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Abstract

In an open robot swarm task, different parties can introduce their machines to participate
at any time, preventing the possibility to assume the willingness to cooperate of the enti-
ties, paramount due to the restriction imposed by local information. Using a blockchain
economy, it is possible to establish an information market that promotes cooperation by
rewarding the sharing of useful data, while punishing any attack of Byzantines, robots
that harm the mission by spreading, either with malice or incompetence, deceitful infor-
mation. This protection mechanism is not robust when a robot receives information that
is locally shared among colluding robots, albeit evidently plagued by heavy position noise
that makes it harmful. In this work I analyzed how is it is possible to prevent this by using
a global reputation management system, based on a metric directly proportional to the
wealth that the robots gain cooperating, and that is stored and visible on the distributed
ledger of the blockchain. I used a simulation of a foraging mission, where robots must
cooperate to locate a resource patch and transport the gathered items to a deposit site. I
introduced a strategy able to compare the reputation of the information sources, and re-
ject the ones that are too noisy, prioritizing higher reputations. I designed specific market
rules which are able to harm the Byzantines, using the decentralized economy to extract
wealth from the former and redistribute it to the cooperating robots, depleting the de-
ceivers of resources needed to access the market. I introduced the possibility for the robots
to request for debit wealth, created by a market that is specifically planned to exploit the
tendency of the Byzantines to borrow money, rendering the disparity of wealth between
the former and the cooperating robots more evident. I tested the market’s stability and
robustness against two waves of Byzantine attacks, at the beginning of the simulation and
after a specific amount of time. My results showed that, by relying on the the globality of
the wealth-related reputation, the swarm of robots is able to simultaneously defend itself
against noisy and deceitful information. My study is the first to entirely rely on economic
metrics to protect itself against multiple forms of non-cooperation. I envision that the
field of swarm robotics could soon apply the theories of markets and economic inequality
to furtherly harness the consolidating blockchain technology. Keywords: open swarm
robotics, blockchain economy, reputation management.



Abstract in lingua italiana

In uno sciame robotico aperto, differenti soggetti possono aggiungere robot in qualsiasi
momento, impedendo ipotesi sulla volontà di cooperare delle macchine, essenziale a causa
delle restrizioni imposte dalla località delle informazioni. Con un’economia basata su
blockchain, è possibile istituire un mercato che promuove la cooperazione premiando la
condivisione di informazioni utili, punendo allo stesso tempo eventuali attacchi di Bizan-
tini, robot che diffondono informazioni ingannevoli, sia per malizia che per incompetenza.
Questo meccanismo di protezione non è robusto quando un robot riceve informazioni con-
fermate localmente da robot che cospirano, sebbene visibilmente dannose. Ho analizzato
come sia possibile prevenire ciò con l’utilizzo di un sistema di gestione globale della rep-
utazione, direttamente proporzionale alla ricchezza che i robot guadagnano cooperando,
memorizzata e visibile sul registro distribuito della blockchain. Ho simulato una missione
di foraggiamento, in cui i robot devono cooperare per individuare una risorsa, raccoglierla
e trasportarla in un sito di deposito. Ho introdotto una strategia in grado di confrontare la
reputazione delle fonti di informazione e respingere quelle troppo rumorose, dando priorità
alle reputazioni più elevate. Ho progettato specifiche regole di mercato in grado di dan-
neggiare i Bizantini, utilizzando l’economia decentralizzata per impoverire questi ultimi e
redistribuire la ricchezza ai robot cooperanti, privando i truffatori delle risorse necessarie
per accedere al mercato. Ho introdotto la possibilità per i robot di richiedere debiti, cre-
ato da un mercato progettato per sfruttare la tendenza dei Bizantini a richiedere prestiti,
rendendo più evidente la disparità di ricchezza tra questi ultimi ed i robot cooperanti. Ho
testato la stabilità e la robustezza del mercato contro due ondate di attacchi di Bizantini,
all’inizio della simulazione e dopo un periodo specifico. I miei risultati hanno mostrato
che, basandosi sulla globalità della reputazione legata alla ricchezza, lo sciame di robot è
in grado di difendersi simultaneamente contro informazioni rumorose ed ingannevoli. Il
mio studio è il primo a fare affidamento esclusivamente su metriche economiche per pro-
teggersi da molteplici forme di non cooperazione. Prevedo che il campo della robotica di
sciame potrebbe presto applicare le teorie dei mercati e delle disuguaglianze economiche
per sfruttare ulteriormente la tecnologia blockchain, in fase di consolidamento. Parole
chiave: sciami robotici aperti, economia su blockchain, gestione della reputazione.
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1| Introduction

1.1. Swarms

A few research lines in robotics have focused in implementing a single high-performance
and high-computational capable machine, able of effectively dealing with any task. How-
ever, this research direction may not be the only feasible solution to many real world
application scenarios. Instead, the task could be completed by a large number of simple,
cooperating agents, working together to fulfill the goal of the collectivity.

Remarkably, this swarm behavior has been evolved in nature [30] by some species of
bees, ants and termites, that are in fact called social insects [26]. Swarms are composed
of individuals that have limited capabilities, with respect to actions they can perform,
communication range between the swarm members, typically local, and knowledge of the
environment [30]. By interacting, the agents exchange information and are able to tackle
otherwise difficult tasks: cooperating, the collective possibilities of the swarm are far
beyond the ones of the single entity. In natural swarms this allows for a very high level
of task parallelization, with huge increments in efficiency and coordination, even if no
centralized authority to control the agents is present [30].

Swarm robotics studies how to exploit interactions among a large number of embodied
and relatively simple robots, to design intelligent collective behavior [13, 14, 22]. This
framework has been formalized by Dorigo [11] it must have the following characteristics:

1. scalability of performance as the number of robots increases;

2. it must be composed by many individuals, which can be either homogeneous, het-
erogeneous, or homogeneous per groups [12];

3. robots’ performance should improve with cooperation. Robots themselves could be
simple individuals having difficulty to carry out or complete the task on their own;

4. communication and sensing can only be limited and local, causing the single robot
to have noisy and partial knowledge.
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The design process often emulates social animals for the behavior of the single robots,
with the goal of emerging cooperation from the collective interaction.

1.2. Interaction Between Robots

By ensuring frequent communication, the swarm can counterbalance the limitations im-
posed by local and partial knowledge, and noisy sensing or a possibly dynamic environ-
ment. Moreover, the decentralised aspect of the system gives tolerance towards failures
of individuals.

In nature, many species tend to use a specific form of indirect communication called stig-
mergy [36], which consists of modifying the environment to signal other components of the
swarm. For example, ants do this by leaving a trail of chemical compounds (pheromones)
that are sensed by other ants; this leads to the formation of networks of trails. Since
ants are attracted to bigger concentrations of pheromones, they will converge to the path
with the highest frequency of deposition, which has been shown to eventually be the
shortest one: the trail network is hence iteratively optimized over time [20, 49]. This
example shows that communication is fundamental for the swarm to manifest distributed
intelligence in robotics [28, 34, 51].

Many attempts have been made to recreate stigmergy in robotics because it is a very scal-
able way to communicate. For example, previous work has used stigmergy-based commu-
nication using chemicals to modify the environment [19, 34], or a smart environment using
radio-frequency identification [29], augmented reality [43] and virtual pheromones [53].
However, since it requires specialized hardware, some researcher started using direct com-
munication instead [3, 6, 15, 16, 23, 44, 46], which can be easily obtained usually using
electromagnetic wave transmission. The easiest way to simulate the effect of pheromones
with direct communication is to build a static chain of robots acting as beacons for the
ones conducting the physical task [6, 15, 23]. While being very simple to realize, a major
drawback of it is that part of the potential workforce is devoted to a role that is not
directly performing the physical task.

An evolution of this method that deals with the problem is to use a dynamic chain of
robots [16, 46], where each of them acts as a moving beacon, while also participating in
performing the task: in this way the number of workers is maximized, and the physical
interference of robots is reduced, since no static robot is present as an obstacle on the
task path. A possible way to implement this, offered by social navigation, is for robots to
share information about the last time they encountered a location. By being attracted to
robots that encountered a site more recently, the swarm will eventually form a dynamic
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chain between the sites, even in an environment with obstacles [16]. The robots will not
only be able to localise the sites, but will also be able to estimate their position in the
environment: this is particularly useful in environments that lack proper communication
or localisation infrastructure, like Global Positioning System (GPS) [21, 46], or where
communication redundancy is required for safety reasons.

1.2.1. Cooperative Foraging

Foraging is, generally speaking, the act of researching and gathering resources. In the par-
ticular scenario of central-place foraging, robots explore the environment to find resource
patches; once one or multiple resource sites are found, robots exploit them, bringing the
resource back to an accumulation site usually called deposit or nest [24, 36]. The im-
portance of foraging derives from the great number of applications it is able to model:
agriculture [1], garbage collection [2], search and rescue [35]; all of these tasks could require
concurrent exploration and exploitation of the environment.

All the aforementioned setups can be efficiently solved using robot swarms, since task
parallelization can allow the execution of both exploration and exploitation at the same
time [4, 15]. Practically speaking, robots start without any global knowledge and must
explore the environment to acquire information about where the sites of resources and
deposit are. Once a food site has been found robots are able to start exploiting it; robots
which already found it are able to communicate its position to others: there are, hence,
two different methods to discover the sites. As time passes, information of the sites
diffuses in the swarm, and, since new information is acquired in the meantime, robots
reach a consensus, obtained by iteratively averaging personal and received information
following a specific protocol.

1.3. Cooperation Among Robots

Since most swarms take inspiration from eusocial animals, in many works cooperation and
correctness is assumed as a given constraint for each robot [14]. In real-world applications
this assumption is too tight since non-cooperative behavior can manifest in many ways:
if a robot, for example, malfunctions and starts to send wrong data, it can harm the
operation of the entire swarm, without even knowing it; another example is where one
robot is infected with malicious code, forcing it to behave in a non-cooperative way. Both
malfunctioning and malicious robots could not be easily told from a cooperative one, and
hence that behavior can be generalized using the Byzantine one: when a Byzantine fault
occurs, there is no real consensus on whether a robot has, or not, failed. The name comes
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from the Byzantine Generals Problem [31], a classic in computer science.

It has been proven by Strobel that even a single Byzantine robot could harm the whole
swarm by spreading false information, if the robots do not filter the received information
and hence act in a naive way [47]. Moreover, there could be cases where robots’ goals differ
from the ones of the rest of the swarm from the beginning. Albeit counterintuitive, this
possibility is in fact more than reasonable in the case of open swarms. A swarm is defined
as open when the robots can join and leave it at any time; obviously, no assumption
on the behavior of the participants can be made: they may also have the sole intent of
disrupting the operations of the swarm.

1.3.1. Blockchain Based Approach

To allow consensus on the real position of the sites to be resilient in the presence of
Byzantines, a blockchain-based solution is possible, as it has been proven by Strobel
using a blockchain-based token economy [48]. This makes the swarm robust against both
zealot and Sybil attacks; the first being a common type of malicious attack where the
robot always applies the same forgery to the data, irrespectively of the situation, while
the second consists in forging a large number of new identities to prevent the traceability
of the attacker or to flood the system with messages for a potential Denial-of-Service
attack [27, 38, 50].

Blockchain can also be used to deal with another great challenge in swarm robotics: given
the bottom-up approach used, it is hard to foresee what will be the actual collective
behavior given a particular individual one, and results can be reached only by using
careful design [52]. Obviously, it would be preferable and more practical to design a
centralized controller to orchestrate all the activities of all the robots, however this would
defeat the decentralised nature of swarm robotics. Pacheco proves that it is possible
to use blockchain-based smart contracts, relying on a private Ethereum network [5], to
coordinate robots during a foraging task, introducing robustness to Byzantines at the
same time [37].

Van Calck proves that is possible to create a market in which information is exchanged
to regulate the robot activities. Each robot owns some personal wealth, stored on the
blockchain, that it trades with other robots. They show that it is possible to design
market rules that lead to higher accumulation of wealth by cooperative robots and a loss
of wealth by Byzantine robots. Using a behavior who takes inspiration from economic
agents, cooperation may emerge even in a context where robots behave in a selfish way [54].
To detect and reject Byzantine behavior, a two-layer protocol is used: systemic protection,
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based on the market rules and economic incentives, and an individual one, improving the
decision-making strategy of the single robot. A robot decides to acquire information from
other robots using a so-called skeptical logic where new information is accepted only when
it’s not too different, considering a given threshold, from previously received information.
However, this could lead to the rejection of good information coming from honest robots
when it is not confirmed by others. This issue is especially visible when no Byzantine
robots are present or already identified, and it is very depending on the selection of the
threshold, and the degree of attack performed by the Byzantines. Instead of relying on
local information only, to detect the Byzantines, a systemic collective estimation of the
robots’ reliability can prevent the unjust penalization of honest robots.

1.4. Reputation and Trust Systems

Trust and reputation models present a convenient solution in multi-agent systems where
the selection of a partner is fundamental, like in the case of the presence of Byzantine
agents [39]. Trust towards an agent is defined as the subjective belief other agents have
about its degree of reliability or competence. In the particular case of a market-based
economy, it will represent the will of other agents to accept its data. Reputation represents
the recorded history, or perception, of an agent past behavior and performance; within a
multi-agent system, reflecting the agent’s trustworthiness [39].

Traditionally, there is no consensual differentiation in the definitions of trust and reputa-
tion models, but in this work I will rely on the definition of Pyniol & Sabateur-Mir [39]
that trust implies a decision about interacting or not with a partner, which is based on
Castelfranchi & Falcone’s idea that trust implies delegation [8, 18]. This implies that trust
could be considered as a Boolean information. In the scenario of open swarms, standard
reputation models cannot be readily used because they fail to foresee the changes in the
system caused by openness [25]. Moreover, if cheating is present, more actions shall be
taken in consideration.

The AFRAS model, by Carbo [7], uses both personal and social information to compute
a subjective trust measure. Although including reliability measures on all the sources
of information used to compute it, this value is only based on the last interactions the
partner had with both the agent and third parties. At this point, the work does not
provide any mechanism to decide based on the obtained value.

Rasmusson & Jonson’s [41, 42] model relies on specific rating agents, acting as external
evaluation agencies, to compute a subjective reputation measure that it then provides to
all other agents. In addition, partners can invest wealth to encourage agents to remember
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them in a more positive way, believing that this monetary incentive will improve truth
telling, without allowing any bribery. In Sen & Sajja’s [45] model, the computed value is
private and relies on different types of direct experience, a noise-less one, and a noisy one,
that may differ from reality. At partner decision time, the agent may also query other
ones, inside its communication range, aggregating their reviews about the partner.

1.5. Original Contribution

Van Calck proves the fundamental hypothesis that, in a market that rewards actions
benefiting the swarm and punishing the Byzantines, the wealth of a robot is proportional
to its degree of cooperation [54].

Considering this, I conjecture that a candidate metric for reputation and trust could be
the wealth of the robots, more specifically, either the current wealth or its history of
variation could be used. By using a blockchain-based market, where all rules are enforced
with tamper-proof smart contracts, the desired wealth evolution for the participants can
be obtained. Moreover, these rules act as a centralized authority, offering an easy way to
control the swarm. Each robot’s wealth is stored in the blockchain, which serves as an
external memory storage for the swarm. Since the wealth of a robot is the result of all
its past interactions with other robots, the value of trust is created in a distributed way
by all the participants of the swarm, but relying on a centralized infrastructure, hence
removing the need to account for reliability of the sources of information.

The focus of my work is to provide an in-depth analysis of how wealth could be used
as a metric for a reputation system with the purpose of rejecting Byzantines as possible
trading partners. To do so, I develop economic and inequality metrics to interpret the
evolution of the multi-agent economy. I relate those metrics with task-related performance
measures [9], regarding the swarm physical job and compare them with a naive and
sceptical reference robot behavior.

I prove that wealth-based selection is a "cost-free" protocol, having always better perfor-
mances than scepticism in the absence of Byzantines, and obtaining better performances
than robots that do not filter information, acting in a naive way, in the presence of Byzan-
tines. As part of my thesis, I also introduce and test an additional protection layer for
naive robots, using the reputation for weighting the information for the reliability of its
source during the combination and averaging process.

My simulation results show that trust can be used to tune the outlier detection system,
improving performances while still obtaining the desired market evolution.
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Moreover, I explicitly consider an open swarm where new members join after a given
time, and therefore discuss entry reputation and show their effect on the stability of trust
system, market and performances.

1.6. Thesis Structure

The remaining chapters of this thesis are organized as follows:

• in Chapter 2, I outline the characteristics of the simulation, namely the robots’
physical and logical properties, the environment where the foraging task takes place,
the rules of the market and how information exchange in the market takes place,
and describe the metrics I will use to interpret the results;

• in Chapter 3, I use the developed metrics on the different markets and protection
strategies to show the results;

• in Chapter 4, I comment on the obtained results and discuss limitations and possible
future improvements.
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2| Methods

Trust protocols are tested in a simulation of central place foraging, with the goal of the
swarm being to collect resources from the food site and transport them to the nest; during
this process robots tend to get lost, because of the odometry noise that plagues them.
The most efficient way to not get lost is to build a dynamic chain of robots, going back
and forth between the two sites, which however is fragile to the attack of Byzantines. I
test a system using reputation, based on the market, to imbue the chain with robustness
against Byzantines’ attacks.

The swarm is composed of 25 robots, with a varying number of them as Byzantines;
the other ones are considered honest. A simulated market, based on a blockchain that
permits the contracts to be issued, is used by the robots to build their trust and reputation
measures for the others. It is constituted of a data structure, shared between all robots,
and relative procedures to operate on it. The simulation may last from 15000 to 50000

steps.

2.1. Environment

The experiment is performed in a rectangular-shaped ground, shown in Figure 2.1, with
smooth surface and without any obstacles in it. The chosen values for width and height
are respectively (1200, 600) units. Two round-shaped patches, of fixed size and position,
are present, representing the foraging and the nest sites: the former is where robots gather
resources, while the latter is where they deliver and deposit the collected items. I choose
equal radius for both sites, rf=rn=50 units, and coordinates Pf=(200, 300) and Pn=(1000,
300) units, respectively for horizontal and vertical positions of centers of resource and nest
sites; sites’ placement is such that they are symmetric with respect to the vertical median
axis of the environment.

Resources consist of generic items, with no size; no real action is required for picking and
dropping: robots can do that by simply reaching a specific position inside the specific site.
To randomize the time the robots spend to pick up and drop an item, the locations where
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items are generated inside the resource site and must be dropped in the nest are decided
randomly, with uniform distribution, on the whole surface of a site; this also prevents
the formation of large robots assemblies, moving very close to each other, and forces
diversification of the chain so that no robot gains an advantage thanks to a reiterated
shorter path.

Since the resiliency to destruction of the chain is the main research focus, I decide to use
this simple environment; a more complex environment, in fact, could produce fluctuations
and complex responses that could mask the effectiveness of the protocol.

Figure 2.1: Robots creating the dynamic chain in the foraging environment: resource
patch is shown in green, nest in orange. Honest robots are blue, while Byzantines are red;
the color of their outline indicates their current target site. The grey circle around the
robots is the communication and sensing range, rc=rs.

2.2. Robots

Robots are represented by point-like particles that can freely move in the environment
and cannot collide with each other. They do not possess any physical nor dynamical
property, and can hence accelerate instantaneously, without any slippage; the translation
velocity is limited to VMAX=2.5 units/simulation step, while the rotation is not, meaning
they can instantaneously change direction.

The robots are spawned randomly, with uniform probability, in the environment. At the
beginning of the experiment, each one of them is assigned a static ID, starting from 0
and increasing with the spawn order, and Byzantine status. Irrespective of the number
of Byzantines, the honest robots will always have the lower IDs, while the Byzantine will
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be assigned the higher ones. I decide the number of Byzantines to be in the range [0− 8];
the amount is bounded by the theoretical limit of dishonest robots that this protection
protocols can deal with, 33% of robots’ population.

I define as Byzantine robots the ones that systematically try to harm the task every
possible time they interact with others. To protect itself from the Byzantines, each robot
is also assigned a static behavior, a strategy to use the computed trust value to estimate
if a possible partner is untrustworthy.

Robots are tasked to collect items and transport them back to the nest site. They will act
differently if they are searching for resources or if they are carrying one, representing the
two situations during its round trip between the sites, to the foraging site and back, as
presented in Algorithm 2.1. In the former case, if the position of the resources is known,
the robot will try to reach them; otherwise, it will start an exploration phase, activate the
site sensor and open the communication channel, for the possibility to exchange precious
data with partners. Sensing and communication ranges are equal and defined at rs=rc=50
units. The latter case is similar, but the decision is made upon the nest site being known
or not. Since there is no possibility of collision, the navigation strategy is simply to drive
towards the current target in a straight line.

Algorithm 2.1 Robot State Machine
1: if not carrying food then
2: if food location is known then
3: go to food
4: else
5: activate sensing
6: open communication
7: begin random exploration
8: end if
9: else

10: if nest location is known then
11: go to nest
12: else
13: activate sensing
14: open communication
15: begin random exploration
16: end if
17: end if
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To enable each robot to trade and access the market, each one has a blockchain wal-
let where its wealth is stored; this wealth is the currency used in the market and it is
exchanged on the blockchain. Each robot’s secondary goal is to maximize its wealth:
apparently, this may seem selfish.

2.2.1. Odometry and Exploration

Robots arrive in the environment without any knowledge of it or their position. They
do not have access to any centralized nor external position system (e.g. GPS), so they
will localize themselves using odometry. From the start of the simulation, for each time
step, the robots keeps track of its linear motion and change in orientation, estimating the
cumulative distance from a given starting point.

When within its sensing range, a robot records the precise position of each site separately,
as shown in Table 2.1. It uses the Cartesian distance in its solidary reference frame
computed from the odometry, and overwriting any preexisting older record of it, setting
the age of the information at 0. At each time step, the robot updates the distance of each
know site, and increments the age attribute of 1.

Distance Age Trusted

FOOD (200, -5) 78 True

NEST (1000, -35) 421 False

Table 2.1: Navigation table example

When willing to find a site, the robot starts a Levy random walk, inspired by nature [17]
and that can result in optimal search when the targets are sparse [40]. When the current
target site is known, the robots will compute the linear and angular distance it must move
its own odometry. In the case it reaches the expected location of a site and does not sense
it, it will label the data as not known and start the exploring phase.

To simulate imperfection of sensing, each robot’s odometry is plagued by noise, consisting
in an additive rotation to its intended movement. The cumulative effect of these errors
causes the robots to move in circular trajectories, with radius depends on the inverse of
the intensity of their odometry noise, whilst they believe to be moving in straight lines.
By moving, each robots contaminates sites’ data in its possession with it. From this
derives the rationale behind the preference towards newer data of the sites.

Noise is drawn from a uniform probability distribution, in the interval [µ−σ, µ+σ], with
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µ = 0.051 and σ = 0.05. This value is such that an averaging protocol is needed, but still
sufficient to work against it: if the chosen noise was too low, exchanging information will
be useless since all robots could be able to navigate without problems, if it was too high,
even with perfect data, the robots would not be able to reach the site. The mean µ has
a value such that the best robot has noisebest > 0. Each robot is assigned a fixed noise
intensity at the start of the experiment, increasing with their ID, but also depending on the
odometry performance of Byzantines η with respect to the honest robots: if η = average,
the mean of Byzantine group noise equals the mean of the whole distribution, and half of
the honest will be better than them, the rest worse. If η = perfect, Byzantines will have
the lowest odometry noise possible, and the honest will always be worse. Figure 2.2 shows
an example of noise distribution, in the case of five Byzantine robots, for both the possible
odometry noise performance. Equation (2.1) shows the procedure to select the noise for
each robot. The index i is selected considering the robot ID and the noise performance
for Byzantines; |P | represents the population numerosity.

noisei(µ, σ, P ) = µ+ 2σ
i− |P |

2

|P |
(2.1)

(a) Average Byzantines. (b) Perfect Byzantines.

Figure 2.2: Noise distribution by ID for different Byzantine noise performances. Red color
indicates Byzantines.

I assign the same value of noise for each robot in all the experiments, instead of randomly
selecting it, to understand directly their reliability: it can be proven that the foraging
performance depends on the navigation drift. I want to considered higher level of noise
to be somehow equal to being Byzantine such that the security protocol will punish,
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to a smaller extent than Byzantines, robots spreading highly noisy information, leaving
unpunished the honest ones with lower level.

2.2.2. Communication and Social Navigation

Cooperation not only consists in participating to the physical task with all the other
robots, but also in sharing information about the sites of importance for the mission: to
obtain the missing or newer data, robots can also rely on others selling it, upon agreeing
to become commercial partners.

Whenever two robots are within range, they will both try to sell the information to each
other. If one agrees to become partner of the other, the transaction is written on the
blockchain. Then, the seller is added to the list of contributors that gave information to
the buyer for this round trip, from nest to foraging patch and back; this happens for as
many instances as the number of times it sold the information to the buyer. The list of
its partners is cleared every time it drops an item. When a robot buys information, it
must add the distance with the seller, both linear and angular, before being able to use
it. Every time two robots meet, they also update their version of the blockchain with the
longest one between the two.

Once the data is referenced to a robot frame, it may decide to use it to update its
navigation table: if the relative site is not known, it will simply use it as it is, otherwise it
will combine it with the one it already possesses using an averaging protocol for both the
distance data and the age. I test multiple methods, considering only age and/or reputation
of the seller: if only age is used, age of combined data equals the algebraic mean of the
preexisting and new one, otherwise both data and age will be updated using the same
weighted average. In the case of reputation, it may use different quantities: it could either
be by comparing the buyer reputation with the seller’s one, or comparing this last one
with the average of all the robots. Data is always rejected if ageseller ≥agebuyer. Since
robots have different levels of odometry noise, there may be cases where older data from
robots with low drift is better than newer data from noisy measurement. The requirements
to consider this is for the robots to estimate their own odometry noisy, which has been
proved to yield similar results than simply using age as a quality for the information, as
has been proven by Van Calck [54].

Equation(2.2) shows the test to assess the validity of the messages

buy() if ageseller ≤ agebuyer (2.2)
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Then, if a robot decides to combine the information, using a Boolean valued function
combine_info() specific for each individual behavior, the update of local information
follows the steps of Equations (2.3) and (2.4)

V⃗new = wV⃗
buyer V⃗buyer + wV⃗

seller V⃗seller

agenew = wage
buyer agebuyer + wage

seller ageseller

(2.3)

(2.4)

Table 2.2 presents the different method I tested for computing the weights, with R rep-
resenting a specific reputation used; Aa, ARmean and AaRmean use respectively age of the
information, reputation of source and both, in a running average procedure. Anow

aRbuyer

and Anow
aRmean

instead use the current value of the reputation; every time a new piece of
information is acquired, the procedure also updates the weight of all previously bought
data, that is stored in the vector τ . Element R⃗now

seller is a vector storing all updated repu-
tations, and in this case, elements V⃗seller and ageseller in Equations (2.3) and (2.4) take a
vectorial form, containing all velocities and ages of all data acquired and stored in τ , and
participate in a scalar product with the relative weight.

wV⃗
buyer w

V⃗

seller wage
buyer wage

seller

Aa
agebuyer

agebuyer+ageseller

ageseller
agebuyer+ageseller

0.5 0.5

ARmean

Rmean

Rmean+Rseller

Rseller

Rmean+Rseller
wV⃗

buyer wV⃗
seller

AaRmean

agebuyerRmean

(agebuyer+ageseller)(Rmean+Rseller)
agesellerRseller

(agebuyer+ageseller)(Rmean+Rseller)
wV⃗

buyer wV⃗
seller

Anow
aRbuyer

Rnow
buyer

Rnow
buyer+

∑
j∈τ Rnow

sellerj

R⃗now T
seller ·

Rnow
buyer+

∑
j∈τ Rnow

sellerj

wV⃗
buyer wV⃗

seller

Anow
aRmean

Rnow
mean

Rnow
mean+

∑
j∈τ Rnow

sellerj

R⃗now T
seller ·

Rnow
mean+

∑
j∈τ Rnow

sellerj

wV⃗
buyer wV⃗

seller

Table 2.2: Different methods for computing averaging weights

By spreading their information, robots try to average all odometry errors with the goal
of creating and maintaining a dynamic chain of robots coinciding with the shortest path
between the foraging and the nest sites, that the robots must follow to work in the most
efficient way. Information exchange takes a single time step in the simulation, so they
are able to go back to the physical task right away, without having having to sacrifice
themselves to act as a static beacon.

Byzantine robots send a modified version of the data they posses and use, applying to it a
rotation of a given fixed angle. This has the intent of bring the victim of the attack to get
far from the chain, losing the possibility of obtaining honest data and getting lost, having
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then to roll back to the exploitative behavior, with an effect on the swarm productivity.
Applying a 90° rotation is the worst possible case, since it could push the victim on a
perpendicular path with respect to the chain.

A preliminary study of all the combination methods based on reputation show no promis-
ing results in protecting honest robots using a naive behavior. Possibly, this implies that
Byzantine information should be, more conveniently, stopped before it reaches the other
robots. Considered its simplicity ad effectiveness, method Aa, based on age of information
alone, is the only one worth using in this work.

None of those methods are able to protect the honests, possibly meaning that the Byzan-
tine information and I hence omit them. I omit the results on the different combination
methods, used as a protection for naive robots: none of the methods using reputation is
able to protect the honest, implying that Byzantine information must be stopped before
it reaches the other robots.

2.3. Transactions Regulations

Whenever a robot receives navigation information from a seller, this is effectively an
economic transactions. The seller expects a compensation for the data it provides. All
the transactions exchanged on the blockchain use smart contracts, which have coded-in
regulation which is inherently tamper-proof. These rules act as a systemic protection for
the robots, being able to control the evolution of the wealth of each member of the swarm,
according to its degree of honesty.

2.3.1. Penalization of Outliers

This system relies on the assumption that the Byzantines are a minority of the total
population, meaning that their information, considerably different than the one of honest,
is the outlier in the distribution. This can be used to value less that data.

When a robot completes a round trip, the smart contract distributes the reward among
the robot that transported the item and all robots that contributed useful navigation
information. The more similar each piece of information sold is, compared to all the data
provided by the partners, the higher the reward is. The similarity is assessed considering
a window of 30° on the normalized angular distance of the navigation vectors, computed
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by the function similar(ti, tj), as shown in Equation (2.5).

similar(ti, tj)
∆
=

{
1, if |oti − otj | < 30◦ and locationti = locationtj

0, otherwise
(2.5)

Computation of the weight wtk of a transaction tk follows as shown in Equation (2.6).

wtk =
∑
j∈T

similar(tk, tj) (2.6)

where T is the set of all transactions tk. Transactions will be valued more the higher the
number of similar transactions among the ones recorded is, using the weight wtk . Since
similar(ti, ti) = 1, then wt ≥ 1∀i.
For a swarm composed only by honest robots, each one of them will have equal wealth
1
|P |Wtotal of the total one, where |P | is the population’s size; in the case of 25 robots, this
value is W∞ = 4% Wtotal. When a single Byzantine is present, this scheme will force
its wealth to be, on median, W∞

Byzantinei
≈ 3% Wtotal, while the one of the honest to be

W∞
honesti

> 4% Wtotal.

2.3.2. Penalization Mechanism with Staking

The effect of the previous scheme reduces with the number of Byzantines, with the dif-
ference in wealth of the two groups becoming smaller. Introducing staking, each robot
that wants to sell information must deposit some tokens on the blockchain as a guarantee
for the reliability of the information it wants to sell. A robot selling information will be
considered only if it’s able to stake the required amount, and will regain it once the buyer
is able to finish a round trip. The cumulative amount of all stakes gathered by buyer will
take part to the redistribution of reward, using the same shares presented in Section 2.3.1.

Despite the penalization mechanics being not sufficient for outlier identification, the
Byzantines will still have lower median wealth than the honest. By choosing as the
staking amount the median wealth the robot would have if only honest would be present
presented in Section 2.3.1, the Byzantines will see their wealth eroded with time, until
they reach a level where they’re not anymore able to stake. When that happens, they are
excluded from the information market. This promotes the diffusion of honest information
only: it is in fact rk,selleri − stakek,i, the difference between rk,selleri , the positive rewarded
quantity for the transaction tk relative to a concluded contract, and −stakek,i, the neg-
ative quantity staked for same transaction by selleri, that drives the wealth evolution:
honest robots tend to have a positive difference, and will see their wealth increase with
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time. For 25 robots, the base stake amount is selected to be stake0 = 0.04 tokens.

2.4. Market

Items and information are sold in the distributed market, exchanged at a fixed price payed
using tokens stored in the blockchain; each robot starts with a fixed and equal amount
of tokens depending on the market which is used in the experiment. The value of the
items is set at a fixed amount of pI = 1 token. Using smart contracts it is possible to
program the payment of rewards and use the information market to control the swarm in
its foraging task.

All markets rely on the delayed payment system: even if all robots would measure and
disclose their own odometry noise, it’s not possible to trust what they say about the
quality of their information before buying it, given the hypothesis that any robot could
be Byzantine. Partners that offer the information for free and accept to be payed once the
item is delivered to the nest, will foster the diffusion of honest information with actions
that reward more the improvement of probability of to reach the nest.

2.4.1. Information and Foraging Market

In this market, robots have two forms of reward: firstly, they receive an amount for
selling the foraged item in the site. Secondly, every time a robot deposits an item in the
nest, it shares a part of the value of the item with the partners that helped it complete
the last round trip, following the scheme shown in Section 2.3.1. The selected share of
reward given to the partners σ = 50%, leaving the rest to the robot depositing the item.
The reward payout for a certainty transaction tk is shown in Equations (2.7) and (2.8),
respectively for the buyer and the sellers

rk,buyer = (1− σ) pI , ∀tk ∈ T

rk,selleri =
wtk∑

j∈Pi
wtj

(σ pI +
∑
j∈Pi

stakej), ∀tk ∈ T

(2.7)

(2.8)

where T is the set containing all transactions of a buyer, related to the set of all partners
P of a buyer, Pi ⊆ P is the subset where selleri is involved, and stakej is the amount
staked by it for a given transaction. The wealth of a roboti is therefore updated following
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the rule of Equation (2.9){
W 0

i = W0

W t+1
i = W t

i + rj, ∀ rewards rj ∈ Ri

(2.9)

the collection of rewards received by roboti and not yet accounted. Every time a robot
sells an item, new wealth is introduced in the systems: this market must be considered
open, since it’s only lower bounded, and not zero-sum. For this reason, and since the
robot that deposits the item is always rewarded before it splits its reward, there is no
possibility that it won’t have any money to pay the creditors.

It must be noted that paying the robots for their physical work is the most natural thing
to do to adhere to a simulation of a human society and attribute to the robots the behavior
of an economic entity. To enable the staking mechanism, each robot starts with an initial
wealth of W0 = 1 token.

2.4.2. Information Market

Rewarding foraging introduced the issue that the Byzantines could use the physical work
to counteract the effect of the staking penalization mechanism, and be able to access the
market again. I decide hence to test a market where there is no reward for foraging: once a
robot delivers an item, it won’t receive any compensation for the physical work done, but
it will still have to pay the share for the received information to the partners. Moreover,
the reward share for the partners, σ = 100%, hence omitted in Equations (2.10) and (2.11)
showing the rewards for the buyer and the sellers respectively

rk,buyer = −pI

rk,selleri =
wtk∑

j∈Pi
wtj

(pI +
∑
j∈Pi

stakej), ∀tk ∈ T

(2.10)

(2.11)

where the negative rk,buyer represents the fact that the buyer must pay with its own wealth
the information received, since no foraging reward to split is given. Wealth update follows
the same rules as in Equation (2.9).

No new wealth is introduced in the system, making this is a closed market, upper and
lower bounded, and a zero-sum game. Despite apparently being against the rationale of a
fair reward for the work done, this system is conceived so the honest thrive on Byzantines,
depleting them of their resources. If a buyer robot can provide on average good enough
information, it will recover this wealth once it becomes a seller itself: honest robots will
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settle to a level of wealth proportional to the quality of its information, while Byzantines
will keep losing wealth and this excess will be eventually earned by the honest. In the
case no Byzantine is present, the honest will on average oscillate around the average of
all the robots, which is the starting wealth.

Since no new wealth is introduced with time, I set the starting value of initial wealth
W0 = 7 tokens, with this value coming from the analysis of the mean wealth in the
experiments that reward foraging.

2.4.3. Default and Debit

When delayed payment and staking penalization are paired with the closed market, no
new wealth is introduced in the market before the payment of creditors. It may happen
that the debtor finds itself without enough wealth to pay all the creditors. When this
happens, the debtor defaults, with the effect that it receives information for free. This
is a necessary evil: I test a payment scheme where a financial audit is performed on the
information buyer, preventing robots without any wealth to receive information, proving
that it yields a great drop in performances. This happens because inhibiting the spreading
of information harms the effectiveness of the averaging protocol, and harms the honest
the most since they are the biggest part of the population: robots that finds themselves
without tokens to pay for information would more probably be honest starting from
unfortunate situations.

For what it concerns Byzantines, the important thing is that they still cannot create a new
contract if they do not have any wealth, being still prevented to spread false information.
Having them receiving information for free is not a big deal, since they cannot recover
wealth with physical work, even if the are still contributing to the task of the swarm.
Despite that, this is an unfair practice that damages the honest robots that have the
better information, potentially reducing their possibility to stake and spread the best
information.

I introduce a mechanism for a fairer commerce: I remove the closed market assumption;
here the wealth is injected by the debtor creating actual debt: this guarantees that the
creditors will always receive compensation, but opens the possibility of having negative
wealth; in this situation markets will not be bounded anymore. This somehow opposes to
the sense of blockchain tokens as a regulated tender, but the foraging market is not upperly
bounded to begin with; anyway, this will help honest robots with good information to
stake more. Since this works also with wealth necessary for staking, this may also help
honest starting with bad initial conditions to have a second chance, and build up some
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good reputation with this supplementary wealth; the Byzantines anyway will anyway
keep losing wealth with the staking mechanism, plunging way below the zero, helping the
differentiation from honest.

2.5. Econometrics

In the previous section I showed the market and the mechanics that force it to evolve
in a way that is beneficial to using wealth as reputation. Before showing the different
strategies the robots use to make deals with partners, I show how to analyse the market
and the tools that I use to verify the benefits of having wealth as a form of reputation.

There are three major metrics which yield the higher informativity for what it concerns
the creation of the chain, the rejection of deceitful information, and the availability of
resources in the system. To better analyse my hypothesis, I divide the robots in three
noise groups: honest will be good or bad, depending if their noise level is above or below
the mean of the honest; Byzantines will always belong to the byzantine group.

2.5.1. Wealth

The evolution of wealth in the system shows if the reputation protection is interfering
with systemic protection based on contracts. Ideally, as in the previous work [54], while
wealth of Byzantines should drop to zero, or below in the case shown in Section 2.4.3,
honest should have steady or, steadily increasing wealth, proportional to their drift: the
good noise group should perform better than the bad one, but since the averaging protocol
can deal with noise, I would like not too have too much variance in the performance of
the honest.

I consider two different types of wealth: available wealth, or reward, W t is the quantity of
tokens that is, at a certain moment t, in the wallet of a robot. It represents the possibility
of investing in staking of a robot and a bigger potential of sharing information with the
other robots, ultimately yielding the possibility of higher personal return. In the long run,
it’s higher in the robots that obtained more returns on investments, indicating possibly a
better quality of the information sold.

Total wealth Wt instead accounts also for the values of investments of a robot, and it is
equal to the Wt = W t +

∑
j∈Pi

stakej, respectively available wealth and the sum of all
staked wealth a robot entrusted to partners, at a given time t. The difference Wt −W t

is able to show the state of the formation of the chain: in fact, a large difference means
that the staked tokens are still frozen, and can indicate an incomplete or broken chain for
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a Byzantine attack, causing many robots to get lost and not be able to drop the items,
and unfreeze the staked funds. A little difference, steadily or slowly varying, shows that
the stake are released quickly, by robots following the shortest path between sites.

2.5.2. Foraging Performance

The amount of items collected by a single robot indicates the quality of information it
possess: if it is able to forage at a high pace, it must be able to find the sites with good
efficiency. Extending this reasoning to the whole swarm, if the good information is able
to spread and the dynamic chain is stable and robust to Byzantine attacks, then the
number of items foraged by the swarm must be high; instead, if the Byzantines succeed
the performance must drop. The best protection system is the one that guarantees the
maximum efficiency at completing the task.

For this, I relate the previous metric of wealth with the foraging performance, and use
the mean number of collected items at a given time as a method for comparing different
strategies. In this case I consider separately honest and Byzantines groups: the best
situation would be for honest group to forage at the same rate of a swarm composed of
only naive robots without any Byzantine present, because in that situation information
spreads completely and without any threat; Byzantines, depending on the used market,
should collect the same amount, if they cannot recover lost wealth with it, or the less
possible. The number of items collected could be measured at the start, to understand
how fast the robots start the task, or at regime to understand the resilience against a
Byzantine attacks.

2.5.3. Acceptance Rate of Transactions

All transactions are represented as messages between two parts, roboti and robotj. A
transactions has to cross three stages: when the seller i tries to sell the data, it is consid-
ered accepted, increasing its count qAi ; then, if the buyer j accept the data, considering its
recency requirements shown in Equation (2.2), it is considered validated, increasing the
count qVi . Finally, if robotj decides to combine the data, following its behavioral strategy,
it is considered combined, resulting in the actions shown in Equations (2.3) and (2.4),
and it counted in qCi .

To understand the resiliency of the strategy against Byzantines, I consider the amount
of data they try to sell which is being accepted. The ideal situation is that the data of
the Byzantines is rejected all the time, while the data of each honest robot is rejected
proportionally to its noise, with the information coming from the best honest robot having
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the highest acceptance rate. I compute the acceptance rate of information coming from
a roboti as qi =

qCi
qVi

, using the proportion of the number of messages combined into local
information by another robotj ∀j ̸= i, over the number validated messages sold by roboti.
It must be noted that, on average, all robots experiences a rate of validated over accepted
messages qVi

qAi
= 10%.

2.6. Reputation and Robot Strategies

After the information passes the validity test on its age, the robot must decide if it should
use it. A behavior describes the rules that a robot follows to complete this step.

The goal of this work is to establish these rules using a metric of reputation shared among
all robots and based on wealth and use this value in a trust management system to lessen
the impact of Byzantines. I develop multiple behaviors that use different functions of
the wealth. Each robot has a fixed deterministic behavior for the whole duration of the
experiment. I study an homogeneous swarm: honest and Byzantines follow the same
rules, although the latter lie on the information.

2.6.1. Computing Reputation

I consider both reward and total wealth to compute reputation. The former is intended
to punish the Byzantines: due to staking, a robot which gets lost due to dishonest infor-
mation will freeze for a longer time the staked amounts of the Byzantines and cause them
to have lower mean available wealth, while if a buyer receives honest information, it will
more likely release stakes at a higher pace. The latter instead should benefit robots with
a long history of cooperation, good information quality and a lower odometry noise; this
last cause could initiate a limited time snowball effect, since these robots can navigate
better when the chain is not formed yet.

Regardless of the chosen metric, reputation always assumes an integer value in the range
[−10,+10], where 0 represents the neutral reputation given to the robots at the start of
the experiment. After normalization, following an heuristic based on the type of wealth
used, an hyper tangent function filter is used to restrict the value in the chosen interval.
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Equation (2.12) shows how reputation of roboti at time t Rt
i is computed

ρti(w) =


W t

i − 0.25
7500

wallet ageti
, if w := W

Wt
i − 3 min

j
(Wt

j ), ∀j ∈ P, if w := W

Rt
i = 1 + 10 tanh(ρi)

(2.12)

(2.13)

The heuristic using available wealth is able to penalize poor robots not able to invest,
robots not able to get their stake back and also deter the use of Sybil attacks, since it
penalizes robots with wallets with smaller age. The second heuristic penalizes being poor
and uses the distance with the poorest robot in the population. Initially, I test heuristic
based on mean wealth, but the ones presented here achieve higher performances.

The reputation of a partner is computed individually by each robot every time it’s needed
by reading the value of the chosen metric on the blockchain. Then, the buyer robot uses
this value to compute the trust measure specific of each behavior, deciding if it should
use the bought information.

2.6.2. Behaviors Using Instantaneous Value of Reputation

In this part, I show behaviors using the current value of the reputation. The advantages
are the simplicity, and the fact that the value is always available from the start.

C Behavior

In this simple strategy, only sellers with higher reputation than the buyer will be con-
sidered as good trading partners. This is completely based on the hypothesis that the
quality of information and odometry noise are proportional to the wealth, and hence to
the reputation. Moreover, the better the quality of information a robot sells is, the higher
its reputation will be; hence, it will use less often information coming from other sources,
preventing good robots from being contaminated by the noisy information of mediocre
sellers. Equation (2.14) and Table 2.3 show the information combination method and the
parameters used for this behavior

combine_info() if Rt
seller ≥ Rt

buyer (2.14)
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Reputation metric R

C reward, total wealth

Table 2.3: Parameters and used values for C behavior

Using buyer’s own reputation may be dangerous. For example, if a Byzantine robot is
able to amass wealth by exploiting very bad robots, it will obtain high reputation; at that
moment it will be able to attack even robots with good reputation. Those may not be
able to recover, if they only meet robots with reputation lower then their own, even if
that reputation may be good enough compared with the mean of all population.

T Behavior

In this mechanism, seller reputation is compared to a reference reputation value; only
sellers with reputation higher than the threshold are considered. That derives from an
heuristic to aggregate the value of reputation of the whole population, and compare
that to the individual performance, setting a value below which the seller is considered
untrustworthy. Equation (2.15) and Table 2.4 show the information combination method
and the parameters used for this behavior

combine_info() if Rseller ≥ csA(R) (2.15)

Aggregation method A() Reputation metric R Scaling cs

Ta mean|swarm reward, total wealth [.5, .8]

TM max|swarm reward, total wealth [.3, .5]

Tm min|swarm reward, total wealth [2, 3]

Table 2.4: Parameters and values range for T behavior

I test three different methods to compute the threshold, and use a specific real scale factor
in the range [0, 3].

Selecting parameters that are able to obtain a correct separation for all the market con-
ditions is difficult. Despite that, the threshold approach can work very well when the
separation between Byzantines and honest is very net, like in the debit market presented



2| Methods 25

in Section 2.4.3, or where good and bad honest have similar performances. Moreover, this
requires to read all the wealth from the blockchain, for each computation.

R Behavior

In this behavior, the buyer reads the values of reputation of the entire population and
ranks them in an ordered list; it will use seller’s information if the rank of the seller is
above a certain value. This is equivalent to checking if the seller belongs to the highest
ranks of wealthy robots. Equation (2.16) and Table 2.5 show the information combination
method and the parameters used for this behavior

combine_info() if ranking(Rseller) ≥ L (2.16)

Reputation metric R Rank Level L

R reward, total wealth top 80%, top 50%, top 30%,

Table 2.5: Parameters and values range for R behavior

The advantages offered by this system are a faster response: in fact using a threshold
at a certain numeric value could delay the rejection of Byzantine robots; instead, if the
market is already evolving in the manner pursued by the systemic protection, the robots
will be already ordered by wealth in the intended way, and the separation will already
be evident. Moreover, the selection of a numeric threshold may be difficult in certain
markets, for example when new wealth is introduced in the system, or when the values of
wealth for different classes are similar.

Similarly to the T behavior in Section 2.6.2, it requires to read all wealth values in the
blockchain, for each transaction.

2.6.3. Staking based on Reputation

A faster evolution of wealth metrics for the different groups is advisable since the reputa-
tion mechanism is based on it. Since the difference between rewarded and staked amount
for each transaction drives them, as shown in Section 2.3.2, I use the reputation to vary
the amount each robot needs to stake, with the intent to accelerate the divergence between
robots obtaining a positive and negative outcome from a contract.

For the robots with negative reputation I test a penalization scheme that imposes a
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payment directly proportional to the absolute value of their reputation: the rationale is
that a lower reputation will imply information of lower quality, hence the risk of buying
it must be covered by an higher stake deposit. Moreover, this could represent the cost of
significantly improving a robot’s reputation.

While neutral reputation (Section 2.6.1) pays the base amount, some considerations must
be taken into account about changing the stake amount for the robots that have positive
reputation: rewarding the better robots could cause snowballing effect, making the rich
even richer, causing a condensation of wealth. I test a variable penalization systems that
saturates at the fixed base value for positive reputations.

The amount each robot must stake consists in the base stake amount stake0 shown in
Section 2.3.2, multiplied by a scaling factor, as presented in Equation (2.18). As scal-
ing factor I use a monotonically non-increasing functions of reputation defined by parts,
represented by Equation (2.17) and shown in Figure 2.3

cs(R
t
i) =

0.5
2Rt

i
10 , if Rt

i < 0 or rewarding Rt
i > 0

1, otherwise

staketi(R
t
i) = cs(R

t
i) stake0

(2.17)

(2.18)

Figure 2.3: Variable stake amount based on reputation, punishing negative reputation,
with and without reward for positive reputation.
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The other variable reputation coefficient, awarding positive reputation with a proportional
and smooth decrease in the amount to invest, has been tested, but left outside of this
work.

2.7. Opening to Newcomers

My interest is to migrate the discussed protocols to an open system. When new robots join
to the system after some time, it must be considered that the robots already participating
have built a reputation, that could also be non neutral (Section 2.6.1), but positive or
negative. It may not be possible to offer the newcomers the same conditions that the
robots had at the beginning of the simulation.

In my analysis, I introduce three new robots in the environment. To simplify the test,
I neglect the randomization of their spawn position, but instead I place them close to
the nest, in a way that they are able to work as they are create. The reason for this is
their low number with respect to the population. The most important aspect is the initial
reputation they are introduced to the swarm with: since the identity of the robots is only
ensured by their ID, which in the real case would be substituted with their blockchain
address, if the initial reputation of newcomers is neutral, Byzantine may use this strategy
to perpetrate the Sybil attacks shown in Section 1.3.1, creating a new identity to reset its
reputation and hide its past behavior. There are multiple practical ways to deal with this,
depending on the market conditions: in a foraging market, newcomers may be assigned
negative reputation, for example the average of negative on, the lowest permitted or the
lowest among robots; in this case they would be forced to take part of the physical task
of swarm to recover it, but this practice would be unfair towards honest newcomers,
especially in a market without foraging. However, I will not test this proposition in my
work. I’m also interested in the possible instability effects caused by the introduction of
new wealth in the system, brought by the new-coming agents.

I test the contemporary introduction of three Byzantine agents, with neutral reputation, to
identify the possible instability on the market and prove that the reputation management
system is not perturbed by that. The introduction happens after 20000 steps of the
simulation.
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3| Results

In this chapter I summarise the characteristics I use to tell if wealth can be a good metric
for reputation. I analyse if those are common in all the different robot behaviors that I
have developed, to understand if they are inherent features of reputation based on wealth.
Moreover, I want to understand if such protection system is compatible with the systemic
protection based on staking.

The following characteristics are considered, and compared with the reference naive and
sceptical behaviors of robots.

• how fast the robot can build the chain, and how long it resists to Byzantine attacks;

• the proportionality between the acceptance rates of the honest and their information
quality;

• the proportionality between wealth of the honest and their information quality;

• the rejection rates of Byzantines;

• the robustness against an increasing number of Byzantines;

Moreover, I consider the same characteristics applied to an open population. Finally, I also
address the wealth distribution and inequality. For a precise description and justification
of these characteristics, the reader should refer to Sections 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.5, 2.6,
and 2.7.

The results use the aggregation of a batch of 32 to 128 experiments, depending on the
case, with the same conditions and the same odometry noise assigned to a robot between
the experiments. To compare different batches, I introduce a fixed, integer, random
number generator seed for the first experiment in the batch, incremented by 1 for the
following. Instead of showing all the combinations of parameters for the behaviors, to
ease the discussion I will present the most significant values.
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3.1. Uniform Odometry Noise

Firstly, I consider the dependence of reward W t
i with respect to the odometry noise of

the robots in a market without foraging reward, for the whole duration of the experiment
of 15000 steps. No Byzantine is present in this experiment, hence I plot the robot IDs
on the horizontal axis: the relative noise increases linearly, and it is similar to the one
presented in Figure 2.2.

(a) R behavior, non-staking penal-
ization.

(b) T behavior, non-staking penal-
ization.

(c) R behavior, staking penalization. (d) T behavior, staking penalization.

Figure 3.1: Wealth distribution with respect to odometry noise in absence of Byzantines.
The noise is linearly increasing with the robots IDs. All the behaviors use reward as
reputation metric.

Figure 3.1 shows R and T behavior in a market without foraging, for a aggregated result of
128 experiments. Albeit the staking penalisation introduces high variance in the amount
of wealth of each robot, due to the exclusion of staked wealth in this plot, wealth presents
inverse proportionality with respect to odometry noise in both penalisation cases. The
relation is not properly linear, but in the case it uses the non-stake penalisation presented
in Section 2.5.2, it is very close to it.
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I proceed to show the relation between foraging performance and odometry noise, for the
same behaviors and market shown in Figure 3.1.

(a) R behavior, non-staking penaliza-
tion.

(b) T behavior, non-staking penal-
ization.

(c) R behavior, staking penalization. (d) T behavior, staking penalization.

Figure 3.2: Collected items distribution with respect to odometry noise, in absence of
Byzantines. The noise is linearly increasing with the robots IDs. All the behaviors use
reward as reputation metric.

Distribution of collected items with respect to noise shows a similar dependence of wealth.
In the case where no staking is considered in the outlier penalisation system, it is possible
to see, for the robots with lesser noise, the saturation around 22 items per experiment on
average: that is the "slack" physical limit for this combination of environment and setup.
Interquartile range is similar for case (a) and (c), and (b) and (d) respectively, showing
a similar dispersion for both penalization cases. Proportionality between collected items
and odometry noise is close to a linear one.
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Moreover, in the previous figures it is possible to observe a constant difference of collected
items in the case with stake penalisation. This is due to a slower dynamics causing a
delay in performances: the amount of invested wealth at the beginning of the experiment
is consistent and has an impact of investing more. Once the chain is built, investments
are recovered and robots are able to invest in an efficient way, foraging at the same pace
of the non-stake penalisation method, as shown in Figure 3.3

Figure 3.3: Foraging performance delay introduced by stacking, in absence of Byzantines:
in orange, the system with stacking starts slower with respect to the one without, in blue.
On the long run, gap stops increasing, since both penalisation methods let the swarm
forage at the same pace.

For this reason, from this point onwards, I will present results referred only to the stable
part of the experiment, usually the last 5000 steps; for such period of time, robots are
expected to forage 8 items each. From this result, one may expect that the stake penalisa-
tion does not introduce any advantage in the system: in reality, staking improves wealth
evolution and foraging performances of all honest robots in presence of Byzantines.

To summarize in this section how show that robots with higher reward have an history of
good quality information. Moreover, the odometry noise directly influences the number of
foraged items, with a proportionality very close to linear. Considering the two altogether,
this could indicate that, using as reputation a function of wealth, this is directly related
to the foraging performance.

3.2. Market with Foraging

In this section I analyse the results using a market where foraging is rewarded, both in
absence and presence of Byzantines; they lie on the vector’s angle by increasing it of
certain value. I test 90°, which is the theoretical worst value for this environment, and
25°, which instead has been proven to be the worst for the current implementation of the
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sceptical behavior. I compare the results with it and with a naive strategy.

Firstly, I show the effect of the different wealth types, reward wealth W and total wealth
W, on the system performances. I focus on the differences they present when used with
the behaviors and justify the assumptions I made to explain their use. To simplify the
discussion, I only show the results of a single combination of parameters for a behavior,
resulting from a batch of 32 experiments. Nevertheless, the effect of each wealth type used
as reputation metric that I present is observable in other combinations of parameters. I
will define for each different case to which extent those effect are observable.

In Figure 3.4 I present the effect on C behavior. On the left, it is visible that the effect
of W is to increase in the difference between good and small honest groups. Albeit small,
this effect is present in all experiments in absence of Byzantines and could helps in the
differentiation of the honest. Moreover, an increment in the total wealth of the good group
is visible.

(a) C behavior, using reward reputa-
tion metric.

(b) C behavior, using total wealth rep-
utation metric.

Figure 3.4: C behavior improves with the use of W as reputation metric. The effect is
limited to the cases where no Byzantine is present, and tends to vanish when their number
rises.

In Figure 3.5, similar effects are observable in the R behavior when the number of Byzan-
tines is low: the cumulative wealth is improved and the difference between the two honest
groups is more visible, and causes the mean value of wealth of the bad group to deviate
more noticeably from the whole population’s. Unlike the C behavior, the effect disappears
rapidly when the number of Byzantines increases.
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(a) R behavior, using reward reputa-
tion metric.

(b) R behavior, using total wealth rep-
utation metric.

Figure 3.5: R behavior improves with the use of W as reputation metric. In this case
the swarm is attacked by a single Byzantine, but the improvement rapidly vanishes with
their number increasing.

(a) T behavior using reward reputation
metric.

(b) T behavior using total wealth rep-
utation metric.

Figure 3.6: T behavior using W as reputation metric is able to heavily penalise the
Byzantines, despite this effect vanishes with their number. The bad group does not seem
penalized, albeit its mean odometry noise is higher than the good one.

In Figure 3.6 the positive effect of W on the cumulated wealth is also present in T behavior,



3| Results 34

despite being more limited than the previous cases. This reputation metric significantly
impacts the mean available reward of the Byzantines; this advantage slightly diminishes
with their number.

Using W as reputation metric in combination with C behavior shows good results when
the number of Byzantines reaches [5 − 8], displaying an higher robustness to Byzantine
than in the cases using W . The cumulative wealth is considerably higher for the honest,
with a marginal increase for the Byzantines, as shown in Figure 3.7

(a) C behavior, using reward reputa-
tion metric.

(b) C behavior, using total wealth rep-
utation metric.

Figure 3.7: Honest using C behavior see a considerable improvement when using Was a
reputation metric, while the Byzantines are not able to take advantage of it since their
individual wealth is lower.

A deeper look should be taken to understand if the acceptance rate increases for all groups,
of just for the honest.

With all this considered, it appears that reward yields higher returns when used as a
reputation metric, not only for the good group, but also for the bad one. It does not
appear to keep the staked amount frozen for a longer time, since there is no substantial
difference between the evolution of wealth of groups, except in the case of the T behavior.
When I defined W as a reputation metric, I hypnotized that it would advantage robots
that have a long history of cooperation and good information, but that does not appear
to be the general case. Nonetheless, that effect is visible in the C behavior.

Considering all the previous figures, another important element that it possible to observe
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is that the moment where the greatest difference between the two different reputation
metrics, Wt −W t, coinciding with the moment where the curve of W has a minimum, is
also the moment in which the swarm is able to build a dynamic chain. Each behavior is
able to build a chain in the same interval of [1500 − 2500] ticks. As stated before, this
metric can be used, alongside with the foraging performance, to asses the integrity and
stability of the chain.

It appears clear that each behaviors respond differently to the system conditions, and
each one has cases where it performs better than the other. My focus now is to show the
different behaviors in more detail, and compare their performance, with each other and
with the reference behaviors.

(a) C, 8 average Byzantines, to-
tal wealth metric.

(b) R, average Byzantines, re-
ward wealth metric.

(c) C, 3 perfect Byzantines, to-
tal wealth metric.

Figure 3.8: Comparison with different number of Byzantines and reputation metrics

C behavior is able to impose an high degree of penalization on the Byzantine agents even
in the case where 8 of them are present, as shown in Figure 3.8. Figure 3.9 shows the
results when no dishonest robot is present, it is also able to penalize the wealth of the bad

group, with respect of the good one, showing a great spread between the their evolution,
but this is reduced using total wealth as a reputation metric. Comparing it to the R
behavior shows that the degree of penalization is also higher for the good group, with
respect to the same one in the latter strategy. The effectiveness against the byzantines
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(a) C 25 honest, total wealth met-
ric.

(b) R 25 honest, reward wealth
metric.

Figure 3.9: Comparison with no Byzantines and different reputation metrics

comes at a cost of an higher rejection against both the honest groups, as shown with
the acceptance rates in the Figures 3.16, 3.16, 3.13, and 3.14, resulting in globally lower
wealth for all the robots.
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(a) T, 8 perfect Byzantines,
r.

(b) T 8 perfect Byzantines,
t.

Figure 3.10: Group Inversions for T Behavior

T Behavior presents group inversion, namely the bad group performs better, with re-
spect of wealth, than the good one, as shown in as shown in Figure 3.10. The group
inversion is less visible using the available wealth reputation metric, but still harmful.
Since the group that has more noisy information is able to sell more, this impacts the
performances of the swarm. When no Byzantine robot is present, the behavior does not
present the inversion, with a beneficial impact on foraging performances, as shown in the
Figures 3.16, 3.16, 3.13, and 3.14.

Differently from my initial hypothesis, R behavior does not provide a much faster evolution
of wealth metrics, compared to T and C Behaviors, as shown in as shown in Figures 3.11,
where no Byzantine robot is present. Nonetheless, its evolution is comparable with the
one of Sceptical Behavior. Group separation is present, but not as good as the one of C
or S Behaviors.
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(a) R 25, r. (b) T 25, r.

(c) C 25, r. (d) S 25.

Figure 3.11: Speed at which different Behaviors build the chain is not different

The simultaneous analysis of foraging performances, shown in the left plot in the Fig-
ures 3.16, 3.16, 3.13, and 3.14, and acceptance rates, alongside mean reward, shown on
the right, is able to shed more light on how the strategies behave and what is effectively
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their performance for what it concerns the foraging task. I only show the best combination
of parameters, for both wealth reputation metrics.

Figure 3.12: Foraging FIM, 1 perfect Byzantine

Figure 3.13: Foraging FIM, 3 perfect Byzantines
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Figure 3.14: Foraging FIM, 8 avegage Byzantines

In the previous figures, it is possible to see how acceptance rates of the groups relate with
the foraging performances of the groups. An higher rate for the Byzantines, represented
by the a red X symbol in the right plot, causes a massive drop in foraging performances
and rates for the honest, but also a decrease of foraging ability of the former. The huge
increment in the foraging performances of the Byzantines, like in Figure 3.13, is in fact
limited to the situation when they have perfect odometry noise, and are hence able to
navigate without relying on external information too much.

Considering individually C Behavior shows how its generally lower, but steady, value of
wealth metrics reflect of the foraging performances, with a lower, but steady, number of
collected items and acceptance rates. It is not robust against Byzantines with perfect

odometry noise, but very robust against their increasing number, since it is able to penalize
each group consistently, either honest or Byzantines. Anyway with this performances, it
is not very useful in this scenario.

Instead T and R Behaviors are able to forage better than the Naive Strategy almost in all
the conditions. The former has basically the same acceptance rate for all groups, resulting
in catastrophic effects even for a single Byzantine. T and R instead, are able to maintain
a low acceptance rate for the Byzantines when their attack is not so strong, but they both
fail against the Sceptical behavior, which is able to maintain a huge separation between
the acceptance of honest and Byzantines, even in the case where their number raises or
the quality of their odometry noise is perfect, and even if the acceptance rate of the
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dishonest is comparable to the one of T and R Behaviors.

Its strength comes from its dual individual protection mechanism, that also considers
the confirmation of messages rejected at first, but later confirmed by subsequent ones.
Figure 3.15 shows how confirmation mechanism improves the foraging performances of
Sceptical robots, both improving the honest and undermining the Byzantines: since the
Byzantines are not confirmed, they cannot collude.

(a) S 8 perfect Byzantines, 25 lie. (b) S 3 perfect Byzantines, 25 lie.

(c) S 3 perfect Byzantines, 90 lie. (d) S 25 lie.

Figure 3.15: Foraging FIM confirmation s

The "cost of protection" for the Sceptical Behavior is shown in Figure 3.16, comparing
the collected items of the former with the Naive Strategy, in absence of Byzantines. Since
the bad robots, which in this have the worst information, compared to the one of the
good group, are confirmed by other members of the same group, they are able to collude,
causing a minor, but noticeable decrees in performances. T and R Behaviors are able
to forage at the same efficiency of the Naive robots, because they do not need the local
confirmation of the information, but rely on a global infrastructure to decide which sources
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of information they must reject. Analysis of the acceptance rates of the honest show that
the strategies that are more robust against the collusion phenomenon are the ones that
have a higher relative difference between the one of the good the one of the bad groups,
despite the former being smaller, in absolute value, with respect to the same group in the
Sceptical Behavior. In Figure 3.16 this is clearly visible; the good group is represented
by a triangle of a lighter shade with respect to the relative behavior, while the bad one
is represented by a square of the same shade. The darker circle is the mean between the
whole population.

Figure 3.16: Foraging FIM 25

To summarize, wealth proves its ability to function as a metric for a global reputation
management system, but suffers in presence of Byzantine attacks.

3.3. Information Market

My interest is to understand if it is possible to improve the performances of the behaviors
using reputation by changing the market conditions, instead of focusing only on the tuning
of their parameters. In this section, I discuss the results obtained using a market that
does not reward foraging, and the introductions of the possibility to create debit. The
conditions of the experiments are identical to the ones reported in Section 3.2

I show the effect of preventing the robots to obtain the information for free, in the case



3| Results 43

that they do not have enough wealth to pay the creditors when a contract closes. The
test is conducted at the moment of the creation of the contract, and does not account
for the wealth the buyer could obtain between that moment and the finalisation of the
contract.

(a) No Byzantines. (b) Three average Byzantines.

Figure 3.17: Foraging performance with a test on buyer’s wealth before giving to it
information for 25 robots and 32 experiments. In (a) naive, sceptical, R and T behaviors,
represented by magenta, blue, green and orange color respectively; in (b), only R and T.

In Figure 3.17 it is possible to see that the result of this test is a strong reduction of
performances for all robots, honest or Byzantines; preventing the spreading of the honest
information free of charge imposes a great cost to the collectivity, even in absence of
Byzantines. The cost payed by the robot selling information is completely justified.

Now, I focus on the results using a simple information market, with staking penalization,
but without the foraging reward or the introduction of debit. Byzantines are able to
exploit the market discussed in Section 3.2 and recover wealth to satisfy staking requisites
by foraging. In this different market type, the reward share of the creditors is payed
entirely with debtor’s wealth. The Figure 3.18 shows the different wealth evolution in the
two market cases, for Byzantines and honest robots.
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(a) Foraging market with five average

Byzantines; C behavior using reward
as reputation metric.

(b) Information market with five
average Byzantines; C behavior using
reward as reputation metric.

(c) Foraging market with five perfect

Byzantines; R behavior using total
wealth as reputation metric.

(d) Information market with five
perfect Byzantines; R behavior using
total wealth as reputation metric.

Figure 3.18: Open foraging market in (a) and (c), closed information market in (b) and
(d). Share of wealth of the good and the bad groups are green and orange respectively,
Byzantines is red. Both wealth metrics for the latter are increasing in the open market
case, while decreasing in the closed one.

Figure 3.18 clearly shows that the Byzantines are unable to increase their reward, when
prevented from exploiting the foraging payment. Therefore, they never recover the initial
investment conducted when the chain is not formed yet, and their wealth will be eroded
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with time, until the will be prevented to use staking. Regarding the formation of the
chain, it can be observed that the moment where the reward is minimum is localized
around 1000 simulations steps, considerably before than the the moment this same event
happens in the market with foraging, indicating that the dynamic chain is built at a faster
speed.

Honest robots are not affected by the removed additional income, because they are able
to exploit the Byzantines. This could also be observed considering the mean reward and
the acceptance rates of the groups, as shown in as shown in Figure 3.19

(a) Foraging market with three perfect Byzan-
tines; behaviors using reward as reputation met-
ric.

(b) Information market with three perfect

Byzantines; behaviors using reward as reputa-
tion metric.

Figure 3.19: Honest do not suffer from the lack of foraging compensation: median reward,
shown in grey, green, and orange color for C, R and T behavior respectively on the left
vertical axis, is similar; they also benefit from increased acceptance rates for all the
honest groups, with good represented by a triangle, bad by a square, in lighter colors.
Byzantines, on the contrary, almost see their reward vanishing: the red bar is barely
visible in the information market. Moreover, their acceptance rates, represented by the
red cross, plummets. Darker circle represents the population’s median.

Now, I analyze the results of the best combinations for the behaviors and the reputation
metrics. In this series of experiments I also added a second value for the angle that
the Byzantine add to the counterfeit messages, 25°, because the Sceptical robots using
outlier penalization with staking are particularly susceptible to it, for the particular values
selected for the design parameters.
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(a) R Behavior.

(b) T Behavior.

Figure 3.20: 8 average Byzantines, t deals better with 25 degrees lie
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Figure 3.20 shows that R Behavior using W available wealth metric obtains a clear sepa-
ration of the groups, even in the case of 8 average Byzantines, lying for 25°; as I initially
hypothesized, using this strategy helps where the differentiation of groups is not so easy,
such as in the context of the market that does not introduce new wealth as foraging
payment. Figure 3.21 shows that R behavior is still robust when the Byzantines are
perfect. However, group inversion phenomenon appears, even tho it is not harming the
performances.

(a) 5 perfect Byzantines.

Figure 3.21: very good separation of groups, for different perfect byzantines, using reward
reputation method, total wealth method also obtains good results

T Behavior improves in this setup using W reputation metric, but its performance are
weak compared are not comparable to the ones of R. The threshold mechanism is not
very suited to operate in a situation where separation of groups is not easy. Moreover,
Figure 3.22 also shows the effect of a 25° degrees angle.
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(a) 25 degrees.

(b) 90 degrees.

Figure 3.22: T does not suffer the different lie angle
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T behavior does not use the same parameters as Sceptical one, but all strategies use
the same method o compute the weights to update the information, which shares some
parameters with the latter, pointing that that one as well also suffers from this particular
value of Byzantine attack. Group inversion is also visible.

C Behavior, presents robustness against strong Byzantine attacks, as shown in Figure 3.23
in the case for 5 Byzantines. Reward reputation method is slower, but is able to sepa-
rate the groups better, while total reputation is more consistent in performances. The
fact that is robust also with an large number of Byzantines shows the intrinsic robust-
ness of this strategy. Group inversion in also present here, indicating that it could
be an issue widespread in this particular market. Despite that, as shown in the Fig-
ures 3.24, 3.24, 3.26, and 3.27, that does not harms performances.
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(a) C, reward wealth.

(b) C, total wealth.

Figure 3.23: effect of repuation method on 90 degrees lie angle
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I now compare how the differences between behaviors traduce in foraging performances.
The following plots are identical to the one shown at the end of Section 3.2. Figure 3.24
shows the swarm in absence of Byzantines. All behaviors appear to forage a little worse
to respect to the case of Figure 3.16, in this case where the foraging payment has been
removed. The acceptance rate of the bad groups diminished and has a large gap with the
good one, that arrives at peaks above 75%. This could indicate that the bad group could
sometimes provide useful information, and a trade off between collusion and absence of
information should be done. Moreover, since the resources of the market are limited, and
staking requires a big part of them, the bad group could be partially victim of the same
stacking mechanism.

Figure 3.24: Foraging IM 25
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Figure 3.25: Foraging IM 24 1perf

Figure 3.26: Foraging IM 22 3perf
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Figure 3.27: Foraging IM 17 8avg

Figures 3.24, 3.26, and 3.27 show that the the absence of the reward for foraging harms
the byzantine ability of accessing the market and spread bad information. The strategies
using reputation are resistant up to a strong Byzantine attack, except for the T Behavior
using total wealth as reputation, that, as already said, does not perform well with a small
margin for separate the groups. C behavior instead confirms its steady performance,
meaning that the strategy that it uses is decent. Sceptical Behavior is able to regain its
advantage at high number of Byzantines.

To summarize, a market that does not reward the foraging is able to harm the Byzantines
by removing wealth from their groups, to redistribute it to the honest ones. This comes
to a small price to pay in the case of no Byzantine attack.

3.3.1. Information Market with Debit

Here, I show the results of the same setup described at Section 3.3, with the additional
possibility for robots to make debit by borrowing wealth from the market. The debit is
recorded as negative wealth. This comes from the fact that, due to the staking mech-
anism, the Byzantines have the innate tendency to squander their resources; hence, if
a market continues to provide them with new wealth, they tend to separate themselves
more visibly from the honest groups, while not being able make enough debit to improve
their performances enough to counteract this effect.
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Figures 3.29 and 3.28 show that this effect is clearly visible for perfect Byzantines, for 1
and 5 robots respectively, and for C, R, T, and Sceptical Behaviors.

(a) C. (b) R.

(c) T. (d) S.

Figure 3.28: Group Separation IMD 24perf
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(a) C. (b) R.

(c) T. (d) S.

Figure 3.29: Group Separation IMD 20avg

T behavior, which I hypothesized is better suited for conditions where the separation
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between groups is larger, does suffer from a bigger Byzantine presence, despite having
good performances with just 1 of them.

(a) C. (b) R.

(c) T. (d) S.

Figure 3.30: Group Separation IMD 25
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Figure 3.30 shows that C and R Behaviors are prone to make debt even in the absence of
Byzantines, and have less separated groups for what it concerns the reward; considering
the total wealth, the separation is more visible. To different degrees, all strategies suffer
from group inversion, also the Sceptical Behavior, which proven to be resistant against
this phenomenon in the other market conditions.

Considering the foraging performances, surprisingly T behavior suffers from the debit
mechanism when no Byzantine is present. Considering the wealth evolution plots of
Figure 3.30, the T Behavior is does not present a bad group inversion and does not make
as much debt as R, but still performs worse. The low acceptance rates show that too
many messages are rejected, especially for the good group.

Figure 3.31: Foraging IMD 25

Figures 3.31 and 3.33 show that, when Byzantines are present, T behavior is able to
perform as good as R behavior, and considerably better than Sceptical behavior, which is
unable to protect the robots in the case of 3 perfect Byzantines. T behavior obtains an
increment of performances with the respect to the case without debit of Figure 3.26. In
fact, is all the figures it is possible to see the amount of debit that the Byzantines make
on average, represented by the red box-and-whisker candles in the plots on right.
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Figure 3.32: Foraging IMD 24 1perf

Figure 3.33: Foraging IMD 22 3perf
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Figure 3.34: Foraging IMD 17 8avg

When considering Figure 3.34, the intrinsic robustness of Sceptical Behavior emerges,
but C behavior shows that its simple strategy improves considerably when the number of
robots able to make large amounts of debts is large.

To summarize, forcing the Byzantines to show a more clear separation with the other
groups is able to improve their identification. When their number is too large, their
ability to collude becomes stronger, and the possibility of a sceptical approach helps
to avoid that. Wealth can still offer a promising solution; sensitivity analysis and fine
parameter tuning are compulsory to obtain the best from this methods.

3.4. Stability using Reputation-based Staking

In this section, I show results related to a variation of the staking mechanism, when the
amount that is required to initiate a transaction depends on the reputation of the seller.
Since staking is one of the main mechanisms that drive the evolution of the market, my
intent is to increase its effect and force a faster differentiation of groups

Figures 3.35 and 3.36 show the introduction of variable staking in a market without
foraging reward and debit. In the two cases, both with no Byzantines or a single perfect

one, the effect of variable staking is negligible. Group inversion appears to some extent,
but there is no direct correlation between the staking type used.
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(a) C 24 perf nrs. (b) C 24 perf rs. (c) R 24 perf nrs. (d) R 24 perf rs.

(e) T 24 perf nrs. (f) T 24 perf rs.

Figure 3.35: Group Separation IM 24 perf
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(a) C 25 nrs. (b) C 25 rs. (c) R 25 nrs. (d) R 25 rs.

(e) T 25 nrs. (f) T 25 rs.

Figure 3.36: Group Separation IM 25

Figures 3.37 and 3.38 show how the variable staking mechanism operates in the market
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with debit. The effect on the group divergence speed, as expected, is clearly visible,
reaching one order of magnitude higher in the last case.

(a) C 24 perf nrs. (b) C 24 perf rs. (c) R 24 perf nrs. (d) R 24 perf rs.

(e) T 24 perf nrs. (f) T 24 perf rs.

Figure 3.37: Group Separation IMD 24 perf
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Separation between groups improves, but the inversion is still possible, especially at the
start of the experiment.

(a) C 22 perf nrs. (b) C 22 perf rs. (c) R 22 perf nrs. (d) R 22 perf rs.

(e) T 22 perf nrs. (f) T 22 perf rs.

Figure 3.38: Group Separation IMD 22 perf
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Figures 3.39 and 3.40 show that the similitude in the wealth evolution reflect also in the
foraging performance, with no real difference in the case of the market without foraging
reward.

Figure 3.39: Foraging IM 25 Variable Stacking

Figure 3.40: Foraging IM 24 1perf Variable Stacking

Figures 3.41 and 3.42 instead offer an insight on the fact that the Byzantines are now
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able to use debit for staking insane amount of wealth, are able to counteract some the
benefits previously introduced in this setup. But since they cannot use this debit to
contact communicate with more robot, it is possible that the bad group is using the debit
as well, as shown in their mean wealth distribution.

Figure 3.41: Foraging IMD 24 1perf Variable Stacking

Figure 3.42: Foraging IMD 22 1perf Variable Stacking
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A marginal improvement in the T Behavior is visible, motivated by the most clear sep-
aration between the wealth of Byzantine and honest in all the experiments. Instead C
Behavior suffers from the biggest reduction in performances because, since the values of
reputation tend to be more extreme, especially the negative ones, this will reduce the
number of sources of information.

3.5. Stability in Open Swarm Scenario

To conclude my work, I test how the introduction of a new wave of attackers influences
the stability and robustness of the market.

Originally, Byzantines were present from the beginning of the experiments, while now a
second group of 3 dishonest robots is introduced after 20000 steps of the simulation, for
a duration of 5000 additional steps. This robots enter the environment with a neutral
reputation and the same wealth that all the other robots received at the start of the
experiment. This case is the first one because it could represent a Sybil attack, where a
robot forges a new identity to delete all the bad reputation it had until that moment. In
this case, I don’t remove a robot to effectively simulate the attack, but I add a new one,
leaving the former Byzantine in the experiment, able to continue its attack.

The following figures present an attack conducted against a swarm that is already hosting
5 Byzantines in it: the addition of 3 of them brings their number above the 33% of
population of the swarm, which is a very disadvantageous situation.
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(a) C 20avg nrs. (b) R 20avg nrs. (c) T 20avg nrs.

Figure 3.43: wealth evolution newcomers IM 20avg

The introduction of the new-coming Byzantines is evident by the abrupt increase of wealth
of their group, seen in Figure 3.43. However, this resources cannot be used because the
system is readily able to deplete the attackers of wealth. R Behavior appears the less
disturbed by this market oscillation, while T Behavior presents a sudden increase of
wealth, followed by a collapse. In the case of average Byzantines, all behaviors show
robustness in the case of market without foraging reward.
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(a) C 20perf nrs. (b) R 20perf nrs. (c) T 20perf nrs.

Figure 3.44: wealth evolution newcomers IM 20perf

Figure 3.44 shows that this same market is also robust in the case of perfect Byzantines.
Only R behavior is completely unhindered by the attack, while C and T have a noticeable
change

To summarize, market without foraging reward displays strong robustness against the
Sybil attacks, even in the case where the Byzantines are above 33% of the population.
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(a) C 20avg nrs. (b) R 20avg nrs. (c) T 20avg nrs.

Figure 3.45: wealth evolution newcomers imd 20avg

Considering a market with debit, Figures 3.45 shows the attack of average Byzantines.
The bad group is the one more coinvolted by the perturbation, while the effect of the good

one appears to be transitory.
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(a) C 20perf nrs. (b) R 20perf nrs. (c) T 20perf nrs.

Figure 3.46: wealth evolution newcomers imd 20perf

Figures 3.46 instead shows that the attack of the additional perfect Byzantines on the
debit market is able to disrupt the protection mechanism. Since the plot shows the
evolution of reward, a decrease for all the groups indicates that the time needed to regain
the stake is increased, due to the fact that the attack was successful in destroying the
chain between the sites.

To summarize, the market with debit cannot resist a Sybil attack; since this type of attack
can happen at any time and at any frequency, this market cannot be considered robust.



71

4| Conclusion and Future Work

4.1. Discussion

My work proves that a reputation management system,based on wealth is a possible
form of distributed, yet at the same time centralized, controller for an open swarm of
robots, where cooperation robots act in a selfish way and cooperation is but one of the
possible strategies they can adopt. This duality is possible thanks to the use of the a
distributed ledger residing on the blockchain, and is enforced by market rules and tamper
proof contracts. The market is able to stimulate cooperation by rewarding the diffusion
of useful information.

I test three different types of market, and three different different behaviors. The market
that rewards foraging work shows that reputation is able to show that the assay on the
quality of the information source is not anymore limited by of locality, thanks to the use
of the blockchain. The market that removes that reward shows that it was able to help
the Byzantines; this new market show that the wealth-based reputation could be able
to defend the swarm in a better way than scepticism. A market that introduces debt,
finally, shows that reputation protects the swarm better when the inequality between the
attackers and the honests is enhanced.

The R Behavior, based on the ordered the relative, ordered, wealth-ranks proves to be the
more robust in all the situations. A finer tuning and a deeper analysis must be performed
to understand the margin of improvement of the former and the other behaviors.

A sceptical approach is however useful when the Byzantines population approaches the
33% limit of the total one.

Nonetheless, I prove that the reputation protection method is robust against two types
of Byzantine attack: a simple zealot attack where a robot simply lies, by a fixed amount,
about the information they try to share, and a Sybil attack, where a dishonest robot can
create a new identity to clear its past non-cooperative behavior.

The metrics that I designed are useful to analyse the performances of the systems, and
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to possibly predict how it could perform.

In my work I considered another metric and another method to predict the performances,
but the analysis is far from being completed. However, I present two aspects that for me
are interesting to consider.

4.2. Wealth Distribution and Inequality

I prove robots amass reward proportionally to their information quality, the latter in-
versely proportional to the odometry noise defined in Equation (2.1). The result will
be an unequal distribution of wealth, advisable to be used in the reputation system to
identify the Byzantine. However, I am interested in understanding if the distribution of
wealth inside the honest group, namely between good and bad groups can impact the per-
formances of the swarm. It must be noted that the robots are able to sell the information
investing their available wealth W t, hence having too little of it may have a disrupting ef-
fect in the spreading of information: due to the limitation of the spreading of information,
caused by the locality of the transactions, in some situations it may be useful to buy from
robots belonging to the bad group, accepting a higher error and relying on the averaging
protocol, instead of rejecting the information. In the first case, the distribution of total
wealth inside the honest group would be more equal, while in the latter the wealth will
be more condensed in the good group.

To characterise inequality, I consider level of wealth distribution as aggregated per group,
to show the link with the noise and byzantinity, and, after normalizing in the range of
extrema for each experiment, in quantiles, in a number equal to the robot population,
in order to show the probability of belonging to a given wealth bracket. Moreover, I
identify three wealth classes, with the intent to map them onto the noise level of groups:
poor class should be filled by Byzantines, depleted of resources and unable to interact
with the market; middle and rich classes, by bad and good noise groups, with the latter
being rewarded for their quality. Despite this rationale, it’s pretty easy so see in wealth
distribution that, although poor class numerosity is close to the number of Byzantine,
there is a net separation between the wealth of middle and rich class in many cases.
Often it appears in the form of superrich entities, that condensate a lot of wealth, and
sometimes even in the form of an oligarchy, where a single robot possess 10-30% of the
total wealth. The reason for this could be a snowballing effect, where the rich are able to
exploit the system and become even richer. To compute the classes, I use the heuristics
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shown in Equations (4.1) and (4.2)

roboti is rich if

rank(Wt
i ) ∈ highest 13% of wealth

Wt
i > mean

j
(Wt

j ) + 0.8 var
j
(Wt

j )

roboti is poor if rank(Wi) ∈ lowest 10% of wealth

(4.1)

(4.2)

A more practical way to study wealth distribution is to use the Lorenz curve [33]: it shows
the amount of wealth possessed by the fraction of robots, ordered by increasing wealth, in
the normalized [1,1] square; I compute the curve as in [32]. The flatter is the curve is, the
more equally distributed the wealth is in the system, with the bisector line corresponding
to perfect equality. A flat part close the origin corresponds to that the poor class have
very little wealth; the steeper the curve is to the right (1,1) limit, the wealthier the rich
are. On to boundaries of the curve it holds that L(0) = 0 and L(1) = 1. Ideally, the
curve should be flat for the Byzantine population, belonging to the poor class, and slightly
above linear for the honest robots. It is also convenient to identify an oligarchy when a
robot has a very high amount of wealth, using the rule of Equation (4.3)

roboti is oligarch if
Wt

i

Wt
P

≥ 0.1 (4.3)

where Wt
P =

∑
j∈P Wt

j and P is the robot population.
This will be removed from the plot, and in this case L(1) = 1− Woligarchy

Wt
P

< 1.

From this curve it is possible to compute the Gini inequality coefficient [10], the ratio
between the area between the Lorenz and the ideal wealth distribution curves and the
one subtended by the the ideal wealth distribution curve, respectively named A and B
in Figure 4.1; value of 0 indicates perfect equality, while a value of 1 indicated perfect
inequality, with wealth condensed in only one robot. The advantage of this metric is to
aggregate all the measure of inequality in a scalar value. I compute the Gini coefficient
using the affine wealth model [32], as in Equation (4.4); even in the case of the debit
market, where negative wealth can be present, this wealth model still offers a way to
compute the coefficient using ratios between areas, also considering the area C below the
x-axis.
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(a) In a market without debit. (b) In a market with debit.

Figure 4.1: Lorenz curve in different markets, with equality curve and A,B and C areas
indicated. In (b) it is possible to see the effect of the oligarchy.

Gini =


A
B

= 2A, if market without debit

A− C
A− C+ B

=
2(A− C)

2(A− C) + 1
, if market with debit

(4.4)

In my experiments, I observed different levels of inequality and wealth distribution. It
would be interesting to understand how they influence the performances, considering that,
for example, the wealth-inversion of the good and bad groups not always resulted in poor
performances.

Understanding the relation between wealth distribution and performances, could shed the
light also on the effect of super − rich robots, the oligarch that I previously mentioned.

Possibly, once a target wealth distribution is known, it would be possible to impose a
more powerful redistribution of wealth, based on taxation, charity and fairness between
the honest in general.

In the following section I show a possible tool to compute the sought-after wealth distri-
bution.

B Behavior

By considering the trading partnership mechanisms, as seen from the outside, it seems
to be completely described only by the acceptance rate of transactions that each robot
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experiences; my interest is then to understand if this assumption is true and, therefore,
if it is possible to describe each and all mechanisms taking place at the same time in the
system using an equivalent acceptance rate for each robot. I test a stochastic behavior
where it is possible to configure the acceptance rate for each robot, differentiating them
by their ID and the noise quality of the Byzantines to order them with respect to the
honest, as shown in Figure 2.2. To simplify it, each robot in a given noise group has the
same acceptance rate and I will impose it to the mean acceptance rate at the end of the
experiment I want to mimic.

I’m also interested in finding an approximated correlation between acceptance rates of
the noise groups and the foraging performances. The goal here is to understand how the
acceptance of messages from each group is able, on average to influence the performance
and the wealth distribution in a given market, eventually finding a correlation between
all of them and an effective performance predictor.

In this case a random number generated by a random() function, with codomain= [0, 1],
is compared with the selected acceptance rate, for the noise group roboti belongs to, as
shown in Equations (4.5) and (4.6). Agood, Abad and Abyzantine represents respectively the
acceptance rates for the good, bad and byzantine groups.

combine_info() if random() ≤ A(roboti)

A(roboti) =


Agood, if roboti ∈ good group

Abad, if roboti ∈ bad group

Abyzantine, otherwise

(4.5)

(4.6)

In Table 4.1, Agood, Abad and Abyzantine are as defined in the previous paragraph, |P |
and |B| are the population and Byzantine amount, η is the Byzantine noise odometry
performance, defined in Section 2.2.1

Agood Abad Abyzantine |P | |B| η

B [0.5,0.95] [0.35,0.75] [0.05,0.45] 25 [0,8] average, perfect

Table 4.1: Parameters and used value ranges for B behavior

When a particular wealth distribution is known, related to a particular acceptance rates
set, forced wealth redistribution could be used to enforce it, and hence obtain the wanted
performances of the varios groups.
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