Addressing Misinformation Challenges in War Scenario: Russo-Ukrainian War

Ivasiuk, Bogdan (2023) Addressing Misinformation Challenges in War Scenario: Russo-Ukrainian War. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

This study introduces a new dataset focused on the analysis of fake news, misinformation, and the assessment of similarity between newspaper articles related to the large-scale Russian invasion of Ukraine, effectively constituting a war between the two countries. Leveraging advanced Natural Language Processing (NLP) techniques, the research aims to thoroughly examine the public narrative of the events associated with this invasion and, consequently, the creation of the dataset under investigation. The analysis seeks to provide a subjective evaluation of various journalistic sources reporting on the most significant events. In essence, this work offers a detailed presentation of the studied events and dataset characteristics, providing an overview of the NLP techniques employed to explore article similarity and the methods used for propaganda detection. Importantly, this work represents only a first step toward our ambitious goal and, hopefully, will encourage further research in this direction.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Ivasiuk, Bogdan
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
NLP,misinformation,FakeNews,Newspaper,Ukraine,War,RussianInvasion,BERT,Propaganda,Similarity
Data di discussione della Tesi
16 Dicembre 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^