ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

An Analysis of the Ethereum
Proof of Stake Protocol

Relatore:
Chiar.mo Prof.

Cosimo Laneve

Correlatore:
Chiar.ma Dott.ssa
Adele Veschetti

Sessione 111
A.A. 2022/2023

Presentata da:
Sergio Solmonte

Dedicata a Papa.

Sommario

La tesi indaga il protocollo Gasper della blockchain Ethereum, utiliz-
zando una versione estesa del model checker Prism per quanto riguarda la
simulazione e la verifica. Gasper rappresenta un significativo passo avanti
nell’evoluzione di Ethereum, introducendo un nuovo meccanismo di consenso
e affrontando le sfide della scalabilita. Questo lavoro mira a modellare e a
valutare il protocollo Gasper in modo sperimentale, verificandone la coerenza

e la robustezza, alla ricerca di vulnerabilita rispetto a vari attacchi.

Lo studio comprende un’analisi completa della transizione di Ethereum
dalla Proof of Work (PoW) alla Proof of Stake (PoS), chiarendo le motivazioni
e i vantaggi di questo cambiamento fondamentale. Inoltre, approfondisce le
caratteristiche uniche di Gasper e i miglioramenti rispetto ai suoi predeces-
sori, come Hybrid Casper, evidenziando il suo ruolo nel raggiungimento di

maggiore sicurezza e scalabilita.

Uno degli obiettivi principali della ricerca ¢ la validazione del modello
realizzato tramite Prism+ rispetto ai complessi requisiti di Gasper, garan-
tendo che il modello simulato rifletta accuratamente il comportamento del
protocollo. Attraverso test e verifiche, questo studio mira a fornire preziose

informazioni sulla sua robustezza e aflidabilita.

Inoltre, la tesi esplora potenziali attacchi al protocollo Gasper in modo
teorico e pratico, valutandone la resilienza rispetto alle strategie avversarie.
Identificando vulnerabilita e punti deboli, la ricerca contribuisce a migliorare

la sicurezza del protocollo e a guidarne 1'ulteriore sviluppo.

Questa tesi offre un esame del protocollo Gasper di Ethereum, combi-

ii

SOMMARIO

nando 'analisi teorica con la simulazione pratica utilizzando il model checker
Prism+. Lo studio comprende la transizione da PoW a PoS, i progressi di
Gasper, la convalida della coerenza del modello e I’analisi della sicurezza, con-

tribuendo alla continua evoluzione della tecnologia blockchain di Ethereum.

Abstract

The thesis investigates the Ethereum blockchain’s Gasper protocol, em-
ploying an extended version of the Prism model checker for simulation and
verification. Gasper represents a significant leap forward in Ethereum’s evo-
lution, introducing a new consensus mechanism and addressing scalability
challenges. This research aims to rigorously assess the Gasper protocol’s ad-
herence to its specifications, while also scrutinizing the model for potential

vulnerabilities against various attacks.

The study encompasses a comprehensive analysis of Ethereum’s transi-
tion from Proof of Work (PoW) to Proof of Stake (PoS), elucidating the
motivations and advantages of this fundamental shift. Additionally, it delves
into Gasper’s unique features and improvements over its predecessors, such
as Hybrid Casper, highlighting its role in achieving greater security and scal-
ability.

One primary focus of the study is the validation of the Prism+ model
against the Gasper protocol’s intricate requirements, ensuring that the sim-
ulated model accurately reflects the protocol’s behavior. Through extensive
testing and verification, this study aims to provide valuable insights into the

protocol’s robustness and reliability:.

Furthermore, the thesis explores potential attacks on the Gasper protocol,
assessing its resilience against adversarial strategies. By identifying vulnera-
bilities and weaknesses, the research contributes to enhancing the protocol’s

security and guiding its further development.

This thesis offers a comprehensive examination of Ethereum’s Gasper

iii

iv

ABSTRACT

protocol, combining theoretical analysis with practical simulation using the
Prism model checker. The study encompasses the transition from PoW to
PoS, Gasper’s advancements, model coherence validation, and security anal-
ysis, contributing to the ongoing evolution of Ethereum’s blockchain tech-

nology.

Contents

Introduction 1
1 Ethereum 3
1.1 Blockchaino oo 3
1.1.1 Ethereum Blockchain 4

1.2 Consensus Mechanism 12
1.2.1 Proof-of-Work (PoW) Consensus 12
1.2.2 Proof-of-Stake (PoS) Consensus 13
1.2.3 TheMerge 13

1.3 Hybrid Casper Protocol 15
1.4 Gasper Protocol 15
1.4.1 Components of the Gasper Protocol 16
1.4.2 Block Proposal 19
1.4.3 Finality 22
1.4.4 Incentives and Slashing 23
1.4.5 Livenesso 24
1.4.6 Forkrule. 24

1.5 Comparison between Hybrid Casper and Gasper 27
1.5.1 Consensus Mechanism 27
1.5.2 Enmergy Efficiency 27
1.5.3 Finality 28
1.5.4 Validator Rotation 28

CONTENTS

2 Prism Model Checker 29
2.1 Key Aspects 29
2.2 Constructing Models 0oL 30
2.3 Formulating Property Assertions 31
2.4 Applications of Prismo 31

3 Architecture 33
3.1 Gasper architecture oL 33

3.1.1 Overview of Gasper Protocol 34
3.1.2 Validator Participation and Staking 34
3.1.3 Committees 35
3.1.4 Attestation 35
3.1.5 Stake, Rewards and Penalties 37
3.1.6 Finality and Liveness 43
3.1.7 Benefits of Gasper Architecture 43
3.2 Model simulation 000 44
321 CTMCBasics 44
3.2.2 Prism Model Checker and CTMCs 44
3.2.3 Simulating Ethereum PoS Network 45
3.2.4 Benefits and Limitations 46
3.25 Prism+ ... 46

4 Implementation 47
4.1 Global variables oo 48
4.2 Validator. 49
4.3 Updater 53
4.4 Network 55
45 Global 56
4.6 RanDAO 57

4.7 Labels, 61

CONTENTS vii
5 Experiments 65
5.1 Simplifications 65
5.2 Coherence 67
5.3 Fork Probabilityo 72
5.4 Stake Analysis. o 74
5.5 Safety 80
5.6 Security Analysis 81
5.6.1 Liveness 82
5.7 Robustness to Attacks 85
5.7.1 Bouncing Attack 00 85
5.7.2 Balancing Attack L. 94
5.7.3 Balancing Attack over LMD-Ghost 105
5.7.4 Time-Based Attacks 106
5.8 Idea of a Hybrid Attack 113
6 Related Works 117
Conclusions 123
Bibliografy 127
A Balancing Attack exploiting LMD-Ghost 133
B Simple Hybrid Attack 137

List of Figures

1.1
1.2

5.1
5.2
5.3
5.4
2.5
2.6
2.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

History of Ethereum PoS Upgrade. 5
LMD-Ghost fork rule example. 25
Justification rates over 6, 13 and 16 Validators. 66
Block creation probability over time. 69
Justification.o 70
Finalization. oo 70
Justification with delay. 72
Finalization with delay. 72
Fork of length K in 40 epochs. 73
100k validators - Equal stake. 76
50k validators - Equal stake. 7
50k validators - One with greater stake. 78
50k validators - All with greater stake. 79
Safety condition.o 81
Probabilistic Liveness. 83
Simple Bouncing attack. Figure from [14]. 86
Example of Checkpoints in Bouncing attack. 88
Bouncing from Chain Ato B. 90
Justification rate during Bouncing Attack. 91
Finalization rate during Bouncing Attack. 91
Votes during balacing attack. 99
Finalization rate during balancing attack. 99

ix

LIST OF FIGURES

5.21 Votes with proposer boost. 100
5.22 Finalization rate with proposer boost. 100
5.23 Honest Validators’ Justification Rate during Clock Attack. . . 109
5.24 Attackers Justification Rate during Clock Attack. 110
5.25 Number of Finalized Blocks - Hybrid Attack. 116
6.1 Power consumption of Ethereum PoW in different analyses.

Figure from [24]. Lo 120
6.2 Power consumption of Ethereum PoS, lower and upper bounds,

compared with the MasterCard payment circuit. Figure from

[24]. . 121
6.3 ETH Capitalization. 124
6.4 Average Gas price. o 124
A.1 Initial condition. Adversarial validators are tasked with ini-

tializing the two chains and keeping them hidden until the

appropriate moment.o 134
A.2 Proposer boost balancing. An honest validator proposes his

block, receiving the weight boost. 135
A.3 Continued balancing. Even after the proposer boost, the bal-

ance between the two sets of validators continues to last over

time. 135
B.1 Hybrid Attack: Start. L. 138
B.2 Hybrid Attack: Balancing. 138
B.3 Hybrid Attack: the beginning of an epoch. 139

List of Tables

3.1

5.1
0.2

Rewards and Penalties. 41

Average validator reward. 114
Percentage of stake lost due to the Inactivity Leak based on
32ETH staked. This data is an approximation and it may not

entirely match the actual penalties. 115

X1

Introduction

The advent of the blockchain revolution has ushered in a new era charac-
terized by decentralized digital systems, and leading this transformative wave
is Ethereum, an innovative and groundbreaking platform. This research em-
barks on a comprehensive and insightful analysis of the Ethereum Proof of
Stake (PoS) protocol, delving into its core principles while illuminating key

differentiators that set Ethereum apart from its counterpart, Bitcoin.

At the heart of this exploration lies the Prism model checker, an indis-
pensable tool that empowers us to meticulously dissect and understand the
intricacies of the Ethereum PoS protocol. The Prism model checker serves
as a guiding light, enabling one to navigate through the protocol’s intricate
web, uncovering its underlying mechanisms and shedding light on its inner

workings.

Ethereum and Bitcoin, as the cornerstone cryptocurrencies, share the fun-
damental tenets of decentralization and unalterable record-keeping. While
both embrace these principles, Ethereum’s visionary path extends far beyond
Bitcoin’s focal point on digital currency. Ethereum emerges as a versatile and
dynamic platform, not merely a medium for currency exchange, but a robust
ecosystem for the execution of smart contracts and the operation of decen-
tralized applications (DApps) that are poised to revolutionize a multitude of

industries.

Originating from Vitalik Buterin’s visionary ideation in 2013, Ethereum’s
inception was driven by a mission to transcend the limitations of Bitcoin.
This marked the birth of the Ethereum Virtual Machine (EVM). This Turing-

INTRODUCTION

complete virtual apparatus [3] unleashed the potential for autonomous ex-
ecution of intricate code, catalyzing the evolution of DApps and expanding
the horizons of blockchain technology.

A pivotal juncture in Ethereum’s evolutionary journey is the shift from
the energy-intensive Proof of Work (PoW) consensus mechanism to the more
eco-friendly Proof of Stake (PoS) protocol. PoS, unlike PoW, relies on the
stake held by validators, ensuring their vested interests are harmonized with
the network’s equilibrium and creating a deterrent against malevolent ac-
tions.

Our journey of exploration traverses through the very architecture and
functionality of Ethereum’s blockchain unravels the intricate tapestry of
smart contracts, and dissects the nuances of the PoS consensus mechanism.
Utilizing the Prism model checker for the execution of experiments and anal-
yses facilitates a more comprehensive exploration of the inherent advantages
and challenges associated with this pioneering protocol. The objective is
to extract profound insights into the transformative potential of Ethereum’s
PoS, with a focus on discerning its impact within the broader landscape of
the blockchain ecosystem.

The Ethereum Proof of Stake protocol, illuminated by the Prism model
checker, stands as a linchpin for establishing a sustainable, scalable, and
adaptive blockchain framework. A profound comprehension of its underlying
mechanics and far-reaching implications is a quintessential requisite for nav-
igating the swiftly evolving landscape of decentralized technologies, poised

to leave an indelible imprint on diverse industries worldwide.

Chapter 1

Ethereum

1.1 Blockchain

A blockchain stands as a distributed and decentralized digital ledger,
meticulously recording transactions and data across a network of computers
[6]. Tt operates through a series of interconnected blocks, each encompassing
verified transactions and referencing the previous block, forming an unbroken
chain. This sequential arrangement ensures the sanctity and immutability of
the stored data.

At the core of a blockchain lie its pivotal features: decentralization and
security. Unlike conventional centralized databases, a blockchain thrives
through the collaborative efforts of globally distributed nodes. These nodes
work harmoniously to establish consensus on transaction validity and the
blockchain’s prevailing state. This consensus, driven by mechanisms like
proof-of-work or proof-of-stake, curbs deceitful conduct and thwarts any sin-
gle entity’s dominance.

To uphold its security, a blockchain employs cryptographic techniques.
Every block boasts a unique cryptographic hash, an intricate mathematical
function dependent on the block’s data and the prior block’s hash. Any
alteration to the block’s data would instantly modify its hash, unmasking any

tampering endeavor. Moreover, the blockchain’s extensive distribution across

ETHEREUM

numerous nodes renders seizing control and manipulating data a monumental

challenge for potential attackers.

1.1.1 Ethereum Blockchain

The Ethereum blockchain emerges as a prominent platform for transcend-
ing simple transactions. It evolves into a decentralized realm for crafting
smart contracts and decentralized applications (Dapps). Smart contracts,
akin to self-executing agreements coded with predefined terms, autonomously
trigger upon meeting specific conditions, erasing the need for intermediaries
and fostering trustworthiness. Ethereum embraces the proof-of-stake con-
sensus mechanism defined by the Gasper protocol specification [13], evolving
via the FEthereum 2.0 or Eth2 upgrade. In this framework, validators are
randomly designated to propose and verify new blocks. Participation as a
validator necessitates staking a certain amount of Ether (ETH) as collateral.
This incentivizes ethical conduct among validators and shores up the network

against malicious actions.

The Ethereum blockchain occupies a crucial role in the realm of decentral-
ized finance (DeF1i). DeFi capitalizes on smart contracts to deliver financial
services sans traditional intermediaries such as banks. It facilitates activities

encompassing lending, borrowing, and trading of diverse digital assets.

Furthermore, Ethereum lends support to non-fungible tokens (NFTs),
exclusive digital assets applied in domains like digital art, gaming, and col-
lectibles. NFTs bestow verified ownership of digital assets, elevating their

significance in the burgeoning landscape of digital creativity and ownership.

Persisting in its focus on smart contracts and Dapps, the Ethereum
blockchain endures as an indispensable infrastructure nurturing innovation
and facilitating novel decentralized applications spanning varied industries.
The Eth2 upgrade endeavors to augment scalability, security, and energy

efficiency, thereby amplifying its prowess as a robust blockchain platform.

ETHEREUM

Ethereum History

2013

S] e S e S e S o SR o ST O S

2020 2021 2022 2022 2023
Beacon Chain . ; Paris
Pos Altair I—)| Bellatrix I—A—)| e I—)I Capella

Figure 1.1: History of Ethereum PoS Upgrade.

Figure 1.1 shows all the updates made to Ethereum’s Proof of Stake
protocol, starting from the publication of V.Butalik’s white paper in 2013 [2]
which envisaged a blockchain based on Proof of Work protocol.

The first update is called Beacon Chain Genesis or Phase 0 and takes
place in 2020. With this update, the deposit smart contract was introduced
which required at least 16384 deposits of 32 ETH to start. This happened
on November 27, meaning the Beacon Chain started producing blocks on
December 1, 2020.

The Altair upgrade was a key step for the Beacon Chain, being its first
planned improvement. It introduced support for sync committees, making
it easier for light clients to participate. Additionally, penalties for inactive
validators were increased as development moved towards The Merge. Unlike
previous upgrades relying on variable block numbers in the proof-of-work
chain, Altair was the first major upgrade with a specific rollout time. This
precision was possible because the Beacon Chain doesn’t use proof-of-work
but operates on a time-based system with 32 twelve-second slots per epoch.
This ensured a predictable upgrade at epoch 74,240 when Altair went live.

The Bellatrix upgrade, the Beacon Chain’s second planned improve-
ment, was geared towards readying the chain for The Merge. It ensured that
validator penalties for inactivity and slashable offenses were fully enforced.
Bellatrix also implemented an update to the fork choice rules, laying the
groundwork for The Merge and the shift from the final proof-of-work block

to the inaugural proof-of-stake block.

ETHEREUM

The Paris upgrade took place on September 15, 2022, at block 15537393,
immediately activating The Merge transition in the subsequent block. No-
tably, Paris marked a significant shift by disabling the proof-of-work mining
algorithm and its related consensus logic, replacing it with proof-of-stake as
its primary mechanism.

The Capella upgrade, the third significant enhancement to the Beacon
Chain’s consensus layer, introduced the capability for staking withdrawals.
With this upgrade, stakers who hadn’t initially provided withdrawal creden-
tials with their deposit gained the ability to do so, facilitating withdrawals.
Additionally, the upgrade incorporated automatic account sweeping function-
ality. This feature continuously reviews validator accounts, ensuring prompt

processing of any available rewards payments or full withdrawals.

Ether

In the Ethereum blockchain realm, Ether (ETH) emerges as the native
cryptocurrency, assuming a central role in facilitating fundamental interac-
tions and functions within the network [7].

Foremost, Ether serves as a medium of exchange, empowering users to
remunerate transaction fees when executing actions or engaging with smart
contracts on the Ethereum platform. Dubbed as gas fees, these transaction
fees incentivize network participants by compensating them for the compu-
tational resources requisite for processing and validating transactions and
smart contracts.

Beyond its transactional role, Ether operates as a unit of account within
Ethereum dapps, functioning as a standardized reference for pricing, pay-
ments, and the valuation of digital services and assets. Its versatile applica-
tion as a measure of value streamlines transactions and guarantees seamless
interactions across the ecosystem.

Over and above its transactional and accounting functions, Ether plays
a pivotal role in fortifying the crypto-economic security of the Ethereum

network [8]. Validators, the vanguards responsible for securing and verifying

ETHEREUM

the blockchain, are rewarded with fresh Ether. These rewards function as
potent incentives, motivating network participants to adhere to established
consensus rules and consequently safeguard the network’s integrity.

Ether also serves as valuable collateral in varied DeFi protocols and lend-
ing markets. By staking Ether as collateral, participants can unlock loans and
financial services, liberating themselves from the clutches of conventional in-
termediaries. This decentralized approach nurtures trustless interactions and
extends financial inclusivity within the Ethereum ecosystem.

Moreover, Ether wields influence in Ethereum’s governance and decision-
making mechanisms. Token holders exercise voting rights concerning pro-
posed upgrades and alterations to the network’s protocol. The voting influ-
ence of each token holder corresponds to their Ether holdings, culminating
in a democratic governance structure within the decentralized network.

Ether’s multifaceted utility within the Ethereum blockchain underscores
its significance as a versatile cryptocurrency. Beyond being a mere medium
of exchange or a unit of account, Ether propels network security, collateral-
ization, and democratic governance. Its omnipresence fosters innovation and
paves the way for an array of financial and non-financial applications within

the vibrant decentralized ecosystem.

Transactions

Within the Ethereum blockchain landscape, transactions constitute well-
structured processes through which users set events in motion or engage with
the network.

The journey of a transaction begins with its originator devising a trans-
action request, outlining essential particulars such as the sender’s address,
the recipient’s address, a transaction signature, a unique identifier known as
a nonce (nonce) to sequence transactions, the sum of Ether (ETH) to be
transferred, optional input data, and gas-related parameters. Gas assumes
a pivotal role in expediting the transaction’s execution. It symbolizes the

computational effort required by the network to validate and process the

ETHEREUM

transaction. The sender stipulates the maximum amount of gas units the
transaction can consume using the gasLimit parameter, alongside specify-
ing the maximum price per gas unit they're willing to pay as a gratuity to
validators, as denoted by the mazPriorityFeePerGas parameter. The total
fee for each gas unit, determined by the maxFeePerGas, results from the

amalgamation of the baseFeePerGas and mazxPriorityFeePerGas.

The transaction’s gas fee (gass.) can be computed as follows:

gaspe = gasLimit x maxFeePerGas (1.1)

With the transaction request dispatched, it traverses the expanse of the
Ethereum network, making its way to participating nodes. Validators, who
have committed Ether as collateral to partake in the PoS consensus mech-
anism, bear the mantle of verifying and validating transactions. These val-
idators are chosen at random to suggest new blocks and verify transactions,

thereby upholding the authenticity and legality of each transaction.

Collaborating in harmony, validators reach a consensus on the transac-
tion’s validity. Upon consensus, the transaction is incorporated into a new
block proposed by a validator. This novel block incorporates a unique cryp-
tographic reference linking it to the preceding block, effectively maintaining

the unbroken chain of blocks on the Ethereum blockchain.

Upon integration into a block, the transaction becomes an immutable fix-
ture of the blockchain. Any attempt to manipulate data within the block ne-
cessitates alterations to subsequent blocks, an immensely intricate endeavor
given the cryptographic nature of the blockchain, culminating in heightened

security and resistance to tampering.

Following completion, the transaction achieves confirmation on the Ethereum
blockchain. The recipient’s account balance is updated to mirror the Ether
received, while the sender’s account balance is decreased by the transferred

suin.

ETHEREUM

Blocks

The process of ensuring a synchronized and agreed-upon history of trans-
actions within the Ethereum network involves the organization of transac-
tions into distinct blocks [15]. Each of these blocks forms a fundamental
unit of the blockchain architecture. Unlike a continuous flow of transactions,
these blocks create a structured framework that provides order and security
to the network.

At its core, the formation of the blockchain involves the arrangement of
blocks, with each block comprising a batch of transactions. To maintain the
integrity and continuity of the blockchain, each block contains a hash that is
cryptographically derived from the data within the block. More notably, each
block also includes a reference to the hash of the previous block in the chain,
effectively linking all these blocks together. This interlinking mechanism is
the cornerstone of the blockchain’s resilience against fraud and unauthorized
alterations. If any tampering occurs in a block’s history, it would trigger a
chain reaction, altering the hashes of all subsequent blocks. This tamper-
evident feature ensures that any illicit changes are promptly detected by
every participant in the blockchain network.

In the Ethereum network, this process is carried out through meticulous
orchestration. Transactions are not immediately added to the blockchain;
instead, they are grouped together into blocks. This arrangement allows
for a more structured consensus mechanism and the verification of multiple
transactions in a coherent manner. Dozens or even hundreds of transac-
tions are bundled together into a single block, creating a more organized and
manageable framework for validation and synchronization.

A crucial aspect of this orchestration is the concept of time intervals.
While transaction requests might occur with high frequency, Ethereum in-
troduces a time gap between block creations. In Ethereum, blocks are gen-
erated approximately every twelve seconds. This deliberate pacing provides
network participants ample time to reach a consensus on the contents of each

block. Even though transaction requests may flood the network in rapid suc-

10

ETHEREUM

cession, the blockchain accommodates them by committing and validating

these transactions in well-defined intervals.

To maintain the historical record of transactions, Ethereum ensures that
blocks are not only linked together but also meticulously ordered. Each new
block incorporates a reference to its parent block, reinforcing the chrono-
logical sequence of transactions. This orderly arrangement extends to the
transactions within each block, contributing to the overall coherence and

structure of the blockchain.

The process of assembling these blocks is overseen by a selected validator
within the network. Omnce a validator compiles a block, it is broadcasted
to the entire network. Every participating node incorporates this newly
generated block into its own copy of the blockchain, thereby maintaining a
synchronized history of transactions. Subsequently, a new validator is chosen

to construct the next block, and the cycle continues.

This entire block assembly process, as well as the consensus mechanism,
is defined by Ethereum’s proof-of-stake protocol. In this protocol, validators
are required to stake a certain amount of Ethereum (32 ETH) as collateral
against any potential malicious behavior. This financial commitment incen-
tivizes honest participation and discourages fraudulent activities.

The protocol also introduces a slot-based system, where each slot rep-
resents a fixed time interval of twelve seconds. In each slot, a validator is
randomly selected to propose a block. This proposed block includes a collec-
tion of transactions, and it serves as a new point in the blockchain. Other
validators, upon learning about this new block, re-execute the transactions

to ensure agreement with the proposed changes.

In the event of conflicting blocks proposed within the same slot, validators
employ a fork-choice algorithm to determine the block supported by the most
staked ETH. This mechanism ensures a consistent and unified blockchain

history, even in the presence of temporary discrepancies.

Every block comprises a rich set of fields that encapsulate crucial informa-

tion. These fields include data like slot number, proposer’s identifier, parent

ETHEREUM

11

block’s hash, state root, and more. This structured arrangement facilitates
the orderly organization of information and the maintenance of a coherent
blockchain.

In summary, Ethereum’s blockchain operates through the meticulous or-
ganization of transactions into blocks, with each block building upon the
preceding one. The architecture ensures synchronization, consensus, and
order within the network. This disciplined approach, governed by the proof-
of-stake protocol, safeguards the integrity of the blockchain’s history and

paves the way for a decentralized and secure digital ecosystem.

Smart Contracts

In the Ethereum blockchain, smart contracts represent self-executing digi-
tal agreements with predefined conditions written in code. They allow for the
creation of decentralized applications (dapps) that can operate autonomously
without the need for intermediaries [10].

Smart contracts are programmed using Solidity [11], Ethereum’s native
programming language for writing smart contracts. They consist of functions,
data variables, and logic that define the contract’s behavior and interactions
with the Ethereum network. The functions within a smart contract are
similar to methods in traditional programming languages. They perform
specific tasks, modify the contract’s state, and can be called by external
entities or other smart contracts. Data variables store information within
the contract, preserving the state of the contract and providing a persistent
storage solution on the blockchain. The logic embedded in a smart contract
allows it to enforce specific rules, conditions, and validations, enabling the
contract to act autonomously and securely.

To use a smart contract, a user needs to deploy it to the Ethereum
blockchain. This process involves submitting the smart contract code as a
transaction to a specific address on the network. Once deployed, the contract
becomes part of the blockchain and is publicly accessible to all participants.

Smart contracts execute automatically when triggered by an external entity

12

ETHEREUM

or another contract. These triggers are often initiated by sending a trans-
action to the contract’s address, which calls a specific function within the
contract. When a smart contract is executed, the logic inside the contract is
processed by the Ethereum Virtual Machine (EVM). The EVM ensures that
the contract’s code is executed consistently across all nodes in the network,
achieving consensus on the contract’s state changes.

One of the key features of smart contracts is their decentralization [12].
They operate on a distributed network of nodes, ensuring transparency and
security without reliance on a central authority. Once deployed, smart con-
tracts are immutable, meaning their code cannot be altered or modified.
This immutability guarantees that the contract’s rules and behavior cannot
be changed, providing a reliable and tamper-resistant mechanism for execut-
ing agreements.

Smart contracts have a wide range of applications in various industries.
They enable decentralized financial services (DeFi), including lending, bor-
rowing, and decentralized exchanges. They can be used to implement voting

systems, supply chain management, identity verification, and more.

1.2 Consensus Mechanism

A consensus mechanism in the context of blockchain refers to the process
by which a distributed network of nodes reaches an agreement on the state
of the blockchain. It ensures that all participants in the network collectively
validate and confirm the correctness of transactions and the order in which
they are added to the blockchain. The primary goal of a consensus mechanism
is to maintain the integrity and security of the blockchain, preventing double-

spending and malicious attacks.

1.2.1 Proof-of-Work (PoW) Consensus

Proof-of-Work is one of the earliest and most widely adopted consensus

mechanisms used in blockchain systems, including Bitcoin. In PoW, network

ETHEREUM

13

participants, known as miners, compete to solve complex mathematical puz-
zles. The first miner to find a valid solution for the puzzle is allowed to pro-
pose a new block of transactions and add it to the blockchain. This process
is resource-intensive and requires significant computational power, making it
costly and time-consuming to produce new blocks. As a result, PoW is highly
secure and resistant to malicious attacks. However, it consumes a substantial

amount of energy, raising concerns about its environmental impact.

1.2.2 Proof-of-Stake (PoS) Consensus

Proof-of-Stake is an alternative consensus mechanism that addresses the
energy consumption issues of PoW. In PoS, validators are chosen to create
new blocks based on the number of coins they hold and are willing to ”stake”
as collateral. The more coins a validator is willing to stake, the higher the
chances of being selected to propose a block. Validators are economically
incentivized to act honestly because they risk losing their staked coins in the
event of malicious behavior. PoS is generally more energy-efficient than PoW

and promotes a more sustainable blockchain ecosystem.

1.2.3 The Merge

The Ethereum Merge constitutes a significant and momentous upgrade to
the Ethereum blockchain, signifying a transition from the traditional proof-
of-work (PoW) consensus mechanism to the more contemporary proof-of-
stake (PoS) consensus mechanism [25]. This pivotal transition reached its
completion on the noteworthy date of September 2022 via the Paris update,
marking a significant milestone in the evolution of the Ethereum network.
The Ethereum Merge is poised to introduce a multitude of advantageous

enhancements to the Ethereum blockchain, encompassing:

e Augmented Scalability: PoS networks inherently offer superior scala-

bility compared to their PoW counterparts. This advanced consensus

14

ETHEREUM

mechanism facilitates the processing of a higher number of transactions

per second, laying the foundation for Ethereum’s increased efficiency.

e Elevated Security: PoS networks are renowned for their heightened
security when contrasted with PoW networks. They are notably less
susceptible to the perils of 51% attacks, thereby bolstering the overall

security posture of Ethereum.

e Mitigated Energy Consumption [23]: A salient virtue of PoS networks is
their markedly diminished energy consumption in comparison to PoW
networks. This reduction in energy utilization is a pivotal stride toward

the environmental sustainability of Ethereum.

The realization of The Merge occurred through a structured implemen-
tation process, divided into two distinct phases: The Beacon Chain and the
ultimate Merge. Commencing with The Beacon Chain, this PoS blockchain
was launched in December 2020 via the Phase 0 update, designed to coexist
alongside the pre-existing PoW chain and eventually supplant it. The cul-
mination of this momentous transition transpired during The Merge, which
entailed the cessation of the PoW chain and the seamless amalgamation of
its functionalities into The Beacon Chain. Validators operating within The
Beacon Chain assumed the vital role of securing and validating transactions,
effectively superseding the traditional miners.

Moreover, this transition signifies the consummate realization of the Ethereum
Merge, commonly referred to as Eth2.0. This momentous transformation is
the product of extensive research and development endeavors spanning sev-

eral years, serving as a testament to Ethereum’s commitment to innovation.

The Ethereum Merge stands as an epochal juncture in the trajectory of
the blockchain ecosystem. Its transition to the more efficient and sustainable
PoS consensus mechanism not only addresses prior limitations but also reaf-
firms Ethereum’s mission to facilitate decentralized applications and smart

contracts on a global scale. Beyond its immediate benefits to Ethereum

ETHEREUM

15

users, this transition serves as a paradigm for the broader blockchain com-
munity, emphasizing the pivotal significance of environmental responsibility

and scalability within the dynamic landscape of blockchain technology.

1.3 Hybrid Casper Protocol

The Hybrid Casper Protocol [1] is a consensus mechanism designed to
combine the strengths of Proof-of-Work (PoW) and Proof-of-Stake (PoS) to
achieve consensus in a blockchain network. It was initially proposed as an
upgrade to Ethereum’s PoW-based consensus to address its energy consump-
tion issues and improve scalability.

The main idea behind the Hybrid Casper Protocol is to use PoS as the
primary consensus mechanism while maintaining a minimal PoW component
for security and decentralization. In this hybrid approach, PoW is used to es-
tablish checkpoints or finality on the chain, ensuring that blocks are securely
committed to the blockchain. Validators in the PoS consensus observe these
checkpoints, reducing the need for full PoW validation.

Validators in the Hybrid Casper Protocol are responsible for proposing
and validating blocks, and they are required to lock up a certain amount
of cryptocurrency (e.g., Ether) as collateral. Validators can be penalized
for dishonest behavior by losing their staked coins. This PoS component

enhances efficiency and reduces energy consumption compared to traditional
PoW.

1.4 Gasper Protocol

The Gasper Protocol [13] is an advanced version of the Ethereum PoS
consensus mechanism, introduced in Ethereum 2.0. It aims to further en-
hance scalability, reduce energy consumption, and improve the security and
finality of transactions. In this chapter, the protocol will be introduced in a

theoretical manner, encompassing an examination of its core operations, with

16

ETHEREUM

a particular emphasis on the practical aspects of block proposal operations.
For a more comprehensive and precise understanding of the protocol’s archi-
tecture, readers are directed to the subsequent chapter, specifically within

Section 3.1.

1.4.1 Components of the Gasper Protocol

1. Beacon Chain: The Beacon Chain is the PoS-based blockchain that
drives the Ethereum network. It acts as the central coordination mech-
anism and is responsible for selecting validators from the network, orga-
nizing them into committees, and proposing blocks. The Beacon Chain
also manages Casper the Friendly Finality Gadget (FFG) component

to ensure the security and finality of transactions.

2. Validator Committees: Validators in Ethereum are grouped into
committees, which are responsible for voting and finalizing blocks in
the GASPER protocol. They are selected using a random process,
with each validator having a chance of being selected proportional to its
stake considering a maximum value of 32 ETH. Validators with a stake
higher than 32ETH will not have greater chances than validators with
a stake equal to 32ETH. The committee selection process takes place in
two phases: candidate selection, in which all validators are randomly
selected to become candidates, and member selection, in which the
candidates are selected to become members of the committee in such
a way as to represent a uniform distribution of validators in terms of

stake.

Committees are responsible for the following tasks: voting for the pro-
posed block, voting for the last checkpoint, and voting for the last

justified block. These three different votes made up an attestation.

The committee selection process is designed to be secure and efficient.
It is secure because it ensures that all validators have a chance of being

selected for a committee, and it is efficient because it requires only a

ETHEREUM

17

relatively small number of validators for each committee. Fach slot
can have a maximum of 64 committees, where each committee must

contain at least 128 validators.

. Casper the Friendly Finality Gadget (FFG): Casper FFG is a
hybrid consensus mechanism that combines PoS with a finality mech-
anism. It allows the Ethereum network to achieve faster transaction
finality, meaning once a block is added to the blockchain, it is con-
sidered irreversible. This feature enhances security and prevents the

possibility of chain reorganizations.

. LMD-Ghost: The LMD-Ghost algorithm is used as a fork-choice
rule, compared to the more classic longest chain used in past proto-
cols. This protocol consists of two parts: Latest Message-Driven and
Greedy Heaviest Observed SubTree. This algorithm is based precisely
on the number of votes a block receives, instead of considering the
longest chain and therefore the one containing a greater number of
blocks. More details in Section 1.4.6.

. Epochs: In the Ethereum Proof-of-Stake (PoS) consensus mechanism,
epochs play a crucial role in organizing the validator set and facilitating
the block proposal and validation process. An epoch is a fixed-duration
time interval of 384 seconds during which validators take turns partici-
pating in block creation and validation. Each epoch consists of 32 slots
of 12 seconds. These epochs help achieve a more efficient and decen-
tralized consensus process. During the e epoch, the process of pseudo-
random selection of the validators who will be elected as proposers of
the e 4+ 2 epoch and the composition of the various committees for the
e + 2 epoch begins. The committee and proposers’ selection process
is designed to be randomized and fair, ensuring that no single group
of validators dominates the consensus process. The main functions of

epochs in the Ethereum PoS consensus are as follows:

18

ETHEREUM

Validator Rotation: With each epoch, the validator set is ro-
tated, meaning different sets of validators are chosen to participate
in the consensus process. This rotation helps prevent centraliza-
tion of power and encourages wider participation among network

validators.

Committee Formation: Within each epoch, committees are
formed to handle specific tasks related to block validation and
proposal. These committees are created in a decentralized manner

to distribute the workload and enhance security.

Block Proposal: The validators previously elected as proposers
have the task of creating blocks containing a set of transactions.
Each proposer is designated for a specific slot, so in an epoch there

will be a maximum of 32 proposers.

Block Validation: The other validators in the committee then
validate the proposed block to ensure that it adheres to the consen-
sus rules and includes valid transactions. Validators actively par-

ticipate in this process to maintain the integrity of the blockchain.

Finality and Consensus: Once the committee successfully agrees
on a block proposal, the consensus algorithm finalizes the block,
making it irreversible. This finality ensures that the block is con-
firmed as part of the canonical blockchain and cannot be changed,

enhancing security and reducing the risk of chain reorganizations.

The use of epochs in Ethereum PoS provides several benefits, including
more efficient block validation and proposal, increased decentralization,
and better resistance against certain attacks. It allows the network to

achieve a balance between security, scalability, and decentralization.

. Sync Committee: It consists of 512 validators chosen randomly and
refreshed approximately every 27 hours, tasked with signing valid block

headers. These committees enable clients to monitor the blockchain

ETHEREUM

head without requiring access to the complete validator set. The use

of a sync committee is introduced in the Altair update.

1.4.2 Block Proposal

Blocks stand as the foundational units within the blockchain framework,
embodying discrete parcels of information that traverse between network
nodes, achieving consensus and integration into each node’s database. The
elucidation presented in this section delves into the intricacies of the block
proposal process, elucidating the pivotal actors, mechanisms, and stages in-

volved.

The block proposal process intricately orchestrates the introduction of
new blocks to the Ethereum blockchain. This process involves randomized
selection, careful crafting of checkpoints, rigorous verification, and subse-
quent integration into the chain. These systematic actions, bolstered by
incentives, coalesce to sustain Ethereum’s dynamic and secure decentralized

ecosystem.

Block Proposer Identification

The critical role of proposing blocks is fulfilled by validator accounts.
Validator accounts are under the purview of node operators, who execute
validator software within their execution and consensus clients. Validators
are required to deposit a minimum of 32 ETH into the deposit contract, signi-
fying their commitment to the network’s integrity. It’s noteworthy, however,

that not every validator is tasked with proposing blocks at all times.

Ethereum’s temporal measurement is structured around slots and epochs.
Each slot encompasses twelve seconds, and an epoch consists of 32 slots,
equivalent to approximately 6.4 minutes. Every slot presents an opportunity

for a new block to be introduced to the Ethereum blockchain.

20

ETHEREUM

Randomized Selection Mechanism

The selection of a block proposer occurs via a pseudo-random process,
which aims to maintain unpredictability while adhering to the principles of
consensus. True randomness isn’t employed due to its potential conflict with
consensus. Instead, Ethereum employs an algorithm called RANDAO. This
algorithm incorporates a hash from the prospective block proposer and a
continually updated seed, thus achieving the desired element of randomness.

The Ethereum network employs this mechanism to select a specific valida-
tor from the entire validator set. It’s pertinent to note that validator selection
is established two epochs ahead, mitigating certain types of manipulations
related to the seed.

The probability of selection isn’t uniformly distributed among validators.
It is proportionally determined by the effective ETH balance held by each
validator. An upper limit of 32 ETH for effective balance ensures uniformity
of selection.

The randomness of the proposer selection process is guaranteed by a value
associated with each epoch called randa_value or epoch_seed. This value
collects the entropy generated in the previous epoch by combining through
XOR all the randao_reveal values combined with the signature of the block

proposer contained in the various blocks proposed in the previous epoch

Block Creation Process

The designated block proposer is entrusted with broadcasting a digitally
signed beacon block. This block is crafted based on the proposer’s perception
of the most recent chain head, as dictated by their locally-run fork choice
algorithm. The fork choice algorithm integrates attestations from the pre-
ceding slot and determines the parent block for the newly proposed one.

The process of block creation requires the block proposer to gather data
from its local database and its view of the chain. Key data components

include:

ETHEREUM

21

e randao_reveal: A verifiable random value generated by the block pro-

poser, blending its own entropy with the cumulative RANDAO value.

e ethl _data: A vote for the deposit contract’s status, encompassing the

deposit Merkle trie’s root and the aggregate count of deposits.
e graffiti: An optional field for including a message in the block.

e proposer_slashings and attester_slashings: Fields containing ev-
idence of slashable offenses committed by certain validators, as per-

ceived by the proposer.

e deposits and voluntary_exits: Lists of new validator deposits and
exit requests known to the proposer through the consensus layer gossip

network.

e sync_aggregate: A vector indicating validators assigned to a sync

committee and participating in data signing.

e The execution_payload facilitates the passage of transaction-related
information between execution and consensus clients. This block of ex-
ecution data is nested within the beacon block, reflecting the Ethereum
yellow paper’s block structure. The execution_payload encompasses
transactions, and the execution client’s execution of these transactions

generates an updated state trie, present in the state-root field.

These constituent elements are amalgamated into a beacon block, which is
then signed by the block proposer and disseminated to its peers. Subse-

quently, the peers propagate the block, fostering network-wide awareness.

Block Verification and Integration

Upon receiving the proposed block, validators undertake comprehensive
verification. This verification entails scrutinizing various aspects, such as
the block’s parent, corresponding slot, proposer index, the validity of the

RANDAO reveal, and absence of slashing instances. The execution payload

22

ETHEREUM

is extracted, and the validator’s execution client re-executes the transactions
within, validating the proposed state alteration. Should the block pass these
checks, validators integrate it into their individual canonical chains.

This process of block proposal, verification, and integration perpetuates

in successive slots, bolstering Ethereum’s continuous and secure operation.

Block Proposer’s Reward

The block proposer is duly rewarded for its pivotal contribution. A base
reward, contingent on the number of active validators and their effective
balances, serves as the foundation. Additional rewards are linked to the
inclusion of valid attestations within the block, exemplifying the proposer’s
collaborative role. The higher the number of validators attesting to the
block, the greater the resultant reward. Furthermore, the proposer receives a
reward for identifying validators that merit slashing, denoting a commitment

to network integrity.

1.4.3 Finality

Finality constitutes an essential attribute inherent to specific blocks within
a blockchain, signifying their immutable nature unless subjected to an ex-
traordinary consensus breakdown, accompanied by an attacker’s destruction
of no less than one-third of the total staked ether. Such finalized blocks en-
capsulate information that the blockchain unequivocally endorses [19]. The
process of achieving finality for a block follows a methodical two-step upgrade
path:

First, the justification phase necessitates the approval of two-thirds of
the total staked ether, securing the block’s inclusion in the canonical chain.
While this justified status enhances resilience against reversion, it remains
susceptible to specific exceptional circumstances.

Subsequently, when a subsequent block attains justification upon an al-

ready justified block, it attains finalized status. This entails an irrevocable

ETHEREUM

23

commitment to incorporate the block into the canonical chain. This commit-
ment remains steadfast, save for a rare scenario where an attacker eradicates

a substantial amount of ether.

Notably, these block-level advancements are exclusive to epoch-boundary
blocks, referred to as checkpoints, and are subject solely to these designated
blocks. This upgrade process hinges upon pairs of checkpoints and requires
the existence of a supermajority link connecting them, indicated by two-
thirds of staked ether affirming checkpoint B as the legitimate successor of
checkpoint A.

This two-thirds consensus requirement for finality significantly hampers
malicious attempts to establish an alternative finalized chain, necessitating
ownership or manipulation of at least two-thirds of the aggregated staked
ether and the infliction of damage exceeding one-third of the total staked
ether.

The algorithm overseeing block justification and finalization within Gasper
stems from an adapted version of the Casper the Friendly Finality Gadget
(Casper-FFQG) algorithm [16].

1.4.4 Incentives and Slashing

Validators receive rewards for valid block proposals and validations, aug-
menting their stake with ether. Conversely, absent or unresponsive validators
forego these rewards and may incur minor stake reductions. Yet, specific ac-
tions by validators indicative of potential malfeasance trigger severe penalties
known as slashing, culminating in stake destruction and ejection from the
validator network. This process spans 36 days, commencing with an initial
penalty of up to 1 ETH on Day 1. More information about rewards and

penalties is in Section 3.1.5.

24

ETHEREUM

1.4.5 Liveness

Gasper also provides liveness, ensuring finalization as long as two-thirds of
staked ether remains committed to honest participation, regardless of adver-
sarial activity or other challenges. An inactivity leak acts as an additional
safeguard, triggered when the chain fails to finalize across four successive
epochs. Validators not actively participating experience gradual stake deple-

tion until the majority stake regains two-thirds dominance.

1.4.6 Fork rule

The original fork choice algorithm by Casper-FFG [16], dictating adher-
ence to the chain containing the justified checkpoint with the highest height,
has evolved into the more intricate LMD-GHOST algorithm [13]. A fork
choice rule becomes pivotal in cases of network asynchrony or equivocation
by dishonest block proposers. LMD-GHOST stands for latest message-driven
greedy heaviest observed sub-tree, selecting the fork with the most substan-
tial weight of attestations as the canonical one. This choice considers only
the latest message in cases of multiple messages from a validator. Valida-
tors assess each block according to this algorithm before incorporating the
weightiest block into their canonical chain.

When encountering forked chains, LMD-GHOST undertakes a meticulous
analysis to converge the network towards a unified state. It identifies an
observed sub-tree, a subset of blocks referenced by validators’ attestations,
and assesses each fork’s cumulative validator weight and its support in the
sub-tree. This assessment ensures that the selected chain not only boasts
significant stake commitments but also aligns with validators’ most current
consensus.

Taking into account the illustration presented in Figure 1.2, and employ-
ing a standardized weighting scheme for validators, the conventional fork
selection algorithm based on chain length alone would have favored the se-

lection of chain B. This preference is attributed to chain B’s extended dura-

ETHEREUM

25

Figure 1.2: LMD-Ghost fork rule example.

tion of 3 blocks, whereas chain A endured for a comparatively shorter span
of 2 blocks. Conversely, when employing the LMD-GHOST algorithm, an
additional factor must be considered, i.e. the number of votes garnered by
each chain. In this context, chain A emerges as the preferred choice, having
received 5 votes, whereas chain B secured only 3 votes.

In Listing 1.1 it is possible to see the pseudocode of LMD-GHOST algo-

rithm.

26 ETHEREUM

function LMD_GHOST(block_tree , attestations):
def find_-observed_subtree (attestations, block):
observed_subtree = {block}
for attestation in attestations:
if attestation.references(block):
observed_subtree.add (attestation.block)
observed_subtree = find_observed_subtree (attestations
attestation .block)

return observed_subtree

function weight (block):

return sum ([validator.weight for validator in block.validators])

function score (block):
observed_subtree = find_observed_subtree (attestations, block)
return weight (block) + sum([weight(attestation.block) for attestation

in attestations if attestation.block in observed_subtree])
canonical_chain = []

for block in block_tree:
if block.is_genesis():

canonical_chain = [block]

for block in block_tree:
for attestation in attestations:
if attestation.references(block):
canonical_chain .append(block)
break

for block in block_tree:
if score(block) > score(canonical_chain[—1]):

canonical_chain .append(block)

return canonical_chain

Listing 1.1: LMD-GHOST pseudocode.

ETHEREUM

27

1.5 Comparison between Hybrid Casper and
Gasper

When comparing the Hybrid Casper Protocol and the Gasper Protocol,
it’s evident that both aim to achieve consensus in the context of Ethereum’s
transition to a Proof of Stake (PoS) mechanism. Nevertheless, they exhibit
distinctions in their design and operational characteristics. Their respective
design choices and operational characteristics lead to distinctions in their
energy efficiency, finality, and validator rotation dynamics. These differences
are essential considerations when evaluating the suitability of each protocol

for Ethereum’s future blockchain ecosystem.

1.5.1 Consensus Mechanism

The Hybrid Casper Protocol primarily relies on PoS as its consensus
mechanism, supplemented by a minimal PoW component that is used to es-
tablish checkpoints or confirm finality within the blockchain. In contrast, the
Gasper Protocol is a fully-fledged PoS consensus mechanism, with no reliance
on PoW. Gasper leverages both Casper FFG and Casper CBC components

to ensure the finality of transactions.

1.5.2 Energy Efficiency

In terms of energy efficiency, both protocols represent significant im-
provements over traditional PoW-based consensus mechanisms. The Hybrid
Casper Protocol derives its energy efficiency from the integration of PoS, ef-
fectively reducing the energy consumption associated with mining. Gasper,
on the other hand, excels in energy efficiency by exclusively employing PoS,

thereby eliminating the energy-intensive PoW mining process.

28

ETHEREUM

1.5.3 Finality

Finality, or ensuring that transactions are securely committed to the
blockchain, has no code differences between the two protocols, as they both
use Casper FFG as the finality gadget. The Hybrid Casper protocol may
have longer finalization times due to the inclusion of PoW checkpoints in its
consensus mechanism. In contrast, the Gasper protocol achieves faster trans-
action finality through the implementation of temporal slots for proposing

blocks, ensuring a greater number of blocks created with fewer forks.

1.5.4 Validator Rotation

The dynamics of validator rotation also differentiate the two protocols. In
the Hybrid Casper Protocol, validator rotation may not be as dynamic when
compared to Gasper, primarily because the former retains some PoW mining
processes. Gasper introduces efficient validator rotation through the concept
of proposers and committees, promoting decentralization and encouraging

wider participation among validators.

Chapter 2

Prism Model Checker

The Prism model checker plays a vital role in formal verification, tailored
particularly for examining complex probabilistic systems. It serves as a bea-
con for researchers and engineers, illuminating the path toward confirming
critical properties, interpreting performance metrics, and guiding decisions

rooted in the foundation of system behavior analysis.

2.1 Key Aspects

Prism’s framework is built upon several fundamental tenets:

1. Flexible Modeling: Prism introduces a gateway to formalism through
its support for Markov chains and Markov decision processes. This
versatile framework accommodates both discrete and continuous prob-
abilistic behaviors, empowering modelers to articulate their ideas with

elegance.

2. Mastery of Temporal Logic: Temporal logic, wielded through Prism,
is the language in which properties are expressed. Enriched by proba-
bilistic temporal logic, this sophisticated vernacular enables the artic-

ulation of intricate behavioral requirements.

29

30

PRISM MODEL CHECKER

3. Comprehensive Verification Capabilities: Prism’s arsenal encom-
passes diverse techniques like model checking, parameter synthesis, and
strategy synthesis. It diligently guards properties such as reachability,

safety, liveness, and more, upholding the bastion of system integrity.

4. Unveiling Quantitative Insights: Prism’s magnificence is under-
scored by its prowess in quantitative analysis. It unveils probabilities
of state occurrences, anticipates the temporal horizon for pivotal events,
and crafts a myriad of metrics that sculpt the tapestry of system com-

prehension.

5. Algorithmic Ingenuity: Beneath Prism’s accomplishments lie formidable
algorithms. Symbolic model-checking and probabilistic model-checking
algorithms harmonize their efforts, deftly taming the complexities of

vast state spaces.

2.2 Constructing Models

Prism facilitates the construction of models through a specialized lan-
guage. This syntax enables the formulation of states, transitions, proba-
bilistic dynamics, and inquiries about system behavior. Here is an excerpt
showcasing a discrete-time Markov chain model within Prism’s realm:

// Realms of Imagination
const int Possibilities = 3;

module Fantasy

dream : [0..Possibilities] init 0;
[] dream=0 —> 0.5: (dream’ = 1) + 0.5: (dream’ = 2);
[] dream=1 — 0.3: (dream’ = 0) + 0.7: (dream’ = 2);

[] dream=2 —> 0.6: (dream’ = 1) + 0.4: (dream’ = 0);

endmodule

PRISM MODEL CHECKER

31

2.3 Formulating Property Assertions

The art of articulating property assertions within the prism of probabilis-
tic analysis finds its embodiment through the utilization of temporal logic
constructs. Much like a virtuoso crafting a harmonious symphony, Prism
adeptly composes intricate probabilistic narratives, seamlessly harmonizing
the dimensions of probability and time.

To illustrate, contemplate the following assertion: The probability of ul-
timately reaching state 2 surpasses the threshold of 0.8. In the eloquent
language of Prism, this conceptual notion metamorphoses into the precise

formalization:

P > 0.8(<> Fantasy.dream = 2)

In this refined expression, Prism captures the essence of the assertion, em-
ploying its linguistic elegance to encapsulate the inherent uncertainties and
temporal dynamics within a mathematical framework. Such meticulous ar-
ticulations serve as the cornerstone of accurate and comprehensive analysis,
allowing stakeholders to navigate the intricate landscape of probabilities with

clarity and precision.

2.4 Applications of Prism

The versatile utility of Prism spans a multitude of disciplines, resonating
across various domains with profound impact and significance. This sec-
tion sheds light on the diverse applications where Prism’s capabilities find

purposeful expression.

1. Software Analysis: Prism assumes the role of a meticulous evaluator,
meticulously examining the correctness and dependability of probabilis-
tic algorithms and protocols. Through its rigorous scrutiny, Prism en-
sures the veracity and robustness of intricate software systems, offering

a safeguard against potential errors and vulnerabilities.

32

PRISM MODEL CHECKER

2. Performance Evaluation: With its sophisticated analytical tools,

Prism emerges as a potent instrument for assessing vital metrics related
to system efficiency. These metrics encompass pivotal aspects such as
response time, throughput, and resource utilization. By wielding its
analytical prowess, Prism empowers organizations to fine-tune their

systems, enhancing operational efficiency and resource allocation.

. Exploration in Biology: Within the realm of biology, Prism assumes

the role of an insightful translator, unraveling the enigmatic behaviors
exhibited by biological systems when subjected to the whims of chance.
Through probabilistic modeling, Prism aids researchers in comprehend-
ing the intricate dynamics of biological phenomena, offering valuable
insights into the complex interplay of genetic, molecular, and environ-

mental factors.

. Advancements in AI and Robotics: The influence of Prism ex-

tends seamlessly into the domains of artificial intelligence and robotics,
playing a pivotal role in ensuring the integrity of probabilistic Al sys-
tems and guiding the strategic orchestration of robotic endeavors. By
subjecting Al algorithms to rigorous probabilistic analysis, Prism safe-
guards against unforeseen aberrations, while also contributing to the

development of adaptive and reliable robotic strategies.

Chapter 3
Architecture

This experiment encompasses the unveiling of a simulated Ethereum net-
work in operation, with adherence to the Gasper protocol. The formulation
and substantiation of the model are executed by means of the Prism model
checker, wherein the model is treated as a continuous-time Markov chain.
The ensuing portions of this discussion will furnish a broad overview of the
Gasper architecture, concurrently offering an exposition of how it is encom-
passed within the Prism modeling framework. The forthcoming chapter will
delve into the procedural details of crafting the model through Prism, in-
cluding the provision of code snippets and elucidation of each constituent

element.

3.1 Gasper architecture

The Ethereum network has embarked on a transformative journey by
transitioning from the energy-intensive Proof of Work (PoW) consensus mech-
anism to the innovative Proof of Stake (PoS) protocol under the Gasper ar-
chitecture. This architectural shift aims to enhance network efficiency, scal-
ability, and environmental sustainability while maintaining robust security

and decentralization.

33

34

ARCHITECTURE

3.1.1 Overview of Gasper Protocol

The Gasper protocol is the crux of Ethereum’s transition to PoS. Named
after the famous ghost-catching character, it seeks to address the limitations
of PoW and accommodate the intricacies of a PoS mechanism. The proto-
col is designed to ensure both security and liveness within the network. It
achieves this by leveraging a two-layer structure consisting of the Beacon
Chain and Shard Chains.

Beacon Chain

The Beacon Chain serves as the backbone of the Ethereum PoS network.
It is responsible for managing validators, maintaining consensus, and man-
aging cross-links to Shard Chains. Validators participate in the consensus
process by proposing and attesting to blocks on the Beacon Chain. The con-
sensus algorithm, known as the Casper protocol, ensures that validators act

honestly by staking their Ether as collateral.

Shard Chains

Shard Chains provide scalability by dividing the network into smaller,
interconnected chains. Each Shard Chain processes a subset of transactions
and smart contracts, thereby reducing network congestion and increasing
throughput. Cross-links from Shard Chains to the Beacon Chain maintain

the overall network’s coherence.

3.1.2 Validator Participation and Staking

Under the Gasper protocol, validators play a crucial role in securing and
validating transactions. Validators are Ethereum addresses that are required
to stake a certain amount of Ether as collateral to participate in block val-
idation. This stake serves as a disincentive against malicious behavior, as
validators risk losing their staked Ether if they are found to be dishonest or

unresponsive.

ARCHITECTURE

35

3.1.3 Committees

A committee constitutes a set of at least 128 validators tasked with val-
idating blocks within each designated time slot, known as a slot. Each slot
can accommodate a maximum of 64 of these committees. Within each com-
mittee, one of the validators takes on the role of aggregator, responsible for
assembling the signatures issued by all the other validators in the committee,
provided they agree on a certain attestation.

The main role of the committees is to fairly distribute the overall work-
load of the network, establishing a specific time for each group of validators
to present their attestations. This labor division process aims to ensure
efficient management of validation activities within the network, allowing
each committee to contribute in a synchronized and organized manner to the

functioning of the blockchain system.

3.1.4 Attestation

Every 6.4 minutes [17], a validator submits an attestation to the network,
specifying a particular slot within the epoch. The purpose of this attestation
is to cast a vote in favor of the validator’s perspective on the blockchain,
particularly concerning the most recently justified block and the initial block
of the current epoch, referred to as the source and target checkpoints, re-
spectively. These attestations, collectively contributed by all participating
validators, enable the network to establish consensus regarding the state of
the blockchain.

An attestation comprises the following key components:

e aggregation _bits: A bitlist representing validators, where each posi-
tion corresponds to the validator index in their committee, indicating
whether the validator has signed the data (i.e., whether they are active

and in agreement with the block proposer).

e data: Detailed information concerning the attestation, as further de-

fined below.

ARCHITECTURE

e signature: A BLS signature that consolidates the signatures of indi-

vidual validators.

The initial task for a validator preparing an attestation is to construct

the data component. This data includes the following details:

e slot: The slot number referenced by the attestation.

e index: A numerical identifier denoting the validator’s committee mem-

bership for a given slot.

e beacon_block_root: The root hash of the block observed by the val-
idator at the blockchain’s head, which is the result of applying the

fork-choice algorithm.

e source: A segment of the finality vote indicating the most recently

justified block, as perceived by the validators.

e target: A segment of the finality vote signifying the first block within

the current epoch, according to the validators’ viewpoint.

Once the data is assembled, the validator can set the aggregation_bits by
flipping the bit corresponding to their validator index from 0 to 1, sign the
attestation, and disseminate it across the network.

The transmission of attestation data from each individual validator to the
entire network entails substantial overhead. Therefore, these attestations
are aggregated within subnets before being distributed more widely. This
aggregation encompasses combining signatures, so an attestation broadcast
includes consensus data and a single signature formed by merging the sig-
natures of all validators in agreement with the data. This consolidation is
verified using aggregation_bits, which provides the index of each validator
within their committee, with their ID being specified in the data. In each
epoch, one validator within each subnet is designated as the aggregator.

The aggregator collects all matching attestations it receives over the gossip

ARCHITECTURE

37

network, recording the sender of each matching attestation in the aggrega-
tion_bits. Subsequently, the aggregator broadcasts the attestation aggregate
to the broader network.

When a validator is chosen as a block proposer, they compile aggregate

attestations from the subnets up to the latest slot for inclusion in the new
block.

Attestation Inclusion Lifecycle

The lifecycle of an attestation comprises several stages [17]:
1. Generation

2. Propagation: a first propagation of the attestation inside the com-

mittee.

3. Aggregation: the aggregator takes all the valid attestations and com-

bines them into one.
4. Propagation: from the aggregator to the entire network.
5. Inclusion

These stages collectively define the journey of an attestation within the

Ethereum network. Those steps are repeated in every epoch.

3.1.5 Stake, Rewards and Penalties

Individuals who operate nodes and aspire to engage in the validation
of blocks and the determination of the blockchain’s principal head initi-
ate deposits of ether into a specialized smart contract embedded within the
Ethereum network [43]. In reciprocation for their contributions, they receive
ether as remuneration for executing validator software. The core function

of this software lies in the meticulous evaluation of the legitimacy of newly

38

ARCHITECTURE

acquired blocks through the peer-to-peer network, coupled with the applica-
tion of the fork-choice algorithm to ascertain the primary block within the
chain.

Validators shoulder two paramount responsibilities: primarily, they are
entrusted with the task of meticulously examining new blocks and providing
their validation (attesting) if these blocks adhere to the requisite criteria.
Secondarily, when randomly selected from the comprehensive pool of valida-
tors, they assume the role of proposing new blocks. Failure to fulfill these
obligations within the stipulated timeframe leads to the forfeiture of their en-
titlement to an ether payout. Additionally, validators may, on occasion, be
charged with additional tasks such as signature aggregation and participation
in synchronization committees.

In Ethereum’s validation ecosystem, incentives are a cornerstone, serv-
ing as a mechanism that stimulates and compensates validators for their
roles.Validators in Ethereum Gasper receive rewards for specific actions, such
as timely votes, block proposals, and active participation in sync committees.
The cornerstone of this reward system is the base_reward which epitomizes
the average compensation a validator can expect under optimal conditions

per epoch. The formula for calculating the base_reward is as follows:

base_reward_factor

base_rewards_per_epoch x /> (active_b)
(3.1)

base_reward = effective_balance x (

Base Validator’s reward Here:

e base_reward_factor stands at 64.
e base_rewards_per_epoch is 4.

e > (active_b) signifies the cumulative staked ETH across all active val-

idators.

The Formula 3.1 underscores that the base_reward increases with a val-

idator’s effective balance while inversely correlating with the number of val-

)

ARCHITECTURE

39

idators. Consequently, an expanded validator pool elevates the total issuance
(following v/N), while diminishing the base_reward per individual validator
(following 1/v/N). These dynamics wield significant influence over the An-
nual Percentage Rate (APR) for validators.

A validator’s total reward derives from a summation of five components
[43], each assigned specific weights to gauge its contribution to the total

reward. These components comprise:
1. Source vote: Timely voting for the correct source checkpoint.
2. Target vote: Timely voting for the correct target checkpoint.
3. Head vote: Timely voting for the correct head block.
4. Sync committee reward: Active involvement in a sync committee.
5. Proposer reward: Proposing a block within the designated slot.
and the associated weights are:

TIMELY_SOURCE_WEIGHT : uint64(14)

TIMELY_TARGET_WEIGHT : uint64(26)

TIMELY_HEAD _WEIGHT : uint64(14)
SYNC_REWARD_WEIGHT : uint64(2)
PROPOSER_WEIGHT : uint64(8)

The cumulative weights of these components sum to 64, and the reward
computation entails the addition of relevant weights divided by 64. An ex-
emplar scenario involves a validator fulfilling all five components, earning a
reward equivalent to the base_reward. However, it’s important to note that
validators typically do not partake as block proposers, hence their maximum

reward typically amounts to % of the base_reward. Validators uninvolved in
6.75
8
In addition to these rewards, there exists an inclusion_delay_reward de-

block proposal or sync committees can anticipate of the base_reward.

signed to motivate swift attestations. This reward is computed based on the

40

ARCHITECTURE

slot interval between block proposal and attestation, with shorter intervals
yielding higher rewards.

Block proposers, on the other hand, reap rewards contingent upon the
number of valid attestations they incorporate into their proposed block. En-
couragingly, they are prompted to include evidence of misbehavior by other
validators, which enhances their rewards.

To incentivize integrity, block proposers who incorporate slashing evi-
dence acquire additional rewards, equivalent to a fraction of the slashed val-
idator’s effective balance, divided by 512.

The consequences for failing to cast target and source votes are com-
mensurate with the rewards the attestor would have garnered if they had
cast them successfully. In essence, instead of witnessing their balance in-
crease with a reward, an equivalent amount is deducted from their balance.

However, penalties differ based on specific actions:

e Source and Target Vote Penalties: Validators who miss timely
source and target votes incur penalties equivalent to the rewards they
would have earned had they voted on time. Essentially, the penalty

deducts an equal value from their balance instead of adding a reward.

e Head Vote: No penalties exist for missing head votes; they are exclu-

sively rewarded, never penalized.

e Inclusion Delay Penalty: There is no direct penalty for inclusion
delay; validators not meeting inclusion criteria merely forfeit the asso-

ciated reward without facing a specific penalty.

¢ Block Proposal Penalties: Validators do not face penalties for failing

to propose a block.

These penalty mechanisms encourage validators to act promptly and re-
sponsibly within the Ethereum Gasper network. Validators, being integral
to network security and performance, are incentivized to adhere rigorously

to established rules.

ARCHITECTURE

41

Source | Target | Head Vote Reward Penalty Inclusion Delay Result
X X X 0 3 X b_reward -3 x b_reward
\Y% X X b_reward x partecipation_rate 2 X breward | b_reward X % Vote_reward - % x b_reward
A% \% X 2 x b_reward X partecipation_rate b_reward b_reward x % Vote_reward - § X b_reward
A% A% V | 3 x breward X partecipation_ rate 0 b_reward x % Vote_reward + b_reward x %

Table 3.1: Rewards and Penalties.

Slashing and Inactivity

The latest actions undertaken by the protocol to ensure good conduct

and finality within the network are slashing and inactivity leak.

Slashing is a stringent measure within the Ethereum Gasper network, re-
sulting in the forceful removal of a validator from the network and the forfei-
ture of their staked ETH. Validators can be slashed for engaging in dishonest
actions related to block proposals or attestations. There are three actions

that can lead to slashing:

1. Double Proposal: When a validator proposes and signs two different

blocks for the same slot.

2. Surrounding Attestation: When a validator attests to a block that
surrounds another block, effectively attempting to alter the blockchain’s

history.

3. Double Voting: When a validator attests to two competing candi-

dates for the same block.

Upon detection of any of these actions, the validator is subjected to slash-
ing. This involves an immediate burn of 1/32 of their staked ETH (with a
maximum of 1 ETH). Following the burn, a 36-day removal period begins
during which the validator’s stake gradually diminishes. At the midpoint of
this period (Day 18), an additional penalty is applied. The magnitude of this
penalty scales with the total staked ETH of all slashed validators within the
36 days preceding the slashing event. Consequently, if more validators are

slashed, the magnitude of the slash increases. The most severe slash could

42

ARCHITECTURE

lead to the forfeiture of the entire effective balance of all slashed validators.
Conversely, isolated slashing events result in a relatively minor loss of the val-
idator’s stake. This midpoint penalty, contingent on the number of slashed

validators, is termed the correlation penalty.

Inactivity Leak is an emergency protocol in Ethereum Gasper triggered
when the consensus layer goes more than four epochs without finalizing. The
primary objective of the inactivity leak is to create conditions conducive to
the recovery of finality within the blockchain.

As previously explained, achieving finality necessitates a 2/3 majority of
the total staked ETH agreeing on source and target checkpoints. If validators
representing more than 1/3 of the total validators either go offline or fail to
submit accurate attestations, it becomes impossible for a 2/3 supermajority
to finalize checkpoints. In such a scenario, the inactivity leak serves to grad-
ually reduce the stake held by inactive validators until they control less than
1/3 of the total stake. This shift allows the remaining active validators to
finalize the chain.

Regardless of the size of the pool of inactive validators, the remaining
active validators will ultimately control more than 2/3 of the total stake. The
loss of stake serves as a potent incentive for inactive validators to reactivate
as swiftly as possible. An instance of the inactivity leak was encountered on
the Medalla testnet when fewer than 66% of active validators could reach a
consensus on the current blockchain head. The inactivity leak was activated,
and finality was reestablished.

The penalty for an inactive validator ¢ is calculated as:

S; X Bl
 INACTIVITY _SCORE_BIAS x INACTIVITY _.QUOTIENT

Di

where the s; is the validator ¢ inactivity score, B; is its staked balance,
INACTIVITY_SCORE_BIAS is equal to 4 and INACTIVITY_QUOTIENT
is equal to 2%4.

The inactivity score is updated each epoch following:

ARCHITECTURE 43

e At the end of epoch N, irrespective of the inactivity leak,

— decreases a validator’s score by one when it made a correct and

timely target vote in epoch N — 1, and
— increases the validator’s score by INACTIVITY_SCORE_BIAS

(four) otherwise.
e When not in an inactivity leak,

— decreases every validator’s score by INACTIVITY_RECOVERY _RATE

(sixteen).

3.1.6 Finality and Liveness

Gasper brings in the idea of correct-by-construction to make sure that
the PoS network reaches a point of no return, called finality. Finality guar-
antees that once a block joins the blockchain, it’s there for good, making
the whole system more secure. The method it uses is called justification
and finalization, which works through epochs and checkpoints to achieve this

unchangeable state.

3.1.7 Benefits of Gasper Architecture

The Ethereum PoS protocol under the Gasper architecture offers several
notable benefits:

e Energy Efficiency: Unlike PoW, PoS does not require miners to solve

complex mathematical puzzles, reducing energy consumption.

e Scalability: Shard Chains enable the network to process multiple

transactions simultaneously, increasing throughput.

e Security: Validators’ economic stake serves as collateral, aligning their
incentives with network security and reducing the risk of malicious

behavior.

44

ARCHITECTURE

e Decentralization: PoS encourages wider participation, as the barriers

to entry are lower than PoW, enhancing network decentralization.

3.2 Model simulation

Continuous-time Markov Chains (CTMCs) are a fundamental mathemat-
ical concept used to model and analyze systems that exhibit probabilistic
behavior over time. CTMCs are especially useful in modeling stochastic
processes where transitions between states occur continuously and are char-

acterized by rates rather than discrete time steps.

3.2.1 CTMC Basics

A Continuous-Time Markov Chain (CTMC) finds its essence in a col-
lection of states joined by the pathways of transition rates [26]. Each state
serves as a snapshot of a system’s arrangement, while the transition rates
paint a picture of how likely it is to move from one state to another dur-
ing a specific span of time. This CTMC’s actions and dynamics are captured
through a series of differential equations, recognized as Kolmogorov’s forward

equations, which outline its evolution and behaviors.

3.2.2 Prism Model Checker and CTMCs

Prism stands as a highly regarded tool for model checking, playing a
pivotal role in simplifying the process of shaping, simulating, and validating
probabilistic systems. Its capabilities extend to assisting in the description
and examination of Continuous-Time Markov Chains (CTMCs), allowing for
a detailed investigation into the traits and actions of systems through both

simulation and the rigor of formal verification methods [27].

ARCHITECTURE

45

Model Specification

Within the framework of Prism, a CTMC model unfolds using an ap-
proachable language that precisely lays out states, the speeds at which they
transform, and the uncertain decisions steering these shifts. Beyond that,
this model is equipped with the ability to integrate labels, rewards, and
other significant variables, all harmonizing to enable a thorough exploration

of its behaviors and characteristics.

Simulation and Analysis

Prism equips users with the ability to simulate CTMC models, allowing
them to witness the evolution of a system as time unfolds. This is achieved
through the utilization of Monte Carlo simulation techniques, which gener-
ate illustrative sample trajectories revealing the transitions between various
states. These trajectories provide a wealth of valuable insights into the dy-
namic character of the system and the diverse spectrum of probable outcomes

that can emerge.

3.2.3 Simulating Ethereum PoS Network

To build a simulation of an Ethereum PoS network using Prism and
CTMCs, it is possible to craft a model that depicts the diverse states the
network can be in, the transitions that occur between these states, and the

rates at which these changes happen.

State Representation

Outline distinct states that mirror various setups within the Ethereum
PoS network. These states encompass arrangements of validators, conditions
of the blockchain, and levels of congestion in the network. For example, they
might cover how validators are spread out, what state the blockchain is in,

and how busy the network is at different times.

46

ARCHITECTURE

Transition Rates

Explain the speed at which the system transitions between various stages
in line with the functioning of the PoS protocol. These rates act as indicators
of actions taken by validators, the timing of block proposals, the shifting of

epochs, and any noteworthy events occurring within the network.

Property Analysis

Identify the important characteristics one wants to examine, like how
many transactions can be processed, how steady the network remains, and
how actively validators are engaged. Then, utilize Prism’s analysis tools to

evaluate the chances of these specific features being met.

3.2.4 Benefits and Limitations

Using CTMCs and Prism to simulate an Ethereum PoS network offers sev-
eral advantages, including the ability to quantitatively analyze probabilistic
behavior, assess network stability, and optimize protocol parameters. How-
ever, it’s important to acknowledge that CTMC models are simplifications

of real-world systems and might not capture all intricacies accurately.

3.2.5 Prism-+

Prism+ is a version of the Prism model checker designed to simulate the
behavior of a blockchain. This expansion of the model checker allows you to
use objects such as blocks and blockchains, implicitly allowing you to resolve
issues internal to these objects, such as the presence of forks in blockchains
or the automatic updating of the ID regarding blocks created by the same

node.

Chapter 4
Implementation

In this chapter, the focus is directed toward the implementation phase of
the codebase designed for the Prism model checker. This segment constitutes
a pivotal aspect of this work, elucidating the foundational architecture and

operational characteristics of the code.

First, the global variables implemented and used in this Ethereum PoS
model are shown. Each variable has a fundamental role in the experiments
carried out. The use of global variables in Prism allows you to synchronize
the execution of different operations by validators, without the obligation
to use specific synchronization constructs. Subsequently, the Prism modules
created for this implementation are introduced, namely Validators, Network,
Updater, RanDAQ, and Global. Each module with its sub-components as-
sumes a crucial role in simulating and scrutinizing the behavior of the system,
thereby enhancing the overall robustness and dependability of the implemen-

tation.

Furthermore, an examination of the utilization of labels is conducted, as
these components play a vital role in simulating specific aspects of the model’s
behavior, facilitating comprehensive tracking and evaluation. Additionally,
scrutiny of global variables employed throughout the code is undertaken,
shedding light on their significance and influence on the operational dynamics

of the system.

47

48

IMPLEMENTATION

4.1 Global variables

The Listing 4.1 outlines the global variables used in the Prism model

checker code for Ethereum Proof of Stake (PoS) simulations.

const int EpochSize = 32;

const double rMw=1;

const epochs;

const double T=epochs«EpochSize*(12);
const double rC = 12/(384);
const double rAdd = 1/12.6;
const double r = 1/12.6;

const int K =1;

const int Start .. Fin =0 .. 8;
const int N = 100;

global ValidatorID : int init —1;
global Voter0 : int init —1;
global Voterl : int init —1;
global Voter2 : int init —1;

Listing 4.1: Global variables initialization.

These variables are fundamental parameters that define the behavior and
characteristics of the simulated Ethereum network. Here is a description of

each global variable:

e EpochSize defines the size of an Ethereum epoch, consistently set at
32 slots.

e rMw represents the delay between block creations and propagation,
initially configured as 1, equivalent to a 12-second delay for each block

creation.

e epochs signifies the number of epochs considered, which can be ad-

justed either dynamically or statically before simulation.

e T calculates the overall simulation duration, factoring in the number

of epochs, epoch size, and a 12-second block creation delay.

IMPLEMENTATION

49

e rC indicates the time available to a validator to carry out a vote.
Considering that a validator can send his vote in his reference slot, this
value is marked as 12/384, i.e. 1/32.

e rAdd corresponds to the rate of delay involved in adding a block to
the blockchain.

e 1 represents the delay associated with block removal.

¢ K remains a constant with a value of 1, serving as a predefined param-

eter, notably employed in fork-length simulations.

e All the variables from Start=0 and Fin=8 are used inside the Valida-

tor’s modules and are referred to the validator’s state.

e The variable N represents the value 100, likely indicating a predefined
constant related to the simulation. It is used as a maximum value in

multiple situations.

e The ValidatorID is a global variable used during the RanDAO oper-
ations. It refers to the ID of the validator that is chosen as the block

proposer.

e The Voter; is a global variable used during the RanDAO operations.
It refers to the ID of the validators that are selected to vote in a specific

slot.

These global variables play a crucial role in defining the parameters and
behavior of the Ethereum PoS simulation within the Prism model checker
code, allowing for the precise modeling and analysis of Ethereum’s PoS con-

sensus mechanism.

4.2 Validator

In this section, only the validator with id=0 is considered, for simplicity

in the description, it should be noted that all the validators have the same

50

IMPLEMENTATION

structure and the same local variables. So, for Validatorl, you will have
M1_STATE, bl, B1, cl1, and so on.

module Validator0

MOSTATE : [Start, Create, Receive, Move, Vote, Check, Fin]
init Start;

b0 : block{genesis ,0; genesis ,0} ;

B0 : blockchain [{genesis ,0;genesis ,0}];

votesO : [0..1000] init O;

lastFinalized0 : block {genesis ,0;genesis ,0};

lastJustified0 : block {genesis ,0;genesis ,0};

lastCheckO : block {genesis ,0;genesis ,0};

finalized0 : bool init false;

justified0 : bool init false;

[] (MOSTATE=Start)&(validatorID=0) —>
1 : (b0’=createBlock()) &
(MOSTATE'=Create) &
(validatorID ’=—1);

[] (MOSTATE=Start)&(voter,=0) —>
1 : (MOSTATE =Vote) ;

[] (MOSTATE=Start)&!ListIsEmpty()) —>
rC : (MOSTATE’=Check) ;

[] (MOSTATE=Start) —>
1 : (MOSTATE=Receive) ;

[addBlock0] (MOSTATE=Create) —>
Mw: (B0’=addBlock();

[voteBlock0] (MOSTATE=Vote) —>
1 : (getBlockHeigth()) &

(addBlockSet (b0)) ;

[] (MOSTATE=Receive) & !isEmpty(Set_0) —>

IMPLEMENTATION 51

1 : (b_O=receive(Set_.0)) &
(MOSTATE=Move) ;

[] (MOSTATE=Receive) & isEmpty(Set_0) —
1 : (MOSTATE=Start);

[] (MOSTATE=Check)&(isCoherent (Stakes, Heigth)) —>
rIst : (numFinBlocks0’=numFinBlocksO0 + 1) &

lastFinalized0 '=lastJustified0) &

lastJustified0 '=lastCheck0) &

B0’=updateChain()) &

MOSTATE'=Fin) &

justified0 '=true) &

finalized0 ’=true) ;

e N e N N

[] (MOSTATE=Check) & (!isCoherent (Heigth)) —
rIst : (removeCheckpoint() &
(MO_STATE’'=Start) ;

[] (MOSTATE=Check) & (!isCoherent (Stakes)) —>
rIst : (MOSTATE'=Start) ;

[finBlock0] (MOSTATE=Fin) —>
1 : (reset());

endmodule

Listing 4.2: Pseudocode of the first Validator with id=0. Each validator has
the same implementation, except for the reference ids, which in this case
refer to the Validator with id=0, so the next one will have its local variables

ending with its own id, i.e. b1, B1 and so on.

The module of each Validator encapsulates the behavior and characteristics of
a validator within the context of the simulation. To describe the functioning
of a validator, it is necessary to divide the module into two sections: state

variables and transitions.

52 IMPLEMENTATION

State Variables

The Validator0 module defines the following state variables:

e MO _STATE: Represents the current state of ValidatorO, which can be

one of the states from Start to Fin.

e b0: Represents a block, it can be the block created by validator0O or

another block taken from the chain, created by some other validator.

e B0O: Represents the view of the blockchain for validator(, initialized

with the genesis block.
e votes0: A variable representing the number of votes, initialized to 0.

e lastFinalizedO: Represents the last finalized block, initialized to the

genesis block.

e lastJustified0: Represents the last justified block, initialized to the

genesis block.

e lastCheck0: Represents the last checkpoint block, initialized to the

genesis block.

e finalizedO: A boolean variable initialized to false, representing whether

a block is finalized.

e justifiedO: A boolean variable initialized to false, representing whether
a block is justified.

Transitions and Actions

The Validator0 module defines the following transitions and actions:

e MO _STATE=Start & ValidatorID: ValidatorO starts in the Start
state and if validatorID contains the id of the validator, then it means
that it is elected as block proposer. It transitions to Create, creating a

block and resetting the validatorID variable.

IMPLEMENTATION

e MO_STATE=Start & VoterID: The Validator is chosen as voter for
the current slot. It has to send a vote for the head of the chain (the last
proposed block that it sees) and send a vote for the last checkpoint.

¢ MO_STATE=Start: In each slot, a validator is required to keep his
personal view of the blockchain up to date. Therefore at all times,
the validator is listening to the new blocks proposed, even if he cannot
actually vote, given that it is not certain that he has also been elected

as a voter.

e addBlock0 Transition (From Create State): When Validator0 is in the
Create state, it can add a new block to the blockchain (B0) with a delay
represented by rMw. This transition adds the previously created block
to the main view and notifies the other validators on the committee of

this addition, so they can proceed with a vote.

e voteBlockO Transition (From Vote State): When in the Vote state,
the validator votes for a block by first considering the height of the

checkpoint and then adding it to its view.

¢ MO_STATE=Check Transitions: In the Check state, validators check
conditions for finalization or justification, updating various variables
and potentially transitioning to the Fin or Start state. A validator
first checks if the stakes are greater than 2/3 of the total stakes and

next computes the height as done before.

e finBlock0O Transition (From Fin State): If the validator is in the Fin

state, it resets flags and transitions back to Start.

4.3 Updater

The Updater module is used to initialize, track and update the stakes of

each validator belonging to the network.

54

IMPLEMENTATION

module Updater

Updater STATE : [0..1] init O0;

n_epochs : [2..N] init 2;

tot_stake : [0..50000] init 32 x VALIDATOR.COUNT;
voti : hash [];

maxHeight : [0..5000] init O;

reward, : [0..N] init O0;

stake; : [0..N] init 32;

[voteBlock;] (Updater STATE=0) —
1 : (voti’=addVote(voti,b;,stake;));

[finBlock;] (Updater.STATE=0)&(coherentHeigth()) —>
1 : (stake;,’=updateStake(voti,lastFinalized;,
(getHeight (lastFinalized;) ,stake;,tot_stake)) &

(i+1 to n repetitions) ;

endmodule

Listing 4.3: Pseudocode for Updater module. Here it is implemented a
generic code, without using specific IDs. It is necessary to understand that
for a correct implementation, it is necessary to repeat the three transitions
described for all the validators that will be implemented. For example, if
the number of validators is equal to 13, it will be necessary to implement
13 transitions such as voteBlock and finBlock taking care to replace the IDs

correctly.

This module manages the traffic of stakes, rewards and, more generally, the

updates linked to them. The state variables are:

e Updater STATE, used as a binary flag that can take the value 0 or
1 and represents the actual use of this module, i.e. when it must be

used and when not.

e The variable n_epochs is used in the phase of updating the stake of

the single validator.

IMPLEMENTATION

55

e The variable tot_stake takes into account all the stakes, therefore ini-
tialized to 32 x VALIDATOR_COUNT, as required by the protocol.

e votiis a hasMap used to keep track of the votes made to the validators
on the proposed blocks and this table follows the principles of the LMD
(Last Message Driven) algorithm.

e maxHeigth already seen in the previous module, serves to keep track
of the maximum height up to that moment of the checkpoints, or more

abstractly, of the chain.

e reward,; and stake; are the two variables linked to individual valida-
tors, which keep track of the rewards received and the current stake of

each individual user.

The transitions involved in this module are repeated for each validator,
as can be imagined from the pseudocode. The transition voteBlock, when
the Updater is ready to work, all it does is add a vote inside the hashMap
for that specific block passed as input.

Much more complex is the finBlock transition which, after a careful analysis
of the consistency regarding the height of that block in relation to the other
checkpoints or finalized blocks, allows you to update the stake value of the

single validator and consequently also that of the variable tot_stakes.

4.4 Network

The Network module manages the entire part relating to the communica-
tion between validators, i.e. the addition or elimination of blocks to the main
blockchain, considering the addition or removal delays that are foreseen by

the protocol used.

module Network

Network STATE : [0..2] init O0;

56 IMPLEMENTATION
set; : list [];
lenGlobal; : [0..N] init O0;
[addBlock;|] (MSTATE=Create) —>
rAdd : (set;y;’=addBlockSet(b;)) &
(set;ro’=addBlockSet(b;)) &
(repeat for each vaidator i+N);
[extractBlock;] (M;_STATE=Move) —>
r : (set;’=removeBlock(b;));
endmodule

Listing 4.4: Pseudocode for Network module. Each validator has its
own variables set; and lenGlobal; and its own transitions addBlock; and

extractBlock;, where 7 is referred to the ID.

The variables used in the Network 4.4 module are set, which contains
all the blocks currently intended as checkpoints, which can then be justi-
fied or finalized, and the variable lenGlobal which takes into account the
length of each set of the individual validators, acting as a local block counter.
This variable has a very important role when calculating the various heights,
described in the previous listings.

The transitions in this module are used to manage the step before justi-
fying or finalizing a block. If a block needs to be added, in the addBlock
transition, then that block will be added to each validator’s set, so that every-
one can have it in their set. The opposite situation exists in extractBlock,
which is carried out only in the set of the user who proposed the block, i.e.
the validator with the role of proposer, given that it is an operation that is

called chronologically before the addition.

4.5 Global

The Global module is used to manage the Fork calculation according to

the algorithm described by the Gasper protocol, and all the main operations

IMPLEMENTATION

57

carried out for the experiments.

module Global

diff : [0..N] init O0;
kLength : bool init false;

finalizationIncrease : bool init false;

[] (M;STATE = Move) | (repeat for each Val) —
1 : (diff ’=calculateFork(B, .. By));

[] (diff>0) & (diff=K) —
1 :(kLength’ = true);

[] (finCount > oldFinCount) —>
1 : (finalizationIncrease’ = true) &
(oldFinCount’ = finCount);

endmodule

Listing 4.5: Pseudocode for Global module.

The pseudocode 4.5 shows the operations carried out to calculate the
length of the fork, starting from the MOVE state of each validator, calcu-
lating its height, then inserted into the diff variable. The length of the fork
will then be analyzed as shown in the experiments in Chapter 5.

A further analysis is that carried out for probabilistic liveness, discussed
in Chapter 5, which has the objective of ascertaining the constant increase
in the number of finalizations, finalizationIncrement, even with delays or

attacks on the network.

4.6 RanDAO

A decentralized autonomous organization (DAO) is established to facili-
tate the participation of any interested entity. Within this framework, ran-

dom numbers are collaboratively generated by all participating entities. The

IMPLEMENTATION

process begins by creating a RANDAO contract on the blockchain, a pivotal
step that defines the rules of participation. The fundamental procedure for

generating a random number unfolds through three distinct phases [31]:

1. Collection of Valid sha3(s): Entities seeking involvement in random
number generation must initiate a transaction with contract C' during
a specified time frame (e.g., a 6-block period or approximately 72 sec-
onds). Alongside this transaction, participants are required to pledge
m ETH and submit the result of sha3(s), where s represents the secret

number individually chosen by each participant.

2. Collection of Valid s: Subsequent to the conclusion of the first phase,
participants who successfully submitted sha3(s) must dispatch another
transaction containing their secret number s to contract C' within a
predetermined time limit. Contract C' conducts a validity check on s
by executing the sha3 operation and comparing the result with previ-
ously committed data. Valid s are retained in the collection of seeds,

culminating in the eventual generation of the random number.

3. Random Number Computation, Pledge Refund, and Bonus Alloca-
tion: Once all secret numbers have been successfully collected, con-
tract C' proceeds to calculate the random number using the function
f(s1,s2,...,sn) The resultant value is recorded within contract C' and
subsequently distributed to all other contracts that had previously re-

quested the random number.

Contract C' administers the return of pledges to participants from the
first phase. Any profit generated is equitably divided among all par-
ticipants as an additional bonus, with these profits being sourced from

fees paid by other contracts utilizing the random number.

Additional Rules

To safeguard against the manipulation of the Random Number Genera-

tion (RNG) and to enhance safety and efficiency, contract C' enforces sup-

IMPLEMENTATION

59

plementary regulations [32]:

e In the first phase, only the first occurrence of sha3(s) is accepted if two

or more identical sha3(s) submissions are consecutively received.

e The first phase imposes a minimum participant requirement; failure
to accumulate a sufficient number of sha3(s) within the specified time
frame results in the failure of RNG at that particular block height.

e If a participant submits sha3(s) that is accepted by contract C, they

are obligated to reveal s during the second phase.

— Failure by the participant to reveal s in the second phase results
in the confiscation of the m ETH pledged during the first phase

without the possibility of reimbursement.

— If one or more s remain undisclosed during the second phase,
RNG at that block height is deemed unsuccessful. The confiscated
ETHs are evenly distributed among other participants who did
reveal s in the second phase, with refunds provided for fees paid

by other contracts.

Prism code

These operations are segregated into two distinct modules. The initial
module, as depicted in Listing 4.6, is responsible for generating, during epoch
e, the proposers and the voters for the 32 slots of epoch e + 2, considering
the indices encompassing all validators within the network. Conversely, the
Randao Selection module is tasked with allocating the appropriate proposer
and voter for that specific slot by assigning the designated proposer into the
global variable Validator _I D and the voters into VoterID_1, VoterI D_2 and
VoterID_3.

module Randao

for 1 from 0 to 31:

60

IMPLEMENTATION

ValidatorB_i: int init —1;

)

for j from 0 to 2: Voter_ji: int init —1;

)

for 1 from 0 to N: index_i : int init 1i;

)

[] (state=0)&(randao=true) —> 1 : (state’=1)& for i from 0
to N:

if Stakes[i] < 32 : index_i’ = —1;
[] (state=1) —
1: (randao’=false) &(state’=0)& for i from 0 to 31:
ValidatorB _i’=randomNumber(epoch ,i, index_0 ,...,
index_N)&
Voter_0i’=randomNumber(epoch ,1+31, index_0 ,...,
index_N)&
Voter_li’=randomNumber(epoch ,i+63, index_0,...,
index_N)&
Voter_2i’=randomNumber(epoch , 1+95, index_0 ,...,
index_N)

endmodule

Listing 4.6: Pseudocode for Randao Module. The constant n refers to the

total number of validators who will take part in the next draw.
module Randao_Selection
i : [0..32] init 0;

[] (i=0)&(randao=false) —> 1 : (validatorID’=ValidatorB0)&/(i’
=i+1);
for j from 1 to 31:
[1 (i=j) — slot
(validatorID’=ValidatorB_j)&(voterID_0'=Voter_0i)
& (voterID_1'=Voter_li)&(voterID_2'=Voter_2i)&(i'=i+1)
[] (i>31) — 1: (i'=0)&(randao’=true);
endmodule

Listing 4.7: Pseudocode for Randao Selection Module. The constant n refers

to the total number of validators who will take part in the next draw.

IMPLEMENTATION

61

The division into these two distinct modules allows for a systematic approach
to the process, wherein the first module handles the comprehensive selection
of proposers for a future epoch based on validator indices, while the lat-
ter module focuses on the precise assignment of a specific proposer for the
intended slot. This segregation of functions aids in the efficient and orga-
nized execution of the overall process, ensuring the appropriate allocation of

validator roles within the epoch structure.

4.7 Labels

The labels employed during these experiments play a pivotal role in Chap-
ter 5. These labels serve as explicit references to the particular conditions
and scenarios meticulously examined within this study section. They are in-
strumental in delineating the specific contexts in which we sought to quantify
and assess the probabilities of success or failure.

These labels are, in essence, identifiers for distinct situations and sce-
narios where it becomes feasible to perform precise calculations or forecasts
regarding the likelihood of success or failure. They function as crucial tools in
our analytical framework, enabling us to establish a rigorous basis for com-
paring the model we have constructed with the regulations and guidelines
stipulated by the protocol under examination.

By assigning these labels to well-defined conditions and scenarios, we
create a structured and systematic approach to evaluate the performance
and adherence of our model to the prescribed standards. This systematic
comparison allows us to gauge the model’s efficacy in predicting outcomes
accurately within the given protocol. In essence, these labels act as the
cornerstone for a comprehensive and meticulous evaluation, providing the
necessary context to assess the model’s proficiency in the context of the
examined conditions and, ultimately, contributing to a more insightful and

robust analysis.

62

IMPLEMENTATION

label ”winner” = (M;_STATE .. M, STATE = Winner) ;

label ”someCreated” = (created; .. created, = true);

label ”somelJustified” = (justified,; .. justified, = true);
label "someFinalized” = (finalized; .. finalized, = true);
label 7finInc” = (finalizationIncrease = true);

label "equalLength” = (kLength = true);

Listing 4.8: Pseudocode for Labels delcaration. The constant n refers to the

total number of validators.

The labels depicted in Listing 4.8 hold significance in the context of a se-
ries of experiments conducted. The pseudocode provided therein succinctly
delineates the process of label creation, subsequently enabling their utiliza-
tion in bespoke property formulations during subsequent simulations of the
model.

The someWinner label has been deliberately conceived for the express
purpose of scrutinizing both the efficiency and correctness of the RanDAO
module. It is predicated upon the attainment of the coveted ” Winner” status,
a distinction conferred upon an entity when selected as a block proposer
within the system.

On the other hand, someCreated pertains to the precise instant when
a block comes into existence, prior to any form of voting or validation proce-
dures. This label assumes particular significance as it serves as an indispens-
able component for assessing the ramifications of delays in block creation on
subsequent justifications or finalizations within the framework.

Furthermore, someJustified and someFinalized labels correspond to
the principal conditions of finality, encompassing both justification and fi-
nalization events. Their integration has been instrumental in fostering an
analytical framework aimed at gauging the rates of finalization and the pro-

cess of achieving consensus within the network.

IMPLEMENTATION

63

Lastly, finInc and equalLength labels are closely aligned with two spe-
cific experiments pertaining to probabilistic liveness and fork probability.
The former scrutinizes the dynamic progression of finalization events within
the network, seeking to ascertain whether there exists a discernible increase
in their frequency. The latter, equalLength, undertakes the intricate task of
evaluating the length of a fork, explicitly examining whether it falls below,
exceeds, or equals the parameter passed as an input to the analysis. This
operation is done only for reasons of comparison with the previous protocol,
given the use of the LMD-Ghost algorithm in Gasper which does not consider
the length of the fork, but rather the total weight of the blocks.

Chapter 5
Experiments

In this chapter, experiments will be performed in order to test the sim-
ulation produced with the Prism model checker of the Ethereum Gasper
protocol. Initially, some basic tests, or Coherence tests, will be performed
in order to ensure that the simulation works correctly. These tests will also
have to reproduce the expected behavior of the Gasper protocol.

Another way to test the model would be to conduct stress tests and
comparisons with other protocol simulations, but since this simulation is not
connected to the network, it would not be possible to test its ability to handle
large numbers of transactions. Since there are no practical simulations of
models relating to the Gasper protocol in the literature, the model created is
compared with the one created for the previous protocol, i.e. hybrid casper.

Subsequently, Security tests will be carried out, where the model will be

tested, theoretically and practically, against potential attacks.

5.1 Simplifications

Considering that there are no practical simulations of Ethernet PoS in the
literature and no data are reported regarding the coherence of the various
proposed models, for these experiments some simplifications are adopted, in

order to be able to compare it with the previous protocol. For this reason,

65

66

EXPERIMENTS

block votes and checkpoint votes share the same structure and implementa-
tion. Only one type of generic vote is considered, but if this vote is directed
to a block with a height multiple of 32, then it is a checkpoint vote, whereas if
the block height is not a multiple of 32, then it is a block vote. A further sim-
plification concerns the number of validators created for these experiments.
6, 13 and 16 are considered and could not be increased due to hardware lim-
itations. However, in Figure 5.1 the justification rates for the three groups
of validators are shown. Behaving in the same way, it is decided to perform
further experiments with a number of validators N equal to 13. The last
simplification adopted concerns the incentives and penalties for honest or
dishonest verification, which depend on the quantity of ETH deposited. In
the simulation, the value of the penalty or reward is approximated to the

value that that specific validator could have in the analyzed epochs.

1 p 1
> 0.75 > 0.75 |
= =
S 05 S 05
< =
Q QS
~ ~
8 0.25 % 0.25

’+ Tustlﬁcatlon (6 nodes) ‘ ’ ——]ustlﬁcatlon (13 nodeb) ‘
0 0
12345678910 12345678910
Epochs Epochs
1 —

e
-3
ot

Probability
o
ot

0.25 1

’ Juqtiﬁcntion (16 nodcs) ‘

12345678910
FEpochs

Figure 5.1: Justification rates over 6, 13 and 16 Validators.

EXPERIMENTS

67

5.2 Coherence

In this section, many of the main features of the Gasper protocol charac-
terizing the Ethereum Proof of Stake network in use since September 2022 are
applied and reproduced. The consistency of the model created using Prism
Model Checker will be demonstrated, comparing it with the expected results
of Ethereum PoS.

These experiments will also be compared with the results obtained from

previous experiments performed on the Hybrid Casper [1] protocol.

Block Creation

In both Ethereum Proof of Work (PoW) and Ethereum Proof of Stake
(PoS) protocols, block creation refers to the process of adding new blocks to
the blockchain.

Ethereum Proof of Work (PoW) Block Creation: In the PoW
consensus mechanism, block creation involves solving complex cryptographic
puzzles, known as the Proof of Work, to validate transactions and create
new blocks. Miners, who are participants in the network, compete to solve
these puzzles, and the first miner to find a valid solution gets the right to
create and add the new block to the blockchain. This process is computa-
tionally intensive and requires significant computational power and energy
consumption.

Once a miner finds a valid solution and creates a new block, they broad-
cast it to the network for verification. Other nodes in the network then
validate the block’s transactions and the Proof of Work solution. If the
block is deemed valid, it is added to the blockchain, and the miner receives a
reward in the form of newly minted Ether (the native cryptocurrency of the
Ethereum network) and transaction fees.

Ethereum Proof of Stake (PoS) Block Creation: In the PoS con-
sensus mechanism, block creation involves a different approach that does not

rely on solving computational puzzles. Instead, validators (also called forgers

68

EXPERIMENTS

or stakers) are chosen to create new blocks and validate transactions based

on the number of coins they have staked as collateral in the network.

Validators lock up a certain amount of cryptocurrency (Ether in the case
of Ethereum) as a stake to participate in block creation and validation. The
probability of being chosen as a validator to create a new block is propor-
tional to the amount of cryptocurrency they have staked. This means that

validators with larger stakes have a higher chance of being selected.

When a validator is selected to create a new block, they assemble the
transactions to include in the block and propose it to the network. Other
validators then validate the proposed block and its transactions. If the block
is deemed valid, it is added to the blockchain, and the validator who proposed

the block receives transaction fees as a reward.

In summary, block creation in Ethereum PoW involves solving crypto-
graphic puzzles, while in Ethereum PoS, it relies on the selection of validators
based on the amount of cryptocurrency they have staked. Both mechanisms
aim to secure the network and ensure consensus on the state of the blockchain.
However, PoS is considered more energy-efficient compared to PoW due to

the absence of the resource-intensive mining process.

In contrast to the proof-of-work mechanism, where block timing depends
on mining difficulty, proof-of-stake operates with a fixed tempo. In proof-
of-stake Ethereum, time is organized into slots, each lasting 12 seconds, and
epochs, comprising 32 slots. During each slot, a single validator is randomly
chosen to act as the block proposer. This selected validator assumes the
responsibility of creating a new block and disseminating it to the other nodes
within the network [4].

Block time refers to the time separating blocks. In Ethereum, time is
divided up into twelve-second units called slots. In each slot, a single validator
is selected to propose a block. Assuming all validators are online and fully
functional there will be a block in every slot, meaning the block time is 12s.
However, occasionally validators might be offline when called to propose a

block, meaning slots can sometimes go empty [5].

EXPERIMENTS

69

Probability
© o o
BN (o)} (o]

o
[N
T
L

\—e—Gasper —e— Hybrid Casper\

OI I I
5 10 15 20 25

T

OG

Figure 5.2: Block creation probability over time.

In Figure 5.2 it is depicted the process of block creation over a duration
of 25 seconds, comprising two slots, each lasting 12 seconds. Within this
timeframe, two blocks are expected to be created, as one block is anticipated
to be generated in each slot. The block creation process exhibits a block
creation probability (p) greater than 0.8 in the first slot. However, it is
essential to consider the possibility of a validator being offline during one
slot, resulting in the need to await the subsequent slot for block creation in
such circumstances. Consequently, occasional occurrences may arise where
validators are offline, leading to the possibility of encountering empty slots
without any block creation.

Comparing these results with Hybrid Casper, presented in [1], it is clear
that the switch from Hybrid Casper to Gasper significantly increased the

block creation rate.

Finality: Justification and Finalization

Finality in the Ethereum blockchain refers to a critical property of certain

blocks that renders them irreversible, except in extreme scenarios involving

70

EXPERIMENTS

a severe consensus failure and an attacker compromising at least 1/3 of the
total staked ether.

To achieve finality, blocks undergo a two-step upgrade procedure. First,
for a block to be justified, it must obtain approval from two-thirds of the
total staked ether, indicating a high level of confidence in its inclusion in the
canonical chain. Although justified blocks are unlikely to be reverted, certain
exceptional conditions might still allow for reversals.

The second step involves finalization, which occurs when another block
is justified on top of a justified block. This action commits to including
the block in the canonical chain, making it irreversible, except under highly
improbable circumstances where an attacker would have to destroy vast
amounts of ether, equating to billions of USD in value.

It is important to note that not every block undergoes these upgrades;
only epoch-boundary blocks are eligible for justification and finalization. These
blocks, known as checkpoints, are considered during the upgrade process. To
trigger the upgrade, a supermajority link must exist between two successive
checkpoints, meaning that two-thirds of the total staked ether must vote
in favor of one checkpoint being the correct descendant of the other. This
procedure ensures the integrity and security of the blockchain, enhancing its

robustness against potential attacks or malicious behavior.

1 : . = o = 1
0.8} 08
2 >
3 06 = 0.64
S I
< o
204t o
o o 04r
0.2 —e—Gasper] 02F
—e—Hybrid Casper
oé ‘—e—Gasper —e— Hybrid Casper‘
» Jo Q > (o Q 0 : : :
EE I N R A - o 2 4 6 8 10
Slots Epochs
Figure 5.3: Justification. Figure 5.4: Finalization.

In the context of a no-delay and honest network, a block achieves final-

EXPERIMENTS

71

ization after approximately 2 epochs as shown in Figure 5.4. This result also
emerges from the fact that two epochs are necessary to justify a block. In
theory, the time needed for all validators to vote is one epoch, but consid-
ering delays in the network, each validator is assigned a time limit to carry
out the vote, called inclusion delay. This value allows a validator to perform
a vote with at most one epoch of delay, before receiving penalties. However,

voting outside their own slot will lead to a reduction in reward.

To clarify the concepts, justification and finalization are determined through

the FFG (Friendly Finality Gadget) voting process, wherein all validators
contribute one FFG vote per epoch. If a supermajority link is established
between the source checkpoint and the target checkpoint, with validators
constituting more than 2/3 of the total stake agreeing on the vote, the target
checkpoint becomes justified. Subsequently, if a justified checkpoint serves
as the source for a supermajority link with the checkpoint of the next epoch

as its target, the source checkpoint attains finalization.

The theoretical number of slots required for an epoch to be finalized is
54 slots. This can be observed with an example: Starting at epoch A, the
checkpoint will be justified after 22 slots, followed by the justification of epoch
B’s checkpoint after another 22 slots. This, in turn, finalizes the checkpoint
of epoch A. The finalization process occurs within 54 slots, considering no

latency, voting conflicts, empty slots, and full participation in voting.

However, it is important to acknowledge that in practical scenarios, val-
idators tend to wait until the end of an epoch to finalize new checkpoints and
that we have to respect the Gasper protocol, i.e. consider the checkpoints
for the finality, increasing the wait time to 64 slots, or 2 epochs. Considering
the possibility of empty slots, we ascertain that in 2 epochs (64 slots), the
probability of finalization is approximately 1. Hence, theoretically, if a block
is justified in epoch 1, the same block would be finalized in epoch 3, with a
high probability (pfi, > 0.9) accounting for possible forks, empty slots, or

network delays.

Considering a delay in the network regarding the diffusion of created

72 EXPERIMENTS
1f 1F
0.8+F 0.8
> >
=06 £06
o o
] @
g g
g 04r g 0.4
0.2 0.2
—e—no delay —e—12.6s —e—no delay —e—12.6s
—6—25s —e—38s —6—25s —6—38s
0 & € : : 0 i
0 2 4 6 8 0 10 15
Epochs Epochs

Figure 5.5: Justification with delay. Figure 5.6: Finalization with delay.

blocks or attestations, one obtains clearly different results, as shown in Figure
5.5 and Figure 5.6. The value of the delay was calculated starting from the
average delay in the Bitcoin network equal to 12.6 [28].

Comparing these results with those presented in [1], there are no sig-
nificant differences regarding justification and finalization between the two

protocols since both use Casper FFG.

Prism Code

These experiments are done in Prism+ simply considering the labels de-
clared in the previous section. For Justification and Finalization is:

P=[F < T ”somelJustified”]
P = [F < T ”someFinalized”]

5.3 Fork Probability

A fork refers to a divergence in the blockchain, resulting in the creation
of alternative chains due to differing validators’ decisions. When validators
propose competing blocks for the same slot, or when validators reference dif-
ferent blocks in their attestations, a fork occurs. This leads to the emergence

of multiple potential chains, each with its own set of blocks and transactions.

EXPERIMENTS

73

The LMD-GHOST (Latest Message-Driven Greedy Heaviest Observed Sub-
Tree) fork choice rule operates in response to these forks. It evaluates the
cumulative weight of attestations and the referencing of blocks within these
competing chains to determine the canonical chain. This canonical chain,
selected based on the consensus of validators’ choices, becomes the accepted
version of the blockchain, ensuring that a single valid state is agreed upon
by the network.

We then analyzed how much the maximum length of a fork would be
before its resolution, in order to compare the new protocol with the previous

one.

—e— Gasper
—6— Hyhbrid Casper| |

o
©

Probability
o ©
BN ()}

Figure 5.7: Fork of length K in 40 epochs.

As illustrated in Figure 5.7, observable is the trend in N epochs, wherein
N was specifically set at 40 epochs for this experiment, and no delay factors
were taken into account apart from the fized tempo. Evidently, as the exper-
iment progresses, the likelihood of attaining a continuously elongating fork
approaches zero. This observation underscores the algorithm’s proficiency in
establishing a capped count of forks, thus mitigating potential risks to the
network’s security, particularly within a context featuring a predominance

of honest validators and minimal latency disruptions. Comparing this result

74

EXPERIMENTS

to the one obtained in [1], the probability of forks is decreased following the
Gasper protocol. One cause could be the division into specific slots per-
formed in Gasper, where only one validator can propose a block in that slot,
which did not happen before, given that when solving the puzzle multiple

validators could send their block simultaneously.

Prism Code

This experiment is done in Prism+ simply considering the label declared
in the previous section and the variable K which increases every set of epochs.
For Forks is:

P = [F < T ”equalLength”]

5.4 Stake Analysis

In Ethereum Gasper, validators partake in a proof-of-stake (PoS) con-
sensus system, committing their ETH holdings to secure the network while
earning rewards. The dynamics of their stakes are governed by rewards and
penalties [43], both of which significantly impact validator behavior and are
fully described in Section 3.1.5.

In this section, an in-depth analysis of the average stakes of validators
in the network is conducted. The purpose is to clarify the effectiveness of
the Gasper protocol in the context of increasing or decreasing stakes at the
peak of individual epochs. Each graphical representation presented here will
show the stake value of a single validator or set of validators if they have
the same stake on the y axis on an increased scale of 10e*, as the rewards
they are in Gwei, a submeasure of FEther. On the x axis, we will indicate
the time intervals in Epoch, with the understanding that one slot equals 12
seconds and one epoch equals 32 slots, so one epoch equals 384 seconds. In
all experiments, we consider a network consisting of honest validators with
few delays (< 1sec). In fact, the probability that a validator sends correct

1

attestations is % while the probability that it sends incorrect attestations is z

EXPERIMENTS

75

It is pertinent to mention that this specific simulation does not incorporate
the more punitive aspects of the protocol, such as the inactivity leak and
slashing mechanisms.

To calculate the rewards and penalties of Validator 7, the following formu-
las are used regarding rewards for completely correct attestations, penalties

for completely incorrect attestations, and rewards for proposing a block:

reward; =(3 X base_rew; X stake;)/ Z stake; + 7/8 X base_rew;
jev

pen, = — 3 X base_rew;

reward bp, =base_rew; + 1/8 x Z reward;
jev

where base_reward is discussed in Section 3.1.5.

The graphical representation in Figure 5.8 illustrates the average stake
evolution of a validator throughout 100 epochs, considering a total of 100
thousand validators, each possessing an equivalent stake of 32 ETH. Within
this simulation, the base reward is set at 9050 Gwei, resulting in 30600 Gwei
for a valid attestation and a reward of 0.113 ETH for proposing a block.
In the event of an incorrect attestation, the penalty levied stands at 22010
Gwei, deducted from the validator’s stake.

The graphic depiction vividly portrays that across the 100 epochs, the
validator assumes the role of a block proposer once, around epoch 50, cul-
minating in a significantly amplified reward compared to other epochs. This
singular event of proposing a block resulted in a notably higher reward, de-
lineating the potential impact of such opportunities within the PoS network.
This observation provides insights into the dynamics of validator rewards
and the intermittent nature of achieving substantial rewards through block
proposal within the specified epoch, signifying a key factor influencing the
validator’s stake and rewards.

The subsequent experiment was conducted to juxtapose the preceding

76

EXPERIMENTS

31‘9 1 1 1 1
0 20 40 60 80 100

Epochs

Figure 5.8: 100k validators - Equal stake.

findings within a smaller network, aiming to discern the presence of any con-
sistent trends. Figure 5.9 presents the average stake dynamics of a validator
across 100 epochs, considering a total validator count of 50 thousand, each
possessing an identical stake of 32 ETH. In this simulation, the base reward
stands at 12800 Gwei, translating to 49600 Gwei in the event of a valid at-
testation, and a reward of 0.310 ETH upon block proposal. In the case of an

incorrect attestation, the penalty imposed equals 38400 Gwei.

The graphical representation illustrates that over the course of 100 epochs,
the validator assumes the role of a block proposer twice, approximately
around epoch 10 and epoch 80. This position entitles them to two signif-
icantly larger rewards, ultimately surpassing the limit of 32.5 ETH, which
was the pinnacle achieved in the experiment involving 100 thousand valida-
tors. This observation suggests that within a smaller network, there exist
instances where a validator can surpass the earnings attained within a larger
network, potentially signifying an impact on user engagement due to these

differing reward dynamics.

EXPERIMENTS

77

32.7¢

326
325¢

o 3247

8323

[0)]
32.2¢
321+
32

31.9 ‘ ‘ ‘ ‘
0 20 40 60 80 100
Epochs

Figure 5.9: 50k validators - Equal stake.

Considerations over Rewards and Penalties

These experimental considerations are undertaken with the primary ob-
jective of comprehending the underlying rationales guiding the decisions

made within the framework of the Gasper protocol.

The experiment depicted in Figure 5.10 illustrates the performance eval-
uation of a singular validator possessing a stake higher than that of other
validators, specifically set at 50 ETH. The analysis spans over 100 epochs,
maintaining the same reward structure for block proposals as previously em-
ployed, which predominantly depends on the stakes held by other validators
within the network. In this experimental scenario, the base reward allocated
to the wealthiest validator stands at 20000 Gwei, while the reward for a
valid attestation amounts to 77500 Gwei. The penalty imposed for incorrect
attestations is fixed at 38400 Gwei.

This experiment sheds light on the fact that the presence of a single val-
idator with a stake deviating from the average does not inherently translate
to a significant enrichment compared to others. This observation emerges

from the realization that the stake amount or threshold influencing the selec-

78

EXPERIMENTS

50.8

0 20 40 60 80 100
Epochs

Figure 5.10: 50k validators - One with greater stake.

tion of the validator proposer remains at 32 E'TH, indicating that individual
stake variations, while influential, may not substantially elevate one valida-

tor’s rewards beyond a certain point.

The final experiment within this stake analysis, depicted in Figure 5.11,
delineates the trajectory of the average stake assuming all validators possess
greater wealth, considering a per capita stake of 64 ETH. In this experimental
scenario, the base reward stands at 18102 Gwei, translating to 70145 Gwei for
valid attestations. The penalty incurred for incorrect attestations amounts
to 53306 Gwei. As all validators are assumed to possess a higher stake, the
reward for proposing blocks escalates to 0.4384 ETH. Remarkably, within
100 epochs, with a single validator proposing two blocks, the threshold of
earning 1 ETH in total was attained. This experimental insight allows us to
infer that as the average total stake value surges - in this instance, doubling
the anticipated amount required to become a validator and enter the network
- the gain for an individual validator experiences a substantial upsurge. This

phenomenon leads to a considerable infusion of ETH within the network.

EXPERIMENTS

79

65

0 20 40 60 80 100
Epochs

Figure 5.11: 50k validators - All with greater stake.

Prism Code

These stake analyses mainly involved the Updater module, responsible
for managing votes, rewards and penalties. In this case, simulations are per-
formed considering that with 100k validators with a stake equal to 32ETH,
the probability of becoming a proposer is 1/100000. Same thing for the 50k
validators. In this case the stake has been scaled to 32000, considering that
the rewards are in Gwei. As can be seen from the Listing 5.1, the probabil-

ity of sending a correct attestation is : while the probability of receiving a

[SULIECIN

penalty for an incorrect attestation is

//all validators have 32 ETH (100k validators)

[] (Updater STATE=0) —> 1/100000 : (stake0’=stake0+1130);
[voteBlock] (Updater.STATE=0) —> 4/5 : (stake0’=stake0+3);
[voteBlock] (Updater.STATE=0) —> 1/5 : (stake0’=stake0—2)

)

//all validators have 32 ETH (50k validators)

[] (Updater.STATE=0) — 1/50000 : (stake0’=stake0+3100);
[voteBlock] (Updater_.STATE=0) —> 4/5 : (stake0’=stake0+5);
[voteBlock] (Updater.STATE=0) —> 1/5 : (stakeO’=stake0—4);

80

EXPERIMENTS

//all validators have 32 ETH one has 50 ETH (50k validators)
[] (Updater.STATE=0) —> 1/50000 : (stake0’=stake0+3100);
[voteBlock] (Updater STATE=0) — 4/5 : (stake0’=stake0+8);
[voteBlock] (Updater-STATE=0) — 1/5 : (stake0’=stake0—6);

//all validators have 64 ETH (50k validators)

[] (Updater STATE=0) — 1/50000 : (stake0’=stake0+4384);
[voteBlock] (Updater.STATE=0) — 4/5 : (stake0’=stake0+7);
[voteBlock] (Updater.STATE=0) —> 1/5 : (stake0’=stake0—5);

Listing 5.1: Stake analyses with different rewards and penalties.

5.5 Safety

Safety is an aspect strictly related to the consensus protocol used. As de-
fined in [13], when considering the set of finalized blocks, denoted as F(G),
for any given view (5, it is a fundamental condition that this set should never
include two blocks that are in conflict with each other. An implication arising
from the assurance of safety is that for any validator’s view GG, the set of final-
ized blocks (F'(G)) can be seamlessly extended to form a distinctive subchain
within the more extensive set of finalized blocks (F'(view(NW))). This sub-
chain commences from the genesis block and extends up to the last finalized

block, effectively forming a continuous sequence known as the finalized chain.

As provided in [13] and [1], the best way to test the safety of the model is
to verify the basic condition, i.e. that there are no two blocks or checkpoints
aimed at the same height, increasing the network delay, thus also simulating
a condition of maximum congestion.

As illustrated in Figure 5.12 starting from maximum congestion equal to
delay = 0.1 and up to the ideal situation of no delay, i.e. delay = 1, it is
shown that the network does not allow in any case to have two blocks at
the same height. For each level of delay, a test was performed on 12 epochs.

The label used in Prism to verify this feature is sameHeigth illustrated in

EXPERIMENTS 81

0.5
=
"% 0 ® e e © @© @€ e © b D
=
)
<
Q,
—e— Checkpoints Height
—0.5 1 1 1 1
0.25 0.5 0.75 1
Delay

Figure 5.12: Safety condition.

Chapter 4. So, it is plausible to assume that the protocol is safe given that

it respects the theorized and pre-established specifications.

Prism Code

Also in this case, the experiment is carried out considering the label
sameHeight, which checks the presence of different checkpoints at the same
height:

P = [F < T ”sameHeight”]

5.6 Security Analysis

As indicated in [13], the ultimate ledger achieved through Gasper’s mech-
anisms is deemed secure. Nevertheless, it has been contended that its op-
erational viability is confined to a distinct stochastic network delay model.
Aligning with the principles espoused by [22] for the formulation and scrutiny
of blockchain protocols, the analysis conducted in [21] examines Gasper
through a conventional security framework, ultimately revealing vulnerabili-

ties.

82

EXPERIMENTS

Specifically, the scrutiny exposed a potential liveness attack targeting
Gasper within the confines of the standard synchronous model. This threat
arises when adversaries manipulate message delays within the bounds of a
known network delay threshold, potentially causing considerable disruption.
Notably, this liveness attack, which capitalizes on a balancing strategy that
leads to a division of votes across parallel chains, engenders a dire outcome:
it compromises not only the system’s operational fluidity but also endangers
the integrity of the existing ledger. This jeopardy persists even in the absence
of a network partition.

These comprehensive analyses were undertaken before the conclusion of
2021. Of note is the subsequent improvement in the resilience landscape
of the Gasper Protocol. In addition to the LMD-Ghost algorithm, the in-
tegration of a limit of 4 epochs has been introduced, thus circumventing
the security vulnerabilities outlined above because using 4 epochs as a time
limit, i.e. if in 4 epochs not a single block is finalized, the inactivity leak
described in the previous chapter begins to exclude some validators from the

committee.

5.6.1 Liveness

Liveness pertains to the dynamic growth potential of the set of finalized
blocks. Various definitions of liveness exist, in [13] were outlined two distinct

aspects:

e Plausible liveness: This concept ensures that the protocol maintains a
consistent capability for new blocks to achieve finality irrespective of
prior occurrences like attacks or latency issues. This condition aims
to prevent scenarios where the progression of honest validators could
be hindered, except by someone voluntarily relinquishing their stake.
Essentially, plausible liveness safeguards against the possibility of the

protocol becoming deadlocked.

e Probabilistic liveness: In this scenario, the likelihood of new blocks at-

EXPERIMENTS

83

taining finality remains high, regardless of previous events. This likeli-
hood is established based on certain probabilistic assumptions related
to network latency, attacker capabilities, and other factors. Although
this variant appears to encompass the concept of plausible liveness,
a nuanced distinction arises. Plausible liveness purely addresses the
protocol’s logical operation, while probabilistic liveness relies on po-
tentially robust assumptions concerning the broader implementation
context. It necessitates these assumptions to ensure that the protocol

predominantly functions as intended.

At a surface level, one might perceive probabilistic liveness to encompass
plausible liveness. However, the distinction is more intricate: plausible live-
ness stands as a deterministic property intrinsic to the protocol’s logic, while
probabilistic liveness calls for potentially stringent contextual prerequisites

to ensure the protocol’s reliable operation under varying conditions.

1 i N & i i N & i N
B D N2 N2 B D N2 B

Probability
)
(@)

—oa— Finalization Increment

0.25 05 075 1
Delay

Figure 5.13: Probabilistic Liveness.

In Figure 5.13, the probability of observing an augmentation in the count
of finalizations is depicted, taking into consideration a tenfold increment in
delay. It is imperative to underscore that when the optimal delay is extended

by a factor of ten, the likelihood of encountering an elevation in finaliza-

84

EXPERIMENTS

tion occurrences substantially diminishes relative to scenarios characterized
by shorter delays. This observed behavior can be attributed to the inher-
ent correlation between a significant augmentation in network latency and a
proportionate extension in the temporal interval required for finalization to
transpire.

Upon meticulous examination of the outcomes derived from epochs fea-
turing delay values conducive to the finalization of one or more blocks, a
consistent observation emerges: a positive probability persists in the detec-
tion of an escalation in the count of finalizations. This outcome unequivocally
establishes that, even under conditions where network delay is augmented by
an order of magnitude, thereby simulating an environment marked by high
levels of congestion and severity, the protocol’s commitment to ensuring live-

ness remains unswerving and impervious.

Prism Code

Once again the experiment is carried out considering the label, in this
case finalizationIncrease, which precisely checks the presence of increases in

the number of finalizations:

P=[F < T 7finalizationIncrease”]

EXPERIMENTS

85

5.7 Robustness to Attacks

In this section, there are described some of the most famous attacks
designed for the Ethereum PoS network. Some of these have already been
mitigated and resolved with updates scheduled for the Eth2.0 network after
The Merge.

5.7.1 Bouncing Attack

The bouncing attack [29], within the context of Ethereum’s Proof-of-
Stake (PoS) consensus protocol, represents a sophisticated form of liveness
attack capable of significantly disrupting the network’s normal operation.
In essence, it embodies a variant of the denial-of-service attack paradigm,
wielding the potential to obstruct the conclusive finalization of blocks within
the Ethereum ecosystem. In Figure 5.14, it is described a simple situation of
bouncing attack. The numerical value contained within each hexagonal shape
corresponds to the count of validators who have cast a checkpoint vote des-
ignating that specific checkpoint as their target. In the initial phase, we find
ourselves in a scenario characterized by a blockchain fork. At this juncture,
one of the chains boasts a justified checkpoint, while the other can rightfully
accommodate a checkpoint from a higher epoch. Both checkpoints hold valid
justifications. This situation transpires at the conclusion of the third epoch,
during which honest validators have effectively distributed their votes across
both blockchain branches. Subsequently, as we transition into the fourth
epoch, often referred to as the Global State Transition (GST) phase, four
honest validators have already submitted their votes, in alignment with the
protocol’s requirements. The pivotal moment occurs in the third step when
dishonest validators initiate their actions and release their checkpoint votes
for the opposing blockchain branch. This act effectively justifies the previ-
ously neglected checkpoint and subsequently alters the identity of the highest
justifying checkpoint. This sequence of events can be perpetuated, enabling

the bouncing attack to persist indefinitely through repeated iterations.

86

EXPERIMENTS

Figure 5.14: Simple Bouncing attack. Figure from [14].

It is essential to recognize that the bouncing attack poses a significant
threat to the security of the Ethereum PoS consensus protocol.

The crux of this attack hinges on an inherent feature of Ethereum’s fork
choice rule, permitting validators to transition to an alternative blockchain
if they perceive it as having a higher likelihood of becoming the canonical
chain. This transition is enacted by means of casting votes in favor of a
checkpoint located on the alternative chain.

The execution of a bouncing attack necessitates the malevolent actor’s
control over a substantial portion of validators. Initially, these attackers
withhold their votes for a designated number of epochs, enabling legitimate
validators to advance the chain unimpeded. Subsequently, after the hon-
est validators have successfully justified a checkpoint, the attackers unleash
their votes and facilitate a switch to a different chain. Consequently, hon-
est validators realign their allegiance, commencing a cyclic recurrence of this
process.

A countermeasure to mitigate the bouncing attack was introduced through
a patch [33]. This patch imposes a restriction on validators, disallowing them
from altering their preferences regarding justified checkpoints once a portion
of the epoch has transpired. In practical terms, once a validator has cast its

vote for a checkpoint, it is precluded from voting for a different checkpoint

EXPERIMENTS

87

within the same epoch. It is explained in the 5.7.1 subsection.

However, it is imperative to acknowledge that this patch does not con-
stitute a definitive resolution to the bouncing attack quandary. [14] and [34]
have revealed that the attack can still be orchestrated, albeit with a diminish-
ing probability of success as time elapses. Ergo, the possibility of the attack
endures, albeit with decreasing likelihood as temporal intervals progress.

Moreover, the authors have contributed a novel high-level formalization,
elucidating the properties of liveness and availability within the Ethereum
blockchain. This formalization holds promise for augmenting the analytical
framework surrounding not only the bouncing attack but also other potential
security vulnerabilities within Ethereum.

While the implemented patch is a noteworthy stride towards mitigating
the bouncing attack, it does not offer an infallible deterrent. The attack re-
mains plausible and retains the potential to disrupt network operations. Nev-
ertheless, the patch does ameliorate the probability of success of the attack
and provides a foundation for identifying and addressing additional security
weaknesses in Ethereum. It is imperative to underscore that the bouncing
attack represents but one among several conceivable security vulnerabilities

within the Ethereum ecosystem.

Implemented Patch

The patch used comes from the observations, theories and experiments
carried out in [35]. They present a simple modification of the Casper FFG
(Friendly Finality Gadget) making it difficult for a malicious user to continue
an attack as long as he does not have strong control over the network.

In the context of Casper FFG, it is noteworthy that the finalization rule
does not commence its operation from the genesis block. Rather, it initiates
from the latest justified checkpoint, referred to herein as the start point. This
start point dynamically changes whenever a validator encounters a new latest
justified checkpoint.

To enhance this mechanism, they have introduced a modification ensuring

88 EXPERIMENTS

. < <

-~

«— G

Figure 5.15: Example of Checkpoints in Bouncing attack.

that the transition of the start point to an alternate chain only occurs during

the initial k slots of each epoch. More precisely:

1. When a validator identifies a new latest justified checkpoint that con-

flicts with the current start point:

o If the validator’s local clock indicates that it is within the first
k slots, they promptly replace their start point with this new
checkpoint.

e If, however, the validator’s local clock places it beyond the first k

slots, they designate the new checkpoint as pending.

2. Upon the commencement of a new epoch, the validator recalculates the
latest justified checkpoint for the start point. This calculation takes
into account all justified checkpoints observed, including those marked

as pending.

It is imperative to note that the parameter k must satisfy the condition
of being less than SLOTS_PER_EPOCH/3 slots.

The effectiveness of this fix has been proven in [35]. As depicted in Figure
5.15, consider a scenario in which, at a particular juncture, the network
achieves full synchronicity (i.e., with a delay of less than one slot), and the
requisite conditions for bouncing come into play. These conditions entail

the start point of honest validators aligning with a checkpoint denoted as

EXPERIMENTS

89

C, alongside the emergence of a subsequently justifiable checkpoint C; that
directly conflicts with C'.

For the sake of analysis, let C5 be the checkpoint initially embraced by
the honest validators. The premise here posits that an attacker lacks the
capacity to render (s justifiable.

In instances where no new latest justified checkpoint emerges within the
initial k slots, the honest validators effectively validate and justify C5 in the
same epoch. Conversely, if an attacker opts to justify C; and disseminates the
associated votes within the initial k slots, the honest validators concede by
adopting it as their new starting point. However, it is essential to underscore
that C5 remains immune to justification owing to the prescribed constraint,
ie, k < SLOTS_PER_EPOCH/3. Consequently, the cumulative votes for
Cy, denoted as FFGVotes(Cy), consistently fall short of the threshold of
n/3.

In consideration of the aforementioned analysis, the attacker’s capacity
to consecutively establish checkpoints that are justifiable (albeit not justi-
fied) and simultaneously conflicting is categorically impeded. Consequently,
the phenomenon of bouncing ultimately ceases once the attacker exhausts all
premeditated justifiable checkpoints that precede the network’s full synchro-
nization.

In the Capella Upgrade, this patch was eliminated from the Gasper pro-
tocol, since it added complexity to the LMD-Ghost fork-choice rule and since
the conditions to reproduce the bouncing attack are too strict and compli-

cated.

90

EXPERIMENTS

Bouncing Attack - Testing

The attack involves bouncing between two chains A and B at each check-
point, so continuity is expected in the proposal of blocks in both chains.
Assuming that the epoch e = 0 is valid to start the attack, therefore having
two checkpoints at the same height and the network expresses a slight pref-
erence towards one of the two, but not an absolute preference. In this case,
after at the end of that epoch all the honest validators have voted for one of
the two checkpoints, there will be a situation in which one of the two check-
points has more votes than the other, but not the 2/3 necessary to justify

it. At the end of the e = 1 epoch, the dishonest validators will release their

| —e—Justified A —=— Justified B]

Ty S S
Sost

.§

206"

G

2,0.4

B 0.2

o]

o

a o¢ b ¥ ¥

0 1 2 3 4 5
Epochs

Figure 5.16: Bouncing from Chain A to B.

votes in order to justify one of checkpoint A or checkpoint B. Let’s assume
A. During the e = 1 epoch the validators continued to propose blocks on
both chains, given that no checkpoint had been justified before, once again
arriving at a situation similar to the previous one. At this point, the task of
the dishonest people is to release their votes with a delay in order to justify
the checkpoint on chain B. In this way, bouncing from A to B, it will not be
possible to finalize any checkpoint. The Figure 5.16 shows this phenomenon
of bouncing between two checkpoints. In Prism this situation is modeled
using 13 validators, where 4 of them are dishonest and the differences in

behavior are shown in Listing 5.2.

EXPERIMENTS

1 o—6—o—6—o—o0—=o 0.5
c c
2 k)
gos8 k¥
b= IS
(2] c
5’,0-6 T
5 s 0 e—6—o—0—6—o—o—=o
204 2z
3 o)
IS I
802 ¢
o o
0 : : : 05— : : :
0 2 4 6 8 10 2 4 6 8 10
Epochs Epochs

Figure 5.17: Justification rate during Figure 5.18: Finalization rate during

Bouncing Attack. Bouncing Attack.

Prism Code

Modeling the bouncing attack using Prism is only possible if at the be-
ginning of the code execution, two parallel chains A and B are created such
that half of the network receives checkpoints of A and the other half receives
checkpoints of B. In this attack it is not necessary for validators to receive
blocks of both chains, since the goal is to jump from one checkpoint to an-
other, so it is enough to keep track of which chain belongs to them. If the
validators received the blocks of both chains, the LMD-ghost algorithm, re-
sponsible for resolving the forks, would be able to make one chain preferable
over the other, thus avoiding the formation of checkpoints at the same height.
In this attack therefore, the first half of validators will always receive blocks
of chain A while the other half will receive blocks of chain B. The dishonest
validators, however, will receive the blocks of both chains saving them in two
separate subsets, in order to preserve separately the checkpoints to be voted
with delay to allow the attack.
module Validator,

M, STATE : [Start, Create, ReceiveA, ReceiveB, MoveA , MoveB
, VoteA, VoteB, Check, Fin, Exit] init Start;

b, : block {m, ,0;genesis ,0};
block, : block {m, ,0;genesis ,0};

EXPERIMENTS

checkpointA: bool init false;
checkpointB: bool init false;
justifiedA : bool init false;
justifiedB: bool init false;

[] ((M,-STATE=ReceiveA) & (checkpointA=false) — > 1
(bg=extractBlock (set,)) &
(M,-STATE=MoveA) ;

[] ((M,-STATE=ReceiveB) & (checkpointB=false) — > 1
(block,=extractBlock (setNew,)) &
(M,-STATE=MoveB) ;

[extractBlock, A] (M,-STATE=MoveA) & (isCheckpoint(b,)) & (
checkpointA=false) — > 1:
(M, STATE'=Start) &
(checkpointA’=true);

[extractBlock, A] (M,.STATE=MoveA) & (isHeadBlock(b,)) — >
1:
(M, STATE’=Start) ;

[extractBlock, .B] (M,-STATE=MoveB) & (isCheckpoint(block,))
& (checkpointB=false) — > 1:
(M,-STATE’=Start) &
(checkpointB’=true) ;

[extractBlock, B] (M,-STATE=MoveB) & (isHeadBlock(block,))
-> 1:
(M,-STATE’=Start) ;

[] (checkpointA=true) & (checkpointB=true) — 1:
if justifiedA=true
(M,-STATE’=VoteB) ;
if justifiedB=true:
(M, STATE’=VoteA) ;

[voteBlock_bounceA] (M, STATE=VoteA) —> 1:

EXPERIMENTS

(M, STATE’=Start) &
(checkpointA=false) &
(checkpointB=false) &
(justifiedA=true) &
(justifiedB=false);
[voteBlock_bounceB] (M,.STATE=VoteB) — 1:
(M, STATE’=Start) &
(checkpointA’=false) &
(checkpointB’=false) &
(justifiedB '=true) &
(justifiedA ’=false);

endmodule

Listing 5.2: Dishonset validator in Bouncing Attack.

The network module takes care of the diffusion of the blocks created by
the validators and during this attack it is also responsible for dividing the
network into two subgroups and the consequent formation of two parallel

chains.

module Network

set; : list [];
setNew, : list [];

done: bool init false;

[addBlock;] (M;STATE=Create) & (done=true) & (isChainA (b;))
-> 1:
for i from 0 to N/2:
addBlock (set;, b_i)
for j from N/2 to N and isDishonest(j):
addBlock (set;, b_i)

[addBlock;] (M;STATE=Create) & (done=true) & (isChainB(b;))
-> 1:
for i from N/2 to N:
addBlock (setNew,;, b_i)
for j from 0 to N/2 and isDishonest(]):

94

EXPERIMENTS

addBlock (setNew;, b_7)

[addBlock;|] (M;-STATE=Create) & (done=false) — > 1:
(done=true) &
for i from 0 to N/2:
addBlock (set;, b;)
if isDishonest(i):
addBlock (setNew;, block;)
for j from N/2 to N:
addBlock (setNew,, block;)
if isDishonest(]):
addBlock (set;, b;)

endmodule

Listing 5.3: Network module differences during Bouncing Attack.

In Figure 5.17 and Figure 5.18, the rate of justification and finalization
within the network is shown. In Prism these experiments are modeled as

described in previous sections.

5.7.2 Balancing Attack

The Balancing Attack, described in [21] represents a sophisticated threat
to the Ethereum Proof of Stake (PoS) consensus protocol’s fork choice rule.
Its primary objective is to disrupt the ability of honest validators to reach a
consensus regarding the canonical blockchain.

The orchestrated attack strategy unfolds in the following sequence:

1. Initiation: The attacker commences the assault by deliberately propos-
ing two blocks, fully cognizant of the ensuing penalties they will incur
as a consequence of this action. Subsequently, these two blocks are
selectively disseminated to two distinct halves of the network. Con-
sequently, both segments of the network proceed to cast their votes
in favor of the block they have encountered, perpetuating a state of

division within the network.

EXPERIMENTS

95

2. Resolution: Once all honest validators within the network have reg-
istered their votes, the impasse is effectively resolved through the in-
tervention of validators under the control of the attacker, henceforth
referred to as swayers. These swayers judiciously channel their at-
testations exclusively to one side of the network. This orchestrated

maneuver ensures the perpetuation of the network’s divided state.

To execute the balancing attack precisely, the attacker must fulfill several
prerequisites. These prerequisites encompass the necessity to control a val-
idator capable of initiating block proposals at the outset of an epoch, in
addition to possessing a minimum of two validators entitled to deliver at-
testations during each epoch slot, hereinafter referred to as swayers. In the
event that the total number of validators is an odd number, an additional
validator, termed a filler, becomes imperative. Subsequently, after the chain
undergoes division into two distinct sides, this filler assumes the role of an
honest validator on the side inhabited by fewer validators.

Furthermore, the attacker must possess the competence to manipulate the
timing of attestation transmissions to other network participants and they
must possess a comprehensive understanding of the precise instants when the

fork choice rule is used, following the protocol’s specifications.

Proposer boost as Synchronization Bottleneck

The Balancing Attack was mitigated in [42] by introducing the proposer
boost. The solution involves the incorporation of an explicit synchronization
bottleneck mechanism [42] into the fork choice protocol, by introducing the

following rules:

1. In cases where all attesters assigned to slot N collectively hold a total
weight denoted as W, any participant occupying slot N +1 is mandated
to deem attestations as valid only if the attestations were received

before the conclusion of slot N from their temporal perspective.

2. The proposer in slot N-+1 is anticipated to promptly initiate a proposal

96

EXPERIMENTS

at the commencement of slot N+1. This proposal implicitly designates
a specific blockchain. From the vantage point of attesters in slot N +
1, if they witness the proposal arriving prior to the one-third mark
within the slot’s duration, they treat this proposal as equivalent to an
attestation carrying a weight of W/4. It is essential to underscore that
this weight adjustment solely applies to slot N + 1; subsequent to slot
N + 1, this weight adjustment is rescinded.

This boost was initially designed with a value equal to 25% of the weight of
the committees with voting rights in that slot. It was subsequently increased
to 30

Synchronization Bottleneck Analysis

The analysis of the proposed patch was done in [42], assuming that all
clocks are in perfect synchronization throughout the network.

In each time slot, referred to as N, all validators receive a specific set of
attestations. If there’s an ongoing attack with at least k (where k is greater
than or equal to 1) malicious attesters revealing their attestations during
slot NV, it’s expected that validators may have different opinions about the
scores of various blocks. However, it’s crucial to note that this difference in
opinions is limited, with a maximum limit of k.

When comparing two competing blocks, A and B, block A is considered to
prevail if the difference in their scores (score(A)—score(B)) is greater than or
equal to 0. Block B prevails otherwise. The possible range for disagreement
in score(A)—score(B) is restricted to 2k. In mathematical terms, this means
that each validator’s interpretation of score(A) — score(B) falls within the
range [z, z + 2k|, where the value of z remains constant.

The proposer, whose weight is denoted as W, , in the event that he

adheres to honest conduct, is bound by two key behaviors:

1. If the proposer observes that score(A)—score(B) > 0, they are obliged
to propose a block for A. Conversely, if score(B) > score(A), they will
propose a block for B.

EXPERIMENTS

97

2. The proposer is also responsible for ensuring that their block is promptly
presented, thereby guaranteeing that all attesters receive it well before

the impending deadline.
With regard to the potential scenarios arising from score(A) — score(B):

1. In cases where z < —2k, the proposer votes in favor of B. Consequently,
attesters will perceive adjusted scores lying within the range [z —W,, 2+
2k—W,]. Notably, this entire range exhibits a negative value, signifying

unanimous support for block B.

2. Conversely, if —2k < z < 0, the proposer casts their vote for A, leading
attesters to witness adjusted scores distributed within the range [z +
W, z + 2k + W,]. In this instance, the entire range assumes positive

values, indicating unanimous backing for block A.

3. In the case of scenario (2), the proposer’s decision becomes pivotal.
Depending on the proposer’s personal assessment, either A or B gains
their favor. Consequently, the range of disagreement can assume either
the form (i) [z — W), 2+ 2k — W] or (ii) [z + W), 2 + 2k + W,,].

Reverting back to the scenario where W, = W/4, disrupting the proposer
synchronization bottleneck calls for a challenge to the foundational premise
that W, > 2k. In order to undermine this premise, there must exist a
situation where more than W/4 attesters reveal themselves during each slot.
Should the proposer synchronization bottleneck prove effective during any
single slot, all honest attesters will uniformly cast their votes in that direction.
This will further accentuate the disparity score(A) — score(B) away from the
equilibrium point. To prevent either side from achieving a decisive victory
at this stage, the attacker is compelled to disclose a substantial number of
attestations. This counteraction is required to offset the combined influence
of all honest validators during that slot, accounting for the diminished impact
of the proposer’s vote as the slot concludes. Achieving this counterbalance

would necessitate a substantially higher number of attestations than W/4.

98

EXPERIMENTS

Balancing Attack - Testing

The first experiment conducted had the main objective of evaluating the
actual need for the implementation of the patch designed for the Balancing
Attack, as previously described in the dedicated section.

The attack, as described in [21] requires a number of attackers of at
least 6 in each slot, not specifying the total number of validators in the slot.
In our case, having singleton committees and 3 committees for each slot,
this consideration was not explored in-depth, and a number of dishonest
validators ngy < 1/3N were considered where N represents the total number
of validators. It is necessary to clarify that some simplifications are used in
this experiment given that the goal is to represent the balancing of votes for
the blocks and the use of an increment of the duration of a slot regarding
the weight of the attestations in that block.

The implementation of this experiment is carried out by setting a priori
the behavior of the validators, in the first slot of the first epoch, in order to
perform the first split of the network into two different chains. This happens
given that half of the validators receive block A and therefore vote for it,
while the other half receive chain B and vote for it.

In the simulation, this operation is modeled by modifying the behavior
of validator 6 for the first slot of the first epoch. It is he who has the task
of equivocating, that is, sending the two blocks to the two halves in the e
epoch. This behavior is not punished in the simulation, since validator 6 will
behave honestly throughout the experiment. Validator 5 will have the task
of maintaining the balance of the two chains, keeping the blocks of chain
A and the blocks of chain B in two separate subsets, in order to extract
and vote, starting from the epoch e + 1, the chain which appears to have a
lower number of votes than the other. This voting process by Validator 5
simulates the behavior of all the attacking validators, given that the stake
of that validator, and consequently the weight of his vote, is 32ETH x ny.
In the end, it is necessary for the remaining dishonest validators to maintain

the balance by releasing their votes as expected in [21]. Attacking validators

EXPERIMENTS

99

can only vote when it is their turn to vote, and to model the late sending
of their votes, attackers are allowed to add only the blocks proposed during
their voting turn to the two subsets A and B. Therefore preventing them
from voting for each proposed block, as required by the protocol.

As illustrated in Figure 5.20, the attack allows dishonest members to
hit the vitality of the protocol, affecting the possibility of finalizing new
checkpoints. In the graph, it is possible to notice that the rate of finalize
a block remains constant and equal to 0 in a period limited to 10 epochs.
Figure 5.19 shows how the vote balancing process works, thus maintaining
a constant balance between the two chains and consequently not making it

possible to reach the supermajority to justify or finalize blocks.

150 i T T T 0.5
3 <
i)
IS
o N
a =
§100— e
— [
© 5 0 e—6——bo—6—6—06—6—=
3 2
£ so 5
Z ©
S
—e— Chain A votes E
—e— Chain B votes
O:, L L L L -05 : : : :
0 2 4 6 8 10 2 4 6 8 10
Epochs Epochs

Figure 5.19: Votes during balacing at- Figure 5.20: Finalization rate during

tack. balancing attack.

The results obtained are of great relevance, even if they are obtained from
an approximation of the attack. It is clearly demonstrated that the execu-
tion of the Balancing attack, in the absence of the patch, has devastating
effects on the possibility of reaching the finalization phase. In particular,
it is clear that after the implementation of the attack, the blockchain is no
longer able to complete the finalization process. To obtain a more in-depth
understanding of this situation, it is important to underline that during the
course of the experiment, it is observed that the possibility of completing the

finalization is drastically eliminated, not reaching the aforementioned state,

100

EXPERIMENTS

even considering more than double the necessary epochs.

140 w w w w 1 \ o—6—6—6—0—=©
) c
120 ? 9
S 0.8
100 r §
§ 80} E 0.6
o o
> 607 L 204}
40t 1 § 0
20+ —e—ChainA|] o
—&—Chain B o
0« ‘ ‘ ‘ ‘ oL—¢ : : :
0 2 4 6 8 10 0 2 4 6 8 10
Epochs Epochs

Figure 5.21: Votes with proposer Figure 5.22: Finalization rate with

boost. proposer boost.

The results shown in Figure 5.21 and Figure 5.22 represent a significant
confirmation of the importance of the patch implemented for the Balancing
Attack. The use of proposal boosts is modeled in the simulation by simply
sending an additional fictitious attestation for the proposed block to slot s
of a value equal to 40% of the total attestations in the block, which will then
be removed at slot s + 1. This assumption can be considered comparable,
given that this attack provides for the release of votes by dishonest validators
at the end of each epoch in order to maintain balance. As shown in Figure
5.21, the mechanism implemented to mitigate the attack is essential to guar-
antee the security and integrity of the finalization process in the blockchain,
effectively preventing the implementation of the balancing attack and the

resulting effects on the blockchain itself.

Prism Code

Modeling the balancing attack using Prism, like the bouncing attack de-
scribed above, is only possible if, at the beginning of the code execution, two
parallel chains A and B are created such that half of the network receives

the blocks of A and the other half you receive B blocks.

EXPERIMENTS 101

In this attack, only in the starting epoch at slot 0 is there a separation
between block transmission. Therefore only in e = start and s, = 0 is a
block of chain A received by the first half of validators, while the second
half of validators receives a block of chain B. As for bouncing attack, it is
necessary for dishonest validators to receive both chains, in order to release
their votes on the blocks belonging to the lighter chain in order to balance it

with the heavier one.

Starting from the s, + 1 slot, all validators will receive the blocks created
regardless of whether they are from the A or B chain, given that the objective
of this attack is precisely to not make the validators understand which is the
canonical chain via the balancing of block votes. The votes received by both
chains are updated continuously during code execution, via the global module

using a Boolean guard that is always true.

In this subsection are illustrated the main code differences implemented
for dishonest validators during the balancing attack and how the proposer

boost is modeled.

module Validator,

M, STATE : [Start, Create, ReceiveA, ReceiveB, MoveA , MoveB
, VoteA, VoteB, Check, Fin, Exit] init Start;

b, : block {m, ,0;genesis ,0};
block, : block {m, ,0;genesis ,0};
votesA, : int init O0;
votesB, : int init O0;
B, : blockchain [{genesis ,0; genesis ,0}];
lastFinalized, : block {genesis ,0;genesis 0};
lastJustified, : block {genesis ,0; genesis ,0};
lastCheck, : block {genesis ,0;genesis ,0};

[] ((M,-STATE=ReceiveA) & (!isEmpty(set5)) & (attackStart=
true) (votesA<votesB) — > 1
(bg=extractBlock (set,)) &
(M, STATE=MoveA) ;

[] ((M,-STATE=ReceiveB) & (!isEmpty(setNew5)) & (attackStart

102

EXPERIMENTS

=true) & (votesA>votesB) —> 1
(block,=extractBlock (setNew,)) &
(M, STATE=MoveB) ;

[extractBlock,-A] (M, STATE=MoveA) & (voteIlD=ID,) —> 1:
(M,-STATE’=VoteA) ;

[extractBlock,-B] (M,-STATE=MoveB) & (votelD=ID,) — > 1:
(M,-STATE’=VoteB) ;

[voteBlock_A] (M, STATE=VoteA) —> 1:
(M, STATE’'=Start) &
(votesA=votesA+(voteWeight)) ;

[voteBlock_B] (M, STATE=VoteB) — 1:
(M, STATE’=Start) &
(votesB=votesB+(voteWeight)) ;

endmodule

Listing 5.4: Dishonset validator in Balacing Attack.

The Listing 5.5 instead re-proposes the differences necessary to start the
attack, i.e. dividing the network with two different views. During the first
slot of the starting epoch, the validators are split into two half, the first half
receive a block that will create chain A, while the second half receive a block
that will create chain B. Even in this slot, the dishonest ones use save the
blocks into two different subsets, in order to perform the attack.

After the first slot of the starting epoch, all the validators will receive
all the proposed, making no distinction between chains A and B. The only
distinction made concerns the dishonest ones, who will have to continue
saving the blocks of chain B in a different subset compared to that of chain
A. Therefore, depending on the proposer of that slot, they will choose which
set to save the newly created block.

The ability to propose new blocks for dishonest validators after the start-
ing condition has been removed, as there is no penalty for not proposing a

block, and in order to simplify the network.

EXPERIMENTS 103

module Network

set; : list [];
setNew, : list [];

done: bool init false;

[addBlock;] (M;.STATE=Create) & (done=true) & (isChainA (b;)
-> 1:
for i from 0 to N:
addBlock (set;, b_i);

[addBlock;] (M;STATE=Create) & (done=true) & (isChainB(b;)
-> 1:
for i from 0 to N:
if dishonest (i):
addBlock (setNew,, block_i);
else:
addBlock (set;, b_i);

[addBlock;] (M;STATE=Create) & (done=false) — > 1:
(done=true) &
if i in (0, N/2):
for j from 0 to N:
addBlock (set;, b;)
if i in (N/2, N):
for j from 0 to N:
if dishonest(j):
addBlock (setNew;, b;)
else:
addBlock (set;, b;);

endmodule

Listing 5.5: Network module differences during Balancing Attack.

In Listing 5.6 it is possible to see the changes made to the global module

in order to always maintain an updated value of the weights of the two chains.

module Global

104 EXPERIMENTS

[] (true) —> 1:
(votesA'’=
for i from 0 to N/2:
+votesA;) &
(votesB’'=
for j from N/2 to N:
+votesB;));

endmodule

Listing 5.6: Global module differences during Balancing Attack.

The Listing 5.7 shows the differences in the code of an honest validator
that uses the proposer boost when proposing a block. The weight is equal
to 40% of the weight of the voters’ attestations of that slot. This boost is

removed from the overall weight of the chain after 1 temporal slot (12s).

module validator;

boostWeight: int init 0;
boost;: bool init false;

votesA;: int init O0;

[] (M, STATE=Start)&(validatorID=ID;) — 1
(b;’=createBlock()) &
(M;_STATE’=Create) &
boostWeight=(

(for j in SlotVoters:
+weight (j)

)

x 40/100);

[addBlock;|] (M;-STATE=Create) —> delay
(B;=addBlock (B;,b;)) &
(M; STATE'=Start) &
(boost;=true) &
(votesA;’=votesA; + weight (i) + boostWeight);

[] (boost;=true) —> slot
(boost;=false) &

EXPERIMENTS 105

(votesA,=votesA;,—boostWeight) ;

endmodule

Listing 5.7: Proposer Boost in honest validators. We assume that honest

validators follow chain A.

5.7.3 Balancing Attack over LMD-Ghost

This attack was presented in [39], and is considered an improved balancing
attack, which takes into account proposer boosting and exploits the ability
to send equivocating votes.

The Longest Message-Driven (LMD) rule endows the adversary with a
formidable capability to execute a balancing attack. Once the adversary es-
tablishes two competing chains, it gains the ability to equivocate on them.
This involves strategically timing the release of equivocating votes so that
the vote for the Left chain is received by half of the honest validators first,
while the vote for the Right chain is received by the other half of the hon-
est validators first. This intentional sequencing creates a divergence in the
views of honest validators regarding the ’latest messages’ from adversarial
validators.

Despite all validators eventually receiving both sets of votes, the LMD
rule ensures that the split view endures for a substantial duration. This
persistence arises due to the absence of subsequent votes from adversarial
validators for later slots. Consequently, half of the honest validators perceive
the Left chain as leading and cast their votes accordingly, while the other half
perceives the Right chain as leading and votes in favor of it. The inherent split
among honest validators, approximately evenly divided, results in a balanced
distribution of votes, and each faction continues to regard its respective chain
as leading.

It is noteworthy that this effect is exceptionally pronounced and challeng-
ing to overcome through proposer boosting alone. Proposer boosting could

potentially counteract the adversarial influence only if the proposal weight

106 EXPERIMENTS

significantly exceeds the adversary’s equivocating votesarepresenting a frac-
tion of the committee sizeaby a substantial constant factor. Failure to achieve
such a substantial margin means that, in instances where the adversary leads
by the constant factor number of slots, it can surpass the proposer boost.

An illustrated example is in Appendix A.

5.7.4 Time-Based Attacks

Time plays a pivotal role in orchestrating human activities and facilitating
the development of distributed systems. Clock-driven algorithms, as eluci-
dated in [36], offer substantial simplification in the realm of fault-tolerant
distributed systems. In practice, numerous blockchains explicitly leverage
the concept of time for the synchronization and coordination of participants,
as exemplified in [37]. This temporal dimension serves as a fundamental cor-
nerstone in the architecture of such systems, enhancing their efficiency and
reliability.

Currently, Ethereum has no mechanisms for synchronizing the validators’
clocks, although to function correctly it requires almost total synchrony, given
that each operation can be carried out in specific time windows. The task of
synchronization is left entirely to the individual validators. The most used
and widespread technique regarding time synchronization concerns the use of
Network Time Protocol (NTP). Over the years, numerous attacks have been
carried out on this protocol, such as [51] and [52], which have demonstrated
the possibility of slowing down or speeding up users’ clocks. Assuming that
a good part of the validators use the same server to sync, it is possible with
a single attack to affect a large number of users.

The time-based attack [30] on Ethereum’s Proof of Stake (PoS) system
is a clever exploit that takes advantage of the requirement for validators to
keep their clocks synchronized with the network’s time.

This time-based attack can be used for various malicious purposes, such as
double-spending funds or disrupting applications that rely on the blockchain’s

unchangeable history. Here’s how:

EXPERIMENTS

107

1. Double-Spending: To double-spend, the attacker proposes a block
containing a transaction that spends the same funds as one on the main
blockchain. Then, they set their clock forward and propose another
block with the same transaction. The network accepts this second

block because it appears valid, even though it’s in the past.

2. Application Attacks: In the case of applications relying on the
blockchain’s unchanging history, the attacker proposes a block that
alters the application’s state. The network accepts this block because

it appears valid, despite being in the past.

The primary objective of this thesis is to analyze the Gasper protocol,
therefore an accurate analysis of the problem will be carried out according to
the specifications of the current Ethereum protocol. However, it is essential
to underscore that the findings presented here and in [38] possess broader
applicability, extending to other protocols grounded in Casper FFG with
inactivity leakage, provided that a time attack can yield similar ramifications.

The core characteristic of the protocol under examination pertains to its
handling of validator clocks. Specifically, when a validator’s clock exhibits
a noticeable delay compared to its peers, surpassing a predefined threshold,
the protocol mandates the disregard of its attestations by others. Conse-
quently, the potential exists for an attacker to exploit this mechanism with
the aim of decelerating a specific validator’s clock, resulting in its isolation
from nodes with synchronized clocks. Importantly, this isolation remains
unidirectional, with the sluggish validator retaining the ability to observe
messages emanating from faster counterparts.

Regarding Gasper, some additional information is considered:

1. The protocol is grounded in the principles of Casper FFG and incorpo-
rates an inactivity leakage mechanism, progressively penalizing inactive

participants.

2. The protocol enforces an upper limit on message delay, with any vio-

lation triggering the categorization of the sender as inactive, thereby

108 EXPERIMENTS

invoking the inactivity leakage mechanism.

The time attack strategy lies in its capability to partially segregate spe-
cific participants within the broader network. This partial isolation implies
that fast participants find themselves unable to access messages originating
from slower counterparts, while the slower participants maintain access to

messages from their faster counterparts, albeit receiving them prematurely.

Time Attack exploiting Inactivity Leakage

This attack, also known as Clock Attack, is based on observations made
in [38] and is hypothesized that it is possible for attackers to gain control of
a specific number of validators. An attacker can target any validator that
uses a specific and common synchronization protocol and then perform one

of these operations:
e Control of correct synchronized validator clock.

e Control of a validator clock when it’s set up incorrectly.

It is assumed that the clock control option over already incorrect clocks
incurs significantly lower costs since it would be necessary to slow down that
validator for less time before making it inactive. Essentially, each erroneously
configured clock contributes to reducing the overall cost of a successful attack
on the protocol.

Designations are employed using letters A and H to delineate two distinct
sets of validators within the system: the attackers (Attacckers), and the
validators with honest conduct (Honest). The encompassing set of all nodes
is denoted as N, and it naturally follows that AU H = N.

The prevailing assumption is that the attackers lack the capability to
exert complete control over a majority of validators. However, this analysis
serves to elucidate how the absence of a synchronization rule or protocol in
Ethereum can enable the attackers to compromise the protocol’s safety or
liveness while minimizing budgetary outlays.

Two possible cases are considered:

EXPERIMENTS 109

e Adversarial Majority case: |N|/2 < |A] < 2|N|/3. In this case, the
attackers control the majority of validators, but they can not justify or

finalize due they do not have 2/3 of the total stake.

In this scenario, the adversary can slow down or speed up the clocks of
honest validators. Thus, messages from H will be ignored by A valida-
tors, and correct validators will lose their balances due to the inactivity
leak. As A constitutes the majority, but not the supermajority, they
can break liveness but cannot justify/finalize epochs. However, as cor-
rect validators lose their balances, at some point in time, the adversary

will be able to justify and finalize epochs.

1
0.5¢]
2
E
@© (0] © © © © ©
o}
e
o
-0.5¢]
_1 I I I I
0 1 2 3 4 5

Epochs

Figure 5.23: Honest Validators’ Justification Rate during Clock Attack.

In Figure 5.23, one can observe the probability of justification among
honest validators in the context of a clock attack. It is noteworthy that
network operations occur within fixed time intervals, rendering any
form of network delay a substantial concern. Such delays precipitate an
inactivity leakage phenomenon [18], leading to the loss of a significant
part of the total stake of a slow validator starting from the fourth epoch

without justified blocks.

110

EXPERIMENTS

Justifications
N w

-

0 2 4 6 8 10
Epochs

Figure 5.24: Attackers Justification Rate during Clock Attack.

After eliminating H, the adversary gains full control over the network.
In Figure 5.24, an observable trend emerges wherein the rate of justi-
fication experiences an incremental rise as the inactivity leak mecha-
nism unfolds its impact. Initially, this mechanism imposes penalties on
validators with notably slower operational clocks within the network,
categorizing them as inactive. Consequently, this categorization ulti-
mately paves the way for malicious validators to secure the checkpoint.
It is imperative to note that the depicted attack simulation has been
accelerated for illustrative purposes, compressing the effect within a
reduced number of epochs. This acceleration involves the application

of a penalty equal to 5 ETH for the inactivity.

Attackers Minority Case: If the condition holds that |A| < |N|/2, and
the adversary does not have control over most of the validators’ clocks,
it is possible to perform a time attack to break the liveness, without
taking control of the network. Whereas |A| + |H| = |N]|, it logically
follows that |H| > |N|/2. The vitality violation condition implies that
|A| > |H|/2, which can be further expressed as |A| > |N|/4. To

EXPERIMENTS 111

violate viability without initially eliminating the opponent would have

to attack more than |N|/3 validators.

Exploiting vulnerabilities related to inactivity leakage is not deemed a highly
practical endeavor [38], primarily due to the extended timeframe required
for an inactive balance to reach critically low levels, a process characterized
by logarithmic progression. Consequently, such an attack is susceptible to
detection by vigilant administrators overseeing the system’s operations.
Nonetheless, the primary objective of this analytical examination is to
underscore the considerable efficiency gained through the manipulation of
validators’ clock settings as a pivotal component within a sophisticated at-
tack strategy. This efficiency is particularly noteworthy given the potential
to isolate a substantial number of validators from the broader network, as-
suming these validators have erroneously configured their clocks, rendering
them susceptible to attacks leveraging Network Time Protocol (NTP) vul-

nerabilities.

Prism Code

This section explains how this attack is implemented and tested in the
Prism simulation. This attack requires attackers to have basic knowledge
about the network protocols used by victims and additional knowledge to
break them, which cannot be modeled in Prism. It is therefore assumed that
the operations have already been carried out and the attackers are already
able to attack the victims’ clocks.

The 5.8 listing shows the code differences regarding the implementation

of an honest validator as well as a time attack victim.

module validator;

M; STATE : [Start, Create, Receive, Move, Vote, Check, Fin]
init Start;
b; : block{m; ,0; genesis ,0} ;
B; : blockchain [{genesis ,0;genesis ,0}];

112

EXPERIMENTS

[] (M;_STATE=Start)&(validatorID=ID;) — > 1

(b;=createBlock()) &
(M;_STATE=Create) ;

[] (M, STATE=Start)&(voter;=ID;) —> 1
(M;_STATE=Vote) ;

[] (M, STATE=Start) &!ListIsEmpty()) — > rC :

(M;_ STATE=Check) ;

[] (M, STATE=Start) — > delayTimeAttack :

(MO_STATE=Receive) ;

[addBlock] (M;_STATE=Create) — > delayTimeAttack

(B;’=addBlock());

endmodule

Listing 5.8: Implementation of delayed validator.

In the following Listing, the expected delay for this time attack is set

a priori, in any case higher than the inclusion delay which is equal to 1

epoch. Considering that this value represents a probability, it could happen

that sometimes the attacked validator manages to send the block in time.

This aspect has not been considered within the code assuming that at each

epoch the attacked validators are unable to send their attestations, receiving

a penalty each epoch as shown in the Listing 5.10 of 1 ETH. This penalty is

significantly higher than that initially predicted by the inactivity leak, but

it is necessary to be able to simulate this attack in less time.

module Global

const double delayTimeAttack = 1/(epoch 4+ inclusionDelay);

for 1 in victimValidators:

exited; : bool init false;

EXPERIMENTS 113

endmodule

Listing 5.9: Delay and delay and control variables for the activity of victim

validators implemented in Global module.

Considering 13 validators in the simulation and that each slot gives the
right to vote to 3 different validators, the number of times in which a validator
is chosen as a voter of the slot in the model is greater than 1 for each epoch
as required by the protocol, given the reduced number of validators present.
In this case, a validator can be elected as a voter of the slot with probability
13—2, given that the voters are 3 and the validators, excluding the proposer,
are 12. By adding the probability of i for 32 slots of the epoch, we obtain 8

times per epoch for a single validator.

module Updater

[] (TimeAttack=true) & (stake;>=16) — > 8/384 :
(stake;=stake;—1) &
(totalStake=totaltake —1);

[] (TimeAttack=true) & (stake;<16) & (exited,=false) — > 1
(stake;=0) &
(totalStake=totalStake —5) &

(exited,=true) ;

endmodule

Listing 5.10: Penalty implemented for votes with delay.

5.8 Idea of a Hybrid Attack

This new type of attack called the Hybrid Attack, is designed to exploit the
protocol’s vulnerabilities to time-based attacks, as described in Section 5.7.4,
with the aim of reducing the capital required for execution, by exploiting a

second type of attack, known as a Balancing attack and described in 5.7.2.

114 EXPERIMENTS

The motivations behind this new type of attack mainly derive from the
limited ability of the network to resist possible time-based attacks, even if
such attacks could be impractical in implementation, requiring considerable
investments in terms of time and financial resources.

The idea for this attack was conceived by analyzing the average rewards
received by a validator who locks up 32 ETH in their stake, which is the
minimum deposit amount needed to become a validator and is also the limit
value to become a block proposer.

In this analysis, the average daily income for a validator was determined
to be 0.0035 ETH, equating to a daily return of 0.01% [50], as shown in Table
5.1.

Duration | ETH Stake | ETH Reward | Return %
Day 32 ETH 0.0035 ETH 0.01 %
Week 32 ETH 0.0242 ETH 0.08 %
Month 32 ETH 0.1074 ETH 0.34 %
Year 33.2 ETH 1.2641 ETH 3.95 %

Table 5.1: Average validator reward.

Subsequently, a more detailed analysis of the functioning of inactivity
leakage was conducted, considering the formulas declared in 3.1.5. In the
previous experiment, although its actual operation was accelerated for exper-
imental purposes, this phenomenon was studied until the targeted validators
were expelled from the network, which took approximately three weeks [49].
The new approach aims not to fully exploit inactivity but to significantly
reduce a validator’s ability to influence block voting and achieve superma-
jority.

This is achievable considering the daily gain of 0.0035 ETH and the fact
that utilizing inactivity within a single day could result in the same validator
losing 0.76 ETH, as shown in Table 5.2. Therefore, a fluctuating time-based
attack scheme was devised, targeting only % of the network’s validators, in-

stead of % <n< % previously adopted in Clock Attack 5.7.4. This approach

EXPERIMENTS

115

allows for substantial ETH savings and makes it harder to detect, as it does

not involve continuous attacks over time.

Days | Epochs | Lost Stake | Percentage %
<1 10 0.0001 <0.01%
<1 20 0.0004 <0.01%
<1 30 0.0009 <0.01%

21 4686 16 50%

Table 5.2: Percentage of stake lost due to the Inactivity Leak based on
32ETH staked. This data is an approximation and it may not entirely match

the actual penalties.

By combining this non-continuous attack with a balancing attack on one-
third of the validators, it is still possible to target 50% of the validators,
as intended by the balancing attack. However, by exploiting the time-based
attack, the aim is to exclude a part of the honest validators in order to balance
the other part with the dishonest validators responsible for the balancing.
This is in line with the patch, given that in this attack no equivocating votes
are sent, but only delayed attestations, which in any case are not subject to
penalties within the limits of the inclusion delay (1 epoch).

In this experiment the attack is started by postponing the start to the
instant in which the first block is finalized, thus simulating the operation of
an already active network. This simulation involves both the implementation
of the patch required to balance the attack and the decision not to completely
eliminate the portion of nodes targeted by the time attack. This is because
the goal is not to remove them, but rather to equate their contribution to that
of the dishonest validators involved in the balancing attack. As highlighted in
Figure 5.25, once the initial condition for the attack is satisfied, i.e. the first
finalization, the number of finalized blocks does not increase further. This
is because, even if the number of dishonest nodes does not respect the 51%
expected for a balancing attack, using it in combination with a partial time

attack, it is possible to reach a deadlock situation, where the supermajority

116 EXPERIMENTS

-+ Finalized Blocks

MNurmber of Finalization
[-
n

0 1 2 3 4 5 6 7 8 9 1011 12
Epochs

Figure 5.25: Number of Finalized Blocks - Hybrid Attack.

is not reached.

By partial time-based attack, we can mean an attack aimed at excluding
some honest validators, randomly chosen in rotation, only for a limited period
of time, in order to equate the honest validators to the dishonest ones. The
choice to carry out a time attack only for short periods is due to the analysis
of the rewards carried out previously, given that to get out of this deadlock,
the victim validator must wait for the rewards to be recognized for his hon-
est work, such as the timely creation of blocks and the timely provision of
attestations, before seeing its original value or weight re-established.

A visual example of this attack is shown in Appendix B.

Chapter 6

Related Works

Several studies have put forth simulation-driven methods to estimate var-
ious metrics of blockchain-centric systems, assess the effects of altering pa-

rameters, and gauge the repercussions of potential attacks.

The experiments and analyses presented in this thesis build upon the
foundation laid in the initial work conducted by Veschetti et al. [1]. In their
preliminary research, they embarked on the development of a model capa-
ble of simulating the hybrid Ethereum consensus mechanism, encompassing
both PoS and PoW elements. Notably, their model still incorporated mining
activities to select validators responsible for executing blocks added to the
blockchain. The significance of their previous experiment was underscored by
its ability to demonstrate the model’s consistency, as evidenced by comparing

the expected outcomes of fork, finalization, and justification rates.

The next phase of the analysis involved a comprehensive examination of
the distinctions between the Proof of Work (PoW) and Proof of Stake (PoS)
consensus mechanisms. This scrutiny aimed to discern the primary rationale
behind the selection of one over the other, taking into account the inher-
ent advantages and disadvantages of both approaches. As elucidated in the
study presented in [46], PoW boasts several notable advantages. Firstly, it
facilitates swift consensus attainment due to the complexity of solving cryp-

tographic puzzles, which, despite their simplicity to verify, necessitate signifi-

117

118 RELATED WORKS

cant computational effort. This results in rapid consensus through block val-
idation. Secondly, PoW holds historical significance as the oldest consensus
mechanism, serving as the foundational choice for the first cryptocurrency,
despite facing stability and security challenges. Lastly, PoW acts as a deter-
rent to spam, as the computational resource demands associated with sending
an email dissuade spammers. Insufficient computational resources and high
computation costs act as formidable barriers, discouraging the mass trans-
mission of unsolicited emails, even when the spammer possesses the requisite
resources. However, PoW is not without its disadvantages. Smaller networks
experience diminished security, as the risk of hackers producing fraudulent
blocks increases with the relative ease of acquiring network resources. Addi-
tionally, PoW necessitates substantial electricity consumption and resource
usage. Despite only one miner being required to mine a block, extensive
electricity and network resources are squandered, and miners with access to
cost-effective electricity often monopolize the mining process, exacerbating
energy waste. Lastly, PoW’s reliance on electricity and mining technology
has driven it toward centralization, with miners tending to cluster in regions
with affordable electricity and abundant mining resources, posing data secu-
rity risks. In contrast, PoS offers compelling advantages. Firstly, it mitigates
centralization concerns by not demanding extensive resources and electric-
ity, making it more eco-friendly and fostering decentralization. Secondly,
its uncomplicated architecture minimizes resource requirements, resulting in
a smaller environmental footprint. Lastly, PoS drastically reduces electric-
ity consumption, obviating the need for energy-intensive algorithms, thereby
benefiting the environment. Nonetheless, PoS is not without its drawbacks.
Users with a substantial coin stake possess the potential to exert influence
over the network through the PoS protocol. Additionally, PoS necessitates
miners to invest their stake in the network to mine a new block. It is note-
worthy that the threat of network manipulation by entities with significant
stakes is a more pronounced concern in PoS, a consideration that has been

extensively addressed within Ethereum’s PoS protocol, Gasper.

RELATED WORKS 119

The research continued to delve deeper, commencing with an in-depth
examination of the official GASPER protocol [13]. This phase aimed to
provide further theoretical insights into the protocol, primarily to showcase
the network’s enhanced efficiency with the incorporation of GASPER. Ad-
ditionally, an experimental perspective is pursued to simulate the network’s
functioning under the new protocol. To acquire empirical data, the necessity
arose to construct a network simulation adhering to the protocol’s stipulated
specifications. The simulation, tailored for deployment within the Prism
model checker framework, represents an extension of the simulation previ-
ously established in [1]. This extension adheres to the foundational principles
outlined in [45].

It is worth noting the significance of delving into stake analysis, as metic-
ulously conducted in the study presented by [1]. This analytical endeavor
holds a pivotal role in deciphering the intricate reward and penalty system
delineated by the protocol. The stake analysis serves as a fundamental tool
in unraveling the intricacies of how rewards and penalties are structured and
applied within the framework of the protocol, offering invaluable insights
into the underlying mechanics of the blockchain ecosystem. Through this
comprehensive examination, a deeper understanding of the protocol’s mech-
anisms and their impact on network participants can be gleaned, facilitating

informed decision-making and policy formulation.

Additional experiments are conducted to assess the security and resilience
of the network within this new framework. To inform the research, some of
the analyses conducted by Pavloff et al., as documented in [14], are consid-
ered and replicated. Notably, this work included the reproduction of their
Bouncing Attack, which, back in 2021, posed a significant threat to the net-
work, even though initial patch proposals had been put forth.

In the same year, the publication by Hunseler et al. [20] featured one
of the initial simulations conducted on the Ethereum Beacon Chain. This
endeavor aimed to validate the heightened security measures implemented by

the new protocol, ensuring optimal efficiency and scalability. Within this con-

120 RELATED WORKS

text, two novel types of attacks were introduced: the Time-based Attack [38]
and the Balancing Attack[39]. The first type of attack is formally described
and subsequently subjected to experimental testing. The second type of at-
tack is subjected first to a theoretical examination and next to experimental
testing, by considering some approximations, due to the formidable chal-
lenges associated with reproducing such conditions using a model-checking
tool. This type of attack has catalyzed extensive research endeavors aimed
at enhancing the LMD-GHOST fork algorithm, culminating in the concep-
tualization of a potential remedy known as RLMD-GHOST, or Recent Last
Message Driven GHOST, as documented in [44], in the year 2023. This novel
algorithm not only ensures dynamic availability but also upholds safety levels
during periods characterized by bounded asynchrony. It is pertinent to note
that these findings are yet to undergo empirical validation; however, they
lay the groundwork for innovative solutions and considerations pertaining to

network security.

Power demand (GW)

Ethereum proof-of-work Estimate based on top Ethere

on eurn power demand Ethereum Energy Ethereumn proof-of-work
lower bound performing GPUSs tracker by Kyle McDonala Col

umption Index upper bound

Figure 6.1: Power consumption of Ethereum PoW in different analyses. Fig-

ure from [24].

Furthermore, it’s essential to emphasize that the research extended its
focus beyond the technical aspects of protocol transitions. We also took
into account the broader implications of transitioning from PoW to PoS,
including the significant environmental benefits associated with such a shift,

introduced in [46], also providing reasons that push towards the use of this

RELATED WORKS 121

new consensus mechanism. Notably, a pivotal study highlighted in [23] and
the analyses conducted in [47] underscore the environmental advantages of
this transition.

It has been reported in Figure 6.1 that the Ethereum network has achieved
a remarkable 99.95% reduction in energy consumption, showcasing a remark-
able leap towards sustainability [24]. It is approximately 50,000 times lower
than the energy consumption of Bitcoin [41]. The energy consumption values
were also compared with additional technologies, in order to shed new light

on Ethereum 6.2.

)

Average watt-hours per transaction
®

&

: |

Ethereum proof-of-stake lower bound Ethereum proof-of-stake upper bound Mastercard

0

Figure 6.2: Power consumption of Ethereum PoS, lower and upper bounds,

compared with the MasterCard payment circuit. Figure from [24].

This substantial reduction in energy usage not only aligns with the global
drive towards eco-friendliness but also positions the Ethereum network as a
responsible and sustainable blockchain platform. Our exploration and analy-
sis of these environmental aspects further enrich the comprehensive perspec-
tive presented in this thesis, shedding light on the holistic impact of protocol

transitions on the blockchain ecosystem.

Conclusions

This master’s thesis represents a comprehensive exploration of Ethereum
blockchain technology and the significant transition from Proof of Work
(PoW) to Proof of Stake (PoS) through the Gasper protocol. Addition-
ally, it delves into the event known as The Merge, which marked a significant

milestone in Ethereum’s evolution, starting in September 2022.

The analysis commenced with a thorough examination of Ethereum’s
foundational principles, an exploration of blockchain fundamentals, and a
deliberate assessment of the motivations behind the transition to PoS, tak-
ing into consideration environmental and operational factors. To provide a
new perspective, it is also conducted a comparative analysis, contrasting the
Hybrid Casper and Gasper protocols. The introduction of the Prism Model
Checker shed light on its intricate functionality, elucidating illustrative use
cases and its real-world applicability, thereby setting the stage for our inves-
tigation. A crucial aspect of the research was an extensive survey of related
works, offering the necessary context to appreciate the significance of our

study within the broader landscape of blockchain research.

Transitioning from theory to practice, the architecture of the Gasper pro-
tocol is scrutinized paying particular attention to its implementation using
Continuous-Time Markov Chains (CTMC) within a modified version of the
Prism Model Checker software, called Prism+. The practical implemen-
tation within Prism+ yielded invaluable insights, offering pseudocode and

comprehensive module descriptions that covered key components via ad-hoc
modules, such as Validator, Updater, Network, Global, and RanDAQO. These

123

124 CONCLUSIONS

descriptions significantly enhanced the understanding of the experiments and
the protocol in general.

The findings derived from experimental simulations affirmed the faith-
fulness of this simulation to Gasper’s specifications. Finalization, justifica-
tion, and block creation rates are computed providing empirical evidence of
the protocol’s robustness. Furthermore, our exploration of fork probability,
guided by the LMD Ghost algorithm, underscored Gasper’s resilience in the
face of prolonged forks.

One noteworthy observation that emerged from our investigation is the
Gasper protocol’s ability to incentivize honest validators, encouraging grad-
ual stake growth over time. However, it is also uncovered that this phe-
nomenon is most prominent in a network environment free from significant
latency. Delays incurred by validators are met with equivalent penalties,
effectively tempering potential gains. Consequently, the growth of stakes
among honest validators followed a more incremental trajectory rather than

experiencing an exponential ascent, regardless of their ETH holdings.

Zoom 1m 6m 1y Al Apr 13,2023~ Oct 13, 2023 Zoom 1m 6m ly All Apr 13,2023~ Oct 13, 2023

3008 175
2508
200 B

150 B

Ether Market Cap (USD)
nG
g

100 B

May '23 Jun 23 Jul'23 Aug 23 Sep'23 Oct 23 May '23 Jun'23 Jul'23 Aug 23 Sep'23 Oct 23

Figure 6.3: ETH Capitalization. Figure 6.4: Average Gas price.

In recent months, approximately one year after The Merge, which marked
the transition from a Proof of Work (PoW) to a Proof of Stake (PoS) consen-
sus mechanism for the Ethereum network, there has been a growing consid-
eration regarding the hypothesis of currency devaluation. This phenomenon

is evident by analyzing the price trend of ETH, which decreased from around

CONCLUSIONS 125

$2,000 in April 2023 to approximately $1,500 in October 2023, as depicted
in Figure 6.3. Another element supporting this theory is the behavior of the
average Gas price, which decreased from an average value of 35 Gwei in April
2023 to approximately 11 Gwei in October 2023 (see Figure 6.4). It is worth
noting that due to changes introduced in the validation process, which now
takes into account various factors beyond computing power (PoW), such as
the punctuality of certificate submission and block proposal, an expectation
of increased earnings for individual validators has arisen.

This increase in rewards for validators may inevitably lead to an over-
all increase in ETH in circulation, resulting in a decrease in the currency’s
value. This decrease could have several effects, including reduced interest
and participation by individuals, who represent the blockchain’s final line of
defense, as declared on the official Ethereum documentation [48].

Additionally, the decrease in value may increase the ease of carrying out
various types of attacks, including those described in this thesis. While these
attacks require substantial economic resources, they may become more ac-
cessible due to the reduced value of the ETH required to execute them. In
summary, the transition from PoW to PoS has significantly reduced ETH
emissions but has also introduced potential challenges related to the cur-
rency’s value and blockchain security.

Future research endeavors will be dedicated to the exploration and eval-
uation of novel attack methodologies. These investigations aim to compre-
hensively assess the evolving threat landscape and identify potential vulner-
abilities emerging in blockchain systems. Upcoming studies will center on
developing and analyzing innovative reward and penalty structures. The
goal is to avoid flooding the market with an excessive supply of cryptocur-
rency, thus preserving the currency’s value and overall stability. This pursuit
entails the crafting of mechanisms that strike an intricate balance between
incentivizing participation and validating transactions while discouraging ex-

cessive accumulation or dilution of digital assets.

Bibliography

Galletta, Laneve, Mercanti, and Veschetti, Resilience of Hybrid Casper
Under Varying Values of Parameters. ACM, 2023.

Buterin, Ethereum white paper. GitHub repository 1, 2013.

Hildenbrandt, Manasvi, Zhu, Rodrigues, Philip, Guth, Rosu, KEVM: A
Complete Semantics of the Ethereum Virtual Machine. Illinois Library,
2017.

Ethereum Documentation, Proof of Stakes. https://ethereum.org/

en/developers/docs/consensus-mechanisms/pos/, 2022.

Ethereum Documentation, Blocks. https://ethereum.org/en/
developers/docs/blocks/, 2023.

Yaga, Dylan, et al., Blockchain technology overview. arXiv preprint,

2019.

Ethereum Documentation, Intro to Ethereum. https://ethereum.org/

en/developers/docs/intro-to-ethereum/, 2023.

Ethereum Documentation, Intro to Ether. https://ethereum.org/en/
developers/docs/intro-to-ether/, 2023.

Ethereum Documentation, Transactions. https://ethereum.org/en/

developers/docs/transactions/, 2023.

127

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://ethereum.org/en/developers/docs/intro-to-ether/
https://ethereum.org/en/developers/docs/intro-to-ether/
https://ethereum.org/en/developers/docs/transactions/
https://ethereum.org/en/developers/docs/transactions/

128

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[20]

[21]

Ethereum Documentation, Smart Contracts. https://ethereum. org/

en/developers/docs/smart-contracts/, 2022.

Solidity Documentation, Solidity, https://docs.soliditylang.org/
en/v0.8.21/. 2023.

Ethereum Whitepaper, Intro to Smart Contracts. https://ethereum.

org/en/whitepaper/#introduction-to-smart-contracts, 2023.
Buterin, et al. , Combining GHOST and casper. arXiv preprint, 2020.

Pavloff, Ulysse, Yackolley Amoussou-Guenou, and Sara Tucci-
Piergiovanni, Ethereum Proof-of-Stake under Scrutiny. Proceedings of
the 38th ACM/SIGAPP Symposium on Applied Computing. 2023.

Ethereum Documentation, Blocks. https://ethereum.org/en/
developers/docs/blocks/, 2023.

Buterin et al., Incentives in Ethereum’s hybrid Casper protocol. Interna-

tional Journal of Network Management, 2020.

Ethereum Documentation, Attestations. https://ethereum.org/
en/developers/docs/consensus-mechanisms/pos/attestations/,
2023.

Buterin, Griffith, Casper the friendly finality gadget. arXiv preprint,
2017.

Ethereum Documentation, Gasper. https://ethereum.org/en/

developers/docs/consensus-mechanisms/pos/gasper/, 2023.

Hunseler and Lemke-Rust, Simulating an Ethereum 2.0 Beacon Chain
Network. IEEE, 2021.

Neu, Nusret Tas, Tse, Ebb-and-Flow Protocols: A Resolution of the
Awvailability-Finality Dilemma. CoRR, 2020.

https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://docs.soliditylang.org/en/v0.8.21/
https://docs.soliditylang.org/en/v0.8.21/
https://ethereum.org/en/whitepaper/#introduction-to-smart-contracts
https://ethereum.org/en/whitepaper/#introduction-to-smart-contracts
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attestations/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attestations/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/

CONCLUSIONS

[22]

[23]

[29]

[30]

[31]

[32]

Cachin, Vukolic, Blockchain Consensus Protocols in the Wild. CoRR,
2017.

Lal, Apoorv, and Fengqi You, Climate concerns and the future of
nonfungible tokens: Leveraging environmental benefits of the Ethercum

Merge. Proceedings of the National Academy of Sciences, 2023.

De Vries, Cryptocurrencies on the road to sustainability: FEthereum

paving the way for Bitcoin. Patterns 4.1, 2023.

Kapengut, Elie, and Bruce Mizrach, An event study of the ethereum
transition to proof-of-stake. Commodities 2.2, 2023.

Aziz, Adnan, et al, Verifying continuous time Markov chains. Computer
Aided Verification: 8th International Conference Springer Berlin Heidel-
berg, 1996.

Aziz, Adnan, et al, Model-checking continuous-time Markov chains.

ACM Transactions on Computational Logic, 2000.

Christian Decker and Roger Wattenhofer, Information propagation in
the Bitcoin network. 13th IEEE International Conference on Peer-to-

Peer Computing, 2013.

Nakamura, Analysis of bouncing attack on FFG. https://ethresear.
ch/t/analysis-of-bouncing-attack-on-ffg/6113, 2019.

dankrad, Eth2 attack via time servers, https://ethresear.ch/t/
eth2-attack-via-timeservers/8049. 2021.

Zhang, Ashu, RANDAO: A DAO working as RNG of Ethereum. https:
//github.com/randao/randao, 2022.

STU [n.d.], RANDAO: Under the Hood. https://blockdoc.substack.
com/p/randao-under-the-hood, 2022.

129

https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/eth2-attack-via-timeservers/8049
https://ethresear.ch/t/eth2-attack-via-timeservers/8049
https://github.com/randao/randao
https://github.com/randao/randao
https://blockdoc.substack.com/p/randao-under-the-hood
https://blockdoc.substack.com/p/randao-under-the-hood

130

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

39]

[40]

[41]

[42]

Ethereum Group (Pull Request), Fiz bouncing attack tests. https://
github.com/ethereum/consensus-specs/pull/2301, 2021.

D’Amato, Tse, et al. , No More Attacks on Proof-of-Stake Ethereum?.
arXiv preprint, 2022.

Nakamura, Buterin, Prevention of Bouncing Attack on FFG. https:
//ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114,
2020.

Lamport, Using time instead of timeout for fault-tolerant distributed
systems. ACM Transactions on Programming Languages and Systems,
1984.

Buterin, Network-adjusted timestamps. https://ethresear.ch/t/
network-adjusted-timestamps/4187, 2018.

Vlasov, Time attacks and security models. https://ethresear.ch/t/
time-attacks-and-security-models/6936, 2020.

Neu, Nusret Tas, and Tse, Two More Attacks on Proof-of-Stake
GHOST/FEthereum. ACM, 2022.

Schwarz-Schilling, Neu, Monnot, Asgaonkar, Nusret Tas, Tse, Three
Attacks on Proof-of-Stake Ethereum. CoRR, 2021.

Cambridge University, Cambridge Bitcoin energy consumption index.

https://ccaf.io/cbnsi/cbeci/comparisons, 2019.

Buterin, Proposal for mitigation against balancing attacks to LMD
GHOST. https://notes.ethereum.org/@vbuterin/lmd_ghost_
mitigation, 2021.

Ethereum Documentation, Proof of Stake Rewards —and
Penalties. https://ethereum.org/en/developers/docs/

consensus-mechanisms/pos/rewards-and-penalties/, 2023.

https://github.com/ethereum/consensus-specs/pull/2301
https://github.com/ethereum/consensus-specs/pull/2301
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://ethresear.ch/t/network-adjusted-timestamps/4187
https://ethresear.ch/t/network-adjusted-timestamps/4187
https://ethresear.ch/t/time-attacks-and-security-models/6936
https://ethresear.ch/t/time-attacks-and-security-models/6936
https://ccaf.io/cbnsi/cbeci/comparisons
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/

Bibliography 131

[44] D’Amato and Zanolini, Recent latest message driven ghost: Balancing

dynamic availability with asynchrony resilience. arXiv preprint, 2023.

[45] Bistarelli, De Nicola, Galletta, Laneve, Mercanti and Veschetti, Stochas-
tic modeling and analysis of the bitcoin protocol in the presence of block

communication delays. Concurrency Computat Pract Exper, 2023.

[46] Anupama, Sunitha, Analysis of the Consensus Protocols used in
Blockchain Networks a An overview. 2022 IEEE International Confer-
ence on Data Science and Information Systems (ICDSIS), 2022.

[47] Wendl, Doan, Sassen, The environmental impact of cryptocurrencies us-
ing proof of work and proof of stake consensus algorithms: A systematic

review. Journal of Environmental Management, 2023.

[48] Ethereum Documentation, People: The last line of defense. https:
//ethereum.org/en/developers/docs/consensus-mechanisms/pos/

attack-and-defense/#people-the-last-line-of-defense, 2023.

[49] Patrick Mccorry, The Inactivity Leak. https://www.cryptofrens.
info/p/the-inactivity-leak, 2023.

[50] Block Native Team, FEthereum Staking Calculator. https://wuw.

blocknative.com/ethereum-staking-calculator, 2023.

[51] Selvi, Bypassing HTTP strict transport security. Black Hat Europe,
2014.

[52] Malhotra, Attacking the Network Time Protocol. Research Gate, 2016.

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attack-and-defense/#people-the-last-line-of-defense
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attack-and-defense/#people-the-last-line-of-defense
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attack-and-defense/#people-the-last-line-of-defense
https://www.cryptofrens.info/p/the-inactivity-leak
https://www.cryptofrens.info/p/the-inactivity-leak
https://www.blocknative.com/ethereum-staking-calculator
https://www.blocknative.com/ethereum-staking-calculator

Appendix A

Balancing Attack exploiting
LMD-Ghost

In this appendix, an illustrative example is described inspired by the
scenario detailed in [39], which pertains to the execution of the Balancing
Attack. The objective of this example is to enhance comprehension of the
attack mechanism by elucidating its operational intricacies. Let X = 50
denote the number of validators per slot. Suppose the proposal weight is

X

» = 0.6X = 30, and the fraction of adversarial validators is v = 0.2.

Additionally, assume that the attack begins when there are five consecutive
slots with adversarial proposers. During the first four slots, the adversary
creates two parallel chains A and B, each consisting of 3 blocks initially kept
private from the honest validators. In each slot, the 10 adversarial validators
from that slot vote on the blocks. Consequently, there are conflicting votes
for the blocks proposed in the same slot. For the fifth slot, the adversary
combines all the conflicting votes for chain A into a single block and appends
it to chain A. Similarly, they merge all the conflicting votes for chain B into
an equivocating block attached to chain B. This arrangement allows votes
to be batched as follows: The adversary releases the two equivocating blocks
from the fourth slot in such a way that approximately half of the honest

validators see the block from chain A first and all the equivocating votes for

133

134

A Balancing Attack

chain A, while the other half of the honest validators see the block from chain

B first and all the equivocating votes for chain B.

Figure A.1: Initial condition. Adversarial validators are tasked with initial-

izing the two chains and keeping them hidden until the appropriate moment.

Now, let’s suppose that the proposer of slot 6 is honest and from set
HA. This validator proposes a block extending chain A. As a result, chain A
gains a proposal boost equivalent to 30 votes. Thus, validators in HA perceive
chain A as leading with 70 votes and cast their votes for it. Validators in
HB, on the other hand, believe that chain A has 30 votes while chain B has
40 votes, so they vote for chain B. Consequently, their votes are evenly split,

with both chain A and chain B receiving roughly half of the honest votes.

This pattern continues in subsequent slots, with the honest validators
in HA and HB consistently voting for chains A and B, respectively. This
ensures a balance of weights in the global view and perpetuates the adver-
sarially induced divided perspective. In the LMD view of each validator,
they continue voting for the chain they see as leading and find it perplexing

why other honest validators persistently vote for the opposing chain.

A Balancing Attack exploiting LMD-Ghost

135

Figure A.2: Proposer boost balancing. An honest validator proposes his

block, receiving the weight boost.

Figure A.3: Continued balancing. Even after the proposer boost, the balance

between the two sets of validators continues to last over time.

136 A Balancing Attack

This sequence of Figures A.1 - A.3 repeats in subsequent slots, with honest
validators in HA and HB consistently casting their votes for Chains A and
B, respectively. This ensures a balance of weights in the global view. In the
LMD view of each validator, they continue to vote for the chain they perceive
as leading and may find it puzzling why other honest validators persistently
vote for the opposing chain, perpetuating the adversarially induced divided

perspective.

Appendix B

Simple Hybrid Attack

This example serves to clarify some concepts expressed in Section 5.8.
This example assumes N = 100, where N is the number of validators of each
committee, therefore who have the right to vote in each slot of the epoch.
Let’s assume that % of the validators is made up of attackers or dishonest
ones, while the remaining part is made up of honest validators. In this
simplified case, even if the number of dishonest validators is equal to % of the
total and therefore equal to the limit of Ethereum’s BFT property, it is still
considered that honest validators can justify a checkpoint, given that they
are capable of increasing their stakes through rewards and consequently after
an unspecified number of epochs they will have reached the ability to justify.
In such a situation, given the majority of honest validators, it is not possible
to carry out any type of attack on the liveness of the network. Half of the
honest validators, who do not use any type of security mechanism regarding
the synchronization of internal clocks given that Ethereum does not provide
any additional control to that provided by the NTP, are therefore vulnerable.
In this attack, in combination with a time attack, an early balancing attack
is performed. In theory, this type of attack is no longer possible in the
Ethereum network given the introduction of the boost proposer and in theory,
LMD balancing could be used. Since the focus of this type of attack is on

the vulnerabilities of validators to time synchronization in Ethereum, it is

137

138 B Hybrid Attack

considered a simpler and more basic balancing attack.

N=100
HONEST DISHONEST
213N -> 66 1/3N -> 33

EPOCH & 133 33

Slot 0 i

33 33

X 1

Slot 1

Figure B.1: Hybrid Attack: Start.

The attack begins, as can be seen in Figure B.1 when a dishonest validator
is elected as proposer (slot 1 highlighted in green). In that slot, the validator
proposes two blocks, a condition that will lead to its exclusion from the
network due to slashing. At the same time, half of the honest validators who
have been identified as vulnerable to a hypothetical time attack are attacked

and slowed down.

3 33
Slot 2 (.. T i

lIIIl 33 33
2] A X
-~ T

Figure B.2: Hybrid Attack: Balancing.

Figure B.2 shows the balancing phase that occurs between the validators.

This process is simplified for demonstration purposes, as the slot 2 proposer

B Simple Hybrid Attack 139

equally sends block A to half of the validators and block B to the other
half. The validators who receive block A will continue to see chain A as
the main one, not understanding why the other validators vote for chain B.
The same reasoning applies to the validators who receive block B. In this
phase, the inclusion delay is exploited, i.e. a time value (1 epoch) which is
valid as the maximum delay for sending the votes by the validators. This
period is essential in order to maintain a fair balance of votes, given that
dishonest validators will send their attestations in order to keep the chains

balanced. Figure B.3 describes the beginning of a new epoch, given that

EPOCH
e+l

3 33
wo [1 1
e \ AN

3 o 33
O { ?

Figure B.3: Hybrid Attack: the beginning of an epoch.

to send attestations it is necessary to insert the first block of that epoch
(checkpoint). Assuming a constant balance between A and B, it is assumed
that there is a 50% chance that the first block of the epoch will be added
to chain A and a 50% chance that it will be added to chain B. Similarly, it
is also assumed for slot 1 of the same era. In the example, it is shown that
if the block for slot 0 is proposed in chain A, then the dishonest validators
enter a waiting situation, in order to release their votes in slot 1, i.e. when
a block will be proposed as a child of the chain B. After this initial phase,
operations will continue as shown in Figure B.2. In this way, even if in slot
0 attestations will be sent by some validators for chain A, given that the
other half of the total validators still see B as the main chain, from slot 1 the
balance will be re-established counting on the release with delay of votes by

dishonest validators.

	Introduction
	Ethereum
	Blockchain
	Ethereum Blockchain

	Consensus Mechanism
	Proof-of-Work (PoW) Consensus
	Proof-of-Stake (PoS) Consensus
	The Merge

	Hybrid Casper Protocol
	Gasper Protocol
	Components of the Gasper Protocol
	Block Proposal
	Finality
	Incentives and Slashing
	Liveness
	Fork rule

	Comparison between Hybrid Casper and Gasper
	Consensus Mechanism
	Energy Efficiency
	Finality
	Validator Rotation

	Prism Model Checker
	Key Aspects
	Constructing Models
	Formulating Property Assertions
	Applications of Prism

	Architecture
	Gasper architecture
	Overview of Gasper Protocol
	Validator Participation and Staking
	Committees
	Attestation
	Stake, Rewards and Penalties
	Finality and Liveness
	Benefits of Gasper Architecture

	Model simulation
	CTMC Basics
	Prism Model Checker and CTMCs
	Simulating Ethereum PoS Network
	Benefits and Limitations
	Prism+

	Implementation
	Global variables
	Validator
	Updater
	Network
	Global
	RanDAO
	Labels

	Experiments
	Simplifications
	Coherence
	Fork Probability
	Stake Analysis
	Safety
	Security Analysis
	Liveness

	Robustness to Attacks
	Bouncing Attack
	Balancing Attack
	Balancing Attack over LMD-Ghost
	Time-Based Attacks

	Idea of a Hybrid Attack

	Related Works
	Conclusions
	Bibliografy
	Balancing Attack exploiting LMD-Ghost
	Simple Hybrid Attack

