
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Quantum Neural Networks for
Data-Efficient Image Classification

Supervisor:

Prof. Stefano Lodi

Co-supervisors:

Dr. Antonio Macaluso,
Dr. Riccardo Mengoni.

Submitted by:

Francesco Aldo Venturelli



Academic Year 2022/2023

2



Abstract

In our constantly evolving world, an overwhelming influx of data permeates every mo-
ment—be it daily, hourly, or even by the second. We communicate, share links, images,
and opinions, disseminating a trail of traces, representing not just the vastness of our
natural surroundings but also reflecting our thoughts, preferences, and sentiments. Rec-
ognizing the significance of these data, the field of Data Science has emerged, dedicated
to unveiling the concealed insights embedded within. Machine Learning (ML) has be-
come a captivating realm of research[8], gaining prominence for its capacity to extract
knowledge from extensive datasets[20]. ML has played a pivotal role in bridging the
gap between our understanding of nature and its intricacies. Deep Learning (DL), par-
ticularly Neural Networks (NNs), has revolutionized classical ML, serving as non-linear
structures for modeling statistical data[23]. NNs, and notably convolutional neural net-
works (CNNs), simulate intricate relationships between inputs and outputs[8], excelling
at tasks such as image-based pattern recognition inspired by the structure of the visual
cortex. While NNs, especially multilayered ones, have demonstrated remarkable power,
their trainability posed challenges. The advent of back-propagation mitigated this issue,
but training difficulties persisted, necessitating solutions like rectifier neuron activation
functions and layer-wise training. Quantum Machine Learning (QML) has introduced
new avenues, leveraging noisy intermediate-scale quantum computers for computational
problems involving quantum data. Variational quantum algorithms (VQAs) and quan-
tum neural networks (QNNs) offer promising applications, utilizing classical optimizers
to train parameters in a quantum circuit. QNNs present a distinctive advantage over
classical models by analyzing systems with polynomial complexity[2][6], which would
be exponentially complex in classical ML, providing a computational edge. Notably,
QNNs exhibit faster learning capabilities compared to classical counterparts, attributed
to the entanglement discussed later in chapters 1 and A. Previous studies highlight the
efficacy of QNNs in learning from limited data, reducing time and energy in training
processes. This Master thesis delves into efficient image classification possibilities using
various quantum models trained with minimal images, concluding with a direct compar-
ison against classical CNN performance. Two diverse datasets are employed for training,
subsequently scaled down to explore the QNN models’ potential to predict more images
than CNNs.



Contents

1 Introduction 3

2 Background 9
2.1 Elements of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Neural Networks and Deep Learning . . . . . . . . . . . . . . . . 12
2.1.5 A common issue: over-fitting . . . . . . . . . . . . . . . . . . . . . 18
2.1.6 Convolutional Neural Networks (CNN) . . . . . . . . . . . . . . . 19

2.2 Elements of Quantum Computing . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Quantum bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 The postulates of Quantum Mechanics . . . . . . . . . . . . . . . 26
2.2.3 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Quantum Machine Learning . . . . . . . . . . . . . . . . . . . . . 32

3 Related works 41

4 Methods 48
4.1 Feature map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Ring-like architecture . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Waterfall architecture . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Variational ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Mixing architectures . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 CZ circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 QCNN-like circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Settings and experiment 55
5.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1



5.1.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.4 Metrics, loss, optimizer and interpret function . . . . . . . . . . . 58
5.1.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.6 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.7 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.8 Interpret function . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Generalization with few images . . . . . . . . . . . . . . . . . . . 63
5.2.2 Tables of results: MNIST . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Accuracy vs number of layers . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Generalization from less features . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Galaxy results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions 94
6.1 Achievements and limitations . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A The entanglement 98

B Data expansion 100

C Training process 104

D QCNN measurement 106

E Plots 109

2



Chapter 1

Introduction

Motivation

Machine Learning (ML) is widely used in several fields of research nowadays. Even if
it was held by the most renowned companies or research centers at the beginning, peo-
ple now have access to an enormous quantity of Generative AI models that can help
in developing their activities such as writing a paper, generating weird images, coding,
or even taking decisions over some event. ML has completely changed the way peo-
ple approach problems in Science. Before his arrival, scientists usually faced a problem
and, based on the data collected, made hypothesis to explain the observed phenomena,
built a mathematical model that could have been representative of it, and subsequently
translated the model to a computer to perform simulations to get the answers they were
looking for. The primary challenge with this mode of interaction arises when the initial
hypothesis is incorrect, rendering the simulation meaningless and yielding inconclusive
results. The significance of the initial guess, or hypothesis, is evident in this particular
approach. However, a notable shift has occurred since the inception of ML. Nowadays,
there has been a turnaround: a ML model is employed to ingest and train on the data,
aiming to unveil the inherent rules or hypotheses governing the underlying phenomena.
In this sense, it is a process that goes backward: from data to hypothesis/rules. If in
the first approach, the balance leans much more on the hypothesis humans guess on a
particular phenomena, for the second one the data has greater weight in the analysis and
it is the only element that reveals and explains the insights behind the event.
ML is generally composed of three main parts: the starting point is the data collection,
in which practitioners prepare, clean, and organize plenty of data that will be used by
a model to reveal the inner logic behind them. In the second step the model is trained,
i.e. it starts to classify as many training data-points as possible to learn the intrinsic
bounds in common. Ultimately, the model is evaluated on a new set of data that it
hasn’t seen yet: the test data. The testing process is probably the most representative
part of ML, where the model has to be able to predict new data based on what has

3



been learned previously. Already from this point, we can wonder how much data are
necessary for the model to reach a high level of accuracy during the prediction. As we
may think, good performances are usually accompanied by a long training phase. In
fact, if we think about a classification problem with two different classes of items (as it
has been done in this project) where the goal is to classify which item belongs to which
class, it makes sense that the more images we provide the model, the more it’s able to
recognize details representative to each class. The development of ML, in general, would
be unimaginable without the invention of the modern computer[8]. Living in the age

Figure 1.1: ML performances over how much data they require. It’s visible that more
and more data are essential for good predictions and the amount of memory used to
store these data and the number of processors that can execute the task should increase
over time.

of laptops, smartphones, and smartwatches and constantly observing the arrival of new
technologies can give the expectation of endless growing computational potential[8].
As we have pointed out, Machine Learning is everywhere. Biology, Medicine, High-Tech
industries, Physics, Engineering, etc. are all sectors that have experienced a rapid growth
in the last years thanks to the spread of Artificial Intelligence (AI). The most updated
and powerful ML models used these days require long time for being trained, energy, and
enormous computational resources due to the complexity of the problem, which usually
cannot be provided from our everyday computers, instead, they are furnished most likely
by super-computing centers. The idea of looking for something different arises directly
from this point: it’s very expensive to wait for a long time and to make use of supercom-
puters, GPUs, hardware accelerators, and other advanced architectures to obtain slightly

4



better accuracy compared to simple models. The demand for new device architectures
and information processing methods is even more motivated through the exponentially
increasing amount of data created every day[8]. This is in fact, one of the reasons why
the innovative quantum models can come out as a possible way of solving, or reducing
the current problem.
With the advent of Quantum Mechanics, new technologies such as quantum models
and quantum computers are under investigation and are proposed as innovative devices
that offer a possibility of addressing open existing problems for classical computers. In
this context, one of the main area where quantum computers promise to give their con-
tribution to reach a significant speed-up is the combinatorial and optimization set of
problems. In this set the power of qubits to be in a superposition of states (and to have
a probability amplitude associated to those states) permits to scale with the system’s
size of the given problem with the result of finding a solution with lower computational
costs. Additionally, they are able to perform computations faster and reach better results
than classical devices on specific problems and many quantum algorithms have shown to
break down widely used classical encryption protocols. Such algorithms demonstrated
mathematically that one could gain more information by querying a black box with a
quantum state in superposition, sometimes referred to as ”quantum parallelism”.
In principle, a classical computer can solve the same computational problems as a quan-
tum computer, given enough time.
Quantum advantage, as we said, comes in the form of time complexity rather than com-
putability, and quantum complexity theory shows that some quantum algorithms, for
carefully selected tasks, require exponentially fewer computational steps than the best
known non-quantum algorithms. Such protocols can, in theory, be solved on a large-
scale quantum computer whereas classical computers would not finish computations in
any reasonable amount of time. Quantum computers, containing up to hundreds of quan-
tum bits, became experimentally realizable in the last years and give the opportunities
to exploit the laws of Quantum Mechanics to avoid the limits of classical computing[8].
They offer the promise of dramatically improving ML through speed-ups in computa-
tion and improved model scalability[2] (ML models can handle increasing amounts of
data and perform many computations in a cost-effective and time-saving way). In the
field of ML, the capacity of a model relates to its ability to express a variety of func-
tions. The higher a model’s capacity, the more functions it can fit[1]. By introducing
the concept of generalization as the way a model can learn from data and generalize
unseen data[2], many capacity measures have been shown to mathematically bind the
error a model makes when performing a task on new data. With the introduction of
the global effective dimension [1] presented for the first time in [1], authors have tried
to set up an indicator of how well a particular model will be able to perform predictions
and express new data. As they remarked in the article, quantum neural networks can
achieve a significantly better effective dimension than comparable classical neural net-
works that results in a wider capacity of fitting the data[2]. Indeed, certain QNNs can

5



train faster than classical models due to their favorable optimization landscapes, cap-
tured by a more evenly spread Fisher information spectrum[2], which they used in their
experiments. From this point of view, it is evident that QNNs, together with quantum
computers, can break down the horizons hitherto known.
Another principal characteristic that distinguishes quantum from classical models is in-
trinsically contained in Quantum Mechanics: the entanglement. It is a pure quantum
effect, not present in classical nature, responsible for correlations between quantum sys-
tems, or quantum data, even at long distances. When two particles, such as a pair of
photons or electrons (or qubits), become entangled, they remain connected even when
placed at infinity one from the other. In Section 2.2 of Chapter 2, a concise definition is
presented regarding the conditions specified by the superposition principle in Quantum
Mechanics. In scenarios where two or more physical systems act as subsystems within a
larger one, and the quantum state of the overall system is expressed as a combination of
their individual states, the measurement of an observable for one system (subsystem) si-
multaneously establishes the value of the same observable for the others. Since the state
of quantum superposition is independent of a spatial separation of such systems (sub-
systems), entanglement counter-intuitively implies the presence of distance correlations
between them and, consequently, the non-local character of physical reality[8]. In the
field of Quantum Computing, the entanglement is realized between qubits and quantum
information is shared among entangled qubits. The ability to make connections between
the data is exploited by models simulated on a quantum computer to acquire deeper
and finer information about the data themselves and how they are connected; classical
models instead, cannot make use of entanglement.
It’s clear that we are in front of two separated worlds, generated by different theoretical
aspects and that will give different results. From now on, the project will introduce
the fundamentals of Quantum Mechanics from the basics to the QNN models. Before
that, we are going to spend few words on the idea behind this work, explaining our idea,
what we would like to test, what we would expect and the experiments we are going to
illustrate. Eventually, we will provide specific results about the experiments we carried
out, focusing on the ability of QNN to recognize images compared with an over-studied
classical CNN.

Objectives

This thesis seeks to illuminate the advantages derived from the generalization process
when training quantum models with minimal data. By subjecting various quantum
architectures to testing in a supervised binary problem within Computer Vision, our
goal is to discern the potential advantages stemming from the principles of Quantum
Mechanics1. To rigorously challenge the capabilities of these models, we deliberately
reduced the training dataset to a scant number of instances (6, 10, 20, 30, 40, and
50). This intentional reduction in data aims to assess the resilience and efficiency of

6



quantum models when confronted with sparse training datasets. The evaluation process
involves comparing the performance of these quantum models with that of a classical
counterpart, represented by a CNN. The objective is not to anticipate a clear superiority
of QNNs over the CNN employed; instead, we are seeking to identify a particular regime
associated with ”Data-efficiency.” In this context, Data-efficient implies achieving robust
predictive capabilities while utilizing a minimal number of images and features, thereby
diminishing the computational resources required for model training. Our focus is on
exploring situations where quantum models exhibit a relative advantage in managing
and learning from sparse datasets. The subsequent section provides a more detailed
breakdown of the analysis conducted to delve into these aspects.

Contributions

During the realization of the thesis, we have tried to contribute to the vast research
activities that involve quantum models, aiming to illustrate that such original devices
provide a new way of performing image classification, especially when we have few data
and features. We started from an existing work that has shown a little tutorial on binary
image classification where only a selected quantum circuit has been tested. We expanded
the current work putting more attention on testing different quantum architectures that
emulate the QNN and also a quantum convolutional neural network (QCNN) inspired by
a similar architecture proposed in [12]. Thus, we built a simple and fair classical neural
network for image classification to have a direct comparison to the quantum algorithms.
We have followed the starting work by adapting our different models to a real dataset,
but we have also introduced a standard toy-dataset as Mnist, appropriately reduced in
the number of features to be encoded by the feature map circuit that we describe in the
section 2.2.4.
The idea behind the project is to explore the performances of quantum models based on
what has been realized in [10] where has been revealed that a quantum model can learn
and generalize faster, compared to a classical algorithm, with less training (quantum)
data-points. This last statement is investigated in the thesis and applied to classical data
images, to include the state preparation process that characterizes and differentiates any
quantum model concerning its classical counterpart. The ”modus operandi” consisted of
building five different sets of a selected number of training images, encoding the classical
data into their corresponding quantum states, training multiple variational ansatz cir-
cuits, and making the binary classification over a fixed test set, by using the number of
corrected predictions over the total number of predictions as a metric. After collecting
the respective accuracy on the training and test set, the number of images is raised and
the same process has been applied for a total number of six training sets containing few
images (of the order of tens). The predictions are then plotted by varying the number of
training data the model has seen in each iteration. We have managed to see important
results about the generalization abilities of each quantum model. As we were expect-

7



ing, the systematic reduction of the over-fitting is reached when more images are used
by the model for training. In other words, as the reader will have the opportunity to
notice, the more images are seen by the QNN, the less the distance between the train
and test accuracy curve will be, until almost an overlapping between the two. Besides
this foregone result, also difficulties came out. The selected quantum models are still far
away from the excellent performance of the classical CNN, meaning that probably some
classical adjustment could have been done at the beginning, for example tuning some
hyper-parameters as the learning rate (that has kept fixed in our simulations), using a
different classical optimizer, introducing dimensionality reduction techniques, increasing
the number of epochs used within the training, etc. The intent here is not to demonstrate
if quantum neural networks can overcome classical neural networks in the performances
in principle, rather we are interested to see how faster the generalization can be realized
by those quantum models. Anyway, we are forced to compare the learning abilities con-
cerning classical models and we have to admit that is not completely possible to uphold
the thesis supported in [10] so far, since the introduction of the embedding circuit, re-
sponsible to turn classical data into quantum states, in the model is not present there.
Quantum computing tells us that adding qubits and quantum gates to our circuit, as
well as being expensive to simulate, will generate errors that can be traduced into the im-
possibility of a QNN model to learn the best parameters for the classification. To tackle
this issue, one possible approach could be the reduction of the number of features of the
image to feed the model with, to decrease the number of quantum operations (quan-
tum gates) necessary to encode each pixel. Along this way we have proposed another
experiment that reveals interesting facts. This new task aims to reproduce the accu-
racy performances for selected training sets where the number of features is considerably
lowered. In a certain sense, we challenged quantum and classical models by making the
images worse. As we will display later in 5.2, for some reduced-in-features training sets,
the quantum models work better than the classical ones. This can be another viewpoint
of the same thesis supported in the article[10]. In this sense, we can observe if we are
able to obtain some improvements with an efficient way of providing data to quantum
models over classical. Eventually, an additional task has been set up and it wants to
reproduce another comprehensive result: the more parameters are added in the ansatz,
i.e. more layers the circuit is composed by, the more the accuracy increases.

8



Chapter 2

Background

2.1 Elements of Machine Learning

Machine learning is a branch of Artificial Intelligence and Computer Science that fo-
cuses on the use of data and algorithms to imitate the way that humans learn, gradually
improving its accuracy. As already explained in the 1, it’s a new way of approaching
problems, from the data we can measure, back to the rules that govern the phenomena
itself. Through the use of statistical methods, algorithms are trained to make classifica-
tions or predictions and to uncover key insights in data mining projects. These insights
subsequently drive decision-making within applications and businesses, ideally impact-
ing key growth metrics. As big data continues to expand and grow, Machine Learning
techniques are increasingly in demand to reveal the links that join such data. The most
used algorithms in this field can be divided into three main groups:

Supervised learning;

Unsupervised learning;

Reinforcement learning.

2.1.1 Supervised Learning

In SL, input objects (for example, a vector of predictor variables) and a desired output
value (also known as human-labeled supervisory signal) train a model. The training data
is processed, building a function that maps new data on expected output values. An opti-
mal scenario will allow for the algorithm to correctly determine output values for unseen
instances. This requires the learning algorithm to generalize from the training data to
unseen situations in a ”reasonable” way. This statistical quality of an algorithm is mea-

9



sured through the so-called generalization error. By introducing some Mathematics in
the definition of SL, given a set of N training examples of the form {(x1, y1), ..., (xN , yN)}
such that xi is the feature vector of the i-th example and yi is its label (i.e., class), a
learning algorithm seeks a function g : X → Y , where X is the input space and Y is
the output space. The function g is an element of some space of possible functions G,
usually called the hypothesis space. It is sometimes convenient to represent g using a
scoring function f : X×Y → R such that g is defined as returning the y value that gives
the highest score: g(x) = argmaxyf(x, y). SL is a part of the Computer Vision domain,
where scientists train several ML models with train images and the corresponding labels
and test them on new images asking the model to attach them at each image the correct
label. The fraction of images classified correctly gives the accuracy of the model that
should come closer to 100% ideally.

Figure 2.1: Example of SL vs UL.

10



2.1.2 Unsupervised Learning

In Unsupervised Learning (UL) no labels are given to the learning algorithm, leaving
it on its own to find structure in its input. In some pattern recognition problems, the
training data consists of a set of input vectors x⃗ without any corresponding target values.
The goal in such UL problems may be to discover groups of similar examples within the
data, which is called clustering, or to determine how the data is distributed in the space,
known as density estimation. To put forward in simpler terms, for a n-sampled space
{x1,..., xn}, true class labels are not provided for each sample, and is the algorithm itself
to recover some logic in the data. UL is mostly used in the field of Data Mining where
users don’t know, a-priori, what classes or subgroups the data is divided into, or where
it wouldn’t be possible to annotate large datasets by hand.

2.1.3 Reinforcement learning

Reinforcement Learning (RL) is an area of Machine Learning concerned with how intelli-
gent agents ought to take actions in an environment to maximize the notion of cumulative
reward. RL differs from SL in not needing labeled input/output pairs to be presented,
and in not needing sub-optimal actions to be explicitly corrected. Instead, the focus is
on finding a balance between exploration (of uncharted territory) and exploitation (of
current knowledge).

Figure 2.2: Example of Reinforcement Learning: a mouse has to find the piece of cheese
missing in a libyrinth. Once the mouse chooses a way, a positive or negative feedback
will be sent to him in the case it has guessed the corrected path or not.

11



2.1.4 Neural Networks and Deep Learning

Neural Networks

For all vertebrate animals, the brain is the nervous system’s centre. This complex organ
is built of billions of fundamental units, referred to as neurons. The connection of
one of these building blocks to others through so-called synapses allows interactions.
Whereas the connections within smaller groups of neurons can be recorded, studying
the communication between a larger population of these units is very tough. In the
middle of the 20th century, the first computational models for neural networks were
proposed. Based on these ideas, artificial neural networks arose and could be set-up on
the available electronic computers[8] at that time. The perceptron was the first artificial
neural network with complex adaptive behaviour. Versions of this building block are
used for NN architectures still today, and referred to as artificial neurons. A neuron
takes n inputs x1, ..., xn and has a single binary output y, also called activation. Every
input has an assigned weight wi ∈ R. Additionally, the neuron is equipped with a bias
b ∈ R. The neuron’s output is computed through

y = κ(
∑
i

wixi + b) (2.1)

Figure 2.3: Comparison between a biological brain neuron and an artificial neuron.

where κ denotes an activation function. To intuitively understand the method of a
neuron, we can imagine the perceptron’s task as deciding between two choices, 0 and
1. The inputs xi can be seen as arguments with different importances wi, where an
argument with wixi < 0 is pro-choice 0 and wixi > 0 is pro-choice 1, respectively. The

12



activation function and the bias b describe a threshold. Depending on which side of the
threshold the weighted sum

∑
iwixi of the arguments is, the perceptron “decides” for

the output 0 or 1. In the context of NNs, where neurons are layered, we can say that the
activation function, as the word says, activates the neuron if the input is above a certain
threshold[8]. It’ evident that choosing the activation functions wisely is crucial for good
training results since the activation functions decide if an input of a neuron is relevant.
After the first enthusiasm about perceptrons, it got rapidly clear that these one-layer NNs
were quite limited in computational power[8]. It was discovered that stacking these early
artificial neurons in layers increases the performances. Whereas with only one layer the
learning of linearly separable classes can be performed, with multi-layer perceptrons also
non-linear classification problems can be tackled and solved. A generic Neural Network’s
architecture, constituted by multiple layers, depicted in 2.4

Figure 2.4: Multi-layers perceptron scheme.

13



The first layer of neurons, which get the initial input, are called the input layer,
the last layer of neurons is named output layer, while the layers in between are called
hidden layers. While working through a considerable amount of the layers, the original
information gets more and more abstract, and in that way, the complex data processing
is divided into a series of simple nested assignments. The simplest NN architecture
can be found in feed-forward neural networks. The neurons get the output of previous
layers as inputs, and no loops are built-in. Furthermore, such NNs are often built of
fully connected layers, i.e. where all the inputs from one layer are connected to every
neuron of the next layer. Below we present some of the most famous and used activation
functions that introduce the non-linearity within the networks.

Sigmoid =
1

1 + e−x
; (2.2)

ReLU = max(0, x); (2.3)

Leaky-ReLU = max(
1

10
x, x); (2.4)

TanH =
ex − e−x

ex + e−x
. (2.5)

14



Figure 2.5: Sigmoid, ReLU, Leaky-ReLU and the Tanh activation functions.

Neural Networks are particular architectures organized by layers, that emulate the
human brain’s way of learning. These non-linear models receive data as input and pro-
cess them, inside each neuron placed on a layer. The ”signal” at a connection is a
real number, and the output of each neuron is computed by some non-linear function
of the sum of its inputs. Such purely mathematical tools constituted a turning point
in Computer Science since they introduced the non-linearity contained within data. It
means that NNs can successfully approximate functions that do not follow linearity or
it can successfully predict the class of a function that is divided by a decision bound-
ary which is not linear (for example a logistic-regression (LoR)). Deep1 Learning (DL)
models are evolutions of NNs where more hidden layers are added inside the architec-
ture with the result of increasing the possibility of representing more complex data, as
they have many more non-linear functions to work with. DL is part of a broader family
of Machine Learning methods, which is based on NNs. DL architectures such as Deep
Neural Networks (DNNs), Deep Belief Networks (DBNs), Deep Reinforcement Learning
(DRL), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs)
and Transformers have been applied to fields including Computer Vision, Speech Recog-

1The adjective ”Deep” refers to the use of multiple layers within the network structure of the model,
building increasingly sophisticated models.

15



nition, Natural Language Processing (NLP), Bioinformatics, drug design, medical image
analysis, climate science, material inspection and board game programs, like Chess,
where they have produced extraordinary results surpassing human expert performances.
NNs were inspired by information processing and distributed communication nodes in
biological systems, where the information passes through each node and subsequently
is processed until reaches the final step, where the classification is made [8]. In the SL
setting (predicting y from the input x), models like LoR and Linear Regression (LiR)
are linear in the number of parameters θ that are guessed to obtain the best fit of the
data points. In DL those models instead are non-linear in both the parameters θ and
the inputs x. Suppose {(xi, yi)}ni=1 are the training examples. The parameters θ are the
learning weights the model should guess to make good predictions over the data. After
the first inference, it usually happens that the learnt parameters θ couldn’t be the best
possible ones that ensure no error in the classification. In fact, algorithms such as NNs
and CNNs work iteratively: the learning parameters are updated and re-calculated at
each step, or iteration, as result of a minimization of a specific cost function, i.e. loss
function. The choice of the cost (or loss) function belongs to the set of tunable hyper-
parameters that can be modified in order to look for improvements in the generalization
task. As mentioned earlier, the loss function serves as a measure to assess the error com-
puted by the model. When the loss function is defined as the mean squared error (MSE),
it takes a specific form for the i-th data point and its corresponding label, denoted as
(xi, yi). The MSE loss function is denoted by the following equation:

Ji(θ) =
1

2
(hθ(xi)− yi)

2. (2.6)

hθ represents an equation that characterizes the model and makes predictions based on
the parameters θ. This specific cost function is suitable for the LiR problem. Squaring
this difference serves two primary purposes: it penalizes larger errors more significantly,
and it ensures that all errors contribute positively to the overall loss. In summary, this
mean squared error loss function quantifies the squared difference between the model’s
prediction and the actual label for a given data point, providing a measure of how well
or poorly the model is performing, but others can be considered for more sophisticated
experiments. In fact, additional cost functions are more likely for the NNs, taking into
account the non-linearity of the model as the Cross-Entropy, the Likelihood, the Negative
Log Likelihood function, etc. The minimization of the cost functions is performed by the
so-called optimizers. They are basically used to update weights and biases, the internal
parameters of a model, to reduce the error computed by the model. We anticipate that
either in the quantum algorithms we have used to make the experiment, the optimization
is done classically. The most important technique used to make the optimization is the
Gradient Descent method. As it can be seen from the curve above, there exists a value of
parameters w which has the minimum value of the cost function, Jmin. In the Gradient
Descent algorithm, in order to find the minimum, we give the model random parameters

16



Figure 2.6: Illustrative picture of how GD works.

to compute the error for each learning iteration, updating the parameters as to move
closer to the values that minimize the cost function. After the j-th iteration the model’s
parameters are updated according to

wj = wj − α
∂J(w)

∂wj

(2.7)

where the second term of the equation calculates the slope, or gradient, of the curve at
each iteration as represented in 2.6.
The gradient arises as a result of calculating the partial derivative (∂J) of the cost
function with respect to each model parameter wj, where j varies from 1 to n. Here,
α represents the learning rate i.e. determining the speed at which we approach the
minimum. If α is excessively large, there is a risk of overshooting. On the other hand, if
it’s too small, meaning small steps of learning, the overall training will take more time.
One of the most used Gradient Descent Method is the Stochastic Gradient Descent
Method (SGD) where the optimizer updates the parameters using only a single training
instance in each iteration. The training instance is usually selected randomly. Stochastic
gradient descent is often preferred to optimize cost functions when there are hundreds
of thousands of training instances or more, as it will converge more quickly than other
gradient descent methods. In the next chapters it will be introduced the specific optimizer
that has been used during the experiments.

17



2.1.5 A common issue: over-fitting

Over-fitting is a concept in ML, which occurs when a statistical model fits exactly the
training data. When this happens, the algorithm unfortunately cannot perform accu-
rately unseen data, defeating its purpose. Generalization of a model to new data is
ultimately what allows us to use ML algorithms every day to make predictions and clas-
sify data. However, when the model trains for too long on sample data or when the
model is too complex, it can start to learn the “noise”, or irrelevant information, within
the dataset. When the model memorizes the noise and fits too closely to the training
set, the model becomes “overfitted”, and it is unable to generalize well to new data.
If a model cannot generalize well to new data, then it will not be able to perform the
classification or prediction tasks that it was intended for. Low error rates and a high
variance are good indicators of overfitting. In order to prevent this type of behavior,
part of the training dataset is typically set aside as the “test set” to check for overfitting.
If the training data has a low error rate and the test data has a high error rate, it signals
overfitting.

Figure 2.7: Illustration of under-fitting vs over-fitting.

18



2.1.6 Convolutional Neural Networks (CNN)

Besides fully connected layers, as we used in the feed-forward NNs, also convolutional
layers are used especially in image classification experiments. These layers use the con-
volution of the layer’s input, often inserted in matrix form, with another matrix, called
kernel[8]. A Convolutional Neural Network is a class of neural networks that are spe-
cialized in processing data that has a grid-like topology, such as an image. A digital
image is a binary representation of visual data and contains a series of pixels arranged
in a grid-like fashion where pixel values denote brightness and color of each pixel[3]. A
convolution is the simple application of a filter to an input that results in an activation.
Repeated application of the same filter to an input results in a map of activation called
a feature map, indicating the locations and strength of a detected feature in an input,
such as an image. The innovation of convolutional neural networks is the ability to auto-
matically learn a large number of features (i.e. feature extraction) by using numerous
filters in parallel and to reduce the aforementioned number of features layer by layer,
ending with less parameters used to make the classification. The result is highly specific
features that can be detected anywhere on input images. In order to stress the concept
behind these innovative architectures, we are going to divide the characteristic of each
element that compose the CNN.

• Convolutional layer: A convolution is a linear operation that involves the multi-
plication of a set of weights with the input, much like a traditional neural network.
Given that the technique was designed for two-dimensional input, the multiplica-
tion is performed between an array of input data and a two-dimensional array of
weights, known as kernel. The filter is smaller than the input data and the type of
multiplication applied between a filter-sized patch of the input and the filter is a dot
product. A dot product is the element-wise multiplication between the filter-sized
patch of the input and filter, which is then summed, always resulting in a single
value. Because it results in a single value, the operation is often referred to as the
“scalar product“. This systematic application of the same filter across an image
is a powerful idea. If the filter is designed to detect a specific type of feature in
the input, then the application of that filter systematically across the entire input
image allows the filter to discover a feature anywhere in the image. This capability
is commonly referred to as translation invariance. The output from the multiplica-
tion between the filter with the input array one time is a single value. As the filter
is applied multiple times to the input array, the result is a two-dimensional vector
of output values that represent a filtering of the input. Once the feature map is
created (2-D output), we can pass its value through a nonlinear function, such as
ReLU, much like we do for the outputs of a fully connected layer. The convolution
layer uses filters that perform convolution operations as it is scanning the input
image with respect to its dimensions. Its hyper-parameters include the filter size

19



F, which is the matrix that passes through the image and registers the pixel values
in that position, and the stride S that is the step with which the convolutional
layer moves pixel by pixel. The resulting output is called feature map or activation
map. The goal of the convolutional layer is to capture as many information as it
can and to send forward to the remain layers until it’s reduced in a way that only
the essential information (that are characteristic for the image) are left and are
used for the classification.

Figure 2.8: Representation of what happens in a convolutional filter. A convolution
converts all the pixels in its receptive field into a single value, according to the kernel
matrix that passes through, and collect a reduced in number pixel into the corresponding
position of a secondary matrix or vector. For example, by applying a convolution to an
image, the image size will decrease as well as bringing all the information in the field
together into a single pixel.

20



• Pooling layer: The pooling layer is a downsampling operation, typically applied
after the convolution layer. It replaces the output of the network at certain loca-
tions by deriving a summary statistic of the nearby outputs. This helps in reducing
the spatial size of the representation, which decreases the required amount of com-
putation and weights. The pooling operation is processed on every slice of the
representation individually. There are several pooling functions such as the aver-
age of the rectangular neighborhood, L2 norm of the rectangular neighborhood,
and a weighted average based on the distance from the central pixel. However, the
most popular process is max pooling, which reports the maximum output from the
neighborhood.

Figure 2.9: Pooling layers are used to reduce the dimensions of the feature maps. Thus,
it reduces the number of parameters to learn and the amount of computation performed
in the network. The pooling layer summarises the features present in a region of the
feature map generated by a convolution layer..

21



• Fully connceted layer (FC): The fully connected layer (FC) operates on a
flattened input where each input is connected to all neurons. Neurons in this
layer have full connectivity with all neurons in the preceding and succeeding layer.
The FC layer helps to map the representation between the input and the output.

Figure 2.10: A fully connected layer refers to a neural network in which each input node
is connected to each output node. The classification, in its true sense of the word, is
made at this level: the pixel value computed by the previous filters is linked to the
correspondent output label.

The CNN has multiple parameters that are calculated and optimized during the epochs in
the training phase. The number of parameters in a given layer is the count of “learning”
elements of a filter. Parameters, in general, are statistical weights that are learned
during training which contribute to model’s predictive power, and they change during
back-propagation process.

22



2.2 Elements of Quantum Computing

Quantum Mechanics has the curious distinction of being simultaneously the most suc-
cessful and the most mysterious of our scientific theories. It was developed in fits and
starts over a remarkable period from 1900 to the 1920s, maturing into its current form in
the late 1920s. Physicists had great success applying Quantum Mechanics to understand
the fundamental particles and forces of Nature, culminating in the development of the
Standard Model of Particle Physics. Over the same period, its application brought to
new discoveries about astonishing phenomena in our world, from polymers to semicon-
ductors, from superfluids to superconductors. But, while these developments profoundly
advanced our understanding of the natural world, they did only a little to improve our
understanding of Quantum Mechanics [30]. This began to change in the 1970s and 1980s,
when a few pioneers were inspired to ask whether some of the fundamental questions of
Computer Science and Information Theory could be applied to the study of quantum
systems. Instead of looking at quantum systems purely as phenomena to be explained
as they are found in nature, they looked at them as systems that can be designed[29].
Thanks also to the birth of this new technology, new questions combining Physics, Com-
puter Science, and Information theory rose up.[30] These include questions such as: what
are the fundamental physical limitations on the space and time required to construct a
quantum state? How much time and space are required for a given dynamical operation?
What makes quantum systems difficult to understand and simulate by conventional clas-
sical means?[30] These questions are not completely solved, but one thing is certain: if,
at the beginning of 20s, Quantum Mechanics and especially Quantum Computers (QCs)
were merely theoretical thoughts, today they are real and constitute one of the most
prominent research sector in which people are involved. Nowadays scientists are strongly
convinced that quantum computers will be able to overcome classical computers and
open the way to new answers that can solve today’s most tedious open questions. What
many years ago was a stylized drawing on a chalk-stained black slate is now becoming
a reality. From this point, some of the basics concepts and applications of QCs are
presented in order to gently introduce how QCs work.

23



2.2.1 Quantum bits

The bit is the fundamental concept of classical computation and classical information.
Quantum computation and quantum information are built upon an analogous concept,
the quantum bit, or qubit for short. In this section we introduce the properties of single
and multiple qubits, comparing their properties to those of classical bits. Just as a
classical bit has a state – either 0 or 1 – a qubit also has a state. Two possible states for
a qubit are the states |0⟩ and |1⟩, which correspond to the states 0 and 1 for a classical
bit. The main difference between classical bits and qubits is that a qubit can be in a
linear combination of state, often called superpositions:

|ψ⟩ = α|0⟩+ β|1⟩ (2.8)

The numbers α and β are complex and their modulus square defines the probability for
a system described by the above equation, of being in the |0⟩ or |1⟩ state. The state
of a qubit is a vector in a two-dimensional complex vector space. The special states |0⟩ ,
|1⟩ are known as computational basis states, and form an orthonormal basis for this
vector space. We can examine a bit to determine whether it is in the state 0 or 1. For
example, computers do this all the time when they retrieve the contents of their memory.
Rather remarkably, we cannot examine a qubit to determine its quantum state, that is,
the values of α and β. Instead, quantum mechanics tells us that we can only acquire
much more restricted information about the quantum state. When we measure a qubit
we get either the result 0, with probability |α|2, or the result 1, with probability |β|2.
Naturally, |α|2+ |β|2 = 1, since the probabilities must sum to one. Geometrically, we can
interpret this as the condition that the qubit’s state be normalized to length 1. Thus, in
general a qubit’s state is a unit vector in a two-dimensional complex vector space. This
dichotomy between the unobservable state of a qubit and the observations we can make
lies at the heart of quantum computation and quantum information. As we have said,
a qubit can exist in a continuum of states between |0⟩ and |1⟩ – until it is observed.
Classical bits instead are like a coin: could be only 0 or 1, head or tail. For example, a
qubit can be in the state

|ψ⟩ =
1√
2
|0⟩+ 1√

2
|1⟩, (2.9)

which, when measured, gives the result 0 50% (|1/
√
2|2) of the time, and the result 1

50% of the time.
Because |α|2 + |β|2 = 1, it’s possible to re-write as

|ψ⟩ = eiγ(cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ ) (2.10)

The numbers θ and ϕ define a point on the unit three-dimensional sphere, as shown
below. This sphere is often called the Bloch sphere. Despite this strangeness, qubits are

24



Figure 2.11: Bloch sphere representation.

decidedly real, their existence and behavior extensively validated by experiments, and
many different physical systems can be used to realize qubits. To get a concrete feel for
how a qubit can be realized it may be helpful to list some of the ways this realization
may occur: as the two different polarizations of a photon; as the alignment of a nuclear
spin in a uniform magnetic field; as two states of an electron orbiting a single atom[30].

25



2.2.2 The postulates of Quantum Mechanics

Quantum mechanics is a mathematical framework for the development of physical theo-
ries. On its own quantum mechanics does not tell you what laws a physical system must
obey, but it does provide a mathematical and conceptual framework for the development
of such laws. These postulates provide a connection between the physical world and the
mathematical formalism of Quantum Mechanics[30].

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the system.

The system is completely described by its state vector, which is a unit vector in the
system’s state space. The simplest quantum mechanical system, and the system which
we will be most concerned with, is the qubit. A qubit has a two-dimensional state space.
Suppose |0⟩ and |1⟩ form an orthonormal basis for that state space. Then an arbitrary
state vector in the state space can be written

|ψ⟩ = α|0⟩ + β|1⟩ (2.11)

where α and β are complex numbers. The condition that |ψ⟩ be a unit vector, ⟨ψ|ψ⟩ = 1,
is therefore equivalent to |α|2 + |β|2 = 1.

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ⟩ of the system at time t1 is related to the state |ψ′⟩
of the system at time t2 by a unitary operator U which depends only on t1 and t2.

Just as Quantum Mechanics does not tell us the state space or quantum state of a
particular quantum system, it does not tell us which unitary operators U describe real
world quantum dynamics. Quantum Mechanics merely assures us that the evolution
of any closed quantum system may be described in such a way. The second postulate
requires that the system being described be closed. That is, it is not interacting in any
way with other systems. In reality, of course, all systems (except the Universe as a
whole) interact at least somewhat with other systems. Nevertheless, there are interest-
ing systems which can be described to a good approximation as being closed, and which
are described by unitary evolution to some good approximation. Furthermore, at least
in principle every open system can be described as part of a larger closed system (the
Universe) which is undergoing unitary evolution. Postulate 2 describes how the quantum
states of a closed quantum system at two different times are related[30]. A more refined
version of this postulate can be given which describes the evolution of a quantum system
in continuous time. Indeed, the final version of the second postulate can be rearranged
as follow: he time evolution of the state of a closed quantum system is described by the

26



Schrodinger equation,

−iℏ d
dt
|ψ⟩ = H|ψ⟩ (2.12)

where H is the Hamiltonian of the system and ℏ is the Planck’s constant[30].

Postulate 3: Quantum measurements are described by a collection Mm of measure-
ment operators.

These are operators acting on the state space of the system being measured. The index
m refers to the measurement outcomes that may occur in the experiment. If the state
of the quantum system is |ψ⟩ immediately before the measurement, then the probability
that result m occurs is given by

p(m) = ⟨ψ|M †
mMm|ψ⟩, (2.13)

and the state after the measurement will be

Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩
. (2.14)

The measurement operators satisfy the completeness equation∑
m

M †
mMm = I. (2.15)

The completeness relation expresses the fact that probabilities sum to one. For ex-
ample, after a measurement in the computational basis, defined by the two operators
M0 = |0⟩⟨0|,M1 = |1⟩⟨1|, a generic state of the form |ψ⟩ = α|0⟩ + β|1⟩ will give the
outcome 0 with a probability

p(0) = ⟨ψ|M †
0M0|ψ⟩ = ⟨ψ|M0|ψ⟩ = |α|2 (2.16)

and will be projected onto the state

M0|ψ⟩
|α|

=
α

|α|
|0⟩. (2.17)

Postulate 4: The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Moreover, if we have systems numbered
1 through n, and system number i is prepared in the state |ψ⟩, then the joint state of
the total system is |ψ1⟩

⊗
|ψ2⟩

⊗
...|ψn⟩

27



Regarding what has been said before, if we suppose to have a quantum system with
state space Q, and we want to perform a measurement described by measurement oper-
ators Mm∗ on the system Q, we introduce an ancilla system, with state space M, having
an orthonormal basis |m⟩ in one-to-one correspondence with the possible outcomes of
the measurement we wish to implement. This ancilla system can be interpreted physi-
cally as an extra quantum system introduced into the problem, which we assume has a
state space with the required properties. Letting |0⟩ be any fixed state of M, define an
operator U on products |ψ⟩|0⟩ of states |ψ⟩ from Q with the state |0⟩ by

U |ψ⟩|0⟩ =
∑
m

Mm|ψ⟩|m⟩. (2.18)

We can delve further into the fundamentals of Quantum Mechanics, introducing addi-
tional key concepts and expanding on what has already been discussed, but that is not
the primary goal of the project. It was designed with the intent of providing readers
with foundational knowledge to initiate their understanding and prepare them for what
comes next.

28



2.2.3 Quantum computation

Quantum gates

Changes occurring to a quantum state can be described using the language of quantum
computation. Analogous to the way a classical computer is built from an electrical
circuit containing wires and logic gates, a quantum computer is built from a quantum
circuit containing wires and elementary quantum gates to carry around and manipulate
the quantum information. Classical computer circuits consist of wires and logic gates.
The wires are used to carry information around the circuit, while the logic gates perform
manipulations of the information, converting it from one form to another. For a Quantum
Computer the same story can be applied thanks to the linearity of Quantum Mechanics,
in fact the only non-trivial member of logic gates class is the NOT gate, whose operation
is defined by its truth table, in which 0 → 1 and 1 → 0, that is, the 0 and 1 states
are interchanged. For Quantum Mechanics is possible to have a quantum NOT gate
in which a process takes the state |0⟩ to the state |1⟩ , and vice versa. However,
specifying the action of the gate on the states |0⟩ and |1⟩ does not tell us what happens
to superpositions of those states, without further knowledge about the properties of
quantum gates. By the linearity, the quantum version of NOT gate takes the state

α|0⟩ + β|1⟩ (2.19)

to the corresponding state in which the states have been interchanged

α|1⟩ + β|0⟩ (2.20)

There is a convenient way of representing the NOT quantum gate in matrix form, which
follows directly from the linearity of quantum gates:

X =

(
0 1
1 0

)
. (2.21)

Without going into the very basics of Quantum Computing, it has been preferred to
present some other single-qubit gates just to give a quick overview of the structures that
have been used in the experiment. Other two important quantum gates are:

Y gate whose matrix has the form

Y =

(
0 −i
i 0

)
; (2.22)

Z gate:

Z =

(
1 0
0 −1

)
. (2.23)

29



The next quantum gate is the Hadamard gate, responsible for the creation of a super-
position of states for qubits in the |0⟩ or |1⟩ states and has the form

H =
1√
2

(
1 1
1 1

)
. (2.24)

The resulting states from the application of the Hadamard are in the X basis denoted
by the vectors |+⟩ (if the starting qubit is in the state |0⟩) and |−⟩ (if the starting qubit
is in the state |1⟩).

Parameterized gates

There are other kinds of quantum gates that are functions of some unspecified parameters
(angles) which are estimated by a variational approach. These unitary gates rotate the
quantum state along a specific axis such asX, Y, or Z according to θ. They can be defined
as exponential matrices with the corresponding Pauli matrix passed as an argument:

RX(θ) = e
−i
θ

2
X
=

 cos
θ

2
−i sin θ

2

−i sin θ
2

cos
θ

2

 (2.25)

RY (θ) = e
−i
θ

2
Y
=

cos
θ

2
sin

θ

2

sin
θ

2
cos

θ

2

 (2.26)

RZ(θ) = e
−i
θ

2
Z
=

e−i
θ

2 0

0 e
i
θ

2

 . (2.27)

Together with the Hadamard, a multiple qubits-quantum gate, known as CNOT gate,
generates entanglement between quantum states, and for the moment where is applied,
the states will be connected in such a way that who is going to measure one of the qubit
will influence the outcome of the second qubit, owned by another person. This gate has
two inputs, known as the control and the target qubit, respectively and has the form

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.28)

30



Figure 2.12: Example of the controlled gate.

The action of this particular quantum gate works as follow: if the control qubit is set
to 0, then the target qubit is left alone. If the control qubit is set to 1, then the target
qubit is flipped.
Another way of describing the CNOT is as a generalization of the classical gate, since
the action of the gate may be summarized as |A,B⟩ → |A,A

⊕
B⟩ , where

⊕
is ad-

dition modulo two, which is exactly what the gate does. That is, the control qubit and
the target qubit are XORed and stored in the target qubit. As for the single qubit case,
the requirement that the probability be conserved is expressed in the fact that UCNOT is
a unitary matrix, that is, U †

CNOTUCNOT = I.
We noticed that the CNOT can be regarded as a type of generalized gate. Can other
classical gates be understood as unitary gates in a sense similar to the way those gates
represent classical gates? It turns out that this is not possible. The reason is because the
and gates are essentially irreversible or non-invertible. For example, given the output
A
⊕

B from XOR gate, it is not possible to determine what the inputs A and B were;
there is an irretrievable loss of information associated with the irreversible action of the
gate. On the other hand, unitary quantum gates are always invertible, since the inverse
of a unitary matrix is also a unitary matrix, and thus a quantum gate can always be
inverted by another quantum gate. However, in a sense the controlled-NOT and single
qubit gates are the prototypes for all other gates because of the following remarkable
universality result: any multiple qubit logic gate may be composed from CNOT and
single qubit gates.
To conclude the current session, it is worth saying that any kind of rotation we en-
countered before can be realized as a control gate: in fact, one of the next architecture
used as ansatz for learning the parameters necessary to detect the images, makes use of
controlled rotations that act on a specific qubit if and only if the corresponding state
is equal to |1⟩, otherwise they are not applied. To explicitly demonstrate the effect of
combining Hadamard and CNOT gate to realize entanglement, it’s presented a quick

31



application that should illustrate what happens on a quantum state below.
Suppose to start with a two-qubit quantum state |00⟩ and apply an Hadamard gate on
the first qubit, followed by a CNOT where the controlled qubit is again the first one:
the application of the Hadamard results into

|00⟩ H1−→ (|0⟩+ |1⟩)√
2

|0⟩ = (|00⟩+ |10⟩)√
2

(2.29)

This will then act as a control input to the CNOT gate, which only inverts the target
(the second qubit) when the control (the first qubit) is 1. Thus, the controlled NOT
gate transforms the second qubit as follows

(|0⟩+ |1⟩)√
2

|0⟩
CNOT(1,2)−−−−−−→ (|00⟩+ |11⟩)√

2
= |ϕ+⟩. (2.30)

The last state is known as Bell’s state, one of the maximal entangled two-qubit state.

2.2.4 Quantum Machine Learning

The structures of the neural networks proposed in the Quantum Machine Learning
(QML) field are basically of two kinds: the Standard QNN and the QCNN. Before
going deep into the main characteristics of each quantum model, is necessary to say that
quantum neural networks act as a quantum analog to the classic NNs. Since all quantum
gates are unitary and hence linear, the main difficulty of building a QNN is introducing
the non-linearity that is rather present in the activation functions used by such devices.
We solve this problem by encoding the input vector to a quantum state non-linearly with
a parameterized quantum circuit: the feature map. The advantage of introducing QNN
layers is that we can access vectors of exponential dimensional Hilbert spaces with only
polynomial resources on a quantum computer[44].

QNN

QNN, or quantum neural networks, are particular architectures in which, the above-
mentioned artificial neurons present in the classical models, are replaced by the elements
of Quantum Computing: quantum bits organized in quantum circuits. In this case,
qubits are used as the fundamental carriers of information (represented by the image
feature), as the bits were so in the classical counterparts, while quantum gates are used
to learn the transferred information until each qubit is measured and the result (in form
of probabilities) used to perform the prediction. A general QNN is usually composed of
two kinds of quantum circuits, one responsible for the encoding of classical features into
quantum states (as we are going to explain) and a variational quantum circuit where each

32



gate learns the parameter that represents the encoded classical data. The word ”vari-
ational” means that the parameter, calculated at the first iteration, will be calculated
again in the successive iteration by minimizing the value of an error/cost function. The
choice of embedding is usually geared toward enhancing the performance of the quantum
model and is typically neither optimized nor trained[2]. Once data is encoded, as we al-
ready said above, the variational model containing parameterized gates is applied and
optimized for a particular task. QNNs can be implemented on today’s quantum com-
puters as variational quantum algorithms (VQA). Their process is a quantum-classical
hybrid: the algorithms themselves are executed on a quantum computer, but the op-
timization process is done classically[8]. Further, a quantum algorithm computes the
training loss function. During the training, the parameters are updated classically such
that the training loss is optimized since this task can be efficiently fulfilled in this way.
A substantial benefit of VQAs is that they can be successfully executed on NISQ de-
vices. These devices are highly impaired through noise entering with each quantum gate.
This limits the number of quantum gates within one quantum circuit before the noise
outweighs the algorithm’s performance.

QCNN

The next architecture known as QCNN, or quantum convolutional neural network, is
motivated by the classical CNN we have told previously and introduces a quantum circuit
model extending the classical key properties to the quantum domain[12]. It utilizes tree-
like (or hierarchical) structures with which the number of qubits from a preceding layer
is reduced by a factor of two for the subsequent layer. Such architectures consist of
O(log(n)) layers for n input qubits, thereby permitting shallow circuit depth[17]. The
progressive reduction of the number of qubits is analogous to the pooling operation in
the CNN. A distinct feature of the QCNN architecture is the translational invariance,
which forces the blocks of parameterized quantum gates to be identical within a layer[17].
In the QCNN architecture, the unitary Ui consists of two-qubit quantum circuit blocks,
and the convolution and pooling part each uses identical quantum circuit blocks within
the given layer. Since a two-qubit gate requires 15 parameters at most[42], in the ith
layer consisting of li > 0 independent convolutional filter and one pooling operation the
maximum number of parameters subject to optimization is 15(li + 1). Then the total

number of parameters is at most 15
∑log2(n)

i=1 (li + 1) if the convolution i=1 and pooling
operations are iterated until only one qubit remains[17]. The model of QCNN applies
the convolution layer and the pooling layer, which are the main features of CNN, to
quantum systems. The concept can be summarized as follows:

• The convolution circuit finds the hidden state by applying multiple qubit gates
between adjacent qubits;

33



• The pooling circuit reduces the size of the quantum system by observing the frac-
tion of qubits or applying 2-qubit gates such as CNOT gates;

• Repeat the convolution circuit and pooling circuit;

• When the size of the system is sufficiently small, the fully connected circuit predicts
the classification result.

Figure 2.13: Iris Cong QCNN scheme[12].

Note that some of the QNNs and QCNNs are designed for pure quantum tasks, whereas
others can be exploited for classical inputs as has been done in the current project. In
the latter case interestingly, the classical data has to be encoded first, i.e. turned into
quantum states. Such encoding, or embedding process that has been come out refers
to the fact that is necessary, as Quantum Mechanics requires, to convert the classical
information to a quantum state, moving from a classical vector-space to the larger Hilbert
space where they can be analyzed via quantum algorithms.

Quantum scheme for Neural Networks

The initial point of doing Machine Learning by exploiting the advantage of Quantum
Mechanics is the transformation of the classical data into quantum states. At this stage,
it’s convenient to provide a summary of the main processing steps involved in the QML:

34



• State preparation / Encoding: The state preparation, or encoding / embed-
ding, can be considered the essential part that characterizes quantum models. As
has been already anticipated, this is the phase in which classical data, which can
represent a gray-scale or an RGB image, or any other kind of data for example,
are converted into quantum states. A quantum circuit known as feature map is the
circuit that makes this task. It’s composed of a different type of quantum gates:
the parameterized quantum gates. Such gates are unitary matrices that depend on
a specific parameter, like the angle that the quantum state spans with the vertical
Z axis of the Bloch sphere, or a time or a frequency for a specific wave packet
that represents a qubit that can excite a well-known Hamiltonian (mostly used in
Neutral Atoms architectures), that needs to be guessed and updated to perform
an accurate prediction. This parameter can vary along the whole domain where is
defined and, for this reason, is called a variational parameter. Roughly speaking,
the feature map assigns to a classical data point its quantum state representation
to find a representation of the data such that the known metric of the Hilbert space
faithfully reproduces the unknown metric of the original data. More formally, let
χ be a set of input data. A feature map ϕ is a function that acts as

ϕ : χ→ F (2.31)

where F is the feature space. The outputs of the map on the individual data points.
The feature map transforms an input vector x into

ϕ : Uϕ(x) → |ϕ(x)⟩. (2.32)

There are three main methods for embedding classical data into quantum states:

– Basis embedding: In basis embedding, the data has to be in the form of a
binary string to get embedded. The idea behind basis embedding is using a
computational basis. Approximating a scalar value to its binary form and then
transforming it to a quantum state. The first step is to approximate a number
by a binary bit string and the second step is encoding it by a computational
basis state

|D⟩ = 1√
M

M∑
m=1

|x(m)⟩. (2.33)

Generally, basis embedding is not used at all since is uncomfortable to repre-
sent data as bit strings of the computational basis.

– Angle embedding: Angle encoding is a simple and efficient method for
embedding data, it is one of the most basic forms of encoding that transforms
classical data into a quantum state, but it is not robust, in the sense that,

35



when multiple features are encoded by the mentioned scheme, the application
of many unitary gates could be hard to simulate and could produce errors.
The angle embedding is performed by applying rotations on the x-axis or
y-axis using quantum gates along with the values that have to be encoded.
If we want to apply angle embedding on a dataset the number of rotations
will be the same as the number of features in the dataset the n-dimensional
sample would take a number n of qubits to generate the set of quantum
states. The advantage of using angle embedding is that, for each qubit is
possible to encode different features by applying as numerous quantum gates
as the number of used qubits, parallelizing the embedding to minimize the
circuit depth. On the contrary, to encode multiple features like 784 (28,28
Mnist images) we need a large number of qubits that ordinary computers are
not able to simulate and we fall into the vicious circle in which we need to
ask whether it is worth making use of supercomputers to gain maybe slightly
better results.

– Amplitude embedding : The amplitude embedding is also known as wave
function embedding. In simple terms, the amplitude is the height of a wave.
In this kind of embedding the data points are transformed into amplitudes of
the quantum state. Let’s consider a dataset α = α1, ..., αn having n number
of dimensions, the dataset is initially normalized to length 1. The number of
amplitudes to be encoded is the product of the number of dimensions and the
number of samples. The encoding is less dense as compared to the basis or
angle encoding. It requires a log2(nfeatures) number of qubits to encode such
several features.

Uϕ(x) : x ∈ RN → |ϕ(x)⟩ = 1

||x||

N∑
i=1

xi|i⟩ (2.34)

Clearly, with amplitude encoding, a quantum computer can represent expo-
nentially large classical data. This can be of great advantage in QNN al-
gorithms. Since the number of parameters subject to optimization scales as
O(log(n)), the amplitude encoding reduces the number of parameters doubly
exponentially with the size (i.e. dimension) of the classical data. However, the
quantum circuit depth for amplitude encoding usually grows as O(poly(N))
and it can be responsible for slowness and error occurrence.

• Variational ansatz: The variational ansatz is the quantum circuit responsible for
learning the quantum parameters, such as angles, that characterize the quantum
states representative of the classical data point that composes the dataset. The
angles in this case, as for the classical models, are learned thanks to the param-
eterized quantum gates following a minimization of a suitable loss function such

36



as the Cross-entropy, Mean Squared Error, etc. Once the parameters are learned
(after the measurement) in the first epoch, the loss function is evaluated and the
parameters are stored and used to compute the prediction. In the next epoch, the
optimizer re-calculates and updates the parameters to reach a minimum value in
the loss-landscape function already evaluated in the previous epoch. The entire
process proceeds according to the number of epochs that are set in the algorithm,
or it stops where the cost function is no longer able to decrease. During each iter-
ation, together with the value of the loss, the corresponding value of the accuracy
(number of correct predictions over the total number of predictions) is printed to
check if the model is learning from data. If everything works properly, the accuracy
of the training should increase. At the end of the process, the model is tested on
a new set of data it has not seen during the training, and the correct number of
predictions it makes is an indicator of how good it is at classifying new data. Here
the entanglement is exploited to catch information faster, with fewer iterations and
making use of few qubits.

37



Figure 2.14: Representation of a quantum neural network composed by the feature
map circuit, the parameterized circuit (variational ansatz), the measurement operation,
and the classical optimization part. As it can be seen, the parameters inside the two
parameterized quantum circuits (feature map and variational ansatz) are different, i.e.
x and θ. This difference reflects the fact already explained in the upper chapter. The
feature map expects the features as input parameters that represent the corresponding
angle spanned by the quantum state correspondent of specific data. The ansatz, on the
contrary, expects the learning parameters that are angles too, but are essentially the
weights that it needs to learn to predict the data itself. The measurement is applied to
all the qubits giving the parameters for the specific quantum state composed of those
qubits. In the end, the optimization is performed according to gradient descent through
the loss function.

• Measurement: The measurement can be considered the last part in which a
Quantum Machine Learning model differs from a classical one. The fundamental
concept behind measuring a specific qubit is that, following the ”data acquisition”
process, where parameterized quantum gates manipulate the vector representing a
classical data point within the Hilbert space, the wave function of the state is a
superposition composed of individual wave functions created for each qubit. When
the measurement is performed, the wave function would collapse onto the most
probable quantum state (represented by a sequence of 0s and 1s). The result of
a measurement operation is a collection of probabilities associated with the set of
quantum states originated by the quantum circuit. These last probabilities are
connected to the parameters that characterize each input data, thus they will be
used to understand which class the measurement’s output will belong to. Moreover,
the importance of the measurement resides in the possibility of evaluating the

38



cost function. The value of each single angle parameter comes out thanks to the
measurement, and will be directly re-calculated by the optimizer according to a
loss function minimization. Generally, the measurement is performed on each qubit
at the end of the ansatz, but for architectures such as QCNN, the measurement
operation is applied on the last single qubit at the end of the last layer of the
model, since the majority of the unitary gates (containing other learning weights)
is applied to it. To leave the reader with clarity, we summarize the mathematical
description of the model’s parts, emphasizing the measure. Initially, the feature
map F maps a real-valued classical data point x into a d-qubit quantum state |ψ⟩

|ψ⟩ = F (x)|0⟩⊗d (2.35)

Next, an ansatz A manipulates the prepared quantum state through a series of
entanglements and rotation gates. The angles of the ansatz’s rotations are param-
eterized by a vector θ

|ϕ(x, θ)⟩ = A(θ)|ψ(x)⟩ (2.36)

Finally, an observable O is measured, and the eigenvalue corresponding to the re-
sultant quantum state is recorded. In most ML applications, a variational quantum
circuit is run many times using a particular input x and parameter vector θ so that
the circuit’s expectation value, denoted by f , can be approximated.

f(x, θ) = ⟨ϕ(x, θ)|Ô|ϕ(x, θ)⟩. (2.37)

When a variational quantum circuit is used for machine learning, this approximated
expectation value is typically treated as the output of the model.

39



Barren plateaus

Barren plateaus are introduced in the Quantum Computing field for the first time in [27].
In classical optimization, it is suggested that saddle points, not local minima, provide
a fundamental impediment to rapid high-dimensional non-convex optimization. The
ongoing development of Noisy Intermediate-Scale Quantum (NISQ) computers has led
to considerable excitement about the potential quantum advantage that can be obtained
in several optimization problems that are used in almost all fields of science today as
discussed in 1. Various hybrid quantum-classical algorithms give the opportunity to
utilize NISQ computers and variational quantum algorithms (VQAs), in this sense, offer a
potential way of leveraging quantum computers alongside classical computers in a hybrid
fashion[22]. When it comes to deployment of VQAs on NISQ devices, the limitations
of existing quantum computers (i.e., noisy gates and limited circuit depth) restrict the
overall potential of these algorithms. Moreover, VQAs themselves are not without issues.
The parameters of a Variational quantum classifier (VQC) are initialized from a random
distribution. Over the course of training, the output of the VQC is measured with
respect to the observable Ô and the gradients of every unitary gate are estimated. The
set of parameters at a given time step and the gradients of the unitary gates are then
passed to a classical computer which updates these parameters according to a gradient
descent rule by an optimizer. Ideally, for an optimization problem, the set θ∗ should
correspond to the best set of parameters that minimizes the cost function. However,
it has been observed that when the VQC is complex either in number of qubits used
to represent the input or the number of layers of unitaries, the optimization halts at a
sub-optimal set of parameters that do not correspond to a minima in the optimization
surface. This situation occurs when the circuit gets stuck on a plateau from where
there are no good descent directions and is commonly referred to as being stuck in a
“barren-plateau”[22].

40



Chapter 3

Related works

In this Chapter, we want to discuss the State of the art of the described models, starting
from ML models like Support Vector Machines (SVM) to reach the more sophisticated
and complex DL models, i.e. the classical CNN and, finally, the novel QNNs. We would
like to clarify that we documented multiple articles and papers about the topic, but these
four cited projects constitute the heart of our background from which the simulations
took inspiration.

State of the art

In the field of ML, there are plenty of models dedicated to image recognition and clas-
sification. One of the most simple algorithm is the Decision Tree. Decision tree-based
algorithms are an important part of the classification methodology. Their main advan-
tage is that there is no assumption about data distribution, and they are usually very
fast to compute. In image classification, the decision trees are mostly reliable and easy
to interpret, as their structure consists of a tree with leaves which represent class labels,
and branches that use logical conjunction to produce a value based on an ”if-then” rule.
These values produce a set of rules that can be used to interpret the instances in a given
class[18]. The Random Forest (RF) algorithm are built upon the concept of decision tree
learning. The RF relies on many self-learning decision trees which in their sum make up
a “Forest”. The idea behind using many decision trees (i.e. an ensemble) is that many
base learners can come to one strong and robust decision compared to a single Decision
Tree. The RF uses self-learning decision trees and involves automatically defining rules
at each node based on a training dataset for which feature inputs and labels are known.
One way to define the optimal split given a set of input features and training points,
would be trying to minimize the heterogeneity (i.e. class-mixtures) of the two resulting
subsets of data. Models such as DTs and RFs are considerably improved over time, until
a new class of algorithms has been brought to light: SVM. Support vector machines
(SVM) are supervised learning models with associated learning algorithms that analyze

41



data for classification and regression analysis. In the case of SVM, a data point is viewed
as a p-dimensional vector, and we want to know whether we can separate such points
with a (p-1)-dimensional hyperplane. This is called a linear classifier. There are many
hyperplanes that might classify the data. One reasonable choice as the best hyperplane
is the one that represents the largest separation, or margin, between the two classes.
So we choose the hyperplane so that the distance from it to the nearest data point on
each side is maximized. If such a hyperplane exists, it is known as the maximum-margin
hyperplane and the linear classifier it defines is known as a maximum-margin classifier.
Even though SVM are still used today, they are limited by their linearity and cannot
solve completely more complex problems that uses images with large number of features.
In this context people veered towards a new approach: Deep Learning. As already ex-
plained in the Introduction 1, the principal model in DL is the CNN. Convolutional
Neural Networks have been implemented to solve various visual problems[28]. At the
beginning, these kinds of models were used on specific toy and simple datasets such as
Mnist, Cifar, BreastCancer..., that usually are provided by the well-known ML
tools as Tensorflow, Scikit-Learn and PyTorch. On the contrary, nowadays people use
the most sophisticated versions on real images representing medical plates, urban areas
(as ESA has done in [37]), fractures of objects, benign or malignant tumors etc... From
the end of the 20th century, several CNN models have been realized and tested in order to
obtain high results in the generalization problem. The main models for capacity, ability
and success available right now are LeNet, AlexNet, VGG and ResNet. LeNet-5 archi-
tecture is perhaps the most widely known CNN architecture. It was created by Yann
LeCun[24] in 1998 and widely used for written digits recognition (MNIST). Starting
with a grayscale tensor image of shape (32×32x1), the goal of LeNet-5 was to recognize
handwritten digits. In the first step, LeNet-5 uses a set of six 5×5 filters with a stride of
one. Because authors in [24] used six filters, it ends up with a shape of (28x28x6) and
with a stride of one and no padding. Then the Le-Net neural network applies pooling to
reduce again the size of the data. The application of convolutional and average pooling
filters proceeds until the dimension of the image would be reduced to (5x5x16) which
gives a total of 400 parameters. In the end, it has 2 fully connected layers where the
first one fully connects each of these 400 nodes with every one of 120 neurons. Then, the
same with the last fully connected layer that fully connects each of these 120 nodes with
every one of 84 nodes. Finally, we have the output layer, where a softmax activation
function is used for predictions. The AlexNet CNN architecture was developed by Alex
Krizhevsky[21], Ilya Sutskever, and Geoffrey E. Hinton. It is quite similar to LeNet-5,
only much larger and deeper, and it was the first to stack convolutional layers directly
on top of each other, instead of stacking a pooling layer on top of each convolutional
layer. As seen in the AlexNet architecture, CNNs were starting to get deeper and deeper.
The most straightforward way of improving the performance of deep neural networks is
by increasing their depth known as the number of layers between the input data and a
final dense layer used for the classification. Visual Geometry Group (VGG) invented the

42



VGG-16, which has 13 convolutional and 3 fully-connected layers, carrying with them
the Relu activation function from AlexNet. The last principal architecture that has
gained lot of popularity is the Residual Network (ResNet), developed by Kaiming He et
al., which uses an extremely deep CNN composed of 152 layers. The key to being able
to train such a deep network is the skip connections: The signal feeding into a layer is
also added to the output of a layer located a bit higher up the stack.
Motivated by the success of classical DL as well as advances in quantum computing,
quantum neural networks, which share similarities with classical neural networks and
contain variational parameters, have drawn a wide range of attention. There are multi-
ple reasons to develop the quantum version of neural networks, first, quantum computers
hold the potential to outperform classical computers from several aspects: some quan-
tum Fourier transform based algorithms, such as Shor’s factoring algorithm, can achieve
exponential speedups compared with the best known classical methods; in addition,
the possibility of approaching the so called NP-Hard problems (computational problems
whose complexity increases as more inputs are added to the system) and to obtain a
solution in a reasonable time constitutes an enticing service we could investigate. Lastly,
one of the most open problem where lots of work is developing, focuses on ML. The
ability of ML models, as we have anticipated before, lies in its ability to fit a variety of
functions[2]. Deep NNs have proven to be extremely powerful models, capable of cap-
turing intricate relationships by learning from data while QNNs serve as a newer class
of ML models that are deployed on quantum computers and use quantum effects such
as superposition, entanglement, and interference, to do computation. Some proposals
for QNNs hint at potential advantages, such as speed-ups in training, faster processing
thanks to wider Hilbert space where do computations. These fascinating results stimu-
late the exploration of potential advantages using QNN models, especially in the current
age of big data. The early QNNs developed in the past shared the same structures as
illustrated in 2.2.4. They combine an encoding quantum circuit that represents classical
data as quantum states, a trainable quantum circuit, known as ansatz, that learns the
parameters to update as to minimize a cost function, a classical optimization process
where these parameters are re-calculated and the measurement operation necessary to
evaluate the cost function and ultimately to perform the prediction.
The QNN models we are going to present are built from multiple quantum circuits that
are combined together. The adopted scheme follows the Data re-uploading technique
described in [31] in which encoding quantum gates are grouped together and followed
by the variational gates to ensure the learning. The article is probably one of the most
important, in which authors have proved that a single qubit provides sufficient com-
putational capabilities to construct a universal quantum classifier when assisted with a
classical subroutine[31]. Although it may seem counter-intuitive that a single qubit can
be universal since it only offers a simple superposition of two states, but combining it
with multiple re-uploads of data can in principle circumvent this limitation. A quantum
circuit can then be organized as a series of data re-uploading and single-qubit processing

43



units.[31]. The cited paper constitutes a milestone in the sector and is considered the
starting point for any research in QML, it gives a suggestion of a new encoding strategy
that we have used for our project, combining groups of unitaries that encode the fea-
tures with quantum gates that learn to classify them, leading to use a shallower circuit
composed by only one qubit, or few ones, that can significantly have a good impact on
the necessary resources used to simulate the process.
A more suited article to approach to image classification with quantum models is [37]
realized by European Space Agency (ESA). The article aims to investigate how hybrid
quantum convolutional neural networks (h-QCNNs) can be successfully employed as
image classifiers in the context of remote sensing[37]. The research conducted by ESA in
fact focuses on Earth observations (EO), where pictures of vast areas of our Planet are
scanned by a satellite, sent to data centers, and then analyzed with a ML model to reveal
peculiar characteristics of it. The question formulated by the ESA refers to the possi-
bility of introducing a quantum layer within the classical convolutional structure of the
neural network to obtain improvements in the classification to the speed of learning. This
study underlines the potentialities of applying quantum computing to an EO case study
and provides the theoretical and experimental background for future investigations[37].
The work is divided into two parts: one in which three different quantum circuits are
tested on a 10 class remote-sensing image dataset, EuroSAT, where an increasing clas-
sification accuracy is obtained by including a more complex level of entanglement within
the circuit, and a second part where three difficult subsets for images of visually similar
classes are created and then have been used to train three hybrid QCNNs, to classify
finer and detailed images, namely fine-grain classifiers[37]. In this way, the four-qubit
and the entanglement have been applied within the selected macro-classes and their in-
herent complexity used to encode details finer than in the overall setup[37].
To conclude, it’s interesting to notice that the importance of this article resides in the
results: the multi-class classification has demonstrated that the QCNNs performances
are higher than the classical counterparts and it’s reasonable to proceeding in the inves-
tigation of such quantum models in the future.
The [17] article describes the performances of a QCNN for hand-written digits and
fashion items image recognition. Two models, a QCNN and a CNN, are realized and
compared as to obtain which performs better on purely classical data. Different strategies
of quantum embedding are used and some dimensionality reduction techniques (such as
PCA and auto-encoder) are applied to reduce the dimensions of the data itself in order to
use a small number of qubits to perform the simulation. The challenge lies in accurately
assessing the quantum model’s performance relative to the classical one, as the impact
of reduction techniques on the models’ behaviors cannot be easily unpacked. In other
words, we’ve asked ourselves if the good accuracy obtained during the process is a direct
consequence of the power of Quantum Computing, or have been, in a certain way, dis-
guised as the classical data pre-processing techniques. The PCA, is a method to reduce
the dimensions of large data sets, by transforming a large set of variables into a smaller

44



one that still contains most of the information in the large set. Reducing the number
of variables of a data set naturally comes at the expense of accuracy, but the trick in
dimensionality reduction is to trade a little accuracy for simplicity. Because smaller data
sets are easier to explore and visualize and make analyzing data points much easier and
faster for ML algorithms without extraneous variables to process. Even if in many cases
the use of PCA is recommended and can considerably improve the performance of the
model, in the Computer Vision domain can be sometimes dangerous since can discard
important features that ensure the spatial components of the image.
An additional used technique with the same goal is the auto-encoder: a type of artificial
neural network (ANN) used to learn efficient coding of unlabeled data. It compresses
the input into a lower-dimensional code and then reconstructs the output from this rep-
resentation. In this way is it possible to reduce the dimension of the data by creating
more easy ones. Indeed, we decided to be as fair as possible during the experiment,
without contaminating the QNN’s abilities with classical data pre-processing. The only
reduction that has been introduced is a simple feature-downsampling process. In this
way, the pixels of the images used for training have been reduced in number as to use
less qubits and a shallower circuit in the number of gates. In the following chapter all the
schemes and the pre-processing of the data are explained in detail. The last quantum
scheme we would talk about is presented in the article written by I. Cong[12]. It consists
of a QCNN model, where quantum convolutional and pooling layers formed by unitary
operators are respectively interchanged. The substantial difference between pooling lay-
ers belonged to the CNNs and QNNs is that the latter should contain a measurement
operation, or a controlled operation on the next qubit, with which the number of qubits,
used in the successive layer, is reduced. The result of the single-qubit measurement
produces a state (|0⟩ or |1⟩) whose value determine or not an operation (as a rotation)
on a successive target qubit. The benefits of the QCNN are, aside from an exponential
speedup, a better feature extraction: quantum convolutional layers are able to capture
the essence of information from the data in a better manner as compared to classical
CNN due to the presence of entanglement and have the potential to transcend classical
CNN that is only able to capture local correlations[17]. Thus, another advantage of
QCNN models for NISQ computing is their intrinsically shallow circuit depth realized
by reducing the number of qubits by a factor of 2 at each pooling layer.

45



Generalization from few training data

There exist numerous methods and experiments to assess the power of QNN models
with respect to classical ML algorithms. Our main goal is to formulate an answer to
this question by investigating the number of training data points required for a good
generalization. A this purpose, the recent [10] article published in 2022 on Nature, in
which the authors investigate the performances of quantum architectures in generalizing
unseen data and have tried to study, under a mathematical perspective, the behaviour
of the generalization error1, was a guide for us.
The ultimate goal of ML is to make accurate predictions on unseen data and this is known
as generalization. Roughly speaking, when a model is able to generalize well on a certain
dataset it means that, once it has learnt the pattern of the training set, it has managed to
predict a significantly high number of unseen images during the test process. Moreover,
the generalization error is a way of detecting the model’s ability of a correct classification
of data. Problems such as over-fitting already discussed in 2.7 can be detected by evalu-
ating the generalization error’s trend. In fact, training a model with a dataset composed
by a large set of items should reduce the error computed during the test, since the model
sees a large set of images and learns how to appropriately classify them. Unfortunately,
there might be some cases where the model recognizes a large quantity of data belonging
to the train set, but can be no longer able to recognize images contained in the test set:
the over-fitting has occurred. Significant effort has been expended to understand the
generalization capabilities of classical Machine Learning models, for example, theoretical
results have been formulated and constitute upper bounds on the generalization error as
a function of the training data size and the model complexity[10]. Such bounds provide
guidance about how much training data is required and/or sufficient to achieve accurate
generalization. Moving into the QML field, little is known about the conditions needed
for accurate generalization and there is no theoretical explanation yet.
Naively, one could expect that an exponential number of training points are needed when
training a function acting on an exponentially large Hilbert space, but this is a concern-
ing hypothesis, since it would imply exponential scaling of the resources required for
QML, which is precisely what the field of quantum computation would like to avoid[10].
In the report, authors focused on two main tasks. They started to train a unitary
gate to represent a large number of data, showing that is possible to train an arbitrary
polynomial-depth unitary gate that can be efficiently implemented on a quantum com-
puter. More generally, one could consider a QML model with T parameterized quantum
gates and relate the training data size N needed for generalization to T.

1The difference between the model’s performance on the true data distribution and the performance
estimated from our training data is called the generalization error, and it indicates how well the model
has learned to generalize to unseen data.

46



More specifically, they proved highly general theoretical bounds on the generalization
error that can be upper bounded by the quantity

ϵgen =

√
T

N
, (3.1)

where T is the number of parameterized gates and N are the data points used. They
showed that generalization improves if only some parameters have undergone substan-
tial change during the optimization. Even if they used a number of parameters T larger
than the training data size N, the QML model could still generalize well if only some
of the parameters have changed significantly. To showcase these results, in the sec-
ond task they considered a quantum convolutional neural network (QCNN) that has
only T = O(log(n)) parameters and yet it is capable of classifying quantum states
into distinct phases. Their theory guarantees that QCNNs have good generalization
error for quantum phase recognition with only polylogarithmic training resources[10],
N ∈ O(log(n)), supporting the primary goal of quantum computation that is reducing
the number of computational resources to perform the simulations. At support to this
statement, a numerical demonstration suggests that even constant-size training data can
suffice. However, the only problem that get in the way in the development of an experi-
ment supporting their work, is the fact that the data used were already quantum states,
so the more impact and delicate phase where classical data are represented as quantum
data is absent in the work. Indeed, is not possible to fully quantify the good predictions
of the model and to relate their results with ours completely.

47



Chapter 4

Methods

4.1 Feature map

In this section, we illustrate the multiple architectures used to perform the image classi-
fication. We start with a description of the feature maps that are tested with a deep and
entangling angle embedding scheme, and then get to the architectures used as ansatz,
where we used a shallower number of quantum gates in order to make it possible to run
on currently available hardware.

4.1.1 Ring-like architecture

The first QNN architecture we tested is theRing-likemodel that is composed of 6 qubits
and the same quantum circuit for both the feature map and the ansatz. The number
of features and learning parameters that are fed into the two model’s components are
different: the feature map encodes 256 features while the ansatz only has 36 weight
parameters. We design the circuits to exploit the angle embedding scheme as it is easy
to implement and is more efficient to be executed on a quantum hardware. We apply
a parameterized Ry gate to each qubit, then we entangle a qubit with its neighbor
until the last one, which has been entangled with the first, closing into a ring. After
the entanglement scheme, we apply other Ry quantum gates the entangling apparatus
reverse routed. This set of operations characterizes a quantum layer that is repeated
22 times for the feature map and only 3 times for the ansatz. This architecture is a
variation of data re-uploading illustrated in [31]. Encoding 12 features per layer and
repeating each process 22 times gives an estimated number of features equal to 264. We
drop the extra features by making an initial guess: we set the first eight parameters to
be π/2 and they will be updated in the successive iterations of the training process. The
motivation that induced us to use this specific quantum circuit relies on [38]. Introduced
within the article, the concept of expressibility is presented as a circuit’s ability to

48



Figure 4.1: The Ring-like quantum circuit is used as a feature map. In this picture,
only the first part of the whole circuit has been depicted. A part from the Hadamard
gates that create superposition, the structure of each layer includes parameterized RY (x)
rotations along the angle correspondent to each feature, five CNOT between a qubit and
its next one and reversed entangling gate between the last and the first qubit. After,
another sequence of rotations is applied to each qubit. Each layer is composed of 12
features and the current scheme is repeated a number of times to encode all the required
features. With this approach and with all the following, we have a unitary gate that
encodes one feature.

generate (pure) states and in the case of a single qubit, this corresponds to a circuit’s
ability to explore the Bloch sphere[38]. On the other side, the ability of a circuit to
generate entangled states is referred to as the entangling capability. In the context
of variational quantum algorithms, potential advantages of generating highly entangled
states with low-depth circuits include the ability to efficiently represent the solution space
for tasks such as ground state preparation or data classification and result in capture
non-trivial correlation within quantum data, can offer a potential advantage.

49



4.1.2 Waterfall architecture

The Waterfall architecture corresponds to a quantum circuit made of 6 qubits fully
entangled one with another, given a specific qubit, its entanglement is shared with the
successive qubits, and we will refer to Waterfall architecture. The idea of exploiting
this kind of architecture comes from [37] where it has been introduced in experiments
aimed to test the performance of a hybrid approach composed by a quantum and a
classical neural network. In the article, authors presented the Real Amplitude[37][5]
circuit, reduced to only four qubits, to realize the embedding of many resized image
batches. In that case, the performance has effectively improved but is again affected by
the sequence of classical convolutional filters that reduced the number of features and
simplified the data fed into the quantum circuit before the classification. The hypothesis
that has been advanced in support of the waterfall architecture relies on the increasing
level of entanglement the circuit creates. We wonder if the circuit can catch finer details,
producing more correlations between pixels, which may result in a higher performance.
On the opposite way, the considerably increased amount of entanglement could generate
a more difficult quantum state to learn by the ansatz since has only 3 layers against the
22 of the feature map.

Figure 4.2: Waterfall entangling feature map. As it can seen, the entanglement is realized
between one qubit and all the others following a waterfall. A parameterized RY gate is
applied to each qubit and the parameters of these unitaries are the first d parameters
of the ansatz. Subsequently, two-qubit CNOT gates are inserted in the middle of the
circuit and connect a qubit with all the others. Finally, each qubit is subjected to another
parameterized RZ gate. The parameters of these gates are the second d parameters of
the ansatz.

50



4.2 Variational ansatz

4.2.1 Mixing architectures

Since we built two different architectures composed of a couple of circuits each, we de-
cided to mix them to observe the performances. We started to use the Ring-like quantum
scheme as a feature map composed of 22 layers together with the Waterfall qubits ar-
rangement as the variational ansatz with 3 layers, i.e. 36 learning weights. By following
the same approach we used also the Waterfall quantum circuit as a feature map and the
Ring-like circuit as a variational ansatz with the same number of layers and learning pa-
rameters. After testing these mixed architectures, we added quantum variational ansatz
in the experiment that was used in [39] and it is presented as a hardware-efficient quan-
tum circuit as we would describe below in 4.2.2. After that, we are going to introduce
in 4.2.3 a simple quantum version of the classical CNN, i.e. the QCNN, to report the
results of the generalization.

4.2.2 CZ circuit

Another circuit used to implement a variational ansatz to connect with the above-
mentioned feature maps is the CZ circuit. This hardware-efficient quantum circuit is
known to be highly expressive, and is susceptible to the barren plateau described in 2.2.4
phenomenon for a large number of qubits and layers. In each layer all the qubits undergo
through parameterized rotations along Y and Z directions, i.e, RY , RZ and a chain of CZ
gates[39] generates the entanglement in a similar way to the Ring-like architecture. An
important difference concerning 4.1, apart from the specific entangling quantum gates
used to correlate data, is the fact that in the Ring-like quantum circuit, we apply a
first column of rotations then, once the first weights are learned, they are subsequently
entangled with the successive ones coming from the second column, while for the CZ
circuit all the weights are learned and the entanglement is realized between layers.

51



Figure 4.3: CZ variational ansatz. This time the entanglement is placed at the end of the
two columns where parameterized quantum gates are applied. After two quantum gates,
respectively RY and RZ rotations applied to each qubit, the entanglement is realized
with controlled-Z gates following the same ring scheme encountered for the Ring-like
quantum circuit.

4.2.3 QCNN-like circuit

The next scheme we tested is represented by an 8-qubit quantum circuit of quantum
gates such as RY , RZ , and a controlled version of the two. This different approach
exploits the fact that, once a layer is applied, the number of qubits used in the next one is
systematically reduced by a factor 2. In particular, we composed the current architecture
with 4 layers, the first of which starts with 8 qubits, the second has 4 qubits, the third
layer has 2 and the last one has only one qubit remaining. The same function provided
by Qiskit has been used to obtain the result of a general measurement performed on all
qubits that works out the probabilities of detecting a specific class of images. It can be
seen from the figure below 4.4 that a similar IsingZZ entangling gate has been realized
and acts as a source of entanglement between qubits. In this new approach inspired
by classical CNNs, all the information acquired by the variational ansatz is collected in
only one qubit, the last one that should be the most representative of the corresponding
quantum state generated. Repeating the same logic, we tested the QCNN variational
ansatz both with the Waterfall and Ring-like feature map to see which results in the best
quantum circuit combination.

52



Figure 4.4: QCNN variational ansatz in which we can observe four layers where the
number of parameterized quantum gates is reduced by a factor of 2. The entangling
gates we have used in this approach are constituted by the IsingZZ two-qubits gate,
where two CNOTs wrap a RY rotation gate applied on the next wire. Starting from
8 qubits we end up with only one over which is performed the last RY rotation. In
this particular architecture all the 8 qubits are then measured, even if the idea behind
this circuit is to measure only the last remained qubit in order to extract the resulting
quantum state directly from it. In the Appendix D.1 we display the results where two
different sets of qubits are measured. In the first experiment we collect the result out
from all the 8 qubits (and this is one of the reasons why the process took several time,
i.e. the resulting state is of the order of 28) and from the last single-qubit (in which the
measured state is of the form 21).

4.2.4 Characteristics

In the figure 4.5 we show the trend of the size of each ansatz we have used to make the
predictions. It explains how the circuit’s size, defined as the number of gates applied
to a specific quantum circuit, varies as more layers are added to the circuit. The QNN
ansatzes manifest a linear behaviour of the size function S as more layers are added to
the circuit. In fact, working with a large number of features, each variational ansatz
requires more layers, i.e. more unitary gates applied to it in order to increase the num-
ber of optimizing parameters (weights) used to learn the characteristic that distinguish
each image that has been represented by the feature map as a quantum state. Totally
different behaviour can be seen for the QCNN-like ansatz, whose number of gates scales
logarithmically. By reducing the number of qubits considered within each layer by a fac-

53



Figure 4.5: Progression of the number of quantum gates as a function of the number
of layers a circuit is composed by, denoted as the size of a quantum circuit. Note that
the QCNN variational ansatz shows a logarithmic behaviour due to the progressively
reduction of the number of qubits in each layer by a factor of 2.

tor of 2 translates to a base-2 logarithmic behaviour for the circuit’s size. With the help
of support instruments we could in principle expand the variational ansatz by adding
additional layers and emphasize this behaviour.

54



Chapter 5

Settings and experiment

5.1 Experimental settings

5.1.1 Framework

Quantum scheme

To perform the simulation we used different quantum/classical tools. In principle we
selected Qiskit as the candidate to build the quantum circuits and, more generally, to
train the quantum neural network. Qiskit is an open source Python library developed
by IBM mostly used in Quantum simulations, Quantum Machine Learning, Quantum
Compiling, Quantum Optimization etc. Qiskit allows developers to simulate the quan-
tum circuit directly on IBM machines to have an idea about the behaviour of a quantum
circuit, if executed on a real quantum hardware. In this way people can be aware of
the errors that occur during the simulation process. Errors in fact, acquire a significant
weight in Quantum Computing applications since they cannot be separated completely,
and a-priori, from any experiment that uses quantum algorithms. Even if a possible way
of circumvent the problem exists and relies in simulating a specific quantum circuit with
a zero-noise simulator (like the aer-simulator), real existing quantum devices are not free
from errors, indeed are susceptible to noise because of physical disturbances. The error
we are talking about is an intrinsic property of matter that cannot be eliminated: qubits
in fact, are quantum systems highly sensible to the environment. For instance, if some
molecule in the surrounding air comes into contact with qubit it would transfer some
kinetic energy and potentially affect the generated quantum state. Another example
involves the interference between adjacent qubits; if they collide into one another their
wave-functions can constructively or destructively interfere to give an odd result. This is
the reason why adding more qubits into the system greatly increases the noise. There’s
much higher chances of a qubit ”spilling over” onto another one because there’s more
energy contained. One of the difficulties that accompanied the development of quantum

55



computers is the source of error that generates from its constituents and a process aims
to clean the effects of this noise, known as Error Correction, is necessary.

Classical scheme

The rest of the simulation exploits suitable and known classical tools such as Tensorflow
and PyTorch. ML tasks frequently leverage each library because they house functions
designed to manipulate tensors representing image data. These libraries also contain
a variety of built-in functions, including loss functions, training and testing evaluation
functions, facilitating the classification of computed output against corresponding labels.
These tools are known for their simplicity and for the numerous tutorials and documen-
tation they are equipped with, making them accessible even to those not well-versed in
the field. Furthermore, these libraries offer a wealth of ready-to-use datasets that can be
easily downloaded, imported, and employed in various applications. We used Tensorflow
for the data preparation part of the classification over the Mnist dataset. PyTorch has
been used to perform the matching between output and corresponding label by the loss
minimization. For the classical CNN we used Keras, the most popular library for ML for
image classification, contained within Tensorflow. Keras was suitable to create a very
simple and fair convolutional neural network with a number of parameters comparable
with the corresponding quantum ones.

5.1.2 Dataset

MNIST

The first dataset used to carry out the Machine Learning task is the Mnist. It consists
of thousands of gray-scale figures representing handwritten digits from 0 to 9 of 28x28
features. The advantages of using Mnist are multiples:

• It’s a well-studied toy dataset suitable for image-recognition tasks;

• We have a large quantity of images available (60000 for training, 10000 for testing)
that permits to select images not repeating images belonged to the same class;

• It’s already splitted in train and test sets, in such a way that the images contained
in the train set are not present also in the test set.

In the pre-processing part, only 0 and 1 digit-images have been selected to build the
train and test sets. In a second moment, we have reduced the number of features from
784 (28x28 images) to 256 (16x16 images) to facilitate the next quantum encoding part
and to use a small number of qubits for the circuit’s creation. The features reduction
has been done internally to a function that first expand the dimension of each matrix-
object that represent the image, by adding an additional dimension (usually images are

56



represented as tensors whose dimensions are (feature, feature, channel), where we could
have in principle 1 channel for gray-scale images or 3 channels for RGB images) to each
picture, and subsequently uses the resize functionality of Tensorflow to scale the features
to the desired number. We are going to further reduce the features of the train and test
sets to small numbers such as 12, 8 and 6, in order to see if there’s an improvement
when working with a number of optimizing parameters comparable to the small number
of features used in the experiment.

GALAXY

The galaxy dataset includes gray-scale images representing different kind of galaxy that
are recovered by a single image we have previously downloaded from Internet and that
has been cropped in multiple items. With this strategy we have created a custom dataset
consisting in images which contain a galaxy and others that do not contain any kind of
subject, yielding to a binary dataset composed by two classes, 0 and 1. The figures are
then down-sampled to have 256 pixels (16x16 features) in total. Due to the random
cropping process, three main possible kinds of images have been formed: a type that
contains a galaxy or at least a star, one that contains a partial galaxy or star, and the
last one that does not contain any galaxy at all. A multi-class SL classification could be
useless, since there are figures where the subject is not completely distinguished and three
main classes can be identified, but for simplicity, we restrict to a binary classification
problem where the pictures that contain a partial galaxy are considered as belonging to
the same class.
Differently from what has been done for Mnist dataset, a binarization function, whose
effects are displayed in BB.5, has been applied to each figure in order to clean and
correct pixel values that create confusion. When lowering the number of features down
to 256, the pixels’ dimension increases until becoming significantly visible. Some images
exhibit fractional pixels blending with the subject pixels that are a part of the galaxy.
This phenomenon leads to a degradation in the overall quality of the image and can
constitute a problem for the QNNs. To avoid this apparent problem we decided to set
a minimal threshold - a specific pixel value equals to 0.25 - below which each pixel is
set to 0 giving a black patch-square at the corresponding place. In this way we have
removed the area that mix with the object contained inside the image, leading to a more
distinguishing picture.
Afterwards, a function has been devised to guarantee the balance between each class
within the dataset prior to commencing the analysis. This approach eliminates potential
bias introduced by the random generation of Mnist images, as we explicitly specify in
advance the desired quantity of images for each of the two classes under consideration.
Balancing a dataset is generally an important task to implement before the creation of
the model, since if not present can significantly affect the model’s performance.

57



5.1.3 Dataset preparation

After the data pre-processing, we thought about a common scheme to start the analysis.
Since the idea behind this project is to evaluate the effects coming from training the
QNN with a low number of data points, the way we proceed to test the performances
consists of:

• Setting a number of data-points to train the model;

• Training and testing the model on the train and test dataset;

• Collecting the result of the test accuracy and repeat the process to increase the
training data size.

We remind that this project has the scope to open new ways of investigation of such
QNN architectures and to emphasize the possible gain in the accuracy when training a
model with few data, thus the number of images chosen to perform the training is not
as large as one could expect, furthermore, since simulations required an intensive use of
computational resources, it has been decided to reduce the number of points to use for
the process. Six training sets have been chosen and are composed of 6, 10, 20, 30, 40
and 50 image data. The test set instead consisted of 140 images for the Mnist dataset
and only 100 for the Galaxy. This discrepancy is due to the way we extracted the images
from the galaxy-field figure used as proxy. After selecting a set of images, the training
process is iterated five times using an identical number of training data-points. However,
in each iteration, a different seed is used to create a training set of the same length but
with distinct images. In this way, we literally expand the train set every time we invoke
a different seed value. For example, once we choose a seed, each of the different train
sets contains the same data of the previous one plus random images to complete the
dataset. The value of the test accuracy we obtain at the end of each training dataset is
the average value over five seeds.

5.1.4 Metrics, loss, optimizer and interpret function

In this section we examine the metrics that characterize both quantum and classical
Machine Learning problems.

5.1.5 Metrics

The confusion matrix is the first element that give us an estimation of how well the
model performs the prediction. The evaluation of the performance of the model is defined
by some metrics. The most important ones are the following: Accuracy, Precision,
Recall and F1-score. To describe them, it can be useful to define the Confusion matrix,
which is a matrix used for evaluating the performance of the model. In this matrix, the

58



real labels are placed on the column, while the predicted ones on the rows. Then, the
result of a binary classification (-1, 1) can lead to:

• True Positive (TP), if the data is correctly predicted as 1;

• True Negative (TN), if the data is correctly predicted as -1;

• False Positive (FP), if the model misses the prediction and classifies the point as
1;

• False Negative (FN), if the model misses the prediction and classifies the point
as -1.

It is desired to obtain the highest possible value of True Positive and True Negative
data, minimizing model errors. Roughly speaking, the ideal case is obtained when only
the main diagonal of the Confusion matrix contains values, which means are correctly
classified, while the off-diagonal elements should be 0.

Accuracy

The Accuracy of the model is the number of data-points well predicted over the entire
set of elements evaluated.

Acc =
TP + TN

TP + TN + FP + FN
(5.1)

This metric is useful to evaluate the model performance if the two classes of elements
are appropriately balanced.

Precision

The Precision is the number of correctly predicted positives over the number of positive
predictions.

Pr =
TP

TP + FP
(5.2)

Recall

The Recall is the number of correctly predicted positive classes over the total positive.

Re =
TP

TP + FN
(5.3)

59



F1-score

In some cases, the Precision and the Accuracy are not good metrics, especially for imbal-
anced datasets. For this reason, to choose the best model, F1-score can be defined as an
additional metric to achieve the best trade-off between the Precision and the Accuracy.
It is obtained as the harmonic mean of Precision and Recall. This metric is maximized
if the Precision and Recall are similar to each other.

F1 = 2
Pr ∗Re
Pr +Re

. (5.4)

Figure 5.1: Example of a Confusion matrix (CM) calculated in the testing phase. Since
the problem is a binary classification, the CM is a 2x2 square matrix. The first matrix
element represents how many 0-digit images the model has correctly classified. The sec-
ond element instead (with 31 displayed) represents the number of 0-digit images wrongly
classified as 1-digit images. The third one instead says how many 1-digit images are mis-
classified as 0-digit images. The last element represents the number of 1-digit images
correctly recognized. The optimal CM should have zero or less items in the off-diagonal
elements meaning the model has been able to correctly classify everything he has seen.

60



5.1.6 Loss

Loss functions quantify the error between the predicted class of a sample and the actual
class. This can be done in several ways, which creates different loss landscapes. These
loss landscapes have different shapes and curves for example they could be flat plateaus,
local minima, and global minima, hills, ravines, etc[16]. Even though there are several
loss functions that can be used during the training, in this little section we are going to
present the one adopted for the binary classification problem.

Cross-entropy loss

Cross-entropy Loss is used for those classifications in which the result of the model is a
probability value. For binary classification, in which the classes are 0 and 1, it is:

L = −y log p− (1− y) log(1− p). (5.5)

where p is a probability distribution representative of the events we are measuring, while
y are the actual class present in the problem.

5.1.7 Optimizer

The task of the optimizer is to find updates to the parameters based on the outcome of
the loss function in such a way that, after repeated runs, the loss is minimized[16]. The
optimizer used for the training of the quantum neural network is the Limited-memory
BFGS (L-BFGS or LM-BFGS). LBFGS is an optimization algorithm in the family of
quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno al-
gorithm (BFGS) using a limited amount of computer memory. It is a popular algorithm
for parameter estimation in ML. The algorithm’s target problem is to minimize f(x)
over unconstrained values of the real-vector x where f is a differentiable scalar func-
tion. Like the original BFGS, L-BFGS uses an estimate of the inverse Hessian matrix to
steer its search through variable space, but storing only a few vectors that represent the
approximation implicitly. Due to its resulting linear memory requirement, the L-BFGS
method is particularly well suited for optimization problems with many variables.

5.1.8 Interpret function

The measurement process is a necessary step to fulfill in order to evaluate the cost
function. In this way the model learns how to classify data and the accuracy can be
finally extracted. Such measurement operation is applied directly by a specific built-in
Qiskit’s class that has been used, i.e. CircuitQNN, during the entire work. It samples a
neural network given a quantum circuit which is composed by the feature map and the
variational ansatz together. It takes in parameters such as the input params (feature

61



map quantum features), weight params (variational ansatz’s learning parameters) and
output shape which is the shape of the computed result, that is a (1,2) array formed by
two different probabilities of interpreting the image as belonging to a 0 or a 1 class. The
last parameter we focus on is the interpret function, here the parity function is used.
The parity interpret function is used to convert the output state in binary strings and
counts the number of 1s present in the string and performs a modulo - division -, to get
weather the binary representation of a specific state is even or odd. In this case, the
parity function maps a quantum state formed by a sequence of 0s and 1s to an integer
value, i.e. to a class index. The strategy adopted to evaluate the interpret function is
the following. It has been used as a standard form of the parity function displayed below

lambda x: ”{:b}”.format(x).count(”1”) %2

for all the QNN architecture except for the QCNN model. For this kind of architecture
we decided to use two types of interpret functions: the first one remains unchanged
since all the qubits are measured. The other one instead is simply an identity interpret
function as

def interpret(x):
return lambda x: x

This choice is justified by the fact that measuring only one qubit we can access only two
states, i.e. |0⟩ and |1⟩, the parity function will be useless because it will no longer able
to count how many 0s or 1s are present in the final quantum state this time is a single
quantum state. So the function will be simply an identity.

5.2 Results

The goal of the analysis is to test the performances of different quantum architectures
by varying the number of training images as to look for an improvement in learning and
generalization. Once the experiment has been done for the quantum neural networks, we
focus on the classical model and use it as a direct comparison. In principle, we expect
the classical model to be able to surpass the the quantum counterpart since the number
of parameters that go under optimization is significantly higher than what has been used
for QNNs. In addition, adding more parameters to the variational quantum circuit could
turn into a non-trivial process for the simulation itself, due to the noise that could be
generated from the high-depth quantum circuit. To address this obstacle, we built a
simple classical model ensuring the number of parameters equals or, at least of the same
order, of the number of quantum weights the ansatz circuit learns during each epoch.
In this way, we kept the challenge as fair as possible. Anyway, quantum models are
still in-development and they are not able to compete against the already established
classical models yet; this is another reason for which the investigation is gaining much

62



more attention on QNNs this time. The experiments conducted on the Mnist dataset
have seen a decrease in the number of images since the second set, the Galaxy set, was
generated with fewer images compared to its predecessor. The data in this set were
obtained by cropping existing initial pictures as we said, making it less suitable for use
as a genuine testing dataset. Despite this limitation, we have chosen to present the
results for the Galaxy set because we find it intriguing to observe the variations that
arise when different sets of images are taken into consideration, even though we have
focused much more on the Mnist for the reasons we have explained in 5.1.2.

5.2.1 Generalization with few images

The first task of the project is based on the following idea: train each model with an
increasing number of training data and collect the corresponding result coming from
either the train and test accuracy, in order to study the performances. Each training
set is placed on the x axis while the corresponding y value (train and test accuracy) is
represented as a dot-marker. In the course of the process we tested all the models by
choosing an initial training set consisting of 6 images, that is a small and challenging
number of items. Afterwards, we enlarged it to 10, 20, 30, 40 until 50 items. Few
considerations can be done already at this point. First, we decided to use only six
training sets in account of two main reasons: all the simulations took a considerable
time until they finished since we run multiple low and high depth circuits with the
aer-simulator on an IBM machine and generally is not a quick process especially when
numerous unitaries are applied within the circuit. Indeed, we have forced the circuits to
learn from very few number of training data. Secondly, we repeated the same process
five times for each model, every time using a different train set as to plot the average
value and the standard deviation computed on these different runs. Due to this last
way of proceeding, the task itself was really time and computational consuming. The
tables that summarize the outputs of the numerous simulations we have performed are
placed below. Each column contains the current Dataset that has been used for the
simulation, the number of Data-points we selected for training, the name of the Model
we tested, the number of parameters (Params.) the variational ansatz optimizes and
the corresponding Train acc. and Test acc., i.e. train and test accuracy, respectively.

63



5.2.2 Tables of results: MNIST

Quantum Ring-like (RL) model

Ring-like model’s performances
Dataset Data-

points
Model Params. Train acc. Test acc.

Mnist 6 RLRL1 12 0.86 ±0.19 0.59±0.06
Mnist 10 RLRL1 12 0.74±0.18 0.57±0.11
Mnist 20 RLRL1 12 0.82±0.06 0.68±0.04
Mnist 30 RLRL1 12 0.80±0.04 0.70±0.05
Mnist 40 RLRL1 12 0.60±0.07 0.52±0.04
Mnist 50 RLRL1 12 0.71±0.14 0.69±0.11
Mnist 6 RLRL2 24 0.90±0.20 0.61±0.09
Mnist 10 RLRL2 24 0.96±0.05 0.65±0.10
Mnist 20 RLRL2 24 0.84±0.10 0.71±0.07
Mnist 30 RLRL2 24 0.82±0.07 0.71±0.05
Mnist 40 RLRL2 24 0.83±0.04 0.73±0.03
Mnist 50 RLRL2 24 0.86±0.03 0.76±0.01
Mnist 6 RLRL3 36 0.96±0.60 0.70±0.04
Mnist 10 RLRL3 36 1.00±0.00 0.68±0.05
Mnist 20 RLRL3 36 0.95±0.09 0.73±0.02
Mnist 30 RLRL3 36 0.92±0.04 0.72±0.01
Mnist 40 RLRL3 36 0.84±0.09 0.75±0.06
Mnist 50 RLRL3 36 0.89±0.03 0.77±0.03

The Ring-like architecture reaches good levels of train accuracy, while the test accuracy
remains just under the 80%. Anyway, it is possible to notice the progressive increment in
the test accuracy when more layers are considered in the circuit (leading to more param-
eters) and, on average, when more images are used to train the model. This particular
behavior can be explained as follows: the feature map has as many quantum gates as
the number of features of each image. Thus, increasing the number of gates used in the
variational ansatz can significantly improve the performance on train and test accuracy
since more parameters are learned at each iteration. It would be interesting to add more
additional layers to the circuit and perform the same analysis looking for further im-
provement. It should be remarked that the model has been trained with few images that
have a large number of features that could be hard to learn by using a significant re-
duced number of optimizing parameters. There should be a trade-off between the depth
of the feature map that encode all the necessary features an image is composed of, and

64



the depth of the variational ansatz that should be able to represent and classify those
images.

Waterfall model

Waterfall model’s performances
Dataset Data-

points
Model Params. Train acc. Test acc.

Mnist 6 WFWF1 12 0.63 ±0.24 0.60±0.13
Mnist 10 WFWF1 12 0.64±0.12 0.57±0.13
Mnist 20 WFWF1 12 0.60±0.19 0.67±0.11
Mnist 30 WFWF1 12 0.66±0.07 0.67±0.04
Mnist 40 WFWF1 12 0.61±0.07 0.61±0.02
Mnist 50 WFWF1 12 0.68±0.06 0.65±0.03
Mnist 6 WFWF2 24 0.77±0.14 0.69±0.03
Mnist 10 WFWF2 24 0.70±0.09 0.62±0.14
Mnist 20 WFWF2 24 0.72±0.04 0.63±0.06
Mnist 30 WFWF2 24 0.75±0.03 0.65±0.02
Mnist 40 WFWF2 24 0.77±0.03 0.63±0.07
Mnist 50 WFWF2 24 0.76±0.08 0.67±0.03
Mnist 6 WFWF3 36 0.90±0.13 0.64±0.08
Mnist 10 WFWF3 36 0.86±0.08 0.70±0.05
Mnist 20 WFWF3 36 0.59±0.15 0.59±0.11
Mnist 30 WFWF3 36 0.67±0.08 0.67±0.03
Mnist 40 WFWF3 36 0.67±0.15 0.64±0.10
Mnist 50 WFWF3 36 0.67±0.05 0.68±0.05

These are the performances of the Waterfall architecture. Compared to the previous
one, the values reached during the generalization are lower together with the train ac-
curacy values. We can observe the progressively increasing level of both train and test
accuracy when a more deep circuit is considered, even though the the performances over
the test set are still under 70%.
In the next page we observe the tables for the QCNN and CZ models. The combination
between the WF feature map and the QCNN variational ansatz outcomes promising
results with respect to the same variational ansatz combined to RL feature map. On the
contrary, the CZ shows better results when is combined with the RL circuit, especially
when a large set of images is used for training.

65



QCNN with the measurement of all the qubits

QCNN model’s performances
Dataset Data-

points
Model Params. Train acc. Test acc.

Mnist 6 WFQCNN 42 0.90±0.13 0.72±0.04
Mnist 10 WFQCNN 42 0.76±0.10 0.65±0.05
Mnist 20 WFQCNN 42 0.76±0.09 0.65±0.06
Mnist 30 WFQCNN 42 0.72±0.15 0.64±0.03
Mnist 40 WFQCNN 42 0.77±0.04 0.76±0.03
Mnist 50 WFQCNN 42 0.74±0.05 0.72±0.03
Mnist 6 RLQCNN 42 0.87±0.12 0.54±0.05
Mnist 10 RLQCNN 42 0.80±0.20 0.55±0.10
Mnist 20 RLQCNN 42 0.74±0.15 0.64±0.07
Mnist 30 RLQCNN 42 0.74±0.07 0.62±0.04
Mnist 40 RLQCNN 42 0.73±0.08 0.65±0.06
Mnist 50 RLQCNN 42 0.69±0.13 0.70±0.12

CZ circuit

CZ model’s performances
Dataset Data-

points
Model Params. Train acc. Test acc.

Mnist 6 WFCZ 36 0.94±0.08 0.60±0.07
Mnist 10 WFCZ 36 0.88±0.11 0.66±0.09
Mnist 20 WFCZ 36 0.82±0.05 0.68±0.03
Mnist 30 WFCZ 36 0.71±0.10 0.61±0.10
Mnist 40 WFCZ 36 0.78±0.08 0.66±0.03
Mnist 50 WFCZ 36 0.68±0.12 0.61±0.10
Mnist 6 RLCZ 36 0.83±0.27 0.62±0.07
Mnist 10 RLCZ 36 0.78±0.32 0.64±0.08
Mnist 20 RLCZ 36 0.91±0.02 0.73±0.05
Mnist 30 RLCZ 36 0.83±0.07 0.71±0.04
Mnist 40 RLCZ 36 0.91±0.02 0.73±0.05
Mnist 50 RLCZ 36 0.80±0.03 0.75±0.02

66



Mixed models’s performances
Dataset Data-

points
Model Params. Train acc. Test acc.

Mnist 6 RLWF1 12 0.73 ±0.22 0.63±0.02
Mnist 10 RLWF1 12 0.74±0.16 0.57±0.10
Mnist 20 RLWF1 12 0.64±0.10 0.59±0.06
Mnist 30 RLWF1 12 0.68±0.06 0.64±0.03
Mnist 40 RLWF1 12 0.64±0.06 0.65±0.01
Mnist 50 RLWF1 12 0.65±0.08 0.61±0.09
Mnist 6 RLWF2 24 0.83±0.15 0.60±0.05
Mnist 10 RLWF2 24 0.70±0.09 0.58±0.03
Mnist 20 RLWF2 24 0.62±0.06 0.53±0.03
Mnist 30 RLWF2 24 0.71±0.11 0.59±0.06
Mnist 40 RLWF2 24 0.72±0.08 0.63±0.04
Mnist 50 RLWF2 24 0.69±0.07 0.65±0.03
Mnist 6 RLWF3 36 0.86±0.12 0.63±0.04
Mnist 10 RLWF3 36 0.78±0.04 0.62±0.04
Mnist 20 RLWF3 36 0.79±0.06 0.66±0.03
Mnist 30 RLWF3 36 0.76±0.06 0.66±0.03
Mnist 40 RLWF3 36 0.75±0.04 0.67±0.04
Mnist 50 RLWF3 36 0.74±0.05 0.67±0.01
Mnist 6 WFRL1 12 0.80±0.12 0.64±0.02
Mnist 10 WFRL1 12 0.70±0.14 0.62±0.03
Mnist 20 WFRL1 12 0.80±0.04 0.63±0.02
Mnist 30 WFRL1 12 0.69±0.09 0.63±0.10
Mnist 40 WFRL1 12 0.76±0.06 0.64±0.02
Mnist 50 WFRL1 12 0.71±0.06 0.63±0.01
Mnist 6 WFRL2 24 1.00±0.00 0.69±0.03
Mnist 10 WFRL2 24 0.82±0.22 0.64±0.15
Mnist 20 WFRL2 24 0.87±0.05 0.68±0.02
Mnist 30 WFRL2 24 0.78±0.06 0.67±0.04
Mnist 40 WFRL2 24 0.73±0.09 0.65±0.04
Mnist 50 WFRL2 24 0.69±0.19 0.61±0.13
Mnist 6 WFRL3 36 1.00±0.00 0.71±0.05
Mnist 10 WFRL3 36 0.94±0.05 0.67±0.04
Mnist 20 WFRL3 36 0.77±0.17 0.67±0.08
Mnist 30 WFRL3 36 0.89±0.06 0.74±0.06
Mnist 40 WFRL3 36 0.83±0.08 0.74±0.07
Mnist 50 WFRL3 36 0.90±0.05 0.70±0.04

67



5.2.3 Figures

In this section we report only the figures that refer to the circuit composed by a 3-layers
variational ansatz, since we consider them as the architectures from which the best results
could have been obtained for the current experiment, where we use the largest number
of variational parameters. Further graphs are shown in the Appendix E. The table 5.2.2
shows the trend of the accuracy when the number of items contained in each train set
increases. RLRL-1 layer presents an oscillatory behaviour and it does not reach a
high test accuracy even with more images. The reason for which this happens probably
relies in the number of layers used by the variational ansatz to learn the parameters: it
seems they are not sufficient, compared to the number of layers used in the feature map,
to learn all the features that distinguish each image and to make a correct classification.
Indeed, more parameters are needed to improve its performance. A common behaviour

Figure 5.2: RLRL 3 layers architecture. The trend exhibited by the RLRL-3 layers
approaches the 80% of accuracy on the test evaluation and probably it could increase
for larger training sets, much more compared to the previous two.

that is visible from the tables is the over-fitting phenomena generated when the model
has been trained with only few images. As a consequence, the model is not able to
recognize anything it has not seen. Despite the over-fitting’s occurrence, the RLRL-2
layers model, as visible in the table, seems to reduce its effect faster than the others
and, surprisingly, with less optimizing parameters is able to reach a value of test accuracy
comparable with the 3-layers model for large data-points.

68



Figure 5.3: WFWF model with 3 layers. Apart from an initial over-fitting, it shows a
good convergence between train and test accuracy already with 20 images. It is visible
from the table 5.2.2 that the Waterfall model with only 1 layer converges to lower values
of test accuracy with respect to other models, even though the over-fitting is considerably
reduced. The high level of entanglement present in this circuit seems to introduce too
much complexity, between the 256 features passed by the feature map, and the low
number of parameters learned by the variational ansatz. The two following models
perform better than the previous one already with less data and the one depicted in the
figure 5.3 is able to converge to 70%.

Mixed architectures

The subsequent figures illustrate the mixed architectures composed by RL and WF
quantum circuits combined together with 3 layers per variational ansatz. In the figure
below 5.4 the Ring-like quantum circuit has been used to encode the features while the
Waterfall as the variational ansatz with 3 layers. The next figure 5.5 shows the results
for the reversed architecture that has been composed by the Waterfall circuit as feature
map and the Ring-like as variational ansatz. These last three quantum neural networks
present inside the table 5.2.2 (respectively composed by 1, 2 and 3 layers per variational
ansatz) provide probably the lowest results so far. If for the WFRL-1 Layer the test
accuracy does not improve over number of data, for the subsequent model it really de-
creases for 50 images.

69



Figure 5.4: RLWF 3 layers model. We observe an almost flat trend of the test accuracy
reflecting the slow decline of the train accuracy, meaning that e meaningful learning is
absent.

Figure 5.5: WFRL model combining a Waterfall feature map with 3 layers Ring-like
architecture. The test accuracy starts from a higher value compared to the previous
architecture, but we cannot see a significant improvement.

70



The next two figures represented in 5.6 and 5.7 displays the performances of the QCNN
variational ansatz combined respectively with the Ring-like and the Waterfall feature
maps. The first model in 5.6 presents an increasing accuracy on the test set, and seems
able to grow-up for more data-points. In both cases the over-fitting is vanishing when
more images are seen by the two models. For the WF-QCNN there is an overlapping
between train and test accuracy, leading to hypothesize the train accuracy as a good
predictor for the test accuracy. The QCNN variational ansatz seems to reach good re-
sults independently from the encoding circuit and could be considered another suitable
candidate for image recognition experiments.

Figure 5.6: Ring-like feature of 22 layers map combined with the QCNN variational
ansatz where the test accuracy seems to reach promising thresholds when the train set
is enlarged.

71



Figure 5.7: Waterfall feature map composed of 22 layers combined with the QCNN
variational ansatz. After a faint peek corresponding to 40 images, the test accuracy
decreases until 50 images.

Figure 5.8: RLCZ model with 3 layers. Despite the visible gap between train and test
accuracy, the latter one seems to slightly increase for many data-points.

72



Figure 5.9: Waterfall feature map connected with the CZ quantum circuit with 3 layers
used as variational ansatz. The test accuracy does not seem to exhibit a learning be-
haviour.

The CZ variational ansatzes lead to different results as a consequence of which feature
embedding circuit has been used to encode the data-points. They are displayed in 5.8 and
5.9. The RL-CZ model reaches better results compared to the WF-CZ, and the overall
test accuracy is closer to the highest level obtained from the RL-RL quantum neural
network. On the other hand, the accuracy reached by the WFCZ seems to decrease
even when the largest dataset has been used for training.

73



5.3 Accuracy vs number of layers

In this short section we show the effect of reducing the number of variational ansatz’s
layers on the accuracy both for training and testing. The goal is to find which is the
best size (as known as the number of gates used in a given circuit) a quantum circuit
should have in order to learn sufficiently from images when a large number of features
must be encoded and should be learned. We analyzed the performances on the first three
layers for three specific training sets: 6, 30 and 50 data. We could expect, basing on the
experience in classical ML, especially with neural networks, that an increasing level of
accuracy could be obtained when more layers are added to the circuit since it would be
more favourable that a higher-depth circuit, with many parameters, was able to learn
more features and to classify a wealth of images. The current task has been performed
for the Mnist dataset. The effects on the generalization should be more visible for a
complex dataset as the Mnist. Moreover, increasing the number of parameters that
undergoes to optimization will produce a higher level of model’s performances in terms
of accuracy on new sets of data. In the tables reported in the following lines we have 4
columns to represent the number of images we have chosen for training (Images) and
the number of layers used within the variational ansatz we have tested, respectively 1
Layer, 2 Layers and 3 Layers.

RLRL model

RLRL accuracy per layer
Images 1 Layer 2 Layers 3 Layers
6 0.59 0.62 0.70
30 0.70 0.71 0.73
50 0.69 0.76 0.78

74



WFWF model

WFWF accuracy per layer
Images 1 Layer 2 Layers 3 Layers
6 0.60 0.69 0.64
30 0.67 0.65 0.67
50 0.65 0.67 0.68

RLWF model

RLWF accuracy per layer
Images 1 Layer 2 Layers 3 Layers
6 0.63 0.60 0.63
30 0.64 0.59 0.67
50 0.61 0.65 0.67

WFRL model

WFRL accuracy per layer
Images 1 Layer 2 Layers 3 Layers
6 0.64 0.70 0.71
30 0.63 0.67 0.74
50 0.63 0.61 0.70

75



5.4 Generalization from less features

In the second task, we wonder about the model’s ability to detect the test images when
the number of features is considerably reduced. When we have a group of data from
which we extract fewer features and we look for a function able to fit them, we gener-
ally start from simple polynomials that have few optimizing parameters. In this sense,
the number of features available should induce a bound on the number of parameters
subjected through optimization, even though for complex and non-linear models such as
CNNs, the number of optimizing parameters grows rapidly when more layers are added
to the architecture. Our QNN’s ansatzes are not deep in the number of parameters, so
the reduction in feature size is justified thanks to the aforementioned reason. Following
this logic, it’s interesting to look for an improvement, in the test accuracy, when the
same train set is composed of images with fewer and fewer pixels. By following this idea,
we start to think if a sort of threshold, below which the model fails in predicting the
exact label of the image it sees, exists. From the further results we are going to present
below, we can make a connection with what has been reported in [10]. In the article,
the authors emphasized the power of QNNs involved in an SL problem that uses less
training data than classical algorithms. The question we can ask at this point could be
”What could happen if we use few features?”. In this sense, we are potentially able to
generalize the concept of less data saying that good accuracy can be obtained by using
few images in the training phase composed of fewer features. Following the introduc-
tion to this experiment, it could turn out in a simplification for the trainable model to
handle less complex images in the training process, translating into an increment in the
generalization abilities.
The next figures 5.22a, 5.22b, 5.11b, and the following represent the generalization per-
formances of the QNNs using images with less information contained into them. One
of the additional advantages that could arise is the fact that, by reducing the number
of features, we reduce the number of gates contained within each feature map, and con-
sequently the possible noise occurrence associated with them. Furthermore, we would
have two quantum circuits (the feature map and the variational ansatz) with a com-
parable number of learning parameters. If with 256 features we need 264 gates for a
6-qubit circuit with angle encoding and only 36 gates used in the variational ansatz are
insufficient to learn the images with high accuracy within the train set and classify all
the test images, with a reduced number of pixels encoded by the feature map we could
expect a significant improvement since the number of optimizing parameters are of the
same order of the features.
Lastly, quantum devices would also be able to carry out the learning in less time and
using fewer resources since less number of gates are simulated.

76



(a) WFWF model. (b) RLRL model.

Figure 5.10: As we can observe in the figures, the combination of the WF circuit either
for feature map and variational ansatz shows not as high improvement compared to the
same model evaluated to 16x16 images. On the contrary, the RLRL reaches very high
accuracy when the dataset is reduced in features, until surpassing 90% for 6x6 and 8x8
images.

(a) WFRL model. (b) RLWF model.

Figure 5.11: The WFRL model obtained better test accuracy compared to the RLWF;
experiments reveal that WF circuit is not able to obtain significant high accuracy when
used as a variational ansatz, while if appropriately combined with a highly expressive
circuit could bring to better results.

77



(a) RLCZ model. (b) WFCZ model.

Figure 5.12: From these two figures we can say these models reflect in a certain way what
we have already got for the RLWF and WFRL; here again we assist to a significant high
performance carried out by the WFCZ model except for dataset with a large number of
features.

(a) RL-QCNN model. (b) WF-QCNN model.

Figure 5.13: The displayed results do not suggest the QCNN ansatz to be a powerful
candidate for reduced-in-features dataset, since the test accuracy obtained with these
architectures are not sufficiently high compared to the previous ones.

78



5.5 Galaxy results

For the Galaxy dataset we decided to reduce the number of tasks. Each model has been
evaluated with the same number of layers in the variational ansatz which is 3, because
is the optimal number that gave best results also for Mnist dataset. We then plotted
the accuracy’s trend on the train and test sets when more images are seen by a selected
model. The reason why we omitted the shallower ansatzes is because results are better
when more parameters undergo optimization. For a dataset as the Galaxy, we directly
tested the best QNN arrangements for image detection. We decided to discard the sec-
ond task for the current set of data since we are expecting a similar behaviour compared
to the previous one (Mnist).
Finally, even though resizing each Galaxy image should not change too much the pixel’s
displacement or the image content, we are going to show the third and last experiment
(where we compare the performances on multiple reduced-in-size versions of the same
dataset) for this dataset. We show the pictures, from 5.14 and next, for the models that
obtained the best results on the previous set of data.

Tables

Ring-like model’s performances
Dataset N° data Model Params. Train acc. Test acc.
Galaxy 6 RLRL3 36 1.00 ±0.00 0.73±0.05
Galaxy 10 RLRL3 36 0.98±0.04 0.76±0.04
Mnist 20 RLRL3 36 0.82±0.06 0.85±0.03
Galaxy 30 RLRL3 36 0.93±0.05 0.73±0.06
Galaxy 40 RLRL3 36 0.82±0.06 0.81±0.04
Galaxy 50 RLRL3 36 0.91±0.04 0.79±0.01

Waterfall model’s performances
Dataset N° data Model Params. Train acc. Test acc.
Galaxy 6 WFWF3 36 0.70 ±0.12 0.63±0.06
Galaxy 10 WFWF3 36 0.78±0.07 0.60±0.05
Galaxy 20 WFWF3 36 0.60±0.07 0.64±0.05
Galaxy 30 WFWF3 36 0.65±0.05 0.58±0.05
Galaxy 40 WFWF3 36 0.63±0.05 0.58±0.02
Galaxy 50 WFWF3 36 0.55±0.10 0.52±0.13

79



Mixed model’s performances
Dataset N° data Model Params. Train acc. Test acc.
Galaxy 6 RLWF3 36 0.60 ±0.34 0.58±0.21
Galaxy 10 RLWF3 36 0.72±0.21 0.68±0.10
Mnist 20 RLWF3 36 0.76±0.02 0.72±0.02
Mnist 30 RLWF3 36 0.75±0.02 0.73±0.03
Mnist 40 RLWF3 36 0.74±0.05 0.74±0.03
Mnist 50 RLWF3 36 0.75±0.04 0.75±0.02
Galaxy 6 WFRL3 36 1.00 ±0.00 0.68±0.07
Galaxy 10 WFRL3 36 0.88±0.12 0.67±0.04
Mnist 20 WFRL3 36 0.80±0.08 0.66±0.03
Mnist 30 WFRL3 36 0.76±0.02 0.67±0.04
Mnist 40 WFRL3 36 0.71±0.17 0.59±0.10
Mnist 50 WFRL3 36 0.79±0.02 0.68±0.03

RLCZ model’s performances
Dataset N° data Model Params. Train acc. Test acc.
Galaxy 6 RLCZ3 36 0.87 ±0.12 0.77±0.04
Galaxy 10 RLCZ3 36 0.88±0.07 0.75±0.04
Galaxy 20 RLCZ3 36 0.71±0.04 0.76±0.03
Galaxy 30 RLCZ3 36 0.72±0.23 0.66±0.15
Galaxy 40 RLCZ3 36 0.76±0.08 0.76±0.03
Galaxy 50 RLCZ3 36 0.80±0.07 0.71±0.05

WFCZ model’s performances
Dataset N° data Model Params. Train acc. Test acc.
Galaxy 6 WFCZ3 36 0.76 ±0.17 0.64±0.10
Galaxy 10 WFCZ3 36 0.66±0.08 0.62±0.07
Galaxy 20 WFCZ3 36 0.62±0.20 0.58±0.13
Galaxy 30 WFCZ3 36 0.71±0.07 0.71±0.04
Galaxy 40 WFCZ3 36 0.73±0.16 0.68±0.09
Galaxy 50 WFCZ3 36 0.74±0.06 0.67±0.07

80



QCNN model’s performances
Dataset N° data Model Params. Train acc. Test acc.
Galaxy 6 RLQCNN 42 0.90 ±0.13 0.73±0.02
Galaxy 10 RLQCNN 42 0.86±0.14 0.75±0.03
Galaxy 20 RLQCNN 42 0.74±0.08 0.75±0.02
Galaxy 30 RLQCNN 42 0.80±0.04 0.74±0.03
Galaxy 40 RLQCNN 42 0.79±0.07 0.73±0.03
Galaxy 50 RLQCNN 42 0.70±0.14 0.64±0.10
Galaxy 6 WFQCNN 42 0.80 ±0.12 0.58±0.08
Galaxy 10 WFQCNN 42 0.70±0.11 0.59±0.14
Galaxy 20 WFQCNN 42 0.77±0.07 0.56±0.07
Galaxy 30 WFQCNN 42 0.55±0.22 0.53±0.21
Galaxy 40 WFQCNN 42 0.66±0.06 0.68±0.06
Galaxy 50 WFQCNN 42 0.75±0.05 0.70±0.02

Figures

Figure 5.14: Ring-like feature map of 22 layers and Ring-like variational ansatz for
Galaxy. A meaningful improvement is visible: the accuracy on the test set surpasses the
80% threshold for certain number of training data-points.

81



Figure 5.15: Waterfall Waterfall model. An unexpected decreasing trend for both train
and test accuracy occurs even with more data-points.

Figure 5.16: Ring-like-QCNN model. Starting from a value over 70% of test accuracy, it
gets lower for a larger train set.

82



Figure 5.17: Waterfall-QCNN model. We can notice a significant growth of the test
accuracy for larger train sets, while for smaller ones it is still under 60%.

Figure 5.18: Ring-like Waterfall model. There is a high overlap between train and test
accuracy combined to a progressive trend that approaches 80%. For small train sets
either train and test accuracy have a high variance in common that considerably reduces
when more images are considered.

83



Figure 5.19: Waterfall Ring-like model. It is visible the rapid decline of the train accu-
racy, while the test accuracy follows the same progression smoothly.

Figure 5.20: Ring-like CZ model. The accuracy on the test set keeps close to almost
80%, even though we register a drop for 50 training data-points. We can notice that the
combination between the CZ circuits used as variational ansatz with the RL feature map
performs better with respect to the next model that uses the WF as feature map.

84



Figure 5.21: Waterfall CZ model. The unexpected smooth decrease of the test accuracy
from 6 to 20 images of training is overturned for 30 training data-points even though
the same trend is displayed for more images, while the train accuracy seems to slowly
increase.

85



(a) RL-QCNN model. (b) RLRL model.

Figure 5.22: As we can notice, surprisingly the QCNN ansatz does not generalize unseen
images as we expected from previous results5.6. On the other hand, the RLRL reaches
high performances and confirms to be a suitable candidate for generalization tasks like
the one we performed, even thought the results are lower than what we have obtained
from Mnist dataset.

(a) WFRL model. (b) RLWF model.

Figure 5.23: The reduction in features seems to not produce any improvements on the
WFRLmodel, as the lines remain almost flat. The accuracy obtained converge to almost
the same value within a certain range. The RLWF present unexpected behaviour, in
which even less-features images are difficult to generalize, as we can see by looking at
the red and dark-blue lines.

86



5.6 CNN

In this last section we made a CNN using Keras in order to make a comparison between
classical and previous quantum models. The adjective - fair - refers to the low number
of optimizing parameters the model is composed by. It is constructed by a couple of
single convolutional and pooling layers, with 36 learning parameters, a flatten and a
final dense layers. It has been realized with Tensorflow and it uses 20 epochs for each
training process. We performed the training, the final evaluation on the train and test
set, changing the images at each run, five times. In this way we collected an average
behaviour about its capacities of learning from few data. From the following pictures
5.24, the reader can see the ability of the classical model in optimizing the parameters.

(a) Loss function. (b) Accuracy.

Figure 5.24: Loss function and accuracy computed during the training process for the
classical CNN.

The first run starts from a high value of the loss function that is progressively reduced
in each iteration. This effect results in a value of the training accuracy closer to the 100%.
This should constitute a test bed with which to compare and try to improve the QNN
models. The train accuracy reaches very high values as we expected from such a well
studied model. In the picture presented below 5.25, we used again the Mnist dataset
composed of only 0 and 1 classes downscaled to 16x16 features for each picture. The
classical convolutional neural network has been subjected to the same main experiment
described at the beginning of 5.2 section. The figure 5.24 mirrors what we can observe
in the 5.25. The train accuracy, when more images are added to the training set, is
constantly 100% and the error is practically zero for each point. The test accuracy
instead, starts at 75% and surpasses 90% for only 50 training images. The initial presence
of over-fitting (a visible gap between train and test accuracy) is noticeably reduced when
the model is fed with more data-points. The ability of such NN relies in the fact that
it manages to optimize well the few parameters that are present within the network.
Unlike the QNNs, from what is depicted in the Appendix C.1 and C.2, the CNN seems

87



Figure 5.25: Train and test accuracy for the CNN model. For small train sets the over-
fitting is reduced when the train data is enlarged. For 50 images the train and test
accuracy become closer.

to find the best path to minimize the loss function without being stuck in local minima.
It seems that there is a completely different loss-landscape compared to what we have
found for the quantum models and this could potentially be responsible for the tangible
difference between the two types of devices, where we have used the same cost function
to evaluate the difference between the predicted and the actual classes for both models.

88



Figure 5.26: In this picture we tested the generalization abilities of the CNN, when each
digit-image composing the dataset is downscaled. Apart from the best performances
reached with 16x16 images, the sudden drop of the test accuracy when the data are
reduced to 12x12 and 6x6 features for image, manifests the inability encountered by the
classical model in generalizing new data. The only explanation here relies in the dataset
itself. Probably, for those resized data the model has seen difficult images to distinguish
and, due to the few number of optimizing parameters, it fails to make prediction. The
worst results we have obtained are due to the smallest resized set of 6x6 and 12x12
images. The unexpected result has came from the 8x8 resized pictures where we don’t
see a worsening, rather we observe a significant improvement on which we are not able
to give an answer. These last two will be compared more in detail with the QNNs.

89



Figure 5.27: Train and test accuracy trends for the CNN that has been trained on few
images of Galaxy dataset. The train accuracy, rather than Mnist showed in 5.25, starts
from a lower value below 50%. This indicates the difficulty encountered by the model
trained on this new dataset of learning from few data. To confirm this statement, we can
see how slowly the test accuracy converges to the training one, and the value achieved
by the latter surprisingly overcomes the 80% in one occasion.

Figure 5.28: Test accuracy for multiple Galaxy images reduced in features. As we can
observe, the 16x16 images are still difficult either for the CNN to be classified, while for
8 and 12 features the performances are still the same. Those referring to 6 features are
slightly worse.

90



5.6.1 Comparison

Figure 5.29: Comparison between each quantum model composed by the feature map
and variational ansatz circuits and the CNN. With the present histogram we want to
show the abilities of all the QNN models to generalize new data when the images are
considerably reduced in features.

The picture 5.29 depicts the test accuracy reached by each model for only 6 images
of training, when the images of the Mnist dataset are constituted by only 36 features.
The bars represent the average value performed on the 5 runs. The RL-CZ model has
reached the maximum value around 80% and is the best quantum architecture for the
image recognition with only a few number of pixels. Immediately afterwards there is
the WF-CZ circuit, followed by the RL-RL and the WF-RL models. From what we
can observe here, we can conclude that the Ring-like architecture and the CZ quantum
circuit are suitable candidates for the proposed experiment and could be tested for further
investigations in this field of research. We are surprised to see the CNN below the 50% of
accuracy on the test set. The result we have obtained is directly visible in the figure 5.26,
where the accuracy for a reduced-in-features dataset composed of 36 pixels converges to
the 50% and seems to not overcome it. This indicates the little value of features we have
used is strongly challenging even for the CNN. If for 144 features the accuracy improves
significantly as the number of images in the training increases, it does not seem to happen
for images of only 36 features, at least for few images. This comparison confirms our

91



initial hypothesis to obtain improved results by using quantum models when data are
furnished in a data-efficient way: with few items composed by less features.

Figure 5.30: It represents the same results we have got previously in the picture 5.29
with the only difference that here the Mnist dataset has been rescaled to 12x12 features.
The value of the bars indicates the accuracy on the test set when each model has seen
only 6 images of training. We notice the inability of the CNN (green bar) in generalizing
unseen data starting from less features images.

92



Figure 5.31: In this third histogram the RLRL and RLCZ architectures result the
best models for detecting galaxy fields, followed by the QCNN architecture together
with the RL feature map with images composed by 256 features. The results obtained
demonstrate how much the dataset has its effect on the generalization performance of
each model. Only 6 images of training for each model have been used to reach the test
accuracy represented as bars in the histogram.

93



Chapter 6

Conclusions

6.1 Achievements and limitations

The investigation about the possibility of making accurate predictions with few data, by
using quantum models, gave its results. From the starting experiment, we can conclude
that obtaining a high level of test accuracy is still a challenging task for the current
quantum neural networks proposed within the project. The value of accuracy obtained
in the test set is converging to an upper bound of approximately 80% for the best quan-
tum model in 5.2, while the value reached by the CNN is closer to 95% in 5.25. Already
at this point, there are no clear advantages of training QNNs, with less data, for im-
age recognition over classical models. Further exploration and research are essential in
the field to identify quantum neural network architectures and, consequently, quantum
circuits that are well-suited for image classification tasks. In addition, likewise we have
explained in 2.2.4, the impossibility for such devices to learn over a threshold can be a
consequence of the barren plateaus phenomena2.2.4. Moreover, increasing the number of
layers contained in the variational ansatz, including the number of learning parameters,
could be a possible way of studying the problem and verifying what advantages could
generate from such enriched architectures. This last statement is visible in the tables of
the second kind of experiment we performed 5.3, where, the more layers are added to
the variational ansatz, the more accurate the model is even to a lesser extent.
A possible way of getting better results could be expanding the variational parameterized
quantum circuit to include more quantum gates and parameters θ to optimize during
the training process. On the contrary, we would like to avoid deep quantum circuits
that are hard to be run by the available hardware. About that, the reader should take
into consideration the possibility of reducing the number of features that compose each
image to work with a shallower circuit, which is easy to simulate on classical computers
and run on quantum hardware.
The third task we have illustrated aims to show the advantage that can be gained from

94



it. A possible explanation for the difficulty encountered in the main experiment might
be related to the state preparation process. Turning classical data into quantum states
makes use of a specific circuit that could be as deep as depending on how many features
should be encoded into. Using many quantum gates could raise the quantity of errors
on the real quantum hardware where the circuit is executed. In the last experiment, in
order to circumvent the problem, we decided to challenge both quantum and classical
models by resizing all the train sets and generating images of 6x6, 8x8, 12x12, and 16x16
features. In this way, we tested their abilities when subjected to less-features pictures.
It has been demonstrated that quantum models could overcome simple classical CNNs
when predicting low-resolution images. As the plot 5.29 illustrates (and the following
5.30), for only 6 images of training, multiple QNNs surpass the convolutional neural
network during the test evaluation.
At this point, we can assert that the generalization from few data is possible if we refer
to the low number of features to include in the image the model is fed with. We have
proved that the quantum models can perform better when the pictures are considerably
resized to a low number of pixels which facilitates the model’s performance. This latter
argument cannot be applied to all circuits we have tested, but we can confirm the power
of the Ring-like (RL) variational quantum circuit that has overcome all the others. This
kind of circuit demonstrated itself as a good feature map and variational ansatz, when
combined with others. The QCNN, and CZ in particular, have shown good abilities
in generalizing data as well as the RL and they should be taken into consideration for
further experiments.
The last few words we should spend about the code reproducibility.
The main delicate part we got in trouble with was the measurement process. Once the
circuit has been created, we decided to use a pre-defined Qiskit’s class, CircuitQNN,
(followed by SamplerQNN ) to pass the feature map’s parameters and the variational
ansatz’s weights to the model’s instance that would have been trained on PyTorch, giv-
ing the loss function trend and the corresponding train accuracy at each step. Once the
process has finished, we evaluated the goodness of the model once on training, and once
on the test set. As we have mentioned, the CircuitQNN performs a global measure all on
the qubits and, thanks to an interpret function5.1.8, can extract the quantum state cor-
respondent to the learned parameters, and eventually the class of the image seen by the
model. In developing the QCNN architecture instead, we should avoid the global final
measurement, otherwise, the advantage behind such a device would fail, i.e. it wouldn’t
make sense to constantly reduce the number of qubits at each layer if we are going to
measure all of them. To tackle this apparent issue, we switched the neural network class
furnished by Qiskit and we have added a classical register composed of a classical bit,
where the measurement of a specific qubit (the last remaining one) is projected to. By
doing so, we were able to obtain the result coming from a measure performed on the last
qubit, emulating the flow of such a quantum model more faithfully. Our QCNN model
differs significantly from what is presented in [12]. In addition to considering the number

95



of layers and quantum gates within the circuit, the model under discussion involves a
measurement operation at each pooling layer. Specifically, after applying the quantum
convolutional layer, the pooling operation comprises a measurement on a designated
qubit, followed by the application of a unitary operation on the subsequent qubit based
on the output of the previous measurement.
However, this approach proved to be more challenging than anticipated. As a workaround,
we opted to simplify the process by applying controlled rotations at each pooling layer.
This involved considering fewer qubits once the layer was completed and performing
the final measurement on the last remaining qubit after the entire process. Notably,
we avoided measuring intermediate qubits and instead applied parameterized gates to a
reduced set of qubits (reduced by a factor of 2).

6.2 Future works

From the presented results we can assert that there is still a lot of work to be done in
order to efficiently adapt QNNs to solve complex problems in Machine Learning, relying
on less data. Initially, as already anticipated in 6.1, lots of different quantum circuits
could be mixed together and tested to obtain high predicting accuracy on new datasets.
Furthermore, new kinds of architectures such as quantum convolutional neural networks
based on [12] should be investigated more. For the current analysis, we suggest to
introduce other datasets and test the model’s generalization on them. As an example, it
would be useful to train the quantum models on set of data such as FashionMnist or
introducing different digits inside the process, to look for an initial bias that could affect
the final results. Roughly speaking, when we tested the abilities of each quantum model
on two well-separated classes of Mnist dataset, we usually faced the same problem on
the test set: one class (1 digits) has been completely correctly classified, the other one
(0 digits) was detected until 70− 75% of the actual 0-images more or less. This intrinsic
behaviour could be tackled by including different digit images, maybe less separated like
2 and 5, 3 and 8. By doing so, one could verify if the same trend occurs or not, detecting
a possible intrinsic bias. In this regard, it could be interesting to create a QNN suitable
for a multi-class SL problem, i.e. introducing all the 10 classes contained by Mnist
dataset and see what happens at the end. By following the logic explained in the 5.4, it
is suggested to significantly resize the images in order to look for an improvement of the
same kind we have showed in the last experiment and to facilitate the simulation process.
Moreover, it would be possible to apply classical dimensionality reduction techniques
as to use a lower number of qubits that allows us to expand the number of layers in
the variational ansatz without requiring too many computational resources during the
iteration. One additional idea could be to expand the problem’s complexity by using
RGB images instead of gray-scale, including more features and optimizing parameters
inside the feature map and the variational ansatz, but taking care to maintain the depth

96



of the circuit as low as possible. To conclude the idea behind a multi-class SL problem, we
recommend to use the adequate number of qubits required for the measurement process,
i.e. with 10 classes images, we need at least 4 qubits to span all the possible outcomes
of the measurement.
From the results we have obtained, it seems that the most prominent architecture able
to obtain high performances does not be completely quantum-based. Rather, it could
be an hybrid structure composed of quantum and classical parts combined together. In
this way we could in principle use complex images, add more features and parameters to
the model exploiting the enormous capacities of the convolutioanl layers to extract the
features. By a following pooling operation that has to be repeated several times we can
reduce the features used to feed the quantum node with the intent to use less qubits,
less quantum operations, but to exploit the superposition and the entanglement effects.
A further deepening around this field of research could be to study the abilities of such
a classical convolutional neural network with a quantum layer at the end[37].

97



Appendix A

The entanglement

Quantum entanglement is the phenomenon that occurs when a group of particles are
generated, interact, or share spatial proximity in such a way that the quantum state
of each particle of the group cannot be described independently of the state of the
others, including when the particles are separated by a large distance. The following
subsection focuses on the formalism of the entanglement, illustrating with some formulae
the mathematical concept behind that.

Pure states

Consider two arbitrary quantum systems A and B, with respective Hilbert spaces HA

and HB. The Hilbert space of the composite system is the tensor product

HA ⊗HB. (A.1)

If the first system is in state |ψ⟩A and the second in state |ϕ⟩B, the state of the composite
system is the tensor product between the two

|ψ⟩A ⊗ |ϕ⟩B. (A.2)

States of the composite system that can be represented in this form are called separable
states. Not all states are separable states, in fact fixing a basis |i⟩A for HA and a basis
|j⟩B for HB, the most general state in HA ⊗HB is of the form

|ψ⟩AB =
∑
i,j

cij|i⟩A ⊗ |j⟩B (A.3)

This state is separable if there exist vectors cAi , c
B
j such that cij = cAi c

B
j yielding to write

|ψ⟩A =
∑

i c
A
i |i⟩A and |ϕ⟩B =

∑B
j c

B
j |j⟩B. On the contrary, if the statement is false, i.e.

cij ̸= cAi c
B
j , state are called ”entangled states”. For example, given two basis vectors |0⟩A,

98



|1⟩A of HA and two basis vectors |0⟩B, |1⟩B of HB, the following state is an entangled

state:
1√
2
(|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B).

If the composite system is in this state, it is impossible to attribute to either system
A or system B a definite pure state. Another way to say this is that while the von
Neumann entropy of the whole state is zero (as it is for any pure state), the entropy of
the subsystems is greater than zero. In this sense, the systems are ”entangled”. The
above example is one of four Bell states, which are (maximally) entangled pure states
(pure states of the HA ⊗ HA space, but which cannot be separated into pure states of
each HA and HB).
Now suppose Alice is an observer for system A, and Bob is an observer for system B. If
in the entangled state given above Alice makes a measurement in the |0⟩, |1⟩ eigenbasis
of A, there are two possible outcomes, occurring with equal probability:

• Alice measures 0, and the state of the system collapses to |0⟩A|1⟩B;

• Alice measures 1, and the state of the system collapses to |1⟩A|0⟩B.

If the former occurs, then any subsequent measurement performed by Bob, in the same
basis, will always return 1. If the latter occurs, (Alice measures 1) then Bob’s measure-
ment will return 0 with certainty. Thus, system B has been altered by Alice performing
a local measurement on system A. The outcome of Alice’s measurement is random. Alice
cannot decide which state to collapse the composite system into, and therefore cannot
transmit information to Bob by acting on her system.

99



Appendix B

Data expansion

In this section we focus on the data preparation, especially we are going to illustrate how
we generated each data set and how they are broadened during each simulation. The
16x16 Mnist train dataset composed by 6 images, 3 belonging to the class 0, the others
to the class 1 are depicted in figures B.1 and B.2. Each set is correctly balanced, i.e.
chosen a number of items, half belong to the first class, the other half to the second one
in order to avoid any source of bias that can be induced by a non balanced set of data.
All the images in the B.1 are randomly contained in the successive dataset of 8 items
displayed in B.2. In this case, the seed is the same for the two datasets which differ only
in the number of elements that are made of. By creating five different versions for each
of the six train sets we can obtain an average behaviour of the train and test accuracy of
a specific model. Note that the corresponding label below each digit refers to the exact
class of the image, i.e. the true label. All of these figures are not contained in the
test set, since the model should be able to generalize data it has not seen yet and the
experiment is to match as many labels as possible to the random test images that are
selected each time. The beauty of working with a dataset such as Mnist is that we have
a large number of possible items available that can be selected randomly after a shuffle
that we have introduced in the data collection.

100



Figure B.1: 16 x 16 Mnist training data with 6 images.

Figure B.2: Expansion of the dataset: the 6 images contained in the picture above are
still contained in this new dataset, according to the chosen seed.

101



The effect of the downsampling

Figure B.3: 12x12 Mnist dataset.

Figure B.4: 8x8 Mnist dataset.

102



The effects of binarization

Figure B.5: Non-binarized galaxies.

Figure B.6: Binarized galaxies.

103



Appendix C

Training process

Quantum

In this section we have depicted the progression of the loss and train accuracy during
each run of each training process we have performed. We have set 20 epoches and a
batch size equals to 1 as each model will see only one image before updating the learning
parameters. The two figures represented below, C.1 and C.2, show the progression of loss
and accuracy functions during the training phase of a specific model: here the QCNN

Figure C.1: Multiple loss functions corresponding to each run the model has been trained
with. Despite a global descending behaviour, there is an unexpected jump, meaning that
the loss has fallen into a local minima, behind which the loss landscape grows up again.

104



Figure C.2: The figure displays the behaviour of the accuracy during the training process.
It reflects the loss trend, suddenly decreasing in the run n°1, meaning of the presence of
a local minima in that point. Despite the issue encountered near the step 9, it can be
said that globally the training accuracy increases as we would expect. After the training
process, the model will be evaluated on the larger test set.

ansatz together with the Ring-like feature map with 22 layers with 50 images of training
has been chosen and printed to illustrate the main part of the learning process. As it’s
possible to notice, in the first picture C.1 we visualize a - common - decreasing trend
of the loss function for each run, apart from the number 1. The sudden jump that
characterizes the second run in the vicinity of the 10th step.

105



Appendix D

QCNN measurement

Here we would like to quickly show the effects of the measurement operation on the same
QCNN architecture used to classify images here. As reported in 4, this kind of QCNN
inspired from [12], has been tested twice in order to see what changes in the generalization
performances by measuring different qubits from which to extract the best parameters
that undergo optimization. As the picture portrays in D.1, we have emphasized the
single-qubit measurement by representing it within the figure. Instead of conducting a
global measurement on all the qubits, we introduced a single-qubit measurement, which
is passed in the SamplerQNN class and utilized for making predictions at the conclusion
of the process. In the specific circuit discussed, we explicitly display the single classical
bit where the measurement result is collected. However, for the other circuits in 4,
we have omitted the mention of the eight classical bits, although they are implicitly
understood. In this approach, we abstained from using the parity interpreter. Given
that only one qubit is measured, we can observe only two possible single states, namely
|0⟩ and |1⟩. Consequently, the parity would merely tally the occurrences of zeros and
ones within the state without distinguishing between even or odd, as determining the
parity of an 8-qubit state (which would be 28 states) is impossible with a measurement
on a single qubit. The following image illustrates the impact on test accuracy when both
a measure-all and a single-qubit measurement are executed within the same circuit. We
opted to use the Galaxy dataset for testing, as the experiment took considerable time to
run. To expedite the process, we selected a less complex dataset compared to Mnist,
namely the Galaxy dataset.

106



Figure D.1: Utilizing the same architecture as in 4.4, this variant involves measuring only
qubit 0, and the prediction is solely derived from this measurement. The measurement
result is stored in a single classical bit, which is then employed to make predictions on
new data. In the context of binary classification, a single qubit is adequate to yield
a state that can be either |0⟩ or |1⟩, corresponding to the two classes of images under
consideration. However, for a multi-class problem, it is essential to consider the precise
number of classes for prediction and adjust the number of specific qubits accordingly. In
this regard, denoting X as the number of classes to detect at the end of training, the
required number of qubits for measurement would be n = log2X.

107



Figure D.2: In the figure we have represented the test accuracy for the QCNN with
the measure all instruction as the red line, while the one coming from the measurement
performed only on the qubit 0 (i.e. the last qubit remained in the circuit) as the blue
line. We can see that, by measuring only one qubit, even though make much more sense
for such an architecture that reduces the number of qubits by a factor of two in each
layer, doesn’t improve the performances.

108



Appendix E

Plots

Here we display the plots we have omitted in the section 5.2 for the Mnist data.

(a) RLRL-1 layer model. (b) RLRL-2 layers model.

Figure E.1: Train and test accuracy trend for the architectures that use Ring-like circuit
for feature map either for ansatz. It is visible a discrete convergence between the two
functions that results in a progressively reduction of the over-fitting. We can then notice
the effect of adding more layers (and variation parameters) to the circuit which permits
of obtaining a better generalization accuracy.

109



(a) WFWF-1 layer model. (b) WFWF-2 layers model.

Figure E.2: Train and test accuracy trend for the architectures that use Waterfall circuit
for feature map either for ansatz. The left-hand side plot shows a reduced over-fitting.
The test accuracy of both plots are not sufficiently able to surpass the 70% threshold.

(a) RLWF-1 layer model. (b) RLWF-2 layers model.

Figure E.3: Mixed architecture composed by the Ring-like feature map and the Waterfall
variational ansatz. They start from 60% of accuracy but do not make considerable
improvements during the course of the training even when an additional layer is inserted
within the parameterized quantum circuit. Additionally, the left-hand side QNN shows
a flat trend in the train accuracy, which usually differs significantly with respect to the
test accuracy, aiming the learning process is difficult for this kind of device.

110



(a) WFRL-1 layer model. (b) WFRL-2 layers model.

Figure E.4: Train and test accuracy trend for the architectures that use Waterfall circuit
for feature map and Ring-like for ansatz. The right-hand figure we observe an unexpected
decreasing accuracy for larger sets of data. The left-hand side seems to not be able to
generalize unseen data after has been trained with more data-points.

111



With the hope that this thesis has been of interest for the reader, I would like to
strongly thank multiple people that has made part of my two-years university course.
The first person I would like to thank is myself, which is the one that has has been the
protagonist of this long course and he made his way from all the difficulties that the
university could generate: from the amount of study, to having to take the train to reach
the lesson location. I dedicate it to me, the only person who above all and everything
has always believed in successfully completing this course, knowing himself and his weak-
nesses. Subsequently, I’d like to thank all my family: my mother, my father and my
strong sister who accompanied me without ever leaving me alone, supported me anyway
and anytime, they who cheered me up when I had bad days, but they knew how to con-
gratulate me after good days and good results, and gave me the opportunity to conclude
this study. Another person who deserves to be here in this list is my girlfriend, who
supported me anytime, showing her total kindness in listening to my preparation before
an exam, even though she is not interested on this subject. I will always be grateful to
her for the time, patience and the commitment she manifested to me. I have also met
a wealth of people during the university which I will never forget, and for this purpose
I explicitly want to thank to all of them. In particular, I have bonded a lot with some
people who I want to mention here, but referring to them with the initial letter of their
name to avoid possible embarrassment and above all to keep the mystery alive. Thanks
to the smart, admirable and super-kind Mr. A., whom was a Physics’ mate I have met
after a QFT lesson, but now he’s a friend and whom I keep in touch daily, I discuss, I
have fun, I torment him with doubts, requests, perplexities, etc. Thanks to another smart
guy, Mr. Ch., for whom I have strong admiration, who helped me a lot and with whom I
had different conversations. Thanks to one of the best Chess-player I’ve ever met during
my long and endless career, Mr. M., genius, polite, good friend, Caro-Kann expert and
totally feel in love with Quantum. Last but not least, thanks to Mr. A. who has deeply
transferred the passion for Computer Science that I have hidden inside myself, covered
by lots of stones I have finally dropped out. Another beautiful and smart person who I’d
like to know more. Thanks to one of my friend, known for being a tireless walker, who
supported and encouraged me to aim high and forward in the last period, thanks Mr. F.
(Ch. are the initial letters of his nickname). Thanks to the University that gave me the
opportunity to grow and to meet smart and curious people that have influenced me during
my career. Thanks to the University where I got in contact with high competent profes-
sors. Ultimately, great thanks to professor Lodi, great thanks to Antonio, great thanks
to Riccardo, great thanks to Filippo (to whom a special mention goes) and great thanks
to the guys within the group of research in QML (Supreeth, Matteo and Simone) who
helped me a lot during the research, have always been very helpful and have transmitted
the passion and curiosity aim to pursuit this career in Science.
Thanks to all of you that left me something.

FAV.

112



Bibliography

[1] Amira Abbas, David Sutter, Alessio Figalli, and Stefan Woerner. Effective dimen-
sion of machine learning models. arXiv preprint arXiv:2112.04807, 2021.

[2] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and
Stefan Woerner. The power of quantum neural networks. Nature Computational
Science, 1(6):403–409, 2021.

[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a
convolutional neural network. In 2017 international conference on engineering and
technology (ICET), pages 1–6. Ieee, 2017.

[4] MV Altaisky. Quantum neural network. arXiv preprint quant-ph/0107012, 2001.

[5] Davis Arthur et al. A hybrid quantum-classical neural network architecture for
binary classification. arXiv preprint arXiv:2201.01820, 2022.

[6] Marco Ballarin, Stefano Mangini, Simone Montangero, Chiara Macchiavello, and
Riccardo Mengoni. Entanglement entropy production in quantum neural networks.
Quantum, 7:1023, 2023.

[7] Leonardo Banchi, Jason Pereira, and Stefano Pirandola. Generalization in quantum
machine learning: A quantum information standpoint. PRX Quantum, 2(4):040321,
2021.

[8] Kerstin Beer. Quantum neural networks. arXiv preprint arXiv:2205.08154, 2022.

[9] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,
and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.

[10] Matthias C Caro, Hsin-Yuan Huang, Marco Cerezo, Kunal Sharma, Andrew Sorn-
borger, Lukasz Cincio, and Patrick J Coles. Generalization in quantum machine
learning from few training data. Nature communications, 13(1):4919, 2022.

113



[11] Marco Cerezo de La Roca, Akira Sone, Kunal Sharma, Tyler Volkoff, Lukasz Cincio,
and Patrick Coles. Barren plateaus in quantum neural networks. In APS March
Meeting Abstracts, volume 2021, pages S32–008, 2021.

[12] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural
networks. Nature Physics, 15(12):1273–1278, 2019.

[13] Alexandr A Ezhov and Dan Ventura. Quantum neural networks. Future Directions
for Intelligent Systems and Information Sciences: The Future of Speech and Image
Technologies, Brain Computers, WWW, and Bioinformatics, pages 213–235, 2000.

[14] Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita. Deep learning-
based image recognition for autonomous driving. IATSS research, 43(4):244–252,
2019.

[15] Sanjay Gupta and RKP Zia. Quantum neural networks. Journal of Computer and
System Sciences, 63(3):355–383, 2001.

[16] Thomas Hubregtsen, Josef Pichlmeier, Patrick Stecher, and Koen Bertels. Eval-
uation of parameterized quantum circuits: on the relation between classification
accuracy, expressibility, and entangling capability. Quantum Machine Intelligence,
3:1–19, 2021.

[17] Tak Hur, Leeseok Kim, and Daniel K Park. Quantum convolutional neural network
for classical data classification. Quantum Machine Intelligence, 4(1):3, 2022.

[18] Radmila Jankovic. Classifying cultural heritage images by using decision tree clas-
sifiers in weka. In Proceedings of the 1st international workshop on visual pattern
extraction and recognition for cultural heritage understanding co-located with 15th
Italian research conference on digital libraries (IRCDL 2019), Pisa, Italy, pages
119–127, 2019.

[19] Joseph-Maria Jauch. The problem of measurement in quantum mechanics. Helv.
Phys. Acta, 37(CERN-TH-389):293–316, 1964.

[20] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

[22] Ankit Kulshrestha and Ilya Safro. Beinit: Avoiding barren plateaus in variational
quantum algorithms. In 2022 IEEE International Conference on Quantum Com-
puting and Engineering (QCE), pages 197–203. IEEE, 2022.

114



[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[24] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet, 20(5):14, 2015.

[25] Antonio Macaluso, Luca Clissa, Stefano Lodi, and Claudio Sartori. A variational al-
gorithm for quantum neural networks. In Computational Science–ICCS 2020: 20th
International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceed-
ings, Part VI 20, pages 591–604. Springer, 2020.

[26] Stefano Mangini. Variational quantum algorithms for machine learning: theory and
applications. arXiv preprint arXiv:2306.09984, 2023.

[27] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hart-
mut Neven. Barren plateaus in quantum neural network training landscapes. Nature
communications, 9(1):4812, 2018.

[28] Iftikhar Naseer, Sheeraz Akram, Tehreem Masood, Arfan Jaffar, Muhammad Adnan
Khan, and Amir Mosavi. Performance analysis of state-of-the-art cnn architectures
for luna16. Sensors, 22(12):4426, 2022.

[29] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum infor-
mation. Phys. Today, 54(2):60, 2001.

[30] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum infor-
mation, 2010.

[31] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre.
Data re-uploading for a universal quantum classifier. Quantum, 4:226, 2020.

[32] Maniraman Periyasamy, Nico Meyer, Christian Ufrecht, Daniel D Scherer, Axel
Plinge, and Christopher Mutschler. Incremental data-uploading for full-quantum
classification. In 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE), pages 31–37. IEEE, 2022.

[33] Bob Ricks and Dan Ventura. Training a quantum neural network. Advances in
neural information processing systems, 16, 2003.

[34] Maria Schuld. Supervised quantum machine learning models are kernel methods.
arXiv preprint arXiv:2101.11020, 2021.

[35] Maria Schuld and Francesco Petruccione. Supervised learning with quantum com-
puters, volume 17. Springer, 2018.

115



[36] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a quantum
neural network. Quantum Information Processing, 13:2567–2586, 2014.

[37] Alessandro Sebastianelli, Daniela Alessandra Zaidenberg, Dario Spiller, Bertrand
Le Saux, and Silvia Liberata Ullo. On circuit-based hybrid quantum neural networks
for remote sensing imagery classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 15:565–580, 2021.

[38] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entan-
gling capability of parameterized quantum circuits for hybrid quantum-classical al-
gorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.

[39] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in the gym: a
variational quantum algorithm for deep q-learning. Quantum, 6:720, 2022.

[40] Andrew Steane. Quantum computing. Reports on Progress in Physics, 61(2):117,
1998.

[41] Matthew Stewart. Simple introduction to convolutional neural networks. Towards
Data Science, 27, 2019.

[42] Farrokh Vatan and Colin Williams. Optimal quantum circuits for general two-qubit
gates. Physical Review A, 69(3):032315, 2004.

[43] ShiJie Wei, YanHu Chen, ZengRong Zhou, and GuiLu Long. A quantum convolu-
tional neural network on nisq devices. AAPPS Bulletin, 32:1–11, 2022.

[44] Chen Zhao and Xiao-Shan Gao. Qdnn: Dnn with quantum neural network layers.
arXiv preprint arXiv:1912.12660, 2019.

116


	Introduction
	Background
	Elements of Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement learning
	Neural Networks and Deep Learning
	A common issue: over-fitting
	Convolutional Neural Networks (CNN)

	Elements of Quantum Computing
	Quantum bits
	The postulates of Quantum Mechanics
	Quantum computation
	Quantum Machine Learning


	Related works
	Methods
	Feature map
	Ring-like architecture
	Waterfall architecture

	Variational ansatz
	Mixing architectures
	CZ circuit
	QCNN-like circuit
	Characteristics


	Settings and experiment
	Experimental settings
	Framework
	Dataset
	Dataset preparation
	Metrics, loss, optimizer and interpret function
	Metrics
	Loss
	Optimizer
	Interpret function

	Results
	Generalization with few images
	Tables of results: MNIST
	Figures

	Accuracy vs number of layers
	Generalization from less features
	Galaxy results
	CNN
	Comparison


	Conclusions
	Achievements and limitations
	Future works

	The entanglement
	Data expansion
	Training process
	QCNN measurement
	Plots

