected the short GRB 170817 event (T90 = (2.0± 0.5) s
starting at TGBM

0 −0.192 s, where TGBM
0 is defined as the time of GBM trigger,

Goldstein, Veres, et al., 2017). These two detections led to the confirmation
that binary neutron stars mergers are progenitors of short GRBs: the chance
probability of two almost simultaneous and spatially-coincident observations
was indeed estimated to be ∼ 10−8, implying that the two events should be
associated (see Fig. 1.9a, Abbott et al., 2017).
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GRB 170817 is an extremely peculiar case in the sample of known GRBs.
After the first short-lived emission detected in the gamma-ray band, X-ray
telescopes were pointed in the same sky region looking for the afterglow emis-
sion, but nothing was detected. Only 11 hours after the trigger, follow-up
optical/infrared observations of the sky location indicated by GW detectors
revealed the optical emission in the galaxy NGC 4993, 130 millions light
years from Earth: the thermal nature of this emission led to classifying this
transient as the macronova/kilonova event AT2017gfo (Coulter et al., 2017).
A kilonova (KN) is a transient event associated with compact binary merg-
ers: it consists of a bright electromagnetic thermal emission originated by the
radioactive decay of the heavy elements which are formed via rapid neutron-
capture process es (r-processes) within the high-density neutron-rich material
that was ejected prior to, during and immediately after the merger (Ross-
wog, 2015). The KN detection, whose spectral color was observed to turn
from blue to red as the source expanded and cooled, allowed a much better
localization of the source. Several other instruments then started observing
that region and on August 26, nine days after the GW 170817/GRB 170817
detection, NASA’s Chandra X-ray Observatory (CXO) first detected the X-
ray emission, i.e. the GRB afterglow (unrelated to the KN), from the same
position of the optical-IR source. But this emission showed an unexpected
time evolution, as the X-ray flux was observed to increase for several months,
reaching a peak after 150 days and showing a gradual but constant decrease
after the peak (see Fig. 1.9b). In the first ≃ 900 days following the merger,
the spectrum in the X-ray and radio bands was dominated by the synchrotron
non-thermal emission produced by an ultra-relativistic structured jet, that is
a wide structure with an angular gradient in energy and expansion velocity,
which was pointing at an angle ∼ 15− 25 degrees relative to our line of sight
(S. E. Woosley, 1993; Hotokezaka, Nakar, et al., 2019).

Indeed, if the GRB produced a structured jet, an observer not directly
looking on-axis would miss the initial brighter part of the emission, which
would be relativistically beamed away, and would start to observe a signal
only when the material moving along its line of sight at a lower Γ-factor, starts
decelerating in the ISM (a lower Γ implies a later deceleration time). From
that point on, more and more flux is received as the decreasing Γ reduces
the degree of relativistic beaming, and the observer sees progressively closer
to the core of the jet. Eventually, a peak is reached when the jet core is
observed, that is when Γ ∼ θ−1

obs, and from that point on the flux starts
decreasing because of the normal late decay afterglow emission (Fig. 1.10a
and 1.10b).

The fact that GRB 170817 is the only case observed with the unique
features described above is directly linked to the fact that it happened really
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close to us, so we could detect its emission even if it was very weak, being
observed significantly off-axis. In general, as explained in Section 1.3.5, the
only GRBs we are able to observe are the ones directed within ∼ 10 deg
of our line-of-sight, i.e. roughly 1% of the population, while those seen at a
larger angle are completely missed. Luckily, GRB 170817 was very close to
Earth, so we were still able to receive its signal even if we were significantly
misaligned with its jet: in doing so, we could discover its odd temporal
behaviour, a telltale of the jet structure.

Because the afterglow of GRB 170817 is not a "canonical afterglow" as
portrayed in Section 1.3.2, we have excluded it from our sample: indeed,
since plateaus are observed in the first hours following the trigger, the non-
detection of X-ray data for the first nine days in the case of GRB 170817
makes it impossible to state whether this burst had a plateau or not.
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(a)

(b)

Figure 1.10: (a) Artistic illustration (credit: NASA/CXC/K.DiVona) showing the time
evolution of the jet of GRB 170817: the jet was initially narrow and since Chandra was
observing it off-axis, it was not able to observe X-ray emission, while as time passed, the
jet propagating into the surrounding material slowed down and widened, allowing Chandra
to observe it for the first time only after some days. The Chandra data were fundamental
to estimate the angle between the jet and our line of sight. (b) Observed electromagnetic
emission following a binary neutron star merger and how it varies depending on the angle
of our line of sigh. The three main emission are: the isotropic kilonova produced by
neutron rich ejecta, peaking in the infrared (in red); neutron-free wind producing the
kilonova emission in the optical (in blue); a relativistic collimated jet which emits in X-
ray, optical and radio wavelengths (in black). For on-axis observers, the jet will outshine
the other two components, while for edge-on observers the jet will be completely lost in
favour of the kilonova emission. However, for an off-axis observer the jet will appear as a
low-luminosity, delayed emission appearing after several days (Troja et al., 2017).
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1.5 Aim of the Thesis
While more than half of LGRBs displays clear evidence of plateau, for SGRBs
this feature is more challenging to reveal due to the intrinsic faintness of
SGRB afterglows. Despite the uncertainties, so far the fraction of SGRBs
with plateau appears to be much lower with respect to LGRBs, but no solid
value has been derived yet.

The main aim of this work is to conduct a comprehensive analysis on
one of the most updated and complete samples of SGRBs available today
(obtained considering all the SGRBs detected by Swift from May, 2005 to
December, 2021 for which the redshift is known) in order to provide a solid
value for the fraction of SGRBs showing a plateau phase in their X-ray af-
terglow light-curve. At first, a completely "agnostic" approach is adopted to
determine how many SGRBs show a shallow phase in their X-ray light-curve,
and in how many of these cases the shallow phase matches the necessary re-
quirements to be considered a plateau (see Section 1.3.4). It is important to
emphasise that, since the plateau phase cannot be explained with the stan-
dard afterglow model, the theoretical model that is adopted to describe this
peculiar feature must also be able justify the fraction of SGRBs in which the
plateau is not present.

Accordingly, the magnetar model (introduced in Section 1.3.5), which has
already been studied in numerous works (Dall’Osso et al., 2011; Rowlinson
et al., 2013; Stratta et al., 2018) giving promising results, is further tested:
this is done deriving the best-fit magnetar parameters, the magnetic field
strength B and the magnetar spin period P , in all the cases which resulted
in showing evidence of plateau in their light-curve, in order to understand
how many of them turn out to be good magnetar candidates.

Provided that, since the association of short GRB 170817 with the gravi-
tational wave event GW 170817, compact binary mergers have been reputed
the best candidates to be SGRBs progenitors, it is important to point out
that the coalescence of two NS can lead to the formation of either a more
massive post-merger NS or a BH: the final outcome strongly depends on the
equation of state (EOS) of NS matter at supra-nuclear densities which is still
an open issue in fundamental physics. Following the hypothesis that plateaus
are produced by the spin-down radiation of magnetars, and further assuming
that all SGRBs are produced by BNS mergers, at last the derived fraction
of good magnetar candidates is linked with the fraction of BNS mergers that
give birth to a stable remnant instead of collapsing to a BH: this is exploited
to ultimately constrain the maximum stable mass expected for the remnant
of a BNS merger, in order to infer values which are expected to be consis-
tent with independent estimates obtained in the literature (e.g. Margalit and
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B. D. Metzger, 2017; Bauswein, Just, et al., 2017; Rezzolla et al., 2018) and
that may be tested by the upcoming and future science runs of the gravita-
tional wave detectors Advanced LIGO and Virgo and, even more so, by the
advent of the Einstein Telescope.

This Thesis is structured in the following way. A description of the Swift
GRB mission, of the Swift-XRT GRB Repository and of the techniques be-
hind the creation of XRT light-curves are provided in Chapter 2. A detailed
overview of the analyzed data sample is given in Chapter 3, where all the
steps of the analysis are thoroughly outlined too, while Chapter 4 is entirely
dedicated to the magnetar model testing and the subsequent derivation of
the magnetar parameters B and P . At last, in Chapter 5, the procedure to
derive some observational constraints on the maximum stable mass of NS
starting from the derived fraction of good magnetar candidates is reported
and in Chapter 6 conclusion and future perspectives are described.



Chapter 2

Swift Mission and Swift-XRT
repository

In this Thesis work, we analyzed a sample of SGRBs at known redshift
detected by the Neil Gehrels Swift Observatory. In this chapter we briefly
introduce this mission providing a description of two of the instruments on
board and we also specify the main concepts behind the Swift-XRT GRB
Repository. In Section 2.3, the necessary steps to pass from raw data to the
products available on the repository are explained in detail.

2.1 The Swift GRB Mission
The Neil Gehrels Swift Observatory (from here on out, Swift) is a NASA
satellite which was launched in November 20, 2004 with the aim of discov-
ering a large number of GRBs during its lifetime, with a particular focus
on the possibility of detecting not only the main prompt emission and its
time evolution for each event, but also the multi-wavelength nature of the
afterglow following the burst phase. To do this, Swift is equipped with three
co-aligned instruments, working in different bands (Fig. 2.1): the Burst Alert
Telescope (BAT), the X-Ray Telescope (XRT), and the Ultraviolet/Optical
Telescope (UVOT). Swift is essentially a multi-wavelength observatory that
can "swiftly" find bursts of gamma rays in random directions and point all its
three instruments on target within less than 10 seconds (Tang et al., 2019).
The spacecraft works on a 600 km, circular Low Earth Orbit (LEO) and,
even though the original minimum scheduled life was of two years, its orbit
is expected to remain stable until at least 2025 (Troja, 2020).

36



2.1. The Swift GRB Mission 37

Figure 2.1: Schematic representation of the Swift satellite, showing all the three instru-
ments present on board: the Burst Alert Telescope (BAT), the X-Ray Telescope (XRT),
and the Ultraviolet/Optical Telescope (UVOT). These three instruments are coaligned
and the Swift can autonomously point all the three instruments to the same location in
the sky within few seconds after that the BAT detects a likely candidate GRB (Credit:
NASA).

2.1.1 Instruments

The BAT is the largest instrument on-board Swift. It is a coded-mask instru-
ment with a 1.4 steradian field-of-view working for imaging in the 15 − 150
keV energy range. The BAT has a sensitivity ∼ 2× 10−8 erg cm−2 s−1 in 1 s
of exposure that, together with its large field-of-view, enables it to detect a
large number of bursts: indeed, it is able to spot almost 100 burst per year
and to compute their position with a 4-arcmin accuracy directly on board.
The initial position is calculated within the first ∼10 s from the burst detec-
tion and it is later used to decide if the burst is worth a spacecraft slew: if this
is the case, it sends the position to the spacecraft.While looking for GRBs,
BAT also performs an all-sky hard X-ray survey, simultaneously monitoring
for hard X-ray transients. A list of the specifics of the BAT instrument is
provided in Tab. 2.1.

The XRT is a X-ray CCD imaging spectrometer with a resolution of
18 arcsec (half-power diameter), a field-of-view of 23.6 x 23.6 arcmin and an
effective area of 110 cm2. It works in the 0.3−10 keV energy range and focuses
X-ray photons onto a CCD using a grazing incidence Wolter 1 telescope.
Using the information received from the BAT, the XRT is able to locate
GRBs up to a 5 arcseconds accuracy within ∼10 s of its target acquisitionand,
starting from 20 − 70 s after the burst discovery, it continuously studies
the burst X-ray counterparts for days or even weeks.The great breakthrough
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Burst Alert Telescope (BAT)

Aperture Coded Mask
Energy range ∼ 15− 150 keV (imaging)
Energy resolution ∼ 5 keV at 60 keV
Effective area ∼ 1400 cm2a

Detection Area 5240 cm2

Field of view 1.4 sr (half coded)
Telescope PSF 22 arcmin FWHM
Location accuracy 1− 3 arcminutes radius

Table 2.1: Characteristic of the BAT.

aThis value is the maximum on-axis effective area, which corresponds to when all 32 768
detectors are enabled.

introduced by Swift is its fast slewing capability. For example, the BeppoSAX
satellite was able to observe a typical afterglow in X-ray only after several
hours from the trigger, when the intensity had already dropped by 4−5 orders
of magnitude. Instead, soon after the BAT detects and locates a GRB, the
Swift spacecraft autonomously slews in order to focus both the XRT an the
UVOT at the GRB location.

It is fundamental to highlight that the low Earth orbit of Swift do not
allow the spacecraft to observe a target continuously because of Earth occul-
tation and pointing constraints. This is why Swift observations are broken in
short snapshots with durations between 5 and 45 minutes: a set of snapshots
makes up an observation segment (see Fig. 2.2). While the first observation
segment consists of an automated set of snapshots, the following observa-
tion segments are sent from ground-centers to the spacecraft, after a careful
planning. All three telescopes observe the source up to when the automated
sequence ends, another source is detected or a new observation sequence is
uploaded from the ground (Troja, 2020).

As previously said, the XRT is able to refine the initial position derived
by the BAT up to arcseconds accuracy in the first 10 s of seconds following
the trigger, starting to gather early spectra and light-curves data over an
extremely wide dynamic range of seven orders of magnitude in flux. To
properly cover this range and the rapid variability of GRB afterglows, the
XRT supports three readout modes. The choice of which mode is more
appropriate is autonomously made by the instrument itself. Imaging Mode
is the one used for the initial emission of all GRBs, for source fluxes up to 7
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Figure 2.2: Example of a five-day observation of a GRB made by the Swift satellite. Each
vertical segment indicates a snapshot with duration of ∼ 30 min due to Earth occultation.
A series of snapshots builds an observation segment. Since Swift may have to follow-
up multiple sources, observation segments for different bursts can be interlocked (Troja,
2020).

×10−7 erg cm−2 s−1 (37 Crab) and produces an integrated image measuring
the total energy per pixel, but does not permit spectroscopy. Windowed
Timing (WT) Mode is used for sources with fluxes below 10−7 erg cm−2 s−1

(5 Crab) and achieves an high time resolution (2.2 ms) and a bright source
spectroscopy, even though sacrificing information about position. Photon-
counting (PC) Mode is used for sources with fluxes below 3 × 10−11 erg
cm−2 s−1 (1 mCrab) down to 8× 10−14 erg cm−2 s−1, and allows full spatial
and spectral information. The XRT is capable of switching autonomously
between the two different working modes (WT or PC), depending on the
count rate of the burst: for typical GRBs, earliest data are taken in WT
mode and then the instrument switches to PC mode, but in general the XRT
is able to toggle between this two modes, in particular when a rapid change
in the count rate in the central window of the CCD is observed. A list of the
specifics of the XRT instrument is given in Tab. 2.2.

In the following of this work our focus will be mainly on the events ob-
served by the XRT since the launch of Swift, but we will as well use the
BAT data, mostly as a reference to inspect the time behaviour of the prompt
emission preceding the afterglow.
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X-Ray Telescope (XRT)

Telescope Wolter 1
Detector XMM EPIC CCD
Energy range 0.2− 10 keV
Detecting Area 5200 cm2

Effective Area 120 cm2 at 1.5 keV
Field of view 23.6×23.6 arcminutes
Telescope PSF 18 arcsec HPDa at 1.5 keV
Location accuracy 3− 5 arcseconds
Sensitivity 8×10−14 erg cm2 s−1 in 104 s
Pixel scale 2.357 arcsec/pixel

Table 2.2: Characteristic of the XRT

aHalf Power Diameter

2.2 The Swift-XRT GRB Repository
The dataset analysed in this Thesis work is taken from the Swift-XRT GRB
Repository that stores all the GRBs detected with Swift-XRT since the
launch of Swift in 2004. This is the official repository of the Swift mission
and it works based upon a sophisticated and complex data-analysis algorithm
entirely developed by the Swift team. This algorithm and the description of
light-curve building and spectral extraction processes were originally pub-
lished in Evans, Beardmore, Page, Tyler, et al. (2007) and Evans, Beard-
more, Page, Osborne, et al. (2009) and are available on the UK Swift Science
Data Center (UKSSDC) website1

The advanced algorithm is capable of building GRB light-curves and spec-
tra starting from the raw event files obtained from the telescope, carefully
taking into account and correcting for all the effects which contaminate the
data (see Section 2.3 for a detailed description). The automatization of all
these steps allows to analyse large samples of events in a very short time,
being confident at once of the reliability of the results: indeed, it is important
to highlight that all the products of the repository are extensively verified by
the Swift-XRT team.

An emblematic example of the level of accuracy of the algorithm is the
procedure behind the choice of the source extraction region selection: in-
deed, this region is not static (fixed in size) but dynamic, meaning that its

1https://www.swift.ac.uk/index.php

https://www.swift.ac.uk/index.php
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dimension is optimized on the basis of the source photon flux. Dynamic
source extraction regions are of fundamental importance in the case of vari-
able sources, such as GRBs.

Moreover, the algorithm also takes into account the different data reduc-
tion process required for each data acquisition mode (WT or PC) automati-
cally.

In addition to the XRT light-curves, the repository web page provides a
number of tools that allow to further analyse Swift data. The one which was
used the most for this work is the Swift Burst Analayser (Evans, Willingale,
et al., 2010), presenting BAT and XRT light-curves in flux and flux densities,
corrected for the absorption (see Section 2.2.2). For our purpose, we always
selected the 0.3− 10 keV integrated flux dataset for XRT, and the 15− 150
keV dataset for BAT, since these are respectively the native band-passes in
which each of the two instruments works.

As explained in Section 2.3, what can be directly derived from the tele-
scope data after a preliminary analysis are the count rate light-curves, i.e.
at which rate the photons are detected over the band-pass of the instrument
as a function of time. But physical models predict energy fluxes and for this
reason it is fundamental to convert the observed count rate light-curves into
flux light-curves. In the following sections, the ideal procedure to apply the
count-to-flux conversion is outlined at first, before explaining how the same
result is achieved by the XRT repository algorithm.

2.2.1 Standard count-to-flux conversion

Computing the Energy Conversion Factor (ECF) is the fundamental step
required to convert count rate light-curves into observed flux-light-curves:
the ideal procedure to derive it is described in the following.

We recall that the photon counts (C) within defined channels of a spec-
trometer (I) are linked to the real spectrum of the source f(E) as (Arnaud
et al., 2023):

C(I) =

∫
f(E)R(I, E)dE, (2.1)

where R(I, E) is the instrumental response which provides to the probability
for a photon with energy E to be detected by the channel I of the instrument.
Inverting Eq. 2.1 is in general not possible because this inversion is very
sensitive to small changes in C(I) (Kahn & Blissett, 1979). The alternative
to this procedure is to choose a model spectrum that is function of a few
parameters (i.e., f(E, p1, p2)). For each set of parameter, a predicted count
spectrum Cp(I) is derived and compared with the observed count spectrum
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C(I). To understand how well the model reproduces the observed data, a χ2

fit statistic is used, defined as follows:

χ2 =
∑ (C(I)− Cp(I))

2

(σ(I))2
, (2.2)

where σ(I) is the error for the channel I (if C(I) are counts following a
poissonian distribution, then σ(I) is expressed as

√
C(I)). It is then possible

to vary the model parameters in order to find the values for which the model
spectrum returns the best fit statistic, i.e. the one which gives the minimum
χ2 or χ2/ν ∼ 1, where ν is the number of degrees of freedom.

After having derived a best fit model spectrum for a given temporal bin,
one can integrate the model in the (0.3 − 10) keV energy range obtaining
a value of the integrated flux expected from that particular spectral model.
Computing the ratio between this integrated flux and the count rate flux
integrated in the same energy range, one obtains the value of the ECF in
that bin. Once the value of the ECF in a certain bin is known, it is sufficient
to multiply it by the count rate flux in that bin to derive the value of the
observed integrated flux in that specific bin. So repeating this procedure for
each count rate light-curve bin, one can build the corresponding observed
flux light-curve.

It is important to point out that a best fit model is often not unique:
indeed, changing the model spectrum, one can obtain similar values of the
χ2: in this case the choice of the best model must undergo a deeper scientific
analysis.

2.2.2 XRT repository count-to-flux conversion

Given the spectral variability of GRB afterglows, the ideal procedure to de-
rive the ECF would be to perform a spectral fitting in each temporal bin, as
described above, but performing spectral fitting requires a large number of
counts in each single bin (≥ 20 to apply χ2 statistic) and this is not the case
in GRBs, and in particular in SGRBs, if the adopted temporal resolution is
of the order of the spectral variability timescale. To obviate to this prob-
lem, the algorithm proposed in Evans, Willingale, et al. (2010) assumes a
power-law spectra for the X-ray emission of the GRB and, for each temporal
bin, it computes the photon index Γ which better reproduces the hardness
ration (HR) in that bin. For the XRT, the HR is defined as ratio between
the number of counts in the hard band over the number of counts in the soft
band, namely (1.5− 10 keV)/(0.3− 1.5 keV). After having defined a best fit
value for Γ in a given bin, it is possible to proceed as in Section 2.2.1 and
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derive the value of ECF in that bin. Usually the temporal resolution used
for HR bins is lower than the desired one, given that it is important to have
enough statistics when deriving hardness ratios: for this reason, once a time
series of ECF is derived, the best way to obtain the ECF value in a specific
light-curve bin is by interpolating the ECF time series.

Note that the best-fit value of Γ is found by taking into account galactic
and local absorption components too. Galactic absorption is taken from the
values of Galactic column density NH reported in Kalberla et al. (2005).
We recall that NH is the equivalent hydrogen column density and indicates
the number of H atoms required to reproduce the observed photoelectric
absorption, given a chemical abundance (generally the solar system’s one).
Since the neutral hydrogen distribution in the Milky Way has been mapped
in detail, the value of the galactic NH is just a function of the position of a
certain object in the sky. Once galactic absorption is included in the spectral
model, all the residual absorption effects are ascribed to local absorption, that
is the absorption due to material in the host galaxy (indeed, the extremely
low densities of the intergalactic medium allow to assume it as void in first
approximation) and can be easily derived knowing the GRB redshift. This
absorption component is derived from the late time spectrum of the GRB
(T > 4000 s), since at late times we expect low spectral variability. If late
time data are too few to construct a spectrum, the absorption components are
derived from the XRT spectrum on the spectra repository2. The absorption
values adopted and details on how they were derived can be retrieved on the
Burst Analyser page for each GRB.

2.3 XRT data reduction and light-curve extrac-
tion

As already stated in the previous section, all the observed flux light-curves
analysed in this Thesis work are retrieved directly from the Swift-XRT GRB
Repository, since the reliability of these data is guaranteed by the fact that
all the products found on the repository are constantly tested by the Swift
team itself. The algorithm introduced by Evans, Beardmore, Page, Tyler, et
al. (2007) takes into account all the fundamental steps of the data reduction
and, starting from the Level 0 Telemetry data received from the spacecraft,
it builds light-curves and spectra (Level 3 files, see Fig. 2.3) for each event
and it is optimized to obtain the highest signal-to-noise ratio. The advantage
of using the repository is that it allows the study of large samples of bursts

2https://www.swift.ac.uk/xrt_spectra/index.php

https://www.swift.ac.uk/xrt_spectra/index.php
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Figure 2.3: Flow diagram indicating the different levels in which the processing of Swift
data consists. The raw telemetry is transformed in Level 1 FITS file which, after data
screening and coordinate transformation, will be converted in Level 2 FITS files. Even-
tually, the latter products will go trough the script for each instrument, leading to the
spectra and light-curves (Level 3 files).

without having to perform by hand the data reduction in each single case.
However, for illustrative purposes, in the following we report the fundamental
steps of the data reduction.

2.3.1 XRT pipeline

The Level 0 Telemetry data coming from the spacecraft arrive at the Swift
Data Center (SDC) at Goddard Space Flight Center (GSFC) from the Ma-
lindi ground station and are used to create raw (Level 1) FITS files containing
event data for each instrument without any kind of filtering (bad pixels, spu-
rious events...). The XRT files include, in addition to XRT (both event and
housekeeping) data, auxil data (containing attitude information) and TDRSS
data (containing telemetry information, which can be useful when the value
of the trigger time is needed). Starting from Level 1 files, its is possible to
run the XRT pipeline, a series of several procedures that will gradually clean
and filter the files, leading to the creation of processed (Level 2) FITS files.
To run the pipeline, some input parameters are needed: the source right as-
cention (RA) position and the source declination (DEC) position, the stem
of the observation (an alphanumeric code composed by the letters "sw" fol-
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lowed by the Observation ID and other numbers related to the trigger), the
input and the output directory. Many files are created by the pipeline, but
the most important ones are the cleaned event files (Level 2), in which all
the bad data linked to flawed CCD pixels or columns3, cosmic rays contam-
ination, unstable pointings, high CCD temperatures are carefully taken into
account and either corrected or excluded. For example, exposure maps are
created and used to correct for the loss of flux due to the fact that, after the
XRT CCD being hit by a micrometeoroid in May 2005, some of the CCD
pixels were damaged and could not be used to collect data anymore.

2.3.2 Count rate light-curve extraction

The Level 2 output event files produced by the pipeline are not ready to be
used to produce a light-curve. Indeed, the cleaned event files are obtained by
performing a background subtraction considering a mean background com-
puted over the whole region of observation. But in the case in which other
field sources are present in the field of view of the instrument, this averaged
value is contaminated and this could lead to erratic results. Indeed, even if
the GRB is dominating the emission at the beginning, as it starts to fade
at late times a wrong value of the background could significantly change the
source count rate estimate. To prevent this, it is important to select a back-
ground extraction region avoiding eventual field sources: this can be done
manually using the SAOimage DS9 software, but it is important to recall
that the XRT repository algorithm automatizes this whole process.

Another problem that can affect the Level 2 files and must be corrected
before building the light-curves is the pile-up. Pile-up occurs when multiple
photons detected within a given CCD frame have overlapping charge distri-
butions and this will result in a total charge spatial distribution that will
either be the sum of the overlapping events (e.g., two soft X-ray photons
registered as a single hard X-ray photon) or a flux loss if the total charge
becomes too high to be classified as an X-ray event by the XRT. In PC
mode, pile-up is expected at intensities of about ∼ 0.3 count s−1, while in
WT mode data are not expected to be affected by pile-up below intensities
of about ∼ 100 count s−1. Using the XSELECT command line interface it is
possible to select the time interval in which we expect to have pile-up in our
data: from these data, one can create a FITS image and using, the XIMAGE
program for X-ray image display and analysis, select from it a region from
which a point spread function (PSF) of the source will be extracted. Fitting

3These pixels/columns are defined either as "bad" or "hot": the former are the ones
with a lower or null response, while the latter are the ones which have a much higher dark
current with respect to the neighbours and appear very luminous.
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this PSF with the PSF model provided by the UKSSDC team, it is possible
to individuate the region in which the pile-up becomes important: indeed,
pile-up affects the center of the PSF in such a way that fewer counts will be
seen with respect to the model PSF, while in the outer wings the fit with the
model function will be accurate. It is then fundamental to fit the model in
the outer wings and extrapolate it to the inner region, in order to compare
it with the data points and to understand at which distance from the center
the model no longer fits the data (remember: 1 pixel = 2.357 arcsec). This
allows to select an annulus region not affected by pile-up that will be used
for the source extraction.

Once the annulus is defined, it is possible to proceed with the actual light-
curve extraction. Through the use of the command line interface XSELECT,
it is possible to extract both a source light-curve from the annulus region
selecting a given time range and bin size4 and, using the same settings,
a background light-curve from the previously selected background region.
Afterwards, light-curve exposure correction has to be applied to both light-
curves, and this is accomplished thanks to the Swift tool xrtlccorr, which
computes a correction factor for every snapshot to correct both the loss of
counts due to bad pixels and hot columns and, in the case in which pile-up
is present, also the loss due to the annular shape of the extraction region.
The final step consists in considering the exposure corrected source light-
curve and subtracting from it the background light-curve multiplied by a
scale factor given by the ratio between the source extraction region and
the background extraction region (in order to renormalize the background
counts): eventually, one obtains the final count rate light-curve that can be
found on the repository (Level 3 file, see Fig. 2.4).

Data products are placed on the Quick-Look data area from where they
will be available to the GRB community few hours after the observation
occurs, as soon as they have been processed by SDC at GSFC. After one
week, the data are moved to the main archive and removed from the Quick-
Look area.

4The minimum bin size which can be used depends on the XRT mode and corresponds
to the frame time of the mode, e.g. 1.8 ms for WT mode and 2.51 s for PC mode.
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Figure 2.4: Example of a count rate light-curve available on the Swift-XRT GRB repos-
itory for GRB 140903A. Red points represent data taken in the PC mode and the time
axis is in logarithmic scale.



Chapter 3

Data analysis

In this chapter we thoroughly describe all the steps of the analysis we carried
out. At first, a detailed description of the sample selected for the purpose of
this work is given in Section 3.1. A preliminary selection of the "uninforma-
tive" cases is described in Section 3.2, while the actual light-curve fitting is
performed in Section 3.3 and leads to the definition of the "BPL" subsample.
A further characterization of this latter is given is Section 3.4, where the final
"plateau" subsample is identified. A discussion of the results and the derived
"plateau" fractions are given in Section 3.5.

3.1 The SGRB sample
The sample analysed in this Thesis work is composed by 85 SGRBs and
includes all the SGRBs at known redshift detected by Swift from May, 2005 to
the end of December, 2021 (≃ 60% of the total Swift short GRB population,
W.-f. Fong et al., 2022). SGRBs without an associated redshift were excluded
from our analysis, in order to have the chance to compare the results with
theoretical models: indeed, to test model predictions regarding the X-ray
light-curve intrinsic luminosities is possible only if the redshift of the source
is known (see Chapter 4 for more details). This sample was singled out by
PhD student Paramvir Singh under the supervision of Dr. Giulia Stratta
and Dr. Andrea Rossi, building on the works of Rossi et al. (2020), W.-f.
Fong et al. (2022), and O’Connor et al. (2022) and it represents the most
updated and complete sample of short GRBs at known redshift observed by
Swift available to date.

In Fig. 3.1, the redshift distribution of the 85 bursts included in our
sample is shown. The redshift values range from a minimum of z = 0.0763
to a maximum of z = 2.609. The median redshift is ⟨z⟩ = 0.60, while the

48



3.1. The SGRB sample 49

average redshift is z = 0.79.
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Figure 3.1: Redshift distribution of our sample of 85 SGRBs, ranging from a minimum
of z = 0.0763 to a maximum of z = 2.609. The median redshift is ⟨z⟩ = 0.60 while the
average redshift is z = 0.79.

For each SGRB in the sample, the XRT 0.3 − 10 keV (unabsorbed flux)
X-ray afterglow light-curve was retrieved from the Burst Analyser page on
the UK Swift Science Data Center website (see Section 2.2). These are the
light-curves on which we based our study. However, even though our analysis
is devoted to the study of the afterglow, XRT data frequently include late
prompt emission data too, identifiable on account of their different spectral
and temporal behaviour. In order to individuate more accurately the onset of
the afterglow, we decided to represent on the same plot also the BAT 15−150
keV unabsorbed flux light-curves data, so that we could simultaneously have a
look both at the prompt emission and the afterglow emission. It is important
to underline that BAT data were not used in the analysis but just utilized
as a reference to interpret in the correct way the XRT light-curves evolution
and specifically to correctly individuate the start of the afterglow phase after
the prompt phase. Notice that we chose to represent BAT and XRT data in
the corresponding detector energy band rather than doing an extrapolation
in an energy band that was not the native one, since this was not necessary
for our study and would have introduced systematic errors.

An example of a light-curve derived from the data taken from the UKSSDC
repository and presented following the guidelines explained above is given in
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Fig. 3.2. BAT data are reported in black, while XRT data are in red. We
decided also to report the photon index evolution in the subplot, because the
study of its time behaviour is a key point of our analysis (see Section 3.4).
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Figure 3.2: Example of one of the light-curves studied in our analysis, showing the time
evolution of the emission of GRB 130603B, corrected for galactic and local absorption:
black data represent BAT integrated flux in the energy range 15−150 keV, while red data
represent XRT integrated flux in the range 0.3−10 keV. In the subplot, the time evolution
of the photon index Γ relative to both BAT and XRT data is reported too. Both axes are
in logarithmic scale.

For the sake of clarity, we divided the analysis in three main phases: each
of them is described in detail in the following sections.

3.2 Classification of "uninformative" events
For the purpose of deriving a fraction of SGRBs showing a "plateau" phase,
it is fundamental to individuate those bursts for which, for different reasons,
it was not possible to properly study the afterglow time evolution. This led
to the delineation of three subsamples (described in the following sections),
comprehensively referred to as "uninformative" events, which were found to
be not suitable to be submitted to the light-curve fitting procedure.
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3.2.1 SNR-rejected events

As previously said, SGRBs are characterized by faint afterglows, and this
makes it very challenging to obtain well sampled and time-resolved light-
curves. This indeed was true for a large number of the SGRBs in our sample
for which the limited statistics made almost impossible to draw conclusions
about the afterglow morphology. Two examples of poorly-sampled light-
curves are shown in Fig. 3.3.
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Figure 3.3: Two light-curves representative of the bursts excluded because their sampling
was too poor. As it is evident by inspecting the two plots, (a) GRB 130716A and (b)
GRB 130822A, only few XRT are present: in both cases, it was not possible to do any
kind of analysis of the afterglow morphology and this is the reason why they were excluded
using the SNR criterion explained in the following.

The criterion we adopted to understand if a certain burst did not have
enough data to be considered for a deeper analysis was based on the number
of total counts detected by the XRT for each GRB, and in particular on the
signal to noise ratio (SNR). Specifically, the cases which were rejected in this
part of the analysis were the ones for which the total SNR tot of the XRT
observation did not overcome the threshold:

SNR tot ≥ 10. (3.1)

Indeed, assuming a poissonian statistic (that is what we deal with when
considering high energy photon detections), the SNR is proportional to the
square root of the counts, and the threshold given in Eq. 3.1 translates in
a number of counts ≳ 100. This value guarantees the possibility to build a
light-curve with at least 5 bins, each of the them with an SNR≳ 4.5, which
is the minimum requirement to assure to have enough counts to be able
to properly model its morphology. Thanks to the light-curve tool on the
UKSSDC repository, it was possible to re-bin every light-curve as a single
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binned light-curve, obtaining the number of total XRT counts and the error
on this value. Using these two values, it was possible to calculate the total
SNR of XRT data (SNR tot, data) and the cases for which SNRtot,data did not
overcome the threshold given by Eq. 3.1 were classified as "SNR-rejected"
cases: 25 bursts out of 85 were included in this subsample.

3.2.2 Extended emission-only (EE-only) cases

As explained in Section 1.2.1, a fraction of SGRBs shows a soft and prolonged
emission subsequent to the prompt, labeled as extended emission (EE). EE
is typically observed in the first tens of seconds after the burst trigger and
in many cases is detected by the XRT as a bright signal at early times. EE
is characterized by a very high flux and spectral variability and a sharp flux
decay indicating its ending. As anticipated in Section 3.1, XRT data often
include the tail of the prompt emission and, as mentioned in Section 1.2.1,
EE is interpreted as the low-energy tail of the prompt emission: this leads
to the conclusion that its physical origin is not the same as for the afterglow
and suggests to treat very cautiously the cases in which EE is observed.

To individuate the SGRBs in the sample showing EE features, the fol-
lowing general criteria were used:

1. the bulk of XRT data lies in the time range roughly between 100 and
500 seconds from the trigger time;

2. a pronounced photon index Γ variability is present, usually showing an
increase (spectral softening);

3. a rapid flux decay marks the EE phase end, with F (t) ∝ tα with
typically α > 2 (sometimes ≫ 2);

Taking this into account, we decided to create a subsample of bursts which,
despite overcoming the SNR threshold provided for in Section 3.2.1, resulted
not suitable for our afterglow analysis, because their light-curve and spectral
evolution were consistent with being EE alone, without afterglow emission.
In some other cases, even though afterglow data were present after the EE
phase, they were too few to draw any conclusion about the afterglow mor-
phology. Eventually, 19 bursts were found to match with these criteria: we
then decided to include them in the "EE-only" subsample. The light-curves
of two of these cases are portrayed in Fig. 3.4.

It is important to point out that clear signs of EE were found in several
other bursts in our sample but these cases were not excluded, because their
afterglow light-curves had enough statics to allow a proper light-curve fitting.
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Figure 3.4: Two light-curves representative of the bursts classified as EE-only. In (a) we
can see an extended emission phase, followed by very few data related to the afterglow,
while in (b) we observe the EE phase and the subsequent drop, but no detection related
to the afterglow phase.

3.2.3 Special case: GRB 150101B

Among the 85 SGRBs included in our initial sample, GRB 150101B was found
to exhibit a peculiar behaviour which required a separate discussion. Indeed,
XRT observation for this burst started at ∼ 1.42 × 105 seconds from the
burst trigger. This can be justified considering that it was discovered through
Target Of Opportunity observations: indeed, this GRB was not directly de-
tected by Swift but only by Fermi Gamma-ray Burst Monitor (GBM) and
the source was found in BAT data only after ground analysis (see GCN circu-
lar, Cummings, 2015). This is the reason why the XRT observed this source
only several hours after the trigger, as a follow-up observation of the burst
detected by GBM. In any case, since plateaus are expected to last about a
few hours after the burst trigger, this burst turned out to be too late to be
useful for our analysis: this is why we decided to exclude it, together with
the under sampled cases.

A summary of all the 45 cases excluded in this preliminary analysis is
given in Tab. 3.1, while a graphic representation of the sample is portrayed
in Fig. 3.5. The remaining 40 cases, which defined the so-called "LC fit"
sample, were the ones for which a further analysis was possible, as thoroughly
explained in the next section.
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Figure 3.5: Pie chart showing the results of the preliminary classification of the cases
which were not suitable for the light-curve fitting, starting from the 85 bursts included in
the initial sample. Three subsamples were cast aside since they resulted not suitable for
the light-curve fitting analysis: "SNR-rejected" (25, in brown), "EE-only" (19, in orange)
and the "special case" of GRB 150101B (in gray). The remaining 40 cases, defined as "LC
fit" sample (in green), are the ones for which a further analysis will be carried out in the
following section.

Subsample GRB name z GRB name z GRB name z GRB name z Amount

SNR-rejected 050509B 0.2248 070729 0.52 130822A 0.154 170428A 0.453 25
050813 0.719 100206A 0.407 140622A 0.959 201221D 1.055
060502B 0.287 100625A 0.452 141212A 0.596 210919A 0.2415
(060505) 0.089 101224A 0.454 150728A 0.461 (230307A) 0.065
061210 0.4095 120630A 0.3 160411A 0.82
061217 0.827 130515A 0.8 161104A 0.793
070429B 0.902 130716A 2.2 170127B 2.28

EE-only 051210 2.58 080905A 0.1218 150120A 0.4604 191031D 1.93 19
060801 1.131 090515 0.403 160408A 1.90 200219A 0.48
071227 0.381 100117A 0.914 160410A 1.7177 200907B 0.56
080123 0.495 101219A 0.7179 160624A 0.4842 (211227A) 0.228
080503 0.8245 120305A 0.225 181123B 1.754

Special 150101B 0.134 1

Total 45

Table 3.1: Summary of the 45 cases excluded from the light-curve fitting analysis.

3.3 Light-curve fitting
Neglecting the "SNR-rejected", the "special" and the "EE-only" cases, we
were left with a sample of 40 SGRBs for which it was possible to study
the afterglow light-curve behaviour: we define this as the "LC fit" sample.
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In particular, assuming a power-law like flux evolution (e.g., Eq. 1.15), we
tried to understand in how many cases the afterglow showed a "canonical
behaviour" as explained in Section 1.3.4. It is important to point out that,
since the XRT slews to observe the burst only tens of seconds after BAT
trigger, in the cases in which prompt emission is brief (as in SGRBs) we
observe a characteristic time gap between BAT data and XRT data. But in
some of these cases, the XRT is able to catch the end of the prompt emission
in its observation: this is the first phase of the "canonical afterglow", labeled
as steep decay phase, and we did not consider it for the fit. We instead
focused on investigating the presence of the following two phases, which are
the "shallow decay" (or "plateau") phase and the "post-plateau" phase.

A necessary condition for the presence of a plateau is that the afterglow
light-curve, which referring to Eq. 1.15 is expected to follow a power-law
behaviour, should present a break in the flux time evolution. The first thing
we did was then to identify in how many bursts this break was present. To
do this, we performed a fit of the XRT light-curves using a simple power-law
and a broken power-law model. The reduced χ2 obtained from the fit per-
formed with these two models were compared using an F -test, to determine if
adding a temporal break to the simple power-law model led to a statistically
significant improvement or not.

A description of the two models is given in the following.

– The first model is a simple power-law (PL) function, that is what we
expect for a GRB that is not showing any evidence of a plateau in
its light-curve and can be accounted using the standard synchrotron
afterglow model provided for in Section 1.3.2. The simple power-law is
written in the form:

Fpl(t) = Fpl,norm

(
t

tnorm

)−α

(3.2)

where tnorm is an arbitrary normalization time, Fpl,norm is the normal-
ization constant while (namely the value of the flux at tnorm) and α is
the power-law temporal decay index.

– The second model is the so called "smoothly broken power-law" (BPL)
function, as presented in Li et al. (2012) and Tang et al. (2019). This
model is a simple way to reproduce what one would expect in the case
in which a plateau phase is effectively present in the flux time evolution.
The function takes the form:

Fbpl(t) =
Fbreak

2−1/ω

[(
t

tbreak

)α1ω

+

(
t

tbreak

)α2ω]−1/ω

(3.3)
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where α1 is the power-law index during the shallow phase (plateau)
while α2 is the power-law index during the following decay phase1, tbreak
is the so called break time (observed end time of the plateau phase),
ω is a smoothness parameter to control the sharpness of the transition
between plateau phase and decay phase (an higher value corresponding
to a sharper break) and Fbreak is the value of the flux at the end of the
plateau.

The BPL model introduces three new free parameters with respect to
the PL: α2, tbreak and ω. However, since in the cases with lower statistics
having too many free parameters would make it hard for the fit to converge,
the smoothness was fixed to the value ω = 3, as previously done also in the
works of Li et al. (2012), S.-X. Yi et al. (2016), and Tang et al. (2019).

The fit with both PL and BPL models was performed singularly on each
of the 40 cases included in the "LC fit" sample. For each burst, an initial time
t0 to start the fit was defined: this was determined on an individual basis, in
order to make sure that XRT data relative to late prompt/extended emission
phase were not considered in the fit. This was done excluding the early-time
XRT data for which the associated flux and photon index exhibited a strong
time variability: indeed, for the afterglow phase, the photon index is expected
to be on average constant in time. The normalization time of the PL, tnorm,
was arbitrarily chosen to be subsequent to t0, specifically tnorm = t0+3500 s.

To understand if the introduction of the break led to a statistically sig-
nificant improvement of the fit or not, the results obtained for PL and BPL
model were compared through an F -test.

3.3.1 The F -test

The F -test is used to evaluate the improvement of a fit due to the assumption
of a more detailed model with respect to the original, because of the inclusion
of additional parameters. In general, an F -test is used to assess whether the
null hypothesis HO, i.e. the original model, should be rejected or not with
respect to the alternative hypothesis HA, i.e. the more detailed model.

To apply the F -test, after having computed the fit with both the original
and the alternative model, it is necessary to calculate the sum of square errors
(SSE), summing the squared differences between the observed quantity yreal
and the value ŷi predicted by the model:

SSEi =
∑

(yreal − ŷi)
2, (3.4)

1We alert to pay special attention to the notation applied, since the indices here labeled
as α1 and α2 for convenience, are the same indices that in Section 1.3.4 were respectively
labeled α2 and α3 (in line with the convention widely adopted by the community).
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where the subscript i refers to the model we are using, namely O for the orig-
inal model and A for the alternative model. Using this equation, it is possible
to compute SSEO and SSEA for the original and the alternative model re-
spectively. The F -test uses the F -statistics in order to evaluate which of the
two models is more statistically significant, based on the difference in the
error between them. This leads to computing the F -value as:

F ∗ =
SSEO − SSEA

νO − νA
÷ SSEA

νA
, (3.5)

where νO and νA are the degrees of freedom of the two models (computed
as the difference between the number of data points and the number of free
parameters in the model).

The application of the F -statistics provides for the rejection of the null
hypothesis HO in the case F ∗ is large or, alternatively, if the p-value asso-
ciated to it is small. We recall that the p-value can be calculated as the
complement to one of the cumulative distribution function (CDF)2 of the F
variable (following an F -distribution) evaluated at F ∗, and represents the
probability of obtaining a value of F ∗ equal to or larger than what actually
observed, under the assumption that the null hypothesis H0 is true: the lower
the p-value, the more unlikely to obtain such an extreme outcome under the
null hypothesis. The rejection threshold can be chosen arbitrarily and for
this analysis it was set to a 4σ level to align with the threshold adopted on
the Swift-XRT repository to consider the addition of a break significative
(Evans, Beardmore, Page, Osborne, et al., 2009): this corresponds to a p-
value of 6.2 × 10−5. In this way, each time the computed p-value is below
this threshold, the alternative model (BPL) represents a statistically signif-
icant improvement with respect to the original model (PL) in reproducing
the data, while for higher p-values the PL model is preferred.

The analysis allowed to single out 15 cases out of 40 for which the break
was found to be statistically significant: these defined the "BPL" subsample.
Instead, for the other 25 cases, the PL model resulted sufficient to describe
the flux time evolution: these bursts were identified as the "PL" subsample.

Light-curves relative to two cases in which the PL model reproduced
better the data are shown in Fig. 3.7a and Fig. 3.7b, while light-curves for
two cases in which the BPL model resulted in being statistically significant
are shown in Fig. 3.8a and Fig. 3.8b. To have a more complete view of all
the cases accounted for in the analysis, more light-curves and the relative
best-fit models reported in Fig. A.1 for 8 burst included "PL" subsample
and in Fig. A.2 for all the 15 cases included in the "BPL" subsample.

2The cumulative distribution function (CDF) of a variable x, evaluated at x∗, is the
probability that x will take a value less than or equal to x∗: CDFx(x

∗) = P(x ≤ x∗).
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In Fig. 3.6, a graphic representation summarizing the subsamples selected
up to this stage of the analysis is given.

SNR-rejected (25)
special (1)
EE-only (19)
PL (25)
BPL (15)

Figure 3.6: Pie chart showing all the subsamples determined up to this stage of the
analysis, starting from the 85 bursts included in the initial sample. The subsamples
relative to the 45 uninformative cases are the same as in Fig. 3.5, but the 40 cases which
were formerly identified as the "LC fit" sample, after the light-curve fitting were divided
between the "PL" subsample (25 bursts, in red) and the "BPL" subsample (15 bursts, in
blue).

The results of the fit are quoted in Tab. 3.2. For the bursts in which the
BPL model was found to be an improvement with respect to the PL model,
the break time tbreak, the value of the flux at the break time Fbreak and both
time decay indices α1 and α2 were reported, together with the p-value that
can be used as a reference of the significance of the improvement. For the
cases in which the PL was enough to describe the behaviour of the flux time
decay, instead, we reported just the time decay index and the normalization
constant Fpl,norm. For every case, the starting time of the fit t0 is quoted too.
The errors on tbreak were extremely small (<1%), thus they are not reported
in the table.

Two of the cases included in the "PL" subsample, show anyway a peculiar
behaviour: these two bursts are GRB 050724 and GRB 131004A, depicted
respectively in Fig. A.1e and Fig. A.1f. Both of them show some flaring
activity in their afterglow, making it difficult to properly fit the light-curve
with one of our two power-law models. Since flares are thought to be residual
prompt emission signals, thus not due to the afterglow component, what was
done for these cases was to discard the data in the time-range corresponding
to the flare with the purpose of computing the fit only on the data not affected
by the flare itself: in both cases, the behaviour of the flux time decay was
well represented by a PL.
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GRB name z t0 α1 α2 tbreak Fpl,norm/break χ2 ν p-value
(s) (×103 s) (×10−12 erg cm−2 s−1)

050724(F) 0.254 370 0.93± 0.06 - - (1.63± 0.19) 23.9 10 1.0
061006 0.461 168 0.78± 0.05 - - (1.45± 0.13) 13.3 9 1.0
070724A 0.457 385 1.16± 0.10 - - (1.3± 0.3) 21.8 4 8.58× 10−2

070809 0.2187 126 0.50± 0.06 - - (1.7± 0.2) 43.0 14 1.14× 10−3

090426 2.609 120 0.95± 0.03 - - (2.85± 0.19) 40.9 25 7.57× 10−3

111117A 2.211 200 1.22± 0.07 - - (5.4± 0.6)× 10−1 4.8 5 7.99× 10−1

120804A 1.05 150 1.08± 0.03 - - (1.26± 0.07)× 10 55.1 30 1.0
121226A 1.37 146 0.97± 0.05 - - (5.0± 0.5) 21.5 11 1.36× 10−1

131004A(F) 0.717 105 1.00± 0.06 - - (4.9± 0.7) 25.5 8 1.60× 10−1

140129B 0.43 400 1.29± 0.09 - - (5.9± 0.8) 24.0 15 1.52× 10−2

140930B 1.465 214 1.75± 0.10 - - (1.4± 0.2) 61.7 23 1.0
150423A 1.394 100 0.91± 0.06 - - (1.11± 0.13) 4.5 6 6.47× 10−2

150831A 1.18 200 1.07± 0.08 - - (0.71± 0.10) 2.2 4 1.0
160303A 1.01 600 0.68± 0.10 - - (0.76± 0.13) 15.2 5 2.90× 10−1

160525B 0.64 99 1.35± 0.10 - - (0.67± 0.14) 27.4 11 1.0
160821B 0.1619 300 1.33± 0.13 - - (2.0± 0.6) 16.2 3 7.94× 10−1

170728A 1.493 250 0.98± 0.07 - - (3.6± 0.4) 5.9 4 4.76× 10−1

180418A 1.56 3170 0.84± 0.04 - - (2.2± 0.15) 17.8 16 1.0
180727A 1.95 100 1.20± 0.09 - - (0.9± 0.2) 6.1 3 1.0
180805B 0.6612 479 1.16± 0.11 - - (1.3± 0.2) 16.3 8 1.0
191019A 0.248 3545 1.13± 0.13 - - (1.22± 0.13) 9.1 6 8.19× 10−2

200411A 0.82 400 0.84± 0.08 - - (2.0± 0.2) 18.7 9 1.0
200522A 0.5536 450 0.64± 0.08 - - (1.3± 0.2) 6.6 3 7.40× 10−1

210726A 0.37 500 0.56± 0.02 - - (1.41± 0.08) 2.5 7 9.90× 10−1

211023B 0.862 750 0.78± 0.06 - - (1.48± 0.15) 8.9 6 1.0

051221A 0.5464 314 0.65± 0.03 1.44± 0.08 6.16× 10 (5.5± 0.4)× 10−1 96.6 60 1.26× 10−8

060614 0.125 4000 0.06± 0.03 1.81± 0.03 4.45× 10 (5.8± 0.2) 172.9 149 1.11× 10−16

061201 0.111 80 0.65± 0.06 2.12± 0.10 3.00 (3.9± 0.5)× 10 29.3 24 2.50× 10−9

070714B 0.923 300 0.65± 0.12 2.11± 0.10 2.13 (1.8± 0.2)× 10 44.8 25 2.43× 10−6

090510 0.903 100 0.66± 0.03 2.28± 0.06 1.67 (7.6± 0.4)× 10 93.4 99 1.11× 10−16

110402A 0.854 593 0.48± 0.06 2.25± 0.15 8.43 (2.0± 0.2) 13.7 15 6.11× 10−6

130603B 0.3568 70 0.38± 0.03 1.69± 0.06 2.90 (3.3± 0.2)× 10 128.8 69 1.11× 10−16

140903A 0.3529 200 0.15± 0.03 1.25± 0.05 9.65 (9.7± 0.5) 28.2 34 8.55× 10−15

150424A 0.3 453 0.76± 0.02 2.4± 0.3 2.03× 10 (3.9± 0.3)× 10−1 23.3 32 1.24× 10−6

151229A 0.63 90 0.26± 0.19 0.96± 0.04 3.47× 10−1 (2.8± 0.9)× 102 73.1 70 9.51× 10−7

161001A 0.67 207 0.75± 0.05 1.37± 0.05 3.53 (4.9± 0.4)× 10 57.3 45 1.45× 10−5

170728B 1.272 400 0.53± 0.03 1.34± 0.02 2.53 (2.1± 0.1)× 102 213.6 193 1.11× 10−16

180618A 0.52 80 0.11± 0.40 1.77± 0.04 1.27× 10−1 (1.8± 0.2) 130.4 97 2.98× 10−11

210323A 0.733 800 0.50± 0.06 3.4± 0.3 1.32× 10 (4.2± 0.4) 10.4 10 1.22× 10−5

211211A 0.0763 3400 −0.12± 0.18 2.07± 0.08 7.97 (5.5± 0.6)× 10 72.9 47 2.39× 10−10

(F) In these cases, a flare was excluded to allow a better fit of the afterglow.

Table 3.2: Results of the fit performed with the simple power-law (PL) model and with
the broken power-law model (BPL) for all the 40 SGRBS for which it was possible to study
the light-curve time evolution ("LC fit" sample). The 15 bursts for which the addition of a
break resulted statistically significant (below) are the ones for which the F -test returned an
associated p-value below the 4-σ threshold (corresponding to 6.2× 10−5): these define the
"BPL" subsample. The other 25 bursts (above) are instead classified as "PL" subsample.



3.3. Light-curve fitting 60

10 12

10 10

10 8

Fl
ux

 [
er

g 
cm

2  
s

1 ]

GRB 061006

Best fit model
XRT (0.3-10 keV)
BAT (15-150 keV)

101 102 103 104 105

Time since BAT trigger [s]

0.5

1.7

2.9

Ph
ot

on
 I

nd
ex

(a)

10 12

10 10

10 8

Fl
ux

 [
er

g 
cm

2  
s

1 ]

GRB 121226A

Best fit model
XRT (0.3-10 keV)
BAT (15-150 keV)

10 1 100 101 102 103 104 105

Time since BAT trigger [s]

2.2

3.4

Ph
ot

on
 I

nd
ex

(b)

Figure 3.7: Example of two light-curves for which the XRT data (in red) were accurately
reproduced by a simple power-law fit ("PL" subsample). The best fit (PL) model is
represented by the blue line. BAT data (in black) are included as a reference.
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Figure 3.8: Light-curve for two cases for which the broken power-law model resulted
more statistically significant with respect to the simple power-law ("BPL" subsample) in
fitting the XRT data (in red). The best fit (BPL) model is represented by the blue line.
BAT data (in black) are included as a reference.
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In Fig. 3.9 we report the values of the time decay indices α1 and α2 derived
from the fit for the cases included in the "BPL" subsample. A steepening
after the break is clearly observed in all the cases, since α2 > α1 always. On
the graph, the threshold α1 = 0.75, derived in Section 1.3.4 in the context of
the standard synchrotron model for the afterglow, is represented as a green
vertical line: this number is important because, if α1 is lower than this value,
alternative models are needed to explain the shallow phase. This is were the
plateau interpretation comes into play, as explained in next section.
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Figure 3.9: Histogram showing the time decay indices before (α1, in red) and after the
break (α2, in blue) for all the 15 bursts for which the fit with the BPL model resulted in
being statistically significant. The green line indicates the threshold α1 = 0.75, derived
in Section 3.4, above which the standard afterglow model interpretation of the shallow
phase works (green shaded region): it is clear that all the values found for α1 cannot be
explained with this model, suggesting the need for an alternative interpretation.

3.4 Plateau identification
The 15 cases which were included in the "BPL" subsample in the previous
step of the analysis cannot be defined yet as SGRBs in which a plateau
is present: indeed, the broken power-law behaviour is a condition that is
necessary, but not sufficient, to define a plateau. As previously explained in
Section 1.3.4, the two main properties to be verified when looking for the
presence of a plateau are: A) time decay index α1 that is flat enough to
make the standard fireball model interpretation not feasible; B) negligible
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spectral evolution between the plateau and post-plateau phase. While the
verification of the value of α1 obtained by the fit was straightforward, to check
the absence of spectral variability was a more complex task. The procedure
followed to verify both these condition for all the bursts composing the "BPL"
subsample is outlined in the following.

A) Checking the value of the shallow phase index

The value of α1, the time decay index during the shallow phase, is funda-
mental to understand if the shallow phase of the afterglow can be interpreted
or not using the standard synchrotron model (provided for in Section 1.3.2).
For this reasons, the value of α1 was checked for all the 15 cases for which the
break was found to be statistically significant: as it is evident from Fig. 3.9,
all these values (reported in Tab. 3.2), resulted in being either below or at
most straddling the threshold α1 < 0.75 (see Section 1.3.4 for derivation),
rendering them all good candidates for the presence of a plateau.

B) Verifying the spectral variability

Another important condition to be verified for a power-law break to be classi-
fied as a good plateau candidate is the absence of strong spectral variability
before and after the break itself. Considering the 15 cases composing the
"BPL" subsample, we checked the presence of any spectral evolution across
the break: this is indeed the behaviour we would expect in the case the brake
was produced by synchrotron mechanisms, like the crossing of a characteris-
tic frequency (see Sec. 1.3.2), and this is the hypothesis that has to be ruled
out in order to consider the "plateau" interpretation. Even though all the
photon index sub-plots reported in Fig. A.2 make evident that the photon
index Γ varies significantly with time in most of the cases, it is important
to recall that the values of Γ obtained from the Burst Analyser tool are not
measured directly from the integrate spectra, but derived by the algorithm
through the procedure described in Section 2.2: this means that they have
to be considered carefully since they may be affected by strong uncertainties.

To obviate to this problem, one solution is to extract two spectra, the
first during the full duration of the shallow phase and the second during
the post-break phase: by assuming a simple power-law spectral model, this
allows to derive the two best fit photon indices. To do this, the spectra
repository on the UKSSDC website was largely employed (see Section 2.2)
and in particular exploiting the Swift-XRT data analysis algorithm dedicated
to spectral extraction. The advantage of this tool lies in the possibility of
building times sliced spectra, which are spectra integrated over time intervals
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larger than typical temporal bins, following the procedure outlined in Arnaud
et al. (2023): this allows to obtain a robust photon index measure both before
and after the break.

By defining two time ranges for each burst, ∆tA (covering the shallow
phase and lasting right before tbreak) and ∆tB (covering the post-break phase
and starting right after tbreak), it was possible to provide the algorithm with
the "time-slices" in which the spectral extraction had to be computed. In this
way, it was possible to extract the X-ray spectrum in both time ranges ∆tA
and ∆tB, obtaining two values of the photon index, ΓA and ΓB respectively.
These two values were then compared in order to understand if they were
compatible inside the confidence regions defined by their errors. Results for
each case are reported in Tab. 3.3, in which both the time ranges ∆tA and
∆tB over which the spectral extraction was performed and the corresponding
photon indices ΓA and ΓB are listed, together with the break time tbreak.
Inspecting Fig. 3.10, it is evident how in all the 15 cases, the values of ΓA

and ΓB are consistent within the confidence regions defined by their errors
apart from the case of GRB 061201, which is anyway compatible within 2σ.
We can then confidently conclude that there is no clear evidence of spectral
variability: thus, all the 15 bursts composing the "BPL" subsample were
included in the so-called "plateau" subsample.

GRB name tbreak (s) ∆tA(s) ΓA ∆tB ΓB

211211A 7970 3000÷ 5000 1.54+0.13
−0.11 15000÷ 23000 1.53+0.13

−0.11

210323A* 13187 800÷ 12000 1.36+0.27
−0.23 14000÷ 55000 2.9+1.9

−1.5

170728B 2536 400÷ 2400 1.76+0.12
−0.11 2600÷ 21000 1.84+0.09

−0.09

161001A 2678 207÷ 2500 1.85+0.22
−0.21 2800÷ 12000 2.10+0.40

−0.30

15129A 347 166÷ 317 1.60+0.30
−0.30 377÷ 743 1.90+0.30

−0.30

140903A 9653 250÷ 9400 1.65+0.20
−0.20 9700÷ 20000 1.40+0.24

−0.20

090510 1673 90÷ 1600 1.58+0.13
−0.09 1700÷ 70000 1.93+0.26

−0.25

070714B 2125 400÷ 2050 1.90+0.17
−0.16 2200÷ 32000 1.78+0.39

−0.17

061201* 2985 80÷ 2900 1.29+0.18
−0.16 3050÷ 11000 1.8+0.4

−0.3

060614 44547 3000÷ 44500 1.72+0.11
−0.05 44650÷ 150000 1.84+0.13

−0.12

051221A 57870 16000÷ 57600 1.99+0.25
−0.24 58000÷ 150000 2.20+0.40

−0.30

130603B 2902 50÷ 2800 2.50+0.60
−0.40 3000÷ 7000 1.98+0.18

−0.17

110402A 6810 1000÷ 6700 2.03+0.31
−0.28 6900÷ 14000 2.15+0.61

−0.29

150424A* 210105 10000÷ 135000 1.73+0.21
−0.16 218000÷ 443000 1.7+0.9

−0.7

180618A 127 84÷ 120 1.81+0.18
−0.17 135÷ 235 1.98+0.14

−0.14

Table 3.3: Results of the spectral analysis for the 15 cases included in the "BPL" sub-
sample.
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Figure 3.10: Graphic representation of the values of the photon indices ΓA (x-axis) and
ΓB (y-axis) for the 15 bursts included in the "plateau" subsample (see Tab. 3.3). The
green dashed line represents the place of points for which ΓA = ΓB . For each pair of
Γ values (blue dots), the uncertainties are reported (red lines) and the shaded patches
represent the confidence regions of each pair: when the patch intercepts the green line, it
means that the two values are consistent within 1σ.

3.5 Discussion and "plateau" fraction
Here we give a summary of the results of the three main steps of the analysis
performed on the 85 SGRBs composing the initial sample.

– Inspecting the signal to noise ratios of the light-curves, it was possible
to individuate 25 cases which were too poorly sampled to be consid-
ered for the light-curve fitting procedure: these cases were classified as
"SNR-rejected". Inspecting the redshift distribution Fig. 3.11, one can
conclude that no evident link between the quality of the data and the
distance of the event applies. 19 cases were found to portray only the
EE phase or, at most, the early afterglow phase, but with too few data
to draw conclusion about its behaviour: these defined the "EE-only"
subsample. One last case, GRB 150101B, was labeled as "special case"
since consisted only in late time data, preventing us to gain any infor-
mation about the early afterglow light-curve in which a plateau could
show up. To understand if the low value of the SNR of the cases in-
cluded in the "SNR-rejected" subsample was connected to the distance
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at which these events happened, we compared the redshift distribution
of both the "SNR-rejected" subsample and the "EE-only" subsample
with the one of the initial sample (Fig. 3.11). For what concerns the
SNR-rejected, apart from two cases, all the others have values of the
redshift smaller than 1: the fact that no clear afterglow data are present
suggests that these are intrinsically faint bursts.

0.0 0.5 1.0 1.5 2.0 2.5
Redshift

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

Initial sample (85)
SNR-rejected (25)
EE-only (19)

Figure 3.11: Comparison between the redshift distribution of the original sample (85
bursts, in green), of the "EE-only" subsample (19 bursts, in orange and of the "SNR-
rejected" subsample (25 bursts, in brown). It is clear that there is no evident connection
between the distance from us and the quality of the data detected by Swift-XRT.

– The 40 cases which were not cast aside in the first step, were subject of
the light-curve fitting analysis ("LC fit" sample): comparing the results
of a PL fit and a BPL fit through an F -test, it was possible to define
25 cases for which the simple power-law model reproduced accurately
the data ("PL" subsample) and 15 burst for which the introduction
of an additional break led to a significative improvement in modeling
the afterglow evolution ("BPL" subsample). In Fig. 3.12 redshift dis-
tribution of the cases included in the initial sample is compared with
those relative to the "PL" and "BPL" subsample. It is in interesting
to notice that the "LC fit" sample cases are located in average close to
us, at low redshift: this can be be explained since, for the same value
of intrinsic luminosity, the further a GRB is located the fainter it will
appear, and so the more difficult to study its afterglow morphology.
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The same can be said for the "plateau" subsample cases, but is is also
evident how they do not show a peculiar distribution with respect to
the overall "LC fit" sample, suggesting the presence of a break is not
correlated to the distance of the event.
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Figure 3.12: Histogram showing the redshift distribution of the initial sample (85 bursts,
in green), the "PL" sample (15 burst, in red) and the "BPL" subsample (15 bursts, in
azure).

– Eventually, the 15 cases included in the "BPL" subsample were further
inspected in order to understand if they fulfilled the requirements to be
considered as good "plateau" candidates, namely the value of the first
time decay index α1 and the absence of sharp spectral variability across
the break. All the 15 bursts resulted in satisfying these conditions and
were then labeled as the "plateau" subsample.

To further characterize the 15 cases selected as good plateau candidates,
in Fig. 3.13 the distribution of tbreak is reported. It is evident how the major-
ity of the burst appears to show a break in the time range between 103 and
105 seconds (meaning the first hours following the burst trigger) but three
cases catch the eye since they are the outliers of the distribution: as one can
inspect looking at Tab. 3.2 GRB 151229A and GRB 180618A show a value
of tbreak at least one order of magnitude lower than all the others, while GRB
151204A exhibits a break at very late times (≳ 105 s). A deeper analysis of
these cases is carried out in Chapter 4.
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Figure 3.13: Histogram showing the break time (tbreak) distribution of the 15 cases
showing a plateau (logarithmic scale is used for time axis).

Another interesting quantity that is used to characterize GRBs is Eiso,
which corresponds to the isotropic equivalent total energy emitted by the
burst. The emitted energy is conventionally written as E = Eiso(Ω/4π),
where Ω represents the solid angle within which the emission takes place:
in case the emission is isotropic, then the emitted energy E = Eiso. Values
of Eiso can be extremely high in the case of GRBs (≫ 1052 erg), but it is
important to recall that, as previously explained in Section 1.3.3, radiation
is likely to be strongly beamed and this reduces significantly the energy
requirement.

However, the derivation of Eiso is not straightforward: indeed, to compute
this value one should measure the spectrum over a wide energy range in
order to capture the distinctive peak energy of the GRB prompt emission.
Usually, the Band spectrum given by Eq. 1.4 is assumed but, as explained in
Section 1.3.1, no universal spectral model exists to reproduce GRB prompt
emission: unfortunately, depending on the assumed model, the values of Eiso

can change significantly.
The challenge of covering a large energy band (e.g, the Swift-BAT covers

"only" the 15-150 keV energy range) is the reason why it was not possible
to recover a value of Eiso for all the 85 SGRBs included in our sample. In
Tab. A.1, we report the values of Eiso for the 42 burst for which it was
possible to find this information in the literature: the large majority of them
is taken from one of the most complete GRB catalogues, the Konus-Wind
(KW) catalogue (Tsvetkova, Frederiks, Golenetskii, et al., 2017; Tsvetkova,
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Frederiks, Svinkin, et al., 2021), since KW covers an extremely large energy
band (20 keV− 20 MeV). In Fig. 3.14 the Eiso distribution relative to these
cases is compared with the distribution for all the 15 cases included in the
"plateau" subsample. Values range from a minimum of 4 × 1049 erg to a
maximum of 9 × 1052 erg. From these distributions, it can be seen that
the cases for which it was possible to prove the presence of a plateau do not
group around either high or low values of Eiso, but instead show an essentially
uniform distribution.
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Figure 3.14: Eiso distribution of the bursts included in the "plateau" subsample (in blue)
compared with the initial sample (in brown). We were able to find the value for Eiso only
for 42 cases out of 85: these values are quoted in Tab. A.1. Eiso axis is in logarithmic
scale.

In conclusion, we assumed two possible scenarios to compute the "plateau"
fraction fplateau. The first scenario consists in computing this fraction taking
into account only the 40 cases for which it was possible to perform the fit
(the "LC fit" sample): in this way, the 15 bursts included in the "plateau"
subsample correspond to a "plateau" fraction fmax

plateau = 0.375 (Fig. 3.15a).
The second scenario consists in considering also the 45 cases excluded from
the analysis after being classified as "uninformative": indeed, even though
for these bursts it was not possible to study the afterglow morphology for the
reasons explained in Section 3.2, this does not conclusively exclude the pos-
sible presence of a plateau phase in their afterglow. Thus, by assuming the
plateau is absent in all these 45 cases, one can derive a minimum, more con-
servative value for the "plateau" fraction, corresponding to fmin

plateau = 0.176
(Fig. 3.15b). The importance of the defined range for the "plateau" fraction,
namely 0.176 < fplateau < 0.375, will be discussed in Chapter 6.
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Figure 3.15: (a) Pie chart showing the "plateau" fraction fmax
plateau = 0.375 derived

considering the 15 cases included in the "plateau" subsample (azure) with respect to
the 40 cases for which it was possible to perform the light-curve fitting. (b) Same as
before, but this time the "plateau" fraction is computed assuming that plateau is absent
in all the 40 cases classified as "uninformative": in this way, the "plateau" subsample
corresponds to fmin

plateau = 0.176. This defines a range for the "plateau" fraction, namely
0.176 < fplateau < 0.375.



Chapter 4

Testing the magnetar model

In this chapter, the results obtained from the light-curve analysis are inter-
preted within the magnetar model framework. However, to compare data
with the model, we need to compute the intrinsic luminosity of the event:
the procedure to build a rest frame luminosity light-curve starting from an
observed flux light-curve is outlined in Section 4.1. In Section 4.2 the mag-
netar model fit is performed one the luminosity light-curves of the 15 SGRB
included in the "plateau" subsample, in order to derive an estimate for the
two main parameter characterizing a magnetar. Eventually, in Section 4.3
the 19 bursts included in the "EE-only" subsample are reconsidered under
the assumption that the magnetar model is valid: this allows to confidently
exclude the presence of a magnetar in some of them, and we use these values
to provide a final "magnetar" fraction in Section 4.4. This fraction will be
fundamental for the astrophysical implications presented in Chapter 5.

4.1 Building the luminosity light-curves
In order to convert the observed fluxes into luminosities, we must take into
account all cosmological effects. Not only the luminosity distance will have
to be used, but we must correct fluxes according to the K-correction, which
means accounting for the frequency redshift of the received radiation relative
to when it was emitted, due to Universe expansion (Bloom et al., 2001;
Kovács et al., 2011).

Detectors usually measure fluence, which is an energy per unit area. The
bolometric fluence Sbol is connected to the bolometric energy Ebol through
the relation:

Ebol =
4πDL(z)

2

1 + z
× Sbol, (4.1)

71
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where z is the redshift of the source while DL(z) is the luminosity distance
(calculated assuming a standard ΛCDM cosmology with H0 = 67.4 km s−1

Mpc−1, TCBM,0 = 2.726 K and Ω0 = 0.315, N. Aghanim et al., 2020). How-
ever, it is almost impossible to detect Sbol, since detectors usually have a
finite bandpass between the energies e1 and e2. This means that what we
obtain from the detector is the so called bandpass fluence:

S[e1,e2] =

∫ e2

e1

Φ(E)dE, (4.2)

where Φ(E) is the best fit spectral model of the source emission.
In general, our aim is to measure the radiated energy in a given comoving

bandpass between two arbitrary energies E1 and E2. This energy can be
expressed as a function of the fluence through the following relation:

E[E1,E2] =
4πDL(z)

2

1 + z
× S[E1/(1+z), E2/(1+z)], (4.3)

where the redshifted comoving energy range [E1/(1 + z), E2/(1 + z)] is in
general different from the detector bandpass range [e1, e2]. If we want to
rewrite this equation as a function of the detector bandpass fluence, we will
have to introduce an additional factor:

E[E1,E2] = S[e1,e2] ×
4πDL(z)

2

1 + z
×K[e1, e2, E1, E2, z, Φ(E)]. (4.4)

This factor K[e1, e2, E1, E2, z, Φ(E)] is the cosmological K-correction and
takes into account both the bandpass effects and the cosmological redshift
effect. The K-correction can be computed through the following relation:

K = K[e1, e2, E1, E2, z, Φ(E)] =

∫ E2/(1+z)

E1/(1+z)
Φ(E)dE∫ e2

e1
Φ(E)dE

, (4.5)

where [e1, e2] is the detector bandpass range, [E1, E2] is the corresponding
energy range in the source rest frame, z is the GRB redshift and Φ(E) is the
spectral shape of the emission. Note that K-correction is equal to 1 when the
bandpass energy range and the redshifted comoving energy range correspond
(E1 = e1(1 + z) and E2 = e2(1 + z)).

Once the K-correction is computed, it can be used to calculate some
comoving quantities which result to be very useful in the description and
classification of GRBs, e.g. the isotropic equivalent luminosity Liso (i.e., the
luminosity computed assuming the source is emitting isotropically). How-
ever, overwhelming observational evidence indicates that GRB outflows are
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characterized by a conical geometry (see Section 1.3.3): the result found
above must thus be corrected for the effects of relativistic beaming (Frail
et al., 2001). Indeed, a conical jet with an half opening angle θj will not emit
isotropically in all directions but, due to the effect of relativistic beaming,
only within the solid angle subtended by its surface, i.e. within the fraction
of a sphere given by the so-called "beaming fraction":

fb = (1− cos θj). (4.6)

Notice that when θj ≪ 1, then fb ≃ θ2j/2. Knowing the value of θj, one can
properly correct the value of Liso by multiplying it by the beaming fraction:

L = Liso × (1− cos θj). (4.7)

With all these provisions, the bolometric luminosity of GRB X-ray after-
glow can be expresses as:

L(t) = 4πD2
L(z)× FX(E1, E2, t)×K [0.3−30 keV] × (1− cos θj), (4.8)

where FX is the observed X-ray flux (in the 0.3− 10 keV band) as a function
of time. Note that the K-correction for our purposes was computed from
Eq. 4.5 using e1 = 0.3 keV and e2 = 10 keV as bandpass energy range, since
this is the working bandpass of the XRT, while for the rest frame band the
choice was to use E1 = 0.3 keV and E2 = 30 keV, since this is the energetic
band in which the bulk of the X-ray afterglow emission is expected to lie.
To build the comoving frame luminosity light-curve, it is also necessary to
correct the observed time tobs for the cosmological redshift: the rest frame
time will be expressed as:

trest =
tobs

(1 + z)
. (4.9)

As it is manifest from Eq. 4.8, the conversion to luminosity light-curves re-
quires the knowledge of the jet half opening angle θj, but measuring it is
a challenging task: indeed, long multi-wavelength afterglow monitoring is
required in order to measure the jet break time tjet (see Section 1.3.3). Inves-
tigating the literature, we were able to find the values reported in Tab. 4.1.
The fact that different works reported different θj for the same burst high-
lights the strong dependence of this parameter on the method and on the
model of surrounding medium which are assumed for its computation. In
the cases in which no θj could be measured, we took the values presented in
Zhu et al. (2023): some of them are labeled as "pseudo values" because for
those GRBs the tjet was not measured, but a "pseudo tjet" was derived from
the three parameters tjet,z −Ep,z −Eiso correlation (where tjet,z and Ep,z are,
respectively, the intrinsic values of jet break time and peak energy).
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GRB θj δθj+ δθj− Reference

051221A 6 2.1 1.9 Aksulu et al., 2022
060614 12.61 0.11 0.11 Zhu et al., 2023
061201 3.44 0.06 0.06 Zhu et al., 2023
070714Bp 8.59 0.92 0.69 Zhu et al., 2023
090510p 2.29 0.11 0.11 Zhu et al., 2023
110402A 15.02 1.13 3.68 Zhang et al., 2015
130603B 6.3 1.7 5.1 Aksulu et al., 2022
140903A 4 5 1.6 Aksulu et al., 2022
150424A 4.3 2.1 1.5 Escorial et al., 2022
151229A - - - -
161001A - - - -
170728B 3.5 1.1 0.8 Escorial et al., 2022
180618A - - - -
210323Ap 2.86 0.23 0.23 Zhu et al., 2023
211211A 6.86 0.12 0.12 Zhu et al., 2023

p In these cases, the angles found are pseudo values derived
from three parameters tjet,z − Ep,z − Eiso correlation.

Table 4.1: Jet opening angles values for the 15 GRBs included in the "plateau" subsam-
ple.

4.2 Derivation of magnetar parameters
At this stage of the work, after having taken into account the opening angle
values quoted in Tab. 4.1, the observed flux afterglow light-curve for each
of the 15 cases included in the "plateau" subsample was converted to rest
frame luminosity light-curve using Eq. 4.8. In this way, it was possible to
use the magnetar model introduced in Section 1.3.5 to fit these light-curves
and derive two important magnetar parameters: the magnetic field strength
B and the spin period P . For this purpose, the same model employed in
the work of Stratta et al. (2018) and available on Giulia Stratta, Magnetar
Model, (2018), GitHub repository1 was adopted. In this model, the following
assumptions regarding the magnetar properties are made:

– the magnetar is assumed to radiate its whole energy isotropically, θNS =
90 deg (if the magnetar emission was instead anisotropic, θNS < 90 deg,

1https://github.com/gistratta/magnetar

https://github.com/gistratta/magnetar
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we would expect an increase of the magnetar parameters B and P by
a factor f

−1/2
b );

– the direction of magnetar magnetic field B is perpendicular to the di-
rection of magnetar angular momentum l, θB−l = 90 deg (if the two
axes were perfectly aligned, θB−l = 0 deg, we would expect a decrease
of the magnetar parameters B and P by a factor

√
2);

– the magnetar model coefficient k′ = 4ϵe(d ln t/d lnT ) (see Eq. 1.23) is
kept < 1. We recall that ϵe is the electron energy fraction while the
factor (d ln t/d lnT ) encloses the hydrodynamical evolution of the shock
(Dall’Osso et al., 2011): the condition on k′ implies ϵe < 0.5;

– the magnetar model is tested for three fixed values of α = (3 − n)/2
(where n is the braking index introduced in Eq. 1.17), namely α =
0.1, 0.5, 0.9 (see Stratta et al., 2018);

– the magnetar bolometric luminosity is approximated with the luminos-
ity computed in the 0.3− 30 keV energy range;

– the total moment of inertia of the magnetar is approximated by (Lat-
time & Prakash, 2007):

INS ≃ 0.237MNSR
2
NS(1 + 2.84 βNS + 18.9 β4

NS), (4.10)

where βNS = GMNS/(RNSc
2) is the NS compactness parameter.

Additionally, we note that we adopted fixed and standard values for the NS
mass (MNS = 1.4M⊙) and radius (RNS = 12 km).

The fit was performed for each of the 15 bursts in the "plateau" sub-
sample for all the three values of α. By doing this, it became clear that the
results did not show any strong dependence on the α parameter, that was thus
set to 0 (corresponding to a braking index n = 3). Moreover, since the light-
curves of 9 out of 15 cases showed evidence of a steep decay phase preceding
the plateau (see Section 1.3.4), for these bursts the fit was performed adding
am early power-law component to the original magnetar model: in this way,
the plateau was better constrained, which provided better estimates of the
B- and P -values.

To start the fit, the starting time t0 and the ending time tend had to be
provided (both values are referred to the burst’s rest frame). The starting
time t0 was fixed at the beginning of the steep decay phase in the 9 bursts
for which a steep decay was present, while for the other 7 cases it was fixed
to coincide with the value of t0 used for the light-curve fitting (and quoted
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in Tab. 3.2), corrected for the cosmological redshift (Eq. 4.9). The ending
time tend was instead taken as the time corresponding to the last data point,
except for 3 cases (GRB 070714B, GRB 090510 and GRB 210323A) in which
the luminosity at late times showed a significant decrease. This was done
because this effect is likely a signature of the presence of a so called "jet
break" (see Section 1.3.3). In the future development of the model, also this
feature will be taken into account in order to reproduce the light-curve in
the most accurate way.

The 12 bursts for which the fit allowed to derive good estimates of the
magnetar parameters B and P were include in the final "magnetar" subsam-
ple. The best-fit results for these 12 bursts are reported in Tab. 4.2: together
with the parameters B and P , the input parameters needed to define the
model are reported too. The cases for which the power-law component was
added to the model in order to account for the steep decay phase are labeled
with an ’∗’.

GRB name Input Output
z θj log t0 log tend B P χ2 ν

(deg) (s) (s) (1014 G) (ms)

051221A* 0.5464 6 1.95 5.8 (34± 4) (13.1± 0.9) 105.7 73
060614* 0.125 12.61 2 6.3 (46.7± 0.4) (28.3± 0.4) 1317.4 488
070714B* 0.923 8.59 1.8 3.8 (175± 43) (8.3± 1.0) 122.3 50
090510 0.903 2.29 1.72 3.5 (84± 13) (4.89± 0.12) 117.2 63
110402A* 0.854 15.02 2.45 4.25 (126± 41) (15.3± 1.9) 31.6 15
130603B 0.3568 6.3 1.712 5 (130± 9) (14.5± 0.4) 132.5 70
140903A* 0.3529 4 1.89 5 (32± 3) (12.1± 0.4) 52.3 35
150424A* 0.3 4.3 2.656 5.6 (29± 11) (13± 4) 38.6 31
161001A* 0.67 5* 1.96 5.1 (99± 13) (2.7± 0.9) 74.8 54
170728B 1.272 3.5 2.245 5.7 (24.0± 1.4) (1.33± 0.07) 212.3 194
210323A* 0.733 2.86 1.99 4.3 (45.3± 0.9) (9.1± 0.2) 43.7 16
211211A* 0.0763 6.86 1.9 5 (152± 41) (31± 5) 1242.8 270

Table 4.2: Best-fit values of the magnetar parameters B and P for the 12 cases included
in the "plateau" subsample for which the magnetar model fit of the luminosity light-curve
resulted successful. The ’∗’ labels the bursts for which a steep decay power-law component
was added to the original magnetar model. Together with the fit results, for each case the
4 input parameters needed to run the model are listed too.

In Fig. 4.1 the rest frame luminosity light-curves for each of the 12 bursts
included in the "magnetar" subsample are shown, together with the best-fit
magnetar model. Notice that, in the case of GRB 150424 (Fig. 4.1h), even
if the steep decay phase is present, the results reported in the plot and in
Tab. 4.2 are the ones obtained with the original magnetar model: indeed,



4.2. Derivation of magnetar parameters 77

for this burst the addition of the power-law did not lead to a successful fit.
This SGRB is characterized by the largest value of breaking time (tbreak =
2.03× 105 s), suggesting a particularly long plateau phase: a deeper analysis
of this case will be carried out in the future development of this work.

For two bursts, it was not possible to constrain the values of B and P :
these are GRB 151229A and GRB 180618A. Inspecting the values of tbreak
(Tab. 3.2) and the tbreak distribution (Fig. 3.13) for these two cases, it is
evident that they are the outliers of the distribution, their tbreak being at
least one order of magnitude smaller than all the other break times. This
translates in a very short plateau phase, consisting of very few data, and this
does not allow to model properly the plateau phase, preventing the derivation
of a reliable estimate of B and P parameters.

In the case of GRB 061201, instead, the magnetar parameters resulted
in being not in line with the values we would expect in standard magnetars:
the magnetic field B > 780× 1014 G is extremely large for a magnetar, while
the long spin period P > 37 ms corresponds to an object that is rotating too
slowly to be considered a magnetar. For these reasons, also this burst was
not considered as a good magnetar candidate.

These three cases were thus cast aside and included in the so-called "failed
magnetar" subsample.

One thing that has to be underlined is the fact that, under the assumption
that the magnetar emission is isotropic (θNS = 90 deg), our model becomes
independent on the value of θj we provide. Indeed, the derived magnetar
parameters are related to the isotropic luminosity of the spinning down mag-
netar, Liso

sd . However, assuming a jet geometry for the GRB, only a fraction
fb of the magnetar luminosity will be intercepted by the jet and will then
contribute to the observed X-ray flux, namely:

Ljet
sd = fb L

iso
sd . (4.11)

On the other hand, as already seen in Section 4.1, in case of a jet structure,
the beaming fraction fb can be used to relate the equivalent isotropic quanti-
ties to the corresponding intrinsic value: this is valid also for the luminosity:

L = fb L
iso, (4.12)

where L is the intrinsic, beaming-corrected afterglow luminosity, while Liso

is the isotropic equivalent afterglow luminosity derived directly from the ob-
served flux. Under the assumption that all the luminosity observed during
the afterglow plateau phase is generated by the fraction of the magnetar spin-
down luminosity intercepted by the jet, namely L = Ljet

sd , combining Eq. 4.11
and Eq. 4.12 it is straightforward to derive:

Liso
sd = Liso, (4.13)
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meaning that the isotropic equivalent luminosity Liso, which can be easily
derived from the observed flux, corresponds to the isotropic luminosity of
the magnetar Liso

sd , which is the physical quantity from which it is possible to
estimate both the B field strength and the spin period P .
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Figure 4.1: Results of the analysis of the rest frame, beaming corrected, luminosity light-
curves (blue dots) in the energy range 0.3−30 keV (rest frame) for the 12 cases included in
the "plateau" subsample for which it was possible to derive the best-fit parameter B and
P performing the fit with the magnetar model for the afterglow. The red line represents
the best-fit magnetar model. Both axes are in logarithmic scale.
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Figure 4.1: -continued
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Figure 4.2: Isotropic luminosity light-curves (rest frame) for all the 19 bursts included
in the "EE-only" subsample. It is clear how for the majority of these cases, the bulk of
the emission is gathered around ∼ 100 s and after that we observe a sharp drop (steep
decay), as predicted for the EE phase. Both axes are in logarithmic scale.

In Section 3.2.2, 19 bursts were classified in the subsample named "EE-only"
(see Tab. 3.1) since the data available in all these cases were either limited
to the EE phase alone, or contained too few points of the afterglow emerging
after the EE to obtain a significant fit. For these reasons, we excluded these
cases from the light-curve fitting analysis, together with the SNR-rejected
cases (25) and the "special case" of GRB 150101B. However, while the latter
26 bursts can be referred to as "inconclusive", since it was not possible to
derive any information about the afterglow or a possible plateau phase, a
further analysis was performed for the "EE-only" sample.

The rest frame, isotropic equivalent luminosity light-curves of the 19 EE-
only bursts, derived through the procedure described in Section 4.1 with
θj = 90 deg, are shown in Fig. 4.2. Despite the lack of afterglow data, we
used our prior knowledge of the properties of afterglow plateaus to verify
whether the available EE data were consistent with the possible presence of
an X-ray plateau, or if the latter could be confidently ruled out. In particular,
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we relied on two rather general considerations:

– no GRB plateau (neither in long nor in short bursts) was observed to
last more than ∼ 105 s, so we took this as a conservative estimate of
the maximum plateau duration;

– because we expect millisecond-spinning NS to be formed in BNS merg-
ers, we adopted 1050 erg as a conservative lower limit to the spin energy
of a stable NS remnant, corresponding to a spin period ≈ 18 ms.

Starting from these two conservative assumptions, one can define two com-
plementary criteria to identify the cases in which the presence of a magnetar
can be confidently ruled out: the Lp,min- and the κ′-criterion.

4.3.1 Lp,min-criterion

Recalling that the spin energy of a NS is proportional to its spin period Pms

(expressed in ms) through the relation Espin,i = 3×1052 P−2
ms , one can use the

standard approximation (Dall’Osso & Stella, 2022):

Lp(t) ∼ ϵsd
Espin,i

Tp

(
1 +

t

Tp

)−2

∝ Espin,i

Tp

, (4.14)

to link the initial plateau luminosity Lp(t) to the plateau duration Tp and to
the initial spin energy Espin,i. Considering the above assumptions of a max-
imum spin period ≃ 18 ms (corresponding to a minimum spin energy) and
of a maximum plateau duration ∼ 105 s, Eq. 4.14 gives a conservative esti-
mate of the minimum luminosity at which we expect to observe a magnetar
plateau only when its luminosity Lp(t) satisfies:

Lp(t) ≳ Lp,th ∼ 1045 erg s−1 (4.15)

Inspecting the isotropic luminosity light-curves for all the 19 bursts in-
cluded in the "EE-only" subsample (represented singularly in Fig. A.3), we
derived the luminosity Lp,min corresponding to the last detection: these val-
ues are reported in the second column of Tab. 4.3. Since Eq. 4.15 sets a
lower threshold on the plateau luminosity, we could confidently exclude the
presence of the plateau in the cases for which Lp,min ≲ Lp,th. Indeed, if a
plateau is not observed (and this is true by definition for "EE-only" cases)
and the last detections are below Lp,th, then the plateau is not present. On
the other hand, the bursts which matched the criterion reported in Eq. 4.15
represent cases for which no conclusion could be drawn, since we lack data at
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lower luminosities where a plateau may still be present. Following this crite-
rion, the presence of a plateau (and thus of a magnetar) could be excluded
in 7 of the bursts in the "EE-only" sub-sample (bold values in third column
of Tab. 4.3).

4.3.2 κ′-criterion

To confirm and cross-check the previous selection, we decided to follow the
approach proposed in Dall’Osso, Stratta, et al. (2023). In this work, they
compare the minimum luminosity of the prompt emission preceding the steep
decay (Lγ,min), and the initial NS spin down luminosity (Lsd), finding they
can be related through:

κ = Lγ,min/Lsd ≈ 1.2× 105 ϵ P 5/3(R6M
2/3
1.4 )

−1, (4.16)

with ϵ the radiative efficiency (typically ∼ 0.1) of the prompt emission, P
the NS spin period in seconds, R6 = RNS/(10

6 cm), M1.4 = MNS/(1.4M⊙).
Note that, for given NS mass and radius, κ is function of the NS spin period
alone. Thus, in the framework of the magnetar model, the assumed lower
limit for the spin energy (corresponding to a period P ≈ 18 ms) allows to
derive an upper limit for this ratio, κ ≲ 10.

It is important to stress that the value of Lγ,min refers to the prompt
emission, for which beaming must be taken into account: the correspond-
ing isotropic equivalent value can be compute through Liso

γ,min = Lγ,minf
−1
b ,

where we rescale it by the beaming fraction. Conversely, Lsd is an isotropic
luminosity since it indicates the magnetar spin-down power. Taking this into
account, one can derive from Eq. 4.16 a relation which depends only on
isotropic luminosities:

κ′ =
Liso
γ,min

Lsd

=
Lγ,min

Lsd

f−1
b = κf−1

b (4.17)

Note that all the 19 cases lack information about the jet opening angle θj
(since no afterglow data are available). However, assuming a common average
value for the beaming fraction fb = 0.01 (a reasonable value for SGRBs,
corresponding to a θj ∼ 8 deg), we conclude that the upper limit for κ
corresponds to the threshold:

κ′ ≲ 103. (4.18)

For each of the 19 "EE-only" light-curves, the ratio κ′ was computed
considering the value of the luminosity prior to the steep decay as Liso

γ,min,
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while Lsd was approximated with the minimum detected luminosity, since
Lp,min ≳ Lsd by definition. These values are quoted in Tab. 4.3.

For 9 bursts, the value of κ′ was found to exceed the threshold of Eq. 4.18
(bold values in fourth column of Tab. 4.3): these correspond to the 7 bursts
singled out with the Lp,min-criterion, and two additional cases, GRB 080503
and GRB 191031D.

GRB name logLγ,min logLp,min logLiso
γ,min/Lp,min

051210 49.4 48.1 ∼ 1.3
060801 48.1 45.9 ∼ 2.2
071227 47.8 43.0 ∼ 4.8
080123 48.0 44.5 ∼ 3.5
080503 49.7 45.8 ∼ 3.9
080905A 47.1 43.9 ∼ 3.2
090515 47.5 45.2 ∼ 2.3
100117A 48.5 45.0 ∼ 3.5
101219A 48.3 45.7 ∼ 2.6
120305A 47.6 43.1 ∼ 4.5
150120A 47.4 45.9 ∼ 1.5
160408A 48.2 46.6 ∼ 1.6
1604010A 49.5 48.3 ∼ 1.2
160624A 47.8 45.1 ∼ 2.7
181123B 47.9 46.0 ∼ 1.9
191031D 50.1 47.1 ∼ 3
200219A 49.0 43.9 ∼ 5.1
200907B 47.7 46.6 ∼ 1.1
211227A 48.7 43.6 ∼ 5.1

Table 4.3: Logarithmic values of the minimum luminosity of the prompt emission preced-
ing the rapid decay Lγ,min and of the luminosity Lp,min corresponding to the last detection
derived from a qualitative study of the light-curves of the 19 cases included in the "EE-
only" subsample. In the third column the logarithmic value of the ratio between these
two quantities is reported. The values in bold in third and fourth column are the ones not
matching either the Lp,min- (Section 4.3.1) or the κ′-criterion (Section 4.3.2), respectively.

We conclude with the following remarks:

– the Lp,min-criterion (Eq. 4.15) sets just a lower limit below which we
confidently exclude the eventuality to observe a plateau, but does not
give any information when our observations are limited to higher lumi-
nosities;
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– the κ′-criterion (Eq. 4.18), instead, sets a general relation between the
luminosity of the prompt emission and the luminosity of the magnetar-
powered afterglow and can be useful also at high luminosities. Indeed,
this additional criterion allowed us to rule out two more GRBs, that
were not excluded with the Lp,min criterion because of the high lumi-
nosity at which they went undetected.
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Figure 4.3: Two example of isotropic luminosity light-curves for two cases classified as
"EE-only (no magnetar)", i.e. cases which failed to match either one or both Lp,min- and
κ′-criteria and for which we could confidently rule out the presence of a magnetar. Indeed:
(a) Lp,min > 1045 erg s−1, but κ′ > 103; instead, for (b) both Lp,min < 1045 erg s−1 and
κ′ > 103 are observed. The red dashed line represents luminosity threshold Lp,th defined
in Eq. 4.15.
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Figure 4.4: Two example of isotropic luminosity light-curves for two cases classified as
"EE-only (inconclusive)", i.e. cases for which both Lp,min- and κ′-criteria were satisfied,
and so it was not possible to rule out the presence of a magnetar. Indeed, for both (a) and
(b), Lp,min > 1045 erg s−1, κ′ < 103. The red dashed line represents luminosity threshold
Lp,th defined in Eq. 4.15.
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To summarize, out of the 19 bursts included in the "EE-only" sample,
the 9 cases for which it was possible to confidently rule out the presence of
a magnetar were classified as "EE-only (no magnetar)" (two examples are
shown in Fig. 4.3). The remaining 10 bursts, i.e. the ones that matched both
our criteria, were instead cases in which it was not possible to either confirm
or rule out the presence of a magnetar: these were classified as "EE-only
(inconclusive)" (two examples are reported in Fig. 4.4). The importance of
this additional classification is clarified in the following section.

4.4 "Magnetar" fraction

20 40 60 80 100 120 140 160 180

Magnetar B field strength  [1014 G]

0

1

2

3

4

Fr
eq

ue
nc

y

(a)

10
1

Magnetar spin period P  [ms]

0

1

2

3

4

5

Fr
eq

ue
nc

y

(b)

Figure 4.5: Distribution of best-fit values of the magnetar parameters, (a) B field
strength and (b) spin period P (time axis in logarithmic scale), derived for the 12 bursts
for which the fitting of the luminosity light-curves with the magnetar model resulted suc-
cessful. The 3 cases classified as "failed magnetars" are not represented.

Out of the 15 cases included in the "plateau" subsample, only 12 resulted
in being good magnetar candidates: these defined the final "magnetar" sub-
sample (Section 4.2). On the other hand, 3 cases were classified as "failed
magnetar" since it was not possible to constrain the values of B and P from
the fit. The values of the best fit parameters B and P for the "magnetar"
subsample are reported in Fig. 4.5a and Fig. 4.5b, respectively. The values
of B lie in the range between ∼ 24× 1014 G and ∼ 175× 1014 G, while the
values of P are included in the range between 1.33 ms and 31 ms: both these
parameters are within the ranges expected for magnetars.
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Figure 4.6: Best fit values (with associated errors, in blue) obtained from the magnetar
model fit, reported on the logB−logP plane. There is evidence of a correlation between B
and P , as expected from the physics of the spin-up line for accreting NSs in Galactic binary
systems: the orange and green lines represent the expected B−P relations from accreting
NSs with mass accretion rates of 3.16× 10−5 M⊙ s−1 and 0.12M⊙ s−1, respectively.

In Fig. 4.6 the best fit values of B and P are plotted in the logB− logP
plane. We compared these values with those expected from accreting NSs:
indeed, several studies regarding the physics of the spin-up line for accreting
NSs in Galactic binary systems have firmly proven the existence of B − P
correlation. In particular, fixing a value of the NS mass accretion rate Ṁ ,
one can derive the relation (Bhattacharya & van den Heuvel, 1991; Yuanyue
et al., 2013):

B

1014G
≃
(

Peq

1ms

)7/6(
MNS

1.4M⊙

)5/6
(

Ṁ

0.01M⊙ s−1

)1/2(
RNS

12 km

)−3

, (4.19)

where Peq represents the so-called equilibrium period reached by the NS for
that specific value of Ṁ .

Considering the fixed values of NS mass and radius that were used in the
magnetar model fit (MNS = 1.4M⊙ and RNS = 12 km), from Fig. 4.6 it is
quite clear that, in the B − P plane, all the derived best fit values are well
comprised within the two lines obtained assuming a range of accretion rates
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3.16 × 10−5 M⊙ s−1 < Ṁ < 0.12M⊙ s−1: these values are in line with past
results (Bernardini, 2015; Stratta et al., 2018), suggesting that the same basic
physics of accreting NS is at play also in SGRBs (assuming higher values of
Ṁ compared to Galactic NS).

A graphic summary of the whole analysis process is portrayed in Fig. 4.7.

SNR-rejected (25), 29.41%
special (1), 1.18%
EE-only (inconslusive) (10), 11.76%
EE-only (no magnetar) (9), 10.59%
PL (25), 29.41%
failed magnetar (3), 3.53%
magnetar (12), 14.12%

(a)

EE-only (no magnetar) (9), 18.37%
PL (25), 51.02%
failed magnetar (3), 6.12%
magnetar (12), 24.49%

(b)

Figure 4.7: Pie charts showing how many SGRBs were found to be good magnetar
candidates, (a) with respect to the whole sample of 85 SGRBs, or (b) only with respect
to the cases on which we were able to draw conclusions on the presence of a magnetar,
either with the light-curve fitting or with the considerations introduced about the "EE-
only" sample: corresponding to a "magnetar" fraction 0.141 < fmag < 0.245.

This further classification led us to evaluating different strategies to un-
derstand the fraction of SGRBs which resulted in being good magnetar can-
didates: indeed, considering the 12 good "magnetar" candidates with re-
spect to the initial sample of 85 bursts, the associated "magnetar" fraction
is fmin

mag = 0.141 of the total. By contrast, it is reasonable to exclude from
the computation of this fraction all the cases for which we were not able
to draw any conclusion: this includes the "SNR-rejected" subsample (25),
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the "special case" of GRB 150101B and, thanks to the considerations on the
"EE-only" subsample provided for in Section 4.3, the 10 cases defined as "EE-
only (inconclusive)". In this way, the fraction is computed over a total of 49
bursts ("PL", "magnetar", "failed magnetar" and "EE-only (no magnetar)
subsamples), leading to a significant increase of the fraction, fmax

mag = 0.245.
The range derived for the "magnetar" fraction, namely 0.141 < fmag <

0.245 will be exploited in Chapter 5 to constrain the value of the maximum
stable mass of a BNS merger remnant. A further discussion of these value is
reported in Chapter 6.



Chapter 5

Astrophysical implications

In this chapter, the results derived from the previous analysis are exploited
to derive constraints regarding the physical properties of BNS mergers. In
Section 5.1, we briefly describe the different possible outcomes of a BNS
merger, focusing in particular on the role played by the maximum mass
of a gravitationally stable NS remnant, Mmax. The concepts of baryonic
and gravitational mass, introduced in Section 5.2 with a particular focus on
the semi-universal relation for NS mass (e.g., Lattimer, 2021), are used in
Section 5.3 to constrain the value of Mmax based on our interpretation of
SGRB plateaus. These constraints are reported and discusses in Section 5.4.

5.1 BNS merger remnants
BNS and NS-BH mergers are unique laboratories for studying the physical
properties of matter at supra-nuclear densities. Moreover, in contrast to bi-
nary BH-BH mergers, which are sources of GW but do not have any bright
electromagnetic (EM) counterpart, BNS mergers provide a link between EM
and GW signals. SGRBs were the earliest EM counterparts proposed for BNS
mergers and in the standard scenario they represent the emission produced
by a relativistic jet originated by the accretion of a debris torus onto a newly
formed BH, remnant of the merger (Paczynski, 1986; Eichler et al., 1989;
Popham et al., 1999): this was later tested via various general-relativistic
magneto-hydrodynamic (GRMHD) simulations (Ruiz et al., 2016), but it is
still far from becoming the definitive interpretation. Indeed, while the rem-
nant of a NS-BH merger is inevitably a BH, BNS mergers can also lead to the
creation of a NS as a remnant: the final outcome of the merger is strongly
dependent on the initial mass of the binary system and on the NS equation
of state (EOS).

89
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The determination of the NS EOS is still a highly debated topic, par-
ticularly at super-nuclear densities because of our limited understanding of
nuclear interactions in that regime, which is beyond the reach of terrestrial
laboratories. However, given a fixed mass of the binary system, a different
EOS will determine whether a stable object can be formed or not (Baiotti et
al., 2008; Hotokezaka, Kyutoku, et al., 2011). The great uncertainty about
the EOS limits the precision with which crucial properties of the NS like
its radius or its maximum stable mass Mmax can be derived: this is why
only indirect limits exist for Mmax, which were obtained only under specific
assumptions from the observation of SGRBs, or by modeling the NS mass
distribution. In any case, Mmax is the key parameter deciding the fate of a
BNS merger, namely the type of remnant that is formed and the resulting
EM signal (Fig. 5.1).

Figure 5.1: Artistic representation of the possible outcomes of a binary neutron star
(BNS) merger. The compact remnant that forms immediately after the merger is strongly
dependent on the value of total mass of the original binary system Mtot and its magnitude
with respect to the maximum stable mass for a neutron star, Mmax. If the BNS is too
massive (Mtot > (1.3 − 1.6)Mmax), the remnant undergoes a prompt collapse into a BH
(on the left). Conversely, a low mass BNS (Mtot < 1.2Mmax) would generate a long-lived,
stable SMNS, injecting its large rotational energy into the ejecta (on the right). In the
intermediate case (1.2Mmax < Mtot < (1.3 − 1.6)Mmax) either a HMNS or a short-lived
SMNS are produced, but both thess objects are thought to eventually collapse into a
BH (in the center). Shaded-coloured areas indicate the red and blue kilonova signatures
(Margalit and B. D. Metzger, 2017).

Inspecting the different outcomes, in the case in which the total mass
of the binary system Mtot is too high, the merger product will experience a
dynamical scale, or "prompt", collapse to a BH. This happens when Mtot

overcomes the critical threshold Mth ≈ kMmax, where k ≈ 1.3 − 1.6 is
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a factor inversely proportional to the NS compactness parameter Cmax =
GMmax/(R1.6c

2), with R1.6 is the radius of a 1.6M⊙ neutron star (Bauswein,
Goriely, et al., 2013). When instead the binary mass is slightly smaller,
Mtot ≲ Mth the remnant of the merger will be a hyper-massive neutron star
(HMNS) which is a NS sustained against gravitational collapse for a very
short time (from ∼ ms to ∼ 100 ms), by strong differential rotation. For
the cases in which Mtot ≲ 1.2Mmax, the merger produces a supra-massive
NS (SMNS) which will remain stable even when, around ≲ 10 − 100 ms
from the merger, differential rotation will be no more present thanks to uni-
form rotation, but also in this case GWs and magnetic dipole radiation will
eventually cause the collapse on of seconds (or few minutes in the most ex-
treme cases).The final case is that of a binary with an extremely low mass,
Mtot ≲ Mmax: the remnant will be an indefinitely stable NS (Margalit and
B. D. Metzger, 2017). Regardless of these differences, HMNSs, SMNSs or
even stable NS are expected to emit a GW signal even in the phases fol-
lowing the merger for several tens of ms or even more: the detection of this
post-merger GW emission could give us an insight on the nature of the rem-
nant and also place constrains on the NS EOS (Margalit and B. D. Metzger,
2017).

5.2 NS semi-universal relation
When talking about the mass of self-graviting objects, and in particular of
compact objects, it is fundamental to make a clear distinction between the
baryonic mass Mb and the gravitational mass Mg.

– The baryonic mass Mb is the sum of the masses of the individual baryons
forming the star (valid for any self-gravitating object like normal stars,
white-dwarfs and NSs) and is expressed as (Shapiro & Teukolsky, 1983):

Mb = 4π

∫ R

0

[
1− 2Gm(r)

rc2

]−1/2

ρr2dr, (5.1)

where R is the object radius, m(r) is the enclosed mass at a given radius
and ρ is the rest-mass density. The factor inside the square brackets is
needed to account for the effect of gravitational redshift.

– The gravitational mass is instead defined as:

Mg = 4π

∫ R

0

e

c2
r2dr, (5.2)
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where e is the energy density, accounting not just for the rest-mass but
also for the (negative) binding energy, thus reducing the total energy.

Both these equations are derived under the assumption that the object is non
rotating, but similar results can be obtained in the case of rotating models.

The key point here is that, in general, Mb ≥ Mg: indeed, considering the
relativistic relation between mass and energy, Mg can be thought as the sum
of Mb and the negative contribution Ebind ∼ −GM2/R < 0, so that:

Mg =
Etot

c2
=

Mb c
2 + Ebind

c2
= Mb +

Ebind

c2
≤ Mb (5.3)

For generic self-graviting objects the contribution of Ebind is typically negli-
gible, making Mb ≈ Mg (this is true to an accuracy of ∼ 10−6 even in white
dwarfs). However, this is not the case in compact objects like NS or BH, as
Ebind/c

2 becomes comparable to, yet smaller than, Mb.
The relation between the baryonic and gravitational mass of NS, which in

principle is dependent on the EOS adopted, can be approximated to an accu-
racy of a few percent by a semi-universal relation (quasi EOS-independent)
of the form (both masses are expressed in solar units, Lattimer, 2021):

Mb = Mg + (0.0602± 0.0016)M2
g + (0.0180± 0.0065)M3

g . (5.4)

Adopting this approximate relation, it is possible to derive a similar rela-
tion also for the remnant that would form from the merger of a BNS system.
Indeed, if Mb,1 and Mb,2 are the baryonic masses of the two NS forming the
binary, they can be expressed as a function of their gravitational masses Mg,1

and Mg,2 through Eq. 5.4. By doing so, the baryonic mass of the remnant of
the merger between these two objects will be expressed as:

Mb,rem = Mb,1 +Mb,2 −Mej, (5.5)

where Mej is the mass of the material ejected in the merger (in solar units),
while Mb,rem is linked to Mg,rem through Eq. 5.4, as expected for a NS.

5.3 BNS merger simulation
As stated in Section 5.1, a fundamental parameter of a BNS merger is Mmax,
the maximum stable mass of the remnant but, since this value strongly de-
pends on the NS EOS, up to now no definitive observational/theoretical
upper limits exist. However, several studies tried to derive indirect limits on



5.3. BNS merger simulation 93

this value, through the study of the mass distribution of NSs and of the prop-
erties of SGRBs, but all these results were obtained under strong assumptions
(Piro et al., 2017).

In this Thesis we will follow a similar approach, and use the results of our
analysis in Chapter 3 and the confirmation on the validity of the magnetar
model obtained in Chapter 4 to derive some constraints on the value of
Mmax. Nonetheless, to obtain our results we are forced to make some strong
assumptions:

– we assume that all SGRBs are produced by BNS mergers;

– we assume that Mmax sets a threshold between two possible outcomes
of the merger: the remnant will promptly collapse to a BH in the
case Mg,rem ≳ Mmax, while it will form an indefinitely stable NS if
Mg,rem ≲ Mmax. As explained in Section 5.1, this is a simplification,
and we will discuss its implications in Section 5.4;

– we interpret the plateau as the result of the extra energy injection
provided by a magnetar central engine.

Moreover, we adopted the semi-universal relation between Mb and Mg

of NS proposed by Lattimer, 2021 (Eq. 5.4). Within this framework, it is
possible to identify the fraction fmag derived in Section 4.4 (i.e., the fraction of
SGRBs which resulted in being good magnetar candidates) with the fraction
of BNS merger that create a stable NS remnant.

The code used for the following computation is reported in Appendix A.1
and is available on Luca Guglielmi, SGRB-thesis, (2023), GitHub repository1.

Our starting point consisted in generating a population of 105 BNS, which
represented the initial sample needed to start the computation of the mass
distribution of the merger remnant. To create the BNS population, the grav-
itational masses of the two components of the binary, Mg,1 and Mg,2, were
drawn from a Gaussian distribution with a mean of µ = 1.33M⊙ and stan-
dard deviation of σ = 0.09M⊙, where these values are the ones derived from
the Galactic NS population (as presented in Kiziltan et al. (2013), Antoniadis
et al. (2016), and Özel and Freire (2016)):

P(Mg|µ, σ) =
1√
2πσ

exp

[
−(Mg − µ)2

2σ2

]
. (5.6)

The gravitational mass distributions of the two components obtained in
this way, Mg,1 and Mg,2, were then translated in baryonic mass distributions

1https://github.com/gugliluc/SGRB-thesis

https://github.com/gugliluc/SGRB-thesis
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Mb,1 and Mb,2 through the semi-universal relation in Eq. 5.4. By doing so,
it was then possible to merge these two populations using Eq. 5.5 in order
to obtain the baryonic mass distribution of the remnant, Mb,rem. At first,
the mass of the ejected material was assumed to be negligible (Mej = 0M⊙),
being aware that any value larger than 0 would result in a lower value of
Mmax.

However, since our observable is the gravitational mass, it was necessary
to exploit again Eq. 5.4 to transform Mb,rem into the gravitational mass of
the remnant Mg,rem. This was achieved fixing the two coefficients at their
expectation values, and solving for Mg,rem the obtained third degree equation:

Mb,rem = Mg + 0.0602M2
g,rem + 0.0180M3

g,rem, . (5.7)

Considering the 105 values of Mg,rem obtained in this way, it was possible
to derive the mean µrem and the standard deviation σrem of this sample,
in order to define the associated Gaussian distribution P(Mg,rem|µrem, σrem),
according to Eq. 5.6.

What we obtained at this point is the probability distribution of the
gravitational mass of the merger remnant. This distribution provides a way
to link the "magnetar" fraction fmag with the fraction of BNS mergers which
would produce a stable remnant. Indeed, under the starting assumptions,
all the merger remnants with masses Mg,rem ≳ Mmax will directly collapse
into a BH, while the ones with masses Mg,rem < Mmax will form indefinitely
stable neutron stars. However, since it is reasonable to assume that only
a stable object can provide for the prolonged energy injection needed to
explain the plateau in the magnetar model framework, it is natural to connect
the "magnetar" fraction (fraction of SGRBs which resulted good candidates
for the presence of a magnetar as central engine) to the fraction of merger
remnants which are expected to be stable, namely:

fmag ≡ P(Mg,rem < Mmax) (5.8)

This can be done deriving the value of mass for which the cumulative dis-
tribution function (CDF) of the probability distribution of remnant mass
returns a value coinciding with that of fmag. This is exactly the definition of
quantile function Q, thus one can write:

Q(fmag) ≡ CDF−1(P(Mg,rem < Mmax)) = Mmax (5.9)

The value of Mmax derived with this procedure is exactly the maximum
mass for a stable remnant, defining the mass threshold above which we expect
the prompt collapse of the remnant into a BH. This whole procedure was
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carried out both for the minimum and maximum "magnetar" fraction, fmin
mag =

0.141 and fmax
mag = 0.245 respectively, derived in Chapter 4.

In Fig. 5.2 these results are represented graphically. The green histogram
is the initial mass distribution of the NS components of the binary system,
obtained drawing 105 outcomes from the Galactic distribution of BNSs. The
Gaussian distribution of the remnant masses Mg,rem is instead represented by
the red line, P(Mg,rem|µrem, σrem). The value of Mmax was derived both for the
minimum "plateau" fraction fmin

mag (Fig. 5.2a, Mmax = 2.27M⊙) and for the
maximum "plateau" fraction fmax

mag (Fig. 5.2b, Mmax = 2.31M⊙), assuming
an initial value of the ejected mass Mej = 0. This values clearly separate
between the range of masses in which we expect that a stable NS remnant
forms (azure region) and the range in which instead the remnant is expected
to be unstable and to collapse to a BH (yellow region).

Mej fmin
mag = 0.141 fmax

mag = 0.245

0 2.269 2.308
0.005 2.267 2.304
0.010 2.262 2.301
0.015 2.259 2.298
0.020 2.256 2.295
0.025 2.253 2.292
0.030 2.249 2.288
0.035 2.246 2.285
0.040 2.243 2.282
0.045 2.240 2.279
0.050 2.237 2.275
0.055 2.233 2.272
0.060 2.230 2.269
0.065 2.227 2.266
0.070 2.223 2.263
0.075 2.220 2.259
0.080 2.217 2.256
0.085 2.214 2.253
0.090 2.210 2.250
0.095 2.207 2.246
0.100 2.204 2.243

Table 5.1: Values of the maximum stable mass of the BNS remnant Mmax computed
both for fmin

mag and fmax
mag , assuming the mass of the ejected material (Mej) to vary in the

range [0− 0.1]M⊙. All the values are in solar units.
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Figure 5.2: The green Gaussian represents the initial distribution of gravitational masses
of the two NS composing the binary system, obtained drawing 105 values from the Galactic
distribution of BNS (µ = 1.33M⊙, σ = 0.09M⊙) for each component. The red line is the
Gaussian function which best represents the Mg,rem distribution, P(Mg,rem|µrem, σrem),
obtained combining the two components, assuming a negligible mass of the ejected material
(Mej = 0). The azure region represents the range of masses for which the remnant is
expected to be stable, namely the masses below the threshold identified by the maximum
stable mass Mmax, while the yellow region represents the range of values for which the
remnant is expected to collapse to a BH. In (a), a "magnetar" fraction fmin

mag = 0.141 was
assumed, leading to a threshold Mmax = 2.27M⊙, while in (b) fmax

mag = 0.245, leading to
a threshold Mmax = 2.31M⊙.

This whole procedure was repeated for values of Mej spanning in the
range [0 − 0.1]M⊙, increasing the value of 0.005M⊙ at each iteration and
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computing Mmax both for fmin
mag and fmax

mag . The upper value of 0.1M⊙ was
taken as a secure upper bound since from simulation the mass of the ejecta
appears to be always smaller than this threshold (Endrizzi et al., 2016). The
obtained results are quoted in Tab. 5.1.

5.4 Maximum stable mass range
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Figure 5.3: Mg,rem distribution in the case of Mej = 0.06M⊙ (red line). The azure
region represents the range of masses for which a stable remnant is expected, computed
assuming fmax

mag (corresponding to Mmax = 2.27M⊙), while the yellow region is the range
of masses in which the remnant is expected to collapse: interestingly, the range of values
between which the remnant of GW 170817 is expected to lie (gray region) falls precisely
in the unstable region, accordingly to observations which proved it collapsed to a BH.

An interesting way to validate the results found above is to compare them
with the only case of detected BNS merger for which it was possible to de-
rive the mass of the NS components: this is the case of GRB 170817/GW
170817 (Abbott et al., 2017). Indeed, for this merger the component grav-
itational masses are inferred to lie in the range between 1.16 and 1.60M⊙
(with a total mass 2.73+0.04

−0.01 M⊙), when the spins are restricted to the range
observed in Galactic BNS (Abbott, 2019). Moreover, from the study of the
kilonova emission associated to the event, the ejected mass for this merger
was estimated to be of the order of Mej = 0.06M⊙ (Shibata & Hotokezaka,
2019). Assuming two extreme case values for the progenitor masses, i.e.
(i) Mg,1 = 1.60M⊙ and Mg,2 = 1.16M⊙ and (ii) Mg,1 = Mg,2 = 1.60M⊙,
exploiting the same approach outlined in Section 5.2, by solving Eq. 5.7 it
was possible to derive a range of gravitational masses of the remnant for
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GW 170817, namely 2.39 < Mg,rem/M⊙ < 2.43. In Fig. 5.3, this range (gray
region) is compared with the threshold on the maximum stable mass derived
for the case of Mej = 0.06M⊙ and fmax

mag = 0.245 , namely Mmax = 2.27M⊙
(see Tab. 5.1). From this plot, it is evident how the remnant formed in the
BNS merger associated with GW 170817 falls precisely within the range of
masses for which the remnant is expected to be unstable (yellow region): this
is indeed confirmed by observations, which proved that even assuming that a
NS remnant was formed, it collapsed to a BH within the first few ms (Mar-
galit & B. D. Metzger, 2017; B. D. Metzger, T. A. Thompson, et al., 2018).
This provide additional evidence to the legitimacy of the results obtained in
Section 5.3.
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Figure 5.4: Graphic visualization of the results quoted in Tab. 5.1, showing how the
value of maximum stable mass Mmax depends on the mass of the ejected material Mej.
The two lines correspond to the minimum (fmin

mag, in blue) and the maximum (fmax
mag , in

red) "magnetar fraction". For a fixed value of Mej, the actual value of Mmax is expected
to confidently lie in the range of value defined by these two lines.

The values of Mmax quoted in Tab. 5.1, can be better interpreted via
a graphic representation (see Fig. 5.4): in fact, plotting the value of Mmax

with respect to Mej, one can appreciate how the maximum stable mass is
inversely proportional to the mass of the ejected material, since the more
mass is ejected during the merger, the less massive will be the remnant. The
range [0 − 0.1]M⊙ for Mej is a conservative range inside which the value of
masses of ejected material derived from BNS merger GRMHD simulations
are confidently contained (Endrizzi et al., 2016). Moreover, doing the same
procedure both for the minimum (fmin

mag, in blue) and the maximum (fmax
mag , in

red) "magnetar" fractions derived in Chapter 4 allows to define a range of
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values within which the value of Mmax is expected to be constrained, namely
2.20 < Mmax/M⊙ < 2.31.

It is interesting to notice that the value of Mmax is strongly dependent
on the value of Mej: during a BNS merger different amounts of ejected ma-
terial would result in a completely different threshold for the stability of the
remnant. The choice to calculate these values both for fmin

mag and fmax
mag is

justified by the fact that we wanted to provide a conservative range for the
values of Mmax since we considered both the lowest and the highest fraction
of magnetars we were able to find in our sample.

However, it is important to take into account how these results would
be affected in case of relaxing the adopted working assumptions, namely (i)
all SGRBs are produced by BNS mergers and (ii) the necessary condition
to observe a plateau is that it must be produced by an indefinitely stable,
which means an object with a mass lower than Mmax.

– (i) conceding that a considerable fraction of SGRBs are associated
to NS-BH mergers, the sample on which the "magnetar" fraction is
computed would be reduced, since it should include only cases in which
two NS are present. This would lead to an increase of the values of Mmax

derived above.

– (ii) on the other hand, admitting that a significant number of gravi-
tationally unstable remnants may collapse to a BH with a significant
delay (> several hundreds of seconds), this would mean that some of
the plateaus could be produced by unstable objects too, and neglecting
this would lead to overestimating the value of Mmax. If this were the
case, taking it into account would result in a reduction of the bounds
on Mmax.



Chapter 6

Conclusions and outlook

The launch of Swift in 2004 led to an unprecedented level of detail in the
study of the early phases of GRB afterglows, with the definition of a canonical
behaviour of their X-ray light-curves and, in particular, with the discovery
of a shallow decay phase, commonly referred to as plateau, which challenged
the standard synchrotron interpretation of afterglow emission. So far no con-
sensus has been reached on the plateau origin. The currently leading inter-
pretation invokes continuous energy injection into the afterglow-producing
external shock. The source of energy can be a newly born spinning-down NS
with a strong magnetic field, i.e. a magnetar. In this scenario, the incidence
of plateaus in SGRBs and LGRBs encodes crucial information on the nature
of the GRB engine and on its formation process. However, other possible
interpretations are under study, e.g. energy injection in the form of a wide-
angle jet structure being revealed over time due to the combined effects of
relativistic beaming and time-delay. In general, any viable interpretation
must reproduce the incidence of the observed plateaus among LGRBs and
SGRBs. While it was previously established that plateaus are present in
more than half of LGRBs, a reliable value for the fraction of SGRBs showing
a plateau in their X-ray afterglow was still not available.

"Plateau" fraction
The main aim of this Thesis work is to compute the fraction of SGRBs with a
plateau feature in their afterglow light-curve and this was achieved through a
detailed analysis of one of the most updated and complete samples of SGRBs
with known redshift. Out of the 85 SGRBs composing the initial sample, 15
were included in the so-called "plateau" subsample since they were found to
satisfy all the criteria which we defined to ascertain the presence of a plateau.

100
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These criteria were the following:

– an afterglow light-curve with total signal-to-noise ratio SNRtot ≥ 10,
in order to have enough data to characterize the time behaviour;

– an afterglow for which the smoothly broken power-law (BPL) fit re-
sulted in being statistically more significant with respect to the simple
power-law (PL) fit, according to an F -test with rejection threshold at
4-σ (corresponding to a p-value of 6.2× 10−5);

– the best-fit BPL should have the first time decay index α1 ≤ 0.75, since
the standard synchrotron afterglow model fails to give an interpretation
to values below this threshold and an alternative model is needed;

– a negligible spectral variability across the power-law break, to ensure
that the plateau is not caused by any kind of spectral evolution (like,
e.g., in the synchrotron model) and therefore demands to be interpreted
considering energy injection.

The analysis that led to identifying "plateau" sample, consisted in sev-
eral steps. Initially, 45 bursts out of 85, referred to as "uninformative" events,
were cast aside since they did not allow a detailed study of the afterglow:
namely, the "SNR-rejected" subsample (25 bursts), lacking the statistics nec-
essary to carry out a proper analysis; the "EE-only" subsample (19 bursts),
showing only data relative to the extended emission phase; the "special case"
of GRB 150101B, showing only late-time data. The remaining 40 bursts, de-
fined as "LC-fit" sample, were subject to the light-curve fitting and allowed
to define the "PL" subsample (25 bursts), for which the BPL fit was not sta-
tistically significant, and the "BPL" subsample (15 bursts), for which instead
the BPL fit resulted in being a significative improvement. These latter were
further studied to check the values of α1 and the spectral variability, and
eventually they were all promoted in the "plateau" subsample. In turn, this
led to the definition of a minimum and maximum "plateau" fraction. Indeed,
considering only the 40 bursts in the "LC fit" sample", the "plateau" sub-
sample coincided with a fraction fmax

plateau = 0.375. On the opposite extreme,
one may assume that all of the 45 bursts classified as "uninformative" are
effectively cases lacking a plateau: this corresponds to a minimum fraction
fmax
plateau = 0.176 . Both these values happen to be much lower with respect to

the fraction ≥ 50% observed for LGRBs.
It is important to highlight that these results were obtained adopting

a completely "agnostic" approach, without assuming any specific model for
the plateau phase: this means that our results are general and may prove
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useful to any future work devoted to studying the origin of plateaus. However,
whichever the model adopted to interpret afterglow plateaus, it must be able
to explain both the range of values 0.176 < fplateau < 0.375 and why this
fraction appears to be much lower than in LGRBs.

In this respect, the "structured jet model", which is one of the two leading
models adopted to explain afterglow plateaus, seems to fail in satisfying the
second requirement. Indeed, this model interprets the plateau as a geometri-
cal effect due to the combination of the angular energy profile of the jet and
the orientation of the observer’s line of sight. If this were the case, justifying
the lower value of fplateau in SGRBs with respect to LGRBs would require
to concede that SGRBs are visible under larger viewing angles compared to
LGRBs, also at high z. However, this would go against the evidence: on one
hand, the observation of GRB 170817 proved that its jet had an opening an-
gle of ∼ 5 deg, quite typical of any GRB (fb ∼ 100−200); on the other hand,
since SGRBs are on average less luminous than LGRBs, it is reasonable to
expect to observe them over a similar range of angles, if anything a little
smaller due to their lower luminosity. In order to explain the lower plateau
incidence with geometric effects, we would have to impose significantly less
beamed jets in SGRBs, visible over a wider range of lines-of-sight, opposite
to existing evidence.

On the other hand, the other main theoretical model proposed to interpret
the nature of plateaus in X-ray afterglows, the "magnetar model", provides
a more natural interpretation of these results. Indeed, while the population
of magnetars associated to CCSNe is well consistent with the rate of LGRBs
(so that they may represent a large fraction of GRB central engines), it
is reasonable to assume that only a fraction of BNS mergers will produce
a magnetar remnant, because most remnants are expected to have masses
above Mmax and will thus quickly collapse to BHs, without any possibility of
providing an extra energy injection.

"Magnetar" fraction
Building on the above arguments, in this Thesis work the magnetar model
has been chosen to further test its validity. Fitting with this model (Dall’Osso
et al., 2011; Stratta et al., 2018) the afterglow light-curves of the 15 bursts in-
cluded in the "plateau" subsample, we identified 12 of them as good magnetar
candidates, defining the "magnetar" subsample, while 3 of them were found
to be inconsistent with the magnetar model and were classified as "failed
magnetars": these latter call for further study in the future. Comparing the
"magnetar" subsample to the initial sample, we derived a minimum "mag-
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netar" fraction fmin
mag = 0.141. This is a conservative value obtained assuming

that all the 45 bursts classified as "uninformative" do not effectively host a
magnetar central engine. However, reconsidering the 19 bursts included in
the "EE-only" subsample in the framework of the magnetar model, it was
possible to confidently exclude the presence of a magnetar in 9 of them, de-
fined as "EE-only (no magnetar)": this allowed to recompute the "magnetar"
fraction considering only on the 49 bursts ("EE-only (no magnetar)"+ "mag-
netar"+ "failed magnetar"+"PL") for which it was possible to discriminate if
a magnetar was present or not, obtaining the maximum value fmax

mag = 0.245.
The range of values derived for the "magnetar" fraction, 0.141 < fmag <

0.245, was then exploited to derive physical constraints on the nature of the
remnant itself.

Constraints on Mmax

The values of fmag obtained in our work were exploited to infer an upper and
lower bound for the maximum stable mass, Mmax, of the NS remnant of a BNS
merger. The range of values derived simulating the merger of a sample popu-
lation of 105 BNSs drawn from the galactic NS mass distribution is depicted
in Fig. 5.4 for both values of fmag and for Mej in the range [0− 0.1]M⊙. We
obtained 2.20 < Mmax/M⊙ < 2.31: these values are subject to some uncer-
tainties due to the fact that they were derived under the assumptions that
(i) all SGRBs are produced by BNS mergers and (ii) a plateau phase can be
produced only by an indefinitely stable remnant, which is strictly required
to have a gravitational mass lower than Mmax. Letting go of either of these
would affect to some extent the bounds mentioned above (as discussed in
Section 4.4).

However, our derived range for Mmax is consistent with the values ob-
tained by GRMHD simulations performed in the past years, or by combining
the GW observations of merging systems of BNS and quasi-universal rela-
tions (e.g. Piro et al., 2017; Rezzolla et al., 2018).

Future prospects
The natural extension of this Thesis work is the development of the energy
injection in a jet with wide angular structure, in order to capture details of
the observations that are not described by the current version of the model,
like, e.g., the effect of a moderately off-axis view of the jet or the evolution of
the broadband light-curve, including the optical data when available. This
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will allow a more accurate description of the available data and a better
characterization of the magnetar physical properties, the spin period and the
magnetic field strength.

An additional secure future development of the analysis will be to extend
it to the whole sample of Swift ’s SGRBs, taking into account also the more
recent bursts and the bursts which were not considered in our initial sam-
ple because they lacked the information about the redshift, which instead
resulted fundamental in the comparison of our results with the magnetar
model. This would allow to derive the "plateau" fraction fplateau on a much
larger sample, leading to an even more solid and general value which could
then be used as a strong reference for any work devoted to interpreting the
origin of the plateau phase in SGRBs. Moreover, in this work fplateau has
been proven to be a good proxy of the "magnetar" fraction fplateau: in this
perspective, an eventual confirmation of its value even on a larger sample
would provide us with additional evidence on the robustness of our conclu-
sion regarding the maximum stable mass of BNS remnants.

In the forthcoming years, the current and future scientific runs of Ad-
vanced LIGO and Virgo and, even more so, the increased sensitivity that
will be achieved by the Einstein Telescope will enable to derive information
about the masses of NS components and of BNS merger remnants with an
unprecedented detail. Therefore, the prospective confirmation of the values
of Mmax derived in this Thesis work will allow to further validate the hypoth-
esis that SGRBs are produced by compact object mergers and to add a new,
crucial piece of evidence in favour of the magnetar model.



Appendix A

Appendices

A1: Eiso values

Table A.1: Values of the isotropic equivalent energy Eiso, expressed in units of 1052 erg,
for the 42/85 SGRBs in the initial sample for which it was possible to recover information
about this value. Note that, depending on the reference, the range of energies chosen to
compute Eiso may be different. Bold entries are the 15 SGRBs included in the "plateau"
subsample.

GRB name Eiso Reference
(1052 erg)

050724 0.024 Tsvetkova, Frederiks, Svinkin, et al., 2021
051221A 0.31 Tsvetkova, Frederiks, Golenetskii, et al., 2017
060313 2.9 W. Fong, Berger, Margutti, et al., 2015
060614 0.27 Tsvetkova, Frederiks, Golenetskii, et al., 2017
060801 0.478 Tsvetkova, Frederiks, Golenetskii, et al., 2017
061006 0.21 Tsvetkova, Frederiks, Golenetskii, et al., 2017
061201 0.017 Tsvetkova, Frederiks, Golenetskii, et al., 2017
070714B 0.64 Tsvetkova, Frederiks, Golenetskii, et al., 2017
070724A 0.03 W. Fong, Berger, Margutti, et al., 2015
070809 0.09 W. Fong, Berger, Margutti, et al., 2015
071227 0.059 Tsvetkova, Frederiks, Golenetskii, et al., 2017
080905A 0.02 W. Fong, Berger, Margutti, et al., 2015
081226A 0.09 W. Fong, Berger, Margutti, et al., 2015
090426 0.24 Tsvetkova, Frederiks, Svinkin, et al., 2021
090510 5.71 Tsvetkova, Frederiks, Golenetskii, et al., 2017
091109B 0.18 W. Fong, Berger, Margutti, et al., 2015

Continue on the next page
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Table A.1: Values of the isotropic equivalent energy Eiso, expressed in units of 1052 erg,
for the 42/85 SGRBs in the initial sample for which it was possible to recover information
about this value. Note that, depending on the reference, the range of energies chosen to
compute Eiso may be different. Bold entries are the 15 SGRBs included in the "plateau"
subsample.(cont.).

GRB name Eiso Reference
(1052 erg)

100117A 0.22 W. Fong, Berger, Margutti, et al., 2015
100206A 0.051 Tsvetkova, Frederiks, Golenetskii, et al., 2017
101219A 0.651 Tsvetkova, Frederiks, Golenetskii, et al., 2017
110112A 0.03 W. Fong, Berger, Margutti, et al., 2015
110402A 1.52 Minaev and Pozanenko, 2019
111117A 0.55 W. Fong, Berger, Margutti, et al., 2015
120804A 0.657 Tsvetkova, Frederiks, Golenetskii, et al., 2017
121226A 0.37 W. Fong, Berger, Margutti, et al., 2015
130603B 0.196 Tsvetkova, Frederiks, Golenetskii, et al., 2017
130912A 0.16 W. Fong, Berger, Margutti, et al., 2015
131004A 0.138 Tsvetkova, Frederiks, Svinkin, et al., 2021
140129B 0.07 W. Fong, Berger, Margutti, et al., 2015
140516A 0.02 W. Fong, Berger, Margutti, et al., 2015
140622A 0.07 W. Fong, Berger, Margutti, et al., 2015
140903A 0.08 W. Fong, Berger, Margutti, et al., 2015
140930B 0.40 W. Fong, Berger, Margutti, et al., 2015
150101B 0.004 W. Fong, Berger, Margutti, et al., 2015
150424A 0.434 Tsvetkova, Frederiks, Golenetskii, et al., 2017
151229A 0.12 Zhu et al., 2023
160410A 9.3 Tsvetkova, Frederiks, Golenetskii, et al., 2017
161001A 0.30 Zhu et al., 2023
170728B 0.40 Zhu et al., 2023
180618A 0.39 Zhu et al., 2023
210323A 0.43 Zhu et al., 2023
211211A 1.24 Zhu et al., 2023
191019A 0.1 Lazzati et al., 2023
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A2: Results obtained from the light-curve fitting
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Figure A.1: Light-curves of the SGRBs for which a power-law fit (PL, in green) was
found to be was found to be enough to reproduce the data, since the broken power-law
(BPL) was found to be not statistically significant. (e) and (f) are the two cases showing
a flare, which was exvluded from the fit.
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Figure A.2: Light-curves of the 15 SGRBs for which a broken power-law fit (BPL, in
blue) was found to be more statistically significant than the simple power-law (PL).
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Figure A.2: -continued
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A3: "EE-only" isotropic luminosity light-curves
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Figure A.3: Isotropic equivalent luminosity light-curves (rest frame) for some of the cases
included in the "EE-only" subsample. The subplot shows the time behavior of the photon
index Γ. These were extensively exploited in Section 4.3 to verify Lp,min- and κ′-criteria.
The red line indicate the threshold Lp,th, defined in Eq.4.15.
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Figure A.3: -continued



112

A4: Mmax computation python code

1 """
2 Created on Thu Nov 23 12:01:49 2023
3 @author: Luca Guglielmi
4 """
5 import numpy as np
6 import numpy.polynomial.polynomial as pol
7 import statistics as st
8 from scipy.stats import norm
9 import matplotlib.pyplot as plt

10 plt.style.use('seaborn -ticks ')
11 import pandas as pd
12

13 m_sun = 1.989e33 #solar mass in g
14

15 #PARAMETERS OF THE GAUSSIAN SAMPLE
16 mu = 1.33 #*m_sun , average NS mass in galactic

distrib , ozel 2016
17 #mu = 1.32 # value from kilzilian2013
18 sigma = 0.09 #*m_sun , std for NS mass in galactic

distrib , ozel2016
19 #sigma = 0.11 # value from kilzilian2013
20 n_sample = 100000 #number of outcomes that i want to generate
21 frac_min = 0.14117#min fraction of GRBs included in the

magnetar subsample
22 frac_max = 0.2449 #max fraction of GRBs included in the

magnetar subsample
23 m_ej = 0. #mass of ejected material
24

25

26 #gaussian z score corresponding to the frac% left tail
27 z_min= norm.ppf(frac_min)
28 z_max= norm.ppf(frac_max)
29

30

31 #gravitational masses , what we measure from data ,
32 #it's smaller than baryonic mass because it takes into
33 #account also the binding energy , negative contribute
34 m1_g = np.random.normal(mu , sigma , n_sample) #* m_sun
35 m2_g = np.random.normal(mu ,sigma , n_sample) #* m_sun
36

37

38 #baryonic mass , real mass of the star , given
39 #by N_baryons*M_baryons , it is larger than the mass we

measure
40 m1_b = m1_g + 0.0602 * m1_g**2 + 0.0180 * m1_g**3
41 m2_b = m2_g + 0.0602 * m2_g**2 + 0.0180 * m2_g**3
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42

43 mu_b= st.mean(m1_b) #mean of the values of mtot_g
44 sigma_b = st.stdev(m1_b) #std of the values of mtot_g
45

46 #HERE I START THE FOR LOOP THAT COMPUTES THE VALUE OF Mmax
FOR BOTH FRACTION AND FOR ALL THE VALUES OF Mej RANGING
FROM 0 TO 0.01 Msun , INCREASING AT STEPS OF 0.005 Msun

47 import time
48 start=time.time()
49 for i in range(21):
50 #baryonic mass of the remnant ,
51 mtot_b = m1_b + m2_b - m_ej
52

53 mtot_b_mean = st.mean(mtot_b) #mean of mtot_b
54 mtot_b_std = st.stdev(mtot_b) #std of mtot_b
55

56 #HERE I CALCULATE THE GRAVITATIONAL MASS OF THE REMNANT
SOLVING A CUBIC EQUATION

57 #i do a for loop because i want to act on all the
outcomes i generated , mtot_g will be a list

58 mtot_g = []
59 for i in range(n_sample):
60 coeff = [-mtot_b[i], 1, 0.0602, 0.0180] #list of the

coefficients of the cubic equation
61 poli = pol.Polynomial(coeff) #the object poli is my

cubic equation
62 roots = poli.roots() #the method roots gives me a

list of the three roots of the cubic equation ,
written as complex numer a + bj

63 mtot_g.append(roots[2].real) # i take only
the third root from the array because it is the
only in the form a+0j (real solution) and i take
only the real part and add it to the list

64

65 #I convert mtot_g in an nparray , to do statistics on it
66 mtot_g = np.array(mtot_g)
67 mtot_g_mean = st.mean(mtot_g) #mean of the values of

mtot_g
68 mtot_g_std = st.stdev(mtot_g) #std of the values of

mtot_g
69

70

71 #Here i COMPUTE TH X VALUE CORRESPONDING TO THE z VALUE I
IMPLEMENTED IN THE BEGINNIG z = x- mean/std

72 m_gmax_1 = z_min * mtot_g_std + mtot_g_mean
73 m_bmax_1 = z_min * mtot_b_std + mtot_b_mean
74

75 m_gmax_2 = z_max * mtot_g_std + mtot_g_mean
76 m_bmax_2 = z_max * mtot_b_std + mtot_b_mean
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77

78

79 #HERE I PLOT THE HISTOGRAM OF VALUES I OBTAINED AND I USE
THE METHOD norm TO PLOT A CONTINUOUS GAUSSIAN DISTRIB
WITH SAME MEAN AND STD

80

81 fig = plt.figure ()
82 plt.hist(m1_g,bins=100,density=True , alpha=0.8, color='#

FF7D40 ',label = r'Initial distrib , $\mu = $'+str("
{0:.2f}".format(mu))+r', $\sigma =$'+str("{0:.2f}".
format(sigma)))

83 h=plt.hist(mtot_g , bins=100, density=True , alpha=0.6,
color='b', label = r'Final distrib , $\mu = $'+str("
{0:.2f}".format(mtot_g_mean))+r', $\sigma =$'+str("
{0:.2f}".format(mtot_g_std)))

84 plt.plot(h[1], norm.pdf(h[1],mtot_g_mean , mtot_g_std),
color = 'r', label = r'Gauss , $\mu = $'+str("{0:.2f}".
format(mtot_g_mean))+r', $\sigma =$'+str("{0:.2f}".
format(mtot_g_std)),linewidth = 2)

85 plt.vlines(m_gmax_1,0,3.2, linestyles='dashed ', color = '
#32 CD32',label=r"$M_{g,max}$ = "+str("{0:.2f}".format(
m_gmax_1))+r" $M_{\odot}\,(f_{plateau }=$"+str("{0:.2f}
".format(frac_min*100))+"%)")

86 plt.title(r'Initial and final $M_g$ distribution ($M_{ej
}=$'+str("{0:.3f}".format(m_ej))+" $M_{\odot}$)")

87 plt.xlabel(r'Initial and final $M_g$ [$M_{\odot}$]')
88 plt.ylabel(r'Number (units of $10^3$)')
89 plt.ylim([0,4.5])
90 plt.legend(loc= 'upper center ', fontsize=7)
91

92 plt.savefig('./'+'14_'+str("{0:.3f}".format(m_ej))+'
ej_magmassg.pdf', dpi = 600)

93 print("For threshold at"+str("{0:.2f}".format(frac_min*10
0))+"% and mejecta ="+str("{0:.3f}".format(m_ej))+"
Msun the maximum mass is ", m_gmax_1,"Msun")

94 #plt.show()
95

96 fig = plt.figure ()
97 plt.hist(m1_g,bins=100,density=True , alpha=0.8, color='#

FF7D40 ',label = r'Initial distrib , $\mu = $'+str("
{0:.2f}".format(mu))+r', $\sigma =$'+str("{0:.2f}".
format(sigma)))

98 h=plt.hist(mtot_g , bins=100, density=True , alpha=0.6,
color='b', label = r'Final distrib , $\mu = $'+str("
{0:.2f}".format(mtot_g_mean))+r', $\sigma =$'+str("
{0:.2f}".format(mtot_g_std)))

99 plt.plot(h[1], norm.pdf(h[1],mtot_g_mean , mtot_g_std),
color = 'r', label = r'Gauss , $\mu = $'+str("{0:.2f}".
format(mtot_g_mean))+r', $\sigma =$'+str("{0:.2f}".
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format(mtot_g_std)),linewidth = 2)
100 plt.vlines(m_gmax_2,0,3.2, linestyles='dashed ', color = '

#32 CD32',label=r"$M_{g,max}$ = "+str("{0:.2f}".format(
m_gmax_2))+r" $M_{\odot}\,(f_{plateau }=$"+str("{0:.2f}
".format(frac_max*100))+"%)")

101 plt.title(r'Initial and final $M_g$ distribution ($M_{ej
}=$'+str("{0:.3f}".format(m_ej))+" $M_{\odot}$)")

102 plt.xlabel(r'Initial and final $M_g$ [$M_{\odot}$]')
103 plt.ylabel(r'Number (units of $10^3$)')
104 plt.ylim([0,4.5])
105 plt.legend(loc= 'upper center ', fontsize=7)
106

107 plt.savefig('./'+'24_'+str("{0:.3f}".format(m_ej))+'
ej_magmassg.pdf', dpi = 600)

108 print("For threshold at"+str("{0:.2f}".format(frac_max*10
0))+"% and mejecta ="+str("{0:.3f}".format(m_ej))+"
Msun the maximum mass is ", m_gmax_2,"Msun")

109

110

111 m_ej+=0.005
112

113 end=time.time()
114 print("time=", end -start)

Listing A.1: Maximum stable mass computation code
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