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INTRODUCTION 

With the end of the second world war, there was the need of rebuilding the decaying 

infrastructures of the country, as the railway lines and the bridges. In this historical period 

the most used material that allowed to build long span bridges was the steel, since 

prestressed concrete was just born in those years. Along with steel, the riveted systems, 

was the technique used to connect among each other the elements of the metallic 

structures. Nowadays this technique has been overcome by welding and high strength bolts 

systems that offer benefits in terms of costs and realization velocity.  

However the study of the riveted connections is still a current issue, especially for 

those engineers that deal with maintenance and retrofitting of existent structures. In fact 

many of the bridges built at that time are nowadays still used, although traffic volumes, 

loads and speed are changed during these years. Therefore the service loads, the 

accumulated stress cycles due to traffic and aging, have been induced to the evaluation of 

the remaining fatigue life of these structures and to operations of maintenance and 

replacement. 

The “discovery” of fatigue occurred in the 1800s when several researchers in Europe 

observed that bridge and railroad components were cracking when subjected to repeated 

loading. As the century progressed and the use of metals expanded with the increasing use 

of machines, more and more failures of components subjected to repeated loads were 

recorded. By the mid 1800s A. Wohler proposed a method by which the failure of elements 

from repeated loads could be mitigated, and in some cases eliminated. This method 

resulted in the stress-life response diagram and element test model approach to fatigue 

design and verification. 
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The aim of this research is to assess the fatigue life of an existent metallic railway 

bridge. In particular the investigated structure is a bridge on the railway line Bologna-

Padova that crossing the Po river between Pontelagoscuro and Occhiobello. It was built in 

the years from 1946 to 1949, and it is a truss system, where the elements are connected by 

means of rivets.  

The standard procedure given by the guidelines and therefore used by the designer to 

carry out dynamic analyses of bridges is to model the vehicles as a sequence of moving 

loads. Actually in this study in order to achieve more accurate results according to what 

really happens in the real case, a train-bridge dynamic interaction model is first set up and 

then used to perform dynamic analyses of the structure. 

The dynamic interaction between a bridge and the moving vehicles represents a 

special discipline within the broad area of structural dynamics. The vehicles considered 

may be those constituting the traffic flow of a highway bridge, in general, or those that 

form a connected line of railroad cars, in particular.  

In order to simulate the train-bridge interactive dynamics many kinds of two-

dimensional and three-dimensional models for train carriages have been presented and 

adopted, in which the springs and damping are used to describe the interactive effects 

between wheels and primary suspensions as well as primary and secondary suspensions. 

Therefore from the theoretical point of view, the two subsystems, the bridge and the 

moving vehicles, can be simulated as two elastic structures. The two subsystems interact 

with each other through the contact forces, the forces induced at the contact points between 

the wheels and the rails surface (of the railway bridge) or the pavement surface (of the 

highway bridge). Such a problem is nonlinear and time-dependent due to the fact that the 

contact forces may move from time to time, while their magnitudes do not remain constant, 

as a result of the relative movement of the two subsystems. 

Therefore this paper proposes in the first chapter some basic notions of dynamic for 

the single degree of freedom and multi degree of freedom systems, focusing the attention 

on the eigenvalue problem by which it is possible to obtain the eigenmodes and 

frequencies of an elastic system. 

Since no analytical solution is possible for this kind of problems, in the second 

chapter, two possible ways to solve the equations of motion are presented. It is also 

discussed that if the system has classical damping, classical modal analysis can be used to 

uncoupled the equations of motion, otherwise numerical time-stepping methods are 
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needed. In this research only the Newmark’s method is presented, because it is indeed the 

method used. 

In the third chapter the classical way to represent a vehicle travelling on a bridge is 

presented. Usually this is done by means of a sequence of moving loads. This method is 

also the one proposed by the Eurocode 1 [1] to carry out  dynamic analysis of bridges, and 

it is the widespread method used by the researchers.  

In the fourth chapter, other methods to model a vehicle crossing are discussed. These 

methods consider the dynamic interaction between the vehicle and the bridge. In this way 

the vehicle and the bridge are considered as two systems that exchange each other the 

interaction forces caused by the relative motion. Generally this problem is described by 

two sets of equations, one for the bridge and one for the vehicle, coupled by interactions 

conditions. It is shown that the solution can be obtained different methods, subdivided into 

two different group, which are iterative and non-iterative. 

In the fifth chapter the railway bridge investigated is presented in details, not only in 

terms of material, geometry and structural topology, but also as regards the dynamic 

behavior of the structure. In fact from experimental modal analysis, natural frequencies and 

mode shapes are known. Furthermore the finite element model to perform the dynamic 

analyses is discussed.  

Once the bridge has been modeled, in chapter six, an optimization algorithm is used 

to adjust the model to have modal parameters as closed as possible to the measured data. 

Therefore the Differential Evolution Algorithm used to solve the optimization problem of 

the significant mechanical parameters is described in detail, and the obtained results are 

presented. 

Then in the seventh chapter a comparison between the moving loads and the vehicle-

bridge interaction models is done, using an equivalent two dimensional model of the 

Pontelagoscuro bridge. Actually two dimensional analyses of the bridge are carried out 

using the trains models given by the Eurocode 1 for fatigue analyses, and as regard VBI 

analyses the data regarding the suspensions system of the train ETR 500Y [2], [3] have 

been used. Then the results obtained are compared with those obtained by another author 

[4], which has carry out dynamic analyses of the same bridge using the Eurocode 1 

approach, which is the moving loads method. 
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In chapter eight, three dimensional dynamic analyses of the bridge are computed 

using a more sophisticated 3D train model, used to involve and to take into account also 

lateral and torsional mode shapes of the structure.  

Chapter nine is completely devoted to the assessment of the fatigue life of the bridge. 

First of  all basic notion of fatigue theory are given along with the cycles counting 

Rainflow method used to reduce a spectrum of varying stress into a set of simple stress 

reversals, and Miner rule used to quantify the damage in the elements. Then the results 

obtained for the studied case are discussed and the critical elements that could be subjected 

to fatigue problem are identified using two different approaches, which are the Eurocode 

[5], and another method proposed by L. Georgiev [6]. 

In chapter ten, some conclusions and some proposal for future development are 

suggested.  
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1. BASIC OF DYNAMIC 

1.1 General remarks 

Any structure, or in general a system, may be described as a set of interconnected 

elements, that are able to react with the surrounding environment. The structure’s behavior 

is studied through the use of suitable models able to simplify the real problem, which in 

general can be very complex. The models are appropriate only if the consequences derived 

from the assumptions are in agreement with the experimental results.  

In studying the dynamic problem of a structure, continuous or discrete models can be 

used. Continuous systems have infinite number of degrees of freedom, in fact a generic 

configuration is fixed by infinite number of parameters or coordinates. The dynamic 

behavior of a continuous system is described by partial differential equations as the 

parameters defining the motion of the system depend both on time and space. A closed 

form solution is obtainable only in the particular case in which the mass and the elastic 

proprieties are uniformly distributed. This approach is rarely feasible if the flexural rigidity 

 or mass ݉ varies along the length of the beam, if complex constraint conditions are ܫܧ

involved, or if the system is an assemblage of several members with distributed mass. 

Discrete systems, instead, have a finite number of degrees of freedom, and the 

system’s configuration is described by parameters that are only function of time. Therefore 

the differential equations of such systems are ordinary differential equations. However 

discrete systems can effectively idealize many classes of structures. Moreover effective 

methods that are ideal for computer implementation are available to solve the system of 

ordinary differential equations governing the motion of such systems.  
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1.2 Single degree of freedom system 

Some structures, such as an elevated water tank or one-story frame structure or two-

span bridge supported by a single column of figure (1.1), could be idealized as a 

concentrated mass ݉ supported by a massless stem with stiffness ݇, when interested in 

understanding the structural dynamic in the horizontal direction.  

 

 

 

 

 

 

 

In those models the number of independents displacements required to define the 

displaced positions of all the masses relative to their original position is just one. For that 

reason they are called single degree of freedom system (SDOF).  

In a real structure each structural member (beam, column, wall, etc.) contributes to 

the inertial (mass), elastic (stiffness or flexibility), and energy dissipation (damping) 

properties of the structure. In the idealized system represented in figure (1.2), however, 

each of these properties is concentrated in three separate, pure components: mass 

component, stiffness component, and damping component. 

 

 

Figure 1.1: Example of SDOF structures: (a) Water tank supported by single column; (b) one-story frame 
building; (c) two-span bridge supported by single comlumn; (d) induced motion of a SDOF. 

        (a)                                                      (b)                                              (c)                              (d) 

                                            (a)                                                                          (b)                              

Figure 1.2: Idealized dynamic model (a) Damped SDOF system; (b) force equilibrium. 
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Therefore the response of a structure depends on its mass, stiffness, damping, and 

applied load ݌ሺݐሻ or displacements. By applying Newton’s law and D’Alembert’s principle 

of dynamic equilibrium, it can be shown that 

ூ݂ ൅ ஽݂ ൅ ௦݂ ൌ  ሻ        (1.1)ݐሺ݌

where ூ݂ is the inertial force of the single mass and is related to the acceleration of the mass 

by	 ூ݂ ൌ ሷݑ݉ ; ஽݂ is the damping force on the mass and related to the velocity across the 

viscous damper by ஽݂ ൌ ሶݑܿ ; ௦݂ is the elastic force exerted on the mass and related to the 

relative displacement between the mass and the ground by ௦݂ ൌ  where ݇ is the spring ,ݑ݇

constant; ܿ is the damping ratio; and ݉ is the mass of the dynamic system. 

Substituting these expression for ூ݂, ஽݂, and ௦݂ into Eq. (1.1) gives 

ሷݑ݉ ൅ ሶݑܿ ൅ ݑ݇ ൌ  ሻ        (1.2)ݐሺ݌

The above equation of motion of a SDOF can be solved in closed form only for 

excitations that can be described analytically. If the excitation varies arbitrarily with time, 

closed form solution doesn’t exist, and the equation can be solved by numerical time-step 

method. 

The characteristics of the oscillations such as the time to complete one cycle of 

oscillation ሺ ௡ܶሻ and the number of oscillation cycles per second ሺ߱௡ሻ are intrinsic 

properties of the system, and do not depend on the external applied force. Dividing the 

Equation (1.2) specialized for free vibration (right term equal to zero) by its mass ݉ will 

result in 

ሷݑ ൅ ሶݑ௡߱ߥ2 ൅ ߱௡ଶݑ ൌ 0        (1.3) 

where ߱௡ ൌ ඥ݇ ݉⁄  the natural frequency of vibration of the undamped frequency; 

ߥ ൌ ܿ ܿ௖௥⁄  the damping ratio; ܿ௖௥ ൌ 2݉߱௡ ൌ 2√݇݉ ൌ 2݇/߱௡ the critical damping 

coefficient. The time required for the SDOF system to complete one cycle of vibration is 

called the natural period of vibration ሺ ௡ܶሻ of the system and is given by 

௡ܶ ൌ
ߨ2
߱௡

ൌ ටߨ2
݉
݇

        (1.4) 

Furthermore, the natural cyclic frequency of vibration ௡݂ is given by 

௡݂ ൌ
߱௡
ߨ2

ൌ
1

௡ܶ
        (1.5) 
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The circular frequency of the vibration or the damped vibration frequency of the 

SDOF structure, ߱ௗ, is given by ߱ௗ ൌ ߱௡√1 െ   .ଶߥ

The damped period of vibration ( ௗܶሻ of the system is given by 

ௗܶ ൌ
ߨ2
߱ௗ

ൌ
ߨ2

√1 െ ଶߥ
ට
݉
݇

         (1.6) 

When ߥ ൌ 1 or ܿ ൌ ܿ௖௥ the structure returns to its equilibrium position without 

oscillating and is referred to as a critically damped structure. When ߥ ൐ 1 or ܿ ൐ ܿ௖௥, the 

structure is overdamped and comes to rest without oscillating, but at a slower rate. When 

ߥ ൏ 1 or ܿ ൏ ܿ௖௥, the structure is underdumped and oscillates about its equilibrium state 

with progressively decreasing amplitude, see figure (1.3). 

For structure such as buildings, bridges, dams, and offshore structures, the damping 

ratio is less than 0.15 and thus can be categorized as underdumped structure. So the basic 

dynamic properties estimated using damped or undumped assumptions are approximately 

the same. Thus, the damping coefficient accounts for all energy-dissipating mechanisms of 

the structure and can be estimated only by experimental methods. 

 

 

 

 

 

 

 

 

Figure 1.3: Example of SDOF systems responses: (a) Undamped free vibration; (b) Underdamped free
vibration; (c) Overdamped free vibration; (d) Damped armonic forced vibration. 

(a)                                (b)  

                               (c)                                 (d)  
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1.3 Multi-degree of freedom system 

The SDOF approach may not be applicable for complex structures such as multilevel 

frame structures and bridges with several supports. To predict the response of a complex 

structure, the structure is discretized with several members of lumped masses. As the 

number of lumped masses increases, the number of displacements required to define the 

displaced positions of all masses increases. 

The equation of motion, of a multi-degree of freedom (MDOF) system represented in 

figure (1.4), is similar to that relative to the SDOF system, but the stiffness ݇, mass ݉, and 

damping ܿ are matrices.  

 

 

The most general equation of motion of an MDOF system can be written as 

ሷ࢛ࡹ ൅ ሶ࢛࡯ ൅ ࢛ࡷ ൌ ሻ         (1.7)ݐሺ࢖

The stiffness matrix ࡷ can be obtained from standard static displacement-based 

analysis models and may have off-diagonal terms. The mass matrix ࡹ due to the negligible 

effect of mass coupling can best be expressed in the form of tributary lumped masses to the 

corresponding displacement degree of freedoms, resulting in a diagonal or uncoupled mass 

matrix. The damping matrix ࡯ accounts for all the energy-dissipating mechanisms in the 

structure and may have off-diagonal terms. The right term ࢖ሺݐሻ is the vector of the external 

forces acting on each degree of freedom. 

To better understand the response of MDOF systems, we look first at the undamped, 

free vibrations. By setting ࡯ and ࢖ሺݐሻ to zero in the Eq. (1.7), the equation of motion of an 

N-DOF system can be shown as: 

ሷ࢛ࡹ ൅ ࢛ࡷ ൌ 0        (1.8) 

where ࡹ and ࡷ are ݊ ൈ ݊ square matrices. 

Figure 1.4: Idealized dynamic model of a MDOF system. 
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The signal of a natural vibration mode can be described mathematically by: 

ሻݐ௡ሺ࢛ ൌ ࣘ௡ሺܣ௡	ܿ߱ݏ݋௡ݐ ൅ ௡ܤ ሻݐ௡߱݊݅ݏ ൌ ࣘ௡ݍ௡ሺݐሻ        (1.9) 

Where ࣘ௡ is the deflected shape of the structure, and the harmonic function describes the 

time variation of the displacement ܣ௡	 and ܤ௡	constants determined using the initial 

conditions of the motion. Combining and simplifying equation (1.8) and (1.9) gives the 

eigenvalue problem, which is used to determine the eigenvector corresponding to the 

natural mode shapes, ࣘ௡, and natural frequencies, ߱௡, of the structure. 

ࡷሾݐ݁݀ െ ߱௡ࡹሿ ൌ 0      (1.10) 

The N eigenvectors ࣘ௡ can be assembled in a single ݊ ൈ ݊ square modal matrix ઴. 

One of the important aspects of these mode shapes is that they are orthogonal to each 

other. This lead to 

∗ࡷ ൌ ઴ࡷࢀ઴       (1.11) 

∗ࡹ ൌ ઴ࡹࢀ઴ 
      (1.12) 

where ࡷ∗ and ࡹ∗ are diagonal matrices. 

When damping of the MDOF system is included, the free vibration response of the 

damped system will be given by 

ሷ࢛ࡹ ൅ ሶ࢛࡯ ൅ ࢛ࡷ ൌ 0       (1.13)

The displacements are first expressed in terms of natural mode shapes, and later they 

are multiplied by the transformed natural mode matrix to obtain the following expression: 

ሷࢗ∗ࡹ ൅ ሶࢗ∗࡯ ൅ ࢗ∗ࡷ ൌ 0      (1.14) 

where, ࡹ∗ and ࡯∗ are diagonal matrices given by Eqs. (1.11) and (1.12) and 

∗࡯ ൌ ઴࡯ࢀ઴      (1.15) 

While ࡹ∗ and ࡷ∗ are diagonal matrices, ࡯∗ may have off-diagonal terms. When has 

off diagonal terms, the damping matrix is referred to as a nonclassical or nonproportional 

damping matrix. When is diagonal, it is referred to as a classical or proportional damping 

matrix. Classical damping is an appropriate idealization when similar damping 

mechanisms are distributed throughout the structure. Nonclassical damping idealization is 

appropriate for the analysis when the damping mechanisms differ considerably within a 

structural system. Since most civil structures have predominantly one type of construction 
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material, they could be idealized as a classical damping structural system. Thus, the 

damping matrix of Eq. (1.16) will be a diagonal matrix. Therefore the equation of ݊th 

mode shape or generalized ݊ݐh modal equation is given by 

ሷ௡ݍ ൅ ሶ௡ݍ௡߱௡ߥ2 ൅ ߱௡ଶݍ௡ ൌ 0       (1.16)

Equation (1.16) is similar to the Eq. (1.3) of an SDOF system. Also, the vibration 

properties of each mode can be determined by solving the Eq. (1.16). 

Methods for solving the equations of motions (1.3) or (1.17) and (1.7) are developed 

in detail in chapter 2.  

In figure (2.5) the responses of some possible two degrees of freedom systems are 

shown. 

 

 

 

 

 

 

 

                             (a)  

Figure 2.5: Example of 2-DOFs systems responses: (a) Undamped free vibration; (b) Underdamped free
vibration; (c) Overdamped free vibration; (d) Damped armonic forced vibration. 

                              (b)  

                              (c)                                (d)  
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1.4 Damping in structures 

The damping of a structure is related to the amount of energy dissipated during its 

motion. It could be assumed that a portion of the energy is lost due to the deformations, 

and thus damping could be idealized as proportional to the stiffness of the structure. 

Another mechanism of energy dissipation could be attributed to the mass of the structure, 

and thus damping idealized as proportional to the mass of the structure. In Rayleigh 

damping, it is assumed that the damping is proportional to the mass and stiffness of the 

structure. 

࡯ ൌ ܽ଴ࡹ ൅ ܽଵ(1.17)      ࡷ 

The generalized damping of the ݊th mode is then given by 

௡ܥ ൌ ܽ଴ܯ௡ ൅ ܽଵܭ௡ 
     (1.18) 

௡ܥ ൌ ܽ଴ܯ௡ ൅ ܽଵ߱௡ܯ௡      (1.19) 

knowing that 

௡ߥ ൌ
௡ܥ

2߱௡ܯ௡
      (1.20) 

therefore substituting Eq. (1.19) in (1.20) and simplifying results in 

௡ߥ ൌ
ܽ଴
2߱௡

൅
ܽଵ
2
߱௡     (1.21) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Rayleigh damping variation with natural frequency. 
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The coefficients ܽ଴ and ܽଵ can be determined from specified damping ratios at two 

independent dominant modes (say, i and j modes). In figure (1.6) the Rayleigh damping 

variation with natural frequency is shown. 

Expressing Eq. (1.21) for these two modes will lead to the following equations: 

௜ߥ ൌ
ܽ଴
2߱௜

൅
ܽଵ
2
߱௜      (1.22) 

௝ߥ ൌ
ܽ଴
2 ௝߱

൅
ܽଵ
2 ௝߱      (1.23)

When the damping ratio at both the i and j  modes is the same and equals , it can be shown 

that 

ܽ଴ ൌ ߥ
2߱௜ ௝߱

߱௜൅ ௝߱
      (1.24) 

ܽ଴ ൌ ߥ
2߱௜ ௝߱

߱௜൅ ௝߱
     (1.25) 

It is important to note that the damping ratio at a mode between the ith and jth mode 

is less than ߥ. And, in practical problems the specified damping ratios should be chosen to 

ensure reasonable values in all the mode shapes that lie between the ith and jth mode 

shapes. 
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2. METHODS FOR SOLVING THE 

EQUATIONS OF MOTION 

2.1 General overview 

The dynamic response of linear systems with classical damping that is a reasonable 

model for many structures can be determined by classical modal analysis. Classical natural 

frequency and modes of vibration exist for such systems, and their equations of motion, 

when transformed to modal coordinates, become uncoupled (chapter 1.3). Thus the 

response in each natural vibration mode can be computed independently of the others, and 

modal response can be combined to determine the total response. Each mode responds with 

its own particular pattern of deformation, the mode shape, with its own frequency, the 

natural frequency, and with its own damping. Each modal response can be computed as a 

function of time by analysis of a SDOF system with the vibration properties of the 

particular mode. These SDOF equations can be solved in closed form for excitations that 

can be described analytically, or they can be solved by time stepping methods for 

complicated excitations. 

For systems with nonclassical damping the equations of motion cannot be uncoupled 

by transforming to modal coordinates of the system without damping. Therefore such 

systems can be analyzed by direct solutions of the coupled system of differential equations. 

This approach requires numerical methods because closed-form analytical solutions are not 

possible even if the dynamic excitation is a simple function described analytically.  



 

16 
 

2.2 Classical modal analysis 

For MDOF systems, the general form of the equations of motion are given by Eq. 

(1.7) repeated here for convenience: 

ሷ࢛ࡹ ൅ ሶ࢛࡯ ൅ ࢛ࡷ ൌ  ሻݐሺ࢖

which in modal coordinates can be rewritten as   

ሷࢗ∗ࡹ ൅ ሶࢗ∗࡯ ൅ ࢗ∗ࡷ ൌ ሻ         (2.1)ݐሺ∗࢖

where ࡷ  ,∗ࡹ∗ and ࡯∗ are already introduced in Eq. (1.11) (1.12) and (1.15), while the 

right term is given by 

∗࢖ ൌ ઴(2.2)        ࢖ࢀ 

The expression (2.1) represents a set of ܰ uncoupled equations in modal coordinates 

 ሻ, if the system has classical damping. For such systems, the generic equation can beݐ௡ሺݍ

written as 

௡ܯ
ሷ௡ݍ∗ ൅ ሶ௡ݍ∗௡ܥ ൅ ௡ݍ∗௡ܭ ൌ  ሻ        (2.3)ݐ௡∗ሺ݌

This equation governs the response of the SDOF. Dividing Eq. (2.3) by ܯ௡
∗  gives 

ሷ௡ݍ ൅ ሶ௡ݍ௡߱௡ߥ2 ൅ ߱௡ଶݍ௡ ൌ
ሻݐ௡∗ሺ݌
௡ܯ
∗         (2.4) 

Thus we have ܰ uncoupled equations like Eq. (2.3) or (2.4) one for each natural 

mode. In summary, the set of ܰ coupled differential equations (2.1) in nodal displacements 

 ሻ has been transformed to the set of ܰ uncoupled equations (2.3) in modal coordinatesݐሺ࢛

  .ሻݐሺࢗ

As already mentioned each modal equation is of the same form as the equation of 

motion of a SDOF system. Thus solution methods and results available for SDOF systems 

can be adapted to obtain solutions ݍ௡ሺݐሻ for the modal equations. So if the external forces 

are analytical functions, closed-form solutions are available, otherwise numerical methods 

are needed (chapter 2.3). Once ݍ௡ሺݐሻ is established, the displacement due to the ݄݊ݐ mode 

will be given by ࢛௡ሺݐሻ ൌ ࣘ௡ݍ௡ሺݐሻ . The total displacement due to combination of all 

mode shapes can then be determined by summing up all displacements for each mode, and 

is given by 

ሻݐሺ࢛ ൌ ෍࢛௡ሺݐሻ ൌ

ே

௡ୀଵ

෍ ൌ ࣘ௡ݍ௡ሺݐሻ ൌ

ே

௡ୀଵ

઴(2.5)        ܙ 
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This procedure is known as classical modal analysis or the classical superposition 

method because individual modal equations are solved to determine the modal coordinates 

  . ሻݐ௡ሺݍ

This analysis method is restricted to linear systems with classical damping. Linearity 

of the system is implicit in using the principle of superposition. Damping must be of the 

classical form in order to obtain modal equations that are uncoupled, a central feature of 

modal analysis. 

It is shown that for MDOF system, the equations of motion can be transformed in 

modal coordinates to obtain Eq. (2.1). But this transformation is not advantageous when 

dealing with systems with many degrees of freedom excited by complicated expressions of 

the external forces. In fact in these cases solving ܰ coupled equation of the type (1.7) or ܰ 

equations of the type (2.3) is almost the same, because in both cases a numerical time-

stepping method is needed. 

Actually for many practical problems only the few first modes contribute 

significantly to the response. This means that for systems with classical or nonclassical 

damping it is necessary to solve the uncoupled modal equations for only the significant 

modes. If only the first J modes contribute significantly to the response, the size of Eq. 

(3.1) can be reduced accordingly; ઴ is now an ܰ ൈ J matrix; ࡷ  ,∗ࡹ∗ and ࡯∗ are J ൈ J 

matrices; and ࢖∗ሺݐሻ is a J ൈ 1 vector. Thus the problem reduces to solving these J 

uncoupled equations for ݍ௡ሺݐሻ, ݊ ൌ 1,2, …	, J with a numerical method. Once ݍ௡ሺݐሻ have 

been determined at each time instant, ࢛ሺݐሻ is computed from Eq. (2.5) with its summation 

truncated at ܰ ൌ J. 
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2.3 Numerical time-stepping methods 

A vast body of literature exists about numerical time-stepping methods for 

integration of differential equations. However in this section only the Newmark’s method 

is treated as, with appropriate choices of the parameters this scheme ensures convergence, 

stability and accuracy. The method is developed for the equation of motion of the SDOF, 

however the extension to the equations of the MDOF is straightforward.  

In 1959, N. M. Newmark developed a family of time-stepping methods based on the 

following equations: 

ሶݑ ௜ାଵ ൌ ሶݑ ௜ ൅ ሾሺ1 െ ሷݑሿݐ∆ሻߛ ௜ ൅ ሺݐ∆ߛሻݑሷ ௜ାଵ      (2.6.a) 

௜ାଵݑ ൌ ௜ݑ ൅ ሺ∆ݐሻݑሶ ௜ ൅ ሾሺ0.5 െ ሷݑሻଶሿݐ∆ሻሺߚ ௜ ൅ ሾߚሺ∆ݐሻଶሿݑሷ ௜ାଵ     (2.6.b)

Typical selection for ߛ is 1/2 and ߚ ൌ 1/4 is satisfactory from all points of view, 

including that of accuracy, as it possible to see in figure (2.1). For linear systems these two 

equations, combined with the equilibrium equation 

ሷݑ݉ ௜ାଵ ൅ ሶݑܿ ௜ାଵ ൅ ௜ାଵݑ݇ ൌ  ௜ାଵ        (2.7)݌

at the end of time step, provide the basis for computing ݑ௜ାଵ, ݑሶ ௜ାଵ and ݑሷ ௜ାଵ from the 

known ݑ௜, ݑሶ ௜ and ݑሷ ௜ at time ݅. Defining the following quantities  

௜ݑ∆ ൌ ௜ାଵݑ െ ሶݑ∆												௜ݑ ௜ ൌ ሶݑ ௜ାଵ െ ሶݑ ௜ ሷݑ∆ ௜ ൌ ሷݑ ௜ାଵ െ ሷݑ ௜        (2.8) 

௜݌∆ ൌ ௜ାଵ݌ െ ௜        (2.9)݌

the Eq. (2.6) can be rewritten as 

ሶݑ∆ ௜ ൌ ሺ∆ݐሻݑሷ ௜ ൅ ሺݐ∆ߛሻ∆ݑሷ ௜    (2.10.a) 

௜ݑ∆ ൌ ሺ∆ݐሻݑሶ ௜ ൅
ሺ∆ݐሻଶ

2
ሷݑ ௜ ൅ ሷݑ∆ሻଶݐ∆ሺߚ ௜ 

 

(2.10.b)

The Eq. (2.10.b) can be solved for ∆ݑሷ ௜ and substituted in the Eq. (2.10.a). The two 

expression just founded are then substituted in the incremental equation of motion 

ሷݑ∆݉ ௜ ൅ ሶݑ∆ܿ ௜ ൅ ௜ݑ∆݇ ൌ  ௜      (2.11)݌∆

This substitution gives 

෠݇∆ݑ௜ ൌ  ௜      (2.12)̂݌∆

where 
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෠݇ ൌ ݇ ൅
ߛ
ݐ∆ߚ

ܿ ൅
1

ሻଶݐ∆ሺߚ
݉ (2.13)

and 

௜ାଵ̂݌∆ ൌ ௜݌∆ ൅ ൬
1
ݐ∆ߚ

݉ ൅
ߛ
ߚ
ܿ൰ ሶݑ ௜ ൅ ൤

1
ߚ2

݉ ൅ ݐ∆ ൬
ߛ
ߚ2

െ 1൰ ܿ൨ ሷݑ ௜      (2.14) 

With ෠݇ and ∆̂݌௜  known from the system properties ݉, ݇ and ܿ, algorithm parameters ߛ and 

ሶݑ  and the ,ߚ ௜ and ݑሷ ௜ at the beginning of the time step, the incremental displacement is 

computed from  

௜ݑ∆ ൌ
௜̂݌∆
෠݇        (2.15) 

Once ∆ݑ௜ is known ∆ݑሶ ௜ and ∆ݑሷ ௜ can be computed from Eqs. (2.10.a) and (2.10.b) then 

ሶݑ ,௜ାଵݑ ௜ାଵ and ݑሷ ௜ାଵ from Eq. (2.8). The acceleration can also be obtained from the 

equation of motion ݐ௜ାଵ: 

ሷݑ ௜ାଵ ൌ
௜ାଵ݌ െ ሶݑܿ ௜ାଵ െ ௜ାଵݑ݇

݉
      (2.16) 

Actually Eq. (2.16) is needed to obtain ݑሷ ଴ to start the computations. 

This procedure can readily be extended to MDOF systems. The scalar equations 

(2.10.a) and (2.10.b) that relate the response (displacement, velocity, and acceleration) 

increments over time step ݅ to ݅ ൅ 1 to each other and the response values at time ݅, and the 

scalar equation (2.11) of incremental equilibrium, all now become matrix equations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Newmark’s parameters selection. 
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3. MOVING LOADS MODEL 

3.1 Introduction 

The simplest case that can be conceived of a moving vehicle is when it is represented 

as concentrated loads. This is the so called moving loads model. 

The most basic problem in the study of vehicle-induced vibrations on bridges is the 

dynamic response of a simply-supported beam subjected to a single moving load. This 

problem is important in that the solution can be given in closed form. By the principle of 

superposition the solution obtained for a single moving load could be expanded to deal 

with a series of identical equi-distant moving loads. Research on the vibration of bridges 

traveled by moving loads is abundant. The most related ones are the works by Timoshenko 

[7] and Fryba [8]. 

In the dynamic analysis of a railway bridge, a moving train is traditionally 

represented as a series of moving axle loads. This approach is the one adopted by many 

researchers and also by many design codes, as for example the Eurocode 1. With this 

model, the global dynamic characteristics of the bridge caused by the moving action of the 

vehicle can be captured with a sufficient degree of accuracy. However, the effect of 

interaction between the bridge and the moving load is ignored. For this reason, the moving 

load model is good only for the case where the mass of the vehicle is small relative to that 

of the bridge, and only when the vehicle response is not of interest.  

In this section the moving loads model will be treaty in a general way within the 

framework of the finite elements method, leaving the reader who is interested in 

the analytical solution to others books and authors, [9]. 
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3.2 Simply-supported beam subjected to moving loads 

In this section, the general method to perform a dynamic analysis of railway bridges 

subjected to moving loads is given by means of reduced model of train bridges. The 

problem is illustrated in figure (3.1). 

 

 

 

 

 The model is based on the fact that the fundamental dynamic behavior of certain 

type of bridges may be described by the dynamic behavior of two-dimensional Bernoulli 

beams. The Bernoulli beam is modeled using several numbers of beam elements. A 

schematic illustration of the transformation of a railway bridge to a beam element model is 

shown in Figure (3.2). However, the whole following procedure is easily extended also 

to three-dimensional models, if more sophisticated analyses are needed.  

 

 

 

 

 

 

 

 

 

 

The model can be implemented given as input the properties of the beam elements 

such as the damping value, Young's modulus, moment of inertia and mass per unit length. 

Then the following steps could be performed in order to set-up the bridge model: 

-  Creating the matrices ࢋࡹ ,ࢋࡷ and ࢋ࡯ for a 2D elastic Bernoulli beam element. 

- Assemble the element matrices ࢋࡹ ,ࢋࡷ and ࢋ࡯ in the global matrices ࡹ ,ࡷ and ࡯. 

Figure 3.1: Moving loads model. 

Figure 3.2: Transformation of a bridge to a reduced beam element model. 
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After that the load vector has to be constructed. Figure (3.3) illustrates a point load ܲ 

that moves over a bridge consisting of three beam elements.  

 

 

 

 

 

 

 

The force moves with the velocity ݒ between and over the nodes of the model. In a 

finite elements model all loads are applied at the element nodes. The load ܲ is therefore 

assigned as equivalent nodal forces, when is situated between the nodes of a beam element. 

The equivalent shear forces ܸ and moments ܯ are computed as: 

஺ܸ ൌ
ܾܲଶ

ଶܮ
൅ ሺ1 ൅

2ܽ
ܮ
ሻ       (3.1)

஺ܯ ൌ
ܾܲܽଶ

ଶܮ
 (3.2)

஻ܸ ൌ
ܲܽଶ

ଶܮ
൅ ሺ1 ൅

2ܾ
ܮ
ሻ       (3.3)

஻ܯ ൌ െ
ܲܽଶܾ
ଶܮ

 (3.4)

In this way a ࢈ࡼ matrix can be generated which describes the load history at each 

node of the model for the whole time period of the analysis. The matrix is constructed by 

calculating the equivalent node loads using Eqs. (3.1)-(3.4) every time the load	ܲ moves a 

distance ∆ݔ. The size of the distance depends on the velocity ݒ and the size of a time step 

 :according to ݐ∆

ݔ∆ ൌ ݒ ∙  (3.5)        ݐ∆

After constructing the ࡯ ,ࡹ ,ࡷ and ࢈ࡼ matrices the dynamic responses in the bridge 

could be calculated by solving the equations of motion (1.7). This can performed by using 

Newmark’s time-step method, described in chapter 2.3. 

Figure 3.3: The equivalent nodal forces of a point load on a beam element. 
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3.3 Assumption and limitation of the model 

Actually two-dimensional beam models can only calculate vertical bending modes. A 

key assumption in this model is that vertical modes of vibration contributes to the vertical 

accelerations of the bridge, which implies that it is assumed that accurate results may be 

achieved even though torsional and horizontal bending modes are neglected. This is a 

limitation of the model since all bridges have torsional bending modes and, if they are 

excited, they often increase the vertically acceleration of the bridge. Torsional bending 

modes are mainly excited when a bridge is subjected to eccentric dynamic loads, as on 

two-rail bridges, and the reduced model is therefore more accurate for bridges with a 

centric track. 

Also it must be ensure that the frequencies and shapes of the modes that are 

calculated using the reduced model are nearly the same as the frequency and eigenmodes 

of the real bridge. 

In this procedure the bridge is modeled using Bernoulli beams, which implies that 

shear deformation is neglected. When modeling truss bridges shear deformations cannot be 

neglected. Therefore, the reduced model introduces more approximations when truss 

bridges are considered. 

Another limitation of the model is that the beams all have the same properties. To 

make benefit of the result using the reduced model, it may be limited to railway bridges 

that have constant stiffness and weight along the length. 

A last assumption is that columns and foundations were assumed to have a neglected 

vertical deformation and are therefore modeled as simple supports. 

Actually all this assumptions and limitations can be easily overcome with some 

devices. In fact as already sad the model could be expanded in a three-dimensional model 

for instance, in order to have more sophisticated model, and models which take into 

account shear deformation can be built up. Therefore the bridge can be modeled in a finite 

elements software  and performing a dynamic analysis assigning the load history at each 

node of the track. 
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4. VEHICLE-BRIDGE INTERACTION 

MODELS 

4.1 Introduction 

The dynamic response of railway bridges under moving trains has been a topic of 

research interest for many years, especially in last decades that has seen a worldwide 

development of high-speed railways.  

In chapter 3 the problem of a train passing over a bridge it is treated as a sequence of 

travelling loads.  

Considerable experimental and theoretical research has recently been performed on 

train-bridge interaction. For this aim different vehicle models with different degree of 

sophistication have been developed to account for the dynamic properties of the vehicle. 

The simplest model for a train is a series of 1 degree-of-freedom (DOF) mass–spring–

damper systems that account for the suspension of the vehicle. Liu et al. [2] studied train–

bridge interaction with a 3-DOF vehicle model consisting of the car body and wheel–axle 

sets and proposed a 15-DOF vehicle model and analyzed the passage of the ETR 500Y 

high speed train on the Sesia viaduct [10]. 

In this section a review of this models and methods, for solve the train-bridge 

dynamic interaction problem, are given. 
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4.2 Train subsystem 

Vehicle model with a varying degree of sophistication can be found in literature to 

account for the dynamic effect of the train on the bridge. Possible planar models consisting 

in masses supported by springs and dashpots that could be used in the two-dimensional 

analyses are those represented in figure (4.1). The simplest model in this case is a SDOF 

moving mass supported by spring-dashpot unit, the so called sprung mass model (figure 

(4.1 a)). Vehicle model (c) consist in a car body, assumed to be rigid, resting on the front 

and rear bogies, each of which in turn is supported by two wheel sets; while vehicle (b) is 

an intermediate model. 

 

 

 

 

 

 

 

In order to study the train-bridge interaction, a train composed of a sequence of one 

of the three models just presented can be used. 

In a similar way as for the bridge, the equation of motion of the vehicle can be rewritten as 

ሷࢂ௩ࡹ ௩ ൅ ሶࢂ௩࡯ ௩ ൅ ௩ࢂ௩ࡷ ൌ ௩         (4.1)ࡼ

where ࡹ௩, ࡯௩ and ࡷ௩, are the mass, damping and stiffness matrices; ࢂ௩, ࢂሶ ௩ and ࢂሷ ௩ are the 

displacement, velocity and acceleration vectors of the vehicle system; and ࡼ௩ is the force 

vector that collects the dynamic force on the vehicle. Without loss of generality, the terms 

in Eq. (4.1) specialized for the vehicle model (c) are given in the following. The mass 

matrix of the vehicle can be expressed as 

௩ࡹ ൌ ൥
ଵܯ 0 0
0 ଶܯ 0
0 0 ଵܯ

൩        (4.2) 

        (a)                                       (b)                                                                         (c)                              

Figure 4.1: (a) a 1-DOF (b) a 2-DOF and (c) a 3-DOF vehicle models for dynamic train-bridge interaction 
analysis [2]. 
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where  ܯଵ and ܯଶ are the mass of the bogie and the car body, respectively. 

The stiffness matrix of the vehicle system is expressed as 

௩ࡷ ൌ ൥
௏ܭ2 ൅ ௏௏ܭ െܭ௏௏ 0
െܭ௏௏ ௏௏ܭ2 െܭ௏௏
0 െܭ௏௏ ௏ܭ2 ൅ ௏௏ܭ

൩         (4.3)

where ܭ௏ and ܭ௏௏ are the spring stiffness coefficients of the primary and secondary 

suspension system, respectively. 

The damping matrix can be derived from the stiffness matrix by replacing the 

stiffness coefficients (ܭ௏, ܭ௏௏) by the damping coefficients (ܥ௏, ܥ௏௏) of the primary and 

secondary suspension system obtaining  

௩࡯ ൌ ൥
௏ܥ2 ൅ ௏௏ܥ െܥ௏௏ 0
െܥ௏௏ ௏௏ܥ2 െܥ௏௏
0 െܥ௏௏ ௏ܥ2 ൅ ௏௏ܥ

൩         (4.4) 

The displacement, velocity and acceleration vectors ࢂ௩, ࢂሶ ௩ and ࢂሷ ௩ are expressed as  

௩ࢂ ൌ ሾ ଵܸ ଶܸ ଷܸሿ୘        (4.5)

ሶࢂ ௩ ൌ ሾ ሶܸଵ ሶܸଶ ሶܸଷሿ
୘        (4.6)

ሷࢂ ௩ ൌ ሾ ሷܸଵ ሷܸଶ ሷܸଷሿ
୘        (4.7)

where the subscript 1 and 3 indicate the vertical displacement, velocity and acceleration of 

the front and back bogie, respectively, while with the subscript 2 those of the car body. 

The force vector ࡼ௩ is expressed in terms of the displacements and velocities of the 

wheel sets as follow 

௩ࡼ ൌ ቎
௏ሺܭ ௐܸଵ ൅ ௐܸଶሻ ൅ ௏൫ܥ ሶܸௐଵ ൅ ሶܸௐଶ൯

0
௏ሺܭ ௐܸଷ ൅ ௐܸସሻ ൅ ௏൫ܥ ሶܸௐଷ ൅ ሶܸௐସ൯

቏        (4.8) 

where ௐܸ௜ and ሶܸௐ௜ (with ݅ ൌ 1,2,3,4ሻ represent the displacement and velocity of the ݅th 

wheel set, respectively. 

More sophisticated three-dimensional models are available in order to perform more 

accurate train-bridge dynamic analyses [3]; a possible model is showed in figure (4.2). The 

equation of motion of this kind of model can still be represented by the Eq. (4.1). In this 

model the bogies and the wheel sets are linked by horizontal and vertical springs and 

dampers. There are horizontal and vertical springs (ܭு, ܭ௏) and dampers (ܥு, ܥ௏) at each 

side of each wheel set, also horizontal and vertical springs (ܭுு, ܭ௏௏) and dampers (ܥுு, 
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 ௏௏) at each side of each bogie. Each car body and each bogie has 5 DOFs: theܥ

displacement in vertical direction (ܼ) and longitudinal direction (ܻ), and rotations around 

the ܺ-axis (ܴ௑), ܻ-axis (ܴ௒) and ܼ-axis (ܴ௓). Each wheel set has 3 DOFs: the displacement 

in vertical direction (ܼ) and longitudinal direction (ܻ), and rotation around the ܺ-axis (ܴ௑). 

In this way, the vehicle model has a degree of 27 DOFs. 

 

 

The displacement as well as the velocity and acceleration vectors of the Eq. (4.1), of 

this model vehicle, assume the following form 

௩ࢂ ൌ ሾ ଵܻ, ܴ௑ଵ, ܴ௓ଵ, ܼଵ, ܴ௒ଵ, ଶܻ, ܴ௑ଶ, ܴ௓ଶ, ܼଶ, ܴ௒ଶ, ଷܻ, ܴ௑ଷ, ܴ௓ଷ, ܼଷ, ܴ௒ଷሿ         (4.9) 

where subscript 1 stands for the front bogie, subscript 2 stands for the car body, and 

subscript 3 stands for the rear bogie. The mass matrix of the vehicle system is given by 

௩ࡹ ൌ ݀݅ܽ݃ሾܯଵ, ,௑ଵܫ ,ଵܯ,௓ଵܫ ,ଶܯ,௒ଵܫ ,௑ଶܫ ,ଶܯ,௓ଶܫ ,ଵܯ,௒ଶܫ ,௑ଵܫ ,ଵܯ,௓ଵܫ  ௒ଵሿ      (4.10)ܫ

where ܯଵ  is the mass of the bogie, ܫ௑ଵ, ,௒ଵܫ  ௓ଵ are the mass moments of inertia of the bogieܫ

around the ܺ-axis, ܻ-axis and ܼ-axis; with the subscript 2 are indicated the same quantities 

for the car body ܯଶ  is the mass of the car body, ܫ௑ଶ, ,௒ଶܫ ௓ଶܫ  are the mass moments of inertia 

of car body around the ܺ-axis, ܻ-axis and ܼ-axis. The stiffness matrix of the vehicle 

system is expressed as [10]: 

Figure 4.2: 27-DOF vehicle model for three dimensional dynamic interaction analysis [3]. 
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௩ࡷ ൌ

ۏ
ێ
ێ
ێ
ێ
ଵଵࡷۍ

ு

ଶଵࡷ
ு
ଵଵࡷ
௏

ଶଵࡷ
௏
ଶଶࡷ
ு

ଷଶࡷ
ு
ଶଶࡷ
௏

ଷଶࡷ
௏

݉ݕݏ

ଷଷࡷ
ு

ଷଷࡷ
௏ ے
ۑ
ۑ
ۑ
ۑ
ې

       (4.11) 

where  

ଵଵࡷ
ு ൌ ቎

ுܭ4 ൅ ுுܭ2 െ4ܭு݄ଷ ൅ ுு݄ଶܭ2 0
െ4ܭு݄ଷ ൅ ுு݄ଶܭ2 ு݄ଷܭ4

ଶ ൅ ௏ܾଵܭ4
ଶ ൅ ுு݄ଶܭ2

ଶ ൅ ௏௏ܾଶܭ2
ଶ 0

0 0 ଴ݍுܭ4
ଶ
቏ 

 

ଵଵࡷ
௏ ൌ ൤

௏ܭ4 ൅ ௏௏ܭ2 0
0 ଴ݍ௏ܭ4

ଶ൨ 

 

ଶଵࡷ
ு ൌ ቎

െ2ܭுு െ2ܭுு݄ଶ 0
ுு݄ଵܭ2 ுு݄ଵ݄ଶܭ2 െ ௏௏ܾଶܭ2

ଶ 0
െ2ܭுுݏ െ2ܭுு݄ݏଶ 0

቏ 

 

ଶଶࡷ
ு ൌ ቎

ுுܭ4 െ4ܭுு݄ଵ 0
െ4ܭுு݄ଵ ுு݄ଵܭ4 ൅ ௏௏ܾଶܭ4

ଶ 0
0 0 ଶݏுுܭ4

቏ 

 

ଶଵࡷ
௏ ൌ ൤

െ2ܭ௏௏ 0
ݏ௏௏ܭ2 0൨ 

 

ଶଶࡷ
௏ ൌ ൤

௏௏ܭ4 0
0 ଶݏ௏௏ܭ4

൨ 

 

ଷଶࡷ
ு ൌ ൥

െ2ܭுு ுு݄ଵܭ2 ݏுுܭ2
െ2ܭுு݄ଶ ுு݄ଵ݄ଶܭ2 െ ௏௏ܾଶܭ2

ଶ ଶ݄ݏுுܭ2
0 0 0

൩ 

 

ଷଷࡷ
ு ൌ ቎

ுܭ4 ൅ ுுܭ2 െ4ܭு݄ଷ ൅ ுு݄ଶܭ2 0
െ4ܭு݄ଷ ൅ ு݄ଶܭ2 ு݄ଷܭ4

ଶ ൅ ௏ܾଵܭ4
ଶ ൅ ுு݄ଶܭ2

ଶ ൅ ௏௏ܾଶܭ2
ଶ 0

0 0 ଴ݍுܭ4
ଶ
቏ 
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ଶଵࡷ
௏ ൌ ቂെ2ܭ௏௏ െ2ܭ௏௏ݏ

0 0
ቃ 

 

ଷଷࡷ
௏ ൌ ൤

௏ܭ4 ൅ ௏௏ܭ2 0
0 ଴ݍ௏ܭ4

ଶ൨ 

Where the meaning of all the terms that appears in the above matrices is specified in the 

figure (4.2).  

Also in this case the damping matrix can be derived from the stiffness matrix 

replacing the stiffness coefficients (ܭ௏, ܭு, ܭ௏௏, ܭுு) by damping coefficients (ܥ௏, ܥு, 

௏ܥ ுு), in whichܥ ,௏௏ܥ  and ܥு  are vertical and horizontal damping coefficients at each side 

of bogie in the first suspension system, ܥ௏௏  and ܥுு  are vertical and horizontal damping 

coefficients at each side of car body in the second suspension system. 

The terms of the vector ࡼ௩ that are the interaction forces transferred to the bogies by 

the first suspension system can be expressed in terms of the displacements and velocities of 

the wheel sets as  

௩ࡼ ൌ
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ுሾܾଵܥ2
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 (4.12) 
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4.3 Bridge subsystem 

As shown in chapter 3, when a finite element model of the bridge is used to study its 

dynamic behavior, the equation of motion of the bridge can be expressed as  

ሷࢂ௕ࡹ ௕ ൅ ሶࢂ௕࡯ ௕ ൅ ௕ࢂ௕ࡷ ൌ  ௕      (4.13)ࡼ

where ࡹ௕, ࡯௕  and ࡷ௕  are the mass matrix, damping matrix and stiffness matrix of the 

bridge, respectively; ࢂ௕, ࢂሶ ௕  and ࢂሷ ௕  represent the displacement, velocity and acceleration 

vectors of the bridge DOFs; and ࡼ௕ is the force vector transferred to the bridge. 

In some finite element model thousands of nodes and elements are used, therefore 

the Eq. (4.13) could be a system of thousands equations. Due to the fact that it is often 

possible to describe an approximate dynamic response with just a few eigenmodes the 

system equations can often be substantially reduced. In large finite element models a 

reduction of the system equations saves a lot of computer time. However, excluding modes 

is a crucial action. It is necessary to select the eigenmodes that have the largest influence 

on the result. This could be done using the modal superposition methods assuming that 

only the first ଴ܰ modes of the bridge are contributing to the response. The equation of 

motion of the bridge can be now rewritten as follow: 

ሷࢗ ൅ ௕࡯
ሶࢗ∗ ൅ ௕ࡷ

ࢗ∗ ൌ ௕ࡼ
∗       (4.14) 

where it has been assumed that the eigenvectors are normalized with respect to the mass 

matrix ࡹ௕. The vector ࢗ collects the modal coordinates. The matrices ࡯௕
∗ ௕ࡷ ,

∗  and the 

vector ࡼ௕
∗  are defined as follows: 

௕࡯
∗ ൌ  ષߥ2

௕ࡷ
∗ ൌ ષଶ 

௕ࡼ
∗ ൌ ઴்ࡼ௕ 

where ઴ is the ஽ܰைி ൈ ଴ܰ matrix of eigenvectors and ષ is the ଴ܰ ൈ ଴ܰ diagonal matrix of 

eigenvalues of the considered modes.  

As regard ࡼ௕, it is determined by position, movement status and mass of the wheel 

sets. As described in chapter 3.2 knowing the position of the ݅th axle of the train it is 

possible to obtain the nodal forces vector by applying the Eqs. (3.1)-(3.4). Actually ࡼ௕ is 

composed of two terms, ࡼ௕
௤௦ refers to the quasi-static part of the force that is related to the 

weight of the ݅th axle of the train, and ࡼ௕
ௗ௬ related to the dynamic part of the force.  
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Figure 4.3: A simply supported beam subjected to a 3-DOF moving vehicle [2]. 
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When considering a 3-DOF vehicle model of figure (4.3) the force ࡼ௕ transferred to 

the bridge can be written as  

ሻݐ௕ሺࡼ ൌ෍࢟௜ሺݐሻ
ସ

௜ୀଵ

ܨீ ௜ ൅෍࢟௜ሺݐሻ
ସ

௜ୀଵ

ቀെܯௐ௜ ሷܸௐ௜ ൅ ௏൫ܭ ௝ܸ െ ௐܸ௜൯ ൅ ௏൫ܥ ሶܸ௝ െ ሶܸௐ௜൯ቁ      (4.15) 

where ሷܸௐ௜ represents the acceleration of the ݅th wheel set; ܯௐ௜ and ீܨ ௜ represent the mass 

and the axle load of the ݅th wheel set, respectively, and ௝ܸ ሺ݆ ൌ 1|௜ୀଵ,ଶ, ݆ ൌ 3|௜ୀଷ,ସሻ represents the 

displacement of the bogie, which is related to the first and second wheel axle displacement when 

considering the first boogie and to the third and fourth wheel axle displacement when considering 

the second boogie. The vector ࢟௜ሺݐሻ is the ஽ܰைி ൈ 1 vector that transfers a moving unit load to 

nodal loads according to the position of the ݅th axle. 
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4.4 Computation of the coupled train-bridge system 

In studying the dynamic response of the vehicle-bridge interaction system, two sets 

of equations of motion can be written, one for the bridge Eq. (4.13) and the other for the 

vehicles Eq. (4.1). It is the interaction or contact forces existing at the contact points of the 

two subsystems that make the two sets of equations coupled. The algorithms to carry out 

this calculation can be classified in two main groups: (a) those based on an uncoupled 

iterative procedure and (b) those based on the solution of the coupled system. 

Algorithms based on an uncoupled iterative procedure treat the equations of motion 

of the vehicle and the bridge as two subsystems and solve them separately using a direct 

integration scheme. The compatibility conditions and equilibrium equations at the interface 

between the vehicle wheels and railway track are satisfied by an iterative procedure. One 

possible algorithm is illustrated in figure (4.4). In the first step of the iterative procedure, 

the bridge response given by the Eq. (4.13) is computed with only ࡼ௕
௤௦, because the vehicle 

is no yet excited. Assuming that there is no jumping between the wheels and the railway 

track, the wheels displacements and velocities can be computed, knowing the nodal 

displacements and velocities of the bridge, using the following beam shape functions  

ଵܰ ൌ 1 െ 3
ଶݔ

ଶܮ
൅ 2

ଷݔ

ଷܮ
      (4.16)

ଶܰ ൌ 3
ଶݔ

ଶܮ
െ 2

ଷݔ

ଷܮ
      (4.17)

ଷܰ ൌ െݔ ൅ 2
ଶݔ

ܮ
െ
ଷݔ

ଷܮ
      (4.18)

ସܰ ൌ
ଶݔ

ܮ
െ
ଷݔ

ଷܮ
      (4.19)

where ݔ represents the generic position of the ݅th axle in between two successive nodes of 

the bridge. Then the right term of Eq. (4.1) can be computed and Eq. (4.1) can be solved 

for the displacement, velocity and acceleration of the vehicle DOFs. Then Eq. (4.13) is 

solved again considering also ࡼ௕
ௗ௬, obtaining the bridge response. This procedure is 

repeated for a number of iterations at each time step, until some convergence criterion is 

met (for example, until the difference between the bridge deflection of two successive 

iterations is sufficiently small). 
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Algorithms based on the solution of the coupled system are based on the solution of a 

unique system matrix at each point in time. The system matrix changes as the vehicle 

moves and is time-dependent. This procedure can be carried without any iteration solving 

the system given below for example with Newmark method 

൤
௕ࡹ ૙
૙ ௩ࡹ

൨ ቈ
ሷࢂ ௕
ሷࢂ ௩
቉ ൅ ൤

௕࡯ ௩௕࡯
௕௩࡯ ௩࡯

൨ ቈ
ሶࢂ ௕
ሶࢂ ௩
቉ ൅ ൤

௕ࡷ ௩௕ࡷ
௕௩ࡷ ௩ࡷ

൨ ൤
௕ࢂ
௩ࢂ
൨ ൌ ൤

௕ࡼ
௩ࡼ
൨       (4.20)

Figure 4.4: Flowchart of the iterative solution procedure [3]. 
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where ࡯௩௕, ࡯௕௩, ࡷ௩௕ and ࡷ௕௩ are coupled matrices attributed to the interaction between 

the bridge and train. More details of this method are given in [11] and [12]. 

An alternative approach that leads to considerable savings in computational time is to 

implement the interaction on an element level rather than on a global level [9]. An 

interaction element is defined as that bridge element in contact with a vehicle wheel. Those 

bridge elements that are not directly under the action of vehicle wheels remain unaltered in 

the global matrixes of the system. The interaction element is characterized by two sets of 

equations: those of the bridge element and those of the moving vehicle above the bridge 

element. The DOFs of the moving vehicle can be solved in time domain using Newmark 

method, and then, the DOFs of the vehicle that are not in direct contact with the bridge are 

eliminated and condensed to the DOFs of the associated bridge element via the method of 

dynamic condensation. The interaction element has the same number of DOFs as the 

original bridge element and it can be directly assembled with the other bridge elements into 

the global matrix, while retaining symmetry property that is lost when condensation takes 

place on a global level. 
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5. PONTELAGOSCURO RAILWAY 

BRIDGE  

5.1 Description of the bridge 

In this section a brief description of the structure that will be used to carry out the 

dynamic analyses is given.  

The structure considered is the steel bridge on the Bologna-Padova railway line that 

crosses the Po river and connects the areas of Pontelagoscuro and Occhiobello nearby 

Ferrara and Rovigo, respectively.  

 

Figure 5.1: Pontelagoscuro side bridge view. 
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The Bologna-Padova railway line is an important link between the Nord-East area of 

Italy and the Nord-South national line Milano-Roma. For this reason in recent years 

significant infrastructural and technological investments have been planned upon this 

railway line in order to supply the transport demand in terms of passengers and freight 

trains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The viaduct is composed of 9 truss girder bridges; the total length is about 610 m; 

seven 75.60 m long bridges compose the inner part of the viaduct, while two 59.4 m long 

bridges are located at the ends of the viaduct. The longest bridges are 9.60 m high, it is 

composed by 7 panels of 10.80 m. The shorter bridge is composed by 6 panels of 9.90 m 

and it is 7.50 m high.; in the following, all the analyses will performed with reference to 

only this kind of structure. 

Figure 5.2: View of the oldest bridge on the left and the most recent on the right. 



 
 

39 
 

 

 

The bridge and each of its element was realized by connecting different kinds of hot-

rolled profiles, obtained by the combination of thin plates with variable geometry along 

with L and I cross section shape elements. 

The structure is composed by two main truss girders oriented in the longitudinal 

direction connected by transversal elements which form a closed cage sections as in figure 

(5.4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Lateral span bridge view. 

Figure 5.4: Internal elevation of the bridge. 
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The truss girders are delimited at the top by an upper chord which are obtained 

combining by means of rivets four plates with four L angular profiles forming a box 

shaped beam as in figure (5.5). 

 

This kind of cross section shape allows easy connections between elements and it 

guarantees an high moment of inertia in both directions in order to prevent instability 

phenomena.   

In the lower part the vertical trusses are delimited by a lower chord, shown in figure 

(5.6) that are very similar to the upper chord  

 

 

 

 

 

 

 

 

 

 

 

Then the upper and lower chords are linked together by vertical and diagonal 

elements. 

The diagonal elements, as it is possible to see in figure (5.7), have a cross section 

composed by four L-shaped profile connected by means of plates. Actually it can be 

Figure 5.5: Detail of the upper chords. 

Figure 5.6: Detail of the lower chords. 
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distinguished different kinds of diagonal elements, in fact the outer diagonals have 

connecting plates along all the length of the elements, instead the inner diagonals have 

connecting plates at regular intervals.  

 

 

 

 

 

 

 

 

 

 

 

 

The vertical elements exhibit a double T cross section made by L profile coupled two 

by two and connected by means of plates as in figure (5.8). Also in this case there is 

difference between the outer vertical elements, which have a full web, and the inner ones 

which have lightened web done by plates at regular intervals.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Detail of the diagonal elements. 

Figure 5.8: Detail of the vertical elements. 
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As already said in the upper and lower zone, there are struts and floor beams, 

respectively, which connect the truss girders, in order to create a closed box-shaped profile. 

There are struts and floor beams each 4.95 meters, in this way transversal elements and 

web elements are connected at the same time at the same node. The struts are consisting of 

two angular profile coupled two by two, with a web consisting of plates riveted with the 

profile as in figure (5.9). 

 

 

 

 

 

 

 

 

Actually the floor beams have a full web cross section while the struts have empty 

webs at regular intervals.  

Also there are an upper and a lower braced systems, which connect the two truss 

girders, and create a sort of horizontal truss system to face the horizontal loads. 

 

 

 

 

 

 

 

 

 

The braced systems elements consist of four L cross section profiles riveted together, 

figure (5.10). 

Figure 5.9: Detail of the struts elements. 

Figure 5.10: Detail of the braced systems. 
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As in figure (5.11) in each node are connected the lower or the upper chord, three 

wall elements (diagonals and verticals), a struts or roof beam, and at regular intervals, the 

braced elements. In order to create the link between the various elements gusset plates are 

needed. 

 

 

 

 

 

 

 

 

 

Each span of the entire bridge rests at the two ends on pillars that transfer the loads to 

the soil. The connection between the bridge structure and the pillar is done by support 

devices shown in figure (5.12). At one end the support device is fix and it can be 

schematized as an hinge, while at the other end the support is amenable to a roller 

constraint. 

 

 

 

 

 

 

 

 

 

 

 

Moreover, along with the structural elements just described, there are also non 

structural or secondary elements as sleepers, railway tracks, platforms and parapets. 

Figure 5.11: Detail of the nodes. 

Figure 5.12: Detail of the support devices. 



 

44 
 

5.2 Experimental data 

Dynamic analysis of structure are usually performed using suitable finite elements 

models. When dealing with existing structures it is possible to obtain their dynamic 

properties in terms of vibration frequencies and mode shapes, so that the numerical models 

can describe as much as possible the real structure. In this regard the bridge has been 

monitored. In particular some accelerometers have been positioned on the bridge in eight 

points. The scheme of the measuring points is depicted in figure (5.13). 

 

Recording the accelerations of the ambient free vibration of the bridge it has been 

possible to obtain by means of dynamic identification technique the vibration frequencies 

and modes as well as the damping ratio of each mode.  

In table (5.1) are reported the first four frequencies of vibration that will be taken 

into account. 

Experimental data 

 Frequency Damping ratio Mode type 

1st  2.143 Hz 0.65 % First Lateral 

2nd  3.857 Hz 0.87 % Vertical 

3rd  4.307 Hz 0.54 % Torsional 

4th  4.700 Hz 1.90 % Second Lateral 

 

Figure 5.13: Measuring points scheme. 

Table 5.1: Experimental frequencies and damping ratios. 
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In table (5.2) the experimental eigenvectors that describe the modal shapes of 

vibration associated with the first four frequencies are reported, the z and y axis are in 

agreement to that showed in figure (5.13). 

Experimental mode shapes 

 1st Mode 2nd Mode 3rd Mode 4th Mode 

B2a (z) 25.2 1.57 18.7 -11.4 

B2a (y) -5.77 9.99 7.08 3.42 

B2b (y) 3.09 8.04 -22.3 -2.03 

B2c (z) 37.1 -0.65 -28.7 -18.6 

B3a (z) 34.7 2.26 30.2 0.64 

B3a (y) -6.32 14.4 8.14E 1.04 

B3b (y) 8.33 11.8 -26.4E 0.19 

B3c (z) 46.0 -1.50 -28.6 -0.82 

B4a (z) 26.8 0.87 15.9 12.1 

B4a (y) -4.35 9.55 1.55 -0.76 

B4b (y) 3.35 8.06 -23.4 2.03 

 

In figure (5.14) the configuration assumed by the bridge in each of the first four 

modal shapes are reported. The dashed lines represent the undeformed configuration while 

the continues lines the deformed one. 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Experimental mode shapes.
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1st mode                                      First Lateral                      Frequency 2.143 Hz 

 

 

 

 

 

 

2nd mode                                            Flexural                         Frequency 2.857 Hz 

 

 

 

 

 

 

 

 

3rd mode                                        Torsional                          Frequency 4.307 Hz 

 

 

 

 

 

 

 

 

4th mode                                  Second Lateral                      Frequency 4.700 Hz 

 

Figure 5.14: Deformed configuration in the first 4 modals shapes. 
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5.3 Bridge finite elements model  

In section 5.1 the bridge, object of the present study, has been widely described. In 

order to carry out dynamic analysis of the bridge subjected to crossing trains, a finite 

elements model that well represents the real structure is needed.  

In order to set up a numerical model of the bridge it is been useful to analyze in 

detail the role of each element in the whole state, figure(5.15), as well as the geometry and 

the section dimensions of each member, figures (5.16) (5.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Mid span elements scheme. 

b)a) 

c) d)

Figure 5.16: a), b) Upper, lower chord; c), d) Struts, roof beams. 
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e) f) 

g) h)

i) 

l) m)

n) 

Figure 5.17: e) Diagonals A; f) Diagonals C; g) Diagonals E; h) Diagonals G, I; i) Diagonals M;  
l) Verticals B; m) Verticals D,F,H,L,N; n) Upper, bottom bracing system elements 

100 x 10 
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As regards the material properties, the elastic properties listed in table (5.3) are 

assumed. 

Structural 

steel 

Elastic modulus 

E [N/mm2] 

Poisson’s ratio 

ν 

Density 

ρ [Kg/m3] 

S 235 200000 0.25 7850 

 

Given the mechanical and geometrical characteristics of the several elements, as well 

as the bridge’s layout, it has been possible to create a finite elements model. The model has 

been done using four nodes shell elements, except for the bracing elements done by beam 

elements. In this way a very sophisticated model closer to the real structure is been 

obtained. 

In figure (5.18) a general view of the model realized with the finite elements 

software is shown. 

 

 

Actually at this state of the art the finite elements model is not yet accurate and able 

to represent the real structure. In fact computing the frequencies and the deformed modal 

shapes of the modeled structure it can be possible to see that they are not in agreement to 

those of the real one. In fact can be seen in table (5.4) the frequencies of the model are 

higher in respect to those of the real structure. The reason lies in the fact that in the model 

the masses of all the non-structural elements are not considered resulting in a stiffer model.  

Table 5.3: Elastic properties of the structural steeel. 

Figure 5.18: Bridge finite elements model. 
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Other details can influence the dynamic properties of the model, as for example the 

boundary conditions.  

 

Mode Experimental frequency FEM frequency Error 

1st First Lateral 2.143 Hz 3.306 Hz ~ 54 % 

2nd Vertical 3.857 Hz 5.564 Hz ~ 44% 

3rd Torsional 4.307 Hz 5.766 Hz ~ 34% 

4th Second Lateral 4.700 Hz 6.134 Hz ~ 31% 

 

Therefore the model must be calibrated trough a suitable process so that it will reflect 

almost the same dynamic behavior of the real structure. This optimization algorithm is 

explained in detail in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4: Experimental and model frequencies difference. 
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6. OPTIMIZATION PROCESS 

6.1 Introduction 

As it has been possible to see in Section 5 often the finite elements models don’t fit 

correctly the dynamic behavior of the real structure. Therefore the model has to be adjusted 

performing an optimization process of those system parameters that mainly influence the 

structural behavior. Actually the optimization problem is based on an objective function to 

be minimized (cost function). In modal identification problems, the objective function to 

be minimized is the distance between modal parameters obtained from experimental tests 

and those given by a numerical model of the structure. 

When the cost function is non differentiable or not explicitly defined, direct search 

approaches are very effective methods. Between them, genetic algorithms and evolution 

strategies are considered very promising numerical methods both in terms of efficiency and 

robustness, [13] and[14].  

In Section 6.2 the process used to solve the identification problem is described in 

details. Among all the evolution and genetic algorithms, the so called Differential 

Evolution Algorithm (DE) has been chosen.  

Differential evolution algorithms are parallel direct search methods where N different 

vectors collecting the unknown parameters of the system are used in the minimization 

process. The vector population is chosen randomly or by adding weighted differences 

between vectors obtained from the old population. 
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6.2 Differential evolution algorithm 

Differential Evolution is a heuristic direct search approach where NP vectors 

indicated by 

,	ீ,௜ܠ ݅ ൌ 1,2, … , ܰܲ 

are used at the same time. Subscript G indicates the Gth generation of parameter vectors, 

called population. Vectors ܠ௜,ீ	 have D components, being D the number of optimization 

parameters. 

The algorithmic scheme of the DE approach is shown in figure (6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Flowchart of Differential Evolution Algorithm. 
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First of all, the initial population (NP vectors) is chosen randomly over the definition 

domain of identification parameters.  

 

Then, DE generates a new set of parameter vectors (called mutant vectors) by the 

Mutation operation, in fact for each vector of Gth population 

,	ீ,௜ܠ ݅ ൌ 1,2, … , ܰܲ 

a new trial vector ܞ௜,ீ  is generated by adding to ܠ௜,ீ the difference between two other 

vectors of the same population. Actually three different combination strategies can be used 

for the mutation process: the “random” combination, the “best” combination, and an 

intermediate combination called “best-to-rand”. 

In the random combination, figure (6.2), the mutant vector is generated according to 

the following expression  

௜,ீାଵܞ ൌ ீ,௥భܠ ൅ ܨ ∙ ሺܠ௥మ,ீ െ  ௥భ,ீሻ       (6.1)ܠ

where 

rଵ, rଶ, rଷ 	 ∈ ሼ1,2, … ,ܰܲሽ 

are mutually different integer numbers. Moreover, F is a positive constant (scale 

parameter) controlling the amplitude of the mutation. Usually the scale parameter F is 

taken equal to 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Mutation operation (random combination). 
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“Best” combination is similar to random combination, but the mutant vector is 

defined as: 

௜,ீାଵܞ ൌ ீ,௕௘௦௧ܠ ൅ ܨ ∙ ሺܠ௥భ,ீ െ  ௥మ,ீሻ       (6.2)ܠ

where ܠ௕௘௦௧,ீ  is the vector giving the minimum value of the objective function (best vector) 

of Gth population. Finally, in the “best-to-rand” combination, the mutant vector is 

generated according to the expression: 

௜,ீାଵܞ ൌ ீ,௜ܠ ൅ ܨ ∙ ሺܠ௕௘௦௧,ீ െ ܨ௜,ீሻܠ ∙ ሺܠ௥భ,ீ െ  ௥మ,ீሻ       (6.3)ܠ

The effectiveness of one method depends on the regularity of the objective function. For 

regular functions with only one (global) minimum, “best” combination converges more 

rapidly, because the best vector obtained from the previous generation is taken as the basic 

vector. In the presence of local minima, “random” or “best-to-rand” combinations are best 

choices, because convergence to local minima can be avoided. 

 

Then, in the Crossover operation, a new set of trial vectors is generated by selecting 

some components of mutant vectors and some of original vectors. This is done in order to 

increase the diversity of the vectors. The trial vector ܝ௜,ீାଵ is obtained by randomly 

exchanging the values of optimization parameters between the original vectors of the 

population ܠ௜,ீ and those of mutant population vi,G+1, figure (6.3): 

௜,ீାଵܝ ൌ ሺuଵ௜,ீାଵ, uଶ௜,ீାଵ, … , u஽௜,ீାଵሻ 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Crossover operation. 
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where 

u௝௜,ீାଵ ൌ ൜
νଵ௜,ீାଵ					݂݅	݀݊ܽݎሺ݆ሻ ൑ ܴܥ
ሺ݆ሻ݀݊ܽݎ	݂݅										ீ,௝௜ݔ ൐  ܴܥ

The subscript j=1,2,…,D , where D is the number of optimization parameters, and u௝௜ is the 

jth component of vector ܝ௜. Moreover, rand(j) is the jth value of a vector of uniformly 

distributed random numbers, and CR is the crossover constant, with 0 < CR < 1. Constant 

CR indicates the percentage of mutations considered in the trial vector. 

 

Selection operation is then used to decide if a vector ܝ௜ may be element of new 

population of generation G+1, each vector ܝ௜,ீାଵ is compared with the previous vector 

 ௜,ீାଵ isܝ  ,ீ,௜ܠ ௜,ீାଵ gives a smaller value of objective function H thanܝ ௜,ீ. If vectorܠ

selected as the new vector of population G+1; otherwise, the old vector ܠ௜,ீ is retained: 

௜,ீାଵܠ ൌ ൜
௜,ீାଵሻܝሺܪ	݂݅					௜,ீାଵܝ ൏ ௜,ீሻܠሺܪ
௜,ீାଵሻܝሺܪ	݂݅										ீ,௜ܠ ൒ ௜,ீሻܠሺܪ

 

with i=1,2,...,NP. 

 

In the convergence rule, values of the objective function obtained from the 

population G+1 are compared. Vectors are ordered depending on values of objective 

function as:  

෤ଵ,ீାଵܠ ≺ ෤ଶ,ீାଵܠ ≺ 	… 	≺  ෤ே௉,ீାଵܠ

such that: 

෤ଵ,ீାଵሻܠሺܪ ൏ ෤ଶ,ீାଵሻܠሺܪ ൏ 	… 	൏  ෤ே௉,ீାଵሻܠሺܪ

Convergence rule is then based on the difference of values H of the objective function of 

the first NC vectors and the distances between the same vectors, NC being the number of 

controlled vectors. The first, convergence test can be expressed as: 

Δ௜
ு ൌ

หܪሺܠ෤௜,ீାଵሻ ൏ ෤௜ାଵ,ீାଵሻหܠሺܪ

หܪሺܠ෤௜,ீାଵሻห
൏ ܸܴܶଵ       (6.4a) 

where NCi ,...,1  and VTR1 is the prescribed precision. 

Control of values of objective function H only can be insufficient when the object function 

has a low gradient close to the minimum solution. For this reason, convergence requires 

also that the relative distance between the components of the first NC vectors is small, i.e.: 



 

56 
 

Δ௜௝
௫ ൌ

หݔ෤௝௜,ீାଵ ൏ ෤௝௜ାଵ,ீାଵหݔ

หݔ෤௝௜,ீାଵห
൏ ܸܴܶଶ      (6.4b) 

 

Bound constraint usually is used  in engineering applications, so that the 

optimization parameters are constrained to belong in given intervals, i.e., 

ீ,௝ݔ 	 ∈ ,௝,௠௜௡ݔൣ  ௝,௠௔௫൧ݔ

where j = 1,2, ..., D and D is the number of the optimization parameters. 

Introducing bound constraints is useful in order to restrain the analysis to ranges of 

identification parameters which are meaningful from the physical point of view. To this 

purpose, a projection algorithm is introduced. When a vector out of range after the mutant 

operation is obtained, its projection on the prescribed interval of parameters is considered, 

figure (6.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Bound constraint procedure. 
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6.3 The response surface method 

The basic concept of the response surface method is to approximate the original 

complex or implicit cost function using a simple and explicit interpolation function. The 

idea of the surface response method (RSM) is that a cost function can be defined, such as: 

۶ ൌ gሺܠሻ        (6.5) 

where x denotes the D-dimensional vector of design parameters and g(x) is called response 

function. If g(x) is a continuous and differentiable function, it can be locally represented 

with a Taylor series expansion from an arbitrary point xk : 

ܪ ൌ gሺܠ୩ሻ ൅ ܘ୩ሻ்ܠgሺ׏ ൅
1
2
 (6.6)        ܘ୩ሻܠଶgሺ׏ܘ

where ׏gሺܠ୩ሻ and 2׏gሺܠkሻ are, respectively, the gradient vector which contains the first-

order partial derivatives of function g and the Hessian matrix (second-order partial 

derivatives) evaluated at xk. Many practical evaluation techniques are available to define 

g(x). Among those methods, reduction of Eq. (6.6) to a polynomial expression is the idea 

of RSM.  

In classical RSM, the response surface is obtained by combining first or second order 

polynomials fitting the objective function defined in a set of sampling points. Second order 

approximations are commonly used in structural problems due to the computational 

efficiency with acceptable accuracy. Higher order polynomials are rarely used because the 

number of coefficients to be determined strongly increases with the order. Furthermore, 

some authors used quadratic polynomials without the cross terms, originating incomplete 

polynomials.  

Adopting a second-order approximation function, Eq. (6.6) can be written as follows: 

ܪ ൌ
1
2
ܠۿ୘ܠ ൅ ܠ୘ۺ ൅  ଴        (6.7)ߚ

where Q is a DD coefficient matrix collecting the quadratic terms, L is a D-dimension 

vector of linear terms and 0ߚ is a constant. Without loss of generality and for the sake of 

simplicity, in the following only 2 parameters (x1, x2) will be considered. Therefore, 

Eq.(6.7) can be written as follows: 

ܪ ൌ ଴ߚ ൅ ଵݔଵߚ ൅ ଶݔଶߚ ൅ ଵݔଷߚ
ଶ ൅ ଶݔସߚ

ଶ ൅  ଶ        (6.8)ݔଵݔହߚ
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where coefficients  are unknowns. In this method, response surface function includes the 

first and second order terms. 

If NS observations are available, Eq. (6.8) can be expressed in a linear matrix 

notation as: 

ࡴ ൌ ܈ ∙ ઺        (6.9) 

where: 

܈ ൌ

ۏ
ێ
ێ
ۍ 1 ଵ,ଵݔ
1 ଵ,ଶݔ
⋯
1

⋯
ଵ,ேௌݔ

				

ଶ,ଵݔ ଵ,ଵݔ
ଶ

ଶ,ଶݔ ଵ,ଶݔ
ଶ

⋯
ଶ,ேௌݔ

⋯
ଵ,ேௌݔ
ଶ

					

ଶ,ଵݔ
ଶ ଶ,ଵݔଵ,ଵݔ
ଶ,ଶݔ
ଶ ଶ,ଶݔଵ,ଶݔ
⋯
ଶ,ேௌݔ
ଶ

⋯
ےଶ,ேௌݔଵ,ேௌݔ

ۑ
ۑ
ې
      (6.10) 

and 

۶ ൌ

ۏ
ێ
ێ
ۍ
,ଵ,ଵݔଵሺܪ ଶ,ଵሻݔ
,ଵ,ଶݔଶሺܪ ଶ,ଶሻݔ

⋮
,ଵ,ேௌݔேௌሺܪ ےଶ,ேௌሻݔ

ۑ
ۑ
ې
      (6.11) 

And the vector β collects the unknown parameters of the response surface determined by 

applying the least square estimates method: 

઺ ൌ ሺ܈୘܈ሻିଵ܈୘۶      (6.12) 

In Eq.(6.12), all coefficients  have equal weight. However, a good RSM must be 

generated such that it describes the cost function well close to the solution point. The 

following weighted regression method is proposed to determine the coefficients of the 

RSM:  

઺ ൌ ሺ܈୘܈܅ሻିଵ܈୘(6.13)      ۶܅ 

where W is an NSNS diagonal matrix of weight coefficients. For them, the following 

expression can be used: 

௜ݓ ൌ exp ቆെ
gሺܠ௜ሻ െ ௕௘௦௧ܪ

௕௘௦௧ܪ
ቇ      (6.14) 

where 

௕௘௦௧ܪ ൌ min൫gሺܠ௜ሻ൯      (6.15) 

Many algorithms have been proposed to select appropriate set of sampling points xk, in 

order to obtain better fitting of response function, [17]. 
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INITIAL POPULATION ( NP POINTS)

BEGIN

CONVERGENCE TEST END
YES

     RANDOM SELECTION OF  NP  
 GROUPS CONTAINING  Z  POINTS

       HAS THE 
 APPROXIMATION 
      FUNCTION 
     A MINIMUM ?

           EVALUATION OF  NP  
     SECOND-ORDER FUNCTIONS 
 STARTING TO SELECTED POINTS

       EVALUATION OF BEST 
 MEMBER OF THE POPULATION

      EVALUATION OF MINIMUM OF 
     SECOND-ORDER FUNCTION BY  
  MEANS OF STANDARD ALGORITHM

        MUTATION OPERATION - 
 MUTANT VECTOR IS OBTAINED 
  WITH A LINEAR COMBINATION 

CROSSOVER OPERATION

NO

FOR EACH  NP  GROUP 

          MUTATION OPERATION - 
  MUTANT VECTOR IS THE MINIMUM 
 OF SECOND ORDER APPROXIMATION

OPERATION OF SELECTION

BOUND CONSTRAINT

YES

NO

6.4 DE algorithm with a second-order approximation 

The RSM methodology is introduced in Differential Evolution algorithm to improve 

performance in term of speed rate and to obtain higher precision of results. The algorithmic 

scheme of the modified DE algorithm by the use of a quadratic response function (called in 

the following DE-Q) is shown in figure (6.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: DE-Q algorithm flowchart. 
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First, the initial population is selected randomly. At each iteration, NP sets 

containing NS vectors are chosen (with NS<NP). Starting from the NS sampling points, a 

RS is calibrated to fit the cost function H, Eq.(6.7). Solving the linear system of Eq.(6.13), 

coefficients  can obtained and, from them, it can be checked if the RS function has a 

convex shape evaluating the Q matrix eigenvectors. If it is the case of figure (6.6a), the 

new parameter vector is defined as the minimum of a second-order polynomial 

approximation as: 

௜,ீାଵܞ ൌ ሻ∗ܠሺܪ|∗ܠ ൌ min g ሺܠሻ      (6.16) 

Otherwise, figure (6.6b), classical Mutation operation based on linear combination is 

performed to obtain the trial vector vi,G+1 Crossover and Selection operations are then 

defined as in the original DE algorithm. 

 

 

 

 

 

 

 

 

 

 

It is worth noting that the shape of objective function is usually unknown. If it 

presents only one (global) minimum, second-order approximation provides for the solution 

in a very low number of iterations. On the other hand, even if local minima are present, 

Figure 6.6: Approximation of cost function by quadratic response surface: a) positive convex shape, b)
negative convex shape, c) response surface minimum gives an higher value of the cost function d)
approximation of the cost function near the solution. 

a) b)

c) d)
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global minimum is expected to be reached since multiple search points are used 

simultaneously. Moreover, if the minimum of second order approximation gives a higher 

values of cost function as in figure (6.6c), it can be rejected in the Selection operation (the 

old vector xi,G is retained). Finally, in order to detect the global minimum, several 

evaluations must be performed by using Genetic and Evolutionary algorithms, in order to 

obtain the prescribed precision. Close to the solution figure (6.6d), the second-order 

approximation gives very good performance in term of speed rate and higher accuracy with 

respect to the original algorithm. 

For these reasons, global performance in term of speed rate is strongly improved by 

introducing the second order approximation by RSM and high precision of results of the 

original DE algorithm is preserved. 
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6.5 Optimization algorithm application 

In this section the application of DE-Q algorithm to the Pontelagoscuro railway 

bridge, object of the present study, is described. More details concerning the algorithm are 

given in [15].  

The aim of the updating procedure is to obtain vibration frequencies and modal 

shapes of the model as close as possible to those of the real structure.  

First, the parameters to be optimize must be chosen. There are many parameter that 

may influence the dynamic behavior of the structure such as masses, elastic moduli, 

stiffness of external constraints, etc.  

Analyzing the situation of the real structure has been chosen to formulate an 

optimization process leaving as unknown the two following mechanical parameters: 

- density of the lower elements (Minf) 

- density of the upper elements (Msup) 

In fact by varying the density of the material and consequently the mass it is possible to 

vary also the frequencies of the system. Moreover varying the density of the material has a 

physical meaning, in fact in the model are taken into account only the masses of the 

structural elements, and so all the masses of the other elements as rivets, bolts, gusset 

plates, sleepers and all the other non-structural elements mainly located at the railway 

tracks level have been neglected. 

Furthermore in the first model the supports at the two ends are treated as fixed 

hinges, but indeed looking at figure (6.12) it can be more truthful to consider at one side a 

double pendulum supports or roller supports. This aspect is confirmed also by the non-

symmetrical experimental modal shapes.  

Therefore the unknown parameters have been searched in limited significant intervals from 

a physical point of view: 

௜௡௙ܯ - ൌ ሾ12150 ൊ 27850	Kg/mଷሿ 

௦௨௣ܯ - ൌ ሾ7850 ൊ 15850	Kg/mଷሿ 

In fact the relation inserted in the code are the following: 

௜௡௙ܯ - ൌ 20000 ൅ 7850 ∗ Corrଵ 

௦௨௣ܯ - ൌ 11850 ൅ 4000 ∗ Corrଶ 
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where the correct factors (Corrଵ and Corrଶ) may assume values from -1 to 1. In this way 

the components of the population vectors are the correction factors (1, 2) that optimize the 

above expressions. 

Actually in DE-Q algorithm are used 15 vectors ሺܰܲ ൌ 15ሻ that form the population, 

and each of them is done by 2 components (the two unknown parameters). The 

convergence test is imposed by the control of the relative error among 3 elements of the 

population ሺܰܥ ൌ 3ሻ, and the convergence is satisfied when the results are lower than the 

constants ܸܴܶଵ ൌ 10ିଷ and ܸܴܶଶ ൌ 10ିଶ,[13]. 

The numerical tests are performed by adopting, as input data, frequencies and mode 

shape vectors; first, the experimental and the numerical modes are coupled by using the 

MAC (Modal Assurance Criterion) defined as 

ܥܣܯ ൌ
൫ࣘ௘௫௣

் ࣘ௡௨௠൯
ଶ

൫ࣘ௘௫௣
் ࣘ௘௫௣൯ሺࣘ௡௨௠

் ࣘ௡௨௠ሻ
      (6.17) 

MAC is a correlation coefficient between two set of parameters. It assumes values from 0 

to 1: zero is obtained when the two modes are completely uncorrelated and so orthogonal, 

while one is obtained when the two modes coincide. 

Then, the objective function to be minimized during the identification procedure is 

defined as the relative error between modal frequencies and mode shapes obtained 

adopting a given set of identification parameters ሺ߱௜,௡௨௠,ࣘ௜,௡௨௠ሻ and the reference 

solution ሺ߱௜,௘௫௣, ࣘ௜,௘௫௣ሻ, as 

ܪ ൌ෍൥ݓଵ ቆ
߱௜,௡௨௠ െ ߱௜,௘௫௣

߱௜,௘௫௣
ቇ
ଶ

൅ ௜ܦܯଶܰݓ
ଶ൩

ே

௜ୀଵ

      (6.18) 

where NMD is the so called “Normalized Modal Difference” defined as: 

௜ܦܯܰ ൌඨ
1 െܥܣܯሺࣘ௜,௡௨௠, ࣘ௜,௘௫௣ሻ
,ሺࣘ௜,௡௨௠ܥܣܯ ࣘ௜,௘௫௣ሻ

      (6.19) 

In Eq. (6.19), ܰ ൌ 4 first mode shapes are considered, and ݓଵ and ݓଶ are weight 

constants. 
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6.6 Obtained results 

Running the analysis, the results obtained from the optimization process are: 

௜௡௙ܯ - ൌ 14378	Kg/mଷ  

௦௨௣ܯ - ൌ 11224	Kg/mଷ  

Therefore in agreement to what already said, the algorithm try to associate a higher 

value of the density to the bottom elements and lower value, but still higher in respect to 

the nominal steel density, to the upper elements.  

Performing a modal analysis, the first four new computed frequencies are very close 

to those of the real structure. In fact, now the first mode, that is the first lateral mode, has a 

frequency of  2.166 Hz; the second mode, that is vertical mode, has a frequency of 3.638 

Hz; the third mode, that is torsional, has a frequency of 4.409 Hz; and the fourth mode, that 

is the second lateral, has a frequency of 4.749 Hz.  

The first four mode shapes of the bridge are shown in figure (6.7) - (6.10). 

Figure 6.7: 1st mode shape at 2.166 Hz.. 
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Figure 6.8: 2nd mode shape at 3.638 Hz.. 

Figure 6.9: 3rd mode shape at 4.409 Hz. 
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At this point it is interesting to evaluate the goodness of the obtained results 

computing the relative errors between the numerical and experimental frequencies and 

modal shapes.  

As for the frequencies they are compared in table (6.1), where the errors are 

computed simply as: 

ݎ݋ݎݎܧ ൌ
߱௡௨௠ െ ߱௘௫௣

߱௘௫௣
      (6.20) 

 

Mode Experimental frequency Numerical frequency Error 

1st 2.143 Hz 2.166 Hz 1,07 % 

2nd 3.857 Hz 3.638 Hz 5.68 % 

3rd 4.307 Hz 4.409 HZ 2.37 % 

4th 4.700 Hz 4.749 Hz 1.04 % 

 
Table 6.1: Comparison between experimental and optimized numerical frequencies. 

Figure 6.10: 4th mode shape at 4.749 Hz. 
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As regards the modal shapes the comparison is performed using the already 

discussed MAC coefficient computed through the Eq. (6.17). The two set of parameters in 

correlation are the experimental mode shapes of table (5.3) and the acquired numerical 

mode shapes, table (6.2), which values are taken directly from the model, in points 

representative of those monitored in situ. 

Numerical mode shapes 

Node 1st Mode 2nd Mode 3rd Mode 4th Mode 

B2a (z)   260 1.6106 -0.01350 2.3368 -1.5953 

B2a (y)   260 0.46489 2.4068 1.4612 0.21681 

B2b (y)   656 0.45401 2.4358 -1.4172 -0.22332 

B2c (z)   185 2.8339 0.01646 -1.4250 -2.2408 

B3a (z)   232 1.9474 -0.01522 3.1013 -0.47760 

B3a (y)   232 -0.51560 2.7792 1.5616 -0.17035 

B3b (y)   606 0.50345 2.8119 -1.5120 0.15547 

B3c (z)   195 3.0845 0.01672 -0.82267 -0.05436 

B4a (z)   2576 1.8596 -0.01001 2.6964 0.84255 

B4a (y)   2576 -0.50954 2.3757 1.3749 -0.53048 

B4b (y)   2687 0.49903 2.4056 -1.3320 0.51122 

 

Therefore, looking at table (6.1) and figure (6.11), it is possible to say that the first 

numerical mode is very well representative of that of the real structure with very minimal 

error differences both in frequencies and in mode shapes. The second mode has the higher 

error regarding the frequencies but is still acceptable since it has in any case about ninety-

four percent of frequency accuracy, and it is very well representative regarding the mode 

shape. Concerning the third mode it has great frequencies accuracy, but it exhibits the 

lower correlation coefficient as regards the mode shape. Looking at the experimental data 

it is clear that this is a little bit strangely deformed shape, and it is very difficult to 

understand which parameters govern this mode shape. The fourth mode has an optimal 

frequencies correlation, and a worse but still acceptable MAC coefficient. 

 

Table 6.2: Optimized numerical mode shapes. 
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In conclusion a very fine and accurate model, that very well fit the dynamic behavior 

of the real structure, is been obtained though the use of this optimization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: MAC correlation coefficients. 
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7. 2D MOVING LOADS VS. VBI  MODELS 

APPLICATION 

7.1 Introduction 

In this section some preliminaries two-dimensional dynamic analyses of the 

Pontelagoscuro railway bridge using two way of representing the traveling trains are 

carried out. The first way is to represent the trains as a sequence of moving loads as 

explained in chapter 3, whereas the second way is to represent the trains as a sequence of 

two-dimensional car in which the vehicle-bridge dynamic interaction is taken into account, 

as explained in chapter 4. 

The aim of these first dynamic analyses is to understand the differences that can be 

obtained using moving loads model and VBI model. Moreover it will be investigated the 

main parameters that govern this kind of problem, especially in the case of vehicle-bridge 

interaction. 

In lack of information regarding the actual trains that daily cross the bridge, those 

given by the Eurocode 1 to perform fatigue analyses will be used. Furthermore for VBI 

analyses the train parameter given in [2] will be used. 
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7.2 Bridge model setting 

As already said the objective of this section is to perform some preliminaries 

dynamic analysis of the bridge solving the 2D problem of a train crossing as described in 

chapter 3, when the train is represented as a sequence of moving loads, or as in chapter 4 

when more sophisticated models are used.  

It is underlined that the equations of motion solved to perform the dynamic analysis 

are those in real coordinates as in Eq. (1.7) rewritten in the following for clarity: 

ሷ࢛ࡹ ൅ ሶ࢛࡯ ൅ ࢛ࡷ ൌ  ሻݐሺ࢖

where ࡯ ,ࡹ and ࡷ are the mass, damping and stiffness matrices of an equivalent beam-

bridge model discretized in some number of elements as described in chapter 3.2, and 

figure (3.2). For this reason to compute ࡯ ,ࡹ and ࡷ an equivalent mass per meter of bridge 

length and stiffness ܫܧ is needed.  

The procedure to obtain those quantities is very simple. In fact running a static 

analysis of the model with only the self-weight of the structure it is possible to obtain the 

reaction forces as in figure (7.1). The sum of the reaction forces divided by the gravity 

acceleration and the length of the bridge gives the mass per meter of length of the bridge. 

 

 

Knowing that the bridge is 59.40 m long, the mass per meter of length is obtainable as 

݉ ൌ
4 ∙ 552240

݃ ∙ ܮ
ൌ
4 ∙ 552240
9.81 ∙ 59.40

ൌ 3790.81  (7.1)       ݉/݃ܭ

Figure 7.1: Reaction forces due to the self weight of the bridge. 
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In order to get an equivalent stiffness ܫܧ, and in particular fixing ܧ geta an equivalent ܫ, a 

known force can be applied at the mid-span of the model and the relative displacement 

measured. Then this displacement should be equal to the displacement of a simply 

supported beam loaded by the same force as shown in figure (7.2).  

 

 

 

 

 

 

 

 

 

The deflection of a simply supported beam subjected to a point load located at the half 

span is 

ߜ ൌ
ܨ ∙ ଷܮ

48 ∙ ܧ ∙ ܫ
        (7.2) 

Therefore inverting the formula and fixing ܧ ൌ  as in table (5.4), it is ܽܲܯ	200000

possible to obtain an equivalent moment of inertia  

ܫ ൌ
ܨ ∙ ଷܮ

48 ∙ ܧ ∙ ߜ
ൌ

100000 ∙ 59.40ଷ

48 ∙ 2 ∙ 10ଵଵ ∙ 0.00160
ൌ 1.3645 ݉ସ        (7.3) 

Finally, inserting all the parameters in the 2D beam-bridge model, presented in 

chapter 3.2, as the length, the number of elements used to discretize it, the mass per meter 

length, the elastic modulus and the inertia moment, allows to compute the frequencies of 

the simplified system and compare them with the real and the finite elements model as in 

table (7.1). 

Mode 
Frequency 

real structure 
Frequency 

2D beam-bridge model 

1st Vertical 
2nd Vertical 

3.857 Hz 
9.804 Hz 

3.778 Hz 
15.106 Hz 

 

Figure 7.2: Procedure to get an equivalent stiffness EI. 

Table 7.1:Comparison between experimental and models frequencies. 
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Hence the 2D beam-bridge model has the first vertical frequency that is very close to 

the real and the 3D FEM structures, while the second is not so close. However this 

approximation can be accepted because is the first mode that governs mainly the motion of 

the system.  
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7.3 Train data 

In this section will be illustrated the characteristics of the trains used to make a 

comparison between two ways for representing the train passing over the 2D beam-bridge; 

that are the moving loads and the vehicle-bridge interaction (VBI) models. Since there are 

no data about the actual trains that cross the bridge, some trains’ models given by the 

Eurocode 1 to perform fatigue analyses will be used.  

In the following, for each train, are reported its characteristics in terms of sum of the 

loads of the overall train  Σܳ, crossing speed ݒ, total length ܮ and distributed load per unit 

length ݍ, with also a scheme from which the distribution of the concentrated axel loads can 

be deduced.  

 

Type 1: Locomotive-hauled passenger train 

Σܳ ൌ ݒ							ܰܭ	6630 ൌ ݉ܭ	200 ݄⁄ ܮ						 ൌ ݍ								݉	262.10 ൌ 25.30	 ܰܭ ݉⁄ 		 

 

 

 

Type 2: Locomotive-hauled passenger train 

Σܳ ൌ ݒ							ܰܭ	5300 ൌ ݉ܭ	160 ݄⁄ ܮ						 ൌ ݍ								݉	281.10 ൌ 18.90	 ܰܭ ݉⁄ 		 
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Type 3: High speed passenger train 

Σܳ ൌ ݒ							ܰܭ	9400 ൌ ݉ܭ	250 ݄⁄ ܮ						 ൌ ݍ								݉	385.52 ൌ 24.40	 ܰܭ ݉⁄ 		 

 

 

Type 4: High speed passenger train 

Σܳ ൌ ݒ							ܰܭ	5100 ൌ ݉ܭ	250 ݄⁄ ܮ						 ൌ ݍ								݉	237.60 ൌ 21.50	 ܰܭ ݉⁄ 		 

 

 

Type 5: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	21600 ൌ 80	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	270.30 ൌ 80.0	 ܰܭ ݉⁄ 		 
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Type 6: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	14310 ൌ 100	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	333.10 ൌ 43.0	 ܰܭ ݉⁄ 		 

 

 

Type 7: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	10350 ൌ 120	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	196.50 ൌ 52.70	 ܰܭ ݉⁄ 		 

 

 

Type 8: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	10350 ൌ 100	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	212.50 ൌ 48.70	 ܰܭ ݉⁄ 		 
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Type 9: Surburban multiple unit train 

Σܳ ൌ ݒ							ܰܭ	2960 ൌ ݉ܭ	120 ݄⁄ ܮ						 ൌ ݍ								݉	134.80 ൌ 22.0	 ܰܭ ݉⁄ 		 

 

 

 

Type 10: Underground 

Σܳ ൌ ݒ							ܰܭ	3600 ൌ ݉ܭ	120 ݄⁄ ܮ						 ൌ ݍ								݉	129.60 ൌ 27.80	 ܰܭ ݉⁄ 		 

 

Type 11: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	11350 ൌ 120	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	198.50 ൌ 57.2	 ܰܭ ݉⁄ 		 
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Type 12: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	11350 ൌ 100	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	212.50 ൌ 53.4	 ܰܭ ݉⁄ 		 

 

From the above trains models it has been possible to obtain the vector that collects 

the distances of the axels relative to the first one, and the vector of the concentrated loads 

as well as the velocity for each train. This data are important because allow to compute the 

nodal reaction forces for each time step. In this way a load history for each node can be 

obtained, and the structural response can be computed for each time step. 

In order to perform VBI analysis the values of the vertical stiffness and vertical 

damping of the primary and secondary suspension systems are needed. In literature there 

are very poor data about the values of these devices and most of them are not reliable 

because refer to Chinese or Japanese trains that in Europe are not used. Moreover the 

trains’ manufacturers do not spread information due to professional secret and copyrights. 

Therefore in the absence of informations the data about the Italian ETR500Y high speed 

train given in [2] will be used for each type of train; the main characteristics are reported in 

table (7.2). 

Item Unit Locomotive Passenger car 

Mass of the bogie ሺܯଵሻ 

Mass of the wheel set ሺܯௐሻ 

Vertical stiffness of the primary suspension system ሺܭ௏ሻ 

Vertical damping of the primary suspension system ሺܥ௏ሻ 

Vertical stiffness of the secondary suspension system ሺܭ௏௏ሻ 

 Vertical damping of the secondary suspension system ሺܥ௏௏ሻ 

Kg 

Kg 

N/m 

N s/m 

N/m 

N s/m 

3896 

2059 

1792200 

15250 

472060 

36250 

2760 

1583 

808740 

7500 

180554 

16250 

 

 

Table 7.2: Dynamic characteristics of the Italian ETR500Y high speed train. 
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It is pointed out that in the following VBI analysis, for passenger and high-speed 

trains it will be used respectively the data for the locomotive and the cars, while for freight 

trains it will be used only the data of the locomotive also for the other wagons.. 
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7.4 Comparison between moving loads model and VBI model 

In this section the dynamic analyses of the bridge will be compared using two ways 

of representing the crossing train; the first one is when the train is modeled as a loads 

sequence (moving loads model), while the second one is when the train is modeled as a 

sequence of 3-DOFs cars as in figure (4.1) (VBI model), for some trains type given in 

chapter 7.3.  

As regards the bridge model, it will be subdivided into 25 beam elements, and so 26 

nodes. Also in the analysis it has been assumed a time step of 0.02 seconds and a Rayleigh 

damping assigning a damping ratio of 2% for the first frequency and the last frequency of 

vibration, as explained in chapter 1.4.  

The results obtained are reported in the following, where for each considered train, 

the displacement of the half span node in time are shown for both moving loads and VBI 

models. Furthermore to better understand the dynamic behavior of the bridge first the 

effects in terms of forces, on a generic node, will be reported. 

As regards the train type 1, the force variation in time on the mid span node using 

both moving loads and VBI models are shown in figure (7.3)(7.4), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Mid span node force variation due to the passage of train type 1 using moving loads model. 
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The above figures show the equivalent vertical nodal forces caused by a passenger 

train on the mid span node. In most of those kinds of trains the locomotive has a bigger 

weight in comparison to the passengers cars, therefore the force peaks are observed in 

correspondence to the passing of the locomotive.  

The main difference is that the peak values are not constant in the VBI model, 

whereas they are constant in the moving loads model. The values difference between the 

two above plots is nothing more that the dynamic part of the force transmitted. The 

dynamic part of the force can be negative as in the initial part of figure (7.4) where the 

peaks are higher in respect to those of figure (7.3) getting an amplification of the total 

force, or positive as in the case of some peaks in the central part of figure (7.4) having a 

reduction of the transmitted total force.  

Another interesting difference is that the first two peaks which are relative to the 

locomotive, in the VBI model have a higher value in respect to those regarding the moving 

loads model. However this is only a local observation, this means that in other nodes the 

transmitted force on the bridge can have different values from node to node when VBI 

model is used. 

 

 

 

Figure 7.4: Mid span node force variation due to the passage of train type 1 using VBI model. 
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Figures (7.5) (7.6) show the displacement in time of the mid span node due to the 

passage of the train type 1 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum displacement of the bridge is about 2.5 cm and 2.7 cm for the moving loads 

model and VBI model respectively. The little differences between the two patterns are the 

amplitude of the oscillations in the central part of the plots and the residual oscillation 

when the train leave the bridge, that are more marked in the moving loads model. 

Figure 7.6: Mid span node displacement due to the passage of train type 1 using VBI model. 

Figure 7.5: Mid span node displacement due to the passage of train type 1 using moving loads model. 
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Moving loads model

VBI model
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In figure (7.7) the two plots are compared to better understand the differences 

between the two results obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

Figures (7.8) (7.9) show the force variation in time on the mid span node due to the 

passage of the train type 2 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Comparison between moving loads and VBI models for train type 1. 

Figure 7.8: Mid span node force variation due to the passage of train type 2 using moving loads model. 
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For the two models the above plots show that the transmitted forces are almost the same, 

suggesting that for this train type may not be a strong dynamic interaction. 

Figures (7.10) (7.11) show the displacement in time of the mid span node due to the 

passage of the train type 2 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: Mid span node force variation due to the passage of train type 2 using VBI model. 

Figure 7.10: Mid span node displacement due to the passage of train type 2 using moving loads model. 
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Moving loads model

VBI model

 

 

 

 

 

 

 

 

 

 

 

 

In the next plot, figure (7.12) the two figures (7.10) (7.11) are compared to better 

understand the differences between the two. 

 

 

 

 

 

 

 

 

 

 

 

 

Indeed figure (7.12) confirms that in this case there is not strong dynamic interaction, in 

fact the two shapes are almost coincident. Also the final residual oscillations are very 

similar in amplitude. The maximum displacement reached for both the model is about 1.7 

cm at more or less one second of the observation time. 

 

Figure 7.11: Mid span node displacement due to the passage of train type 2 using VBI model. 

Figure 7.12: Comparison between moving loads and VBI models for train type 2. 
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As regards the train type 3, the force variation in time on the mid span node using 

both moving loads and VBI models are shown in figure (7.13)(7.14), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case there are some differences of the transmitted forces, in particular moving loads 

model exhibits higher peak values in the central part of the plot. 

Figure 7.13: Mid span node force variation due to the passage of train type 3 using moving loads model. 

Figure 7.14: Mid span node force variation due to the passage of train type 3 using VBI model. 
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Figures (7.15) (7.16) show the displacement in time of the mid span node due to the 

passage of the train type 3 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also in this case the dynamic behavior of the bridge is almost similar when moving loads 

or VBI models are considered, as it is possible to see also in figure (7.17). In fact both the 

models give a maximum displacement of about 1.8 cm at 0.8 seconds and 5.6 seconds, 

which is the moment in which the initial and final locomotive pass at the mid span point of 

the bridge. 

Figure 7.15: Mid span node displacement due to the passage of train type 3 using moving loads model. 

Figure 7.16: Mid span node displacement due to the passage of train type 3 using VBI model. 
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Moving loads model

VBI model
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As regard the train type 5, the force variation in time on the mid span node using both 

moving loads and VBI models are shown in figure (7.18)(7.19), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17: Comparison between moving loads and VBI models for train type 3. 

Figure 7.18: Mid span node force variation due to the passage of train type 5 using moving loads model. 
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The above figures show the trend of the force transmitted by a freight train on the 

mid span node of the bridge. In these kinds of trains the locomotive and the wagons have 

the same weight. The VBI model in this case exhibits substantial higher values of the 

forces transmitted. 

Figures (7.20) (7.21) show the displacement in time of the mid span node due to the 

passage of the train type 5 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19: Mid span node force variation due to the passage of train type 5 using VBI model. 

Figure 7.20: Mid span node displacement due to the passage of train type 5 using moving loads model. 
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Moving loads model

VBI model

 

 

 

 

 

 

 

 

 

 

 

 

In this case the dynamic behavior of the bridge is different if moving loads or VBI model 

are considered, as it is possible to see better in figure (7.22).  In fact very flat bridge 

behaviors without almost any oscillations are obtained for both the models, with the 

exception of the last portion of the VBI model in which little dynamic amplifications are 

kept, but the flat zones have two different displacement values. The moving loads model 

has the flat zone at about 4.8 mm whereas the VBI at about 5.6 mm, with a significant 

difference.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22: Comparison between moving loads and VBI models for train type 5. 

Figure 7.21: Mid span node displacement due to the passage of train type 5 using VBI model. 
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As regards the train type 7, the force variation in time on the mid span node using both 

moving loads and VBI models are shown in figure (7.23)(7.24), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23: Mid span node force variation due to the passage of train type 7 using moving loads model. 

Figure 7.24: Mid span node force variation due to the passage of train type 7 using VBI model. 
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Figures (7.25) (7.26) show the displacement in time of the mid span node due to the 

passage of the train type 7 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also in this case the train used to perform the dynamic analysis is still a freight train, but 

now the dynamic interaction is lower in comparison to the previous case. In this case there 

is only a little amplification in the peak value in the initial part when considering VBI 

model. In fact the VBI plot has a maximum displacement that overcomes the threshold of 

35 mm while this does not happen in the case of moving loads in which the maximum 

displacement is about 33 mm, see in figure (7.27).  

Figure 7.25: Mid span node displacement due to the passage of train type 7 using moving loads model. 

Figure 7.26: Mid span node displacement due to the passage of train type 7 using VBI model. 
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Moving loads model

VBI model
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As regards the train type 9, the force variation in time on the mid span node using both 

moving loads and VBI models are shown in figure (7.28)(7.29), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.27: Comparison between moving loads and VBI models for train type 7. 

Figure 7.28: Mid span node force variation due to the passage of train type 9 using moving loads model. 
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The above figures show the effects caused by an underground on the mid span node, in 

terms of nodal forces. These are light trains, in fact the magnitude of the transmitted force 

are lower in comparison to the other cases. In most of those kinds of vehicles all the cars 

have more or less the same weight. 

Figures (7.30) (7.31) show the displacement in time of the mid span node due to the 

passage of the train type 9 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.29: Mid span node force variation due to the passage of train type 9 using VBI model. 

Figure 7.30: Mid span node displacement due to the passage of train type 9 using moving loads model. 
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Moving loads model

VBI model

 

 

 

 

 

 

 

 

 

 

 

 

As shown by the above figures, for this suburban train, there aren’t big differences 

between the moving loads and VBI models. The only difference is that in this case the 

moving load model exhibits a slightly higher values of the amplitude of the oscillations. In 

fact looking at figure (7.32) the red line that represents the moving load, in the central part 

always remains under the blue line that represents the VBI model. However the maximum 

displacement value is about 1.4 cm for both the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.31: Mid span node displacement due to the passage of train type 9 using VBI model. 

Figure 7.32: Comparison between moving loads and VBI models for train type 9. 
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Figures (7.33) (7.34) show the force variation in time on the mid span node due to the 

passage of the train type 10 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.34: Force variation on the half span node due to the passage of train type 10 using VBI model. 

Figure 7.33: Force variation on the half span node due to the passage of train type 10 using moving loads model. 
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Finally, figures (7.35) (7.36) show the displacement in time of the mid span node due 

to the passage of the train type 10 using both moving loads and VBI models, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above figures show the dynamic behavior of the bridge when an underground is 

passing. Also in this case the differences are minimal as it is possible to see also in figure 

(7.37). In fact the two models exhibit similar shape patterns and almost the same maximum 

displacement of about 1.7	ܿ݉. 

Figure 7.35: Mid span node displacement due to the passage of train type 10 using moving loads model. 

Figure 7.36: Mid span node displacement due to the passage of train type 10 using VBI model. 
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Moving loads model

VBI model

 

 

 

 

 

 

 

 

 

 

 

 

At this point is interesting to compare the just obtained results to those obtained by 

R. Freddi [4]. In fact he had studied the fatigue life of the longer bridge typology as 

prescribed by the guidelines using the same trains given by the EC1.The two bridges 

described in Section 6.1are very similar, therefore similar behavior is expected. Actually he 

has carried out the dynamics analyses using the finite elements model of the bridge 

assigning the load history to each node of the model for each type of train. In the following 

are reported the results of the trains considered also in this paper, obtained by R. Freddi, 

see figure (7.38)-(7.44) 

 

 

 

 

 

 

 

 

 

 

Figure 7.38: Results obtained in [10] for train type 1. 

Figure 7.37: Comparison between moving loads and VBI models for train type 10. 
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Figure 7.39: Results obtained in [10] for train type 2. 

Figure 7.40: Results obtained in [10] for train type 3. 

Figure 7.41: Results obtained in [10] for train type 5. 
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Figure 7.42: Results obtained in [10] for train type 7. 

Figure 7.43: Results obtained in [10] for train type 9. 

Figure 7.44: Results obtained in [10] for train type 10. 
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The graphs just presented are taken from [4], and refer to the displacement in time of 

the mid span node of the considered longer bridge. As it is possible to see the results 

obtained by R. Freddi and those obtained in this paper are very similar both in order of 

magnitude and shape patterns. In this way the two models confirm their validity each other 

since very close results are obtained.  

However, apart little differences between the two models, the global dynamic 

behavior of the bridge is kept with both the models.   
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Moving loads model

VBI model

7.5 Parameters investigation 

Up to now, some dynamic analyses of the bridge for some possible crossing trains, 

using two models for representing them, have been computed. Actually the bridge behavior 

is function of many parameters. Obviously, first of all, it depends on its own dynamic 

properties and so on its length, on its mass per unit length ݉ and bending stiffness ܫܧ. In 

this way the bridge parameters have been changed accordingly to those given in [2] and 

[18], where a simply supported bridge with the following characteristics is considered. The 

bridge has a length L of 34 m, a mass per unit length of ݉ ൌ  and bending ݉/݃ܭ	11400

stiffness ܫܧ ൌ 9.92 ∙ 10ଵ଴. Then a Rayleigh damping of 2% for the first frequency and the 

last frequency of vibration has been assigned. The computed fundamental natural 

frequency of the bridge is now ݂ ൌ  This means that this bridge is a little bit .ݖܪ	4.01

stiffer in respect to the one object of the present study which has fundamental natural 

frequency equal to 3.78 Hz. 

The results obtained using moving loads model and VBI model are compared in 

figure (7.45), where the high-speed train type 1 is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it is possible to see in the above plot, there isn’t a strong dynamic interaction 

when VBI model is used. In fact the two shape patterns are very close each other without 

substantial differences, as instead happens in Pontelagoscuro bridge, see figure (7.7).  In 

Figure 7.45: Mid span node displacement comparison between moving loads and VBI models for train type 
1 using different bridge parameters. 
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VBI model at 90 Km/h

VBI model at 80 Km/h

this case the maximum displacement reached is about 12 mm for both models. This value is 

lower in respect to the one obtained for Pontelagoscuro bridge that is about 25 mm and 27 

mm for moving loads model and VBI model respectively. This result confirms that in 

general more flexible bridges experience more dynamic interactions in respect to stiffer 

bridges. In fact it may happen that a bending frequency of vibration of the bridge matches 

one vertical frequency of vibration of the vehicle causing a dynamic amplification effect. 

Other important parameters that govern the problem are the weight of the trains and 

therefore the transmitted axles loads, the distances between them, as well as the traveling 

velocity. In fact going back to the dynamic analyses performed on the Pontelagoscuro 

bridge and changing the traveling velocity of the train type 5 from 80 Km/h to 90 Km/h a 

slightly different dynamic behavior of the structure is obtained. As showed in figure (7.46) 

at 90 Km/h, the dynamic amplifications kept at velocity of 80 Km/h there are no more 

exhibited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this sense another attempt is done lowering the traveling velocity of the train type 

1 from 200 Km/h to 100 Km/h contrarily to what has been done before for the train type 5 

where the velocity has been increased. The results obtained are shown in figure (7.47). 

Also in this case there is a reduction in the amplitude of the oscillations, although small, in 

the central part of the plot.  

Figure 7.46:Mid span node displacement comparison between moving loads and VBI models for train type 5 
changing the traveling velocity. 
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VBI model at 100 Km/h

VBI model at 200 Km/h
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VBI model wiht train parameters changed 

VBI model with original train parameters

 

 

 

 

 

 

 

 

 

 

 

 

In the case of VBI model, as parameters of the problem there are also the values 

assigned to the suspension elements of the vehicle. In fact looking at Eq. (4.8) (4.12) the 

interaction forces transmitted depend strongly on the values of the stiffness and damping of 

those devices. For this reason a dynamic analysis has been performed doubling that values 

in the cars of the train type 5. The results obtained are shown in figure (7.48).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.47: Mid span node displacement comparison between moving loads and VBI models for train type 
1 changing the traveling velocity. 

Figure 7.48:Mid span node displacement comparison between moving loads and VBI models for train type 5 
changing the springs and dampers values of the vehicle. 
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Therefore increasing the values of the springs and dampers of the vehicle, there is a 

stronger dynamic interaction as is it possible to see in the above figure. In this case it has 

been obtained a maximum displacement higher of about 1 cm for the modified parameters 

train in respect to the train with the original value parameters 

In conclusion there are many parameters that have influence on the results. First of 

all there is the bridge with its properties. If the bridge is stiff then it will be subjected to 

very little displacements and so the vehicle will be not excited strongly and therefore little 

interaction forces will be exchanged. In this case moving loads model and VBI model will 

give approximately the same results. On the other hand flexible structure will be subjected 

to high interaction forces and so the two models could give very different results.   

Finally there are not general rules to establish which parameters are critical in 

general, and each train has to be studied per for itself.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

105 
 

 

8. 3D VBI MODEL APPLICATION 

8.1 Introduction 

The aim of this section is to understand the effects of some crossing trains not only in 

the vertical direction, but including also lateral and torsional vibrations of the bridge 

performing three-dimensional vehicle bridge dynamic interaction analyses. Such analyses 

will provide an insight of what happens not only in the primary elements of the bridge that 

are designed for this purpose, but also on the secondary elements that could not be 

designed to face these effects, as for example the bracing systems. In fact there are very 

poor bracing elements in the bridge as shown in the picture in Chapter 5.1. This may be 

correlated to the fact that the structure is located in a not excessively windy area, and being 

the railway track centered in respect to the centroidal axis, not important torsional and 

lateral effects were expected.  

In this chapter, in order to perform more accurate three-dimensional dynamic 

analyses of the bridge, it has been necessary to rewrite the equations of motion of the 

bridge in modal coordinates, taking into account only the main mode of vibrations of the 

structure. In this way some benefits are obtained; however more detail about this procedure 

will be given in the following. 
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8.2 Three-dimensional dynamic analyses 

As already discussed in Section 4 in order to perform VBI analysis the two sets of 

equations of motion of the bridge and of the vehicle are needed. As regards the bridge the 

equations of motion are represented by Eq. (4.13) rewritten in the following for clarity:  

ሷࢂ௕ࡹ ௕ ൅ ሶࢂ௕࡯ ௕ ൅ ௕ࢂ௕ࡷ ൌ  ௕       ( 8.1)ࡼ

with all the terms already specified.  

Actually the finite elements model of the structure has more than 14000 nodes, and 

each of them has 6 degrees of freedom, resulting in a system of about 84000 equations. 

Moreover to obtain ࡹ௕, ࡯௕ and ࡷ௕ of a structure like that is not an easy task. Nevertheless 

a big computational effort will be necessary to solve this kind of problem. To overcome 

these problems modal superposition method can be applied assuming that only the first ଴ܰ 

modes of the bridge are contributing to the response as already explained in Chapter 4.3. 

The equation of motion of the bridge can be rewritten accordingly to Eq. (4.14) as follows: 

ሷࢗ ൅ ௕࡯
ሶࢗ∗ ൅ ௕ࡷ

ࢗ∗ ൌ ௕ࡼ
∗         (8.2) 

where it has been assumed that the eigenvectors are normalized with respect to the mass 

matrix ࡹ௕. Remembering that the vector ࢗ collects the modal coordinates, and the 

matrices ࡯௕
∗ ௕ࡷ ,

∗  and the vector ࡼ௕
∗  are defined as follows: 

௕࡯
∗ ൌ  ષߥ2

௕ࡷ
∗ ൌ ષଶ 

௕ࡼ
∗ ൌ ઴்ࡼ௕ 

where ઴ is the ஽ܰைி ൈ ଴ܰ matrix of eigenvectors and ષ is the ଴ܰ ൈ ଴ܰ diagonal matrix of 

eigenvalues of the considered modes. In this way a very reduced number of equations of 

motion are to be solved and all the terms are easily obtainable. 

In this study only the first four fundamental modes are considered, which are the 

same used in the optimization process. Of these modes, the frequencies and the damping 

ratios are known experimentally, see table (5.2). Therefore the ࡯௕
∗  and ࡷ௕

∗  can be obtained 

directly as: 

௕࡯
∗ ൌ ቎

		0.1750
		0
		0
		0

0
0.4217
0
0

0
0

0.2923
0

0
0
0

1.122

቏        (8.3) 
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and 

௕ࡷ
∗ ൌ ቎

181.286
0
0
0

0
587.481

0
0

0
0

734.505
0

0
0
0

871.967

቏        (8.4) 

As regards ઴, in this case, only the mode shapes of the nodes belonging to the internal 

longitudinal beams which support the sleepers with the railway track are needed, as points 

of applications of the forces transmitted by the train. Therefore computing a modal analysis 

with the finite elements program it has been possible to obtain the mode shape vector ࣘ of 

that points for each considered mode and so ઴. 

Therefore subdividing the length of the bridge into 133 couple of nodes, the ઴ 

matrix dimensions will be 532 ൈ 4, because vertical and horizontal transversal 

displacements are taken into account. Transposing and multiplying it for the vector of the 

external forces 532 ൈ 1 matrix ࡼ௕, ࡼ௕
∗  can be obtained, resulting in a 4 ൈ 1 matrix. As 

already said ࡼ௕ represents the nodal force vector caused by the wheel-rail interaction. It is 

determined by position, movement status and mass of the wheel sets. The horizontal, 

vertical and torsional forces produced by wheel set i of bogie j are computed from the 

equilibrium displacement of wheel, which in this case using the 3D vehicle model of figure 

(4.2) are: 

൞

௒ௐଵܨ ൌ െܯௐଵ ሷܻௐଵ ൅ ுൣܥ2 ሶܻଵ ൅ ݍ ሶܴ௭ଵ െ ݄ଷ ሶܴ௑ଵ െ ሶܻௐଵ൧ ൅ ுሾܭ2 ଵܻ ൅ ௭ଵܴݍ െ ݄ଷܴ௑ଵ െ ௐܻଵሿ

௓ௐଵܨ ൌ െܯௐଵ ሷܼௐଵ ൅ ௏ൣܥ2 ሶܼଵ ൅ ݍ ሶܴ௒ଵ െ ሶܼௐଵ൧ ൅ ௏ሾܼଵܭ2 ൅ ௒ଵܴݍ െ ܼௐଵሿ ൅ ܨீ ଵ																			

ோ௑ௐଵܨ ൌ െܫௐଵ ሷܴ௑ௐଵ ൅ ଵ൫ܾܦ௏ܥ2 ሶܴ௑ଵ െ ሶܴ௑ௐଵ൯ ൅ ଵሺܴ௑ଵܾܦ௏ܭ2 െ ܴ௑ௐଵሻ																																

 

൞

௒ௐଶܨ ൌ െܯௐଶ ሷܻௐଶ ൅ ுൣܥ2 ሶܻଵ ൅ ݍ ሶܴ௭ଵ െ ݄ଷ ሶܴ௑ଵ െ ሶܻௐଶ൧ ൅ ுሾܭ2 ଵܻ ൅ ௭ଵܴݍ െ ݄ଷܴ௑ଵ െ ௐܻଶሿ

௓ௐଶܨ ൌ െܯௐଶ ሷܼௐଶ ൅ ௏ൣܥ2 ሶܼଵ ൅ ݍ ሶܴ௒ଵ െ ሶܼௐଶ൧ ൅ ௏ሾܼଵܭ2 ൅ ௒ଵܴݍ െ ܼௐଶሿ ൅ ܨீ ଶ																			

ோ௑ௐଶܨ ൌ െܫௐଶ ሷܴ௑ௐଶ ൅ ଵ൫ܾܦ௏ܥ2 ሶܴ௑ଵ െ ሶܴ௑ௐଶ൯ ൅ ଵሺܴ௑ଵܾܦ௏ܭ2 െ ܴ௑ௐଶሻ																																

 

൞

௒ௐଷܨ ൌ െܯௐଷ ሷܻௐଷ ൅ ுൣܥ2 ሶܻଷ ൅ ݍ ሶܴ௭ଷ െ ݄ଷ ሶܴ௑ଷ െ ሶܻௐଷ൧ ൅ ுሾܭ2 ଷܻ ൅ ௭ଷܴݍ െ ݄ଷܴ௑ଷ െ ௐܻଷሿ

௓ௐଷܨ ൌ െܯௐଷ ሷܼௐଷ ൅ ௏ൣܥ2 ሶܼଷ ൅ ݍ ሶܴ௒ଷ െ ሶܼௐଷ൧ ൅ ௏ሾܼଷܭ2 ൅ ௒ଷܴݍ െ ܼௐଷሿ ൅ ܨீ ଷ																			

ோ௑ௐଷܨ ൌ െܫௐଷ ሷܴ௑ௐଷ ൅ ଵ൫ܾܦ௏ܥ2 ሶܴ௑ଷ െ ሶܴ௑ௐଷ൯ ൅ ଵሺܴ௑ଷܾܦ௏ܭ2 െ ܴ௑ௐଷሻ																																

 

൞

௒ௐସܨ ൌ െܯௐଵ ሷܻௐସ ൅ ுൣܥ2 ሶܻଷ ൅ ݍ ሶܴ௭ଷ െ ݄ଷ ሶܴ௑ଷ െ ሶܻௐସ൧ ൅ ுሾܭ2 ଷܻ ൅ ௭ଷܴݍ െ ݄ଷܴ௑ଷ െ ௐܻସሿ

௓ௐସܨ ൌ െܯௐସ ሷܼௐସ ൅ ௏ൣܥ2 ሶܼଷ ൅ ݍ ሶܴ௒ଷ െ ሶܼௐସ൧ ൅ ௏ሾܼଷܭ2 ൅ ௒ଷܴݍ െ ܼௐସሿ ൅ ܨீ ସ																			

ோ௑ௐସܨ ൌ െܫௐସ ሷܴ௑ௐସ ൅ ଵ൫ܾܦ௏ܥ2 ሶܴ௑ଷ െ ሶܴ௑ௐସ൯ ൅ ଵሺܴ௑ଷܾܦ௏ܭ2 െ ܴ௑ௐସሻ 																												

 

(8.5) 

where ܨ௒ௐ௜, ܨ௓ௐ௜ and ܨோ௑ௐ௜ (݅ ൌ 1,2,3,4ሻ represent the forces and the moment under the ݅௧௛ 

wheel set. ܯௐ is the mass of the wheel set, ܫௐ is the inertia around the X-axis of the wheel set, ீܨ  
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is the weight on the wheel and D is the gauge of the rail. The wheel-rail forces between nodes are 

transferred to the two neighboring rail nodes ଵܰ and ଶܰ using the following expression: 

ܴଵ ൌ ܨ
ܾ

ܽ ൅ ܾ
 

ܴଶ ൌ ܨ
ܽ

ܽ ൅ ܾ
 

       (8.6) 

with the meaning of the terms explained in next figure (9.1). 

 

 

 

 

 

As regards the vehicle its equations of motion are represented by the Eq. (4.1) 

rewritten in the following as: 

ሷࢂ௩ࡹ ௩ ൅ ሶࢂ௩࡯ ௩ ൅ ௩ࢂ௩ࡷ ൌ ௩         (8.7)ࡼ

with the meaning of all the terms already specified in Section 4.2.  

In order to carry out dynamic analyses of the Pontelagoscuro railway bridge the 

Italian high-speed train ETR500Y is considered as given in [3]. It is composed of a 

locomotive followed by eight passenger cars and another locomotive. The length of the 

locomotive is 19.7 m, while the length of the passenger car is 26.1 m. The average static 

axle loads for the locomotive and passenger cars are 176.4 KN and 112.9 KN, respectively, 

this train will be called in the following as “train type B”. 

The vehicle system can be modeled as in figure (4.2) where each wagons is 

considered as an independent entity with one car body, two bogies and four wheel sets as 

already described in chapter 4.2. 

Due to the lack of information about other trains that travel daily on the bridge, other 

three possible types of trains are considered. The four chosen trains with their 

characteristics are schematized in the following. 

 

 

 

Figure 8.1: Scheme of the equivalent reaction forces.  
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Type A: Locomotive-hauled passenger train 

Σܳ ൌ ݒ							ܰܭ	5300 ൌ ݉ܭ	160 ݄⁄ ܮ						 ൌ ݍ								݉	281.10 ൌ 18.9	 ܰܭ ݉⁄ 	 

 

 

 

 

 

 

Type B: High speed passenger train 

Σܳ ൌ ݒ							ܰܭ	5024 ൌ ݉ܭ	250 ݄⁄ ܮ						 ൌ ݍ								݉	248.20 ൌ 20.24	 ܰܭ ݉⁄ 		 

 

Type C: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	21600 ൌ 80	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	270.30 ൌ 80.0	 ܰܭ ݉⁄ 		 

Type D: Locomotive-hauled freight train 

Σܳ ൌ ݒ							ܰܭ	10350 ൌ 120	 ݉ܭ ݄⁄ ܮ						 ൌ ݍ								݉	196.50 ൌ 52.70	 ܰܭ ݉⁄ 		 
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As shown in Section 7.5 the vehicle’s parameters, as the values of the springs and 

dampers of the suspension system have a very important role. Due to the absence of 

information about these data, in the next analyses those of the Italian ETR500Y high speed 

train given in [3] will be used for all the considered trains; the main characteristics are 

reported in table (8.1). Also in this case as already done in chapter 7, for passenger and 

high-speed trains will be used respectively the data for the locomotive and the cars, while 

for freight trains will be used only the data of the locomotive also for the other wagons. 

 

Item Unit Locomotive Passenger car 

Mass of car body (M2) 

Mass moment of inertia of car body around x-axis (Ix2) 

Mass moment of inertia of car body around y-axis (Iy2) 

Mass moment of inertia of car body around z-axis (Iz2) 

Mass of bogie (M1) 

Mass moment of inertia of bogie around x-axis ሺܫ௫ଵሻ 

Mass moment of inertia of bogie around y-axis ሺܫ௬ଵሻ 

Mass moment of inertia of bogie around z-axis ሺܫ௭ଵሻ 

Mass of wheel set (Mw) 

Mass moment of wheel set (Iw) 

Lateral stiffness of the primary suspension system (KH) 

Vertical stiffness of the primary suspension system (HV) 

Lateral damping of the primary suspension system (CH) 

Vertical damping of the primary suspension system (CV) 

Vertical stiffness of the secondary suspension system (KHH) 

Vertical stiffness of the secondary suspension system (KVV) 

Lateral damping of the secondary suspension system (CHH) 

Vertical damping of the secondary suspension system (CVV) 

Half distance between two wheel-sets (q0) 

Half span of the primary suspension system (b1) 

Half span of the secondary suspension system (b2) 

Car body and the secondary suspension system distance (h1) 

Secondary suspension system and bogie distance (h2) 

Bogie and wheel sets distance (h3) 

Kg 

Kg·m2 

Kg·m2 

Kg·m2 

Kg 

Kg·m2 

Kg·m2 

Kg·m2 

Kg 

Kg·m2 

N/m 

N/m 

N·s/m 

N·s/m 

N/m 

N/m 

N·s/m 

N·s/m 

m 

m 

m 

m 

m 

m 

55976 

53366 

1643086 

1630520 

3896 

3115 

2059 

8107 

2059 

1164 

82821 

896100 

0 

7625 

73035 

236030 

4625 

18125 

1.5 

1.115 

1.0425 

0.915 

0.098 

0.087 

34231 

54642 

1821521 

1760619 

2760 

2304 

2504 

4071 

1583 

753 

3750 

404370 

0 

3750 

32054 

90277 

5000 

8125 

1.5 

0.965 

1.0825 

0.7 

0.12 

0.13 

 

Therefore assigning a time step ∆ݐ ൌ  the weight ,ݒ and knowing the velocity ݏ	0.01

and the relative distances of all the axles of each train, it has been possible to iteratively 

solve the vehicle-bridge dynamic interaction problem by means of the following coupled 

systems of equations as explained in Chapter 4.4 and figure (4.4): 

Table 8.1: Characteristics of ETR500Y high-speed train. 
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Horizontal

Vertical

൜
ሷࢗ ൅ ௕࡯

ሶࢗ∗ ൅ ௕ࡷ
ࢗ∗ ൌ ௕ࡼ

∗

ሷࢂ௩ࡹ ௩ ൅ ሶࢂ௩࡯ ௩ ൅ ௩ࢂ௩ࡷ ൌ ௩ࡼ
         (8.8)

Solving this problem, the interaction forces on the bridge and on the vehicle have 

been computed for each time step, and so nodal loads time history for each kind of train 

have been obtained. Furthermore accelerations, velocities and displacements time history 

for each degree of freedom both for bridge and vehicle have been calculated for all the 

possible train crossing. 

Indeed the problem has been solved imposing an initial condition for the bridge, so 

that also the horizontal and torsional modes could be activate. In particular it has been 

thought to apply an initial moved position of the bridge accordingly to 0.6 times its first 

modal shape (that is the first lateral mode shape). This means to assume a very little initial 

displacement, in fact in this way the mid-span point is moved of about 1 mm in the 

horizontal direction, as the modal shapes are normalized in respect to the mass matrix. 

Some representative obtained results are shown in the following for the four types of 

trains considered.  

 

Analysis “A” 

In that analysis the train type A belonging to the passenger trains is considered. In 

figure (8.2) the displacement in time of the mid span node is plotted both for vertical and 

horizontal displacements.  

 

Figure 8.2: Mid span node displacements due to the passage of train type A. 
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The maximum vertical displacement is 15 mm at about 1 second, that is the moment in 

which the locomotive with its higher weight passes on the mid span point of the bridge. 

Then after 7.5 seconds the train left the bridge and very little remaining oscillations are 

observed. As regards the horizontal displacement, it seems that the imposed initial 

oscillation is not maintained or amplified, on the contrary there is a decline of the 

amplitude of the vibration, as it is possible to see in figure (8.3) where the horizontal 

displacement is plotted alone to better understand the trend.  

 

 

 

 

 

 

 

 

 

 

 

It is also interesting to see the accelerations to which the bridge is subjected during the 

passing of the train, these quantities are plotted in the next figures (8.4) (8.5) for both 

horizontal and vertical directions, referred again to the mid span bottom node. 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: Mid span node horizontal displacement due to the passage of train type A. 

Figure 8.4: Mid span node horizontal acceleration due to the passage of train type A. 
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Both accelerations in the two directions have the same order of magnitude and more 

precisely they are comprised between 0.3 and 0.4 m/s2.  

Although it is not the aim of this research, it can be worth considering also the 

dynamic behavior of the vehicle during its motion on the bridge. Therefore in the 

following figures (8.6) and (8.7) the predicted displacement and acceleration time history 

of the vertical degree of freedom of the second car body (the first passenger car next to the 

locomotive) are shown. It is interesting to note that the obtained results are in agreement to 

those obtained in [3], since the order of magnitude and the period of the oscillations are 

very similar. 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Mid span node vertical acceleration due to the passage of train type A. 

Figure 8.6: Vertical displacement of the car body type A. 
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Analysis “B” 

In that analysis the train type B, that is the ETR500Y high speed train, is considered. 

In figure (8.8) the displacement in time of the mid span node is plotted both for vertical 

and horizontal displacements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: Vertical acceleration of the car body type A. 

Figure 8.8: Mid span node displacements due to the passage of train type B. 
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The maximum vertical displacements are about 11 mm at 0.8 and 3.8 seconds, that also in 

this case represent the moment in which the initial and final locomotives with their higher 

weight pass on the mid span point of the bridge. Then after 4.6 seconds the train left the 

bridge and little remaining oscillations are observed. As regards the horizontal 

displacement, it seems that also in this case the imposed initial oscillation declines in time, 

as it is possible to see in figure (8.9) where the horizontal displacement is plotted alone.  

 

 

 

 

 

 

 

 

 

 

 

 

Also in this case it is interesting to see the accelerations referred to the mid span bottom 

node, see figures (8.10) (8.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9: Mid span node horizontal displacement due to the passage of train type B. 

Figure 8.10: Mid span node horizontal acceleration due to the passage of train type B. 
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The accelerations have similar order of magnitude in respect to the case A, and again they 

are comprised between0.3 and 0.4 m/s2.  

As regards the vehicle response, in the following figures (8.12) (8.13) the 

displacement and acceleration time history of the vertical degree of freedom of the second 

car body (the first passenger car next tothe locomotive) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11: Mid span node vertical acceleration due to the passage of train type B. 

Figure 8.12: Vertical displacement of the car body type B. 
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A vehicle behavior very similar to the previous case is obtained, and once again in 

agreement to the results of [3]. 

 

Analysis “C” 

In that analysis the train type C, belonging to the freight trains is considered. In 

figure (8.14) the displacement in time of the mid span node is plotted both for vertical and 

horizontal displacements.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.13: Vertical acceleration of the car body type B. 

Figure 8.14: Mid span node displacements due to the passage of train type C. 



 

118 
 

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time [s]

D
is

p
la

c
em

e
n

t 
[m

m
]

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

Time [s]

A
cc

el
er

at
io

n
 [

m
/s

2 ]
This kind of train causes similar effects to those given by the train type 5 in the two-

dimensional analyses of chapter 7.4. In fact at about 2.2 seconds the bridge reaches the 

maximum displacement of about 40 mm and then exhibits a flat behavior without hardly 

any oscillations until the train leaves the bridge. In this case the horizontal displacement 

does not decline with time but on the contrary it is a slightly amplified and maintained in 

time. Figure (8.14) shows more in detail the horizontal displacement of the mid span node 

of the bridge. 

 

 

 

 

 

 

 

 

 

 

 

 

Figures (8.15) (8.16) show the accelerations in both directions referred to the mid span. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14: Mid span node horizontal displacement due to the passage of train type C. 

Figure 8.15: Mid span node horizontal acceleration due to the passage of train type C. 
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On the vehicle side the computed displacement and acceleration time histories regarding 

the vertical degree of freedom of the first car body (the locomotive) are shown in the 

following figures (8.17) (8.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.16: Mid span node vertical acceleration due to the passage of train type C. 

Figure 8.17: Vertical displacement of the car body type C. 
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Analysis “D” 

In that analysis the train type D is considered, which, as in the previous case belongs 

to the freight trains. In figure (8.19) the displacement in time of the mid span node is 

plotted both for vertical and horizontal displacements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.18: Vertical acceleration of the car body type C. 

Figure 8.19: Mid span node displacements due to the passage of train type D. 
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The maximum vertical displacement is about 28 mm at 1.5 seconds, that also in this case 

represent the moment in which the locomotive with its higher weight passes on the mid 

span point of the bridge. After 7.5 seconds the train has passed the bridge and little 

remaining oscillations are observed. As regards the horizontal displacement for some 

seconds it is maintained and then it starts to decrease in time, as it is possible to see in 

figure (8.20) where the horizontal displacement is plotted alone.  

 

 

 

 

 

 

 

 

 

 

 

 

As regards the horizontal and vertical accelerations referred to the mid span bottom node, 

they are plotted in figures (8.21) (8.22). 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.20: Mid span node horizontal displacement due to the passage of train type D. 

Figure 8.21: Mid span node horizontal acceleration due to the passage of train type D. 
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Also in this case not relevant differences are obtained in terms of acceleration in respect to 

the previous cases.  

Finally, the vehicle’s computed displacement and acceleration time history regarding the 

vertical degree of freedom of the first car body (the locomotive) are shown in the following 

figures (8.23) (8.24). 
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Figure 8.22: Mid span node vertical acceleration due to the passage of train type D. 

Figure 8.23: Vertical displacement of the car body type D. 
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In this chapter dynamic analyses of the structure using vehicle-bridge interaction 

have been carried out, to obtain for each node the loading history both in vertical and 

horizontal directions. By applying these load histories to the structure model, and running 

dynamic analyses with the finite elements software, it will be possible to obtain the stresses 

load history in the elements of the bridge. In this way it will be possible to evaluate the 

fatigue life of the structure. Anyway more details about this procedure are given in the next 

section, Chapter 9. 

Although it is not question of interest in the present study, it has been interesting to 

see also the dynamic behaviors of the vehicles, which had led to recognize, that with this 

method even the passengers’ traveling comfort could be studied especially in the design 

phases of a new bridge construction.  

 

 

 

 

 

 

 

 

 

Figure 8.24: Vertical acceleration of the car body type D. 
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9. FATIGUE ASSESSMENT 

9.1 General 

The aim of this chapter is to analyze and assess the fatigue life of Pontelagoscuro 

railway bridge, going to investigate the critical points in which the fatigue phenomena 

could appear. 

Fatigue is the process of the progressive and localized structural damage occurring in 

a material when is subjected to cyclic loading. If the maximum stress in the specimen does 

not exceed the elastic limit of the material, the specimen returns to its initial condition 

when the load is removed. A given loading may be repeated many times, provided that the 

stresses remain in the elastic range, figure (9.1). However, when the loadings are repeated 

thousands or millions of times rupture will occur at a stress much lower than static 

breaking strength. This phenomenon is known as fatigue. 

 

 

 

 

 

 

 

 

Figure 9.1: a) Static load; b) Cyclic load. 

a) b) 
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Fatigue is one of the observed modes of possible failure in practice. For this reason, 

fatigue becomes an obvious design consideration for many structures, such as bridges, 

aircraft, railroad cars, automotive suspensions and vehicle frames. For these structures, 

cyclic loads are identified that could cause fatigue failure if the design is not adequate.  

For the fatigue design and verifications, several methods are available. All require 

similar types of information. These are the identifications of candidate locations for fatigue 

failure, the load spectrum for the structure or the element, the stresses or strains at the 

candidate locations resulting from the loads, the temperature, the corrosive environment, 

the material behavior, and a methodology that combines all these effects to give a life 

prediction. Prediction procedures are provided for estimating life using stress life (Stress vs 

Number of cycles curves), hot-spot stresses, strain life, and fracture mechanics. 

The basis of the stress-life method is the S-N curve, that is a plot of alternating stress, 

S, versus cycles to failure, N. In fact since the well-known work of Wöhler in Germany 

starting in the 1850’s, engineers have employed curves of stress versus cycles to fatigue 

failure, which are often called S-N curves (stress-number of cycles) or Wöhler’s curve.  

S-N curves are derived from standardized tests on samples of the material to be 

characterized where a regular sinusoidal stress with a given amplitude is applied by a 

testing machine which also counts the number of cycles to failure. Each test generates a 

point on the log-log plot, with the actual S-N curve that approximates the data from several 

tests, see figure (9.2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Experimental S-N curve. 
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Certain materials, as the steel, have a fatigue limit or endurance limit which 

represents a stress level below which the material does not fail and can be cycled 

infinitely.  If the applied stress level is below the endurance limit of the material, the 

structure is said to have an infinite life. 

Stress-life approach assumes that all stresses in the element stay below the elastic 

limit at all times. It is suitable when the applied stress is nominally within the elastic range 

of the material and the number of cycles to failure is large. The nominal stress approach is 

therefore best suited to problems that fall into the category known as high-cycle fatigue. 

High cycle fatigue is one of the two regimes of fatigue phenomenon that is generally 

considered for metals and alloys. It involves nominally linear elastic behavior and causes 

failure after more than about 104 to 105 cycles.  

The stress-based approach continues to serve as a widespread used tool for the design 

and verifications of metal structures. Comparing the stress-time history at the chosen 

critical point with the S-N curve allows a life estimate for the element to be made. 

Therefore for any fatigue analysis, the starting point is the element response in terms 

of stress time history. If the response time history is made up of constant amplitude stress 

cycles then the fatigue verification can be accomplished by referring to a typical S-N 

diagram. However, because real signals rarely confirm to this ideal constant amplitude 

situation, an empirical approach is used for calculating the damage caused by stress signals 

of variable amplitude. Despite its limitations, Palmgren-Miner rule is used for this purpose. 

This linear relationship assumes that the damage caused by parts of a stress signal with a 

particular range can be calculated and accumulated to the total damage separately from that 

caused by other ranges. 

 

 

 

 

 

 

 

 

 

Figure 9.3: Irregular stress history. 
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When the response time history is irregular with time, as in figure (9.3), rainflow 

cycle counting is used to decompose the irregular time history into equivalent stress of 

block loading. The number of cycles in each block is usually recorded in a stress range 

histogram. This can be used in Palmgren-Miner calculation to obtain the fatigue life. 

More details about the rainflow cycle counting and the Palmgren-Miner rule are 

given is Section 9.2 and 9.3respectively. 
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9.2 Rainflow cycle counting 

The rainflow counting method is used in the analysis of fatigue data in order to 

reduce a spectrum of varying stress into a set of simple stress reversals. The algorithm was 

developed by Tatsuo Endo and M. Matsuishi in 1968, and it is the most popular method 

among the cycle-counting algorithms for such applications. 

The origin of the name of rainflow counting method which is also called ‘Pagoda 

Roof Method’ derives from the fact that if the time axis is vertical then the random stress 

S(t) represents a series of roofs on which water falls. 

The method procedure is illustrated in figure (9.4). First, the stress S(t) is 

transformed into a process of peaks and valleys. Then the time axis is rotated so that it 

points downward. At both peaks and valleys, water sources are considered. Water flows 

downward according to the following rules: 

1. A rainflow path starting at a valley will continue down the “pagoda roofs”, until it 

encounters a valley that is more negative than the origin. From the figure, the path 

that starts at A will end at E. 

2. A rainflow path is terminated when it encounters flow from a previous path. For 

example, the path that starts at C is terminated as shown. 

3. A new path doesn’t start  until the path under consideration has stopped. 

4. Valley-generated half-cycles are defined for the entire record. For each cycle, the     

stress range S୧ is the vertical excursion of a path. The mean μୗ୧ is the midpoint. 

5. The process is repeated in reverse with peak-generated rainflow paths. For a 

sufficiently long record, each valley-generated half-cycle will match a peak-

generated half-cycle to form a whole cycle. 
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In this paper only the rainflow method is treated because it is used to carry out the fatigue 

analysis and verification. Actually other methods exist for such applications which are the 

reservoir method, level crossing cycle counting, peak-valley cycle counting and range 

counting. The reader who is interested in this methods is left to the literature and others 

books. 

Figure 9.3: Rainflow cycle counting. 



 
 

131 
 

9.3 Palmgren-Miner rule 

Almost all available fatigue data for design purposes are based on constant amplitude 

tests. However, in practice, the alternating stress amplitude may be expected to vary or 

change in some way during the service life when the fatigue failure is considered. The 

variations and changes in load amplitude, often referred to as spectrum loading, make the 

direct use of S-N curves inapplicable because these curves are developed and presented for 

constant stress amplitude operations. The key issue is how to use the mountains of 

available constant amplitude data to predict fatigue in a general element. 

Many different cumulative damage theories have been proposed for the purposes of 

assessing fatigue damage and predict failure under conditions of spectrum loading. The 

most widely used model is the Palmgren-Miner rule or linear damage rule.  

Life estimates may be made by employing Palmgren-Miner rule along with a cycle 

counting procedure. The target is to estimate how many of the blocks can be applied before 

failure occurs.  

 

In figure (9.4), a spectrum of amplitudes of stress cycles is described as a sequence 

of constant amplitude blocks, each block having stress amplitude S୧ and the total number 

of applied cycles n୧. The constant amplitude S-N curve is shown in figure (9.5). 

By using the S-N data, number of cycles of Sଵ is found as Nଵ which would cause 

failure if no other stresses were present. Actually a stress amplitude Sଵ for a number of 

cycles nଵ smaller than Nଵ produces a smaller fraction of damage which can be termed as 

Dଵ. 

 

 

Figure 9.4: Rainflow cycle counting. 
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Operation over a spectrum of different stress levels results in a damage fraction D୧ 

for each of the different stress levels S୧ in the spectrum. It is clear that failure occurs if the 

fraction exceeds unity: 

Dଵ ൅ Dଶ ൅ ⋯൅ D୧ ൅ D୩ ൒ 1       (9.1) 

According to the Palmgren-Miner rule, the damage fraction at any stress level S୧ is linearly 

proportional to the ratio of number of cycles of operation to the total number of cycles that 

produces failure at that stress level, that is 

D୧ ൌ
n୧
N୧

       (9.2) 

Then, a total damage can be defined as the sum of all the fractional damages over a total of 

k blocks, 

D ൌ෍
n୧
N୧

୩

୧ୀଵ

       (9.3) 

and the event of failure can be defined as 

D ൒ 1       (9.4) 

The limitations of the Palmgren-Miner rule can be summarized as follows: 

-  Linear: It assumes that all cycles of a given magnitude do the same amount of 

damage, whether they occur early or late in the life. 

Figure 9.5: Constant amplitude S-N curve. 
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-  Non-interactive (sequence effects): It assumes that the presence of Sଶ etc. does not 

affect the damage caused by Sଵ. 

-  Stress independent: It assumes that the rule governing the damage caused by Sଵ is 

the same as that governing the damage caused by Sଶ. 

The assumptions are known to be faulty, however, Palmgren-Miner rule is still used widely 

in the applications of the fatigue life estimates. 
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9.4 Fatigue verification 

The basic steps of the fatigue design and verification process as dictated also by the 

European guidelines are illustrated in figure (9.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6: Cumulative damage method. 
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First of all a typical loading sequence that represents a credible estimate of all 

service load events expected during the fatigue life of the structure should be determined, 

see figure (9.6.a).  

Then a stress history should be determined from the loading events to the structural 

detail under consideration., figure (9.6.b). 

Once stress histories have been evaluated, a cycle counting method, as rainflow or 

reservoir method, is needed to determine stress ranges and their numbers of cycles, figure 

(9.6.c). 

The stress range spectrum should be determined by presenting the stress ranges and 

the associated number of cycles in descending order, figure (9.6.d). 

Finally, obtaining the cycles to failure ோܰ௜ from the ∆ߪ௖ െ ோܰ curve for each band of 

the spectrum ∆ߪ௜, and knowing the number of cycles ݊ா௜ associated with each stress rate 

 :ௗ during the life should be calculated using the Palmgren-Miner ruleܦ ௜, the damageߪ∆

݀ܦ ൌ෍
݅ܧ݊
ܴܰ݅

௡

௜

       (9.5) 

 

In this sense the exact traffic volume and the specific trains crossing the bridge are 

not known. Therefore using the trains presented in chapter 8.2, used to perform the 

dynamic analyses, along with the specifications gives by the Eurocode 1 that provides the 

load scenery, a possible traffic mix has been assumed, see figure (9.7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7: Assumed traffic mix. 
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Hence the assumed daily traffic mix is composed by 24 trains type “A”, 10 trains 

type “B”, 19 trains type “C” and 14 trains type “D”. Using each of these trains a dynamic 

analysis of the bridge has been computed as described and shown in chapter 8.2. As 

already said, performing these analyses it has been possible to obtain for each involved 

node of the bridge the load histories in both vertical and horizontal directions for each 

considered train. By applying the load histories to the nodes of the FEM model, and 

knowing the observation time and the time step, dynamic analyses of the bridge are carried 

out for each type of train.  

These analyses are needed in order to identify the critical points in which higher 

stress are localized, and then to determine stress histories of the elements. In this regard, in 

figures (9.8) (9.9) are shown two plots of the Von Mises equivalent stresses in the bridge at 

2 seconds of the dynamic analysis considering the train type “D”, where the unit of 

measure are in N/m2, that is Pascal.  

 

 

 

Figure 9.8: Von Mises stresses distribution in the bridge [Pa]. 
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In particular in figure (9.9) are highlighted the critical elements in which fatigue 

phenomena could appear as elements in which the stresses are higher. Therefore in 

addition to the bracing system elements, the fatigue life has been assessed in some points 

of those elements which are: 

- Mid span upper chords 

- Mid span lower chords 

- Stringers 

- Floor beams 

- First and second diagonals  

It is interesting to note that the above critical listed elements are in agreement to those 

found in its research by R. Freddi [4].  

In order to perform a fatigue verification of those elements, stress time histories are 

needed at the considered points. In particular for each element the normal stress directed as 

the axial direction of the element itself is taken into account. In this way the stresses time 

histories of some points of the critical elements are shown in the following figure, 

regarding the passage of the train type “D”, remembering that in the same way have been 

obtained the stress histories for all the train types, see Appendix. 

Figure 9.9: Bridge critical points where fatigue phenomena could arise. 
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Mid span upper chord 

First of all the mid span upper chord investigated is put in evidence in figure (9.10), 

remembering that for symmetry the results obtained could be extended directly to the other 

three mid span similar elements. 

 

 

 

 

 

Then in figure (9.11) the trend of the normal stress time history in a point of the element is 

plotted. This element, during the passage of the train type “D”, but in general during the 

passage of all the train types, is characterized mainly by a compressive state behavior. The 

maximum stress in this point reaches the value of about 50 Mpa at 1.4 seconds. It is also 

interesting to see how in this element the shape of the stress time history is similar to the 

plot of the displacement time history of the bridge shown in figure (8.19). 

 

 

Figure 9.10: Mid span upper chord investigated. 

Figure 9.11: Stress time history in a point of the mid span upper chord. 
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Mid span lower chord 

In figure (9.12) the mid span lower chord considered for the fatigue verification is 

highlighted.  

 

 

The normal stress time history in a point of that element is represented in figure (9.13). The 

element during the passage of the trains exhibits mainly a traction behavior reaching a 

maximum value of about 45 MPa at 1.4 seconds. The shape of that plot is very similar to 

the opposite plot of the case before regarding the upper chord. Due to symmetry, also in 

this case the results obtained for this element can be extended to the other similar 

members. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.12: Mid span lower chord investigated. 

Figure 9.13: Stress time history in a point of the mid span lower chord. 
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Stringer 

In the following figure (9.14) the next element considered is highlighted. This element 

belongs to the stringers on which the sleepers and the railway tracks rest.   

 

 

 

 

 

 

 

 

 

 

 

Figure (9.15) shows the trend of the normal stress in a point located at the bottom part of 

the element during the passage of the train type “D”. In general those elements are 

subjected to very high stresses, and in particular to high stress amplitude. In fact in this 

case one peak reaches the value of 140 MPa and some others reach value of 80-90 MPa.  

 

Figure 9.14: Longitudinal beam element investigated. 

Figure 9.15: Stress time history in a point of the longitudinal beam element. 
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Floor beams 

Another category of elements investigated are the floor beams. In figure (9.16) one of these 

members is highlighted.  

 

 

 

 

 

 

 

 

 

 

Those elements are mainly subjected to flexure state as their task is to support the stringers. 

Therefore in figure (9.17) the normal stress in a point located in the wings of that element 

is plotted. In this case the maxim value reached is about 65 MPa, and quite large amplitude 

cycles are recorded.  

 

Figure 9.16: Floor beams investigated. 

Figure 9.17: Stress time history in a point of the floor beams. 



 

142 
 

0 2 4 6 8 10 12
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time [s]

N
o

rm
al

 s
tr

es
s 

[M
P

a
]

First diagonal element 

In the following figure (9.18) the first diagonal element object of the fatigue analysis is 

highlighted. 

 

 

 

 

 

This element, during the passage of the trains, is subjected mainly to compressive stress, 

see in figure (9.19). The maximum stress value reached due to the passage of the train type 

“D” is more or less 35 MPa. Similar behavior is however expected in the diagonal on the 

other side of the bridge, and the last two diagonals of the bridge. 

 

 

 

 

 

 

Figure 9.18: First diagonal element investigated. 

Figure 9.19: Stress time history in a point of the first diagonal element. 
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Second diagonal element 

As already said another critical element could be the second diagonal of the main truss of 

the bridge, highlighted in figure (9.20). 

 

 

Contrary to the precedent case, in this element essentially compressive stress are developed 

when a train passes on the bridge as shown in figure (9.21). The  maximum value reached 

is about 33 MPa and the plot shape is very similar to the mirrored previous plot.. Also in 

this case the results can be extended to the correspondent element in the bridge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.20: Second diagonal element investigated. 

Figure 9.21: Stress time history in a point of the second diagonal element. 
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Bracing system element 

Finally the last category of element investigated are those belonging to the bracing 

systems, as shown in figure (9.22). 

 

 

 

 

 

 

 

 

 

 

 

 

In figure (9.23) the stress time history of a bracing element due to the passage of the train 

type “D” is shown. In particular the plot refers to an upper element of the system. For that 

reason an essentially compressive state of stress is observed in the element. The maximum 

value reached is about 43 MPa.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.22: Bracing system elements. 

Figure 9.23: Stress time history in a bracing system element. 
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Once obtained the stress history in each considered point for each train crossing, then 

a cycle counting algorithm has been applied. In particular is has used a code, developed by 

[16] which deals with multi-axial fatigue phenomena and spectral methods for fatigue life 

assessment. The code has been written in according to the ASTM, and it is made available 

in a directory by Mathworks.  

Therefore in this case giving as input the stress histories in matrix form, the 

algorithm first of all computes the “peak-valley” diagrams and then through the 

implemented rainflow method it performs the cycles counting. Finally at each stress 

amplitude range it associates the right number of cycles. This procedure has been done for 

all the trains types considered and for each investigated point. As example in the following 

plots are shown the histograms that collect the number of cycles for each stress range for 

the previously presented stress time histories regarding the train type “D”, see figures 

(9.24) to (9.30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.24: Histogram related to the stress time history of the mid span upper chord. 
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Figure 9.25: Histogram related to the stress time history of the mid span lower chord. 

Figure 9.26: Histogram related to the stress time history of the stringer. 
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Figure 9.27: Histogram related to the stress time history of the floor beam. 

Figure 9.28: Histogram related to the stress time history of the first diagonal element. 
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Having the stress histories and the correspondent number of cycles for each stress 

amplitude, a suitable S-N curve is needed. The elements are connected by means of rivets. 

Eurocode 3 does not provide any type of detail concerning riveted elements. Therefore two 

approaches are used.  

Figure 9.29: Histogram related to the stress time history of the second diagonal element. 

Figure 9.30: Histogram related to the stress time history of the bracing system element. 
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The first approach is that given by the Italian Railway company, which impose the 

use of the detail category 71, figure (9.31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the detail category 71 curve, the reference fatigue limit at 2 millions of cycles is 

஼ߪ∆ ൌ  ܽܲܯ	71

and the fatigue limit at constant amplitude at 5 millions of cycles is defined as 

஽ߪ∆ ൌ ൬
2
5
൰

ଵ
ଷ
஼ߪ∆ ൌ  ܽܲܯ	52.31

and finally the cut-off limit is computed as 

௅ߪ∆ ൌ ൬
5
100

൰

ଵ
ହ
஽ߪ∆ ൌ  ܽܲܯ	28.73

Once defined the S-N curve it has been possible to determine for each stress range 

 ௜ the correspondent number of cycles ௜ܰ needed to reach failure. Then by using Eq. (9.5)ߪ∆

the damage index for the considered elements have been obtained considering a service 

time for the structure equal to 100 years.  

Figure 9.31: Detail category 71 S-N curve. 
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The second approach is in accordance to what established in [6], which presents a 

different method for evaluating the fatigue life of riveted bridges. Usually only the stress 

range is assumed as the basic parameter for the evaluation of the fatigue strength. This is 

true for details with high stress concentration and residual stress levels, such as welded 

details, but it is very inaccurate for bolted and riveted details, where other factors have 

significant importance. Main factors determining the fatigue strength of a riveted detail 

may be specified as follows: 

- Difference between maximum and minimum stress in the cycle, called stress range ∆ߪ; 

- Ratio between minimum and maximum stress in the cycle called stress ratio R. 

The influence of mean stresses and stress ratio on fatigue strength category is taken 

into account by function ݂ሺܴሻ as follows: 

ሺܴሻܿߪ∆ ൌ ݂ሺܴሻ ∙  (9.6)        0,ܿߪ∆

where ∆ߪ௖ሺܴሻ is the fatigue strength category for the considered detail as a function 

of the stress ratio; ∆ߪ௖,଴ is the fatigue strength category for the considered detail for stress 

ratio ܴ ൌ 0 (fatigue strength category is the stress range in [MPa] of a harmonic sinusoidal 

cyclic variable stresses leading to fatigue crack initiation in considered detail for exactly 

2.106 load cycles); and ݂ሺܴሻ is the correction function which for mild steels (low carbon 

steels with carbon level under 0,25%) is determined by the following formula: 

݂ሺܴሻ ൌ ൞

1 െ ܴ

1 െ 0.6ܴ
݄݊݁ݓ ܴ ൐ 0

		
1 െ ܴ

1 െ 0.4ܴ
݄݊݁ݓ െ 1 ൑ ܴ ൑ 0

       (9.7) 

Correction function ݂ሺܴሻ is represented on Figure (9.32). It is seen that when stress 

ratio increases from -1 to 0 the correction function decreases from at about 1,4 to 1,0 which 

means decrease of fatigue strength category but it is still bigger than category, determined 

for stress ratio 0, see figure (9.33). When stress ratio increases from 0 there is a decrease of 

fatigue strength category in comparison with this determined for stress ratio 0. 
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Using Eurocode S-N line model and stress ratio correction just proposed, number of 

cycles to failure may be obtained as a function of stress range ∆ߪ and stress ratio R as 

follows. 

ܰሺ∆ߪ, ܴሻ ൌ ቐቆ
݂ሺܴሻ ∙ ௖,଴ߪ∆

ߪ∆
ቇ
ହ

∙ 2 ∙ 10଺ ݎ݋݂ ߪ∆ ൐ ி௅ߪ∆

∞ ݎ݋݂ ߪ∆ ൑ ி௅ߪ∆

       (9.8) 

Figure 9.32: Correction function f(Rm) as a function of the stress ratio Rm [6]. 

Figure 9.33: S-N curves for riveted connection discussed in accordance with Eurocode and with different R 
values [6].
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Mid span upper chord 

During the entire service period of structure, the mid span upper chord seems to have 

no fatigue problem, in fact the damage index is well below the 0.1 threshold, for both two 

approaches, as shown in figure (9.34), where five points along the element are 

investigated. 

 

 

 

 

 

 

 

 

 

 

 

Mid span lower chord 

As in the previous case, also for this category of elements there are not fatigue problems. 

In fact as shown in figure (9.35) very low fatigue damage index are obtained, even below 

the 0.01 limit. For this reason this element of the bridge seems to be safe against a possible 

fatigue failure.  

 

 

 

 

 

 

 

 

 

 

Figure 9.34: Mid span upper chord damage. 

Figure 9.35: Mid span lower chord damage. 
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Stringers 

Looking at figure (9.36), appears very clear that these elements result to be critical 

since very high damage values are obtained, as expected. In fact these elements are 

essentially the points of application of the loads and indeed they are subjected to very high 

amplitude stress cycles, see figure (9.15). The damage index obtained in five points located 

at the bottom of one element reach the value of about 22 for the Eurocode approach and 

about 11 for the second approach [6]. So in these beams fatigue problems could arise. 

 

 

 

 

 

 

 

 

 

 

 

Floor beam 

 

 

 

 

 

 

 

 

 

 

Figure 9.36: Stringer damage. 

Figure 9.37: Floor beam damage. 
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As regards the floor beams, when using Eurocode approach, not verified results are 

obtained as shown in figure (9.37). In fact one of the four points investigated in the 

element, which is the point at the connection with the longitudinal beams, is above the 

safety limit. On the contrary using Georgiev theory [6] the results are verified. The other 

two zero value points are located in the two flanges on the side of the element near the 

stiffening plate, in this zone no fatigue problem is highlighted. Therefore as for the 

previous elements category an inspection and monitoring plan is strongly suggested for 

these elements. 

 

First and second diagonal elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.38: First diagonal element damage. 

Figure 9.39: Second diagonal element damage. 
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For all the five points investigated for each of the two considered diagonal elements 

very low fatigue damage values are founded, meaning that these elements result safe over 

the entire service life of the bridge, figures (9.38) (9.39).  

 

Bracing system elements 

The upper and lower bracing system elements seem to be safe in respect to a possible 

fatigue failure, in fact very low values of accumulated damage is obtained as shown in 

figures (9.40) and (9.41), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.40: Upper bracing system elements damage. 

Figure 9.41: Lower bracing system elements damage. 
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Summarizing in the following table (9.1) for each element are shown the fatigue damages 

evaluated first over the entire service life (100 years), then over 65 years passed since the 

bridge was built and finally the remaining fatigue life evaluated as follows 

ܮܨܴ ൌ
1 െ ௣ܦ
ଵ௙ܦ

       (9.6) 

where ܦ௣ is the accumulated damage in the considered element in the past periods of time 

and ܦଵ௙ is the damage accumulated for one year of future exploitation. 

Fatigue assessment 

Element 

 Eurocode  Georgiev [6] 

Damage 

over 100 

years 

Damage over 65 

years 
RFL 

Damage over 

100 years 

Damage over 

65 years 
RFL 

Mid span upper 
chord 

0.043 0.027 2.28·103 0.013 0.0081 9.75·103 

Mid span lower 
chord 

0.012 0.008 8.43·103 0.0064 0.0041 1.55·104 

Stringer 22.396 14.652 0 10.552 6.753 0 

Floor beam 1.938 1.260 0 0.603 0.386 101.88 

First diagonal 
element 

0.009 0.006 1.16·104 0 0 Inf. 

Second diagonal 
element 

0.009 0.006 1.16·104 0 0 Inf. 

Bracing system 
elements 

0.009 0.006 1.16·104 0 0 Inf. 

 

 

 

 

 

 

 

 

Table 10.1: Summarized fatigue results. 
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10. CONCLUSION AND FUTURE 

DEVELOPMENT 

The main objective of this paper was to assess the fatigue life of an old metallic 

railway bridge that crossing the Po river and connects Pontelagoscuro and Occhiobello 

near Ferrara and Rovigo, respectively. For this aim, to better represent the real situation of 

a crossing train, dynamic interaction model is used to perform dynamic analyses of the 

structure. 

First of all in order to lead the reader through the arguments treated in this paper, 

brief dynamic notions are given. So in the first part of the elaborate SDOF and MDOF 

systems have been presented framing mainly the eigenvalue problem that allows to 

compute frequencies and modal shapes of an elastic system. After that two possible 

methods for solving the equations of motion have been presented; the first one is the 

classical modal analysis that can be used only when there is classical damping, and the 

second one is the Newmark’s numerical time-step method that can be used directly to 

integrate the equations of motions. 

Then some methods to model the vehicles, in this case trains, have been explained, 

starting by the classical way of representing the train crossing by means of moving loads, 

and going to more sophisticated methods that take into account the interaction between the 

vehicle and the bridge. These methods seen the vehicle as an elastic system, and so its 
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motion can be represented by a system of ordinary differential equations as done for the 

bridge. The two systems of equations, for the bridge and the vehicle, are coupled by each 

other due to the interaction between the two subsystems. So to solve this problem iterative 

and non-iterative procedures exist.  

The structure investigated has been the Italian Pontelagoscuro railway bridge dating 

at the forties. In this way a three dimensional finite elements model of the structure has 

been implemented in a finite elements program. Then the model has been calibrated so that 

its own frequencies and eigenmodes were similar to those acquired experimentally by 

means of an optimization process using the so called Differential Evolution algorithm. In 

particular two unknown parameters were indentified, which are the values of the 

equivalent material density of the lower and upper elements of the bridge. 

Once obtained the model that well suited the real structure behavior, a comparison 

between the moving loads and VBI models, has been performed, carrying out some 

dynamic analyses on a 2D equivalent beam-bridge model of the structure solving the 

equation of motion written in real coordinates. The train used to perform the dynamics 

analyses are some of those given by the Eurocode 1 used for the fatigue verifications. As 

regard the dynamic parameters of the trains those relative to the Italian ETR 500Y are used 

since not data are available in literature and by the trains manufacturer.  

Analyzing the obtained results the following conclusion can be done: 

- for light, train moving loads and VBI models generally gives similar bridge 

dynamic responses; 

- for freight trains VBI model gives accentuated values of the bridge displacement in 

time than the moving loads due to the higher counterthrust developed caused by the 

higher mass of the train itself;  

- VBI models could catch effects of dynamic amplifications if the frequencies of the 

vehicle and the bridge are met. 

Finally the results obtained are compared and validated with other results obtained by 

another author using a different procedure. 

Once established the goodness and the benefits of the VBI model, an extension to a 

three dimensional model was done. In this way also lateral and torsional mode shapes of 

the bridge are involved and taken into account. Dealing with the 3D model of the bridge is 

been necessary to use the theorem of expansion of displacements to reduce the great 

number of equations of motion of the structure with few equations in terms of modal 
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coordinate including the first lateral, torsional and bending modes. With this procedure the 

interaction forces at the contact points are been computed and transformed to equivalent 

nodal loads, in this way by applying these loads to the finite element model, critical 

elements and stress time history in the considered points are computed. Then through the 

Rainflow cycles counting method along with the Miner’s rule the fatigue assessment was 

performed. In this regard mainly two categories of elements are resulting critical and 

subjected to a possible fatigue damage, which are the stringers and the floor beams. 

Especially for the stringers very high values of the damage are founded, suggesting that the 

bridge could fails in every moment, while the bridge is still standing without any 

significant visible damage. However the results obtained are directly linked to the assumed 

traffic volume and vehicles characteristics and in particular to the trains weight. It can be 

shown that the biggest part of the damage index computed in chapter 9 is mainly due to the 

passage of the train type “C” which is the heaviest one. Undoubtedly, the assumed traffic, 

results to be more severe than the traffic conditions to which the bridge is actually 

subjected and those at which has been subject in the last years. Furthermore now, 

reconstruct and go back to the past traffic history will be not an easy task.  

However although overestimated damage values are obtained, remain the fact that 

stringers and floor beams are to be monitored and controlled as critical elements, while the 

other elements of the bridge seems to be safe against possible fatigue failures. 

In order to obtain more reliable results it will be necessary to get at least the real 

traffic volume and the trains characteristics that travel daily on the bridge, along with their 

suspension systems values. After that, some improvements could be done upon the VBI 

model, including for example track irregularities that may occur as a result of initial 

installation errors, degradation of support materials and dislocation of track joints. 
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APPENDIX 
 

In the following the normal stress histories regarding the other type of trains in the 

considered elements identified for the fatigue analyses are shown. 

 

Train type “A” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Stress time history in a point of the mid span upper chord. 

Figure A.2: Stress time history in a point of the mid span lower chord. 
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Figure A.3: Stress time history in a point of the stringer. 

Figure A.4: Stress time history in a point of the floor beam. 

Figure A.5: Stress time history in a point of the first diagonal element. 
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Figure A.6: Stress time history in a point of the second diagonal element. 

Figure A.7: Stress time history in a bracing system element. 
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Figure A.8: Stress time history in a point of the mid span upper chord. 

Figure A.9: Stress time history in a point of the mid span lower chord. 

Figure A.10: Stress time history in a point of the stringer. 
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Figure A.11: Stress time history in a point of the floor beam. 

Figure A.12: Stress time history in a point of the first diagonal element. 

Figure A.13: Stress time history in a point of the second diagonal element. 
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Figure A.14: Stress time history in a bracing system element. 
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Figure A.15: Stress time history in a point of the mid span upper chord. 

Figure A.16: Stress time history in a point of the mid span lower chord. 

Figure A.17: Stress time history in a point of the stringer. 
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Figure A.18: Stress time history in a point of the floor beam. 

Figure A.19: Stress time history in a point of the first diagonal element. 

Figure A.20: Stress time history in a point of the second diagonal element. 
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Figure A.21: Stress time history in a bracing system element. 
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