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Abstract

The nature of dark matter remains one of the fundamental quests of modern physics. One of its

simplest explanations is based on the assumption that a large amount of DM is made of black

holes of primordial origin (PBHs). Such an explanation is compelling since it does not rely on the

existence of new particles or some modification of the gravitational interaction. PBHs can form

from the collapse of large density perturbations in the early universe, that could have formed from

the inflaton fluctuations. An amplification of these fluctuations of several orders of magnitude with

respect to those probed by Cosmic Microwave Background (CMB) radiation is necessary to trigger

the collapse. In this work, two different scenarios of amplification are studied. First, we analyze

the case of a minimally coupled inflaton. The reconstruction of a class of potentials leading to an

amplification is discussed and then we study the resulting spectrum and the dynamical features of

the amplification for different potentials. The same study is then employed for the more general

scenario of a non-minimally coupled inflaton, restricting the analysis, for simplicity, to the induced

gravity case. In this context, we used the superpotential method to reconstruct the form of a

potential leading to a spectrum amplification. In both cases, we build complete models of inflation

that account for the constraints of CMB observations at larger scales and the requirements for PBH

production at smaller scales. Finally, we compared the models analyzed to some of the recent PTA

data sets analysis and we obtained that some inflationary models are mildly favoured w.r.t. others

in fitting the constraints for the production of SIGW.
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Introduction

One of the key ideas of modern cosmology is inflation, an epoch of accelerated expansion in the

very early stages of the universe, when some scalar field potential, or vacuum, energy dominated

other forms of energy, such as matter or radiation. This phase has important consequences for

being able to address many unsolved puzzles of the Hot Big Bang model, e.g. the “flatness” and the

“horizon” problems. Moreover, it was soon realized that this epoch of quasi-exponential expansion

provides also an explanation for the quantum mechanical origin of structures such as galaxies and

the anisotropies in the Cosmic Microwave Background (CMB) radiation. In the last two decades,

the advances in observational cosmology and, in particular, the observations of the CMB and the

large-scale structures (LSS) of our universe have so far confirmed the predictions of inflation [1]. For

these reasons, the inflationary scenario is arguably established as the main theoretical framework

describing the very early universe.

However, our knowledge of inflation is restricted to observations of the largest cosmological

scales today (10−4−10−1 Mpc−1), corresponding only to a small fraction of the early evolution of the

universe. Hence, while inflation provides us with a consistent, testable framework for understanding

the initial conditions in the universe, we do not have direct access to most of the inflationary

dynamics, and to the universe’s evolution in the early post-inflationary era. Nevertheless, these

stages could be a crucial environment for several interesting phenomena, including the production

of stable relics such as dark matter (DM) that is essential for understanding the universe we observe

today and possibly connects to new physics. In particular, the existence of some form of non-

luminous, cold dark matter (CDM) that constitutes a quarter of the total energy budget of the

universe [1] seems one of the most indisputable piece of evidence beyond the Standard Model

physics. Despite the acknowledged relevance of this topic, we are still far from understanding the

physical processes at the heart of dark matter formation and direct signatures from experimental

searches are still missing.

In this thesis, we give some introductory notions about one of the most straightforward and

simple explanations of this topic, illustrating a possible scenario in which DM is composed of

compact objects, such as primordial black holes (PBHs). The idea that black holes could have

formed in the early universe dates back to the late 1960’s by the pioneer works of Y. Zel’dovic

and I. Novikov [2] and to the early 1970’s in a paper by S. Hawking [3]. The first ideas in this

direction began suggesting that PBHs could be formed by the gravitational collapse of over-dense

inhomogeneities that originated in the early universe. In the mid-’70s, it was later realized by the

works of B. Carr [4] and G. Chapline [5] that PBHs could contribute to DM density and provide

the seeds for the supermassive BHs populating our universe. Following this theoretical progress, the
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first formation scenarios in the context of inflation were proposed in the 1990’s, but usually led to

evaporating PBHs, with very small masses. The interest of the scientific community in PBHs has

risen by the reported detection of micro-lensing events from MACHO collaboration [6], suggesting

the possibility that a significant fraction of mass density in our galaxy could be composed of sub-

solar mass PBHs. However, this hypothesis was later found invalid by the results of EROS [7] and

OGLE [8, 9] collaborations, concluding that only a small fraction of masses in the Milky Way could

be in the form of PBHs.

Since the first detection of gravitational waves from merging BHs by the LIGO/VIRGO col-

laborations [10], a second surge of interest in PBHs was ignited. Different groups suggested that

merging of PBHs could be responsible for some of the observed GW signals while constituting a

fraction of DM density in our universe.

The general assumption, not clashing with present cosmological data is that PBHs formed well

before the end of the radiation-dominated era (i.e. before the so-called matter-radiation equality),

and behave like cold and collision-less matter. In particular, they constitute viable DM candidate

if they are massive enough Mpbh ≳ 10−15 g ≃ 10−18M⊙, to have a lifetime similar with that of our

universe. A particularly compelling feature of PBH dark matter is its “economical” origin, in the

sense that this scenario does not require any additional physics beyond the Standard Model, apart

from a mechanism for the production of large energy density fluctuations.

Similarly to the generation of CMB anisotropies, a “natural” source of these large perturbations

in the early universe could be the quantum fluctuations of the inflaton field that are stretched

outside the horizon during inflation. However, to generate such over-dense regions that can collapse

to form PBHs in the post-inflationary universe, one needs a particular phase of the inflationary

evolution which enhances by several orders of magnitude the inflationary perturbations at small

length scales, k ≫ kCMB, far below the scales imprinted in the CMB. The microscopic physics that

originates such a mechanism of amplification is still debated. For example, the amplification needed

can be generated by a phase of ultra slow-roll (USR) in the presence of an inflection point of the

inflaton potential [11]. This USR phase is a transient period of the inflationary evolution, when

slow-roll conditions are violated, and the inflaton relaxes towards a de Sitter attractor. In contrast

to the evolution of the fluctuations imprinted in the CMB, the perturbations which exit the horizon

during an USR phase (see References in [12]) do not freeze due to the presence of a growing solution

of the Mukhanov-Sasaki (MS) equation. Such a growing solution may then be responsible for the

amplification of the perturbations. Many other possibilities have been considered in the literature.

In particular, for single-field models of inflation, a blue-tilted spectrum with a large amplification

can also be obtained without the presence of the growing solution (e.g. [13, 14]).

Another interesting fact, related to the production of PBH, is the emission of the so-called

scalar-induced gravitational waves (SGIWs). The detection of gravitational waves (GWs) represents

a unique opportunity to study the physics of large-scale structures and non-linear gravity regimes.

Recently some progress has been made in detecting the stochastic background of gravitational waves

in the range of 10 nHz. Such a background has been observed by four pulsar timing array (PTA)

collaborations, namely NANOGrav [15, 16], PPTA [17, 18], EPTA [19, 20], and CPTA [21]. These

data provide valuable insights into the astrophysical origins of GWs, such as the merging of binary
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black holes. However, this signal can be also evidence of the emission of scalar-induced gravitational

waves (SIGW), which can be originated by the collapse of PBHs.

In this work, we principally analyze two different mechanisms to generate a sufficient enhance-

ment of the inflationary spectrum in single-field inflationary models. The content of this master

thesis is organized into four Chapters:

• Chapter 1: We first recall the basic properties of the Friedmann-Robertson-Walker space-

time, and the standard Hot Big Bang model. We then discuss the principal shortcomings

of the theory, which motivate the introduction of inflation. We then illustrate the theory of

cosmological perturbations and show how quantum fluctuations in the early stages of inflation

can be generated and described by an appropriate quantization scheme.

• Chapter 2: We first present a concise review of the present knowledge about PBHs and we

conclude by discussing their formation in the inflationary universe, giving some approximate

estimate for the required conditions to produce PBHs from the perspective of inflationary

dynamics and as DM candidates.

• Chapter 3: We first illustrate the general features of the amplification mechanisms in the

scenario of single-field inflation. We initially introduce a model-independent description of

the dynamics of inflationary perturbations in generic gravity models. Then, we illustrate how

to reconstruct an inflaton potential from a given evolution of the Hubble parameter, leading

to an amplification of the inflationary perturbations. Then we perform a stability analysis

of the analytical solutions found and we build complete models of inflation, exploiting the

previously determined potential, which lead to significant PBH production. We compared the

results obtained from our inflationary models to a recent analysis, constraining the shape of

the primordial spectrum using the PTAs dataset.

• Chapter 4: In the last part we consider a different framework, the case in which inflation

takes place in a modified gravity model, in which the inflaton is non-minimally coupled to

gravity. For simplicity, we consider the Induced Gravity case which is particularly relevant due

to its connection with both Higgs and Starobinsky inflationary models. Since, the discovery of

the Higgs boson in 2012 [22], the possibility that inflation may be driven by a non-minimally

coupled Higgs field has been investigated in detail and the model proposed by [23] is among

those that best fit the latest Planck data [24]. We then study the amplification of perturbations

in the IG inflation model, focusing on several peculiar features related to the evolution of

cosmological perturbations. With the help of the superpotential method and in analogy

with the previous Chapter, we finally reconstruct a class of viable inflaton potentials for the

amplification of the power spectrum. Finally, we analyse the amplified scalar power spectrum

with the PTAs dataset as we did for the minimally coupled case.
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Chapter 1

Theory of Inflation

1.1 Homogeneous and isotropic universe

The modern theory of cosmology is based upon the

Copernican Principle. The reference system composed by the Earth does not represent a preferred

system in the universe.

In other words, it is reasonable to assume that the universe would appear to any other observers

identically as it looks for us. This kind of statement alone does not entail any practical consequences.

However, cosmologists usually rely on a simplifying assumption known as the

Cosmological Principle. The universe is spatially homogeneous and isotropic.

Isotropy is taken as an observational statement, while homogeneity derives from assuming this

property is independent of the observation point, according to the Copernican Principle. Results

from redshift surveys of the distribution of relatively nearby galaxies seem to imply that the uni-

verse isn’t homogeneous and isotropic. However, when we study the most distant objects we can

find at much larger distances from Earth, the structure appears to smooth out and become more

homogeneous on the largest scales. For example, the all-sky map of the locations of objects detected

by radio telescopes reveals a much more uniform appearance. These objects are mostly expected

to lie at higher redshifts, suggesting that when we consider the largest distance scales, the universe

appears to be homogeneous and isotropic. Thus, we currently find support for the Cosmological

Principle in the distribution of galaxies in the universe.

From a more technical standpoint, the Cosmological Principle implies that there exists a slicing

of space-time with spatial slices Σt that are maximally symmetric spaces, i.e. they have the max-

imum number of Killing vectors [25]: 3 generating spatial translations and 3 generating rotations.

Therefore, we are uniquely led to the Friedmann-Lemaitre-Robertson-Walker (FLRW) line element

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 − sin2 θ dφ2

)]
, (1.1.1)

where a(t) is the cosmic-scale factor of the universe and k is the curvature signature, that determines

the inherent geometry of space. The coordinates r, θ and φ are usually referred as comoving
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coordinates, since an observer at rest at a given point in space (r, θ, φ) will remain there if there are

no external forces, while t is generally called cosmic time, and it is the proper time of such observer.

We can always rescale our radius-like coordinate r in order to have the constant k equal to −1,

0 or +1, corresponding to an open, flat and closed universe, respectively. Physical and comoving

distances are then connected through the scale factor a, which determines the time evolution of the

universe, hence

Physical distance = a(t) × comoving distance . (1.1.2)

In order to understand how a(t) evolves, we need to solve the equations that control the dynamics

of the metric. The evolution of the scale factor a(t) is governed by the Einstein field equations [25]

Rµν −
1

2
Rgµν ≡ Gµν = 8πGTµν , (1.1.3)

where Rµν is the Ricci tensor, R is the Ricci scalar and Tµν is the energy-momentum tensor. In

particular, working with the homogeneity and isotropy assumptions, we can approximate the matter

content of the universe (i.e. anything except the gravitational field) with a perfect fluid filling up

the entire space. Hence, we assume that a perfect fluid is described by

Tµ
ν = diag(ρ, −p, −p, −p) , (1.1.4)

where ρ = ρ(t) is its energy density and p = p(t) is its pressure. The Einstein equations (1.1.3) then

reduce to the Friedmann equations

H2 ≡
(
ȧ

a

)2

=
1

3M2
p

ρ− k

a2
, (1.1.5)

Ḣ +H2 =
ä

a
= − 1

6M2
p

(ρ+ 3p) , (1.1.6)

where M2
P = (8πG)−1 is the Planck mass, H is called Hubble parameter and determines the rate

of expansion of our universe, and the dot stands for a derivative in the cosmic time t. In addition

to these two equations, we shall also include the continuity equation for our cosmic fluid, that is

the energy conservation equation for our source. This follows from the Bianchi identity ∇µG
µ
ν =

∇µT
µ
ν = 0:

dρ

dt
+ 3H(ρ+ p) = 0 . (1.1.7)

Indeed, the term 3Hρ reproduces the reduction in density due to the increase in volume, and the

term 3Hp is the reduction in energy caused by the thermodynamic work done by the pressure when

this expansion occurs. By defining the equation of state of the fluid as

p = ωρ , (1.1.8)

the energy conservation equation (1.1.7) becomes

ρ̇

ρ
= −3(1 + ω)

ȧ

a
=⇒ ρ ∝ a−3(1+ω) , (1.1.9)
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provided ω is constant. The most relevant types of cosmological fluids are:

• Dust: Non-relativistic particles that are only subjected to gravity. Without any other force

being active, the net pressure density of the fluid is null, leading to ω = 0. Then, the energy

density falls off as

ρD ∝ a−3 , (1.1.10)

which is related to the decrease in the number density of particles due to the expansion of the

universe.

• Radiation: In this case, the fluid satisfies the relation p = 1/3 ρ, that is in general valid for

any gas composed of relativistic particles. Setting ω = 1/3 in (1.1.9) simply gives

ρR ∝ a−4 . (1.1.11)

The result is the joint consequence of two effects, indeed, we have the dilution due to the

expansion of the universe V ∝ a−3, but also the redshift of the energy of the particles,

E ∝ a−1.

• Dark energy (Λ): The universe is dominated today by an exotic form of energy, with a

negative pressure, p = −ρ, and a constant energy density (ω = −1) scaling as

ρΛ ∝ a0 . (1.1.12)

Since dark energy does not dilute, there should exist some process of creation of energy as

the universe expands. This process does not violate energy conservation, as long as equation

(1.1.7) is satisfied.

One of the possible origins of this kind of exotic fluid is the vacuum energy of the empty

space itself. As the universe expands, more space is being created and this energy therefore

increases in proportion to the volume. In quantum field theory, such a “vacuum energy” is

actually predicted and is described by an energy-momentum tensor of the form

Tµν
vac = −ρvac gµν . (1.1.13)

Unfortunately, quantum field theory also predicts the value of vacuum energy ρvac to be much

larger than that inferred from cosmological observations. However, the origin of the dark

energy can also be associated with the old concept of “cosmological constant”, originally

introduced by Einstein to make the universe static. This term is usually understood as a

contribution to the energy tensor proportional to the space-time metric, hence

Tµν
Λ = − Λ

8πG
gµν ≡ −ρΛ gµν , (1.1.14)

which has the same form of (1.1.13). What we call “dark energy” identifies a more general

fluid whose equation of state may not be exactly that of a cosmological constant, ω ≈ −1,
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or may even change in time. Whatever dark matter really is, it plays a crucial role in the

standard cosmological model, the ΛCDM model.

We can use the Friedmann equation to relate the curvature of the universe to total energy density

and expansion rate:

Ω − 1 =
k

a2H2
, Ω =

ρ

ρcrit
, (1.1.15)

and define the critical density ρcrit ≡ 3H2/8πG. Such a critical density today is ρ
(today)
crit =

1.88h2 g cm−3 ≃ 1.05 × 104 eV cm−3. There is a one to one correspondence between Ω and the

spatial curvature of the universe:

ρ < ρcrit ⇐⇒ Ω < 1 ⇐⇒ k < 0 ⇐⇒ open universe , (1.1.16)

ρ = ρcrit ⇐⇒ Ω = 1 ⇐⇒ k = 0 ⇐⇒ flat universe , (1.1.17)

ρ > ρcrit ⇐⇒ Ω > 1 ⇐⇒ k > 0 ⇐⇒ closed universe . (1.1.18)

The curvature radius of the universe is related to the Hubble radius and Ω by

Rcurv =
H−1

|Ω − 1|1/2 . (1.1.19)

In physical terms, the curvature radius sets the scale where the effects of curved space become

“pronounced”. And in the case of the positively curved model, it is just the radius of the 3-sphere.

The energy content of the universe consists of matter, dark energy and radiation, principally

made by photons and neutrinos. Since the photon temperature is accurately known, T0 = 2.73±0.01

K, the fraction of critical density contributed by radiation is also known: ΩR h
2 = 4.2 × 10−5,

where h = 0.72±0.07 is the present Hubble rate in units of 100 km s−1 Mpc−1. In particular, recent

measurements of the cosmological parameters [1] tell us that the total energy density of the universe

is such that

Ωnow = 1.00+0.07
−0.03 , (1.1.20)

meaning that the present universe is spatially flat, or at least very close to flatness. Restricting to

this value Ω = 1, the dark matter density given by TT,TE,EE+lowE+lensing+BAO data sets [1] is

ΩDMh
2 = 0.11933 ± 0.00091 , (1.1.21)

and the baryon density

ΩBh
2 = 0.02242 ± 0.00014 , (1.1.22)

and finally, constraints on the matter energy density leads to the dark energy abundance

ΩΛ = 0.6847 ± 0.0073 . (1.1.23)

Assuming then, that the universe is flat, k = 0, the solution of the Friedmann Eq. (1.1.5) can

be easily found in terms of the dominant energy component. In particular, for a generic fluid
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characterized by an equation of state ω ̸= −1, we have

ρ ∝ a−3(1+ω) , a(t) ∝ t
2

3(1+ω) , (1.1.24)

while, in the case of a flat, cosmological constant dominated universe, ω = −1, we have

a(t) ∝ eH0t , (1.1.25)

where H0 =
√

Λ
3 . This last solution is called de Sitter universe, and it is believed to be a good

approximation to the evolution of our universe in both the far past and the far future.

1.2 Shortcomings of the Hot Big Bang model and Cosmic Inflation

We are now going to review some of the shortcomings of the Hot Big Bang model which consists

of assuming that the history of our universe has always been dominated by forms of matter with

ω ≥ 0. We will see that by this assumption, we are led to very non-natural initial conditions for

the evolution of the universe. In what follows we will briefly review the initial conditions problems

commonly dubbed as the “flatness problem” and the “horizon problem”. Let us note that they do

not indicate any logical failure Hot Big Bang scenario, rather, that very special initial conditions

are required for cosmological evolution to end with a universe that is qualitatively similar to ours.

1.2.1 Flatness Problem

If we look at equation (1.1.15) and assume for simplicity that the expansion is dominated by some

form of matter with equation state determined by ω, then, using Eq. (1.1.24), we can derive the

relations

Ω̇ = H(Ω − 1)(1 + 3ω) ,
∂Ω

∂ log a
= (Ω − 1)(1 + 3ω) . (1.2.1)

If we assume that ω > −1/3, then (1.2.1) shows that the solution Ω = 1 is a repulsive critical point:

if Ω > 0 at some point, it will continue to grow, vice versa, if Ω < 0, it keeps decreasing. For

instance, from

|Ω − 1| ∝ t2/3 dust domination , (1.2.2)

|Ω − 1| ∝ t radiaiton domination , (1.2.3)

we can clearly see that any deviation from pure flatness will be amplified in time as a power law.

The critical fact is that Ω is observed today to be constrained at a value very close to zero. Given

the matter content of the current universe, this means that at earlier times it sure was even smaller.

In particular from the evolution (1.1.15), we can make an attempt to obtain a rough estimate of Ω

at any time ti, relating it to the value of the temperature Ti of the universe at such time

|Ω − 1|t=ti

|Ω − 1|t=t0

=
(aH)2t=t0

(aH)2t=ti

≈
(
T0
Ti

)2

, (1.2.4)
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Figure 1.1: Spacetime diagram illustrating the concept of cosmological horizons. The particle horizon de-
scribes the maximal distance from which an observer can receive signals. These signals must lie in the past
lightcone of the observer. The event horizon is the maximal distance to which the observer can send signals
in the future.

where we indicate with t0 the reference time of the universe today, and with T0 = 2.73K ∼
10−13 GeV the observed CMB temperature. We have considered that the universe was prevalently

dominated by radiation, with H2 ∼ ρR ∼ a−4, and used the entropy density conservation [26],

to conclude that a ∼ T−1, where T is the temperature of the universe. Assuming that Einstein

equations are valid until the Planck era tP, when the temperature of the universe is TP ∼ 1019 GeV,

we have that
|Ω − 1|t=tP

|Ω − 1|t=t0

≈
(
T0
TP

)2

≈ O(10−64) . (1.2.5)

This is a remarkably small number, and in order to get the correct value of |Ω−1| at present times,

its value at the initial time must have been fine-tuned to values extremely near zero, but without

being exactly zero.

1.2.2 Horizon problem

The size of a causally-connected patch of space-time is determined by the maximum distance trav-

elled by light. We can estimate this, in comoving coordinates (η, r, θ, φ), where we introduce the

conformal time η =
∫

dt
a(t) . If the universe began at some time ti, then there is a maximum amount

of time for light to have travelled. A point sitting at the origin of space, by the time t could have

sent a signal at most to a point at coordinate distance dh given by

dh(η) = ∆r =

∫ t

ti

dt′

a(t′)
= η − ηi , (1.2.6)

where we used the differential relation ds2 = 0, that leads dr2 = a2(t)dt2 = dη2, and identified with

ηi the initial conformal time of the universe. This distance is the maximum coordinate distance a

particle could have travelled in the time interval [ti, t], and is called the comoving particle horizon.

The size of the horizon at time η may be visualized by the intersection of the past light cone of an

observer O with the spacelike surface ηi (see Fig. 1.1).
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Figure 1.2: Planck 2018 temperature power spectrum. This graph is taken from [27].

The comoving particle horizon can also be written as

dh =

∫ t

ti

dt′

a(t′)
=

∫ log a

log ai

d log a (aH)−1 , (1.2.7)

where ai corresponds to the Big Bang singularity at η = ηi. The causal structure of the spacetime

is hence related to the evolution of the comoving Hubble radius, (aH)−1. For a radiation (RDU)

or a matter dominated universe (MDU), the comoving Hubble radius is a monotonically increasing

function of time and the integral in (1.2.7) is dominated by the contributions from late times. In

particular, we can estimate that, for both cases, the comoving particle horizon is, indeed, approxi-

mately dh ∼ (aH)−1. In fact, in a MDU, we have that H2 ∼ ρM ∼ a3, for which the integral (1.2.7)

can be approximated as

dh =

∫ log a

log ai

d log a (aH)−1 ∼ a
1
2 ∼ (aH)−1 (1.2.8)

and a similar result can be obtained in the case of a RDU, in which H2 ∼ a−4.

According to the standard cosmology [26], once the universe cooled to the point that the for-

mation of neutral hydrogen was energetically favoured, photons of the primordial plasma decoupled

and started to move through the universe with a low probability of scattering and became essentially

free. This radiation is observed today as CMB, these photons decoupled on the so-called last scat-

tering surface (LSS), with a temperature TLSS ∼ 0.3 eV. Nowadays, the most precise measurement

of the CMB features comes from the Planck experiment, which reported a black body spectrum,

with temperature T0 ∼ 2.73K ∼ 10−13 GeV and temperature anisotropies ∆T/T0 of order 10−5.
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The maximal observable comoving distance we can observe today is determined by the comoving

radius of the last scattering surface:

RLSS = η0 − ηLSS =

∫ log a0

log aLSS

d log a (aH)−1 ∼ (aH)−1
0 . (1.2.9)

Indeed, before decoupling the universe was opaque. A given comoving scale λ on the last-scattering

surface subtends an angle

∆θ ≃ λ

RLSS
, (1.2.10)

where we have neglected tiny curvature effects. The comoving particle horizon at the last scattering

dLSS =

∫ log aLSS

log ai

d log a (aH)−1 ∼ (aH)−1
LSS , (1.2.11)

where we assumed that the universe was prevalently dominated by radiation until photons decou-

pled. Thus, two causally-connected points on the LSS have a maximal angular distance ∆θmax given

by

∆θ ≃ dLSS
RLSS

∼ (aH)0
(aH)LSS

∼
(

T0
TLSS

)1/2

∼ 1.8◦ , (1.2.12)

where we considered that after photon decoupling the universe was matter dominated, with (aH) ∼
a−

1
2 ∼ T

1
2 , and we used TLSS ≃ 0.3 eV and T0 ≃ 10−13GeV.1 This angular distance corresponds to

a multipole

lmax =
π

∆θmax
≃ 200 . (1.2.13)

We conclude that two photons, which on the last-scattering surface were separated by an angle

larger than ∆θmax, corresponding to a multiple smaller than lmax ≃ 200, were not in causal contact,

assuming the universe began in the radiation dominated phase. On the other hand, from Fig. 1.2 it

is clear that CMB is extremely isotropic for l ≪ 200. Photons at the LSS were causally disconnected

but shared the same temperature and this requires an extreme fine tuning of the initial conditions

of the universe in the absence of a causal origin.

1.2.3 Inflation idea: the shrinking Hubble sphere

The problems mentioned above seem to have a common root: in standard cosmology, the particle

content, satisfying ω > −1/3, leads to a time increasing comoving Hubble radius

(aH)−1 ∝ a
1
2
(1+3ω) =⇒ d

dt
(aH)−1 ∝ 1

2
(1 + 3ω)H a

1
2
(1+3ω) > 0 . (1.2.14)

Then, a simple solution could be to conjecture a phase in the evolution of the universe of decreasing

Hubble radius, occurred during the early times

d

dt
(aH)−1 < 0 ⇐⇒ ä > 0 ⇐⇒ ω < −1

3
. (1.2.15)

1Actually, fluctuations in the primordial plasma propagate at the speed of sound, which is slightly smaller than the
speed of light, cs = c/

√
3. The corresponding maximal angular distance is then ∆θs = ∆θ/

√
3 ≃ 1◦.
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Figure 1.3: Inflationary solution to the horizon problem. All points in the CMB have overlapping past light
cones and therefore originated from a causally-connected region of space.

We shall call this era inflation. The first implication in (1.2.15) is a direct calculation, while the

second follows from the second Friedmann equation (1.1.6):

0 < ä = − a

6MP
(ρ+ 3p) = − a ρ

6MP
(1 + 3ω) =⇒ ω < −1

3
. (1.2.16)

In this way, we can relate directly and solve both the flatness and horizon problems. We have

seen that the time evolution of the fraction of energy density |Ω − 1| (1.1.15) is determined by the

comoving Hubble horizon, if we simply consider a decreasing evolution of the latter for enough time,

the problem of flatness is directly solved.

Let us then consider the horizon problem. We have seen that the comoving particle horizon dh,

in standard Big Bang cosmology is dominated by the late times part of the integral (1.2.7). However,

if the Hubble radius is instead a decreasing function of time, then the integral (1.2.7) is dominated

by the early times part. In particular, assuming the scalar factor dependence in Eq. (1.2.14), we

have

dh(η) = η − ηi ∝
2

1 + 3ω

[
a

1
2
(1+3ω) − a

1
2
(1+3ω)

i

]
. (1.2.17)

Specifically we can set ηi = 0 for ai = 0 and get dh = η. We clearly notice that in the case of

inflation, ω < −1/3, the particle horizon receives most of its contribution from early times. In fact,

we have now

ηi ∝
2

1 + 3ω
a

1
2
(1+3ω)

i

ai→0, ω<− 1
3−−−−−−−−→ −∞ . (1.2.18)

In this way, the Big Bang singularity has been pushed to negative conformal times so that there

was actually much more conformal time between the singularity and the decoupling of the CMB

than we had in the previous framework. Fig. 1.3 shows the spacetime diagram. We denoted the

beginning and the end of inflation by ηi and ηf , respectively. If |ηf − ηi| ≫ η0 − ηLSS, where ηLSS

is the conformal time at the decoupling of the CMB, then the past light cones of widely separated
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point in the CMB had enough time to intersect, and in this way, there was enough time for heat

transfer to erase any initial difference in temperature.

Inflation, then, is supposed to be a period dominated by a form of energy with ω ≃ −1, or

equivalently H ≃ const. However, we need a mechanism capable of driving a period of the evolution

of the universe with such characteristics. The simplest one is based on the existence of a minimally

coupled homogeneous (∂iφ = 0) scalar field with a suitable potential. The total action of the

inflaton-gravity system can be

S = SEH + Sφ =

∫
d4x

√−g
[
−M

2
P

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.2.19)

The first term in (1.2.19) is the Einstein-Hilbert action of General Relativity (GR), while the second

one represents the action of a minimally coupled scalar field. The idea of inflation is to fill a small

region of the early universe with a homogeneously distributed scalar field sitting on top of its

potential V (φ). Let us calculate the evolution of the space-time. The scalar field stress tensor, that

can be obtained through the Noether theorem [25] is

Tµν = − 2√−g
δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂ρφ∂

ρφ+ V (φ)

)
. (1.2.20)

For a homogeneous field configuration, this leads to the following energy density and pressure

ρφ =
φ̇2

2
+ V (φ) , (1.2.21)

pφ =
φ̇2

2
− V (φ) , (1.2.22)

and therefore the equation of state of the inflatonic fluid is

ωφ =
pφ
ρφ

=
φ̇2

2 + V (φ)
φ̇2

2 − V (φ)
. (1.2.23)

If the potential energy dominates over the kinetic energy, we then have

φ̇2 ≪ V (φ) =⇒ ωφ ≃ −1 < −1

3
. (1.2.24)

In this way, we verified that a scalar field whose energy is dominant in the universe and whose

potential energy dominates over the kinetic term, gives the right condition for inflation to take

action.

Substituting ρφ and pφ in Eqs. (1.1.5, 1.1.6), and considering a flat FLRW spacetime (k = 0),

the homogeneous Friedmann equations take the form

H2 =
1

3M2
P

[
φ̇2

2
+ V (φ)

]
. (1.2.25)

Ḣ = − φ̇2

2M2
P

, (1.2.26)
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while the Euler-Lagrange equation of motion for the scalar field is the Klein-Gordon equation

δS

δφ
=

1√−g ∂µ
(√−g ∂µφ

)
+ V,φ = 0 =⇒ φ̈+ 3H φ̇+ V,φ = 0 . (1.2.27)

where V,φ = dV
dφ , and 3Hφ̇ is the Hubble friction. It can be shown that the condition of a decreasing

Hubble radius, in order to obtain inflation, is equal to the condition that the so-called Hubble

slow-roll parameter

ϵ1 ≡ − Ḣ

H2
< 1 . (1.2.28)

In order to study the homogenous inflationary evolution one generally introduces also the slow-roll

parameters

ϵ2 ≡
1

H

d log ϵ1
dt

, (1.2.29)

δ ≡ − φ̈

Hφ̇
. (1.2.30)

We will discuss later the importance of these parameters in a more general framework, defining the

hierarchy of Hubble slow-roll parameters.

As already said, inflation occurs when the kinetic energy of the inflaton is small with respect

to its total energy density ρφ. The parameter δ, related to the acceleration of the scalar field per

Hubble time, has to be small in order for inflation to last enough; a large acceleration would rapidly

increase the kinetic term compared to the potential. In this way, the friction term in (1.2.27)

dominates and the inflaton speed is determined by the shape of the potential. This evolution is

called slow-roll inflation (SR) and corresponds to the inflaton slowly rolling toward the minimum

of the potential. The conditions ϵ1 ≪ 1 and |δ| ≪ 1 then legitimate us to neglect the kinetic energy

and the acceleration of φ. Therefore we can rewrite the Friedmann and Klein-Gordon equations

respectively as

H2 ≈ V

3M2
P

, (1.2.31)

3Hφ̇ ≈ −V,φ . (1.2.32)

Using the approximate Friedmann equation (1.2.31), we can define new slow-roll parameters, directly

related to the properties of the potential

ϵ1 = − Ḣ

H2
=

1
2 φ̇

2

M2
PH

2
≈ M2

P

2

(
V,φ
V

)2

≡ ϵV , (1.2.33)

while taking the time derivative of (1.2.32), leads to

δ + ϵ1 = − φ̈

H φ̇
− Ḣ

H2
≈M2

P

V,φφ
V

≡ ηV . (1.2.34)

The smallness of the slow-roll parameters ϵV and ηV , called potential slow-roll parameters, guaran-

tees that the slope and the curvature of the scalar field potential are sufficiently small to drive an
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early epoch of inflation. Within these approximations, it is easy to compute how much inflation is

required to solve the flatness and horizon problem.

In general, it is convenient to define a new time variable, called number of e-foldings N . This is

defined as the logarithm of the scale factor; hence, for generic initial and final values of the scalar

field, φi and φf , we have

∆N ≡ Nf −Ni =

∫ af

ai

d log a =

∫ tf

ti

dtH(t) =

∫ φf

φi

dφ
H

φ̇
≃ − 1

M2
P

∫ φf

φi

dφ
V

V,φ
, (1.2.35)

where in the final approximate equality we used the slow-roll conditions (1.2.31, 1.2.32). Let us note

that during SR, the amount of inflation ∆N between two values of the scalar field can be calculated

without solving the equation of motion.

If the entire observable universe today is smaller than the comoving Hubble horizon at the

beginning of inflation

(a0H0)
−1 < (aiHi)

−1 . (1.2.36)

Then, taking into account that the decrease of the comoving Hubble radius during inflation must

compensate for its increase during the standard Big Bang evolution, one can estimate the minimum

amount of inflation necessary to solve the flatness and the horizon problem. The amount by which

the Hubble radius has grown during the Hot Big Bang evolution can be related to the maximal

temperature of the thermal plasma at the beginning of the Hot Big Bang. This is generally called

reheating temperature, and we identify it as TR. We furthermore assume that the energy density

at the end of inflation was converted very rapidly into the particles of the thermal plasma so that

the Hubble radius didn’t experience significant growth between the end of inflation and reheating,

(aRHR)−1 ∼ (af HI)−1. Then, taking into account that a ∝ T−1, and that during the radiation

domination era H ∝ a−2 we have that

afHf

a0H0
∼ aRHR

a0H0
=
aR
a0

(
a0
aR

)2

=
a0
aR

∼ TR
T0

∼ 1028
(

TR
1015 GeV

)
, (1.2.37)

where we introduced a reference value of 1015 GeV for the reheating temperature. Finally we have,

for (1.2.36)

∆N ≡ log

(
af
ai

)
> 64 + log

(
TR

1015 GeV

)
(1.2.38)

which is the famous statement that the solution to the horizon problem requires about 60 e-folds of

inflation.

1.3 A brief survey of inflationary models

Even restricting ourselves to a simple single-field inflation scenario, the number of models available

in the literature is large. We can classify them according to the shape of the scalar field potential

and then distinguish among: large-field, small-field and hybrid field. A generic single-field potential

can be characterized by two independent mass scales: a “height” Λ4, corresponding to the vacuum

energy density during inflation, and a “width” µ, corresponding to the change in the field value ∆φ

18



during inflation:

V (φ) = Λ4 f

(
φ

µ

)
, (1.3.1)

where f represents naturally the different properties of the potential.

• Large-field models. These models are based upon potentials typical of the “chaotic” infla-

tion scenario, in which the scalar field is displaced from the minimum of the potential by an

amount usually of the order of the Planck mass MP and evolves towards it. Such models are

characterized by V,φφ > 0 and 0 < ηV < 2ϵV . The generic large-field potentials that can be

considered are monomial potentials

V (φ) = Λ4

(
φ

µ

)p

, (1.3.2)

with p > 1, and exponential potentials

V (φ) = Λ4 exp

(
φ

µ

)
. (1.3.3)

In the chaotic inflation scenario, it is assumed that the universe emerged from a quantum

gravitational state with an energy density comparable to that of the Planck density, implying

V (φ) ≈M4
P and results in a large friction term 3Hφ̇ from (1.1.5). Consequently, the inflaton

will slowly roll down its potential.

• Small-field models. These models are the type of potentials that arise naturally from spon-

taneous symmetry breaking and from pseudo-Nambu-Goldstone models (see [28]). The field

starts near an unstable equilibrium point and rolls down the potential to a stable minimum.

In general these models are characterized by V,φφ < 0 and ηV < −ϵV , where ϵV is close to

zero. The typical small-field potential is of a polynomial of the form

V (φ) = Λ4

[
1 −

(
φ

µ

)p]
, (1.3.4)

with p > 2, and can be considered as a lowest-order Taylor expansion of an arbitrary potential

around the origin. Furthermore, these models include even potentials which have a logarithmic

divergence in the leading derivative at the origin [28].

• Hybrid models. The hybrid scenario frequently is realized by models which incorporate

inflation into supersymmetry and supergravity [28]. In a typical hybrid inflation model, the

scalar field responsible for inflation evolves toward a minimum with non-zero vacuum energy.

Such models are characterized by V,φφ > 0 and 0 < 2ϵV < ηV . We consider generic potentials

for hybrid inflation of the form

V (φ) = Λ4

[
1 +

(
φ

µ

)p]
, (1.3.5)

with p ≥ 2. The large-field limit of this potential is just the case of chaotic inflation with a

monomial potential; while in the limit of small-field, φ < µ, the potential is dominated by the
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constant term. The field value at the end of inflation is determined by some other physics,

indeed, otherwise we would have, at rest at φ = 0 an infinite period of inflation. Hence,

another sector of the theory must be invoked, generally as a coupling to a second scalar field.

There are a number of single-field models that do not fit well into this scheme, for example, log-

arithmic potentials V (φ) ∝ log(φ) typical of supersymmetry [28]. Another example is a potential

with negative powers of the scalar field V (φ) ∝ φ−p used in intermediate inflation and dynamical

supersymmetry inflation. However, the three classes categorized before seem to be good enough for

comparing theoretical expectations with experimental data.

1.4 Cosmological perturbations

The model discussed so far describes a homogeneous picture of the universe in which the inflaton

evolves generating an inflationary phase and, eventually, will reach a global minimum in its potential

ending the accelerated expansion phase. Although inflation was proposed to solve the Big Bang

problems, it also predicts an adiabatic spectrum of small fluctuations on top of the homogeneous

background. These small fluctuations can be explained as the quantum vacuum fluctuations of the

inflaton field: their comoving scale gets stretched during inflation and they cross the horizon and

get frozen-out. When they cross the horizon they lose their quantum nature and they can be treated

as a classical stochastic field. Eventually, they re-enter the horizon after inflation and they become

seeds for the large-scale structures we see today, like galaxies and clusters, and have been imprinted

in the CMB anisotropies.

Mathematically, the problem of describing the growth of small perturbations in the context of

general relativity reduces to solving the Einstein equations linearized about an expanding back-

ground. Hence we apply a semiclassical approximation and consider a background classical field,

which in this case is the homogeneous inflaton, and then quantize the perturbation over the back-

ground evolution, which here describes the space dependent part of the field.

1.4.1 Massless scalar field in a de Sitter spacetime

Let us first see how the fluctuations of a generic massless scalar test field, that here we call δφ,

evolve during a de Sitter era, during which the Hubble rate H is constant. The fluctuations are

described by the action

S =
1

2

∫
d4x

√−g [gµν ∂µ (δφ) ∂ν (δφ)] , (1.4.1)

with

ds2 = dt2 − e2Ht dx⃗ 2, H = const . (1.4.2)

It is convenient to reintroduce the conformal time η =
∫

dt
a(t) , which in the de Sitter case is η = − 1

aH .

Furthermore, we also have

a(η) = − 1

Hη
(η < 0) . (1.4.3)
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The action for the scalar field, expressed in terms of η is

S =
1

2

∫
dη d3x⃗ a4

[
(δφ′)2

2a2
− 1

2a2

(
∇⃗δφ

)2]
, (1.4.4)

where the prime ′ indicates the derivative with respect to the conformal time η. On defining the

new field variable u = a δφ and after integrating by parts, the action can be rewritten as

S =
1

2

∫
dη d3x⃗

[(
u′
)2 − (∇⃗u)2 +

a′′

a
u2
]
. (1.4.5)

Let us note that this action is similar to that of a scalar field on a Minkowski spacetime with an

effective mass

m2
eff = −a

′′

a
= − 2

η2
. (1.4.6)

Conceptually, the problem of quantization of a scalar field δφ(η, x⃗) in a flat Friedmann universe

is reduced to the mathematically equivalent problem of quantizing a free scalar field u(η, x⃗) on a

Minkowski spacetime. Indeed, all information about the gravitational interaction is encoded in this

time-dependent mass term.

We proceed through the usual procedure for the canonical quantization. First of all, we expand

the field u(η, x⃗) in Fourier modes,

u(η, x⃗) =

∫
d3k⃗

(2π)3
uk(η) ei k⃗·x⃗ , (1.4.7)

and substituting the expansion back into the action (1.4.5), we find that the Fourier modes uk(η)

satisfy a set of decoupled ordinary differential equations

u′′k + ω2
k(η)uk = u′′k +

(
k2 − a′′

a

)
uk = 0 . (1.4.8)

We can qualitatively study the solution in two different regimes:

• in the sub-horizon limit: k2 ≫ a′′/a, the differential equation takes the form

u′′k + k2uk = 0 , (1.4.9)

whose solution is a plane wave

uk(η) = C−
e−ikη

√
2k

+ C+
eikη√

2k
, (1.4.10)

where C− and C+ are integration constants. We find that fluctuations with wavelength within

the horizon oscillate exactly like on a flat spacetime. In the ultraviolet regime, that is for wave-

lengths much smaller than the horizon scale, one expects that approximating the spacetime as

flat is a good approximation and indeed the normalisation of (1.4.10) is that of flat spacetime.
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• In the super-horizon limit: k2 ≪ a′′/a, Eq. (1.4.8) reduces to

u′′k −
a′′

a
uk = 0 , (1.4.11)

which is satisfied by

uk = Ck a+Dk a

∫ η dη′

a2
≈ Ck a , (1.4.12)

where Ck and Dk are integration constants. We can neglect the second term because in a de

Sitter universe a
∫ η dη′

a2
is rapidly decreasing.

Roughly matching the absolute value of the solutions (1.4.10) and (1.4.12) at k = aH (−kη = 1),

we can determine the absolute value of the constant Ck

|Ck| a =
1√
2k

=⇒ |Ck| =
1

a
√

2k
=

H√
2k3

. (1.4.13)

Going back to the original fluctuation variable δφk we can verify that the fluctuation of the field on

super-horizon scales is constant and approximatively equal to

|δφk| ≃
H√
2k3

. (1.4.14)

In the de Sitter case (1.4.6), the approximation just described is not necessary since Eq. (1.4.8) can

be solved exactly

uk(η) = Ak e
−ikη

(
1 − i

kη

)
+Bk e

ikη

(
1 +

i

kη

)
. (1.4.15)

This solution reproduces all that we have found by qualitative arguments in the two approximations

(1.4.10) and (1.4.12). Let us note that the matching procedure described can be very useful to

determine the behaviour of the solution on super-horizon scales when the exact solution is not

known. For the time being, we cast aside the problem of specifying the role of the integration

constants Ak and Bk, which we will take up in more detail later.

Let us then proceed with the canonical quantization. We promote u(η, x⃗) to a quantum operator

and impose the standard equal-time canonical commutation relations

[
û(η, x⃗1), û(η, x⃗2)

]
=
[
π̂(η, x⃗1), π̂(η, x⃗2)

]
= 0 , (1.4.16)[

û(η, x⃗1), π̂(η, x⃗2)
]

= iδ(3)(x⃗1 − x⃗2) , (1.4.17)

where π̂ is the conjugate momentum of û, with π̂ ≡ û′. We can now expand û in the Fourier space

to obtain

û(η, x⃗) =

∫
d3k

(2π)
3
2

[
â
k⃗
uk(η) ei k⃗·x⃗ + â†

k⃗
u∗k(η) e−i k⃗·x⃗

]
(1.4.18)

where k =
∣∣∣⃗k∣∣∣ and âk, â†k are the annihilation and creation operators. The creation and annihilation
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operators satisfy the induced commutation relations

[
â
k⃗1
, â

k⃗2

]
=
[
â†
k⃗1
, â†

k⃗2

]
= 0 , (1.4.19)[

â
k⃗1
, â†

k⃗2

]
= δ(3)(k⃗1 − k⃗2) , (1.4.20)

and the functions uk satisfy the classical solution (1.4.15). Inserting the Fourier expansion (1.4.18)

in the canonical commutation relations (1.4.19) and using (1.4.16) we obtain the Wronskian nor-

malization condition

uk (u′k)∗ − u∗ku
′
k = i , (1.4.21)

which is equivalent to requiring the linear independence of uk and u∗k.

To complete the quantization process we must choose the vacuum. In the Minkowski quan-

tum theory, the vacuum is defined as the minimum energy state. Here, the Hamiltonian is time-

dependent, thereby it does not have a time-independent eigenstate that could serve as a vacuum.

There are various prescriptions to define a suitable vacuum in a general spacetime. On curved space-

time, the vacuum state is commonly defined as the eigenstate |η00⟩ minimizing the instantaneous

Hamiltonian at a fixed time η0.

Therefore, we first define the vacuum |η00⟩ such that â
k⃗
|η00⟩ = 0, ∀ k⃗ and considering a generic

solution of Eq. (1.4.8) we then evaluate the mean value of the Hamiltonian operator and find the

function uk(η) minimizing it. The Hamiltonian is obtained from the action (1.4.5), and, operating

the mode expansion (1.4.18) we obtain:

Ĥ(η) =
1

4

∫
d3k

[
â
k⃗
â−k⃗

F ∗
k⃗

+ â†
k⃗
â†
−k⃗
F
k⃗

+
(

2â†
k⃗
â
k⃗

+ δ(0)(0)
)
E

k⃗

]
(1.4.22)

where

E
k⃗

=
∣∣u′k∣∣2 + (k2 +m2

eff) |uk|2 , F
k⃗

=
(
u′k
)2

+ (k2 +m2
eff)u2k . (1.4.23)

Evaluating the expectation value for a general vacuum state at a fixed time η0, we obtain the

energy. Note that the presence of the divergent term δ(0)(0) is simply due to an infinite volume

normalization factor and can be reabsorbed. The energy density is then

ρ(η0) = ⟨η00|Ĥ(η0)|η00⟩ =
1

4

∫
d3k⃗

(∣∣u′k(η0)
∣∣2 + (k2 +m2

eff(η0)) |uk(η0)|2
)
. (1.4.24)

For each mode k⃗, its contribution to the energy must be minimized separately. Thus, for a given

k⃗ we have to determine the initial conditions uk(η0) and u′k(η0) as a proxy for the selection of a

suitable set of mode functions. Substituting

uk = rk e
iαk (1.4.25)

into the consistency relation (1.4.21), we obtain that the functions rk and αk obey the following

relation

r2k α
′
k =

1

2
, (1.4.26)
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and from Eq. (1.4.23) we have

E
k⃗

= (r′k)2 + r2k(α′
k)2 + ω2

k r
2
k

= (r′k)2 +
1

4r2k
+ ω2

k r
2
k .

(1.4.27)

It is easily seen that (1.4.27) is minimized if r′k = 0 and rk = 1√
2k

, where we assumed that ω2
k ∼ k2.

Integrating back, Eq. (1.4.26) gives αk = −kη, and hence uk is:

lim
η→−∞

uk =
1√
2k

e−ikη . (1.4.28)

This last relation fixes the vacuum as the Bunch-Davies vacuum, which is defined as the Minkowski

vacuum in the flat spacetime limit. Indeed during inflation the comoving Hubble radius shrinks and

therefore one can go sufficiently back in time and find the wavelength of a given mode k inside the

Hubble radius. That is −kη ≫ 1 for sufficiently big values of −η. In this regime, the mode k does

not feel the curvature of spacetime and it behaves as in Minkowski spacetime. For de Sitter and the

general solution (1.4.15) one fixes the integration constants Ak and Bk to reproduce (1.4.28) and

then

uk(η) =
e−ikη

√
2k

(
1 − i

kη

)
. (1.4.29)

Let us finally define the power spectrum, a useful quantity to characterize the properties of the

perturbations. If the perturbations are linear and are a random Gaussian field, so that their Fourier

modes are decoupled, they can be decomposed as

A(η, x⃗) =

∫
d3k⃗

(2π)3
A(k⃗)eik⃗·x⃗ , (1.4.30)

It is straightforward to define the 2-point function in the Fourier space as

⟨A(k⃗)A(k⃗′)⟩ = (2π)3 PA(k⃗) δ(3)(k⃗ − k⃗′) , (1.4.31)

where δ(3)(k⃗ − k⃗′) is the Dirac delta distribution function. The power spectrum for the quantity A

is then defined as

PA(k⃗) =
k3

2π2

∣∣∣A(k⃗)
∣∣∣2 . (1.4.32)

As an example, we can consider the scalar fluctuation δφ, and using the final solution for the modes

uk in Eq. (1.4.29), we have

Pδφ(k) =
Pu(k)

a2
=

(
H

2π

)[
1 + (kη)2

]
kη→ 0−−−−→

(
H

2π

)2

. (1.4.33)

This is the scale-invariant power spectrum for a de Sitter universe. The amplitude of the fluctuations,

on scales larger than Hubble length (kη → 0), does not depend on the time at which the fluctuations

become larger than the Hubble radius and become frozen in. This scale invariance means that the

fluctuations are independent of the energy scale. Let us note that in realistic models of inflation the
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time dependence of the Hubble rate is small, otherwise, inflation would never end. To evaluate the

effect of a varying H(t), we must calculate the power spectrum (1.4.33) at horizon crossing k = aH.

For each Fourier mode, this corresponds to a different moment in time, and since H is evolving,

this leads to a slight scale dependence of the spectrum

Pδφ(k) ≈
(
H

2π

)2 ∣∣∣∣
k=aH

. (1.4.34)

1.4.2 Classical relativistic theory of perturbations

In the previous Section, we have assumed that the background geometry is fixed and satisfies

restrictive homogeneous conditions. In order to attain a more rigorous and complete study of the

theory of quantum cosmological fluctuations we need to set up a proper framework.

We have already seen how we can explain the generation of perturbations of a generic scalar field

during a de Sitter expansion. Considering now, that the inflaton field dominates the energy density

of the universe during inflation, it is evident that any perturbation in the inflaton field directly affects

the energy-momentum tensor, and through the Einstein field equations the structure of spacetime.

Schematically

δφ =⇒ δTµν =⇒ δgµν . (1.4.35)

On the other hand, a perturbation of the metric induces a backreaction on the evolutions of the

inflaton perturbation through the perturbed Klein-Gordon equation of the inflaton field

δgµν =⇒ δ

[
∂µ∂

µ − ∂V

∂φ

]
= 0 =⇒ δφ . (1.4.36)

This schematical reasoning leads us to the important assumption that perturbations of the inflaton

field and of the gravitational metric are tightly coupled to each other and have to be studied together.

Mathematically, the problem of describing the evolution of small perturbations in the context of

general gravity reduces to solving the Einstein equations linearized about an expanding homogeneous

background. In particular, the most convenient procedure which can be undertaken to describe the

linear evolution of cosmological perturbation is to split each quantity of interest X(η, x⃗) into two

parts, the first being the spatially homogeneous background (0)X(η), delineated by the superscript
(0), while the other δX(η, x⃗) describing how the “actual” spacetime deviates from the idealized

background model. The observational fact that the universe on large scales is nearly homogeneous

and isotropic makes this approach reasonable. Furthermore, it was shown that in Robertson-Walker

universes solutions of the linearized field approach can be viewed as linearizations of solutions of

the full non-linear equations. Hence linear perturbation theory is mathematically well defined.

For a generic observable X we can write the decomposition

X(η, x⃗) = (0)X(η) + δX(η, x⃗), |δX| ≪
∣∣∣(0)X∣∣∣ (1.4.37)

In particular, the decomposition of the metric reads

gµν(η, x⃗) = (0)gµν(η) + δgµν(η, x⃗) . (1.4.38)
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wehere the background metric (0)gµν is the flat FLRW metric, introduced in (1.1.1).

The metric perturbations may be categorized into three distinct types: scalar, vector and tensor

perturbations. This classification refers to the way in which the fields from which δgµν are con-

structed transform under three-space coordinate transformations on a constant-time hypersurface.

Both vector and tensor perturbations exhibit no instabilities. Vector perturbations decay kinemat-

ically in an expanding universe whereas tensor perturbations lead to gravitational waves which do

not couple to energy density and pressure inhomogeneities. However, scalar perturbations may lead

to growing inhomogeneities which, in turn, have an important effect on the dynamics of matter.

• Scalar perturbations. The complete definition of a scalar metric perturbation must take

into consideration the proper way scalar perturbations can be inserted in each term of the

metric. There are two possible ways that scalar quantities may enter into the spatial part δgij

[29]: either through a multiplicative scalar function ψ or an additive term composed by the

covariant derivative of an ulterior scalar function. The covariant derivative being with respect

to the background metric gij of the constant-time hypersurface, that in the spatially flat case

(k = 0), coincides with ordinary coordinate derivative.

Finally, we need two more scalar functions: the first in δg00 which is invariant under rotations

and translations, while the three-dimensional derivative of the second is in δg0i.

Therefore, the most general form of the scalar metric perturbations is constructed using four

scalar quantities: ϕ, ψ, B and E which are functions of space and time coordinates

δg(s)µν = a2(η)

(
2ϕ −B,i

−B,i 2(ψδij − E,ij)

)
. (1.4.39)

• Vector perturbations. The vector perturbations are constructed using two three-vectors Si

and Fi satisfying the constraints

S,i
i = F ,i

i = 0 , (1.4.40)

where we transform from upper to lower three-space indices and vice-versa by using the spatial

background metric tensor gij and its inverse gij . The above constraints are necessary in order

to extract exactly only pure vector perturbations. In fact due to SVT decomposition (scalar-

vector-tensor) each 3-vector Vi can be decomposed as

Vi = V,i︸︷︷︸
scalar

+ V̂i︸︷︷︸
vector

, (1.4.41)

where V̂ ,i
i = 0. These considerations lead to the following metric vector perturbations:

δg(V )
µν = −a2(η)

(
0 −Si

−Si 2(Fi,j + Fj,i)

)
. (1.4.42)

• Tensor perturbations. These perturbations are constructed using symmetric three-tensor
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hij which satisfies the constraints

h i
i = 0, h ,j

ij = 0 . (1.4.43)

These constraints mean that hij does not contain components which transform as scalars or

vectors. Thus, the metric for tensor perturbations is

δg(T )
µν = −a2(η)

(
0 0

0 hij

)
. (1.4.44)

Counting the total number of independent functions we used to form δgµν , we find that we have

four functions for scalar perturbations (ϕ, ψ, B, E), four for vector perturbations (2 divergenless

3-vectors), and two for the tensor perturbations (a symmetric, traceless, and transverse 3-tensor),

adding up to 10, that are the number of independent components of δgµν .

In the linear approximation, scalar, vector and tensor perturbations evolve independently and

thus can be considered separately.

1.4.3 Gauge-invariant variables and their physical meaning

Until now we have neglected an important aspect of the theory, namely the invariance of the

theory under gauge transformations. The metric perturbations, indeed, are not uniquely defined

but depend on our choice of coordinates. In particular, when we wrote down the different terms

of the perturbed metric, we implicitly assumed a specific time slicing of the spacetime and defined

specific spatial coordinates on these time slices.

There are two mathematically equivalent approaches to treat gauge transformations, particu-

larly in the context of small perturbations: the passive and the active ones. In the passive approach,

we consider a physical spacetime manifold M and choose some system of coordinates xµ on M.

A background model is defined by assigning to all functions Q on M a previously given function
(0)Q(x). The functions Q may have any kind of tensorial structure, and (0)Q(x) are fixed functions

of the coordinates, not geometrical objects. Therefore, in a second coordinate system x̃α the back-

ground functions (0)Q(x̃) will have exactly the same functional dependence on x̃α. The perturbation

δQ of the quantity Q in the system of coordinates xµ is defined as

δQ(p) = Q(x(p)) − (0)Q(x(p)) , (1.4.45)

and can be evaluated for any point p ∈ M with associated coordinates xµ(p). Similarly, in the

second system of coordinates, the perturbation of Q is

˜δQ(p) = Q̃(x̃(p)) − (0)Q(x̃(p)) . (1.4.46)

Here, Q̃(x̃(p)) is the value of Q in the new coordinate system at the same point p ∈ M, and
(0)Q(x̃(p)) is the same function of x̃ as (0)Q(x(p)) is of x. The transformation δQ(p) → ˜δQ(p) is

called gauge transformation associated with the change of variables x→ x̃ on the manifold M.
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In the second approach, the active one, we consider two manifolds: the physical manifold M
and a background spacetime N on which background coordinates xb are rigidly fixed. Any dif-

feomorphism D : N → M induces a system of coordinates on M via D : xb → x. For a given

diffeomorphism D we define the perturbation δQ of the function Q as

δQ(p) = Q(p) − (0)Q(D−1(p)) , (1.4.47)

where again (0)Q is a fixed function defined on the background spacetime. A second diffeomorphism

D̃ : N → M induces a new set of coordinates x̃ on M via D̃ : xb → x̃ and a different ˜δQ,

˜δQ(p) = Q̃(p) − (0)Q(D̃−1(p)) , (1.4.48)

where Q̃ is the value of Q in x̃ coordinates. In this approach, the gauge transformation δQ(p) →
δQ̃(p) is generated by the change of correspondence D → D̃ between the manifolds N and M. We

can associate with this change in correspondence the change of coordinates x→ x̃ induced on M.

Both approaches are equivalent; however, the first allows one to connect the gauge transforma-

tion with the choice of the system of coordinates on M in which the perturbations are described.

The second view allows one to understand how the amplitudes of the perturbations depend on the

correspondence between background manifold N and physical manifold M.

In both approaches described above one may consider infinitesimal coordinate transformations

x→ x̃ = x+ ξ , (1.4.49)

described by four functions ξ of space and time. For a scalar field perturbation δφ the coordinate

transformation induces the variation

δφ → δφ̃ = δφ− (0)φ′ξ0 , (1.4.50)

while for a metric perturbation δgµν we have

δgµν → δg̃µν = δgµν − (0)gµν,γξ
γ − (0)gγνξ

γ
,µ − (0)gµγξ

γ
,ν , (1.4.51)

from which one can calculate the variations of the functions φ, ψ, B and E which constitute the

perturbed metric. In particular, if we write the spatial components of ξ as

ξi = ξi⊥ + ζ ,i with ξi⊥,i = 0 , (1.4.52)

the transformation law (1.4.51) for each components become

δg̃00 = δg00 − 2a
(
aξ0
)′
, (1.4.53)

δg̃0i = δg0i + a2
[
ξ′⊥ i + (ζ ′ − ξ0),i

]
, (1.4.54)

δg̃ij = δgij + a2
[
2
a′

a
δij ξ

0 + 2ζ,ij + ξ⊥ (i,j)

]
. (1.4.55)
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Combining equations (1.4.53, 1.4.54, 1.4.55) we obtain the transformation laws for scalars, vector

and tensor perturbations.

• Scalar perturbations transform according to

ϕ→ ϕ̃ = ϕ− 1

a
(aξ0)′ , (1.4.56)

ψ → ψ̃ = ψ +
a′

a
ξ0 , (1.4.57)

B → B̃ = B + ξ0 − ζ ′ , (1.4.58)

E → Ẽ = E − ζ . (1.4.59)

The dependence of (1.4.56)-(1.4.59) on two arbitrary functions, ξ and ζ, means that we can

use coordinate transformations to cancel two degrees of freedom. Moreover, one can define

special combinations of the metric perturbations that do not transform under a change of

coordinates. These are the so-called Bardeen variables [26]

Φ ≡ ϕ+
1

a

[(
B − E′) a]′ , Ψ ≡ ψ − a′

a
(B − E′) . (1.4.60)

These gauge-invariant variables are the “real” spacetime perturbations since they cannot be

cancelled by a gauge transformation.

• Vector perturbations transform according to

Si → S̃i = Si + ξ′⊥ i , (1.4.61)

Fi → F̃i = Fi + ξ⊥ i . (1.4.62)

One can construct gauge-invariant quantities, in the same way as before. For example

Vi ≡ Si − F ′
i (1.4.63)

do not change under infinitesimal coordinate transformations. These variables describe phys-

ical perturbations associated with rotational motions. Usually, they are not relevant during

inflation since they rapidly decay in an expanding background.

• Tensor perturbations hij are gauge-invariant by construction since ξ does not contain any

tensor component. Tensor perturbations describe primordial gravitational waves.

In general, it is convenient to introduce a gauge-invariant variable to describe the relation be-

tween quantum scalar perturbations and observable quantities in cosmology. The intrinsic spatial

curvature on hypersurfaces at constant conformal time η and for a flat universe is given by

(3)R =
4

a2
∇2ψ . (1.4.64)

The quantity ψ, defined in (1.4.39) as one of the scalar perturbation terms of the metric, is usually

referred to as the curvature perturbation. We have seen, however, that the curvature perturbation
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ψ is not gauge-invariant, but is defined only on a given slicing, Eq. (1.4.57). We now define the

comoving slicing as the slicing orthogonal to the world lines of comoving observers. The latter are

free-falling and the expansion defined by them is isotropic. This means that there is no flux of

energy measured by these observers, that is T0i = 0. During inflation these observers measures

δφcom = 0 since T0i ∝ ∂iδφ(x⃗, η)φ′(η).

For a transformation on constant time hypersurfaces δφ→ δφ− (0)φ′ξ0 one then has

δφ→ δφcom = δφ− (0)φ′ξ0 = 0 =⇒ ξ0 =
δφ

(0)φ′ , (1.4.65)

that is ξ0 = δφ
(0)φ′ is the time-displacement needed to go from a generic slicing with generic δφ to

the comoving slicing where δφcom = 0. Correspondingly the curvature perturbation ψ transforms

(1.4.57) into

ψ → ψcom = ψ + Hξ0 = ψ + H δφ
(0)φ′ , (1.4.66)

and we can define the comoving curvature perturbation as

R = ψ + H δφ
(0)φ′ = Φ + H δφ

(0)φ′ , (1.4.67)

where for the second equality we used the definition (1.4.83) and (1.4.81). This quantity is gauge-

invariant by construction and is related to the gauge-dependent curvature perturbation ψ on a

generic slicing to the inflation perturbation δφ in that gauge. By construction, the meaning of R is

that it represents the linear curvature perturbation on comoving hypersurfaces where δφ = 0

R = ψ|δφ=0 . (1.4.68)

Equations for cosmological perturbations

In this Section, we shall derive the general form of the equations which describe small cosmological

perturbations. To do that, we start with the linearized form of Einstein’s equations

δGµ
ν = 8πGδTµ

ν . (1.4.69)

For the background model described by a homogeneous, isotropic and expanding universe, the

Einstein tensor is

(0)
G0

0 = 3 a−2
(
H2 + H

)
,

(0)
G0

i = 0 ,
(0)
Gi

j = a−2
(
2H′ + H2 + H

)
δij , (1.4.70)

where H = a′/a. For scalar type metric perturbations with a line element given in (1.1.1), the

perturbed Einstein equations can be obtained as a result of straightforward calculations, but what

we are really interested in are gauge-invariant quantities with which describing curvature and energy
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terms in the Einstein equations. In particular, we can define [29]

δG0
0 = δG0

0 −
(
(0)
G0

0

)′
(B − E′) , (1.4.71)

δG0
i = δG0

i −
(

(0)
G0

0 −
(0)
Gk

k

3

)
(B − E′),i , (1.4.72)

δGi
j = δGi

j −
(
(0)
Gi

j

)′
(B − E′) , (1.4.73)

and similarly

δT 0
0 = δT 0

0 −
(
(0)
T 0

0

)′
(B − E′) , , (1.4.74)

δT 0
i = δT 0

i −
(

(0)
T 0

0 −
(0)
T k

k

3

)
(B − E′),i , (1.4.75)

δT i
j = δT i

j −
(
(0)
T i

j

)′
(B − E′) . , (1.4.76)

where δGµ
ν and δTµ

ν are the gauge-invariant counterparts of δGµ
ν and δTµ

ν .

Using the background equations of motion, Eq. (1.4.69) for small perturbations may be rewritten

with the gauge-invariant quantities as

δGµ
ν = 8πGδTµ

ν . (1.4.77)

The left-hand side of the above equations can be expressed in terms of the gauge-invariant potentials

Φ, Ψ (1.4.60) alone. After some algebra, we obtain the following general form of the gauge-invariant

equations for cosmological perturbations

∇2Ψ + 3HΨ − 3H
(
Ψ′ + HΦ

)
= 4πGa2 δT 0

0 , (1.4.78)(
Ψ′ + HΦ

)
,i

= 4πGa2δT 0
i (1.4.79)[

Ψ′′ + H (2Ψ + Φ)′ +
(
2H′ + H2

)
+

1

2
∇2(Φ − Ψ)

]
δij

−1

2
(Φ − Ψ),ij = −4πGa2 δT i

j .

(1.4.80)

From (1.4.80), we see that if there is no anisotropic stress in the matter at linear order, namely

δT i
j = 0 for i ̸= j, we have

Φ = Ψ , (1.4.81)

and we can write each equation only dependent on Φ. Furthermore, we are interested in inflationary

cosmology driven by a single scalar field, which can be decomposed as

φ(η, x⃗) = (0)φ(η) + δφ(η, x⃗) . (1.4.82)
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Being a scalar quantity, we can define the gauge-invariant counterpart for its perturbation as

δφ = δφ+ (0)φ′(B − E′) . (1.4.83)

We can also obtain the equations of motion for the gauge-invariant scalar field perturbation. Using

the form of the energy-momentum tensor for a homogeneous field configuration (1.2.20) and con-

sidering Eqs. (1.4.74, 1.4.75, 1.4.76), the equations of motion for perturbations, for no anisotropic

stress in the matter, reduce to

∇2Φ − 3HΦ′ − (H′ + 3H2)Φ = 4πG((0)φ′ δφ ′ + V,φ a
2 δφ) , (1.4.84)

Φ′ + HΦ = 4πG (0)φ′ δφ , (1.4.85)

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ = 4πG((0)φ′ δφ ′ − V,φ a
2 δφ) , (1.4.86)

Subtracting Eq. (1.4.84) from Eq. (1.4.86), and substituting Eq. (1.4.85) to express δφ as a function

of Φ and Φ′, one finally finds the classical equation for the evolution of the Bardeen potential Φ

Φ′′ + 2

(
H−

(0)φ′′

(0)φ′

)
Φ′ −∇2Φ + 2

(
H′ −H

(0)φ′′

(0)φ′

)
Φ = 0 . (1.4.87)

Once this equation is solved, the expression for δφ follows from (1.4.85). The second term in

the above equation is the Hubble friction, the third term represents the pressure force leading to

oscillations, and the last term is the force due to gravity leading to instability. On sub-horizon

scales, the solutions describe damped oscillations. On super-horizon scales the oscillations freeze-

out and the dynamics is governed by the gravitational force competing with the Hubble friction

term.

1.4.4 Cosmological scalar perturbations

In the previous Section, we discussed the classical equations for the cosmological perturbations.

Hence, to fully describe the generation and evolution of the inflationary perturbations a quantum

treatment is needed. We must note that scalar field fluctuations and metric fluctuations are tightly

coupled not only because they are related through Einsteins’ equations, but also because of the

issue of gauge invariance.

From the above discussion, we know that there is only one physically independent degree of

freedom characterizing scalar fluctuations. Therefore the quantum theory of cosmological pertur-

bations consists of the quantization of a single scalar field on an expanding background, where the

time-dependence of the classical background leads, after quantization, to particle production. The

starting point, which we consider for simplicity, is the action of a minimally coupled scalar field (the

inflaton)

S =

∫
d4x

√−g
[
−M

2
P

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.4.88)

We can now expand the action up to quadratic order in terms of the scalar perturbations. Indeed,

the equations for the linear perturbations are the Euler-Lagrange equations derived from a quadratic
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Lagrangian

S[gµν , φ] ≃ S(0)
[
(0)gµν ,

(0)φ
]

+ S(2)
[
(0)gµν , δgµν ,

(0)φ, δφ
]
. (1.4.89)

The term S(1) linear in perturbations vanishes by using the homogeneous equations of motion. The

second-order action can be written as that of a scalar field in Minkowski space with a time-dependent

mass

S(2) =
1

2

∫
dη d3x

[
(v′)2 −

(
∇⃗v
)2

+
z′′

z
v2
]
, (1.4.90)

where we have defined the gauge-invariant quantity

v ≡ aδφ+ zΦ , (1.4.91)

called Mukhanov variable, z is defined as z ≡ a φ′

H and where we have neglected the superscript (0)

to indicate background quantities. It is relevant that this action is similar to that of a Klein-Gordon

scalar field in a Minkowski spacetime with an effective mass

m2
eff = −z

′′

z
. (1.4.92)

Conceptually, the problem of quantization is mathematically equivalent to the problem of quantiza-

tion of a scalar field v(η, x⃗) in Minkowski spacetime interacting with external classical fields [29] and

has also many similarities to the analysis of scalar fields in an expanding universe 1.4.1. The time

dependence is entirely due to the variable background gravitational field. Thus, the quantization

prescription is formally identical to the one presented in Section 1.4.1.

Expanding the field v(η, x⃗) in Fourier modes,

v(x⃗, η) =

∫
d3k⃗

(2π)3
vk(η) ei k⃗·x⃗ , (1.4.93)

and substituting the expansion back into the action (1.4.90), we find that the Fourier modes vk(η)

satisfy a set of decoupled ordinary differential equations of the form

v′′k +

(
k2 − z′′

z

)
vk = 0 , (1.4.94)

called Mukhanov-Sasaki equation. In general, this equation is difficult to solve, since the function

z depends on the background dynamics. We can identify two opposite regimes: i) an early-time

regime when each mode is deep inside the horizon and ii) a late-time one when the modes get

stretched to become super-horizon. In the former regime, the modes satisfy k2 ≫ z′′/z and behave

as the standard vacuum fluctuations in Minkowski spacetime

vk(η) ≃ e−ikη

√
2k

, (1.4.95)

where we have fixed the integration constants to adapt the solution to the Bunch-Davies vacuum.
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On the other hand, long wavelength modes with k2 ≪ z′′/z have solutions given by

vk(η) = Ck z(η) +Dk z(η)

∫ η dη̄

z(η̄)2
, (1.4.96)

where Ck and Dk are integration constants. We can identify important features of the scalar

perturbations on super-horizon scales, depending on the behaviour of the solution. On super-

horizon scales during slow-roll the modes freeze as the term z2 ∝ (−η)−2 in the late time η → 0

and the second term, the one multiplied by Dk, becomes negligible. In this regime the second

contribution in (1.4.96) is negligible and the above solution reduces to

vk(η) = Ck z(η) . (1.4.97)

The integration constant Ck can be determined by matching the absolute value of the solutions

(1.4.95, 1.4.96) at the horizon crossing k = aH:

|Ckz|k=aH =
1√
2k

=⇒ vk(η) =

(
1

z(η)
√

2k

)
k=aH

z(η) . (1.4.98)

In general, calculating the power spectrum for a general solution of the Mukhanov-Sasaki equa-

tion requires specific knowledge about the evolution of the homogeneous scalar field, as we will

analyze in detail in later Chapters. However, it is possible to restrict our analysis to a few interest-

ing cases in which it is possible to extrapolate an approximate solution for the spectrum. Indeed, in

a slow-roll regime, we can approximate the expression of the slow-roll parameters to the first order

and consider them as constant. It can be demonstrated [30] that in this regime the mass term z′′/z

can be approximated as

z′′

z
≃ (aH)2(1 + ϵ1 − δ)(2 − ϵ1) ≃ (aH)2(2 + 2ϵ1 − 3δ) . (1.4.99)

If we set
z′′

z
=

1

η2

(
ν2 − 1

4

)
, (1.4.100)

this corresponds to

ν2 ≃ 3

2
+ (2ϵ1 − δ) ≃ 3

2
+ 3ϵ1 − ηV (1.4.101)

and Mukhanov-Sasaki Eq. (1.4.94) takes the form

v′′k +

[
k2 − 1

η2

(
ν2 − 1

4

)]
vk = 0 , (1.4.102)

which, for ν real, actually admits a general solution

vk(η) =
√−η

[
C1(k)H(1)

ν (−kη) + C2(k)H(2)
ν (−kη)

]
, (1.4.103)

where H
(1)
ν and H

(2)
ν are the Hankel’s functions of the first and second kind, respectively, while C1

and C2 are integration constants. If we impose that in the ultraviolet regime k ≫ aH, the solution
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matches the plane-wave solution (1.4.95) and knowing that

H(1)
ν (x≪ 1) ≃

√
2

πx
ei(x−

π
2
ν−π

4 ) , H(2)
ν (x≪ 1) ≃

√
2

πx
e−i(x−π

2
ν−π

4 ) , (1.4.104)

with x = −kη, we can set C1(k) =
√
π
2 e

iπ
2 (ν− 1

2) and C2(k) = 0. In this way, the slow-roll solution

becomes

vk(η) =

√
π

2
e

iπ
2 (ν− 1

2)√−ηH(1)
ν (−kη) . (1.4.105)

Observing the definition of the comoving curvature perturbation (1.4.67), we notice that

R = Φ + H δφ
(0)φ′ =

v

z
, (1.4.106)

relating the Mukhanov’s variable v with R, allowing us to use the Mukhanov variable to express

such comoving quantity which describes the behaviour of scalar cosmological perturbations. We can

express the power spectrum of the comoving curvature perturbation in the slow-roll approximation

and super-horizon scales using Eq. (1.4.105). In the super-horizon limit [30], we obtain

PR(k) =
k3

2π2

∣∣∣vk
z

∣∣∣2 ≃ 1

2M2
P ϵ1

(
H

2π

)2( k

aH

)ns−1 ∣∣∣∣
k=aH

≃ As

(
k

k∗

)ns−1

, (1.4.107)

where As is the scalar amplitude and k∗ is the pivot scale, while ns − 1 is the scalar spectral index

ns − 1 ≡ d logPR
d log k

= 3 − 2ν = 2ηV − 6ϵ1 . (1.4.108)

The observational constraints on the scalar amplitude and spectral index are As = (2.105±0.010)×
10−9 and ns = (0.9665±0.0038) from TT,TE,EE+lowE+lensing+BAO measurements at 68% limits

[1], considering the pivot mode k∗ = 0.05 Mpc−1.

Gravitational waves from inflation

One of the most relevant and model-independent predictions of inflation is the production of a

stochastic background of gravitational waves with an amplitude given roughly by the Hubble scale

H during inflation. The simplicity of this prediction means that a measurement of primordial

gravitational waves would give clean information about arguably the most important inflationary

parameter, namely the energy scale of inflation. Such a background of inflationary gravitational

waves could lead to a unique signature in the polarization of the CMB.

The treatment of tensor perturbations is very similar to that of scalar perturbations. Quantum

fluctuations in the gravitational fields are generated similarly to those of the scalar perturbations

discussed so far. A gravitational wave may be viewed as a ripple of spacetime in the FRLW

background metric and, as we have seen in (1.4.44), we can study its evolution by expanding the

Einstein-Hilbert action (1.2.19) with respect to the perturbed metric

ds2 = a2(η)
[
dη2 − (δij + hij)dx

i dxj
]
. (1.4.109)
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The tensor hij has six degrees of freedom, but as we studied previously, it is also traceless and

transverse (1.4.43) and can be described considering only two degrees of freedom, or polarizations,

which are usually indicated with λ = +, ×. To quadratic order in tensor fluctuations, the action

takes the form

S(2) =
M2

P

8

∫
dη d3x a2

[
(h′ij)

2 − (∇⃗hij)2
]
. (1.4.110)

Decomposing in the Fourier space we have

hij(η, x) =

∫
d3k

(2π)3/2
eik⃗·x⃗

[
h+k (η)ϵ+ij(k) + h×k (η)ϵ×ij(k)

]
, (1.4.111)

where we introduced the normalized polarization tensors

ϵλij = ϵλji , kiϵλij = 0 , ϵλii = 0,

ϵλij(−k⃗) =
[
ϵλij(k⃗)

]∗
,

∑
ij

(
ϵλij

)∗
ϵλ

′
ij = δλλ

′
.

(1.4.112)

The action (1.4.110) then becomes

S(2) =
∑

λ={+,×}

∫
dη d3k⃗

a2

4
M2

P

[(
dhλk
dη

)2

− k2(hλk)2

]
. (1.4.113)

If we define

vλk =
aMP

2
hλij(k) , (1.4.114)

the equation of motion in the momentum space is

(vλk )′′ +

(
k2 − a′′

a

)
vλk = 0 , (1.4.115)

which is the equation of motion of a massless scalar field in a quasi-de Sitter epoch. We can

therefore make use of the mathematical approach learnt in the previous Section to conclude that,

on super-Hubble scales, the tensor modes scale like

∣∣∣vλk ∣∣∣ =

(
H

2π

)(
k

aH

) 3
2
−νT

, (1.4.116)

where

νT ≃ 3

2
+ ϵ1 . (1.4.117)

Since fluctuations are nearly frozen in on super-Hubble scales, a way of characterizing the tensor

perturbations is to compute their spectrum on scales larger than the horizon

PT (k) ≡ k3

2π2

∑
ij

|hij(k)|2 = 4
k3

2π2

∑
ij

(∣∣v+k ∣∣2 +
∣∣v×k ∣∣2) =

8

M2
P

(
H

2π

)2( k

aH

)nT
∣∣∣∣
k=aH

≃ AT

(
k

k∗

)nT

(1.4.118)
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Figure 1.4: Marginalized joint 68% and 95% confidence level regions for ns and r at k = 0.002 Mpc−1 from
Planck alone and in combination with BK15 or BK15+BAO data, compared to the theoretical predictions of
selected inflationary models. Note that the marginalized joint 68% and 95% confidence level regions assume
dns/d log k = 0. The Figure is taken from [24].

where AT is the normalization factor for the tensorial power spectrum, and the tensor spectral

index nT is

nT =
d logPT

d log k
= 3 − 2νT = −2ϵ1 . (1.4.119)

The tensor perturbation is almost scale-invariant. Notice that the amplitude of the tensor modes

depends only on the value of the Hubble rate during inflation. This amounts to saying that it

depends only on the energy scale associated with the inflaton potential. Hence, a detection of

gravitational waves from inflation is therefore a direct measurement of the energy scale associated

with inflation.

As of today, there has been no direct and indirect detection of primordial gravitational waves.

Observational constraints on the tensor amplitude are usually expressed in terms of the tensor-to-

scalar ratio

r =
AT

AR
=

8
(

H
2πMP

)2
1
2ϵ1

(
H

2πMP

)2 = 16ϵ1 , (1.4.120)

that leads to the consistency relation

r = −8nT . (1.4.121)

Since the amplitude of scalar fluctuations has been measured, the tensor-to-scalar ratio quantifies

the size of the tensor fluctuations.
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Chapter 2

PBH properties and formation

We start by providing a physical description of the PBH formation in the early universe, in order to

relate the basic properties of a PBH formation, as their mass and abundance, with the features of

primordial curvature perturbation originating from inflation. Let us highlight that we are going to

assume the “standard” formation scenario in which PBHs are created out of the collapse of density

perturbations when the energy density was dominated by a relativistic fluid, such as radiation or

dust.

Following this assumption, we organize this Chapter in the following way. In Section 2.1 we

present the mechanism of PBH formation, focusing on the causal process involved with the infla-

tionary quantum fluctuations. In Section 2.2 we describe the principal concepts related to PBH

physical description, such as the threshold for collapse into black holes, the corresponding mass and

collapse fraction of PBHs, and some of the ingredients and mathematical steps necessary to com-

pute their abundance. In Section 2.3, we determine the amplitude of scalar fluctuations required

for producing a certain population of PBH, considering some interesting examples for cosmology.

Finally in Section 2.4, we will show how recent studies were able to constrain the PBH abundance

in most of the phenomenologically interesting range of masses. Still, we will observe that the study

of PBHs may have important consequences, even if they represent only a tiny fraction of the total

dark matter.

2.1 PBH formation as a causal process

Primordial black holes may arise from the collapse of large density perturbations in the early universe

[31]. We have already studied the quantization and evolution of such perturbations in an expanding

universe, and have highlighted the importance of the comoving curvature perturbation R. In fact,

apart from providing seeds for the observed cosmic microwave background anisotropies at large

scales, the dynamics of the curvature perturbation R may also be at play for PBH formation.

In order to describe the behaviour of perturbations in the inflationary universe and study their

statistical properties, we often label each given perturbation mode (in the Fourier space) with a co-

moving length scale k−1, measured in units of megaparsec. As shown in Fig. 2.1, we can understand

that typically, fluctuations begin their life deep inside the horizon, as quantum fluctuations; then the

horizon shrinks during inflation and they leave the horizon to become super-horizon perturbations,
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Figure 2.1: A qualitative representation of the time evolution of curvature fluctuations R, with respect to the
comoving Hubble radius (dotted lines) in the early universe. In particular, Nreh denotes the reheating time,
Neq refers to the time of matter-radiation equality, NMDE to matter-dark energy equality, and N0 denotes the
present time. The blue horizontal line indicates the comoving size of a representative small scale perturbation
for PBH formation. If the power spectrum associated with these modes is enhanced during inflation, they
can transfer their energy density perturbations during radiation domination, and ignite PBH formation upon
horizon re-entry at N = Nform.

and finally re-enter at a later time in the standard Big Bang era.

Considering standard Bunch-Davies ”initial conditions” for all scales, we shall assume there

is an enhancement of perturbations at smallest length scales below the values relevant for CMB

observations at cosmological scales: PR(kpbh) ≫ PR(kCMB) ∼ 10−9 [24]; for this purpose, we

consider kpbh ≫ kCMB where the former is the wave number associated with PBH formation and

the latter the typical wave number of CMB. After the end of inflation, possibly after reheating

Nrhe, the enhanced modes (e.g. modes with comoving size of k−1
pbh) become the seeds of density

perturbations during the RDU or the MDU:

δ ≡ δρ

ρ

∣∣∣∣
k=aH

∼ |R| ∼ PR(kpbh)1/2 . (2.1.1)

As the Hubble horizon grows compared to the comoving scales k−1 during the radiation era, at

a certain time the characteristic scale of the perturbations becomes comparable to the horizon

scale. When this happens, gravitational forces become active, initiating the contraction of the

overdense regions, which can collapse and form PBHs if they are dense enough: δ > δc. Soon after

horizon crossing, radiation pressure can rapidly disperse the over-density peaks, and therefore the

fate of perturbations is decided at horizon crossing. One finds also that there is only a negligible

contribution from PBHs formed from the collapse of sub-horizon modes. This implies that the

horizon re-entry is crucial in our understanding of PBH formation as a causal process: in fact, only

when the physical wavelength of a perturbation becomes comparable to the causal distance 1/H,

gravity is able to communicate the presence of an over-density and to initiate the gravitational

collapse. A schematic diagram that summarizes the discussion above is illustrated in Fig 2.1.

In the following, we shall discuss the relevant quantities involved in PBHs formation such as the
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threshold for collapse, the mass and the collapse fraction of PBH, which are crucial to describe the

properties and compute the current PBH abundance.

2.2 The relevant quantities for PBH abundance

The threshold collapse

During radiation domination, the background pressure of the relativistic cosmological fluid is very

large (p = wρ = ρ/3), meaning that only large amplitude perturbations will experience sufficient

gravitational attraction to overcome the pressure forces and collapse into a black hole. We can

estimate, following the analysis given by Bernard Carr in 1975 [32], the value required for the over-

densities to generate a PBH. In particular, considering a Jeans-type instability argument within

Newtonian gravity, Carr estimated that an over-density in RDU would collapse upon horizon re-

entry if the density contrast δ (2.1.1) satisfies

δ > δc = c2s , (2.2.1)

where δc is the threshold for collapse while c2s is the sound speed of density perturbations, which

determines how fast a pressure wave caused by an over-density can travel from the centre to the edge

of the perturbation. In a RDU the speed of sound of perturbations is cs = 1/
√

3 so that its square

is directly related to (1.1.8) as c2s = ω = 1/3. Equation (2.2.1) then implies that a perturbation

can collapse to form PBHs if its over-density is larger than the pressure exerted by the radiation

pressure1. A more precise estimate of the threshold δc can be obtained both by one-dimensional

and three-dimensional GR simulations and even more precisely when the evolution of perturbations

is taken into account beyond the linear regime. Recent efforts in this direction (see e.g. [33]) show

that the threshold values of the density contrast depend on the shape of the density peak, and are

in the range 0.4 ≤ δc ≤ 2/3. In the following, we shall consider values of δc inside this interval.

The mass of PBHs

The mass of the PBHs is approximately given by that contained inside a Hubble patch at the time

of collapse tc: M(tc) = (4π/3) ρ(tc)/H
3(tc), multiplied by an efficiency factor γ = 0.2, as suggested

in [32]. In particular, we can write

M
(c)
pbh = γM

∣∣∣∣
a=ac

= γM (eq)

(
M (c)

M (eq)

)
=

(
ac
aeq

)2

γM (eq) , (2.2.2)

where sub/superscripts ”c” and ”eq” refer to quantities evaluated at the time of PBH formation

and matter-radiation equality respectively, and we used the standard relation H2 ∝ ρ ∝ a−4 during

RDU. Therefore, noting that the horizon mass at the time of equality is given by M (eq) ≃ 2.8 ×
1017M⊙ [34], PBH masses can span an incredibly large range of values, in contrast to astrophysical

black holes, as they are related to the size of the cosmological horizon and the energy density of the

universe at formation time, compared to the same quantities at matter-radiation equality.

1See Appendix B for a simple analytic argument that leads to this result.
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Mpbh[M⊙] ∆N kpbh[Mpc−1]

106 14 103

100 − 102 18 − 21 105 − 106

10−17 − 10−12 34 − 40 1012 − 1015

Table 2.1: Range of PBH mass w.r.t the corresponding wave-number kpbh of the primordial modes together
with the approximate horizon crossing time measured starting from the e-folding number of horizon-exit
for the pivot scale kcmb = 0.002 Mpc−1, ∆ ≡ Npbh − Ncmb > 0. The first row refers to the corresponding
quantities for a typical Super Massive Black Hole (SMBH) like the SagittariusA∗ in the center of our galaxy
[36]. The third row refers to astroid-mass PBHs that can still account for a significant fraction (or all) of
DM density today.

We can relate the PBH mass to the characteristic size of the perturbation that leaves the

horizon during inflation and finally collapses to form the corresponding PBH. For this purpose, we

can rewrite the PBH mass as [35]

M
(c)
pbh =

(
ρc
ρeq

)1/2(Heq

Hc

)2

γM (eq) . (2.2.3)

Using entropy conservation gs(T )T 3 a3 = constant and the temperature dependence of the energy

density in the RDU, ρ ∝ g∗(T )T 4, with T indicating the temperature of the cosmological fluid and

g∗(T ) being the effective number of relativistic degrees of freedom, we can re-express Eq. (2.2.3) as

follows [35]

M
(c)
pbh(kpbh) =

(
g∗(Tc)

g∗(Teq)

)1/2(gs(Teq)

gs(Tc)

)2/3( keq
kpbh

)2

γM (eq)

≃
( γ

0.2

) ( g∗(Tc)
106.75

)−1/6 ( kpbh

3.2 × 105 Mpc−1

)−2

30M⊙ .

(2.2.4)

In the second line we assumed that the effective number of relativistic degrees of freedom in the

energy density and entropy are equal, i.e. we set g∗(T ) = gs(T ) and take g∗(Teq) ≃ 3.38, with

keq ≃ 0.0104 Mpc−1, accordingly with the latest Planck result [1]. Therefore, Eq. (2.2.4) indicates

that for masses of PBHs that could be associated with recent LIGO observations [10], Mpbh ≃ 30M⊙,

the peak scale of perturbations responsible for PBH formation is smaller than CMB scales kpbh ≫
kcmb. For sub-solar mass PBHs, the corresponding peak scale for PBH formation gets progressively

smaller. For example, considering the currently allowed sub-lunar range (Mmoon ≃ 3.7 × 10−8M⊙)

of PBH masses, 10−17 ≲ Mpbh/M⊙ ≲ 10−12, which are astrophysical objects that can be the

origin for the totality of dark matter, the range of scales associated with PBH formation is quite

small: 1012 ≲ kpbh/Mpc−1 ≲ 1015. See Table 2.1 for an easier-to-visualize summary of these

considerations.

What’s more, given that during a near-de Sitter inflation, the Hubble rate remains nearly con-

stant, ϵ1 ≪ 1, we can also derive an approximate relation between the PBH mass and the number

of e-folds Npbh at which the PBH-forming modes leave the horizon during inflation. Considering

Hpbh = Hcmb e
−ϵ1(Npbh−Ncmb) and apbh = acmb e

Npbh−Ncmb , where Npbh > Ncmb and we count e-folds
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forward in time starting from the horizon exit of the CMB mode.2. Considering the relation between

the modes and the horizon scale at horizon exit, we can write kpbh/kcmb = (aH)pbh/(aH)cmb ≃
e(1−ϵ1)(Npbh−Ncmb); once plugged in Eq. (2.2.4), assuming kcmb = 0.002 Mpc−1, we obtain

M
(c)
pbh(Npbh) ≈ 7.7 × 1017M⊙ e−2(Npbh−Ncmb)(1−ϵ1)

( γ

0.2

)( g∗(Tc)
106.75

)−1/6

. (2.2.5)

Therefore the later the modes leave the horizon compared to CMB scales, with e−2(Npbh−Ncmb) ≪ 1,

the smaller is the mass of the resulting PBH.

PBH abundance and collapse fraction β

Another important quantity, in this context, is the abundance of PBHs relative to the energy density

of other species. In particular, we can compute this quantity during two epochs: today and at PBH

formation.

When considering the fraction of PBH density today, we relate the PBH abundance to the

present-day dark-matter density introducing the quantity

fpbh ≡ Ωpbh

Ωdm
, (2.2.6)

where Ω is defined as (1.1.15), and Ωdm is currently best constrained by the Planck measurement

[1].

We can relate fpbh today to the density fraction of PBH at the epoch of their formation, denoting

this quantity with β. If PBH formation occurs in the RDU, and given the different dependence of

the energy densities for matter and radiation sources on the scale factor (ρM ∝ a−3 and ρR ∝ a−4),

we have

β ≡ ρpbh
ρtot

=

(
H0

Hc

)2(ac
a0

)−3

Ωdm fpbh , (2.2.7)

where the sub-scripts “0” and “c” refer to the present time and the time of PBH formation. In

particular, it is possible to determine a subsequent relation directly linked to the mass of PBH at

formation [35]:

β ≡ ρpbh
ρtot

∣∣∣∣
a=ac

≃ 1.33 × 10−9
( γ

2.0

)−1/2
(
g∗(Tc)

106.75

)−1/12
M (c)

pbh

M⊙

1/2

fpbh . (2.2.8)

This expression allows us to extrapolate some information about the process of PBH production.

In particular, if PBHs constitute the total DM density today, fpbh → 1, β takes extremely small

values since we must restrict to the range of masses M
(c)
pbh ∼ O(M⊙). This result reflects the fact

that PBHs density in the early universe can be very low.

2We used the convention for which the counting of the number of e-folds allows Nend = 0 at the end of inflation.
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2.2.1 Collapse fraction of PBHs at formation

There is another important estimate related to β. We evaluate the PBH abundance at formation

through the probability of some perturbation δ to be larger than the threshold δc. The estimate of

β, in this treatment, is computed using an analogy of the Press-Schechter formalism [37] and is

β ≡ ρpbh
ρtot

∣∣∣∣
a=ac

≡
∫ ∞

∆c

dδ P (δ) =
1√
2πσ

∫ ∞

∆c

dδ e−(δ−µ)2/2σ2
, (2.2.9)

where P (δ) is the probability distribution function for the over-density δ, and we assume it has a

Gaussian form, with mean value µ and variance σ2. We assume that a perturbation δ will collapse

to form BH if its amplitude is larger than a critical value ∆c. Notice that ∆c is the critical density

contrast and in general is different from the threshold δc. For more details on the relation between

∆c and δc we refer to [38]. However, for simplicity, we will continue identifying ∆c = δc for the

estimates of β.

A crucial parameter of the distribution P (δ) in (2.2.9) is represented by the variance σ2. It is

clear that for larger values of the variance, the probability of having larger values of the over-density

increases and accordingly the value of β.

In particular, using (2.2.8) and (2.2.9), we can estimate the required variance σ2 that can give

rise to a large population of PBH today. Focusing with a distribution with zero mean µ = 0, we

have

β =
1√
2πσ

∫ ∞

δc

dδ exp

(
− δ2

2σ2

)
=

1

2
Erfc

(
δc√
2σ

)
≃ σ√

2πδc
exp

(
− δ2c

2σ2

)
, (2.2.10)

where Erfc(x) = 1 − Erf(x) is the complementary of the error function, and in the last equality we

take δc ≫ σ. In general, this is a quite common and reasonable approximation. We can consider

two concrete examples: substituting Eq. (2.2.10) into Eq. (2.2.8) we obtain that a solar mass PBH

population with fpbh = 10−3 requires δc/σ ≃ 0.7, whereas for a population with M
(c)
pbh = 10−12M⊙

and fpbh = 1 we need δc/σ ≃ 7.9. Assuming a threshold of δc = 0.4, these results yield respectively

σ ≃ 0.06 and σ ≃ 0.05. We will analyze in the next Section how these results are related to the

power spectrum of the comoving curvature perturbation R.

2.3 PBH properties and primordial scalar fluctuations

We now want to discuss a proper treatment to relate the PBH abundance with the features of

the comoving curvature fluctuation R, produced in a quantum state deep inside the horizon and

enhanced by cosmic inflation.

Following [33], we assume the comoving curvature perturbation R is a Gaussian random field.

Working in Fourier space, we can perform a gradient expansion controlled by the ratio k/aH and

to the linear order one finds [31]

δ(x, t) ≃ 2(1 + ω)

5 + 3ω

∇2R(x)

(aH)2
+ . . . =⇒ δk ≃ −4

9

(
k

aH

)2

Rk , (2.3.1)
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where we used ω = 1/3 in the RDU and neglected terms of higher order O(R2) in the curvature

perturbation. This equation relates the energy fluctuations and curvature fluctuations and allows

us to understand the behaviour of the amplitude of curvature perturbation R necessary to trigger

PBH formation.

The relation between the power spectra of over-densities and curvature perturbations is then

given by

Pδ(k) ≃ 16

81

(
k

aH

)4

PR(k) . (2.3.2)

In the computation of the density contrast, one should typically use a window function W to smooth

δ(t, x⃗) on a comoving scale R ≈ k−1 ≈ (aH)−1, relevant for PBH formation. Finally, the relation

between the variance of the density contrast δ and the primordial power spectrum (see e.g. [39]) is

σ2(R) ≡ ⟨δ2⟩R =

∫ ∞

0
d log q W2(q,R)Pδ(q) ≃ 16

81

∫ ∞

0
d log qW2(q,R) (qR)4 PR(q) (2.3.3)

where W is the Fourier transform of a real space window function. Common choices of W in-

clude a volume-normalised Gaussian, or a top hat window function, whose Fourier transforms are

respectively given by

W(k,R) = exp

(
−k

2R2

2

)
, W(k,R) =

3 sin(kR) − 3kR cos(kR)

(kR)3
. (2.3.4)

If the curvature power spectrum Pδ is characterized by a very narrow peak around some wave-

number kphb, the integral (2.3.3) can be approximated and gives σ2 ∼ Pδ(kpbh). Then, using

Eq. (2.3.2) at horizon entry k ≃ aH (i.e. at the time of PBH formation), since 81/16 ∼ 5, we can

roughly relate the variance σ to the primordial curvature power spectrum as

PR(kpbh) ∼ 5σ2 ∼ 10−2 , (2.3.5)

where we used the results derived from Eq. (2.2.10). Let us note that a Gaussian PDF for δ

requires σ ≃ 0.06 for M
(c)
pbh = M⊙ to generate a population of fpbh = 10−3 today, considering

Gaussian fluctuations. This estimate holds for a wide range of sub-solar PBH masses, and implies

that we need a very large amplification of the curvature spectrum perturbation with respect to

CMB scales in order to trigger PBH formation:

∆PR ≡ PR(kpbh)

PR(kcmb)
∼ 107 . (2.3.6)

It is worth mentioning that this estimate does not change much for smaller mass PBHs with

M
(c)
pbh < 10−12M⊙, because the power spectrum has a logarithmic sensitivity on the PBH fraction

β. In order to check this last statement, we can invert the expression (2.2.10), and use (2.3.5) to

relate primordial power spectrum of curvature perturbation to β as

PR(kpbh) ∼ 5σ2 ∼ 5δ2c
2 log(1/β)

. (2.3.7)
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Now, as an extreme case, we can consider the smallest PBHs M
(c)
pbh ≃ 10−18M⊙ that can survive until

today (not yet evaporated by Hawking radiation) which have the tightest available observational

constraints, restricting their current abundance to fpbh ≲ 10−9 [40]. Plugging these values in

(2.2.10), we find that the PBH fraction at formation is β ≲ 10−28, which in turn leads to the

constraint PR(kpbh) ≲ 6 × 10−3 in (2.3.7) for a threshold of δc = 0.4. Therefore, we conclude

that for Gaussian perturbations and for any PBH mass of interest, the amplitude of scalar power

spectrum relevant for PBH formation requires PR ∼ 10−2 for any potentially observable PBH

fraction fpbh today. The discussion above tells us that a small variation in the amplitude of the

power spectrum leads to differences of many orders of magnitude in the fraction of regions collapsing

into PBHs, as clearly implied by the exponential dependence of β to PR in (2.3.7). Similarly, a

small change in the choice of threshold δc could lead to very different estimates in terms of β. For

example, focusing on a fixed value of variance σ2 ≃ 0.05, β (2.2.10) can change by various orders of

magnitude, if we reduce the threshold δc by just about 20% :

β(δc = 0.4)

β(δc = 1/3)
≃ 10−5 , (2.3.8)

demonstrating how tuned should be the conditions for producing a cosmologically interesting pop-

ulation of PBHs.

2.4 Constraints on the primordial black hole abundance

In this Section, we review the constraints on the PBHs abundance from different probes, focusing

on the phenomenologically interesting mass range, based on the work of [31], [41]. The constraints

reported in the literature are derived from a very specific set of assumptions, and it is assumed

that all the PBHs have a monochromatic mass function, i.e. they span a mass range ∆M ∼Mpbh.

However, some more recent works tried to generalize such constraints to the case of extended mass

functions [42]. Some constraints may be relaxed or strengthened with model-dependent modifi-

cations of the physical processes behind the formation mechanism, such as effects from strongly

non-Gaussian fluctuations or the effect of accretion for Mpbh ≳ O(10)M⊙ [43] and clustering. In

general, there are still uncertainties in both the black hole physics and observations themselves.

A comprehensive summary plot is shown in Fig. 2.2, where the main constraints on the abun-

dance are shown for clarity. We shall organize the discussion on the kind of physical process at the

origin of a PBH signature in observations.

Hawking radiation

The lifetime of a PBH due to its evaporation in standard model particles can be approximated as

[40]

t ≈ 1064
(
Mpbh

M⊙

)3

yr . (2.4.1)

Relation (2.4.1) suggests us that PBHs with Mpbh ≲ 10−16M⊙ evaporate in a time-scale comparable

with the age of the universe or even less and the emitted radiation has a black-body spectrum with

45



Figure 2.2: We show the most stringent claimed constraints in the mass range of phenomenological interest
(Figure taken from [41] and References therein). They come from the Hawking evaporation producing extra-
galactic gamma-ray (EGγ), e± observations by Voyager 1 (V e±), positron annihilations in the Galactic Center
(GC e+) and gamma-ray observations by INTEGRAL. There are plots related to microlensing searches by
Subaru HSC, MACHO/EROS, OGLE and ICARUS. Other constraints come from CMB distortions. In black
dashed, we show the ones assuming disk accretion while in black solid the ones assuming spherical accretion.
Additionally, constraints coming from X-rays (XRay bkg) and X-Ray binaries (XRay binaries) are shown.
Dynamical limits coming from dynamical friction (Dyn. friction), the disruption of wide binaries (Wide
Binaries), and the survival of star clusters in Eridanus II and Segue I are also shown.

a temperature T ∝ 1/Mpbh. In particular, as the energy emitted through the Hawking evaporation

becomes increasingly larger for lighter BHs, this process may lead to the production of detectable

signatures in the case of ultralight PBHs, such as the production of light elements during the Big

Bang Nucleosynthesis [40], or affecting the neutron-to-proton ratio at the time of freeze-out of the

weak interaction [44]. Other detectable signatures can come from variations of the CMB anisotropies

due to the injection of electromagnetic energy for PBHs, for a mass range [3× 1013, 5× 1016] g [45].

The most stringent constraints, related to the lightest portion of Fig. 2.2, come from the pro-

duction of extra-galactic γ-rays [46], e± observations by Voyager (V e±) [47], positron annihilations

in the Galactic Center (GC e+) [48] and gamma-ray observations by INTEGRAL [49].

It is important to keep in mind that there is a lack of observational evidence for black hole

evaporation, and even if well established theoretically, it is still unclear whether quantum gravity

effects would affect or not this process. Although these are all important limitations to account for,

it is worth noticing that such very light PBHs, if they exist, are still the ideal target to probe and

test the Hawking radiation hypothesis for the first time.

Gravitational lensing

One of the most stringent constraints on PBH as constituents of the dark matter in the universe

comes from the microlensing amplification of light. PBHs being very compact objects can lead to

significant lensing signatures on the electromagnetic radiation reaching the detectors from back-

ground sources. Thus, the most stringent constraints in the mass range 10−10 ≲ Mpbh ≲ 10M⊙
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come from microlensing searches by Subaru HSC [50], lensing searches of massive compact halo ob-

jects (MACHO) towards the Large Magellanic Clouds [51], fast transient events near-critical curves

of massive galaxy cluster Icarus [52] and observations of stars in the Galactic bulge by OGLE [53].

Finally, Ref. [54] constrained fPBH ≲ 0.4 for MPBH ≳ 10−2M⊙ from gravitational lensing of type Ia

supernovae.

Above 10M⊙, it is essentially impossible to derive bounds due to the fact that the amplification

light curve lasts more than a decade, while no microlensing survey has monitored continuously the

light from stars for so long. Below 10−9M⊙, the wavelength of visible light is comparable to the

Schwarzschild radius of the compact object, and we enter the regime of wave optics, where diffraction

makes the constraints essentially disappear. One could search for PBHs with Mpbh < 10−9M⊙ with

light of shorter wavelength, like X-rays or gamma-rays, but sources that emit in those bands are

typically not as abundant and stable as stars.

Dynamical effects

The most stringent constraint reported in Fig. 2.2 from dynamical effects is the one denoted as

dynamical friction (Dyn. friction) [55]. A large fraction of massive PBHs in the galactic halo may

lead to clustering close to the galactic center due to dynamical friction from stars or lighter PBHs,

making them lose kinetic energy. Such high concentration would not be allowed by the upper limit

on the mass contained in the Galactic center.

The possibility of PBHs above 10M⊙ should induce dynamical heating in highly dark matter

dominated ultra-faint dwarf galaxies (UFDGs), such as in Segue I [56] or in Eridanus II [57], allowing

them to reach half-light radii larger than 10 parsecs. In general, works in this sense basically

exclude fpbh = 1 for Mpbh > 10M⊙, and are relatively compelling because they rely on well-known

Newtonian gravitational dynamics.

Accretion limits

The accretion of baryonic matter on PBHs leads to various effects both in the early and late-time

universe. In fact, the accretion of background gas could lead to a large luminosity for PBHs at early

times, having an impact on the CMB temperature and polarization anisotropies, setting limits on the

abundance of PBHs between about 10M⊙ and 104M⊙ [58]. The main idea behind this constraint

is the following: in the early universe, PBHs would inevitably affect primordial gas, accreting it.

In turn, the consequent emission of high-energy radiation could affect the thermal and ionization

histories of the universe, leading to CMB distortions and signatures in the CMB temperature and

polarization angular power spectra.

Other constraints come from comparing the late-time emission of electromagnetic signals from

interstellar gas accretion onto PBHs with observations of galactic radio and X-ray isolated sources

[59] and X-ray binaries [60]. Finally, a cosmology-independent constraint can be set on the PBH

abundance based on the absence of gas heating in the interstellar medium due to PBH interactions.

Using data from Leo T dwarf galaxy is possible to constrain effects from photon emission, dynamical

friction, winds and jets emission from accretion disks, setting a bound on PBHs with masses in the

range [10−2, 106]M⊙ up to the percent level [61, 62].
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The strengths of these limits depend on the details of the accretion mechanism and, given the

possible complexity of the accretion process, it is possible that those limits significantly change

under different assumptions.

Indirect constraints

”Indirect” constraints are considered to be the ones that only probe the standard formation mech-

anism for PBHs, i.e. limiting the amplitude of primordial curvature perturbations. Those limits

at small scales can then be translated into a bound on the PBH abundance. Enhanced primor-

dial density perturbations producing PBHs will also generate CMB µ-distortions [63] by dumping

energy into the primordial plasma in the wave-number range 1 ≲ k/Mpc−1 ≲ 104.5, and strongly

constraining PBHs above Mpbh ≈ 104M⊙. Other effects include the modification of the freeze-out

value of the neutron-to-proton ratio at the Big Bang Nucleosynthesis era. In particular, Ref. [64]

found that small scale perturbations decrease the n-p ratio, obtaining constraints on the power

spectrum of the curvature perturbations as PR ≲ 0.018 on 104 ≲ k/Mpc−1 ≲ 105. These indirect

probes are therefore very interesting to discriminate between the possible PBH formation models

in a way that is independent of the complex physical processes that could have impacted the PBH

properties. However, those limits would be evaded if PBHs are generated from highly non-Gaussian

perturbations boosting the PBH production by enhancing the tail of perturbation distribution while

leaving the mean perturbations well below the bounds.

Gravitational waves

In recent years interest in PBHs has intensified because of the detection of gravitational waves

(GWs) from coalescing binary black holes by LIGO/Virgo collaboration (LVC) and the possibility

that these might be of primordial rather than stellar origin. By requiring the number of detectable

events per year not to exceed the rate observed by LVC, one can set a constraint on the PBH

abundance [65, 66]. For large values of fpbh close to unity, PBH clustering evolution can reduce

the merger rate by enhancing binary interactions in dense environments. However, this effect is

not sufficient to reduce the rate to a level that would be compatible with LVC observations in the

standard scenario [66, 67].

Additionally, the NANOGrav experiment searching for a stochastic GW background in the

frequency range close to f ≃ 1yr−1 would be able to detect the GWs induced at second order by the

curvature perturbations responsible for PBH formation. The null observation in the 11-yr dataset

was translated into a constraint on the PBH [68]. In particular, less than one part in a million

of the total DM mass could come from PBHs in the mass range of [2 × 10−3, 7 × 10−1]M⊙. As

the PBH abundance is exponentially sensitive to the curvature perturbation amplitude constrained

by NANOGrav, the current upper bound has large uncertainties when translated in terms of fpbh.

Therefore, we take the opportunity to stress that the constraint from the NANOGrav 11-yr data

from Ref. [68] has large systematic uncertainties, above all in their choice of the threshold for PBH

formation. We stress that this is only applicable for PBHs formed from the collapse of density

perturbations and in the absence of non-Gaussianities (see for example [69]. Also, the NANOGrav
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collaboration has released the new 12.5 yrs dataset and claimed that the previous constraint should

be relaxed due to improved treatment of the intrinsic pulsar red noise [70].

Mass windows: the asteroidal mass range

In this Section, we have reviewed only some of the principal ways to probe and constrain the abun-

dance of PBHs. If one strictly follows the claimed limits and assumes a monochromatic distribution,

it seems that there is an open window in the asteroidal mass range [10−16, 10−10]M⊙ that can ac-

count for the entirety of the dark matter. Indeed, for small mass PBHs, below 10−16M⊙, this

seems impossible due to limits based on PBH evaporation through Hawking radiation, while above

10−10M⊙ we must consider effects coming from microlensing, posing limits up to the solar mass

scale, and multiple other astrophysical observations at masses above a solar mass.

Limits that were previously set in this window, by using femtolensing effects [71], an extended

original version of HSC microlensing searches [50], dynamical constraints derived requiring the

survival of compact objects such as white dwarfs [72] and neutron stars [73], were later on relaxed

in the re-analysis performed in Refs. [74–76]. To date, there is general agreement in the literature

on the absence of constraints in this interesting mass range.

Besides asteroid mass PBHs, one can also notice that in the solar-mass region, the number of

probes is limited by microlensing, and X-ray limits and are not extremely stringent, varying between

10−2 and 10−1. Finally, one should note that limits on PBH abundance cohabit with possible positive

evidence [77], e.g. from detected microlensing events, cosmic background properties supporting

the high redshift existence of PBH clusters, and obviously GW observations and the intriguing

properties of black hole binary mergers, where most of these evidence point to the stellar-mass

region. Taken all these considerations into account, it seems indeed difficulty plausible that all

the dark matter is made of planetary-mass or intermediate mass PBHs, above 10M⊙. But both

the asteroid-mass region and the stellar mass region remain of very high interest, especially in the

context of extended mass distributions. However, strong claims are probably premature given the

large level of uncertainties for all the probes.
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Chapter 3

Amplification of fluctuations for a

minimally coupled inflaton

In the present Chapter, we review two of the principal mechanisms by which it is possible to obtain a

sufficient amplification of the power spectrum compatible with the requirement for the production

of PBH. As we have learned in the previous Chapter 2, PBH formation is the consequence of a

significant enhancement in the curvature power spectrum around a scale kpbh, which can be related

to the resulting PBH mass spectrum, and is much larger with respect to CMB scales kcmb.

In this thesis, we mainly focus on the case of single-field inflation without entering the most

general framework of multi-field inflation. Initially, we perform an analysis as model-independent

as possible, referring to specific scenarios only when necessary. We start by giving a wide range

of possible realizations in order to contextualize how single-field models work for PBH production.

Indeed, there are many models of inflation, in the literature, capable of enhancing the primordial

spectrum of fluctuations, exploiting, for example, a phase of ultra-slow-roll (USR), the presence of

bumps in the inflationary potential, sudden turns of the inflationary trajectory or the resonance

during inflation (some examples are [78–81]). This approach outlines all the essential theoretical

landmarks and allows us to interpret and understand the physical properties of our results. Instead

of analyzing the possible consequences of different inflationary models, we consider particular evo-

lutions of the Hubble parameter and we reconstruct the associated inflation potential accordingly.

Within this “reconstruction” approach, we can calculate the features of the resulting spectra and

verify if their amplitude is enhanced.

Finally, we use the results found to build complete models of inflation. The goal is to propose a

viable model also from a phenomenological perspective, putting together an inflaton potential able

to reproduce different phases of inflation. In particular, to have a sufficient amplification of the

power spectrum, we expect that the scalar potential has a plateau shape in a non-vanishing field

interval ∆ϕ ̸= 0. As we will see in detail later, this property generates a phase of transient evolution

similar to ultra-slow-roll (USR) [82] or constant-roll (CR) [83] depending on the exact profile of the

potential around the plateau.

The main discussions and formulas follow the references [35, 84–87].
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3.1 Enhancement of scalar perturbation during single-field infla-

tion

The form of the scalar power spectrum in single-field scenarios is obtained by considering the

second-order action of scalar perturbations during an inflationary phase. Following the analysis of

the cosmological perturbations done in Section 1.4, we perturb the background homogeneous metric

describing a (quasi-)de Sitter background with a nearly constant Hubble rate H. We shall work

with conformal time η ≤ 0 during inflation. The scalar perturbations can be described in terms of

the comoving curvature perturbation R, whose most general quadratic action (to the lowest order

in derivatives) can be written as [85]:

S
(2)
R =

1

2

∫
dη d3x

2a2(η)M2(η)ϵ1(η)

c2s(η)

[
R′2 − c2s(η)(∇⃗R)2

]
. (3.1.1)

In this formula, cs is the sound speed of propagation of curvature perturbations, M is a time-

dependent mass, and we recall ϵ1 = − Ḣ
H2 is the slow-roll parameter that guarantees inflation when

ϵ1 < 1. The action (3.1.1) depends on just two independent combinations of these functions of

η. In particular, M2 and ϵ1 are indistinguishable at the level of linear perturbations; however, it

is important to notice that this degeneracy is broken by the background evolution so that it is

convenient to keep them separated as it will become clear later.

Let us briefly study the types of field models that lead to the action (3.1.1). If we consider

only one scalar field driving inflation, say ϕ, and no other fields are supposed to be relevant during

inflation, there is a single independent scalar perturbation and its linear evolution is described by

the action (3.1.1). Among these models, the simplest ones are the models with c2s = 1 and constant

Planck mass M = MP, characterized only by the shape of the potential V (ϕ). Assuming that the

dynamics eventually reaches the slow-roll attractor, unique features of the potential, such as an

inflection point, will give rise to PBH formation (see e.g. [11]). This phase is commonly associated

with an ultra-slow-roll evolution which is the consequence of a transient period of inflationary

evolution in which slow-roll conditions are violated. Potentials with the features required to achieve

an amplification of curvature perturbations can find explicit realizations, for example, in models of

Higgs inflation [88], alpha-attractors [89], and string inflation [90].

Different models exploit a time dependence for the sound speed c2s and are based on the presence

of non-canonical kinetic terms for the inflaton scalar ϕ. The simplest example is that of models whose

action is some function p(X,ϕ), where X = −∂µϕ∂µϕ/2, as K-inflation, see e.g. [85] for concrete

examples. Finally, scenarios with a time-dependent effective Planck mass can be associated with

the addition of non-minimal couplings of the inflaton scalar with gravity, as in the Hordeski action

and its cosmological applications to G-inflation scenarios [91].

Let us note that scenarios involving a single field rely on similar methods to amplify the power

of curvature fluctuations associated with the behaviour of background quantities. Our primary goal

is to provide a universal explanation of these methods for amplification, considering M , cs, and ϵ1

as functions of time, depending on the background profile evolution during inflation.

To simplify action (3.1.1), we introduce a rescaled conformal time variable that absorbs the
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time-dependent cs and imposes an equal scaling condition on time and space coordinates:

dη̄ = csdη =⇒ S
(2)
R =

1

2

∫
dη̄ d3x z2(η̄)

[
R′2 − (∇⃗R)2

]
, (3.1.2)

with a prime indicating now a derivative with respect to η̄, the rescaled conformal time. In analogy

for what we have done with the scalar field perturbation δϕ in Section 1.4.4, we have introduced

the so-called time-dependent “pump field” z(η̄), with the dimension of a mass and defined by

z2(η̄) ≡ 2 a2(η̄)M2(η̄) ϵ1(η̄)

c2s(η̄)
. (3.1.3)

The evolution of R can be studied mode by mode, in the Fourier space, and the Euler-Lagrange

mode equation for Rk is derived from the action (3.1.2) and has the following form:

1

z2(η̄)

[
z2(η̄)R′

k(η̄)
]′

= −k2Rk(η̄) , (3.1.4)

where k ≡
∣∣∣⃗k∣∣∣ is the modulus of the wave number that labels each given mode. We can notice

that the dynamics of the comoving curvature perturbation R is strongly dependent on the pump

field z(η̄), and more generally on the behaviour of the background quantities M , ϵ1 and cs. We can

readily see that on super-horizon scales when the right-handed side of equation (3.1.4) is negligible,

there exists a solution with Rk constant, which corresponds to the growing adiabatic mode. It is

not necessary for Rk to remain constant over time after its scale crosses the Hubble horizon. If the

decaying mode contributes significantly to R at horizon crossing, then R will not become constant

until the decaying mode dies out. What is important to note is that the decaying mode is the mode

that asymptotically decays in the future, but it may not start decaying right after horizon crossing

[87].

To describe scenarios where the size of small-scale curvature fluctuations (k/aH ≫ 1) differs

considerably from large-scale ones (k/aH ≪ 1), we can implement a gradient expansion approach

[35]. This approach consists of starting from the solution in the limit of small k/(aH) and including

momentum-dependent corrections that solve (3.1.4) order by order in a k/(aH) expansion. Using

this gradient expansion is particularly suitable for our purpose and allows us to comprehend better

the physical origin of possible mechanisms of enhancement at small scales. The most general solution

of Eq. (3.1.4), up to second-order in powers of k/(aH), can be obtained in terms of the following

integral equation

Rk(η̄) = R(0)
k

[
1 +

R(0)
k

′

R(0)
k

∫ η̄

η̄0

dη̄1
z̃2(η̄1)

− k2
∫ η̄

η̄0

dη̄1
z̃2(η̄1)

∫ η̄1

η̄0

dη̄2 z̃
2(η̄2)

Rk(η̄2)

R(0)
k

]
, (3.1.5)

where the sub and super-script (0) denote a reference time, and the tilde over a time-dependent

quantity indicates that it is normalized with respect to its value at η̄ = η̄0.

We aim to establish a connection between the curvature perturbation at a later time η̄ and the

same quantity computed at an earlier time η̄0. To achieve this, we define η̄0 as the time coordinate

evaluated soon after horizon crossing, and R(0)
k as the mode function computed at that time. To
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enhance the spectrum of curvature fluctuations at small scales, we can consider two possibilities.

The first option is to use the structure of Eq. (3.1.5), ensuring that contributions within the

square brackets become increasingly important as time progresses after horizon crossing. This

generates a significant scale dependence for Rk(η̄) after horizon crossing, and the possibility to

amplify the small-scale curvature spectrum. Alternatively, we can implement some mechanism

that leads to significant scale dependence already at horizon crossing, i.e. for the quantity R(0)
k ,

which remains frozen at super-horizon scales. For convenience, we define the following hierarchies

of slow-roll functions:

ϵi+1 ≡ ϵ−1
i

dϵi
dN

, si+1 ≡ s−1
i

dsi
dN

and µi+1 ≡ µ−1
i

dµi
dN

, (3.1.6)

with ϵ0 = 1/H, s0 = cs, and µ0 = M2. Let us note that the time coordinate η̄, is related to the

number e-fold N by dN = Hdt = (aH/cs)dη̄. We observe that the generalized slow-roll regime,

corresponding to standard attractor dynamics of inflation, holds provided that

|ϵi|, |si|, |µi| ≪ 1, ∀i ≥ 1 , (3.1.7)

which implies that the pump field continuously grows in time z2 ∝ a2 ∝ (−η̄)−2 as η̄ → 0. As

a consequence, the last two terms inside the square brackets in Eq. (3.1.5) decay respectively as

(−η)3 and (−η)2 in the late time limit, and in general are thus referred as “decaying” modes,

that rapidly cease to play any role in the dynamics of curvature perturbations. This is the regime

typical of slow-roll, where soon after horizon crossing, the curvature perturbation settles into a

nearly constant configuration R(0)
k , and their spectrum is almost scale-invariant. In this case, the

momentum-dependent terms in Eq. (3.1.5) cannot amplify the curvature spectrum at small scales.

This is significant because it suggests that in order to produce PBHs, we need to go beyond the

slow-roll conditions of Eq. (3.1.7), as first emphasized in [92].

3.1.1 Enhancement for growing modes

In this Section, we analyze the first of the two possibilities mentioned. We start by noticing the

peculiar structure of the integrals within the square parenthesis of Eq. (3.1.5). Suppose that, for a

brief time interval, a given mode k experiences a background evolution during which the pump field

z rapidly decreases after the horizon exit epoch η̄0. Then, the would-be “decaying” mode can grow

large. The integrals in the parenthesis of Eq (3.1.5) can affect greatly the nearly constant solution

R(0)
k , eventually leading to a late-time value Rk(η̄) ≫ Rk(0) on super-horizon scales. This regime

is conceptually different from the slow-roll regime. In this case, the condition for the enhancement

of the curvature perturbation can be explicitly expressed in terms of the derivative of the pump

field; starting from a general increasing behaviour of the pump field, we expect a change in sign of

its derivative, that corresponds to

z′

z
=
aH

cs

[
1 +

ϵ2 − s1 + µ1
2

]
< 0 , =⇒ ϵ2 − s1 + µ1 < −2 . (3.1.8)
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This condition implies that ϵ2 − s1 − µ1 should be of order O(1) and negative during some period

of inflation, violating the slow-roll conditions (3.1.7). In this way, the last terms of R expansion

(3.1.5) can become non-negligible. Such terms are responsible for the enhancement of the power

spectrum of curvature fluctuations for a range of scales.

In order to clarify these ideas, we can work with the equation for the curvature perturbation

(3.1.4) rewritten as

R′′
k + 2

z′

z
R′

k + k2Rk = 0 . (3.1.9)

It is useful, for numerical purposes, to write this equation in terms of the number of e-folds N , and

we can use it as a reference later:

d2Rk

dN2
+ (3 − ϵ1 + ϵ2 − 2s1 + µ1)

dR
dN

+
c2sk

2

a2H2
Rk = 0 . (3.1.10)

We can also rewrite, with respect to N the pump field derivative as

1

z

dz

dN
=

cs
aH

z′

z
= 1 +

ϵ2 − s1 + µ1
2

. (3.1.11)

This expression can be integrated to obtain

log
z

z0
= (N −N0) +

1

2

∫ N

N0

dN ′ (ϵ2 − s1 + µ1) , (3.1.12)

where the subscript 0 denotes the horizon crossing time η̄0. We then see that z ∝ a ∝ eN in the

slow-roll regime or, more generally, as long as the combination (ϵ2 − s1 + µ1) remains small. In

the regime with very long wavelengths with sufficiently (or sufficiently small k/a), the curvature

perturbation equation (3.1.9) reduces to

R′′
k + 2

z′

z
R′

k ≃ 0 , (3.1.13)

which, after one integration, gives R′
k ∝ z−2 and a general solution equal to

Rk ≃ C1,k + 2C2,k

∫
dη̄′

z2(η̄′)
= C1,k + C2,k

∫
c2s

a3M2ϵ1H
dN , (3.1.14)

where C1,k and C2,k are some integration constants which must be determined from the chosen

vacuum mode solutions [85]. The first term is the well-known adiabatic mode that is conserved

outside the horizon, and that exists due to zero-mode residual symmetries, represented in Eq. (3.1.5)

by R(0)
k . The second term, proportional to C2,k, instead, for SR becomes the already mentioned

decaying mode that typically becomes negligible within a few e-folds after horizon crossing. This is

the usual behaviour in the generalized slow-roll regime, where z ∝ a and the decaying mode evolves

like a−3.

Let us show how the spectrum enhancement can be realized and consider the expression for the
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variation of Rk with the number of e-folds N [85]:

dRk

dN
= C2,k e

−3N c2s
M2ϵ1H

= C2,k exp

[
−
∫

dN (3 − ϵ1 + ϵ2 − 2s1 + µ1)

]
, (3.1.15)

where we have neglected the time dependence, assuming that each variable is a function of N . We

observe that the second mode decays as a−3 ∝ e−3N in the generalized slow-roll regime. More

precisely, the derivative of the curvature perturbation is exponentially suppressed as long as the

combination

ξ ≡ 3 − ϵ1 + ϵ2 − 2s1 + µ1 > 0 . (3.1.16)

If the friction parameter ξ is instead negative for some interval of e-folds, the derivative (3.1.15) is

no longer suppressed, and the second mode can become the dominant one. Such a growing mode

can enhance the power spectrum enough and finally lead to PBHs production. Interestingly, the

time variation of the sound speed and the effective Planck mass contribute to ξ through s1 and µ1,

and this freedom can either guarantee that the second mode never becomes the dominant one or,

instead, turn the second mode into a growing one, thus enhancing the power spectrum.

3.1.2 Analysis when the decaying modes are negligible

In this last Section, we continue the analysis started in the previous one, in particular considering

the second possible mechanism, which produces an amplification for the curvature amplitude. We

note that if the friction term ξ is positive, the leading term R(0)
k is the only one to survive along

the inflationary evolution. What is interesting is that this regime allows us to analytically obtain

an equation for the power spectrum and calculate an explicit relation between PBHs formation

properties and the slow-roll parameters.

In order to see this, it is convenient to rewrite Eq. (3.1.4), adopting the canonical normalization

for the scalar perturbation vk(η̄) = z(η̄)Rk(η̄) :

v′′k(η̄) +

(
k2 − z′′

z

)
vk(η̄) = 0 . (3.1.17)

We assume that the pump-field z is monotonically increasing in time in order to have the decaying

mode at super-horizon scales. The treatment is identical to the case of a scalar perturbation reviewed

in section 1.4.4. In fact, we can identify two asymptotic regimes for each mode k: i) an early-time

regime, when each mode is deep inside the horizon and ii) a late-time one, when the modes get

stretched to become super-horizon. On the one hand, in the former regime, the modes satisfy

k2 ≫ z′′/z and behave as the standard vacuum fluctuations in Minkowski space-time

vk(η̄) ≃ e−ikη̄

√
2k

. (3.1.18)

On the other hand, long wavelength modes with k2 ≪ z′′/z have solutions given by

vk(η̄) ≃ C1(k) z(η̄) + C2(k) z(η̄)

∫
dη̄

z2(η̄)
, (3.1.19)
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that was already found in Eq. (3.1.14). From the previous discussion, we neglect the last term in

Eq. (3.1.19) that rapidly decays away. Soon after horizon crossing, the canonical perturbation will

stabilize around the solution vk = z C1,k. Using the field redefinition, we can identify the constant

mode as the curvature perturbation at late times C1,k = Rk = R(0)
k . In order to determine its

expression, we match the solutions around horizon crossing time η̄ = η̄0, and we obtain

|C1(k)|2 = |R(0)
k |2 =

1

2k z2(η̄0)
=

1

2k

cs
2M2a2ϵ1

∣∣∣∣
η̄=η̄0

. (3.1.20)

We can approximatively identify the matching time, with the condition

k =
aH

cs
, (3.1.21)

and write the late-time power spectrum as

PR(k) =
k3

2π2

∣∣∣∣vk(η̄)

z(η̄)

∣∣∣∣2 =
k3

2π2

∣∣∣R(0)
k

∣∣∣2 =
k3

2π2
|C1(k)|2 =

H2

8π2 ϵ1 csM2
. (3.1.22)

From Eq (3.1.22), we observe that in order to realize a non-negligible boost of the power spectrum,

it is sufficient to have a regime in which ϵ, cs and M2 rapidly decrease.

3.2 Model in General Relativity

After having illustrated the principal mechanisms of amplification pertinent to the single-field infla-

tion scenario, we will try to apply these procedures to solve viable inflation models, able to produce

the seven-order of magnitude enhancement required for PBH formation. In order to simplify the

analysis, we first focus on canonical single-field models, in which cs = 1 and M = Mp, and the

hierarchies associated with them are absent, si = 0 and µi = 0.

The properties of the dynamics of the background slow-roll parameters are then determined by

the features of the field potential V (φ). In order to find the complete form for our model potential,

we reconstruct it starting from a given evolution of H. In particular, the reconstruction is relevant

to model the amplification phase since SR can be easily obtained with a nearly flat region in the

potential.

3.2.1 Evolution with ”Constant” SR parameters

Before examining some examples of “complete” potentials directly, we shall restrict the analysis to

the amplification phase. Let us start with the evolution of cosmological perturbations considered in

the previous Sections. The main formula (3.1.9) governs the evolution of cosmological fluctuations.

In order to extrapolate the same results obtained in Sections 3.1.1 and 3.1.2 one can introduce as
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a new time the dimensionless variable 1 ζ = k/(aH), that allows us to rewrite Eq. (3.1.9):

ζ2
d2Rk

dζ2
+

[
ϵ1ϵ2 − 2(1 − ϵ1)

d log z
dN

(1 − ϵ1)2

]
ζ

dRk

dζ
+

ζ2

(1 − ϵ1)2
Rk = 0 . (3.2.2)

In the long-wavelength limit (ζ ≪ 1), the last term is negligible, and assuming that the SR param-

eters are constant, and considering that d log z
dN = 1 + ϵ2/2 from Eq. (3.1.11), we note the equation

admits a constant solution and a solution proportional to ζβ, where

β =
3 − 4ϵ1 + ϵ2 + ϵ1(ϵ1 − 2ϵ2)

(1 − ϵ1)2
. (3.2.3)

If ζβ decreases in time, the constant solution dominates in the ζ → 0 limit. This is what happens

for de Sitter and SR. In contrast, if ζβ increases in time, it dominates in the ζ → 0 limit. This is

what occurs for USR leading to a very different spectrum from de Sitter and SR, since its amplitude

increases in time. The non-constant solution of (3.2.2) is

Rk ∝
(
k

aH

)β

∼ e−β(1−ϵ1)N , (3.2.4)

and it increases or decreases depending on the sign of

Φ ≡ β(1 − ϵ1) =
3 − 4ϵ1 + ϵ2 + ϵ1(ϵ1 − 2ϵ2)

1 − ϵ1
, (3.2.5)

increasing if Φ < 0 and decreasing if Φ > 0. Only in the latter case the spectral index of the

primordial spectrum can be analytically calculated using the definition (1.4.108)

ns − 1 =
d logPR
d log k

. (3.2.6)

We have examined the conditions for Φ and ns − 1 capable of producing a blue-tilted spectrum,

and such conditions are exact if the SR parameters are constant trend. Still one can apply the

results to other cases, such as SR inflation, in which the parameters are close to zero, and one

can expand the formulae to first order for consistency. Also, the inflationary phases in which SR

parameters have a constant limit for large a can be studied with the approach illustrated above. In

these cases, we typically obtain parameter hierarchies in which ϵi approach constant values different

from 0 for even or odd values of i, while the remaining parameters become null.

Indeed, assuming ϵi
N→∞

= li+Li(N) where limN→∞ Li(N) = 0 and applying the typical recursive

definition of slow-roll parameters, we have

ϵiϵi+1 ≡
dϵi
dN

N→∞
= Li,N (N) , (3.2.7)

1For ζ we have the differential relations

d

dη
= −aH(1− ϵ1)ζ

d

dζ
,

d2

dη2
= (aH)2(1− ϵ1)

2

[
ζ2

d2

dζ2
+

ϵ1ϵ2
(1− ϵ1)2

ζ
d

dζ

]
. (3.2.1)
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which implies limN→∞ ϵi+1 = 0, considering that limN→∞ Li,N (N) = 0, and in particular

ϵi+1
N→∞

=
Li,N (N)

li + Li(N)
. (3.2.8)

Following the same procedure, we obtain the relation

ϵi+2 ≡
d log ϵi+1

dN

N→∞
=

Li,NN (N)

Li,N (N)
+ ϵi+1 . (3.2.9)

We can, therefore, have different limits for our slow-roll parameters, depending on the behaviour of

Li(N) and in particular of the limit limN→∞ Li,NN (N)/Li,N (N). For example, if Li(N) ∼ e−γN ,

where γ > 0 we have

ϵi+2
N→∞

= −γ + ϵi+1 , (3.2.10)

and we can derive the asymptotic value for each element in the hierarchy

lim
N→∞

ϵi = li , lim
N→∞

ϵi+1+2n = 0 , lim
N→∞

ϵi+2n = −γ . (3.2.11)

Thus, due to their definition, an infinite sequence of slow-roll parameters can assume alternate

“constant” values in the limit for N going to infinity. It is also worthwhile to observe that similar

results can be achieved for other hierarchies of SR parameters, always because of the recursive

definition of slow-roll parameters themselves. Indeed, the same approach can also be extended to

the hierarchies of “scalar field flow functions” that are defined by δ0 = φ/φ0 and δi δi+1 = dδi/dN .

In general, the ϵi’s and the δi’s are connected through the homogeneous Friedmann and Klein-

Gordon equations and, as we will show later, can be used simultaneously to solve more general

problems.

3.2.2 GR with a minimally coupled inflaton

In this Section, we will analyze a specific type of inflaton potential that describes a set of transient

solutions of inflations used for amplification, with SR parameters approximatively constant for

large a. We will start by briefly describing how to reconstruct the potential from the homogeneous

Friedmann equations, then we will estimate the amount of amplification in the spectrum, we can

achieve. Our purpose is to study the transient and then use the result to build phenomenologically

valid inflationary models that possibly lead to PBHs production. We will study the two possible

mechanisms for spectrum amplification discussed previously, analytically and numerically, as we

will see in the following Sections.

Let us, therefore, take again the homogeneous Friedmann equations

H2 =
1

3 M2
P

(
1

2
φ̇2 + V (φ)

)
, (3.2.12)

Ḣ = − φ̇2

2 M2
P

, (3.2.13)
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(a) (b)

Figure 3.1: First and second slow-roll parameters, Eqs (3.2.17) and (3.2.18), respectively on the left and
right figures, as a function of e-folds N. These figures represent the analytical behaviour of the slow-roll
parameters for different values of the initial parameter n, while m is kept fixed at 1/2. Nevertheless, it does
not enter directly into the evaluation. We confront these results with n the numerical evaluation, considering
the simple case of α, A = 1.

which leads to

M2
pH

2 (3 − ϵ1) = V. (3.2.14)

Given an analytical solution for the Hubble parameter H = H(N), this last equation can be used

to reconstruct the potential. In particular, considering that

ϵ1 =
1

2M2
P

(
dφ

d log a

)
(3.2.15)

we can obtain a direct relation between the slow-roll parameters and the homogenous inflaton.

Let us start with the following ansatz for the Hubble parameter

H = H0

(
α+

A

an

)m

, (3.2.16)

where A, α, n, m > 0, and we recall that the scale factor follows a ∼ eN . This type of solution

involves a de Sitter-type attractor in the future H → αmH0 = const. Note that the transient is

determined by a trend A/an ∼ e−nN , which is analogous to the behaviour of the SR hierarchy in

Eq.(3.2.11). We can verify this analytically by observing the following:

ϵ1 = m · n A

αan +A
= mϵ3 = mϵ5 = · · · =

a → ∞−−−−→ 0 , (3.2.17)

while

ϵ2 = −n αan

αan +A
= ϵ4 = ϵ6 = · · · =

a → ∞−−−−→ −n , (3.2.18)

where a > [(m · n− 1)A/α]1/n is necessary in order to satisfy the inflation condition (ä > 0). We

can exploit the form of the slow-roll parameters (3.2.17) to analytically solve Eq. (3.2.15):

exp

(
φ− φ0

MP

√
n

2m

)
=
x+ 1

x− 1

x0 − 1

x0 + 1
, (3.2.19)
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where now x ≡ A−1/2
√
αan +A with x, x0 > 1, and both φ0 and x0 are constants of integration.

Considering that x→ ∞ for large a, we have that the field converges to the value φ∞

φ∞ ≡ φ0 + MP

√
2m

n
logB0 , (3.2.20)

where B0 = (x0 − 1)/(x0 + 1). We can now solve Eq. (3.2.19), and obtain a relation between x and

φ,

x =
exp

(
φ−φ0

MP

√
n
2m

)
+B0

exp
(
φ−φ0

MP

√
n
2m

)
−B0

, and an =
A(x2 − 1)

α
, (3.2.21)

which can be properly inverted to finally the form of the potential

V = H2
0

(
αx2

x2 − 1

)2m (
3 − n ·m

x2

)
, (3.2.22)

where we have simply used Eq. (3.2.14), substituting for H and ϵ1 with respect to a = a(φ). We

avoid explicitly presenting the total form of the potential in terms of the inflaton field, for any

choice of the parameters n and m, since it is a complicated function with exponentials of φ. It is

interesting to note that for n = 6 and m = 1/2, we obtain a constant potential V = 3αH2
0 and the

typical prescription of USR in the ansatz (3.2.16), as we have already mentioned in the introduction.

In any case, what we can note is the behaviour of the potential around φ ∼ φ∞,

V ≃ 3H2
0α

2m

[
1 +

n

4

(
1 − n

6

)(φ− φ∞
Mp

)2
]
, (3.2.23)

which allows us to study our results in an approximative way. We can now estimate the consequences

of this background evolution on the inflationary spectrum. The value of Φ is

Φ =
3 − 4ϵ1 + ϵ2 + ϵ1(ϵ1 − 2ϵ2)

1 − ϵ1

a → ∞−−−−→ 3 − n . (3.2.24)

The late time limit (3.2.24) allows us to distinguish models when perturbations Rk are amplified,

after their horizon exit, namely with n > 3. On the other hand, for 0 < n < 3, we clearly have

decreasing cosmological perturbations Rk with a late-time dominance of the constant mode 3.1.2.

In this case, the spectral index can be analytically calculated, following (3.2.6), as

ns − 1 = n > 0 , (3.2.25)

which implies that the amplitude of the spectrum is blue tilted, i.e. increase with the wave number

k. We can therefore conclude that in general relativity with an inflaton minimally coupled to the

gravitational field, inflation described by the transient (3.2.16) given by a potential very similar to

(3.2.22) leads to a period of amplification of the inflationary spectrum.
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3.2.3 Outline of the model

In this Section, we discuss the consequences of a three-stage potential model, following a construction

analogous to that presented by H. Motohashi, S. Mukohyama and M. Oliosi [93]. The potential

considered drives an initial slow-roll period (SR1), which satisfies observational constraints obtained

by the Planck Collaboration [24], an intermediate stage (GR) determined by the potential in Eq.

(3.2.22) or with asymptotic behaviour given by Eq. (3.2.23) and leading to amplification, and finally,

a final slow-roll stage that leads to the end of inflation. We do not consider the eventual reheating

phase at the end of the entire inflationary era, which can, however, be implemented.

The first phase of SR will be described by a Starobinsky potential based on one of the inflationary

models most compatible with observations [94]. The Starboinsky model reproduces a quasi-de Sitter

phase obtained as a self-consistent solution of the vacuum Einstein’s equations modified by the one-

loop corrections of quantized matter fields. The potential can be derived from the Starobinsky

action

SS =
1

2

∫
dx4

√−g
(
M2

pR+
R2

6m2

)
(3.2.26)

after an appropriate conformal transformation which allows to derive the following Straobinsky

potential

VS(φ,φs) = m2M2
P

(
1 − exp

(
−
√

2

3

φ− φs

MP

))2

. (3.2.27)

With respect to the usual formulation, we have introduced, for model-building purposes, a field

shifting parameter φs. That allows us to fix with a certain freedom the exact point of transition

between the three stages. We have already studied the expected amplification and analytic behaviour

of the intermediate stage potential (3.2.22) in the previous Section. The third phase of inflation is

similar to the first one, and we describe it through a Starobinsky-like potential.

We consider that our complete potential, comprising all the specific details of each inflationary

stage, is composed as follows:

V (φ) = VGR(φ) Θd1(φ1 − φ) Θd2(φ− φ2)

+ VSR1(φ,φs1) Θd1(φ− φ1)

+ VSR2(φ,φs2) Θd2(φ2 − φ) ,

(3.2.28)

where, in order to obtain as smooth as possible transitions, we use a “step” function of the form:

Θd(x) =
1

2
[1 + tanh (x/d)] . (3.2.29)

The variation of parameter d allows us to tune the amplitude around which the transition takes

place, and satisfy certain conditions on the time duration of the transitions and duration of each
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stage. Thus, following all the prescriptions the overall potential takes the following form

V (φ) = 3H2
0M

2
p

[
1 +

n

4

(
1 − n

6

)(φ− φ∞
Mp

)2
]

Θd1(φ1 − φ) Θd2(φ− φ2)

+m2
1M

2
P

(
1 − exp

(
−
√

2

3

φ− φs1

MP

))2

Θd1(φ− φ1)

+m2
2M

2
P

(
1 − exp

(
−
√

2

3

φ− φs2

MP

))2

Θd1(φ2 − φ) .

(3.2.30)

The field values φ1 and φ2 represent the values around which the transitions occur In particular, we

considered φ1 > φ2. All the parameters are set in order to have a continuum and smooth potential in

all the field ranges of evolution: due to the fact that we consider two phases of Starobinsky inflation,

we need two different sets of parameters and thus m1, φs1 determine the stage SR1, and m2, φs2

for the second slow-roll phase. The intermediate phase is indicated with the sub-script GR. The

value of the parameters φs1 and φs2 crucially determine the evolution during the slow-roll phases.

Let us note that the transition between the three stages is not instantaneous but occurs around a

specific scalar field value φ. The initial value of the background field is set to φ(N = 0) = 1, in

Planck units, where N = 0 corresponds to the horizon exit of the pivot mode k0 = 0.0002 Mpc−1,

such that k0 = a0H0, where a0 and H0 are the initial values of the scale factor and Hubble function.

The first SR stage needs to reproduce the CMB spectrum observed by the Planck experiment [24].

In particular, we have set the first transition φ1 to occur after at least N ∼ 5 e-folds after the CMB

scales exit of the horizon [93]. The value of the field at the second transition, φ2, instead is less

constrained, in the sense that the only requirement needed to be satisfied is the form of the power

spectrum, which is not affected by this phase. Finally, we must impose the continuity relation

between the three stages

VGR(φ1) = VSR1(φ1) =⇒ m2
1 = H2

0

1 + n
4

(
1 − n

6

) (φ1−φ∞
Mp

)2
(

1 − exp
(
−
√

2
3

φ1−φs1

MP

))2 , (3.2.31)

VGR(φ2) = VSR2(φ2) =⇒ m2
2 = H2

0

1 + n
4

(
1 − n

6

) (φ2−φ∞
Mp

)2
(

1 − exp
(
−
√

2
3

φ2−φs2

MP

))2 . (3.2.32)

Let us briefly comment on the solution of the homogeneous Fridmann and Klein-Gordon equa-

tions for the background variables φ and H, which allows us to determine the Hubble slow-roll

hierarchy ϵi. The background evolution for the scalar field driving inflation is determined by the

system of equations:

H2 =
V/M2

p

3 − 1
2M2

p
φ2
,N

, (3.2.33)

φ,NN +

(
1

2
φ2
,N − 3

)(
φ,N +

V,φ
V

)
= 0 . (3.2.34)
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Figure 3.2: Total potential presented in Eq. (3.2.30), where we considered as a working example the param-
eters in Tab. 3.1, with n = 2 and m = 1/2. We have highlighted the three regimes with different colours: red
(SR1), blue (GR) and orange (SR2). In particular, we have chosen to represent only a small interval around
the field value φ ∼ φ∞, the actual point in the field evolution determining the amplification.

In this scenario the pump field z is z = a
√

2ϵ1Mp. The condition required to realize the desired

growth in the spectrum depends upon the evolution in time of ϵ1, and in particular, its behaviour

during the transient regime (GR). In particular, as we notice in Fig. 3.2, at the end of the interme-

diate phase, we have a local extremum at φ∞, a common feature for constant-roll-like models. As

the scalar field, during its evolution, passes through such a flat region with negligible potential gra-

dient, the acceleration term φ̈ is balanced by the Hubble friction term in the Klein-Gordon equation

(1.2.27), and the inflation speed is no longer controlled by the scalar potential. This significantly

affects the values of the inflaton velocity during the transient non-attractor phase and inevitably

leads to the violation of the slow-roll conditions:

ϵ2 ≡
ϵ1,N
ϵ1

=
2φ,NN

φ,N
= −2

(
3 − ϵ1 +

V,φ
H2 φ,N

)
, (3.2.35)

hence ϵ2 > −6 for transient CR phase (V,φ < 0). We emphasize that since the non-slow-roll

inflationary era is characterized by a large negative ϵ2 for a brief interval of e-folds, the pump field,

as well as the first slow-roll parameter ϵ1, quickly decay during this stage. Indeed

ϵ2 ≡
d log ϵ1

dN
=⇒ z2 ∝ ϵ1 ∝ e−|ϵ2|∆N , (3.2.36)

where we assumed ϵ2 is constant during the non-attractor phase.

Stability analysis for the transient evolution

We have verified the importance of the slow-roll parameter ϵ2 in determining the behaviour of the

pump field z and thus affecting the time evolution of R. We have already studied in detail how the

63



power spectrum behaves in the case of the non-attractor stage described by potential (3.2.23), and,

in particular, we have found an analytical solution for the background field in such regime (3.2.19).

For practical use in our description, it is useful to rewrite such relation as φ = φ(N), then

φGR(N) = φ0 + 2Mp

√
2m

n

[
arcCoth

(√
1 + enN−Ã

)
− arcCoth

(√
1 + enN0−Ã

)]
, (3.2.37)

where we stress again that the sub-script GR identify the amplification phase. The parameters φ0

and N0 are the initial field value and time. We made an arbitrary choice for the parameters α and

A in Eq. (3.2.19), in order to simplify the form of the relation. In particular, we have redefined the

parameter A = an0 e
Ã and considered α = 1. The factor α appears only as a normalization term of

the Hubble parameter and of the potential, and without any loss of generality, can be reabsorbed

with other normalization constants.

Let us note that depending on n the solution (3.2.37) may be unstable. A superficial analysis

of our equations would suggest that we can control the final evolution of fluctuations by simply

manipulating the potential parameter n, as we have seen in Eqs.(3.2.24, 3.2.25). However, from

a stability point of view, we have assumed that our analytical solutions are the attractors of the

evolution during the transient stage (GR). This is not true as can be shown by analyzing how the

slow-roll parameter ϵ2 behaves in the large a limit.

We can conveniently approximate our equations in the large a limit and starting from the

definition of the slow-roll parameter ϵ2 derived in Eq. (3.2.35) after some algebra one obtains the

second-order differential equation:

ϵ1,NN

ϵ1
−
(
ϵ1,N
ϵ1

)2

= 2ϵ1,N − 2

[
V,φφ
H2

+

(
2ϵ1 −

ϵ1,N
ϵ1

− 6

)(
ϵ1 −

1

4

ϵ1,N
ϵ1

)]
. (3.2.38)

This equation is exact and allows us to study the evolution of the slow-roll parameters in a general

form. However, we will use it in the large a limit in order to understand what is the attractor

behaviour when our field approaches φ∞. In such a limit, we can rewrite Eq. (3.2.15) introducing

some approximations. In particular, we can express the term V,φφ/H
2 in terms of the potential

parameter n and m, in order to have a clear understanding of how the shape of the potential is

related to stability. By considering Eq. (3.2.14) and collecting the potential term we have

(3 − ϵ1) =
V

M2
PH

2

ϵ1→ 0−−−−→ H2 =
V

3M2
P

, (3.2.39)

where, following the expected behaviour in (3.2.17), we used the fact that ϵ1 → 0, close to φ∞.

Now, we can approximate the potential around the point φ∞, and if we consider the approximated

behaviour (3.2.23) we have that

V,φφ
V

≃ 2n(n− 6)

M2
P [n(n− 6)(φ− φ∞)2 − 24]

φ→ φ∞−−−−−→ n(6 − n)

12M2
P

, (3.2.40)

and
V,φφ
H2

≈ n(6 − n)

4
. (3.2.41)
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The equation (3.2.38) can then be simplified to

ϵ1,NN

ϵ1
− 1

2

(
ϵ1,N
ϵ1

)2

≃ 5ϵ1,N + 12ϵ1 − 4ϵ21 − 3
ϵ1,N
ϵ1

− n(6 − n)

2
. (3.2.42)

This last equation cannot be solved exactly and needs further approximations. Since ϵ1,NN , ϵ1,N ∼
O(ϵ1) and assuming that ϵ2 is nearly constant (3.2.18) in the large a limit, we have that ϵ1,N = ϵ1 ϵ2

and ϵ1,NN = ϵ1,N ϵ2 + ϵ2 (ϵ1 ϵ3) by definition, then we observe that the leading term is of order ϵ1.

Keeping only the leading terms leads to

ϵ1,NN

ϵ1
− 1

2

(
ϵ1,N
ϵ1

)2

+ 3
ϵ1,N
ϵ1

+
n(6 − n)

2
= 0 . (3.2.43)

This differential equation is the following first order equation for ϵ2 ≡ ϵ1,N
ϵ1

,

ϵ2,N + 3ϵ2 +
1

2
(ϵ2)

2 +
n(6 − n)

2
= 0 . (3.2.44)

It is a non-linear differential equation of the first order, called the “generalized Riccati equation”.

We can solve this equation through a function redefinition that allows us to transform the non-linear

structure into a second-order linear differential equation. Indeed, we may substitute the function ϵ2

with

ϵ2 = 2
χ,N

χ
, (3.2.45)

where χ is an arbitrary continuous and differentiable function in N . After having simplified all the

terms, we obtain from Eq. (3.2.44)

χ,NN + 3χ,N +
n(6 − n)

4
χ = 0 , (3.2.46)

which admits the simple general solution

χ(N) = C1e
−n

2
N + C2e

n−6
2

N , (3.2.47)

where C1 and C2 are arbitrary integration constants different from zero. We have obtained the

general solution for the equation (3.2.44),

ϵ2(N) =
(n− 6)e(n−3)N −K n

K + e(n−3)N
, (3.2.48)

where we introduced the integration constant K = C1/C2. This result deserves some comment

because it allows us to understand the stability of the solutions (3.2.37) in relation to the behaviour

of the slow-roll parameter ϵ2 in the large a regime. At this point, we can easily calculate the limit

for N → ∞ for our ϵ2 (3.2.48), leading to

ϵ2
N→∞−−−−→

−n , if n < 3 ,

n− 6 , if n > 3 ,
(3.2.49)
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i.e. for n < 3 the solution is stable while for n > 3 the solution is unstable. Considering what

Figure 3.3: Analytical solutions for ϵ2 derived by the Riccati equation (3.2.44), taken for different values of
the parameter n. We have chosen K = 105 to highlight the transient behaviour for solutions with n > 3.

we studied in Section 3.2.2, we know that for n < 3, we have a blue-tilted spectrum but not

growing solutions of the perturbations. In this case, the analytical solution is an attractor and

ϵ2 → −n is respected. However, in the case n > 3, we note that the attractor value for ϵ2 is

now ϵ2 ≃ n − 6 > −3. In this regime, we can nevertheless obtain a sufficient amplification of the

spectrum, but the condition required for the existence of the growing mode of the perturbations is

not stable.

This result shows that the evolution of slow-roll parameter ϵ2 has a transient, more or less steep

towards the attractor n− 6. Moreover, as can be seen in Fig. 3.3, the transition time between one

solution and the other, in the case of n > 3, is determined by the value of integration constant K:

if K is sufficiently large, the departure from the solution ϵ2 = −n occurs later. Indeed, considering

a fixed value K and for increasing values of n, the transition to the associated attractor n − 6 is

much faster and occurs much earlier due to the exponential behaviour of our solution. In situations

where the value of n is high, we will show that there will be specific transition phases that lead to

the amplification of perturbations and an increase in the spectrum. At the time N1, at which the

transition takes place, i.e. φ(N1) = φ1, we need to constrain our numerical solution φ to be as near

as possible to the analytical solution (3.2.37) in the intermediate phase. In order to do so, we can

adjust our free parameters, once fixed n and m. We have the following conditionsφGR(N1) = φ1 , =⇒ φ0 = φ1 , N0 = N1 ,

φGR,N (N1) = −
√

2mn

1+enN−Ã
≃ φSR1,N (N1) =⇒ Ã = nN1 − log

[
2nm

φSR1,N (N1)2
− 1
]
,

(3.2.50)

where the former gives us an estimate of the value φ∞ towards which the field converges and where
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n φ1 φ∞ φ2 d1 d2

1 8
10 0.77058 φ∞ + 2 × 10−6 10−3 2 × 10−6

2 77
100 0.75495 φ∞ + 2 × 10−6 10−3 2 × 10−6

3 74
100 0.72973 φ∞ + 15 × 10−7 10−3 15 × 10−7

4 715
1000 0.70714 φ∞ + 2 × 10−6 10−3 10−6

5 705
1000 0.69867 φ∞ + 10−6 10−3 10−6

6 7
10 0.69470 φ∞ + 2 × 10−7 10−3 2 × 10−7

Table 3.1: Parameters considered for our working model. For numerical purposes, we also present the
numerical estimate for φ∞ in each configuration obtained through the evaluation of Eq. (3.2.56).

we have the maximum amplification. In particular, we have

φ∞ = φ1 − 2

√
2m

n
arcCoth

(√
1 + enN1−Ã

)
= φ1 − 2

√
2m

n
arcCoth

√
2nm

φSR1,N (N1)2
. (3.2.51)

We must note that the expected value of φ∞ is directly determined by the value of the derivative

φSR1,N (N1). We can then estimate this value numerically through a preliminary simulation of

the field’s evolution in the first slow-roll stage (SR1). In contrast, as we shall see later, it is also

possible to determine the analytical approximate solution for the (SR1) phase and then obtain an

analytical estimate for φ∞ directly linked to the initial condition of the problem. In what follows,

we analyze the complete model for different values of the parameters n, studying the amplification

of the spectrum in the different cases and comparing the numerical results with our estimates.

3.2.4 Numerical Results

In this Section, we will discuss the numerical simulations and their outcome using the parameters

listed in Table 3.1. We consider different choices of n to study a wide range of possible evolutions

including decaying and enhanced perturbation solutions of the Mukhanov-Sasaki equations (3.1.17).

The value of m is, in general, arbitrary and mainly serves as a normalization factor, and it is not

particularly relevant in our analysis, as previously mentioned. We set the initial conditions and

adjust the transition periods properly to ensure that the scalar and tensor spectral power produced

during the first phase of SR is within observational limits. Ideally, the transition between the

first slow-roll phase and the intermediate regime must be smooth and the transition should occur

at the proper value φ1. To determine the details of the second transition, we must also consider

the desired distribution function of PBH. The second transition should stop the amplification of

the power spectrum after having reached the threshold amplitude for sufficient PBH production.

When the model is used to produce PBHs as DM candidates, this guarantees that the PBH mass

distribution is peaked enough to satisfy the window allowed by current observational constraints.

Thus, we can choose for each instance of the parameter n, different values for the parameters φ2

and d2 in order that the second transition occurs after a sufficient number of e-folds, in order to

produce the chosen abundance of PBH.
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Figure 3.4: Time evolution of the background scalar field in the case n = 1. We have highlighted each
evolution stage, comparing it with the analytical or approximate estimate.

In this work, we considered six different models with m fixed to 1/2, while n has an integer value

between 1 and 6. The main parameters we considered for our simulations are listed in Tab. 3.1,

while for each simulation we kept the values of

φ0 = 0.5 , φs1 = −5 , φs2 = −6 , (3.2.52)

where we recall that φ0 is the initial value of the field evolution and φs1, φs2 are the translation

parameters φs in the Starboinsky potential (3.2.27) in Planck units. In Fig. 3.4 we plot the full

evolution of the background field φ, where we have also plotted the solutions for each potential

phase. In particular, we already discussed the analytical procedure to obtain the solutions from

the ansatz (3.2.16). Although there is no complete analytical solution, we can also obtain an

approximated solution for the background in the slow-roll regime. We can use Eqs. (1.2.31, 1.2.32),

which combined and rewritten using the time variable N become

φ,N ≃ −M2
P

V,φ
V

= −
2
√

2
3 exp

(
−
√

2
3
φ−φs

Mp

)
1 − exp

(
−
√

2
3
φ−φs

Mp

) ≃ −2

√
2

3
exp

(
−
√

2

3

φ− φs

Mp

)
, (3.2.53)

Indeed, considering φs ∼ 5MP, we have that the denominator can be approximated to 1, and the

differential equation has an analytical solution. We can integrate by separating the variables and

obtain the solution for the slow-roll regimes

φSR(N) = φs +

√
3

2
log

[
K0 −

8

3
N

]
, (3.2.54)

where K0 is an integration constant. This value can be obtained from the initial conditions for

the problem, or by comparison with the numerical solution in the first and third stages of the
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evolution. In what follows, we used the first most simple approach. We compare this solution

with the numerical solution of the complete Klein-Gordon problem. The actual usefulness of this

procedure, however, comes from the fact that we can analytically estimate the value of φ,N (N1) to

insert in Eqs (3.2.50) and (3.2.51) in order to estimate the right set of parameters for the intermediate

phase (GR). In particular, the complete results are

Ã = nN1 − log

nm
2

(
2

√
2

3
N1 −K0

)2

− 1

 , (3.2.55)

φ∞ = φ1 − 2

√
2m

n
arcCoth

[√
mn

2

∣∣∣∣∣2
√

2

3
N1 −K0

∣∣∣∣∣
]
. (3.2.56)

In Fig. 3.5, we present the evolution of the slow-roll parameter ϵ2, considering each different evolution

for n. As we shall see, the transient period is well represented by the analytical solution estimate ϵ2 =

−n. Indeed, through the analytical estimate (3.2.56), we could find sufficiently stable background

field solutions during the transient phase. We can also note a peculiar feature related to the duration

of the intermediate phase (GR); as n increases and considering very similar parameters (Tab. 3.1),

the transient phase decreases in duration. This can be seen directly from determining the value

φ∞. Indeed, from Eq. (3.2.20), we note that for increasing values of n, the function arcCoth(n)√
n

is

decreasing, bringing the value φ∞ closer to the transition point φ1.

From the solutions for the homogeneous variables, we are able to solve the Mukhanov-Sasaki

equation (3.1.17) with Bunch-Davies initial conditions and thus derive the power spectrum for

the curvature perturbation Rk (the numerical prescription is described in the App. A). We group

our results in four different plots, represented in Fig. 3.6 (a), (b), (c) and (d), to highlight their

differences. In particular, we decided to compare in couples the spectrums obtained for n = {1, 5}
and n = {2, 4}. Indeed, because of the analysis carried out in Section 3.2.3, we expect a similar

behaviour of the slow-roll parameter ϵ2, and we wanted to compare the different shape of the

spectrum for constant and “increasing” solutions of Rk. We separated instead the cases n = {3, 6}
for which we do not have a similar behaviour but are nevertheless interesting and n = 6 is ultra-

slow-roll. The modes that exit the event horizon during the first phase of SR, should respect the

CMB Planck measurement constraints.

We can notice that for all the cases, the power spectrum grows in amplitude towards small scales,

exhibiting a peak for kpeak ≫ kcmb, where its value depends on the duration of the intermediate

phase (GR). We observe that for both the cases n = {1, 2}, the amplification of the spectrum satisfies

the analytical expectation ns − 1 = n. In the remaining cases, the spectrum presents a peculiar

feature: at the beginning of the amplification we observe a steady initial growth proportional to

k4, and there is a pronounced dip, occurring at scales that exit the horizon a few e-folds before the

time of the first transition. Close to the peak instead the slope is less steep and is determined by

the attractor value of the slow-roll parameter ϵ2 (3.2.49), with a power law seemingly compatible

with k6−n. Let us mention [79] that the dip is physically due to a disruptive interference between

the “constant” mode of curvature fluctuation at super-horizon scales and the “decaying” mode that

is becoming active and ready to contribute to the enhancement of the spectrum. The position and
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Time evolutions for the slow-roll parameters ϵ2 for each configuration of the parameter n. We
show the numerical solution in a dashed black line and, in coloured lines, the expected constant value during
the transient phase GR. We can notice that for different values of n, we have a smaller duration of the
intermediate stage.

depth of the dip are calculable in terms of other features of the spectrum, at least in the limit of

a short duration of the amplification epoch. It is found that the position of the dip in momentum

space is proportional to the inverse fourth root of the enhancement of the spectrum, and the depth

of the dip is proportional to the inverse square root of the enhancement of the spectrum.

We observe that oscillations of the spectrum are present, particularly in the second half of the

spectrum, relative to small scales after the peak. These oscillations can be understood, considering
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n ∆N M
(∆N)
pbh /M⊙ kpbh/Mpc−1 Mpbh/M⊙ fpbh

1 29.1 6.44 × 10−11 2.18 × 1011 6.45 × 10−11 1.63 × 10−2

2 26.1 1.46 × 10−5 4.58 × 108 1.46 × 10−5 1.11 × 10−1

3 25.5 5.09 × 10−5 2.45 × 108 5.10 × 10−4 1.96 × 10−2

4 25.9 2.52 × 10−5 3.49 × 108 2.53 × 10−5 2.24 × 10−2

5 25.6 4.03 × 10−5 2.76 × 108 4.04 × 10−5 1.36 × 10−2

6 23.2 5.51 × 10−3 2.36 × 107 5.52 × 10−3 3.83 × 10−2

Table 3.2: Estimate of the mass of the PBH, both using the time duration ∆N between the exit of PBH-
forming modes and the exit of CMB modes, through Eq. (2.2.5) and identifying the peak mode kpbh of the
spectrum Eq. (2.2.4). The abundance fpbh is evaluated through the approximated result for the collapse
fraction (2.2.9), with δc = 0.4.

that the transitions between the slow-roll and amplification phases are characterized by a rapid

variation of the slow-roll parameter ϵ1. This rapid variation generates a large variation of the mass

term z′′

z , in the Mukhanov-Sasaki equation, leading to oscillations in the evolution of the absolute

value for the complex mode of curvature crossing the horizon during the transition. This generates

a spiral elongation of the mode in the complex plane of R, which appears as an oscillation in the

power spectrum.

Finally, we present in Tab. 3.2, the estimated result for the mass and abundance of PBH,

derived from the simulations for each choice of n. We have estimated the mass of the PBH both

using Eqs. (2.2.4) and (2.2.5). In the first case, we assumed that each parameter at its proxy value,

determining the position of the peak of the spectrum kpbh. In the latter, we have considered a

quasi-de Sitter evolution, with ϵ1 ∼ 0, evaluating Npbh as the time of horizon exit of the peak mode

kpbh. We can note that both cases give the same approximative value of Mpbh. We have considered

an interesting set of masses Mpbh ∈
[
10−11, 10−3

]
M⊙, compatible with the constraints presented

in Fig. 2.2. The value of fpbh was determined inverting (2.2.8), and estimating the collapse fraction

with (2.2.10), considering δc = 0.4, and σ2 ∼ PR(kpbh)/5.

3.3 Constraints on the power spectrum with PTA

The direct detection of gravitational waves (GWs), with the first LIGO detection of a merger of

two black holes, opened a new era of the exploration of the early universe. Stochastic gravitational

wave background (SGWB) is originated from a superposition of many unresolved GW sources,

of both astrophysical and cosmological nature, which can be detected by searching for correlated

signals between multiple detectors. Recently, four pulsar timing array (PTA) collaborations, namely

NANOGrav [15, 16], PPTA [17, 18], EPTA [19, 20], and CPTA [21], all announced the strong

evidence of a SGWB in the nanohertz frequency band [1, 100] nHz. However, the origin of this

signal, whether from supermassive black hole binaries or other cosmological sources, is still under

investigation (see [95] for References). A promising explanation of such a signal could be given by

scalar-induced gravitational waves (SIGWs) accompanying the formation of primordial black holes,

which is the main target of this thesis. Other physical phenomena can source the PTA frequency

band, such as cosmological phase transitions or cosmic topological defects (see for examples [96]
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(a) (b)

(c) (d)

Figure 3.6: Power spectrum of the comoving curvature perturbation for the cases n = {1, 5} (a) and n = {2, 4}
(b). We can notice a relative spectrum enhancement, ∆PR ∼ 107, between large CMB and small PBH-
formation scales. For both the cases n = {1, 2}, the power index satisfies the relation (3.2.25). For n = {4, 5}
instead, we have an initial maximum growth proportional to k4, for modes that exit the horizon during the
first slow-roll phase.

and [97] respectively).

The SIGWs can be traced back to scalar perturbations generated during the inflationary epoch.

In particular, large scalar over-densities are seeded by the primordial curvature perturbation gen-

erated during inflation and can be responsible for the induced GWs in RDU. For more references

on the mathematical formalism for the production of SIGWs see [95]. SIGWs, therefore, may offer

valuable insights into the physics of the very early universe and can be detected not only by PTAs

but also by space-based GW detectors such as LISA [98], Taiji [99], TianQin [100], and DECIGO

[101]. Being related to the PBH formation, significant emission of SIGWs requires the amplitude of

the power spectrum of the primordial curvature perturbations to be around PR ∼ 10−2. In partic-

ular, to account for the observed gravitational wave signal detected by PTAs, the curvature power

spectrum must possess at least one high peak at intermediate scales, which, as we have already

discussed, can be achieved through inflationary models with special features.

The main goal of this Section is to compare the results obtained from our inflationary models
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Parameters Prior Posterior logB
log10A U [−3, 1] −0.88+0.81

−0.36

0.46
α U [0, 5] 2.33+1.72

−1.14

β U [0, 5] 2.22+1.87
−1.54

log10 kp/Mpc−1 U [5, 10] 7.91+0.88
−0.44

Table 3.3: The priors, maximum posterior values, 1-σ credible intervals bounds of posteriors and Bayes factor
for a BPL model of the primordial curvature power spectrum using NANOGrav 15-yr data set [95].

(Section 3.2.3) to the preliminary analysis in Ref. [95]. In this article, the authors study the con-

straints on different shapes of the power spectrum from the PTAs dataset in a model-independent

way. In particular, to describe a single-peak primordial curvature power spectrum, various parame-

terizations were employed, such as a monochromatic δ-function form, a box form, a lognormal form,

and a broken power law form. A Bayesian analysis was employed on the NANOGrav 15 years to

investigate these different parametrizations of the power spectrum. We shall use their results to

test our inflationary models against the production of SIGW.

We used as a main reference the analysis performed for a power spectrum with a broken power

law (BPL) form:

P(BPL)
R (k) =

A(α+ β)

β(k/kp)−α + α(k/kp)β
+ As

(
k

k∗

)ns−1

(3.3.1)

where As and ns− 1 are the CMB power spectrum amplitude and tilt fixed at As = 2.1× 10−9 and

ns − 1 = 0.965 with k∗ = 0.05 Mpc−1. The priors and best-fit parameters of the Bayesan analysis

reported in [95] are presented here in Tab. 3.3. The marginal distribution of the parameter β is

plotted in Fig. 3.7. Let us note that such a distribution is essentially unable to constrain β, i.e. the

form of the peak of the power spectrum after the amplification stage is substantially unconstrained.

This essentially translates in the absence of constraint of the final part of inflation (third region of

our potential).

We must stress that the principal goal of this analysis is to perform a qualitative comparison of

the power spectra obtained in Section 3.2.3 for the production of PBH with the posterior results

listed in Tab. 3.3. The best-fit parameters obtained for our models are presented in Tab. 3.4. It is

important to notice that the main feature of the power spectrum is given by the parameter α, which

describes the amplification phase and is related to the shape of the inflaton potential. In contrast,

the position of the peak kp and the relative amplitude A of the spectrum can be tuned by a different

choice of the parameters of the model and are not very interesting for the reconstruction. They

can be modified by simply varying the position of the second part of the potential and its duration.

Then, we can compare the results obtained for the parameter α with the posterior result listed in

Tab. 3.3 and with the marginal distribution in Fig. 3.8. We remind that in the case of amplifying

potentials with n > 3, the transient solution is unstable and the amplification of the spectrum

occurs in two phases. As we have already mentioned, the power spectra presented in Fig. 3.6, for

n ≥ 3 present an initial steep-growth proportional to k4 right after the dip, before relaxing to a

less steep slope determined by the attractor value of ϵ2 (3.2.49). In such cases, we then decided
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n log10A α β log10 kp/Mpc−1

1 −1.527 ± 0.002 1.12 ± 0.03 3.4 ± 0.1 11.35 ± 0.02
2 −1.775 ± 0.004 1.90 ± 0.02 3.0 ± 0.2 8.59 ± 0.04
3 −1.745 ± 0.003 2.06 ± 0.03 3.3 ± 0.3 8.36 ± 0.05
4 −1.82 ± 0.01 1.88 ± 0.02 2.8 ± 0.2 8.51 ± 0.03
5 −1.82 ± 0.02 1.34 ± 0.02 3.3 ± 0.2 8.46 ± 0.01
6 −1.80 ± 0.05 3.66 ± 0.05 2.9 ± 0.3 7.352 ± 0.003

Table 3.4: Fit of the power spectrum for a BPL form for models presented in Fig. 3.6.

to consider the possibility, not investigated in the numerical analysis, that for some choices of the

parameters of the model, the transition between the first slow-roll stage (SR1) and the transient

phase is smooth enough to just have a steep-growth proportional to k4. In Fig. 3.8 such cases are

plotted with vertical dashed lines. The corresponding slope is obtained from the fit of the initial

growth of the spectra presented in Fig. 3.6. Let us note that for some of the cases analyzed the

value of α is not so close to the maximum of the distribution, however, the cases n = 1 and n = 5

are certainly mildly favoured. We expect, by extrapolating the behaviour found for integer values

of n, that some value of n in [1, 1.5] and [4.5, 5] is slightly more favoured by data.
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Figure 3.7: Marginal distribution of the parameter β obtained from the Bayesan analysis performed in
[95]. The distribution is prevalently uniform and it gives no relevant information on the shape of the power
spectrum after the peak.
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Figure 3.8: Marginal distribution of the parameter α obtained from the Bayesan analysis performed in [95].
We superimpose the results obtained from the fit of the growth of the power spectra for our inflationary
models. The solid lines reproduce the best-fit values of α listed in Tab. 3.4, while the dashed ones correspond
to the estimated values of α, assuming that the peak is reached with the maximum possible steep of the
growth proportional to k4, presented in Fig. 3.6.
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Chapter 4

Amplification in Induced Gravity

models

The inflationary paradigm is widely accepted as a valid description of the early universe and is

supported by current data. We have seen how it is able to explain the flatness and homogeneity of

the universe and the spectrum of primordial density fluctuations imprinted in the CMB. However,

as scalar fields play an important role in driving inflation, it is interesting to study the case in which

the scalar inflaton is non-minimally coupled to gravity. General Relativity is a description of gravity

which passes many observational tests at low energy. In contrast, at Planck energies, and generally

in the very early universe, several theoretical reasons lead to possible generalizations of the gravity

sector due to quantum effects where the inflaton is non-minimally coupled [102–104].

The first proposal following these ideas is the work of Brans and Dicke [105], in which grav-

itational effects are described also by the dynamics of a non-massive scalar field on a Riemann

manifold. Such a theory has been developed from Mach’s principle, according to which inertia must

arise from the general mass distribution of the universe. The model consisted of a new massless

scalar field whose inverse was associated with the gravitational Newton coupling. Such a field was

shown to dynamically evolve in the presence of matter and led to cosmological predictions differing

from General Relativity.

A similar theory, assigning a dynamical origin to the gravitational coupling, was proposed again

in 1967 by Sakharov [106]. In his article, he highlighted that quantum corrections at one-loop of the

dynamics of a scalar field on a curved spacetime generate Einstein’s cosmological constant and an

action term similar to Einstein-Hilbert’s action. In this sense, we can say that in a theory consisting

of a single scalar field we can generate through a quantum process the gravity action, which is, in

a certain sense, “induced”.

Some years later a similar model was proposed by Zee [107] who incorporated the spontaneous

symmetry-breaking idea and gravity. This idea was inspired by recent successes in the description

of the electro-weak interaction. There a pointwise 4-fermion interaction with a coupling constant

with the dimension of an inverse squared mass was explained as the exchange of massive vector

bosons. This explained also the mass dimension of the coupling constant and the smallness of such

a coupling, GF ∼ 1/M2
W . In this framework, the concept of spontaneous symmetry breaking was
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rediscovered causing some scalar field to have a vacuum expectation value v, generating then the

mass of the intermediate boson, GF ∼ 1/M2
W ∼ 1/v2. In analogy, we can think of the gravitational

Newton’s constant arising as the expectational vacuum value of some scalar field.

In this Chapter, we indeed study such theories, called Induced Gravity models with the inflation

playing also the role of the scalar field associated with Newton’s constant. These are a natural

generalisation of GR and, even if they were introduced many years ago, recently have become

more and more attractive. When quantum effects become large enough a non-minimal coupling to

gravity naturally arises in the presence of a scalar field which then affects the observed Newton’s

constant. Higgs inflation, in particular, is described by a non-minimally coupled model in which the

inflaton is identified with the scalar Higgs field, responsible for both inflation and the generation of

the primordial inhomogeneities. This model is nowadays favoured by observations and reconciles,

within a common framework, Planck scale and Standard Model physics. Let us note that the

inflaton-Higgs scalar is non-minimally coupled to gravity however inflation occurs at energies where

induced-gravity action dominates on the Einstein-Hilbert term.

In this Chapter, we first describe the formalism and the homogenous dynamics in the Induced

Gravity model. We then formalize the problem of perturbations in such a context and briefly study

what are the conditions for obtaining an amplification of the power spectrum. In analogy with the

previous Section, we restrict to the description of a transient phase of the evolution of the scalar

field with nearly constant slow-roll parameters. Once the requirements for such an amplification

are studied, we introduce another reconstruction procedure, to build the amplifying potential. The

reconstruction method is similar to the Hamilton-Jacobi one, and it is known as the “superpotential”

method [108]. It is commonly applied to cosmological models with scalar fields. In this method,

the Hubble parameter, instead of being parametrized as a function of the scale factor a, is instead

considered as a function of the scalar field φ. In general, the two methods, the one illustrated in the

previous chapter and the superpotential one, supplement each other and allow to construct different

cosmological models with the required properties. The advantage of the second approach is that it

allows one to construct models without having to invert complicated relations between the scalar

field and the scale factor. In particular, we shall discuss the form of an inflaton potential able to

generate a de Sitter attractor phase, that leads to amplification.

The final part of the Chapter consists of building a complete model of inflation in IG in a

similar fashion to what was done for General Relativity (Chapter 3). In particular, we illustrate

how building an amplification model considering growing or decreasing solutions of the curvature

perturbation R. We study the attractor behaviour in different cases, obtaining results similar to

those already obtained in the context of General Relativity, for the ansatz (3.2.16). The goal is

to obtain a model with a satisfying amplification of the power spectrum, to be considered for the

primordial black holes production.
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4.1 Induced Gravity inflation

In Induced Gravity a scalar field is coupled in a non-minimal way to the gravitational sector and

the scalar field-gravity system can be described by the action [109]

S =

∫
dx4

√−g
[
gµν

2
∂µφ∂νφ− γφ2

2
R− V (φ)

]
, (4.1.1)

where γ is a dimensionless, positive definite parameter giving the non-minimal coupling between the

scalar field φ and gravity, and φ is the scalar field that determines the effective Newton’s constant

and we henceforth consider as the inflation. Suppose that V (φ) is such that it is minimized when

⟨φ⟩ = φ0 we see that action (4.1.1) reduces to Einstein’s action (1.2.19) with the identification [107]

⟨φ⟩ =
MP√
γ

=⇒ GN =
1

8π

1

γ ⟨φ⟩2
. (4.1.2)

We also impose that the potential at the minimum satisfies V (φ0) = 0 in order not to have residual

vacuum energy at the end of inflation. The model of inflation considered belongs to the single-field

scenario and we leave the more complex multi-field case to future applications.

Assuming a spatially flat Robertson-Walker background metric (1.1.1), the variation of the above

homogeneous action leads to the following set of independent equations

H2 =
1

3γ φ2

[
φ̇2

2
+ V (φ)

]
− 2H

φ̇

φ
, (4.1.3)

φ̈+ 3H φ̇+
φ̇2

φ
= − Veff,φ

1 + 6γ
, (4.1.4)

where we used the usual notation for time and field differentiation and defined

Veff,φ ≡ dV

dφ
− 4

V

φ
. (4.1.5)

The equation (4.1.4) determines the time evolution of the field, and is the generalised form of the

Klein-Gordon equation. With respect to the equation (1.2.27) we have an additional quadratic time

derivative term for the field, and a term for the potential, defined through the effective potential

(4.1.5). The effective potential plays the same role as the potential in the minimal coupling case.

The Eq. (4.1.3) instead is the generalised form of Friedmann equation in a flat homogeneous and

isotropic background spacetime. In particular, it is interesting to notice that potential slow-roll

conditions are now different, and in general in order to have a slow time evolution for the field

φ̇ ≪ Hφ, we do not require the potential to be almost flat V,φ ∼ 0, but, from (4.1.5), we need a

potential with a quartic dependence on φ: V ∝ φ4.

It is well known that, by a suitable conformal transformation and a redefinition of the scalar

field, one can map a minimally coupled theory, defined in the so-called Einstein Frame (EF), into a

non-minimally coupled one, in the Jordan-Frame (JF) [110]. In particular, considering the conformal
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transformation

g̃µν = Ω2 gµν , (4.1.6)

dφ̃2 =
1 + 6γ

Ω2
dφ2 , (4.1.7)

Ṽ (φ̃) = Ω−4 V (φ) , (4.1.8)

where Ω2 = γφ2

M2
P

, we can rewrite, up to boundary terms, the action in Eq. (4.1.1) in the EF as:

SE =

∫
d4
√
−g̃
[
g̃µν

2
∂µφ̃∂νφ̃− M2

P

2
R̃− Ṽ (φ̃)

]
. (4.1.9)

The variation of Eq. (4.1.9) then leads to a set of equations analogous to those obtained from

the action (1.2.19). Let us note that the spectral index of the curvature perturbations and that

of gravitational waves are invariant under conformal transformations and can be calculated in the

simpler Einstein frame.

However, other important quantities in cosmology are not left invariant under conformal trans-

formations, like the Hubble parameter H. It is then important to distinguish between the two

frames, emphasising which one is to be considered the physical one. Henceforth, for us, the Jordan

frame will be the physical one, and it is principally the frame in which we derive all our results.

4.1.1 Homogeneous dynamics and the Hubble and scalar field flow functions

As briefly mentioned in Section 3.2.1, we can introduce the slow-roll parameters that conveniently

describe the dynamics of the scalar field, the so-called “scalar field flow functions” hierarchy defined

by δ0 = φ/φ0, with φ0 indicating an arbitrary initial value for the field, and δn+i = d log δi/dN ,

with i ≥ 1. Differently from the case of Einstein Gravity, we can not express the evolution of

inflationary linear fluctuations only in terms of the Hubble slow-roll functions ϵi but we need also

this second kind of functions δi. However, combining Eqs. (4.1.3) and (4.1.4) we can find following

relation between the two hierarchies

ϵ1 =
δ1

δ1 + 1

(
δ1
2γ

+ 2δ1 + δ2 − 1

)
. (4.1.10)

and higher order ϵi’s can be obtained by differentiating (4.1.10).

It is interesting to also determine the exact solutions of the homogeneous dynamics in both the

Einstein and Jordan Frame, observing the peculiar differences between them. We can write the

equations of motion in terms of the SR parameters in order to find these solutions. In the context

of the minimally coupled case (EF) we have from (3.2.12)

δ̃21
φ̃2

M2
P

= ϵ̃1 =⇒ δ̃1 + δ̃2 =
ϵ̃2
2
, (4.1.11)
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and we can rewrite the Klein-Gordon equation (1.2.27) as

δ̃2 + δ̃1 − ϵ̃1 +
δ̃1
ϵ̃1

d log Ṽ

d log φ̃
(3 − ϵ̃1) = 0 . (4.1.12)

We have here used the new notation with the superimposed tilde ˜ sign to indicate Einstein Frame

quantities. From Eqs. (4.1.11, 4.1.12), we can easily observe that no solutions with δ̃1 and ϵ̃1

simultaneosly constant and different from zero exist while a non-trivial solution can be found for

the case ϵ̃2 = 0, δ̃1 = ±√
ϵ1MP/φ with Ṽ ∝ exp

(√
ϵ1φ/MP

)
. This kind of solution is the well-known

power law inflationary solution [109].

Proceeding now into the Induced Gravity gravity case, the dynamical equations (4.1.11, 4.1.12)

must be now replaced by a combination of Eqs. (4.1.3,4.1.4), and on using the definition of slow-roll

parameters, we obtain

ϵ1 =

[
3

(
δ1 − 4γ + γ

d log V

d logφ

)
+ δ1

(
6γ − δ1

2

)
d log V

d logφ
+ δ1(δ1 + δ2)

]
1

δ − 6γ
. (4.1.13)

Despite the involved form of the equation, we can still easily find an exact, non-trivial solution being

the counterpart of the one found in the minimally coupled case. In fact, considering ϵ2 = δ2 = 0,

with a monomial potential

V = V0

(
φ

φ0

)n

, (4.1.14)

we have

δ1 = − γ(n− 4)

1 + γ(n+ 2)
, ϵ1 =

γ(n− 2)(n− 4)

2 + 2γ(n+ 2)
. (4.1.15)

It is interesting to notice the presence of two different de Sitter-like solutions. The form of the

slow-roll parameter ϵ1 clearly suggests that for quartic n = 4 and quadratic n = 2 potentials, the

Hubble parameter is constant ϵ1 = 0. In particular, we have that in the quartic case δ1 = 0 and the

field is frozen, while in the quadratic one δ1 = 2γ
1+4γ .

4.1.2 Cosmological perturbations

We have already studied the quantization of linear scalar perturbations in the case of a homogenous

and isotropic background, for the minimally coupled inflaton. The result was the derivation of the

Mukhanov-Sasaki equation for the gauge invariant quantity v (1.4.91). The same approach can be

applied in this context.

Following the prescription presented in [111], we work in the uniform curvature gauge, which

corresponds to imposing ψ = 0 for the scalar component of the perturbed metric term δgµν , im-

plying that spatial curvature vanishes. In this way, the scalar curvature perturbations produced by

quantum fluctuations of the inflaton can be described through the comoving curvature perturbation

R(x) = Hδφ(x)/φ̇, where δφ(x) is the scalar inflaton perturbation. Ignoring surface terms, we can

expand to the second order the action (4.1.1) with respect to δφ, and removing all non-physical
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degrees of freedom, we can derive the action [111]

S(2) =
1

2

∫
dtd3x⃗ a3Z

{
δφ̇2 − 1

a2
(∇δφ)2 +

1

a3Z

H

φ̇

d

dt

[
a3Z

d

dt

(
φ̇

H

)]}
. (4.1.16)

The structure of the action is very similar to that in Eq. (1.2.19). In the case of IG, we have [109]

Z ≡ H2φ2(1 + 6γ)

(φ̇+Hφ)2
=

1 + 6γ

(1 + δ1)2
. (4.1.17)

The action (4.1.16) leads then to the perturbation equation, in the Fourier space given by

δφ̈k +

(
3H +

Ż

Z

)
δφ̇k +

[
k2

a2
− 1

a3Z φδ1

d

dt

(
a3Z

d

dt
(φ δ1)

)]
δφk = 0 , (4.1.18)

and the Fourier component δφk is related to the comoving curvature perturbation Fourier component

Rk, in uniform gauge, through

Rk = H
δφk

φ̇
. (4.1.19)

The above equation can be rewritten by introducing a new field variable

vk(t) ≡ z
H

φ̇
δφk = zRk , z(t) ≡ aφ̇

H

√
Z , (4.1.20)

as

v′′k +

(
k2 − z′′

z

)
vk = 0 , (4.1.21)

where a prime denotes a derivative with respect to the conformal time η. In particular, we have

z′′

z
≡ (aH)2fMS = (aH)2

[
δ21 + δ22 + (3 − ϵ1)(δ1 + δ2 + 1)δ2δ3

+
δ1δ2

1 + δ1

(
ϵ1 + δ1 − 3δ2 − δ3 +

2δ1δ2
1 + δ1

− 2

)
− 1

]
(4.1.22)

where we defined the function fMS = fMS(ϵi, δi).

Also gravitational waves are produced during inflation. Tensorial perturbations are traceless

and with a transverse polarization. They are described by two degrees of freedom described by the

field variable hs,k, where s = {×,+}. In IG the Fourier modes of tensor perturbations satisfy the

following equation [109]

ḧs,k + (3H + 2H δ1)ḣs,k +
k2

a2
hs,k = 0 . (4.1.23)

On setting Ts,k ≡ 1√
2
aφ

√
γ hs,k the above equation can be rewritten as:

T ′′
s,k +

[
k2 +M2

T (η)
]
Ts,k = 0 , (4.1.24)

where

M2
T (η) = −(aH)2 [2 − ϵ1 + δ1(3 + δ1 + δ2 − ϵ1)] . (4.1.25)
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Before discussing some examples for the reconstruction of a potential, let us stress that the

construction of a potential given H is not as straightforward as for GR with a minimally coupled

inflaton. In particular, we can easily obtain exact potentials only for certain values of the parameters

following the procedure similar to that described after Eq. (3.2.16) for a minimally coupled inflaton.

Given H = H(a) we can calculate the SR parameters in the large a limit. Since lima→∞ ϵ1 = 0

we expect from Eqs. (4.1.10, 4.1.13) two possible field hierarchies δi: (a) lima→∞ δ1 = 0 and

lima→∞ δ2 ̸= 0, or (b) lima→∞ δ2 = 0 and lima→∞ δ1 ̸= 0 and satisfying the relation

δ1,∞ =
2γ

1 + 4γ
. (4.1.26)

These results follow from the functional dependence of H(a) inherited by ϵ1 and δi’s and by the

general result obtained from (3.2.11), which is applied here to the SR hierarchy δi. Notice that in

contrast with the minimally coupled case, two different de Sitter trajectories are present in IG, and

they are associated with two different evolutions of the inflaton field. Using Eq. (4.1.13) in the same

limit for a, one obtains that the potential, on the attractor, must satisfy

d log V∞
d logφ

− 4 = 0 =⇒ V∞ ∝ φ4 (4.1.27)

in the (a) case and
d log V∞
d logφ

− 4 = −2 =⇒ V∞ ∝ φ2 (4.1.28)

in the case (b). We can now proceed to evaluate the full hierarchy of δi’s. Starting from Eq. (4.1.10)

and differentiating we find

ϵ2 =
δ2
[
(1 + 4γ)δ21 + 2γ(δ2 + δ3 − 1) + 2δ1(1 + 4γ + γδ3)

]
(1 + δ1) [(1 + 4γ)δ1 + 2γ(δ2 − 1)]

, (4.1.29)

and, by further differentiation, the ϵi’s with arbitrary large i can be obtained.

In order to study the amplification in the IG context, and similarly to what we did in the

previous Chapter, we calculate Φ and ns − 1. It can be shown that [12]

Φ = 1 − ϵ1 −
ϵ1ϵ2

1 − ϵ1
+

(
2 + 2δ1 + δ2 −

δ1δ2
1 + δ1

)
. (4.1.30)

If we evaluate Φ with respect to the hierarchies (a), with V∞ ∝ φ4 and (b), with V∞ ∝ φ2, one

observes that only constants and terms linear in the SR parameters remain. Moreover, considering

ϵ1,∞ = 0, Φ can be simplified to

Φ = 3 + 2δ1 + 2δ2 , (4.1.31)

which can be negative only for the hierarchy (a) (growing solutions) but is strictly positive for the

second hierarchy (b), provided we restrict ourselves to positive values of the non-minimal coupling

γ.

If no growing solution exists, an amplification of the spectrum is only possible if the spectrum
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is blue-tilted. We can estimate the spectral index ns − 1, simplifying the parametric function fMS,

obtaining the following expression for the scalar spectral index [12]

ns − 1 = 3 −
√

1 + 4(δ21 + δ22 + 3(1 + δ1 + δ2) − 1) . (4.1.32)

4.2 Potential Reconstruction and amplification

We have already illustrated that a conformal transformation can map non-minimally coupled theo-

ries in General Relativity with a minimally coupled scalar field. We would like to use this transfor-

mation to implement a reconstruction procedure for the IG potential leading to an enhancement of

the power spectrum [108]. The procedure can be generalized to all models described by an arbitrary

action

SG =

∫
d4√−g

[
1

2
gµν∂µφ∂νφ− U(φ)R+ V (φ)

]
, (4.2.1)

where U(φ) and V (φ) are differentiable function of the scalar field φ, where the first determine

the gravity-scalar coupling and the second is the field potential. This procedure is similar to the

Hamilton-Jacobi method and also referred to as the “superpotential” method since it uses the

homogenous scalar field to parametrise the evolution.

In the Einstein case, the advantages of the superpotential reconstruction method are based upon

the fact it is possible to derive the final structure of the potential without having to integrate or

invert functions.

Considering a spatially flat FLRW universe, the Einstein equations derived from the variation

of the action (4.2.1) have the form

6UH2 + 6U̇H =
1

2
φ̇2 + V , (4.2.2)

2U(2Ḣ + 3H2) + 4U̇H + Ü +
φ̇2

2
− V = 0 , (4.2.3)

where the dot denotes the differentiation with respect to the cosmic time t and H is the usual

Hubble parameter. At the same time, we can also derive the field φ evolution equation

φ̈+ 3Hφ̇+ Vφ = 6(Ḣ + 2H2)U,φ . (4.2.4)

We can combine Eqs. (4.2.2, 4.2.3) to obtain

4UḢ − 2U̇H + 2Ü + φ̇2 = 0 . (4.2.5)

If we assume that the scalar field φ undergoes a monotonic evolution we can introduce the operator

d

dt
= F (φ)

d

dφ
, where then φ̇ = F (φ) . (4.2.6)
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We can then rewrite Eq. (4.2.5) considering H = H(φ) and substituting φ̇ and φ̈ = F,φF , we obtain

4UH,φ + 2(F,φ −H)U,φ + (2U,φφ + 1)F = 0 , (4.2.7)

where now H is a function of φ. This equation contains three functions of φ and, given two of them,

the third one can be obtained through the integration of a linear differential equation. Therefore,

if U and F are given, then H(φ) can be obtained as

H(φ) = −
[∫ φ

dφ̄
2F,φ̄U,φ̄ + (2U,φ̄φ̄ + 1)F

4U3/2
+ c0

]√
U(φ) (4.2.8)

where c0 is an integration constant, and similarly, given H(φ) and U(φ), we can express F (φ) as:

F (φ) =

[∫ φ

dφ̄
U,φ̄H − 2UH,φ̄

U,φ̄
eΥ + c̄0

]
e−Υ(φ) (4.2.9)

where

Υ(φ) ≡ 1

2

∫ φ

dφ̄
2U,φ̄φ̄ + 1

U,φ̄
. (4.2.10)

and c̃0 is another integration constant. Let us notice that, in the minimally coupled case (U =

constant), the F,φ contribution cancels in Eq. (4.2.5) and correspondingly Eq. (4.2.9) no longer

holds. Indeed Eq. (4.2.5) becomes an algebraical equation which fixes F in terms of H,φ. In

such case, for any function H(φ) the reconstruction procedure can be analytically fulfilled and the

potential obtained as a function of φ.

Once the three functions of φ are calculated, the corresponding potential V (φ) can be easily

obtained by inverting the Friedmann equation (4.2.2)

V (φ) = 6UH2 + 6U,φFH − 1

2
F 2 = 6H2U

(
1 + 3

U2
,φ

U

)
− (F − 6U,φH)2

2
. (4.2.11)

However, any non-minimally coupled model can be transformed to the corresponding EF through

a conformal transformation and a field redefinition. In such a frame through the Friedmann

Eq. (3.2.12), the relation

dH̃

dt
= − 1

2MP

(
dφ̃

dt

)2

=⇒ F̃ = −2MPH̃,φ (4.2.12)

is valid. If one then expresses F and H in the JF through the corresponding quantities in the EF,

that we called F̃ and H̃, and then uses the relation (4.2.12) here, then the reconstruction in the JF

can be studied using a single function and its derivative, namely Y (φ) ≡ H̃(φ̃(φ)) where φ̃ is the

inflaton in Einstein frame.

At the homogeneous level, one has the following relations between the JF (φ, U , N , a) and the

EF (φ̃, Ũ , Ñ , ã):

Ñ =

√
U

Ũ
N , ã =

√
U

Ũ
a , (4.2.13)
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and

H̃ =

√
Ũ

U

(
1 +

1

2HU

dU

dt

)
H , F̃ =

Ũ

U

√
1 + 3

U2
,φ

U
F , (4.2.14)

where the time derivative d/dt is w.r.t the cosmic time in JF. These two relations may be inverted

to obtain

H =

√
2U

MP

2(
Y +

2U,φY,φ
1 + 3U2

,φ/U

)
, F = −

√
2UM2

P

4UY,φ
1 + 3U2

,φ/U
(4.2.15)

and one may check by direct substitution that H and F in (4.2.15) satisfy Eq. (4.2.7).

Let us note that, starting from any given, non-singular, function Y (φ) one is able to reconstruct

a model having φ̇ and H given by (4.2.15) and correspondingly express its potential by (4.2.11).

One may argue that the same potential can be obtained by simply exploiting the mapping between

the potentials in the associated Jordan and Einstein frames. Indeed this is only possible provided

the integral which expresses the relation between φ̃ and φ can be analytically performed, and this

only occurs for specific choices of U(φ). However, we can impose conditions for Y , leading to specific

inflationary evolutions in the Jordan Frame, and reconstruct the corresponding potential form.

We leave behind the general formalism and focus then on the simple case of Induced Gravity,

with U = γφ2

2 . The superpotential formalism previously discussed allows us to derive the two field

functions:

F = −αφ3 Y,φ , H = βφY + αφ2 Y,φ (4.2.16)

where β ≡ √
γ/MP and α ≡ 2γ β/(1 + 6γ). We can use these relations to express the slow-roll

parameters for both the Hubble and the scalar field hierarchies in terms of Y (φ) and its derivatives:

δ1 =
φ̇

Hφ
=

F

Hφ
= − αφY,φ

βY + αφY,φ
, (4.2.17)

δ2 =
F

H

d log δ1
dφ

=
αβφ

(
Y,φY − φY 2

,φφ+ Y,φφ Y φ
)

(βY + αφY,φ)2
. (4.2.18)

and

ϵ1 = − Ḣ

H2
= −FH,φ

H2
=
αφY,φ

(
βY + αφ2 Y,φφ + (2α+ β)φY,φ

)
(βY + αφY,φ)2

(4.2.19)

If the inflaton evolves to some attractor φ∞ with, without loss of generality, φ∞ > 0 then Y can

be Taylor expanded around it

Y (φ) =

∞∑
n=0

yn

(
φ

φ∞
− 1

)n

. (4.2.20)

In the Taylor expansion (4.2.20) y0 > 0 and y1 = 0 in order for δ1(φ∞) = 0 . This particular result

allow us to estimate the large a limit of the parameter δ2:

δ2,∞ = −2α

β

y2
y0
, (4.2.21)

which must be different from zero in order for the hierarchy δi to behave as (3.2.11). In this way,

we can impose the late time field evolution through the Taylor coefficients (y0, y1, y2) of the field

function Y , and as we have seen before writing the corresponding potential. The reconstructed form
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of such a potential is then

V = 3γφ4(βY + αφY,φ)2 − 6γφ4(αφY,φ)(βY + αφY,φ) − φ4

2
(αφY,φ)2

=
γ2φ4

[
3(1 + 6γ)Y 2 − 2γφ2Y 2

,φ

]
(1 + 6γ)M2

P

.

(4.2.22)

Let’s finally check the behaviour of the homogenous variables φ and H close to φ∞. Approximating,

to the leading order, Y (φ) ≈ y0 + y2(φ/φ∞ − 1)2 and expanding both F and H accordingly, we

obtain

φ̇ ≈ −2y2αφ
2
∞

(
φ

φ∞
− 1

)2

, H ≈ βφ∞y0

[
1 +

(
1 + 2

α

β

y2
y0

)(
φ

φ∞
− 1

)]
(4.2.23)

where we observe that H approaches the constant value linearly on varying the field φ and δ0 has

a “time” dependence determined by

δ0 =
φ

φ∞
≃ 1 + exp (−2α y2φ∞ t) ≃ 1 + exp

(
−2

α

β

y2
y0
N

)
(4.2.24)

where we approximated the relation between t and N through the limit value of H in (4.2.23). Let us

note that the expected exponential behaviour of Li(N) in (3.2.7) is obtained. A very simple potential

possibly leading to amplification can be obtained by the exact expression: Y = y0+y2 (φ/φ∞ − 1)2.

In such a case φY = y2φ/φ∞ and the potential is

V (φ) =

γ2φ4y20

{
3(1 + 6γ)

[
1 + y2

y0

(
φ
φ∞

− 1
)2]

− 8γ φ2

φ2
∞

(
φ
φ∞

− 1
)2}

(1 + 6γ)M2
P

. (4.2.25)

We can actually estimate the features of the resulting spectrum. In the de Sitter limit we have

a transient evolution of the scalar field, and, for a large, one finds:

Φ = 3 − 4α

β

y2
y0

= 3 − 8γ

1 + 6γ

y2
y0

(4.2.26)

and

ns − 1 = 3 −
3 +

(
18 − 8y2

y0

)
γ

1 + 6γ
. (4.2.27)

The parameters y0, y2 are related to ”n” in (3.2.16). On substituting φ(N) of (4.2.24) in H(φ) of

(4.2.23) and being a ∼ eN one has:

n =
y2
y0

8γ

1 + 6γ
. (4.2.28)

Indeed, we note that the factor y2/y0 determines both the shape of the potential and the late time
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value of the slow-roll parameters:

δ2,∞ = −n
2
, (4.2.29)

Φ = 3 − n , (4.2.30)

ns − 1 = 3 −
√

(n− 3)2 = n . (4.2.31)

From a model-building perspective, we expect to have, in order to obtain a sufficient amplification

of the spectrum for both decreasing (0 < n < 3) and growing mode fluctuations Rk (n > 3), a value

of the parameter n ∼ (y2/y0)γ ∼ O(1), that is the main assumption we will consider henceforth.

4.3 Outline of the model

Let us now proceed and construct a complete inflationary model in IG. The approach used is identical

to the one described in Section 3.2.3. We introduce a three-stage potential in order to impose three

distinct phenomenological requirements. We consider an initial slow-roll period (SR1) consistent

with CMB observations, in which generating a power spectrum with a power-law functional form

PR(k) = As(k/k∗)
ns−1, with As ≃ 2.1 × 10−9 and ns − 1 ≃ 0.965, with k∗ = 0.05 Mpc−1. The

intermediate stage (IG) is described by an inflationary evolution driven by a potential with a form

described in Eq. (4.2.25) and finally we have a second slow-roll phase (SR2) which stops any further

amplification and leads to the end of inflation.

From a model-building perspective, we consider a slow-roll evolution driven by a Landau-

Ginzburg potential, of the form

VLG =
µ

4
(φ2 − φ2

0)
2 . (4.3.1)

This kind of potential has the same structure as a Higgs potential, and it was considered in the

first work of Zee [107]. This kind of potential presents some interesting features [109, 112]: it has a

minimum in φ = φ0 and a relative maximum in φ = 0, V (φ) ≥ 0 and allows both large and small

field configuration. These features lead to inflationary predictions in agreement with observations,

given suitable values of the parameters of the potential µ and φ0.

The final potential has the form given by

V (φ) =

γ2φ4y20

{
3(1 + 6γ)

[
1 + y2

y0

(
φ
φ∞

− 1
)2]

− 8γ φ2

φ2
∞

(
φ
φ∞

− 1
)2}

(1 + 6γ)M2
P

× Θd1(φ1 − φ)Θd2(φ− φ2)

+
µ1
4

(φ2 − φ2
01)

2 Θd1(φ− φ1)

+
µ2
4

(φ2 − φ2
02)

2 Θd1(φ2 − φ) ,

(4.3.2)

where each stage is connected to the subsequent one through the tanh-type “step” function (3.2.29).

We define the first potential term as VIG and the two Landau-Ginzburg terms as VSR1 and VSR2

correspondigly. We can see a possible realization in Fig. 4.1. The field values φ1 and φ2 represent

the transition value, with φ1 < φ2, and together with d1 and d2, they determine both the position
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and the duration of the transition between each stage of inflation. All the parameters are set in

order to have a sufficiently smooth potential. The total normalization of the potential depends, in

particular, on the parameters y0, µ1, µ2, which can be related by imposing that at each transition

the value of the potential varies smoothly: VIG(φ1) = VSR1(φ1) and VIG(φ2) = VSR2(φ2), in analogy

with relations (3.2.31, 3.2.32), which we do not present due to the cumbersome expression for VIG.

However, it is important to notice that the normalization factor is dependent also on the value of

γ, which directly determines the structure of potential VIG (4.2.25).

The power spectrum is obtained by solving the Mukhanov-Sasaki Eq. (4.1.21), for the variable

vk. In order to do so we need the time evolution for the slow-roll parameters δi, ϵi, which can be

obtained by solving the following Klein-Gordon equation for the scalar inflaton φ, obtained by using

the number of e-folds N as a time variable

φ,NN =
12γ φ

1 + 6γ
+

φ3
,N (1 + 2γ)

2γ φ2(1 + 6γ)
+

3φ,N (−1 + 6γ)

1 + 6γ
−

φ2
,N (7 + 6γ)

φ(1 + 6γ)
+
V,φ(φ,N + φ)(φ2

,N − 12γ φ,Nφ− 6γφ2)

2φV (1 + 6γ)
. (4.3.3)

The evolution of the Hubble parameter is given by

H2 =
V/M2

P

3φ2γ

(
1 + 2δ1 −

1

6γ
δ21

)−1

. (4.3.4)

The numerical evaluation of the time evolution of φ requires prescriptions similar to the minimal-

coupling case. Indeed, the potential is tuned in order to induce a transient evolution of the field

with an attractor value determined by the parameter φ∞, which enters directly inside the form

of the potential. However, the presence of the non-minimal coupling γ determines more possible

solutions and has consequences on the dynamics of the scalar field φ. In the following, we consider

two regimes of γ, in particular we work our numerical analysis for γ = 10−2 and γ = 10−4.

As we have already mentioned in Eq. (4.1.2), the non-minimal coupling is directly related to

the vacuum expectation value of the inflaton and then to the evaluation of Newton’s constant GN .

Thus, we set the minimum of our potential (4.3.2) at

φ02 =
MP√
γ
. (4.3.5)

The initial value of our inflaton field φi = φ(N = 0) depends on the value of the minimum, and in

order to have a large-field evolution φi ≫ φ02. The initial time N = 0 corresponds to the horizon

exit of the pivot mode k0 = 0.002 Mpc−1.

In the following, we perform a study of the stability of our solutions, in analogy to the procedure

followed in Section 3.2.3.

4.3.1 Stability analysis for the transient evolution

We clearly note that for the potential (4.2.25) it is extremely difficult to obtain an analytical

description of the evolution of the scalar field φ. Even inverting the relation (4.2.6) does not
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Figure 4.1: Logarithmic derivative of the total potential presented in Eq. (4.3.2). We considered as a working
example the parameters in Tab. 4.1, with n = 2 and γ = 10−2. We have highlighted the three regimes with
different colours: red (SR1), blue (IG) and orange (SR2). We represent only a small interval around the field
value φ ∼ φ∞ = 100 and notice how d log V/d logφ ≃ 4 at such value.

lead to a complete analytical description of the evolution of the field during the transient phase.

Nevertheless, we can derive the main features of the homogeneous evolution restricting our analysis

to the evolution of the field close to the attractor point φ∞.

In particular, the solutions in the large time limit introduced in (4.2.29), (4.2.30) and (4.2.31)

suggest that it is possible to study the properties of final power spectrum analyzing the time

dependence of the slow-roll parameter δ2 in such regime. We check the stability exploring the

possible behaviour of such a parameter and verifying if the results are compatible with the analytical

estimates for a potential (4.2.25).

Therefore, we obtain a differential equation for δ2. We start considering Eqs. (4.1.10) and

(4.1.13), and solving for δ2 to derive

δ2 =
d log V

d logφ

(1 + δ1)
(
δ21 − 6γ(1 + 2δ1)

)
2δ1(1 + 6γ)

− (2γ(δ1 − 2) + δ1)
(
−δ21 + 6γ(1 + 2δ1)

)
2γδ1(1 + 6γ)

. (4.3.6)

Before differentiating Eq. (4.3.6), we must consider that in the limit φ→ φ∞, we expect that δ1 ∼ 0

and δ2 ∼ constant. Therefore, we have δ1,NN , δ1,N ∼ O(δ1), due to the iterative definition of the

hierarchy δi. Thus, substituting the definition δ2 = δ1,N/δ1 inside (4.3.6), and differentiating with

respect to N , we obtain the second order differential equation

δ1,NNδ1,N − (δ1,N )2 ≃ −12γδ1,N
1 + 6γ

+ 3
d log V

d logφ

γδ1,N
1 + 6γ

− 3

[
d log V

d logφ
+

d2V

dφ2

φ2

V
−
(

d log V

d logφ

)2
]
δ1︸ ︷︷ ︸

d
dN

d log V
d logφ

γδ1
1 + 6γ

+O(δ31) , (4.3.7)
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where we have neglected any cubic terms in δ1. We observe that for φ→ φ∞, in order to obtain a

general relation between the slow-roll parameter and the logarithmic derivative of V , one has

d log V

d logφ
=

1

δ1

d log V

dN
= 2 − 2ϵ1

δ1
+

2δ1,N/δ1 − δ1,N/3γ

1 + 2δ1 − δ21/6γ

≃ 4 − 1 + 6γ

γ
δ1 −

1 + 6γ

3γ
δ1,N ,

(4.3.8)

where we have used Eq. (4.2.11) for the potential, Eq. (4.1.10) for ϵ1 and we expanded the final

expression in δ1 and δ1,N .

We can estimate the second order derivative term
V,φφ

V φ2 substituting the potential (4.2.25) and,

Taylor expanding the relation around the attractor point φ∞. We then obtain the leading term

d2V

dφ2

φ2

V
≃ − 4

3(1 + 6γ)

[
−3

(
3 +

y2
y0

)
+ 2γ

(
−27 +

(
−9 + 2

y2
y0

))]
+O(φ− φ∞)

≃ 12 +
n(6 − n)(1 + 6γ)

12γ
,

(4.3.9)

where we have used Eq. (4.2.28) for n.

Finally, we can insert each term inside Eq. (4.3.7), and, simplifying to the leading order in the

slow-roll parameter δ1, we obtain the first order linear differential equation

δ1,NN + 3δ1,N +
n(6 − n)

4
δ1 = 0 , (4.3.10)

which admits the simple general solution

δ1(N) = C1e
−n

2
N + C2e

n−6
2

N , (4.3.11)

where C1 and C2 are simple integration constants different from zero. Thus, we can directly obtain

the approximate time dependence of δ2 by a differentiation w.r.t. N of (4.3.11)

δ2(N) =
1

2

(n− 6)e(n−3)N −K n

K + e(n−3)N
, (4.3.12)

where the integration constant K ≡ C1/C2 is introduced. In the large a limit we then have:

δ2
N→∞−−−−→

−n
2 , if n < 3 ,

n−6
2 , if n > 3 ,

(4.3.13)

that is, the solution is stable for n < 3, while for n > 3 the solution is unstable. This result is

formally identical to the one obtained for the slow-roll parameter ϵ2 in the late time regime for the

evolution driven by the potential (3.2.22). Considering Eqs. (4.2.30) and (4.2.31), we can see that

for n < 3 the power spectrum is blue tilted and a decreasing solution is present for the curvature

modes. In the case n > 3 instead, the late time evolution described by the inflaton potential (4.2.25)

is unstable and the late time behaviour of δ2 is determined by δ2 ≃ (n − 6)/2 > −3/2. In what
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γ n φi φ2 d1 d2 φ01

10−2

1 φ∞ + 21
20 φ∞ + 10−5 10−2 10−5 10.84

2 φ∞ + 41
20 φ∞ + 9 × 10−6 10−2 9 × 10−6 13.50

4 φ∞ + 14
5 φ∞ + 3 × 10−5 10−2 3 × 10−5 21.78

5 φ∞ + 75
20 φ∞ + 25 × 10−6 10−2 25 × 10−6 24.68

10−4

1 φ∞ + 1 φ∞ + 10−5 10−2 3 × 10−5 71.50

2 φ∞ + 2 φ∞ + 10−5 10−2 10−5 79.15

4 φ∞ + 3 φ∞ + 16 × 10−6 10−2 16 × 10−6 236.9

5 φ∞ + 19
5 φ∞ + 5 × 10−5 10−2 5 × 10−5 248.0

Table 4.1: Parameters considered for our working models. Each field value is normalized in MP, and it is
taken with respect to the attractor point: φ∞ = 100 for γ = 10−2, and φ∞ = 300 for γ = 10−4. The first
transition is considered to occur in all cases at φ1 = φ∞ + 1/10.

follows, we analyze different cases of evolutions, determined by the parameters n and γ, studying

the amplification of the spectrum and comparing it with the numerical results.

4.3.2 Numerical results

In the following analysis, we shall consider two distinct cases of induced gravity inflation, corre-

sponding to the value of the non-minimal coupling γ = {10−2, 10−4}.

The numerical simulations and their outcomes are discussed for the parameters listed in Tab. 4.1.

We consider different values n to study a wide range of possible behaviours including decaying and

enhanced perturbation solutions of the Mukhanov-Sasaki equations (4.1.21). In particular, we

considered four different models of inflation with the parameter n having values (1, 2, 4, 5). As in

the previous Section 3.2.4, we set the initial conditions and adjust the transition periods properly

to ensure that the scalar and tensor spectral power produced during the first phase of SR is within

observational limits. In the following, we present field values in Planck units. From a model-building

perspective, it was most convenient to express each parameter in terms of the attractor point φ∞.

In particular, we considered the first transition to occur at the field value φ1 = φ∞ + 1
10 for each

value of n and redefined the initial value of the evolution φi = φ(N = 0).

Let us note that the parameter φ01 enters the total potential (4.3.2) as the minimum value of

the Landau-Ginzburg potential for the first slow-roll phase (SR1). Ideally, the transition between

the first slow-roll phase and the intermediate regime must be sufficiently smooth and the transition

should occur at the value φ1. In order to do so we constrain the value of the parameter φ01 in

order to satisfy VIG,φ(φ1) = VSR1,φ(φ1). However, for the cases with n > 3, we are interested in

reproducing the growing solution of the fluctuation mode Rk, which is unstable. In order to do

that we need to impose some constraints on the transition between the first slow-roll phase and the

intermediate phase, in a similar fashion to what we have done in Section 3.2.3. In contrast to this

case, we did not calculate an exact analytical form for the field evolution during the transient stage

and we found numerically the conditions required. Constraining the value of the free parameter φ01
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(a) (b)

(c) (d)

Figure 4.2: Time evolution of the slow-roll parameter δ2 in the case γ = 10−2 for different values of the
parameter n = {1, 2, 4, 5}, correspondingly with subfigures (a), (b), (c), (d).

was possible through an iterative procedure to find the right value. The solutions of this procedure

are shown in Fig. 4.2 (c), (d) and Fig. 4.3 (c), (d), for the cases n = {4, 5}. We can notice that

during the transient phase we have a numerical evolution sufficiently compatible with the expected

solution δ2 ≃ −n/2.

Thus, with the solutions for the homogeneous variables, we solved numerically the Mukhanov-

Sasaki equation (3.1.17) with Bunch-Davies initial conditions and derive the power spectrum for

the curvature perturbation Rk (App. A). We showed our results in four different plots, in Fig. 4.4,

to highlight the differences between the models. We notice that the shapes of the spectra share

many common features with the ones presented for the minimally-coupled inflaton, presented in

Section 3.2.4. In particular, for the cases n = 1, 2, we have power-law growth of the spectrum

compatible with the analytical estimate ns − 1 = n, while in the case n > 3, the power spectrum

grows initially as k4 towards its peak and is characterized by a dip preceding the phase of steady

growth. The peak region, in particular, is determined by the attractor solution (4.3.13), with a

growth proportional to k6−n, with n > 3.

We present in Tab. 4.2, the estimated result for the mass and abundance of PBH, derived from

the simulations for each choice of n and γ. We have estimated the mass of the PBH both using

Eqs. (2.2.4) and (2.2.5), choosing as interesting range of masses MPBH ∈ [10−16, 10]M⊙.

Finally, we present the analysis of the scalar power spectrum in relation to the production of
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(a) (b)

(c) (d)

Figure 4.3: Time evolution of the slow-roll parameter δ2 in the case γ = 10−4 for different values of the
parameter n = {1, 2, 4, 5}, correspondingly with subfigures (a), (b), (c), (d).

scalar-induced gravitational waves as did at the end of the previous Chapter. We follow the same

procedure discussed in Section 3.3. In Tab. 4.3 we present the best-fit parameters for both the

cases γ = 10−2 and γ = 10−4. In Figs. (4.5, 4.6) instead, we show the marginal distribution of the

parameter α. We clearly notice, in analogy with Fig. 3.8 for the minimally coupled case that the

values that best represent the growth of the spectrum are given by n = 1 and n = 5, where we have

initial growth of the spectrum proportional to k4 and secondary slope dependent on the attractor

solution for the transient phase (4.3.13). We note that for the larger value of γ, n = 1 seems to be

slightly favoured by observations. Indeed for smaller values of γ one should recover the behaviour

of GR and n = 1 is shifted to the right w.r.t. the γ = 10−2 case.
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γ n ∆N M
(∆N)
pbh /M⊙ kpbh/Mpc−1 Mpbh/M⊙ fpbh

10−2

1 36.5 1.38 × 10−14 1.48 × 1013 1.41 × 10−14 4.67 × 10−1

2 36.8 8.64 × 10−15 1.87 × 1013 8.81 × 10−15 1.00 × 10−1

4 19.8 5.05 7.74 × 105 5.12 5.65 × 10−4

5 20.2 2.41 1.08 × 106 2.62 1.06 × 10−3

10−4

1 29.1 6.44 × 10−11 2.18 × 1011 6.45 × 10−11 1.63 × 10−2

2 38.0 8.38 × 10−16 5.99 × 1013 8.55 × 10−16 5.3 × 10−1

4 20.0 3.59 9.18 × 105 3.64 1.45 × 10−3

5 19.5 8.42 5.99 × 105 8.55 7.20 × 10−4

Table 4.2: Estimate of the mass of the PBH, both using the time duration ∆N between the exit of PBH-
forming modes and the exit of CMB modes, through Eq. (2.2.5), and identifying the peak mode kpbh of the
spectrum Eq. (2.2.4).

γ n log10A α β log10 kp/Mpc−1

10−2

1 −1.880 ± 0.005 1.29 ± 0.03 3.6 ± 0.2 13.18 ± 0.03
2 −1.927 ± 0.009 1.90 ± 0.03 3.3 ± 0.2 13.23 ± 0.03
4 −1.74 ± 0.02 1.96 ± 0.03 3.2 ± 0.2 5.86 ± 0.05
5 −1.749 ± 0.006 1.33 ± 0.05 3.6 ± 0.4 6.03 ± 0.03

10−4

1 −1.81 ± 0.01 1.09 ± 0.04 3.8 ± 0.2 13.97 ± 0.03
2 −1.88 ± 0.02 1.88 ± 0.02 3.1 ± 0.2 13.75 ± 0.04
4 −1.748 ± 0.008 1.80 ± 0.03 3.3 ± 0.2 5.96 ± 0.03
5 −1.74 ± 0.02 1.30 ± 0.06 3.3 ± 0.8 5.76 ± 0.08

Table 4.3: Fit of the power spectrum for a BPL form for models presented in Fig. 4.4.
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(a) (b)

(c) (d)

Figure 4.4: Power spectra of the comoving curvature perturbation for the cases n = {1, 5} and n = {2, 4}.
The first two subfigures (a) and (b) refer to γ = 10−2 and the last two (c), (d) to γ = 10−4. We can notice a
relative spectrum enhancement, ∆PR ∼ 107, between large CMB and small PBH-formation scales. For both
the cases n = {1, 2}, the power index satisfies the relation (3.2.25). For n = {4, 5} instead, we have an initial
maximum growth proportional to k4.
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Figure 4.5: Marginal distribution of the parameter α obtained from the Bayesan analysis performed in [95].
We superimpose the results obtained from the fit of the growth of the power spectra for our inflationary
models. The solid lines reproduce the best-fit values of α listed in Tab. 4.3, for γ = 10−2, while the dashed
ones correspond to the estimated values of α, assuming that the peak is reached with the maximum possible
steep of the growth proportional to k4, presented in Fig. 4.4 for γ = 10−2.
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Figure 4.6: Marginal distribution of the parameter α obtained from the Bayesan analysis performed in [95].
We superimpose the results obtained from the fit of the growth of the power spectra for our inflationary
models. The solid lines reproduce the best-fit values of α listed in Tab. 4.3, for γ = 10−4, while the dashed
ones correspond to the estimated values of α, assuming that the peak is reached with the maximum possible
steep of the growth proportional to k4, presented in Fig. 4.4 for γ = 10−4.
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Conclusions

In this thesis, we analyzed two different inflationary scenarios which investigate the consequences

of a transient phase in the inflaton evolution and its effect on the primordial inflationary spectrum

of scalar perturbations. These transients have been studied in recent years as a possible source

for the amplification of the curvature power spectrum. We notice that if the amplitude of scalar

perturbations grows large enough at small energy scales, it may induce gravitational collapse and

seed the formation of compact astrophysical objects, such as primordial black holes (PBHs) after

inflation ends. Since the first detection of gravitational waves in 2015, PBHs have attracted much

interest. Indeed, PBHs could explain some of the LIGO/Virgo/Kagra collaboration black hole

mergers and they could also have an important role in understanding inflationary cosmology. They

could significantly contribute to or even entirely constitute dark matter, they may be related to

baryogenesis, seeded supermassive black holes at the center of galaxies, and may as well have

significantly modified the formation and growth of structures through the universe’s history.

In Chapter 1, we introduced the shortcomings of the standard Hot Big Bang model, starting

with a brief introduction of the FLRW metric for the description of a homogeneous and isotropic

universe. We discussed how an early period of inflation could solve the “flatness” and “horizon”

problems and how to realize a simple model of inflation by introducing a scalar field, the inflaton,

minimally coupled to gravity. Using as a simple example the fluctuations of a generic massless

scalar field, we showed how to perform their quantization on a curved spacetime. Subsequently, we

studied how scalar and tensor fluctuations evolved during this early stage of the universe. We dealt

with the problem of gauge invariance and derived the evolution equations for the gauge-invariant

quantities in the context of inflation, in particular, the Mukhanov-Sasaki equation. We defined some

fundamental quantities such as the power spectrum P for both scalar and tensorial perturbations,

used for studying their statistical properties and comparing them with CMB observations.

Then, we gave an overview of the principal features of PBHs in Chapter 2. We discussed their

production mechanism in the standard scenario. Using the definition of the comoving curvature per-

turbations Rk, we showed how formation requires they exit the observable horizon during inflation

undergoing an amplification. Once they re-enter the horizon, possibly after re-heating, as density

perturbations δ, gravitational forces activate and PBHs may be created through collapse. We re-

viewed the principal assumptions of this collapse procedure, estimating the requirements necessary

for it to occur and we estimated the threshold for collapse δc. Then, we examined other important

properties of PBHs, like their mass at formation time. This quantity can be related to the charac-

teristic size of perturbations leaving the horizon during inflation. We obtained the density fraction

of PBH at the epoch of formation and its dependence on the distribution of density perturbations.
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The Press-Schechter formalism was also illustrated. Finally, we analyzed the principal constraints

on PBHs abundance, coming from different astrophysical sources and recent experimental activities.

These limits allow an interesting mass window for PBHs that could explain all the dark matter of

the universe:
[
10−16 − 10−10

]
M⊙

In Chapter 3 we illustrated the mechanism for the amplification of fluctuations in the context

of inflation driven by a minimally coupled inflaton. We performed a model-independent analysis,

reviewing different possible realizations considered by the literature. Two are the possible realiza-

tions considered: indeed the amplification may be due to the existence of a growing solution to the

Mukhanov-Sasaki equation for the curvature perturbations, or simply a consequence of a blue-tilted

spectrum in the absence of the growing solution. We reviewed a reconstruction method for the

inflaton potential to obtain the amplification starting from a general form of the Hubble parameter

H = H(a). We studied in detail the transient evolution induced by such a potential, focusing on

the stability of the solutions for different values of the parameter n. In particular, we found that

solutions with n > 3 are not stable and in order to have the growing solution we need to impose

some constraints on the initial condition of the amplification phase. We applied these results to the

construction of complete models of inflation that take into account the constraints at large length

scale, coming from the CMB observations, and lead to the production of PBHs at smaller scales,

with an amplification of ∆PR ∼ 107. We evaluated the abundances of PBHs from our numerical

simulations. Finally, we compared these models to some of the recent PTA datasets analysis. Fit-

ting the resulting power spectra with a broken power law form we obtained that inflationary models

described by n = 1 and n = 5, if the latter evolves on the stable attractor close to the peak of

maximum amplitude, seem to be mildly favoured in fitting the constraints for the production of

SIGW.

Finally, in Chapter 4, we generalize the problem of the enhancement of the primordial spectrum

in the context of inflation with a non-minimally coupled scalar field. We take the Induced-Gravity

model as a working example, describing the homogenous dynamics in terms of the more general

Hubble and scalar field flow functions hierarchies. We reviewed the reconstruction method for the

inflaton potential, following the “superpotential” mechanism. In this way, we were able to determine

a transient stage of evolution for the scalar field that has a de Sitter universe as the limit. We then

chose a simple description of the potential by truncating the Taylor expansion of field function Y

to the quadratic order and verified the late-time properties of the slow-roll parameters, in order to

have an analytical estimate for the power spectrum amplification. Then, we verified the stability

of the transient evolution for the scalar field in the reconstructed models on varying the parameter

of the inflaton potential. We found a result analogous to Chapter 3. Indeed, solutions with n > 3

are not stable. This fact should be considered to reproduce the desired inflaton evolution. In order

to study complete models of inflation in the IG context, we considered two different values for the

non-minimal coupling γ. By describing the slow-roll phases with a Landau-Ginzburg potential we

satisfied CMB constraints. By numerically solving the homogeneous dynamics and the Mukhanov-

Sasaki equation we finally evaluated the power spectrum for different cases of interest, calculating

also the corresponding estimates for the PBH mass and abundance. Finally, employing the PTAs

analysis in [95], we fitted and compared our spectra with the marginal distribution of the growth
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steepness parameter α. For both values of the non-minimal coupling, and similarly to the results

obtained in the context of the minimal coupling scenario, potentials described by n = 1 and n = 5

are mildly favoured compared with experimental data.

The procedure discussed in this thesis can be certainly adapted to study the evolution of in-

flationary models in different scenarios such as f(R) gravity theories and non-canonical models,

where the inflaton’s kinetic term has a non-standard form. These applications are left for future

work. Moreover, a more refined reconstruction of the complete inflaton potential should be certainly

performed as a next step. Let us note that the numerical analysis complements the analytical recon-

struction of potentials leading to an amplification. Indeed, in the presence of a growing solution of

the Mukhanov-Sasaki equation, an analytic approximate estimate of the primordial spectra cannot

be fulfilled as is commonly done in the case of SR.
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Appendix A

Solving the Mukhanov-Sasaki

equation: Numerical procedure

We briefly discuss the algorithm used to numerically solve the Mukhanov-Sasaki (MS) equation,

and obtain the comoving curvature perturbation Rk. The final goal is to obtain the scalar power

spectrum in the inflationary scenarios described in Chapters 3 and 4.

We start then from Eq. (1.4.94) for the field variable vk, defined as vk = Rk/z. In the minimally

coupled case we have z ∝ a
√
ϵ1 while in the IG scenario

z ∝ aφ δ1

√
1 + 6γ

(1 + δ1)2
. (A.0.1)

We then solve numerically the equation mode by mode, to obtain the evolution in time of vk,

through which we evaluate the power spectrum, using the general formula

PR(k) =
k3

2π2

∣∣∣vk
z

∣∣∣2 . (A.0.2)

We start by simplifying the highly oscillatory behaviour of the Bunch-Davies vacuum initial

conditions (1.4.28)

lim
η→−∞

vk =
1√
2k

eikη , lim
η→−∞

v′k = i

√
k

2
eikη . (A.0.3)

For this purpose, we define a new dimensionless function v̄k through the relation

vk(η) =
v̄k(η)√

2k
e−ikη , (A.0.4)

and we rewrite the MS equation as

v̄′′k(η) − 2ik v′k(η) − z′′

z
v̄k(η) = 0 . (A.0.5)

We shall use the number of e-folds N as a the “time” variable for our integration, and then rewrite
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conformal-time derivative in terms of the number of e-folds using dN = aH dη. Doing so we obtain

d2v̄k
dN2

+

[
(1 − ϵ1) − 2i

k

aH

]
dvk
dN

− fMS v̄k = 0 . (A.0.6)

The function fMS depends on the slow-roll paramters in both GR and IG, in particular we have

f
(GR)
MS = 2 − ϵ1 + ϵ2

(
3

2
+
ϵ2
4

− ϵ1
2

+
ϵ3
2

)
(A.0.7)

in the GR case and

f
(IG)
MS = δ21 + δ22 + (3 − ϵ1)(δ1 + δ2 + 1)δ2δ3 +

δ1δ2
1 + δ1

(
ϵ1 + δ1 − 3δ2 − δ3 +

2δ1δ2
1 + δ1

− 2

)
− 1 (A.0.8)

in the IG one. In terms of N the scale factor is a(N) = a0 e
N . The Hubble rate is obtained inverting

respectively (3.2.12) and (4.1.3) and obtaining

H(GR) = H0

√
V

M2
P (3 − ϵ1)

, (A.0.9)

H(IG) =

√
V

3M2
P φ

2 γ

(
1 + 2δ1 −

1

6γ
δ21

)−1

, (A.0.10)

which both depend on the time evolution of the scalar field φ. The evolution of the scalar field is

obtained by solving the Klein-Gordon equations (3.2.34) and (4.3.3) respectively for the cases of

GR and IG.

Our initial conditions for the function vk and v′k, considered to be the Bunch-Davies conditions,

are now

v̄k(N)|in = 1 , v̄′k(N)|in = aH
dv̄k
dN

(N)

∣∣∣∣
in

= 0 . (A.0.11)

Once the background evolution is calculated numerically in terms of e-folds number N , the MS

equation can be solved numerically as well for each k mode, in terms of the rescaled variable

(A.0.4), using the initial conditions (A.0.11). Each mode starts its evolution deep inside the horizon

k2 ≫ z′′/z, where the solution to (A.0.6) is highly oscillatory and numerical computation are costly.

Typically, however, it is enough to initialize the modes at some time such that they are sufficiently

inside the horizon, where, the BD condition is still valid1 to a very good approximation.For this

purpose, we choose to evolve each mode by setting the initial time as

N
(k)
in = N

(k)
0 − 5 , (A.0.12)

where the “k” super-script indicates the intrinsic mode dependence for the choice of Nk
in and N

(k)
0

denotes the horizon crossing time k = a(N
(k)
0 )H(N

(k)
0 ). Having then obtained the individual mode

1Unless modes undergo resonance and get excited deep inside the horizon, the choice of initial condition in Eqs.
(A.0.11) and (A.0.12) provide an accurate prescription for the initialization of the numerical evaluation.
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evolution from N
(k)
in to Nend = 60, the power spectrum can be described as

PR(k) =
k2

4π2M2
p a

2(Nend) ϵ1(Nend)
|v̄k(Nend)|2 . (A.0.13)

In order to set the overall normalization of the power spectrum we need to determine a0 w.r.t Mp.

We do so by requiring the normalization of the power spectrum indicated by Planck at the pivot

scale kCMB = 0.05 Mpc−1 using PR(kCMB) ≃ 2.1 × 10−9.
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Appendix B

Analytic estimate for the threshold of

collapse

In this short appendix, we provide an analytic estimate of the characteristic value of the collapse

threshold for PBH formation during RDU, closely following [31]. For this purpose, we take the

background space-time after inflation to have the spatially flat FLRW form (1.1.1) and so the

evolution of the scale factor is described by the Friedmann equation (1.1.5): 3H2M2
P = ρ(t). It

follows from the theory of peaks of random fields in the Gaussian approximation [113] that extreme

peaks tend to be spherical. Therefore, it is reasonable to consider a locally perturbated, spherical

symmetric region in the universe that is initially outside the horizon and will later collapse to form

a PBH upon horizon re-entry. The metric describing such a region can be written as

ds2 = dt2 − a2(t) e−2R(r̂)
[
dr̂2 + r̂2 (dθ2 + sin2 θdφ2)

]
(B.0.1)

where now R < 0 is the non-linear generalization of the conserved comoving perturbation defined

on a super-Hubble scales [114]. At large distances r̂ → ∞, curvature perturbation is assumed to

vanish (R → 0) so that the universe is described by a spatially flat FLRW metric. By making the

coordinate redefinition, r = r̂ e−R(r̂), the metric describing the spherical perturbed region (B.0.1)

can be transformed into that of a closed universe with positive spatial curvature

ds2 = dt2 − a2(t)

[
dr2

1 −K(r) r2
− r2 (d2θ + sin2 θd2φ)

]
(B.0.2)

where we used K to identify the curvature and the relation between perturbations of the two metrics

is given by K(r)r2 = r̂R′(r̂) (2 − r̂R′(r̂)), showing that the local spatial curvature is related to the

first order derivatives of the curvature perturbation R(r̂). Ignoring higher order spatial derivatives

of K, the evolution of the spherical region is given by the 00 component of the Einstein equations

(1.1.3)

H2 ≡ ρtot
3M2

P

=
ρ(t)

3M2
P

− K(r)

a
(B.0.3)
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which is equivalent to the evolution of a closed universe (1.1.18) with a small perturbation δρ

induced by the spatial curvature K(r):

δ ≡ ρtot − ρ

ρ
=
δρ

ρ
=

K(r)

a2H2
, (B.0.4)

where ρ(t) = 3H2M2
P. Considering (B.0.3), since radiation density dilutes faster than ρ ∝ a−4, a

local spherical region with K > 0 will eventually stop expanding and begin collapsing to form a

PBH. This leads to a breakdown of the separate universe approximation, precisely when the right-

hand-side of Eq. (B.0.3) becomes negative, i.e. when 3K = a2 = ρ
M2

P
or δ = 1 at the time called

t = tc. Since only the modes corresponding to scales larger than the Jeans length (kJ = aH/cs) can

collapse, we identify k2 = a2H2/c2s. Therefore, we have

δ(tc) =
K

k2
k2

a2H2
=

K

c2sk
2

= 1 , (B.0.5)

which leads to K = c2sk
2. This means that at the horizon crossing time of the relevant perturbation

(i.e. when k2 = a2fH
2
f ), the only perturbations which can collapse must have a density contrast

larger than

δc =
K

(af Hf )2
= c2s

(
k

af Hf

)2

= c2s . (B.0.6)
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[84] Ogan Özsoy et al. “Mechanisms for primordial black hole production in string theory”.

In: Journal of Cosmology and Astroparticle Physics 07 (July 2018). doi: 10.1088/1475-

7516/2018/07/005. url: https://dx.doi.org/10.1088/1475-7516/2018/07/005 (cit. on

p. 50).

[85] J. Beltran Jimenez G. Ballesteros and M. Pieroni. “Black hole formation from a general

quadratic action for inflationary primordial fluctuations”. In: JCAP 06 (2019), p. 016. doi:

10.1088/1475-7516/2019/06/016 (cit. on pp. 50, 51, 54, 55).

[86] Samuel M. Leach and Andrew R. Liddle. “Inflationary perturbations near horizon crossing”.

In: Phys. Rev. D 63 (4 Jan. 2001), p. 043508. doi: 10.1103/PhysRevD.63.043508. url:

https://link.aps.org/doi/10.1103/PhysRevD.63.043508 (cit. on p. 50).

[87] Samuel M. Leach et al. “Enhancement of superhorizon scale inflationary curvature perturba-

tions”. In: Phys. Rev. D 64 (2 June 2001), p. 023512. doi: 10.1103/PhysRevD.64.023512.

url: https://link.aps.org/doi/10.1103/PhysRevD.64.023512 (cit. on pp. 50, 52).

[88] Jose Maria Ezquiaga, Juan Garcia Bellido, and Ester Ruiz Morales. “Primordial black hole

production in Critical Higgs Inflation”. In: Physics Letters B 776 (2018). doi: https://

doi.org/10.1016/j.physletb.2017.11.039. url: https://www.sciencedirect.com/

science/article/pii/S0370269317309310 (cit. on p. 51).

[89] Ioannis Dalianis, Alex Kehagias, and George Tringas. “Primordial black holes from α-attractors”.

In: Journal of Cosmology and Astroparticle Physics 01 (Jan. 2019). doi: 10.1088/1475-

7516/2019/01/037. url: https://dx.doi.org/10.1088/1475-7516/2019/01/037 (cit. on

p. 51).

[90] Michele Cicoli, Victor A. Diaz, and Francisco G. Pedro. “Primordial black hles from string

inflation”. In: Journal of Cosmology and Astrparticle Physcis 06 (June 2018). doi: 10.1088/

1475-7516/2018/06/034. url: https://dx.doi.org/10.1088/1475-7516/2018/06/034

(cit. on p. 51).

[91] M. Yamaguchi T. Kobayashi and J. Yokoyama. “Generalized G-Inflation: Inflation with the

Most General Second-Order Field Equations”. In: Prog. Theor. Phys. 126.3 (2011) (cit. on

p. 51).

[92] Hayato Motohashi and Wayne Hu. “Primordial black holes and slow-roll violation”. In: Phys.

Rev. D 96 (6 Sept. 2017), p. 063503. doi: 10.1103/PhysRevD.96.063503. url: https:

//link.aps.org/doi/10.1103/PhysRevD.96.063503 (cit. on p. 53).

112

https://doi.org/https://doi.org/10.1016/j.physletb.2017.10.066
https://www.sciencedirect.com/science/article/pii/S037026931730878X
https://doi.org/10.1088/1475-7516/2015/09/018
https://dx.doi.org/10.1088/1475-7516/2015/09/018
https://dx.doi.org/10.1088/1475-7516/2015/09/018
https://doi.org/10.1088/1475-7516/2018/07/005
https://doi.org/10.1088/1475-7516/2018/07/005
https://dx.doi.org/10.1088/1475-7516/2018/07/005
https://doi.org/10.1088/1475-7516/2019/06/016
https://doi.org/10.1103/PhysRevD.63.043508
https://link.aps.org/doi/10.1103/PhysRevD.63.043508
https://doi.org/10.1103/PhysRevD.64.023512
https://link.aps.org/doi/10.1103/PhysRevD.64.023512
https://doi.org/https://doi.org/10.1016/j.physletb.2017.11.039
https://doi.org/https://doi.org/10.1016/j.physletb.2017.11.039
https://www.sciencedirect.com/science/article/pii/S0370269317309310
https://www.sciencedirect.com/science/article/pii/S0370269317309310
https://doi.org/10.1088/1475-7516/2019/01/037
https://doi.org/10.1088/1475-7516/2019/01/037
https://dx.doi.org/10.1088/1475-7516/2019/01/037
https://doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1088/1475-7516/2018/06/034
https://dx.doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1103/PhysRevD.96.063503
https://link.aps.org/doi/10.1103/PhysRevD.96.063503
https://link.aps.org/doi/10.1103/PhysRevD.96.063503


[93] Hayato Motohashi, Shinji Mukohyama, and Michele Oliosi. “Constant roll and primordial

black holes”. In: 03 (Mar. 2020). doi: 10.1088/1475-7516/2020/03/002. url: https:

//dx.doi.org/10.1088/1475-7516/2020/03/002 (cit. on pp. 61, 62).

[94] A. A. Starobinsky. “A new type of isotropic cosmological models”. In: 91.1 (1980). doi:

https://doi.org/10.1016/0370-2693(80)90670-X. url: https://www.sciencedirect.

com/science/article/pii/037026938090670X (cit. on p. 61).

[95] Zhi-Qiang You, Zhu Yi, and You Wu. “Constraints on primordial curvature power spectrum

with pulsar timing arrays”. In: Journal of Cosmology and Astroparticle Physics 2023.11

(Nov. 2023), p. 065. issn: 1475-7516. doi: 10.1088/1475-7516/2023/11/065. url: http:

//dx.doi.org/10.1088/1475-7516/2023/11/065 (cit. on pp. 71–73, 75, 96, 98).

[96] Chengcheng Han et al. “Self-interacting dark matter implied by nano-Hertz gravitational

waves”. In: (June 2023). arXiv: 2306.16966 [hep-ph] (cit. on p. 71).

[97] John Ellis et al. “Cosmic superstrings revisited in light of NANOGrav 15-year data”. In: Phys.

Rev. D 108.10 (2023), p. 103511. doi: 10.1103/PhysRevD.108.103511. arXiv: 2306.17147

[astro-ph.CO] (cit. on p. 72).

[98] Pau Amaro-Seoane et al. Laser Interferometer Space Antenna. 2017. arXiv: 1702.00786

[astro-ph.IM] (cit. on p. 72).

[99] Wen-Rui Hu and Yue-Liang Wu. “The Taiji Program in Space for gravitational wave physics

and the nature of gravity”. In: National Science Review 4.5 (Oct. 2017), pp. 685–686. issn:

2095-5138. doi: 10.1093/nsr/nwx116. url: https://doi.org/10.1093/nsr/nwx116

(cit. on p. 72).

[100] Yungui Gong, Jun Luo, and Bin Wang. “Concepts and status of Chinese space gravitational

wave detection projects”. In: Nature Astron. 5.9 (2021), pp. 881–889. doi: 10.1038/s41550-

021-01480-3. arXiv: 2109.07442 [astro-ph.IM] (cit. on p. 72).

[101] Seiji Kawamura et al. “Current status of space gravitational wave antenna DECIGO and

B-DECIGO”. In: PTEP 2021.5 (2021), 05A105. doi: 10.1093/ptep/ptab019. arXiv: 2006.

13545 [gr-qc] (cit. on p. 72).

[102] Stephen L. Adler. “Einstein gravity as a symmetry-breaking effect in quantum field theory”.

In: Rev. Mod. Phys. 54 (3 July 1982), pp. 729–766. doi: 10.1103/RevModPhys.54.729. url:

https://link.aps.org/doi/10.1103/RevModPhys.54.729 (cit. on p. 76).

[103] Y. M. Cho. “Reinterpretation of Jordan-Brans-Dicke theory and Kaluza-Klein cosmology”.

In: Phys. Rev. Lett. 68 (21 May 1992), pp. 3133–3136. doi: 10.1103/PhysRevLett.68.3133.

url: https://link.aps.org/doi/10.1103/PhysRevLett.68.3133 (cit. on p. 76).

[104] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge Monographs

on Mathematical Physics. Cambridge University Press, 1982. doi: 10.1017/CBO9780511622632

(cit. on p. 76).

[105] C. Brans and R. H. Dicke. “Mach’s Principle and a Relativistic Theory of Gravitation”.

In: Phys. Rev. 124 (3 Nov. 1961), pp. 925–935. doi: 10.1103/PhysRev.124.925. url:

https://link.aps.org/doi/10.1103/PhysRev.124.925 (cit. on p. 76).

113

https://doi.org/10.1088/1475-7516/2020/03/002
https://dx.doi.org/10.1088/1475-7516/2020/03/002
https://dx.doi.org/10.1088/1475-7516/2020/03/002
https://doi.org/https://doi.org/10.1016/0370-2693(80)90670-X
https://www.sciencedirect.com/science/article/pii/037026938090670X
https://www.sciencedirect.com/science/article/pii/037026938090670X
https://doi.org/10.1088/1475-7516/2023/11/065
http://dx.doi.org/10.1088/1475-7516/2023/11/065
http://dx.doi.org/10.1088/1475-7516/2023/11/065
https://arxiv.org/abs/2306.16966
https://doi.org/10.1103/PhysRevD.108.103511
https://arxiv.org/abs/2306.17147
https://arxiv.org/abs/2306.17147
https://arxiv.org/abs/1702.00786
https://arxiv.org/abs/1702.00786
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1038/s41550-021-01480-3
https://doi.org/10.1038/s41550-021-01480-3
https://arxiv.org/abs/2109.07442
https://doi.org/10.1093/ptep/ptab019
https://arxiv.org/abs/2006.13545
https://arxiv.org/abs/2006.13545
https://doi.org/10.1103/RevModPhys.54.729
https://link.aps.org/doi/10.1103/RevModPhys.54.729
https://doi.org/10.1103/PhysRevLett.68.3133
https://link.aps.org/doi/10.1103/PhysRevLett.68.3133
https://doi.org/10.1017/CBO9780511622632
https://doi.org/10.1103/PhysRev.124.925
https://link.aps.org/doi/10.1103/PhysRev.124.925


[106] A. D. Sakharov. “Vacuum quantum fluctuations in curved space and the theory of gravita-

tion”. In: Dokl. Akad. Nauk Ser. Fiz. 177 (1967). Ed. by Yu. A. Trutnev, pp. 70–71. doi:

10.1070/PU1991v034n05ABEH002498 (cit. on p. 76).

[107] A. Zee. “Broken-Symmetric Theory of Gravity”. In: Phys. Rev. Lett. 42 (7 Feb. 1979),

pp. 417–421. doi: 10.1103/PhysRevLett.42.417. url: https://link.aps.org/doi/

10.1103/PhysRevLett.42.417 (cit. on pp. 76, 78, 87).

[108] A. Yu. Kamenshchik et al. “Reconstruction of scalar potentials in modified gravity models”.

In: Physical Review D 87.6 (Mar. 2013). doi: 10.1103/physrevd.87.063503. url: https:

//doi.org/10.1103%2Fphysrevd.87.063503 (cit. on pp. 77, 83).

[109] A. Cerioni et al. “Inflation and reheating in spontaneously generated gravity”. In: Physical

Review D 81.12 (June 2010). doi: 10.1103/physrevd.81.123505. url: https://doi.org/

10.1103%2Fphysrevd.81.123505 (cit. on pp. 78, 80, 81, 87).

[110] Yasunori Fujii and Kei-ichi Maeda. The Scalar-Tensor Theory of Gravitation. Cambridge

Monographs on Mathematical Physics. Cambridge University Press, 2003. doi: 10.1017/

CBO9780511535093 (cit. on p. 78).

[111] Jai-chan Hwang. “Quantum generations of cosmological perturbations in generalized grav-

ity”. In: Classical and Quantum Gravity 14.12 (Dec. 1997), pp. 3327–3336. doi: 10.1088/

0264-9381/14/12/016. url: https://doi.org/10.1088%2F0264-9381%2F14%2F12%2F016

(cit. on pp. 80, 81).

[112] A. Cerioni et al. “Inflation and reheating in induced gravity”. In: Physics Letters B 681.5

(Nov. 2009), pp. 383–386. doi: 10.1016/j.physletb.2009.10.066. url: https://doi.

org/10.1016%2Fj.physletb.2009.10.066 (cit. on p. 87).

[113] James M. Bardeen et al. “The Statistics of Peaks of Gaussian Random Fields”. In: Astrophys.

J. 304 (1986), pp. 15–61. doi: 10.1086/164143 (cit. on p. 103).

[114] David H Lyth, Karim A Malik, and Misao Sasaki. “A general proof of the conservation of

the curvature perturbation”. In: Journal of Cosmology and Astroparticle Physics 2005.05

(May 2005), pp. 004–004. issn: 1475-7516. doi: 10.1088/1475-7516/2005/05/004. url:

http://dx.doi.org/10.1088/1475-7516/2005/05/004 (cit. on p. 103).

114

https://doi.org/10.1070/PU1991v034n05ABEH002498
https://doi.org/10.1103/PhysRevLett.42.417
https://link.aps.org/doi/10.1103/PhysRevLett.42.417
https://link.aps.org/doi/10.1103/PhysRevLett.42.417
https://doi.org/10.1103/physrevd.87.063503
https://doi.org/10.1103%2Fphysrevd.87.063503
https://doi.org/10.1103%2Fphysrevd.87.063503
https://doi.org/10.1103/physrevd.81.123505
https://doi.org/10.1103%2Fphysrevd.81.123505
https://doi.org/10.1103%2Fphysrevd.81.123505
https://doi.org/10.1017/CBO9780511535093
https://doi.org/10.1017/CBO9780511535093
https://doi.org/10.1088/0264-9381/14/12/016
https://doi.org/10.1088/0264-9381/14/12/016
https://doi.org/10.1088%2F0264-9381%2F14%2F12%2F016
https://doi.org/10.1016/j.physletb.2009.10.066
https://doi.org/10.1016%2Fj.physletb.2009.10.066
https://doi.org/10.1016%2Fj.physletb.2009.10.066
https://doi.org/10.1086/164143
https://doi.org/10.1088/1475-7516/2005/05/004
http://dx.doi.org/10.1088/1475-7516/2005/05/004

	Introduction
	Theory of Inflation
	Homogeneous and isotropic universe
	Shortcomings of the Hot Big Bang model and Cosmic Inflation
	Flatness Problem
	Horizon problem
	Inflation idea: the shrinking Hubble sphere

	A brief survey of inflationary models
	Cosmological perturbations
	Massless scalar field in a de Sitter spacetime
	Classical relativistic theory of perturbations
	Gauge-invariant variables and their physical meaning
	Cosmological scalar perturbations


	PBH properties and formation
	PBH formation as a causal process
	The relevant quantities for PBH abundance
	Collapse fraction of PBHs at formation

	PBH properties and primordial scalar fluctuations
	Constraints on the primordial black hole abundance

	Amplification of fluctuations for a minimally coupled inflaton
	Enhancement of scalar perturbation during single-field inflation
	Enhancement for growing modes
	Analysis when the decaying modes are negligible

	Model in General Relativity
	Evolution with "Constant" SR parameters
	GR with a minimally coupled inflaton
	Outline of the model
	Numerical Results

	Constraints on the power spectrum with PTA

	Amplification in Induced Gravity models
	Induced Gravity inflation
	Homogeneous dynamics and the Hubble and scalar field flow functions
	Cosmological perturbations

	Potential Reconstruction and amplification
	Outline of the model
	Stability analysis for the transient evolution
	Numerical results


	Conclusions
	Solving the Mukhanov-Sasaki equation: Numerical procedure
	Analytic estimate for the threshold of collapse
	Bibliography

