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Abstract

Since the 1970s, numerical studies have shown that highly flattened rotationally sup-
ported galactic discs are globally unstable: in particular, they are subject to large-scale
bar-like instabilities. Ostriker and Peebles (1973) proposed a global stability criterion
through the ratio tOP = T/|W | between the total kinetic energy of rotation of the sys-
tem T and its total gravitational energy W . However, even though tOP is widely used
as a global stability parameter, its applicability has been questioned from both theo-
retical and numerical perspectives. Efstathiou, Lake and Negroponte (1982) presented
an alternative criterion based on the parameter t∗ = Td/[(1 + fext)

2|WD|], where Td

represents the stellar kinetic energy of rotation, WD is the contribution to the trace of
the Chandrasekar potential-energy tensor W related to the stars in the total disc-halo
potential and fext = Wdh/Wd is the ratio of the gravitational energy of the stars due to
the halo potential and the self-energy of the stellar disc. t∗ differs from tOP in two main
aspects: with respect to W , WD depends only on the force the whole system exerts on
the stellar disc; while in Td the mean circular velocity is computed on cylinders centred
at the origin of the disc, in T the streaming velocity is calculated on rings that are
concentric at the same disc centre. Because of its construction, Td is more sensitive
than T to bar-like modes, since they are weakly dependent on the thickness of the disc.
Both tOP and t∗ have been proposed as global stability indicators in case of a galactic
disc inside a rigid dark matter halo.

In this master thesis we have studied the behaviour of tOP and t∗ and their rela-
tionship with global instability through N -body simulations with the Fortran Version
of a Fast Poisson Solver (FVFPS, Londrillo et al., 2003) code. Together with tOP and
t∗, we also present and study a new global stability parameter tW = Td/|WD| which is
closely connected to the virial theorem of a disc embedded in a halo.

At the beginning of the simulations, the disc particles move around circular orbits
centred at the origin of the system. After generating the stellar disc, we place it within
a rigid and non-rotating dark matter halo, modelled by a Hernquist (1990) profile.
Moreover, the fraction of retrograde circular orbits is regulated by a parameter α and
implements a tangential velocity dispersion in the circular orbits, which gives a little
support to the stability of the system.

In the subsequent part of the thesis, we perform N -body simulations using the
FVFPS code for the initial disc-halo systems, varying the input parameters connected
to the system configuration. In a diagnostic phase, the results of the numerical simula-
tions are analysed, including the density and velocity profiles, the angular momentum
evolution of the disc and the disc’s anisotropy (e.g., presence of m = 2 modes).

Consistent with previous literature, discs within dominant external halos exhibit
stationary scenarios, while disc-only simulations show local (e.g. Jeans, 1902; Toomre,
1964) instabilities and the loss of axisymmetry of the system. The multiple configura-
tions of the disc and halo features have provided a better understanding of tOP , t

∗ and
tW as global stability parameters for the bar formation in disc-halo systems.

The main results of this work are the following: i) we have found unstable systems
even though Td = 0 (i.e. tOP = t∗ = 0), which are thus counterexamples of Ostriker
and Peebles’s and Efstathiou, Lake and Negroponte’s criteria; ii) the tW parameter has
some problems too: in all the simulations it is not sensitive to the presence of the halo.





Sommario

Sin dagli anni ’70 gli studi numerici hanno mostrato che i dischi galattici sottili so-
stenuti dalla rotazione sono globalmente instabili: in particolare, essi sono soggetti a
instabilità su grande scala di tipo barra. Ostriker e Peebles (1973) proposero un crite-
rio di stabilità globale basato sul rapporto tOP = T/|W | tra l’energia cinetica totale di
rotazione del sistema T e la sua energia potenziale gravitazionale totale W . Benché tOP

sia vastamente usato come parametro di stabilità globale, la sua appropriatezza è stata
messa in discussione sia dal punto di vista teorico che da quello numerico. Efstathiou,
Lake e Negroponte (1982) presentarono un criterio alternativo basato sul parametro
t∗ = Td/[(1 + fext)

2|WD|], dove Td è l’energia cinetica di rotazione relativa alle stelle,
WD è il contributo alla traccia del tensore energia-potenziale W relativo alle stelle nel
potentiale del sistema disco-alone e fext = Wdh/Wd è il rapporto tra l’energia gravi-
tazionale delle stelle dovuta al potenziale dell’alone e l’energia gravitazionale propria
del disco stellare. t∗ si distingue da tOP su due aspetti principali: rispetto a W , WD

dipende solo dalla forza che l’intero sistema esercita sul disco stellare; mentre in Td la
velocità circolare media è calcolata su cilindri avente come centro l’origine del disco, in
T la velocità di flusso è determinata su anelli con centro l’origine del disco. Per come
è costruito, Td è più sensibile di T ai modi di tipo barra, i quali dipendono debolmente
dallo spessore del disco. Sia tOP che t∗ sono stati proposti come indicatori di stabilità
globale in caso di un disco dentro un alone rigido di materia oscura.

In questa tesi magistrale abbiamo studiato il comportamento di tOP e t∗, e il loro
legame con l’instabilità globale, mediante simulazioni N -body con il codice Fortran
Version of a Fast Poisson Solver (FVFPS, Londrillo et al., 2003). Oltre a tOP e a t∗,
presentiamo e studiamo anche un nuovo parametro di stabilità globale tW = Td/|WD|,
che è strettamente collegato al teorema del viriale di un disco all’interno di un alone.

All’inizio delle simulazioni le particelle del disco si muovono lungo orbite circolari
centrate all’origine del sistema. Dopo aver generato il disco stellare, lo posizioniamo
dentro un alone di materia oscura rigido e non rotante, che modelliamo con un profilo
di Hernquist (1990). Inoltre, la frazione di orbite circolari retrograde è regolata da un
parametro α, che genera una dispersione di velocità tangenziale nelle orbite circolari,
contribuendo lievemente alla stabilità del sistema.

Nella successiva parte della tesi abbiamo svolto delle simulazioni N -body mediante
il codice FVFPS a partire dal sistema disco-alone generato, modificando i parametri
di input relativi alla configurazione del sistema. Nella fase diagnostica, i risultati delle
simulazioni numeriche sono stati analizzati mediante profili di densità e di velocità,
insieme a profili di evoluzione del momento angolare del disco e le sue anisotropie (es.,
presenza di modi m = 2).

In coerenza con la letteratura, i dischi dentro un alone dominante sono stabili e
stazionari, mentre simulazioni con solo i dischi mostrano instabilità locali (e.g. Jeans,
1902; Toomre, 1964) e una perdita di simmetria assiale del sistema. Le molteplici
configurazioni della coppia disco-alone hanno fornito maggiori informazioni su tOP e t∗

come indicatori di stabilità globale riguardo alla formazione di barre nel disco.
I risultati principali di questo lavoro sono i seguenti: i) abbiamo trovato sistemi

instabili in simulazioni in cui Td = 0 (ossia tOP = t∗ = 0), fornendo dei controesempi
ai criteri riportati da Ostriker e Peebles e Efstathiou, Lake e Negroponte; ii) anche tW
presenta dei problemi: in tutte le simulazioni non è sensibile alla presenza dell’alone.
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Introduction

In this thesis we study the astrophysical problem of the global stability of stellar
discs in presence of dark matter halos. Unstable discs can form a bar, so the question of
global disc instability is relevant to observed systems, since in the local universe at least
60% of disc galaxies are strongly barred (Eskridge et al., 2000; Grosbøl et al., 2004;
Menéndez-Delmestre et al., 2007; Barazza et al., 2008; Saha and Elmegreen, 2018).
Since the 1960s, both theoretical (e.g., Lebovitz, 1961; Bodenheimer and Ostriker,
1973) and numerical (e.g., Hohl, 1971) studies have shown a bar pattern inside a disc is
easy to form, thus spiral galaxies are easily subject to a global instability which involves
the formations of a stellar bar at the centre of the system. Besides, once a bar is formed
within the disc, it is hard to dissolve (Athanassoula et al., 2005). For this reason, there
is an active branch of astrophysics involved in the research of both theoretical and
observational properties of the disc that can be collected to build a criterion which can
tell us whether a disc is globally stable or not from its configuration (e.g., Sellwood,
2016; Saha and Elmegreen, 2018; Kataria et al., 2020; Romeo et al., 2023).

The pursuit of a global stability criterion is the main topic of Ostriker and Peebles’s
(1973) work, where the authors proposed, starting from the virial theorem of the whole
disc-halo system, a parameter tOP = T/|W |, where T is the ordered kinetic energy
associated to the system and W is the total gravitational potential. However, some
physical cons of tOP were argued by Efstathiou, Lake and Negroponte (1982): due to
its nature, tOP shows stability in unstable scenarios, such as systems where the halo has
small mass but is very concentrated at the centre of the disc, or it is massive but diluted,
thus not contributing to the global stability of the disc. For this reason, Efstathiou,
Lake and Negroponte (1982) presented a new global stability parameter t∗ = Td/|WD|,
which is now defined starting from the virial theorem of the disc component, assumed
to be embedded in an external potential (Section 2.2). Here t∗ is the ratio between the
stellar ordered kinetic energy Td and the gravitational potential energy of the disc due
to the whole disc-halo potential. Even though this parameter has been reformulated in
subsequent works (see Christodoulou et al., 1995; Mo et al., 1998; Parente et al., 2023),
the universal validity of this parameter has been debated through both theoretical
(Athanassoula, 2008) and observational points of view (see, e.g., Izquierdo-Villalba
et al., 2022; Romeo et al., 2023; Bland-Hawthorn et al., 2023).

The main goal of this thesis is studying through N -body simulations the behaviour
of the two well-known global stability parameters tOP and t∗ from Ostriker and Peebles
(1973) and Efstathiou, Lake and Negroponte (1982), respectively, in some toy-models
of disc-halo systems, where the particles of a razor-thin disc move around circular orbits
and the halo is modelled as a fixed external potential.

To do so, in Chapter 1 we first review the theoretical background of the potential
theory – in particular the meaning of the gravitational potential energy W – and
the wide topic of the virial theorem for a system made up of one or more components.
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Then, after this theoretical remark, Chapter 2 focuses on the work done by Ostriker and
Peebles (1973) and Efstathiou, Lake and Negroponte (1982) and their corresponding
tOP and t∗ parameters, analysing their theoretical construction and their main results
with different disc-halo system, also talking about their positive and negative aspects.
In particular, the latter suggested us a new global stability parameter, which we label
with tW (Section 2.5). These three parameters are analysed through several N -body
simulations performed by the Fortran-90 code FVFPS (see Londrillo et al., 2003).
Chapter 3 describes the theoretical and numerical construction of the initial conditions
for our simulation suite, which are made of a razor-thin disc model and a spherically
symmetric halo, where the latter is rigid and non-rotating, thus treatable as a fixed
potential. For all simulations, we initially set every particle in pure circular orbits.
This particular configuration gives no radial velocity dispersion to the particles, while
an azimuthal velocity dispersion can be achieved by inverting the sense of rotation
for a fraction of disc particles – the so-called retrograde orbits (see, e.g., Kalnajs,
1977). Chapter 4 presents a summary of our simulation suite, reporting some significant
N -body runs and discussing the behaviour of tOP , t∗ and tW in different disc-halo
configurations. Here we study the importance of the theoretical construction of these
global stability parameters. Chapter 5 is a summary of all the work done in this
thesis, also discussing future perspectives about the investigation and the pursuit of a
universally accepted (if there is any) global stability parameter.

6 CONTENTS



Chapter 1

Potential theory and the virial
theorem

To build a global stability parameter for stellar discs, Ostriker and Peebles (1973)
started from the virial theorem for the disc-halo system. Using the parameter tOP ,
they presented a criterion that could formally distinguish a stable disc from an un-
stable one. Nine years later, following the virial theorem for the disc embedded in an
external potential, Efstathiou, Lake and Negroponte (1982) proposed an alternative
global stability criterion through the parameter t∗. In order to have a better under-
standing of the theoretical reasonings that lead the aforementioned authors to pursuit
a global stability criterion for stellar discs, in this Chapter we report some theoretical
topics about the potential theory, its connection to discs and spherically symmetric sys-
tems, and the virial theorem for systems of one (or more) component, with a particular
focus on the meaning of the gravitational potential energy W .
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1.1 Potential theory

Consider a distribution of mass density ρ(x′). According to Newton’s law of gravi-
tation, the force it exerts on a particle of mass ms at position x is

F(x) = msg(x), where g(x) = G

∫
d3x′ x′ − x

|x′ − x|3
ρ(x′) (1.1)

is the gravitational field, G is the gravitational constant and the integral is evaluated
over the entire R3 space. Since the gravitational field is conservative, we can define the
gravitational potential

Φ(x) = −G

∫
d3x′ ρ(x′)

|x′ − x|
, (x′ ̸= x), (1.2)

such that
g(x) = −∇xΦ(x). (1.3)

From now on we denote ∇ ≡ ∇x in order to lighten the notation.
A property of the gravitational field is

∇ · g(x) = −4πGρ(x). (1.4)

Substituting Equation (1.3) into Equation (1.4), we obtain Poisson’s equation

∆Φ(x) = 4πGρ(x), (1.5)

which relates the potential Φ of the mass distribution to its density ρ.
Since Equation (1.3) holds and g is conservative, the potential energyW of the mass

distribution can be defined as the work done against the gravitational forces in order to
assemble the mass density distribution ρ(x). An expression for W for a self-gravitating
system is (see Binney and Tremaine, 2008)

W =
1

2

∫
d3x ρ(x)Φ(x). (1.6)

W can also be written in a tensorial form through the Chandrasekhar potential-energy
tensor W (see, e.g., Binney and Tremaine, 2008; Ciotti, 2021):

Wjk = −
∫

d3x ρ(x)xj
∂Φ

∂xk

, (1.7)

whose trace is

W ≡ tr(W) =
3∑

j=1

Wjj = −
∫

d3x ρ(x)⟨x, ∇Φ(x)⟩. (1.8)

Equation (1.8) can be also rewritten as Equation (1.6) by substituting for Φ (Equation
1.2):

Wjk = G

∫
d3x ρ(x)xj

∂

∂xk

∫
d3x′ ρ(x′)

1

|x′ − x|
=

= G

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

xj(x
′
k − xk)

|x′ − x|3
.

(1.9)

8 Potential theory and the virial theorem
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Note that the differentiation is carried inside the integral because the integration over
x′ does not depend on x. In addition, x and x′ are both dummy variables of integration,
so we can interchange the labels and write

Wjk = G

∫
d3x′

∫
d3x ρ(x′)ρ(x)

x′
j(xk − x′

k)

|x− x′|3
. (1.10)

Summing Equations (1.9) and (1.10), we obtain

Wjk = −1

2
G

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

(x′
j − xj)(x

′
k − xk)

|x′ − x|3
. (1.11)

The trace of both sides of Equation (1.11) gives back Equation (1.6), hence for a
self-gravitating system Equations (1.6) and (1.8) are equivalent expressions for the
gravitational potential energy W .

1.1.1 Potential theory of spherical systems

A spherically symmetric system of mass density ρ(r), where r is the radial coordi-
nate of the spherical framework (r, θ, φ), has two main properties:

Newton’s first theorem: a spherical shell of mass exerts no net gravitational
pull to a body which is inside the shell.

Newton’s second theorem: the gravitational pull that spherical mass shell
exerts on a body outside it is the same that would be exerted if the whole shell
mass were concentrated at its centre.

An important consequence of Newton’s first theorem is that the gravitational potential
Φ(r) generated by ρ(r) is constant inside the shell, namely ∇Φ(r) = −g(r) = 0. From
Newton’s first and second theorems, it follows that the gravitational pull a spherical
mass distribution ρ(r′) exerts on a unit mass is given by the mass M(r) interior to r:

F(r) = −GM(r)

r2
êr, (1.12)

where êr is the unit vector in the radial direction and

M(r) = 4π

∫ r

0

ρ(r′)r′2 dr′ . (1.13)

The total gravitational potential at position r, which is generated by the spherically
symmetric system ρ(r′), may be written as the sum of the contributions given by the
mass shells with r′ < r and from the ones with r′ > r (e.g. Binney and Tremaine,
2008):

Φ(r) = −G

r

∫ r

0

dM (r′)−G

∫ ∞

r

dM (r′)

r′
, (1.14)

where M(r′) is given by Equation (1.13). If we compute F = −∇Φ(r), from Equation
(1.14) we will obtain again Equation (1.12).

The total potential gravitational energy of such system is given by taking the defini-
tion of W (1.8), substituting ∇Φ with Equation (1.12) and integrating over r ∈ [0,∞(:

W = −4πG

∫ ∞

0

rρ(r)M(r) dr . (1.15)

Potential theory and the virial theorem 9
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A consequence of the spherical symmetry is that the potential-energy tensor W is
diagonal, namely Wjk = 1

3
Wδjk, where δjk is the Kronecker delta. For this reason, in

this case W is also isotropic.
Now, consider a test particle at position r from the centre of the spherical mass

distribution ρ(r′). For that object we can define the circular speed vc(r) as the speed it
has in a circular orbit at radius r in the gravitational field generated by ρ(r′). Equating
|F| to the centripetal acceleration ac = v2c/r, we get the squared circular speed

v2c (r) = r|F| = r
dΦ

dr
=

GM(r)

r
. (1.16)

From the conservation of the total energy, we can also define the escape speed ve(r)
(assuming Φ(r) → 0 as r → ∞)

ve(r) =
√
2|Φ(r)|. (1.17)

Therefore the test particle can escape from the gravitational field Φ(r) if its speed is
greater or equal to ve(r).

1.1.2 Potential theory of galactic discs

We can see any axisymmetric disc as a very flat spheroid and start from the equa-
tions of a spheroid in order to obtain the potential of the disc (see, e.g., Binney and
Tremaine, 2008, Section 2.6.1). First, consider a homogeneous spheroid of density ρ,
semi-axes a and c, which give the axial ratio q ≡ c/a, mass M(a) = 4

3
πρqa3 and surface

density (when projected along the symmetry axis)

Σ(a,R) = 2ρq
√
a2 −R2, (1.18)

where R is the cylindrical radius. If we differentiate Equation (1.18) with respect to a,
we will have the mass δM(a) and the surface density δΣ(a,R) of a thin homoeoid of
density ρ, semi-major axis a, thickness δa and axial ratio q:

δM(a) = 4πρqa2δa ; δΣ(a,R) =
2ρqa√
a2 −R2

δa. (1.19)

If we keep 2ρqa ≡ Σ0 constant and let q → 0, we obtain the mass and the surface
density of a razor-thin flattened homoeoid:

δM(a) = 2πΣ0qaδa ; δΣ(a,R) =
Σ0δa√
a2 −R2

. (1.20)

Now, we can build a razor-thin disc of known surface density Σ(R) by finding a set of
homoeoids whose combined surface density equals Σ(R) ∀R ∈ [0,∞(. In other words,
we have to find the function Σ0(a) that satisfies the following Abel integral equation:

Σ(R) =
∑
a≤R

δΣ(a,R) =

∫ ∞

R

da
Σ0(a)√
a2 −R2

, (1.21)

whose solution is

Σ0(a) = − 2

π
d a

∫ ∞

a

dR
RΣ(R)√
R2 − a2

. (1.22)

10 Potential theory and the virial theorem
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From this point of view, the potential of a razor-thin disc can be seen as the sum of the
potentials of every thin homoeoid that forms the disc. According to Gauss’s theorem,
while the gravitational field is discontinuous across a plane of finite surface density, the
potential remains continuous. Therefore, there is a negligible difference between the
potential just above or below the disc and the potential in the equatorial plane. As a
result, to find the potential in the z = 0 plane, we only need to compute the potential
at points that are external to all homoeoids and then take the limit z → 0.

From Cuddeford (1993), the general expression of the potential of a razor-thin
axisymmetric disc with arbitrary Σ(R) is

Φ(R, z) = 4G

∫ ∞

0

da arcsin

(
2a√

++
√
−

)
d

da

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

, (1.23)

where
√
± =

√
z2 + (a±R)2. The potential at z = 0 is

Φ(R, 0) = 4G

∫ ∞

0

da arcsin

(
2a

(a+R) + |a−R|

)
d

da

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

. (1.24)

Note that the argument of arcsin in Equation (1.24) is

2a

(a+R) + |a−R|
=

{
1 R ≤ a,

a/R otherwise.

To obtain the circular speed in the equatorial plane z = 0, we differentiate Equation
(1.24) with respect to R:

v2c (R) = R

(
dΦ

dR

)
z=0

= −4G

∫ R

0

da
a√

R2 − a2
d

da

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

. (1.25)

1.2 The virial theorem

1.2.1 Tensor virial theorem

Consider a self-gravitating system described by a distribution function f(x,v). If
it is at equilibrium, the system satisfies the second-order tensor virial theorem (see,
e.g., Binney and Tremaine, 2008)

1

2

d2Ijk
dt2

= 2Kjk +Wjk, (∀ j, k = 1, 2, 3), (1.26)

where

Ijk =

∫
d3x d3v f(x,v)xjxk and Kjk =

∫
d3x d3v f(x,v)⟨vj(x)vk(x)⟩ (1.27)

are the second order mass tensor and the kinetic-energy tensor, respectively, and Wjk

is the potential-energy tensor (Equation 1.7) with ρ(x) =
∫
d3v f(x,v).

The kinetic-energy tensor K can be split into contributions from ordered (Tjk) and
random (Πjk) motions:

Kjk = Tjk +
1

2
Πjk, (1.28)

Potential theory and the virial theorem 11
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where

Tjk =
1

2

∫
d3x ρ(x)⟨vj(x)⟩⟨vk(x)⟩ (1.29a)

and

Πjk =

∫
d3x ρ(x)σ2

jk(x) (1.29b)

are the ordered and random kinetic-energy tensors, respectively. Here

⟨vj(x)⟩ =
1

ρ(x)

∫
d3v vj(x)f(x,v) (1.30)

is the mean velocity and

σ2
jk(x) =

1

ρ(x)

∫
d3v (vj(x)− ⟨vj(x)⟩)(vk(x)− ⟨vj(x)⟩)f(x,v) =

= ⟨vj(x)vk(x)⟩ − ⟨vj(x)⟩⟨vk(x)⟩
(1.31)

is the velocity-dispersion tensor.
In case of a steady state system, the time derivative of Equation (1.26) vanishes

and the tensor virial theorem gives

2Kjk +Wjk = 0. (1.32)

1.2.2 Scalar virial theorem

If we take the trace of Equation (1.26), we obtain the scalar version of the virial
theorem

1

2

d2I

dt2
= 2K +W, (1.33)

where I, K and W are the traces of their corresponding tensors I, K and W, respec-
tively.

In a steady state system, the time derivative on the left hand side of Equation
(1.33) vanishes and the scalar virial theorem gives

2K +W = 0. (1.34)

1.2.3 Scalar virial theorem for a two-component system

Let us consider the case of a two-component self-gravitating system with mass
densities ρ1 and ρ2, respectively, with related potentials Φ1 and Φ2. If the system is
virialized, the scalar form (at the second order) of the virial theorem for such system
is given by Equation (1.33), where now I = I1 + I2 and K = K1 + K2. Focusing
on the gravitational potential energy W , Equation (1.8) can be developed by setting
ρ = ρ1 + ρ2 and Φ = Φ1 + Φ2:

W = −
∫

d3x (ρ1(x) + ρ2(x))⟨x, ∇(Φ1(x) + Φ2(x))⟩ =

= −
∫

d3x ρ1(x)⟨x, ∇Φ1(x)⟩ −
∫

d3x ρ2(x)⟨x, ∇Φ2(x)⟩+

−
∫

d3x ρ1(x)⟨x, ∇Φ2(x)⟩ −
∫

d3x ρ2(x)⟨x, ∇Φ1(x)⟩ =

= W1 +W2 +W12 +W21,

(1.35)
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where W1 and W2 refer to the gravitational self-energies of the components 1 and
2, respectively, while W12 and W21 are the gravitational interaction energies between
the two components (index ‘12’ is related to ρ1 and Φ2; vice versa, the notation ‘21’
matches ρ2 to Φ1). After some calculations of the last two terms on the right hand side
of Equation (1.35) (see Appendix A, Equation A.6), we get

W12 +W21 ≡ W1↔2 =

∫
d3x ρ1(x)Φ2(x) =

∫
d3x ρ2(x)Φ1(x). (1.36)

Therefore, recalling the equivalence between Equations (1.6) and (1.8) for gravitational
self-energies, we can also write the total gravitational potential energy as

W =
1

2

∫
d3x (ρ1(x) + ρ2(x))(Φ1(x) + Φ2(x)) =

=
1

2

∫
d3x ρ1(x)Φ1(x) +

1

2

∫
d3x ρ2(x)Φ2(x) +

∫
d3x ρ1(x)Φ2(x) =

= W1 +W2 +W1↔2.

(1.37)

The scalar virial theorem applied to the two components gives

1

2

d2I1
dt2

= 2K1 +W1 +W12, (1.38)

1

2

d2I2
dt2

= 2K2 +W2 +W21. (1.39)

In fact, the sum of Equations (1.38) and (1.39) equals Equation (1.33).

1.2.4 Scalar virial theorem for a self-gravitating system em-
bedded in an external gravitational potential field

If we consider a self-gravitating system described by the mass density distribution
ρ(x) =

∫
f(x,v) d3v within an external gravitational potential Φext(x), the right hand

side of Equation (1.26) gains an extra term (Binney and Tremaine, 2008):

1

2

d2Ijk
dt2

= 2Kjk +Wjk + Vjk, (1.40)

where

Vjk = −1

2

∫
d3x ρ(x)

(
xj

∂Φext

∂xk

+ xk
∂Φext

∂xj

)
= −1

2
(W ext

jk +W ext
kj ) (1.41)

is the potential-energy tensor V related to Φext, whose trace is

V = tr (V) =
3∑

j=1

Vjj = −
3∑

j=1

1

2

∫
d3x ρ(x)

(
2xj

∂Φext

∂xj

)
=

= −
∫

d3x ρ(x)⟨x, ∇Φext(x)⟩.

(1.42)

If we look at Section 1.2.3, we see that Equation (1.42) is just the gravitational poten-
tial energy of interaction between the mass density of the self-gravitating system and
the potential of another system with mass density distribution ρext(x) and potential
Φext(x). Thus, the scalar virial theorem for this system

1

2

d2I

dt2
= 2K +W + V (1.43)

is equivalent to Equations (1.38) or (1.39).

Potential theory and the virial theorem 13
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1.2.5 Gravitational self-energy and gravitational interaction
energy

It is useful to distinguish two types of |W |. In a system with density profile ρ(x)
and potential Φ(x), both related by Poisson’s equation (1.5), the total gravitational
potential energy can be expressed by Equations (1.6) or (1.8), without distinction:

W =
1

2

∫
d3x ρ(x)Φ(x) = −

∫
d3x ρ(x)⟨x, ∇Φ(x)⟩. (1.44)

Equation (1.44) is correct if we are referring either to the gravitational self-energy of
the whole system or to the gravitational self-energies of the single components the
system is made of (e.g. Binney and Tremaine, 2008; Ciotti, 2021). In other words, it is
necessary that Poisson’s equation (1.5) holds for ρ(x) and Φ(x) of the system (or the
single components) such that Equation (1.44) is correct, because we should remember
that Equation (1.6) is obtained via Poisson’s equation (1.5) (see Binney and Tremaine,
2008, p. 59).

However, if we now consider a system with density ρ1(x) and we want to compute
its gravitational potential energy due to the interaction with another potential Φ2(x),
Equation (1.44) does not hold anymore, as Poisson’s equation (1.5) is no longer appli-
cable. For this reason, we should use the trace of the Chandrasekhar potential-energy
tensor (Equation 1.8)

W12 = −
∫

d3x ρ1(x)⟨x, ∇Φ2(x)⟩, (1.45)

where the subscripts 1 and 2 are related to the system and the external potential,
respectively. As seen in Subsection 1.2.3 (Equation 1.36) and in Appendix A (Equa-
tion A.6), we can write the gravitational potential energy of interaction between the
components in a similar form of the self-energy (Equation 1.6) if we sum the mutual
interaction energies to obtain W1↔2 (Equation 1.36); otherwise, we have to use only
Equation (1.45) via the Chandrasekhar notation.

The gravitational self-energy (Equation 1.44) is sometimes labelled with U (e.g.
Ciotti, 2021) to distinguish it from the gravitational interaction energy between two
components of a system (Equation 1.45), but for all of this work, as we did in this
Chapter, we will use subscripts under W in order to distinguish the gravitational self-
energy from the gravitational energy interaction between two components.
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Chapter 2

Global stability parameters for
stellar discs

After we have explored the theoretical tools which allow us to comprehend the main
meaning of global equilibrium of a system, we now focus on the construction of the
global stability parameters tOP and t∗ proposed by Ostriker and Peebles (1973) and
Efstathiou, Lake and Negroponte (1982), respectively. In particular, in this Chapter
we report an important discussion about the universal validity of these two parameters
in many disc-halo systems. In fact, from numerical and theoretical work reviewed by
Efstathiou, Lake and Negroponte (1982), tOP is very sensitive to the halo mass and
concentration, thus stating the stability of the disc even though, in some cases, the
latter is not stable. For this reason Efstathiou, Lake and Negroponte (1982) have
introduced a new global stability parameter t∗, which tries to solve the issues noticed
in tOP . However, as we will discuss at the end of this Chapter, t∗ is not universally
accepted by the literature (e.g., Athanassoula, 2008; Romeo et al., 2023) and thus the
pursuit of a global stability criterion for stellar discs is still open. In this work, we
present a new parameter tW which we investigate in detail in Chapter 4.

15



Sebastiano Cantarella Global instability of stellar discs in presence of DM halos

2.1 Ostriker-Peebles’s stability criterion

Ostriker and Peebles (1973) (hereafter OP73) presented a numerical study which
investigated the stability of flattened (disc) galaxies. Some theoretical reasoning shows
that a highly flattened disc (made of gas and/or stars) which is mainly supported
by rotation might go through large-scale instabilities. Let us consider a galactic disc
made of stars whose circular motion is dominant with respect to their random stellar
motions (measured by the stellar velocity dispersion σ). In other words, the condition
v/σ ≫ 1 leads to a ’cold’ galactic disc. The thin stellar disc of Galaxy is cold, but it
does not show evidence of these large-scale instability. So OP73 raised two questions:
is a rotationally supported disc stable or not? What are the conditions of stability in
such systems?

To investigate the problem of stability with their simulations, OP73 introduced
some useful energy-related quantities. Following the treatment of OP73, we report here
the analysis that leads to the formulation of the Ostriker-Peebles’s stability criterion.

2.1.1 Construction of OP’s global stability parameter

An N -body system in equilibrium must satisfy the scalar virial theorem at the
second order (1.33), which we may rewrite - following the notation of Section 1.2 - as

2T +Π+W = 0, (2.1)

where T , Π and W are the traces of the second-order tensors T (1.29a), Π (1.29b) and
W (1.8), respectively.

OP assumed an axisymmetric stellar disc embedded in an external spherical sys-
tem – the ’halo’ –, which is rigid and non-rotating. By ’rigid’ we mean the halo is
represented by an external potential and is unable to respond to the disc evolution
(see Athanassoula, 2008). Hereafter we may use the term ’unresponsive’, referring to
a non-rotating rigid halo.

We may rewrite explicitly the kinetic terms1 of Equation (2.1) as

T =
1

2

∫
⟨v(x)⟩2ρ(x) d3x (2.2)

and Π =

∫
(v(x)− ⟨v(x)⟩)2ρ(x) d3x , (2.3)

where ρ(x) =
∫
f(x,v) d3v is the density distribution of the system (disc and halo)

and

⟨v(x)⟩OP =
1

ρ(x)

∫
vf(x,v)d3v (2.4)

is the streaming velocity of the particles at position x. T and Π are the kinetic energy
of rotation and the random kinetic energy of the system, respectively. It should be
noted that if we consider a steady rotating disc, ⟨v(x)⟩ is the steady rotational motion
of the disc particles. Given that the halo is non-rotating, Th = 0. For this reason, and
also to lighten the notation, when we talk about T , we are only referring to the kinetic
energy of the disc particles Td. Conversely, Π = Πd +Πh.

1OP73 defined the random kinetic energy Trand such that Trand = Π/2.
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In Equation (2.1) the potential term, which corresponds to the total gravitational
potential of the disc-halo system, is

W =
1

2

∫ ∫
Φ(x)f(x,v) d3x d3v , (2.5)

where Φ = Φd + Φh is the total gravitation potential of the system, which can be
decomposed into two terms related to the disc and the halo, respectively. Recalling
that ρ(x) ≡ ρd(x) + ρh(x) and the result carried out in Appendix A (Equation A.6),
Equation (2.5) becomes

W =
1

2

∫
(ρd(x) + ρh(x))(Φd(x) + Φh(x)) d

3x =

=
1

2

∫
d3x ρd(x)Φd(x) +

1

2

∫
d3x ρh(x)Φh(x) +

∫
d3x ρd(x)Φh(x) =

= Wd +Wh +Wd↔h,

(2.6)

where the expressions for Wd, Wh and Wd↔h are taken from Equation (1.37).
Now, if we divide Equation (2.1) by |W | and, at the same time, if we define:

tOP =
T

|W |
(2.7)

and uOP =
Π

2|W |
, (2.8)

then we get

tOP + u =
1

2
; 0 ≤ tOP ≤ 1

2
. (2.9)

Both tOP and uOP can be seen as parameters which regulate the rotation and the
pressure supports in the system, which, combined, give equilibrium.

2.1.2 General considerations on tOP

Before OP73, Miller et al. (1970) and Hohl (1971), by means of numerical simula-
tions, found that flat cold systems (u/tOP ≪ 1) are subject to large-scale instabilities.

In their work, OP73 focused on incompressible fluid systems in the hypothesis of
an axisymmetric body with uniform density and rotation – the Maclaurin spheroids.
For such axisymmetric systems, in 1742 Colin Maclaurin found an exact solution for
the equilibrium, which is reported here as a relation between tOP and the eccentricity
e (Ostriker and Peebles, 1973; Bodenheimer and Ostriker, 1973; Binney and Tremaine,
2008):

tOP =
1

2
[(3e−2 − 2)− 3(e−2 − 1))1/2(arcsin e)−1]. (2.10)

From Equation (2.10) we can express the stability properties of such systems in terms
of tOP .

Following OP73, in uniformly rotating systems we distinguish ordinary (or dynam-
ical) from secular instability (Hunter, 1977). The former is related to a system whose
amplitude of some mode grows exponentially in time, starting from an initially in-
finitesimal perturbation; the latter refers to a system which is dynamically stable but
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the presence of small additional dissipative forces can let some temporally oscillating
perturbations to grow. A system is also said to be secularly unstable when it is capa-
ble, at least from an energetic point of view, of deviating from the equilibrium state
because of the presence of a relevant perturbation (Lebovitz, 1961).

From the analytical study of the Maclaurin spheroids (see, e.g., Lebovitz, 1961,
p. 508)2, if tOP > 0.1376 then the system is secularly unstable, while if tOP >
0.2738 (which is the limit for zero-viscosity Maclaurin spheroids) then it is dynamically
unstable for the bar formation. In case the axisymmetry is held during the evolution of
the spheroid, then for tOP > 0.3589 the system is secularly unstable to ring formation
and for tOP > 0.4574 it is dynamically unstable to ring formation. These results
are exact if we consider the Maclaurin spheroids, but OP73 stated through N -body
simulations that these results are also valid for fluid ’stellar’ systems, which become
secularly unstable when

tOP > tOP,crit = 0.137± 0.002. (2.11)

The secular instability originates because of the advantage a rapidly rotating object
has in maximizing its moment of inertia (OP73). Beyond tOP,crit, OP73 stated that
bar-like equilibrium exists with lower total energy but same mass, central density and
angular momentum.

The bar instability is characterized by the development of eccentricity in the equa-
torial plane and a flattening at the poles. After the instability, the motions can be
characterized by a very stretched spheroid, which may be prone to fragmentation. Ac-
cording to OP73, the bar formation process in these spheroids seems to be large-scale
and irreversible.

2.1.3 Numerical simulations

OP73 integrated the equations of motion of the N -body system in three dimensions.
Besides, they assumed an additional spherical component – which they called ’halo’
– with an assumed mass density distribution Σ(R) ∝ R−1. OP73 have built the halo
such that it has the same size of the stellar disc (Rh,max = Rd,max ≡ Rmax).

The dynamical time used by OP73 is the orbital time τ for the particles in the
outermost part of the original disc.

Details about OP73’s simulations are reported in Appendix B, Section B.1.

2.1.4 Results

Simulations were run for a total time of 1τ . OP73 noted that at the end of their
simulations, the disc had twice the thickness with respect to its starting configuration.
Besides, they tried to measure the bar-like modes using the Fourier analysis of the
m = 2 mode, but they found out that this mode increased at first, but at the end
they behaved in a ”complicated way”, as OP73 stated, because the bar disc was not
maintained straightly during the whole simulation.

OP73 analysed the results of their simulations for a disc-only system, noting that
a large-scale bar develops after a short period of adjustment to initial conditions: the
radial motions increase in the disc plane, at t = 0.2τ the bar is forming and at t = 0.6τ

2In the paper, inequalities are reported as functions of e.
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the bar is prominent. Meanwhile, the velocity distributions are more isotropic in the
disc plane (vφ, vR). At t = 1τ the system is approaching a stationary state, also
returning to an axisymmetric configuration, and critical value of the stability parameter
tOP ≃ 0.1 ÷ 0.2 (OP73, Figure 2). OP73 noticed that these results are insensitive to
the choice of the time step ∆t, even though ∆t has to be chosen so that the numerical
method is stable during the whole integration of the N -body system.

In case of a disc-halo system, the halo is assumed to be steady and gives a con-
tribution to the particle velocities through its potential. The introduction of the halo
increases |W | and the kinetic energy of rotation T , but the final result is that tOP

is lower than in the disc-only system – assuming the same disc configuration. While
in the disc-only simulations there is a bar formation, in the disc-halo case the disc
does not show violent instability and tOP is unchanged through the time. When the
halo-to-disc mass ratio Mh/Md ≥ 1, tOP ≤ 0.15.

2.1.5 Conclusions

OP73 discussed about the reality of the instability shown in their simulations,
comparing with other contemporary numerical studies: Miller et al. (1970), Hohl (1971)
and Miller (1971), who used about 105 particles, gave a critical value of tOP,crit similar
to Condition (2.11). In particular, Hohl (1971) noticed that at the end of the simulation
the velocity dispersion of the particles is ”much larger than that given by Toomre’s
criterion”.

OP73 concluded that Condition (2.11) represents approximately the maximum ro-
tational energy that an axisymmetric stellar system can contain in order to remain
stable to the formation of a bar.

There is also an interesting conclusion about the (spherical) halo around the galactic
disc: OP73 showed that the stability of the stellar disc is given by an external halo,
whose mass lowers the value of tOP and prevents the formation of a bar. Nowadays,
the fact that galaxies have surrounding dark matter halos has become the standard
interpretation of their kinematics (see, e.g., Cimatti et al., 2019).

2.2 Efstathiou, Lake and Negroponte’s t∗ parame-

ter

Much work has been done to test the Ostriker and Peebles’s criterion (2.11) e.g.,
Hohl, 1976; Zang and Hohl, 1978 and some possible counter-examples have been dis-
cussed (see, e.g., Zang, 1976; Miller, 1978; Berman and Mark, 1979). Efstathiou, Lake
and Negroponte 1982 (hereafter ELN82) proposed a revised study of the global stabil-
ity of discs, proposing an alternative parameter t∗ similar to tOP (OP73). We report
here the theoretical aspects that lead to the formulation of the Efstathiou, Lake and
Negroponte’s stability criterion.

2.2.1 Construction of ELN’s global stability parameter

ELN82 started from the virial theorem satisfied by anN -body system in equilibrium
(2.1), with the same Definitions (2.2), (2.3) and (2.5). Differently from OP73, now
assuming cylindrical coordinates (R,φ, z), in ELN82’s work the mean circular velocity
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⟨v(R)⟩ is computed not within a flat ring, but in a 3D cylindrical shell at a distance R
from the axis of symmetry:

⟨vφ(R)⟩ELN =

∫
f(x,v)vφ dz d

3v∫
ρ(R,φ, z) dz

, (2.12)

where f(x,v) ≡ f(R,φ, z, vR, vφ, vz) is the distribution function of the system in cylin-
drical coordinates, vφ = vφ(R, z) is the circular velocity about the axis of symmetry
taken, which is assumed to be the z-axis. When there are motions in the meridional
plane (R, z), Equation (2.12) differs from the definitions of OP73, who used the local
streaming velocity (Equation 2.4).

Assuming an axisymmetric disc embedded in another system – a halo (on which
we focus here) or another disc – and recalling Equations (1.38) and (1.39), the virial
theorem for the disc can be formulated as

2Td +Πd + (1 + fext)Wd = 0, (2.13)

where the subscript d refers to the disc, Wd is the self-gravitational potential energy of
the disc (see Equation 1.6) and fext is the fraction of the force acting on the disc that
is due to the external halo potential:

1 + fext =

∫
ρd(x)⟨x,Ftot⟩d3x∫
ρd(x)⟨x,Fd⟩d3x

, (2.14)

where Ftot and Fd are the total force and the force due to the disc mass, respectively.
Equation (2.14) can be related to the gravitational potential energies Wdh and Wd:

1 + fext =

∫
ρd(x)⟨x, ∇Φtot⟩d3x∫
ρd(x)⟨x, ∇Φd⟩d3x

=

∫
ρd(x)⟨x, ∇(Φd + Φh)⟩d3x∫

ρd(x)⟨x, ∇Φd⟩d3x
= 1 +

Wdh

Wd

. (2.15)

Thus fext = Wdh/Wd is the ratio between the gravitational potential energy of the disc
particles due to the halo potential and the gravitational self-energy of the disc. For
this reason, Equation (2.13) can also be rewritten in a similar form of Equations (1.38)
and (1.39):

2Td +Πd +Wd +Wdh = 0. (2.16)

Starting from these definitions, ELN82 defined

t∗ =
Td

(1 + fext)2|Wd|
(2.17)

and u∗ =
Πd

2(1 + fext)2|Wd|
, (2.18)

such that

t∗ + u∗ =
1

2
(1 + fext). (2.19)

In case the densities of the disc ρd(x) and the total system ρtot(x) are related by
ρd = ξρtot, we have

ρd(x) =
ρtot(x)

1 + fext
(2.20)

and t∗ = tOP (ELN82). Of course, we also have t∗ = tOP when we consider a disc-only
system, namely Ftot = Fd.
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ELN82 argued that t∗ has some advantages with respect to tOP . The stabilizing
influence of any rigid component (e.g. the halo) should depend only on the force it
exerts on the disc. For example, a small point mass with a divergent gravitational
energy or a massive spherical shell enclosing the whole subsystem lowers tOP , but it is
expected to have little or no effect on the stability of the subsystem. In t∗ computation,
averaging the mean velocity over cylinders rather than flat rings is justified by the
weak z-dependence of the bar-like mode. This latter difference is not important for
the two-dimensional systems ELN82 considered in their paper, but is relevant to three-
dimensional systems.

2.2.2 Numerical simulations

ELN82 focused on the stability of galactic discs with exponential surface density
profile:

Σd(R) =

(
α2
dMd

2π

)
exp(−αdR), (2.21)

where R is the cylindrical radius, Md is the total disc mass and αd is the scale length
of the exponential disc. Considering a disc-halo system with a rigid halo component,
the resulting rotation curve of the disc particles is:

vd(R) = vmax

(
R2

R2 +R2
max

)1/2 [
1− γ ln

(
R2

R2 +R2
max

)]1/2
, (2.22)

where vmax is the maximum rotational velocity of the disc, Rmax is the disc size and
γ = (αdRmax/2)

2(αdMdG/v2max). These models form a two-parameter family in the
dimensionless parameters R̂max ≡ αdRmax and v̂max ≡ vmax/(αdMdG)1/2 and were
proposed by (Fall and Efstathiou, 1980) as relatively simple first-order approximations
to the mass distribution in real disc galaxies, especially late types (LTG). The halo
properties are determined by R̂max and v̂max, which measure the halo concentration
and the halo-to-disc mass ratio within a certain radius R, respectively. Since the
parameter R̂max is related to the concentration of the halo component, models with
small R̂max possess a ‘bulge’, and not an extended halo.

ELN82 deepened the study of bar instability in stellar discs using different models
and some tools of diagnostics like the bar strength, the bar length and m = 2 modes.
More details of their related results, in addition to ELN82’s comparison of the numerical
work with the observational data, are available in Appendix B.

2.2.3 Results

The evolution of ELN82’s models differs in detail. Models with v̂max ≤ 0.8 have a
fast development of large m = 2 modes, which tend to decay to a constant amplitude.
This behaviour is related to the growth of a multi-armed spiral pattern. The initial rise
of the A2/A0 ratio is given by the interference of these spiral patterns which rapidly
decay, leaving a strong bar inside a roughly axisymmetric distribution of particles.

In ELN82’s simulations the disc typically evolves until the Toomre (1964) parameter
Q ≃ 1.5 ÷ 2 in its inner regions (αdR ≤ 3) and Q ≃ 3 ÷ 4 in the outer parts, even
if it is stable to bar formation. Furthermore, the authors concluded that the initial
Gaussian velocity distribution remains roughly Gaussian after several dynamical times
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τ , where τ is the orbital period of a particle at the half-mass radius of the disc (see
Section B.2.1).

ELN82 showed that stable models to bar formation keep their exponential distri-
bution through the evolution, even though there is an increase of the density in the
central zone of the disc. (Hohl, 1970) and (Zang and Hohl, 1978) have noticed that the
surface density profiles of bar unstable models have final density profiles which can be
approximated by the sum of two exponential models.

The formation of a bar passes through many stages: at first, a bar forms with
length proportional to the turnover radius of the rotation curve. Then the bar grows
by transferring angular momentum to the outer parts of the disc. The final bar length
may be only dependent on the initial rotation curve, in particular in highly concen-
trated models. ELN82 reported that a complication in studying the formation and the
evolution of the bar is that at the beginning of the simulation the bar-like modes are
superposed with the spiral pattern.

The evolution in surface density is significant when the models are bar unstable
and the final density profiles are not exponential, because a significant redistribution
of angular momentum can occur due to torques from high order instabilities.

2.2.4 Conclusions

Through several numerical simulations of different stellar disc models embedded in
fixed potentials – the halo –, ELN82 have focused their work on a family of models
characterized by two parameters R̂max and v̂max, which are related to the halo mass
concentration and to the halo-to-disc mass ratio Mh/Md, respectively. In particular,
those families of galaxies that satisfy Toomre’s (1964) criterion (Q > 1) with

v̂max ≤ 1.1 for 0.1 ≤ R̂max ≤ 1.3 ⇒ t∗ ≥ 0.2 (2.23)

are stable to axisymmetric instabilities but unstable to bar formation. ELN82 stressed
that this result is insensitive both to of the initial surface density of the model and to
the shape of the rotation curve. In addition, for the previous configurations, stability
properties do not seem to depend to the increase of the velocity dispersion content
in the central parts of the disc, even though random motions generally contribute to
stability (see, e.g., Athanassoula and Sellwood, 1986).

Since t∗ is strictly related to the parameters v̂max and R̂max, not only ELN82’s crite-
rion (2.23) is usually reported in terms of v̂max without the range in R̂max (e.g. Athanas-
soula, 2008; Romeo et al., 2023), but this result has been extended by Christodoulou
et al. (1995) for purely gaseous disc and sometimes cited as Mo et al.’s (1998) criterion,
because the latter proposed a revised version of ELN82’s criterion in their work. Nev-
ertheless, in order to make a comparison with OP73’s criterion, we use the parameter
t∗ as it was originally formulated (Equation 2.17).

2.3 Comparison between tOP and t∗

The pursuit of a new global stability parameter has been going on since OP73
and ELN82’s works. The main difference between tOP and t∗ is given by the different
contribution of the gravitational energy which is considered in the tOP and t∗ ratios
(Equations 2.7 and 2.17). Both tOP and t∗, even though in different forms, used the
gravitational energy related to the disc-halo system.
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Now, while OP73 considered a two-component system, given by the stellar disc and
a non-rotating halo, ELN82 assumed the stellar disc inside an external fixed potential
- namely, the halo. Though these two assumptions seem barely different, they are ac-
tually the same thing. In fact, recalling Poisson’s equation (1.5), the external potential
can be seen as a second component with potential Φext(x) and density ρext(x). For this
reason, even in ELN82 we may write the virial theorem for the whole disc-halo system
as in OP73’s Equation (2.1). We should note that not only ELN82’s virial theorem of
the total system has the same form of Equation (2.1), but also it is Equation (2.1).

It should be stressed the different nature of the tOP and t∗ parameters: the former is
related to the virial theorem of the whole system (disc and halo), the latter to the virial
theorem of the disc subsystem. For this reason, while in OP73 the self-gravity of the
halo is considered (see Equation 2.5), in ELN82 it is not included in the computation
of t∗. Given that ELN82 considered only the virial theorem of the disc component (see
Equation 2.13), we consider

∫
f(x,v) d3v = ρ(x) ≡ ρd(x) even though we are actually

considering a two-components system (disc-halo).
Not only tOP and t∗ do differ because of the gravitational energy content: the

ordered kinetic energy T is computed differently in OP73 and ELN82. However, if we
consider a 2D steady rotating axisymmetric disc whose particles have z = 0, vR = 0,
vz = 0 and surface density Σ(R) ≡

∫
ρ(R, z) dz, from Equation (2.12) we have

⟨vφ(R)⟩ELN =

∫
f(R, vφ)vφ dvφ∫
f(R, vφ) dvφ

=

=
1

Σ(R)

∫
f(R, vφ)vφ dvφ = ⟨vφ(R)⟩OP .

(2.24)

Thus T ≡ Td has exactly the same expression in both OP73 and ELN82’s formulations
(Equations 2.1 and 2.13), namely

T =
1

2

∫
⟨vφ(R)⟩2Σ(R) dR , (2.25)

and the global stability parameters differ only from the contribution of the gravitational
potential energy.

For the case of a rotating razor-thin disc, recalling Equation (2.15) and fext =
Wdh/Wd, it is useful reformulate t∗ (see Equation 2.14) as

t∗ =
Td

(1 + fext)2|Wd|
=

Td W 2
d

(Wd +Wdh)2|Wd|
=

Td

|WD|
|Wd|
|WD|

, (2.26)

where WD = Wd + Wdh is the sum of the gravitational self-energy of the disc and
the interaction energy with the external halo potential. From Equation (2.26) we can
interpret t∗ as the ratio between the kinetic energy of rotation of disc particles Td and
the total disc gravitational energy WD times the fraction 1/(1 + fext) of the energy of
the disc due to its self-potential. At this point, since Td is common in both tOP and t∗,
we can relate the two parameters:

t∗ = tOP
|W |
|WD|

|Wd|
|WD|

(2.27)

Note that in case of a two-dimensional steady rotating disc with no external halo
(namely, a one-component system), we also have Wd ≡ WD and tOP = t∗.
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2.4 Universal validity of the tOP and t∗ parameters:

a still open discussion

As we have already seen in Section 2.2, ELN82 argued that using tOP as a global
stability parameter has some disadvantages because of its construction. In fact, tOP

does not consider that the bar-like modes also depends weakly on the thickness of
the disc. For this reason, ELN82 revised the definition of streaming velocity ⟨v(R)⟩
(Equation 2.12), including the integration of the velocity along the z-axis. Taking
apart this second-order note, a main issue of tOP is linked to the presence of Wh in
the tOP ratio (Equation 2.7): in fact, is the halo mass is dominant with respect to
the disc mass, Wh ≫ Wd and thus tOP lowers because of the strong value of Wh.
Although it seems correct, because from both analytical (OP73) and numerical (Hohl,
1971; Bodenheimer and Ostriker, 1973) perspectives the presence of a massive halo
stabilize the disc globally, there are some cases in which the presence of Wh lowers the
tOP ratio but does not prevent global instability. This issue was argued by ELN82, who
have found that tOP states stability in disc-halo system where the halo has small mass
and is very concentrated at the centre of the disc or it is massive but diluted in space,
giving no practical support to prevent bar formation in the stellar disc. The former
counterexample is also explored in Chapter 4, and we anticipate that the results are in
agreement with ELN82’s sentence.

Nevertheless, choosing t∗ as global stability parameter has some disadvantages too.
t∗ is not sensitive enough to distinguish a bar pattern from spirals: this is why ELN82
introduced the bar length measurement Lb. Besides, the t∗ ratio does not consider
the velocity dispersion content of the disc particles in the inner regions of the disc,
which can stabilize the disc (Athanassoula and Sellwood, 1986; Athanassoula, 2008).
Linear stability work from Toomre (1981) and Evans and Read (1998), and numerical
simulations from Sellwood (1989); Sellwood and Moore (1999) showed that a bar in-
stability in stellar discs can be avoided not only with a massive external dark matter
halo, but also with a minimal halo with a steep inner rise of the rotation curve of the
disc particles.

The Efstathiou, Lake and Negroponte’s (1982) criterion was extended by subsequent
works of Christodoulou et al. (1995) for gaseous discs and rearranged by Mo et al. (1998)
in a criterion which involves the halo spin parameter λ, the disc-to-halo specific angular
momentum ratio jd/jh and the disc-to-halo mass ratio Md/Mh:

E = λ
jd/jh

Md/Mh

≲ 1. (2.28)

Although Equation (2.28) seems different from the original definition of t∗ (Equation
2.17), in literature the two criteria behave similarly (e.g., Romeo et al., 2023). In any
way, the correctness of ELN82’s parameter is still debated. Recently, Izquierdo-Villalba
et al. (2022) test the performance of t∗ on the IllustrisTNG cosmological simulations
(Rosas-Guevara et al., 2020, 2022) and stated that t∗ can strongly predict the stability
of many disc galaxies. On the other hand, Ghosh et al. (2023) found that in thick disc
models tOP predicts the bar instability better than t∗. From an observational point of
view, Romeo et al. (2023) made a test of t∗ and found out that the ELN82’s criterion
fails to distinguish barred from non-barred galaxies for about 55% of the cases.

The conundrum around tOP and t∗ is still open and vivid. From our perspective,
we study the behaviour of tOP and t∗ in some idealized disc-halo scenarios, which we
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discuss deeply in Chapters 3 and 4.

2.5 A new experimental global stability parameter

From both theoretical and numerical points of view, we have seen that both tOP

and t∗ are not recognised universally valid as global stability parameters (e.g., Ghosh
et al., 2023; Romeo et al., 2023). For this reason, the pursuit of a complete global
stability parameter is still ongoing (see, e.g., Kataria et al., 2020).

Together with tOP and t∗ (Equations 2.7 and 2.17), in this work we present and
study a global stability parameter which is slightly different from t∗. We start from the
virial theorem of a disc embedded in an external potential (Equation 2.13), as ELN82
do in their work. We define:

tW =
Td∣∣∫ ρd(x)⟨x,∇(Φd(x) + Φh(x))⟩d3x

∣∣ =
=

Td

|Wd +Wdh|
=

Td

|WD|

(2.29)

and

uW =
Πd

2|WD|
, (2.30)

where Td and Πd are computed following the definition of ELN82’s mean circular ve-
locity ⟨vφ(R)⟩ELN in Equation (2.12). tW is strictly connected to t∗: in fact, if we write
WD = (1 + fext)Wd, we have

t∗ =
tW

1 + fext
. (2.31)

The close link between these two parameters will be investigated in Section 4.5.
We can rewrite the virial theorem of the disc (Equation 2.13) as function of tW and

uW , such that

tW + uW =
1

2
⇒ 0 ≤ tW ≤ 1

2
. (2.32)

One straightforward property of tW from Equation (2.32) is that if the disc has no
random motions, namely Πd = 0, we always have tW = 1/2, independently of the
structure of Td or WD. The same result can be applied to uW in case there are no
ordered motions (Td = 0), namely uW = 1/2 always, with no other assumptions on the
velocity distribution of the disc particles.

The main focus of tW is on the gravitational energy content of the disc WD, which
is strictly related to the work done on disc particles by the self-gravity of the disc and
the external halo potential. In case of a razor-thin steady rotating disc, Td is the same
for both tOP and t∗ – see Section 2.3, Equation (2.24) – thus tW can be also connected
with tOP and t∗ as

tW = t∗
|WD|
|Wd|

= tOP
|W |
|WD|

. (2.33)

Since |WD| ≥ |Wd| and |W | ≥ |WD|, from Equation (2.33), in this specific case it is
possible to obtain a hierarchy related to these three parameters:

t∗ ≤ tW , (2.34)

and tOP ≤ tW . (2.35)

In a razor-thin disc-only system, t∗ = tOP = tW because W = WD = Wd.
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Chapter 3

Set up of the N-body simulations

After having understood the motivations that led Ostriker and Peebles (1973) and
Efstathiou, Lake, and Negroponte (1982) to introduce the parameters tOP and t∗,
respectively, we investigate their functioning through a set of N -body simulations. In
this Chapter, we first set the initial conditions of the system, which consist of a stellar
disc and a dark matter halo. In our simulation suite, we use an exponential razor-thin
disc, described in Section 3.1.2, and a Hernquist (1990) profile, reported in Section
3.1.1, to represent the dark matter halo. The latter is treated as an external potential
in our simulations, thus the dark matter halo is not capable of evolving at subsequent
times, unlike the stellar disc. In this Chapter, we also present a test of the initial
conditions for the disc-halo system, to verify the correctness of the initial conditions
before running the N -body simulations, and the settings of the input parameters for
the N -body code (FVFPS Londrillo et al., 2003).
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3.1 Galaxy models

To investigate the behaviour of the tOP , t
∗ and tW parameters in disc-halo systems

(Equations 2.7, 2.17 and 2.29), we set the initial conditions through some simple ana-
lytical models. The halo, which we assume to be rigid and non-rotating, is modelled by
a Hernquist profile (see Section 3.1.1) and acts on the disc component as a spherically
symmetric external potential. We put an axisymmetric razor-thin disc within the halo
potential, which we initialize via an exponential surface density profile (see Section
3.1.2), which is a good fit for the observed galactic disc profiles (see, e.g., Cimatti
et al., 2019). Since our goal in the initial conditions is making all the disc particles
rotating in circular orbits with corresponding circular speed vc(R) (Equation 1.16), in
the following Subsections there is a particular focus on the circular speed vc(R) of the
disc particles, given by the disc itself and – if present – the halo. Furthermore, choosing
analytical models allows us to compute in a semi-analytical way the aforementioned
global stability parameters tOP and t∗.

3.1.1 The Hernquist profile

The Hernquist (1990) profile is a family of density profiles that is frequently adopted
to model the stellar component in galaxy bulges and in early-type galaxies, but it is
also used to characterize the dark matter profiles together with the NFW (Navarro
et al., 1997) models (see van de Ven et al., 2009).

The Hernquist (1990) is a spherically symmetric system with density profile

ρ(r) =
M

2π

a

r

1

(r + a)3
, (3.1)

where r is the spherical radius, M is the total mass and a is a scale length. The integra-
tion of Equation (3.1) in spherical symmetry gives the cumulative mass distribution:

M(r) = M
r2

(r + a)2
. (3.2)

By definition, independently of the mass distribution, the half-mass radius rh satisfies

M(rh) =
M

2
, (3.3)

which, for the Hernquist (1990) model, implies

M

2
= M

r2h
(rh + a)2

⇒ rh = (1 +
√
2)a. (3.4)

The Hernquist (1990) potential Φ(r) that satisfies Poisson’s equation (1.5), with ρ(r)
given by Equation (3.1), is

Φ(r) = − GM

r + a
. (3.5)

If we take into account a non-rotating spherical system, the radial velocity dispersion
σ2
r(r) is given by the Jeans equation

1

ρ

d(ρσ2
r)

dr
+ 2β

σ2
r

r
= −dΦ

dr
, (3.6)
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where β(r) = 1−σ2
θ/σ

2
r , σ

2
r is the radial velocity dispersion and σ2

θ = σ2
φ are the angular

velocity dispersions. In a isotropic system we have

σ2
r = σ2

φ = σ2
θ . (3.7)

Thus β(r) = 0 and in Equation (3.6) the second term with β vanishes. The integra-
tion of Equation (3.6) with vanishing β(r), density and potential profiles described by
Equations (3.1) and (3.5), respectively, gives

σ2
r(r) =

GM

12a

{
12r(r + a)3

a4
ln

(
r + a

r

)
− r

r + a

[
25− 52

r

a
+ 42

(r
a

)2

+ 12
(r
a

)3
]}

.

(3.8)
Note that σ2

r is nowhere divergent and vanishes as r/a → 0 and σ2
r ∼ GM/5r as r ≫ a.

If all the particles of the Hernquist (1990) sphere are moving in circular orbits, σ2
r = 0,

2σ2
θ = r dΦ/dr and σ2

θ + σ2
φ = v2c , where vc is the circular velocity (Equation 1.16).

Instead, for pure radial orbits we have σ2
θ = σ2

φ = 0. In a spherical isotropic model,
the kinetic energy is

K(r) = 6π

∫ r

0

ρ(r)σ2
r(r)r

2 dr . (3.9)

Substituting Equations (3.1) and (3.8), we get

K(r) =
GM2

4a

[
4
(r
a

)3

ln

(
r + a

r

)
− 4

(r
a

)2

+ 2
r

a
− 1 +

(r/a)2 + r/a+ 1

(1 + r/a)3

]
. (3.10)

As r/a → 0, we have

K(r) ∼ GM2

a

(r
a

)
ln
(a
r

)
, (3.11)

and the total kinetic energy, which is obtained in the limit r → ∞ is

Ktot =
GM2

12a
. (3.12)

By the definition of total gravitational energy

Wtot = 2π

∫ ∞

0

ρ(r)Φ(r)r2 dr (3.13)

we can achieve the related expression for the Hernquist (1990) profile, namely

W = −GM2

6a
. (3.14)

Note that Equations (3.12) and (3.14) satisfy the scalar virial theorem 2K +W = 0.
The local escape velocity ve(r) and the circular speed vc(r) are given by Equations

(1.17) and (1.16), respectively. For the Hernquist (1990) profile, we have

ve(r) =

√
2GM

r + a
(3.15)

and

vc(r) =

√
GMr

r + a
. (3.16)

Note that as r/a → +∞, vc ∼ r−1/2, so the circular speed curve is asymptotically
Keplerian.
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3.1.2 The exponential disc

Both the surface brightness and the surface mass density distribution of many
galactic discs, seen face on, can be approximately modelled in an exponential form
(de Vaucouleurs, 1959; Freeman, 1970; Smith et al., 2015). In the assumption of a
razor-thin (i.e. zero-thickness) axisymmetric disc, whose particles are all lying on a
plane (say z = 0 in cylindrical coordinates R,φ, z), the radial surface brightness I(R)
and the surface density profile Σ(R) are

I(R) = I0 exp

(
− R

Rd

)
(3.17)

and Σ(R) = Σ0 exp(−R/Rd), respectively, (3.18)

where I0 and Σ0 are the central (R = 0) values of I(R) and Σ(R), and Rd is the disc
scale length.

Using the razor-thin disc decomposition into homoeoids (see Section 1.1.2), we can
find the family of homeoids such that the combination of their surface mass densities
equals (3.18) at every R. For the razor-thin exponential disc case, the potential in the
equatorial plane z = 0, obtained by substituting its surface mass density (3.18) into
Equation (1.24), is

Φ(R, 0) = −4GΣ0

∫ R

0

da
aK1(a/Rd)√

R2 − a2
= −πGΣ0R[I0(y)K1(y)− I1(y)K0(y)], (3.19)

where In and Kn are modified Bessel functions (see Binney and Tremaine, 2008, Ap-
pendix C.7) and y = R/(2Rd).

Freeman (1970) has found the expression for the circular speed of an exponential
disc by differentiating Equation (3.19) with respect to R:

v2c (R) = R

(
∂Φ

∂R

)
z=0

= 4πGΣ0Rdy
2[I0(y)K0(y)− I1(y)K1(y)], (3.20)

whose peak is at Rpeak ≈ 2.15Rd (see Cimatti et al., 2019; Bovy, 2023).
The integration of the surface mass density of the exponential disc in cylindrical

coordinates gives its mass interior to R:

M(R) = 2π

∫ R

0

dR′R′Σ0 exp(−R′/Rd)

= 2πΣ0R
2
d

[
1− exp(−R/Rd)

(
1 +

R

Rd

)]
.

(3.21)

For R → ∞ we obtain the total mass

M = 2πΣ0R
2
d. (3.22)

Using the definition of the half-mass radius (Equation 3.4) with the exponential mass
profile (Equation 3.21), for this model we have Rh = 1.68Rd (e.g. Cimatti et al., 2019).

If we divide Equation (3.21) by the total mass (Equation 3.22), we get the normal-
ized mass profile for the razor-thin exponential disc:

F (R) = 1− exp(−R/Rd)

(
1 +

R

Rd

)
. (3.23)
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3.2 Initial conditions

We now describe the method we adopt to generate the initial conditions of our
simulations. The main goal is to sample an axisymmetric razor-thin disc of total mass
Md trough a set of N particles, all with the same mass m = Md/N . The velocity
of all the disc particles is set such that the azimuthal speed is equal to the circular
speed (Equation 1.16) at every radius R (vφ(R) = vc(R) ≡ R ∂Φd/∂R) and the radial
speed vR(R) = 0. In other words, every particle initially moves in circular motion with
speed in balance with the potential of the whole disc. The azimuthal velocities are first
assigned so that the direction of the angular momentum is the same for all particles.

Furthermore, the initial conditions might also include a dark matter halo, which
we model here as an external fixed potential. Treating the dark matter halo as a
fixed potential is, of course, an approximation: by doing that, we assume the halo is
’dead’ (or ’unresponsive’), which means that the halo particles do not change their
properties in the phase space due to the disc potential (or, similarly, the disc potential
has negligible impact in the distribution function of the halo) and respond only to
their gravitational field. On the other hand, the disc particles might gravitate within
an external potential, which means that not only they respond to their own potential,
but also to the external halo potential. This means, considering that in our initial
conditions the initial velocity is related to the circular speed, that the initial velocity
of each particle will also change due to the possible presence of the halo.

As a final step about generating the initial conditions, a fraction α (with 0 ≤ α ≤
1/2) of the disc particles is randomly selected such that the sign of their azimuthal
velocity is reversed. By inverting the direction of a fraction α of initial velocity, we are
able to introduce an azimuthal velocity dispersion without affecting (or summoning)
the radial component.

3.2.1 Input parameters

For our simulations, the stellar disc is modelled with an exponential surface density
profile (see Section 3.1.2). The dark matter halo is represented by the Hernquist (1990)
model (see Section 3.1.1).

To generate a certain dataset which samples the disc model we want to adopt, we
need to quantify some parameters at the beginning of the generation code: the total
number of disc particles N , the disc model, the total disc mass Md, the disc scale length
Rd, the disc size (or truncation radius) Rd,max, the halo-to-disc mass ratio Mh/Md, the
halo-to-disc scale length ratio ah/Rd.

All these parameters allow us to compute uniquely:

� for the disc: the cumulative mass distribution of the disc F (R) (Equation 3.23),
the surface density profile of the disc (Equation 3.18), the potential Φd(R, 0) of
the disc particles (Equation 3.19) and their circular speed vc(R) (Equation 3.20);

� for the halo: the gravitational potential of the halo Φh(r) (Equation 3.5) and the
circular speed vc(R) related to the potential itself (Equation 3.16).

3.2.2 Disc: position and velocity assignment

Once we set the input parameters, we can sample the disc model through N parti-
cles, all with mass m = Md/N . For the initial conditions, we need to assign a position
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x and a velocity v to each particle. Positions are given by the normalized disc mass dis-
tribution F (R), while the velocity assignment, for our purpose, is given by the potential
of the whole system

Φ(R, z) = Φd(R, z) + Φh(R, z) ∀(R, z), (3.24)

where the subscripts d and h refer to the disc and the external halo, respectively. Thus
the circular speed of each particle at position R is

v2c (R) = R

(
∂Φ

∂R

)
z=0

= R

(
∂Φd

∂R

)
z=0

+R

(
∂Φh

∂R

)
z=0

= v2c,d(R) + v2c,h(R). (3.25)

We report here a scheme of the main steps implemented in the generation of the
initial conditions for the disc-halo system:

1. Choose a random value of F̃ (R) from a uniform distribution [0, 1];

2. Find the related R using the inverse function of F̃ (R), such that 0 ≤ R ≤ Rd,max;

3. Compute the potentials Φd(R) and Φh(R) and the circular speed vc(R) (Equation
3.25) at a given R;

4. Choose a random value of the phase φ from a uniform distribution [0, 1] and
multiply it by 2π;

5. Decompose the position R and the circular speed vc(R) along the x and y direc-
tions using Equations (C.1) and (C.8) from Appendix C, respectively. Because
we impose the motion on the (x, y) plane, z = 0 and vz = 0 for all the particles.

The aforementioned steps are done cyclically for N times, in order to set the IC for all
the particles of the system.

It should be noted that Step 2 cannot always be solved analytically, thus a numerical
approach is needed. Since there is no analytical expression of the inverse function of
Equation (3.27) (or, equivalently, Equation 3.23), R is solved at a given F̃ (R) using a
root-finding algorithm, such as the bisection method (see, e.g., Hoffman and Frankel,
2018), within the interval [0, Rd,max].

Furthermore, Steps 3 and 5 ensure that all the particles have only initial tangential
motion, namely vR(R) = 0 and vϕ(R) = vc(R) at every R – see Section 3.3 for further
details.

These steps are also valid in the case of a disc-only system, namely Φ(R) ≡ Φd(R)
and thus Φh(R) = 0.

Effects of the truncation radius Rd,max on disc equations

Section 3.1.2 describes a razor-thin disc whose mass distribution is radially extended
over all the interval [0,∞(. In N -body implementations, such as ours or in other works
(e.g., Smith et al., 2015), stellar discs models are imposed to be truncated, thus we
need to set a truncation radius Rd,max.

The presence of Rd,max sets a finite region for the mass density distribution of the
disc, thus changing the respective mathematical forms of the mass distribution. Now,
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focusing on this effect for the case of a razor-thin exponential disc (Section 3.1.2), we
impose that the total mass of a finite disc with size Rd,max is

M̃d = 2π

∫ Rd,max

0

dR′R′Σ0 exp(−R′/Rd) =

= 2πΣ0R
2
d

[
1− exp(−Rd,max/Rd)

(
1 +

Rd,max

Rd

)]
.

(3.26)

Now, if we normalize Equation (3.21) with M̃(R), we obtain

F̃ (R) =
M(R)

M̃d

=
1− exp(−R/Rd)

(
1 + R

Rd

)
1− exp(−Rd,max/Rd)

(
1 +

Rd,max

Rd

) = qF (R) ∀R ∈ [0, Rd,max].

(3.27)
Note that F̃ (R) and F (R) are related through the normalization factor q, thus the
functional dependences are the same as in Equation (3.23) and 0 ≤ F̃ (R) ≤ 1 for
0 ≤ R ≤ Rd,max. We can quantify the difference between F̃ (R) and F (R) using the
relative error

|F̃ (R)− F (R)|
F (R)

= q − 1 ∀R ∈ [0, Rd,max]. (3.28)

Assuming Rd and Rd,max are fixed, the relative error is constant at every R and prop-
agates over all the equations of Section 3.1.2 because of the changed value of Σ0.
Nevertheless, by setting Rd,max/Rd = 10, the relative error q − 1 ≃ 0.05%, which tells
us that the finite size Rd,max/Rd = 10 affects the value of Σ0 for a factor of 0.05%,
which we consider negligible for the scope of our work. This means we can use all the
equations of Section 3.1.2, even though they are exact only for an untruncated disc,
neglecting the difference between F̃ (R) and F (R).

3.3 Testing the initial conditions

Before starting the simulations, we need to verify whether the initial conditions are
properly set.

First of all, we check the initial conditions for the disc. All the input parameters
related to the disc are fixed for every simulation run – see Table 3.1 for more details.

N Model Md/Mu Rd/lu Rd,max/Rd

102400 Exp. 1 1 10

Table 3.1: Input parameters related to the disc, which are adopted for every simulation
run. For the code units Mu and lu, see Section 3.4.1, ”Code units”.

If we plot the spatial distribution of the disc particles on the (x, y), (x, z) and (y, z)
planes (Figure 3.1), we can see all particles lying in the z = 0 plane. We stress that
Figure 3.1 is valid not only for disc-only N -body simulations, but also for disc-halo
system. In fact, the initial mass distribution of the disc is not linked to the halo
properties.

For the same reason, the initial plot of the surface density (Figure 3.2) of the disc
is valid for the conditions expressed in Table 3.1, independently of the presence of
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Figure 3.1: Initial spatial distribution of the disc particles on the (x, y), (x, z) and
(y, z) planes for the case of a razor-thin exponential disc with the conditions expressed
in Table 3.1. x, y and z are normalized to Rd.

the halo. Comparing the numerical the surface density of the disc (black line) to the
analytical one for an untruncated disc (red line), we can see that the numerical sample
represents well the analytical profile, as expected.

Figure 3.2: At t = 0, surface density profile distribution of the disc for the case of
a razor-thin exponential disc with the conditions expressed in Table 3.1 (black line),
compared to the analytical profile in Equation (3.18) (red line). R and Σ(R) are
normalized to Rd and Md/R

2
d, respectively.

Furthermore, we can put in the same plot the normalized mass profile of an untrun-
cated disc (Equation 3.23) and the F̃ (R) given by the truncated disc with the input
parameters described in Table 3.1. The results we see in Figure 3.3 is the two profiles
are superposed. This fact allows us to say that the disc implementation of the mass
distribution is done properly.

Figure 3.4 displays the potential profile of the disc particles.
We now look at the velocity components vR and vφ generated numerically for each
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Figure 3.3: At t = 0, normalized mass profile of the disc with the conditions expressed
in Table 3.1 (solid green line), compared to the analytical profile in Equation (3.23)
for an untruncated disc (dashed orange line). R and M(R) are normalized to Rd and
Md, respectively.

Figure 3.4: At t = 0, potential of the disc particles with the conditions expressed in
Table 3.1. R and Φd(R) are normalized to Rd and GMd/Rd, respectively.

particle. Now, because in our implementation all the particles move in circular orbits
such that |vφ(R)| = vc(R) ≡ R ∂Φ/∂R for R ∈ [0, Rd,max], vφ is function to the total
potential of the system, which means the speed curve will vary as the halo potential
does. For this reason, we report here in Figure 3.5 an example of speed curve of the
disc particles in a disc-halo system, compared to the curve of a disc-only system. As
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Figure 3.5: At t = 0, azimuthal speed curve of the disc for the case of a razor-thin
exponential disc with the conditions expressed in Table 3.1 (dashed line), compared
to the initial azimuthal (blue) and radial (orange) speed curve of the same disc within
a halo potential with Mh/Md = 10 and ah/Rd = 5. R and the v-components are
normalized to Rd and (GMd/R

2
d)

1/2, respectively.

we expect, in Figure 3.5 all the disc particles have non-zero azimuthal velocity (blue
line), while the radial velocity (orange line) is null. If the halo is not present in the
simulation run (namely Mh/Md = 0), then the azimuthal velocity curve is given by
Equation (3.20), which is represented by a dashed black line in Figure 3.5.

3.4 Set up of the N-body simulations

Once generated the initial conditions for the disc-halo system, we need to import
them in the N -body code FVFPS, a Fortran Version of a Fast Poisson Solver, which is
a momentum-preserving fast Poisson solver for N -body systems that was developed by
Dehnen (2002) in the C++ code falcON, Force Algorithm with Complexity O(N), and
then implemented by Londrillo et al. 2003 in a Fortran-90 code. In order to run the
N -body simulations, we need to specify some input parameters for the N -body code
runs. In Section 3.4.1 we report the most important ones related to the functioning of
the FVFPS code.

3.4.1 Set up parameters

Dynamical time tdyn, initial time step ∆tin and end time tmax

Following the convention used by ELN82 (see Section 2.2.3), we take as reference
dynamical time tdyn for a disc (with or without dark matter halo) the orbital period of
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a particle at the stellar half-mass radius Rh (Equation 3.4) which is given by:

tdyn =
2πRh

vc(Rh)
, (3.29)

where vc(Rh) is the circular speed (Equation 3.25) at Rh. Note the dynamical time
is influenced by the potentials of the disc and the halo at Rh, thus for a fixed disc
potential Φd – as in our case – we have that vc(Rh) varies only if Φh does.

The FVFPS code (Londrillo et al., 2003) adopts a leap-frog time integration scheme
(see, e.g., Hockney and Eastwood, 1988; Bodenheimer, 2007) and uses an initial time
step ∆tin = Ctdyn, where C is a user-provided parameter. The time step ∆t is the
same for all the particles and is adaptive, namely the code updates its value every n
steps using

∆t = min (∆tcrit ≡ 1/
√

4πGρmax,∆tin), (3.30)

where ρmax is the maximum local density of the system. Equation (3.30) ensures the
stability of the time integration method. Typically, Londrillo et al. (2003) suggest
C ≃ 10−2 in numerical simulations such as galaxy mergers. In our case, also because
of the choice of the reference dynamical time at the half-mass radius of the disc, we
always set C = 10−3, such that the starting time step is ∆tin = 10−3tdyn; then we
let the code update the time-step adaptively every 10 time integration cycles in case
Condition (3.30) holds.

Gravitational softening ϵ

The FVFPS code (Londrillo et al., 2003) computes the gravitational acceleration of
particles assuming they are not point masses, but have some size given by the softening
length ϵ. Considering that the force a N -body system exerts on a point mass mj at
position xj is

F(xj) = mj

N∑
i=1,i ̸=j

Gmi
xi − xj

|xi − xj|3
. (3.31)

If we define rij ≡ |xi − xj|3 and introduce the softening length ϵ in Equation (3.31),
we have

F(xj) = mj

N∑
i=1,i ̸=j

Gmi
xi − xj

(r2ij + ϵ2)3/2
. (3.32)

Equation (3.32) ensures the computation of the gravitational force does not diverge
when rij → 0, which means we assign a finite size ϵ to each particle.

The choice of ϵ depends on the number of particles N involved in the simulation
and on the density distribution – in our case, Σd(x) set by Equation (3.18). We can
simply assume ϵ ≃ λ, where λ is the mean interparticle distance. We can define λ in
both spherical and disc systems by using the volume and the area within the half-mass
radius, respectively, namely

Vhalf =
4

3
πr3h for a spherical system

and Ahalf = πR2
h for a disc,

(3.33)

where rh and Rh are the spherical and cylindrical half-mass radius, respectively. If we
build a system with N particles of the same mass, we have that the number of particles
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within the half-mass radius is always N/2. Thus

λ =


(

Vhalf

N/2

)1/3

for a spherical system,(
Ahalf

N/2

)1/2

for a disc.
(3.34)

Now, given a system with N particles and a half-mass radius rh (for spheres) or Rh

(for discs), by equating ϵ ≃ λ, where λ is defined in Equation (3.34), we have

ϵ =


(

Vhalf

N/2

)1/3

=
( 4

3
πr3half
N/2

)1/3

=
(
8
3
π
)1/3 rhalf

N1/3 for a spherical system,(
Ahalf

N/2

)1/2

=
(

πR2
half

N/2

)1/2

=
√
2π

Rhalf

N1/2 for a disc.
(3.35)

In our case, the disc system is always sampled by N = 102400 particles and has the
properties reported in Table 3.1, with Rh = 1.68Rd (e.g. Cimatti et al., 2019). Thus
the softening ϵ has always the same value in our simulations:

ϵ ≃ 0.013Rd. (3.36)

Opening angle θmin

Since the FVFPS (Londrillo et al., 2003) scheme is partially based on tree algo-
rithms, originally proposed by Barnes and Hut (1986), we need to preassign an opening
parameter θmin in order to set the opening criterium

s

d
≤ θmin, (3.37)

where s is the width of the region represented by the considered node and d is the
distance between center-of-mass of the node and the particle with mass mj on which
we are computing the gravitational force. As in Dehnen’s (2002) scheme implementa-
tion, FVFPS’s opening parameter θ is mass dependent, where the implicit form of the
function θ(M) is (Londrillo et al., 2003)

θ5

(1− θ)2
=

θ5min

(1− θmin)2

(
M

Mtot

)−1/3

, (3.38)

where M is the mass enclosed in a cell. The mass dependence ensures the code has
a fast performance and a more uniform error distribution (see Londrillo et al., 2003,
Figure 1).

Common values of θmin are θmin = 0.4 ÷ 0.7 (see, e.g., Aarseth, 2003; Springel,
2005). In our simulations, because of the geometry of the problem, we always set

θmin = 0.4 . (3.39)

Code units

The FVFPS code (Londrillo et al., 2003) works with dimensionless quantities (mi,
xi, vi, which are related to the i-th particle, and t for the simulation run time) and
assumes G = 1. For this reason, we need to write the initial conditions in dimensionless
units, which means

mi →
mi

Mu

; xi →
xi

lu
; vi →

vi

vu
; t → t

tu
, (3.40)
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where Mu, lu, vu and tu are the code mass, length, speed and time units. In particular,
vu and tu are functions of Mu and lu, namely

vu =

(
GMu

lu

)1/2

≃ 207.4

(
Mu

1010 M⊙

)1/2(
lu
kpc

)−1/2

km/s (3.41)

and tu =
lu
vu

≃ 4.7× 106
(

lu
kpc

)3/2(
Mu

1010 M⊙

)−1/2

yr. (3.42)

After the simulation run, we can rescale the quantities (mi, xi, vi, t) as

mi → miMu; xi → xilu; vi → vivu; t → ttu. (3.43)

For instance, choosing Mu = 1010 M⊙ and lu = 1 kpc, the total disc mass is
Md = 1010 M⊙ and the disc scale radius is Rd = 1 kpc.

Fraction of retrograde orbits α

Before the simulation runs, we modify the initial conditions to account for the the
fraction of retrograde orbits inside the disc, namely the fraction of particles which are
orbiting in the opposite sense of the most part of the stars (see, e.g., Kalnajs, 1977;
Pawlowski et al., 2011). We adopt the letter α to describe this fraction, with the
condition that

0 ≤ α ≤ 1

2
, (3.44)

because if α > 1/2, the fraction of the retrograde stars represents the bulk motion of
the stars in the disc, thus the fraction of prograde orbits can be seen as the fraction
of counter-orbiting stars and we would just go back to the case expressed in Equation
(3.44).

We choose randomly a fraction α of orbits from the generated ones and invert the
direction of the initial velocity, which in our case means

v(R) ≡ vφ(R) → −v(R) ≡ −vφ(R)

⇒ vx(R) → −vx(R); vy(R) → −vy(R).
(3.45)

The introduction of α in our simulations changes the evaluation of the kinetic energy
components T and Π (Equations 1.29a and 1.29b), thus the global stability parameters
tOP , t

∗ and tW (Equations 2.7, 2.17 and 2.29). We describe this connection in Chapter
4 and in Appendix D.
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Chapter 4

Results

Given a set of different initial conditions for our N -body simulations, which are
described in Chapter 3, our first goal is to analyse their results after running them
through the FVFPS code (Londrillo et al., 2003). The main focus is on checking the
global stability of the disc and the resulting behaviour of tOP , t

∗ and tW with various
choices of the input parameters described in Sections 3.2.1 and 3.4.1. To do that, we
have implemented some useful diagnostic tools which keep control on the configurations
of the stellar disc with the advance of time.

In this Chapter we also discuss about some simulations as examples of what our
results consist of, analysing the time variations (if any) of the stellar density maps, the
surface density profile, the kinetic energy curve and angular momentum curves, the
m = 2 modes and the half-mass radius Rh (Equation 3.4).

In conclusion, an analysis of tOP , t
∗ and tW is based on the results obtained from

the simulation suite. A comparison of these three parameters will give more details
about the physical informations they carry from both the kinetic and the potential
energy content.
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4.1 Simulation diagnostics

In order to analyse the snapshots of our simulation runs, a part of our work was
focused on building a diagnostic tool which can give us more information about the
simulations from both local and global points of view. Hereafter we present our nu-
merical implementation of the diagnostics, which can help us to state whether a disc
is stable or not. For our purposed, we talk about ”stable” systems when the physical
quantities related to the system are not changing with time – except for the numerical
noise; see, e.g., simulation Mh400ah5α0 (Section 4.4.4).

4.1.1 Density maps

Plots like Figure 3.1 show less information than density maps in presence of a large
amount of particles (i.e. N ≳ 104), because the superposition of the particles saturates
the view in the plot and may hide the spatial features that are forming in the most
crowded regions of the disc. For this reason, we have built the density maps as follows:

� We take a region with size 15 × 15 R2
d,max/R

2
d centred at R = 0 and divide it

uniformly into 150× 150 cells;

� For each cell, the diagnostic code counts the number of particle within the cell;

� The code computes the mean surface density of each cell as

Σcell =
particles inside cell

cell area
. (4.1)

Figure 4.1: At t = 0, disc density map of the (x, y) plane. x and y axes are normalized
to Rd, while the stellar density Σ (colour bar) is normalized to Md/R

2
d.

The different values of Σcell are visualised through a colour range: each cell has a
colour which corresponds with the the value of Σcell inside it. Figure 4.1 shows the
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initial surface density map of the exponential disc, which is valid for every simulation
we have run.

4.1.2 Surface density profiles

To compute the radial surface density of the disc. We first build a grid with ring-
like profile cells. The procedure we have followed is very similar to the density maps
computation steps (Section 4.1.1), but in Step 1, instead of a two-dimensional grid,
we build a radial grid for R ∈ [0, Rd,max] with Nr = 20 rings. The division in rings is
uniform in a logarithmic scale, namely

Ri

Rd

= 10j, where j = jmin + (i− 1)
(jmax − jmin)

(Nr − 1)
∀ i = 1, ..., Nr. (4.2)

Equation (4.2) ensures the radial grid is equally spaced from a logarithmic perspective,
which means the exponents j are equally spaced in the real range [jmin, jmax]. For our
purposes, we always set jmin = −1 and jmax = 1, such that our grid has minimum
radius R1 = 0.1Rd and maximum radius R20 = 10Rd. The mean surface density inside
the ring cell is computed using Equation (4.1) and then the value of Σcell is normalized
to Md/R

2
d.

An example of the result from this algorithm is displayed in Figure 3.2, which shows
the radial surface density distribution of the initially generated disc.

4.1.3 Kinetic energy

We are interested in analysing the behaviour of the total kinetic energy components
Td and Πd of the disc (Equations 1.29a and 1.29b) in cylindrical coordinates (R,φ, z)
as functions of time t. Since we assume that the halo behaves as a fixed potential for all
the simulation runs, thus not changing its spherically symmetric properties described
in Section 3.1.1, we will focus only on the kinetic energy components of the disc. To
lighten the notation, we now adopt K ≡ Kd, where Kd is the total kinetic energy of
the disc, T ≡ Td and Π ≡ Πd. For the numerical computation, we discretize the trace
of Equations (1.27) (left), (1.29a) and (1.29b) as (see, e.g., Saha and Elmegreen, 2018)

K =
1

2

N∑
i=1

miv
2
i , (4.3)

T =
1

2

N∑
i=1

miv
2
i,φ (4.4)

and
1

2
Π = K − T, (4.5)

where mi is the mass of the i-th particle, vi is the magnitude of the total velocity of
the i-th disc particle and vi,φ is the magnitude of its azimuthal component. mi can be
seen as the discretization of the infinitesimal mass δm = Σ(R) dR in Equation (2.25).

Since the FVFPS code works with Cartesian coordinated and we are adopting
cylindrical coordinates, we need to compute vR and vφ for each disc particle using
System (C.6) and Equations (C.2) from Appendix C. As we want also to study the
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radial profiles of K, T and Π, we build a radial grid as we did in Section 4.1.2, but
now with Nr = 100 rings and uniform in a linear scale, namely

Ri = Rmin + (i− 1)
(Rmax −Rmin)

(Nr − 1)
∀ i = 1, ..., Nr, (4.6)

such that R1 = Rmin = 0.1Rd and R100 = Rmax = 10Rd.
Inside each j-th ring cell, following the treatment of Saha and Elmegreen (2018),

we numerically compute

⟨vk⟩j =
1

Nj

Nj∑
i

(vk)i for k = R,φ, z, (4.7)

(Kk)j =
1

2

Nj∑
i

mi(v
2
k)i for k = R,φ, z, (4.8)

(Tk)j =
1

2

 Nj∑
i

mi

 ⟨vk⟩2j for k = R,φ, z, (4.9)

and
1

2
(Πk)j = (Kk)j − (Tk)j for k = R,φ, z, (4.10)

where Nj is the number of particles inside the j-th ring. Every kinetic energy compo-
nent is then normalized to GM2

d/Rd.

4.1.4 Angular momentum

We study the evolution of the angular momentum L of the disc along the x, y and
z directions. To do so, we use the same radial grid as in Section 4.1.2 and we use the
definition L = x ∧mv and compute Lx, Ly and Lz inside each j-th ring cell (see, e.g.,
Saha and Elmegreen, 2018) as

Lx(j) =

Nj∑
i

mi × (yivz,i − zivy,i), (4.11)

Ly(j) =

Nj∑
i

mi × (zivx,i − xivz,i), (4.12)

and Lz(j) =

Nj∑
i

mi × (xivy,i − yivx,i), (4.13)

(4.14)

where Nj refers to the particles inside the j-th ring cell. We also computed the total
angular momentum components of the disc as

Lx,tot =
∑
j

Lx(j), Ly,tot =
∑
j

Ly(j), Lz,tot =
∑
j

Lz(j), (4.15)

thus summing all the contribution of Lx, Ly and Lz from each j-th ring.
Every angular momentum component is then normalized to (GM3

dRd)
1/2.
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4.1.5 Half-mass radius Rh of the disc

At any time t in the simulation, we compute Rh as the radius lying in the equatorial
plane of the circle (centred in the origin) that contains half of the particles.

Since this algorithm can be applied for every snapshot of the simulation runs, we
can study the evolution (if any) of Rh as function of time t. To do so, we take the
initial value of the half-mass radius Rh,0 and compare to Rh at subsequent times and
compute the relative variation with respect to Rh,0, which is

Rh −Rh,0

Rh,0

. (4.16)

4.1.6 m = 2 modes of the disc

Following the treatment of Sellwood (2016), we measure the departure of the surface
density distribution of the disc from axial symmetry using Fourier mode amplitudes
Am at time t

Am(t) =

∣∣∣∣∣∑
j

µje
imφj

∣∣∣∣∣, (4.17)

where1 µj and φj are the mass and the polar angle of the j-th disc particle, respectively.
In particular, for m = 0 we obtain the total disc mass Md

A0 =
∑
j

µj = Md, (4.18)

whose value remains constant for all the simulation run. Our focus will be on the bar
amplitude inside the disc, which can be defined through the m = 2 modes (e.g., Collier
et al., 2019), namely

A2

A0

=
1

A0

∣∣∣∣∣∑
j

µje
2iφj

∣∣∣∣∣, (4.19)

where we normalize the m = 2 to the monopole A0 ≡ Md.

In the following we will show the evolution of the A2/A0 ratio as function of time t
in a log-linear plot. The presence of a straight line in this plot would be the signature of
an exponential growth of the bar amplitude (Sellwood, 2016). Differently from Collier
et al. (2019), the A2/A0 ratio is computed using all the particles, with no restriction
to the radial region.

4.1.7 tOP , t
∗ and tW computation

Given a disc-halo system with a Hernquist DM halo and a razor-thin exponen-
tial disc which is initially steady rotating, we always compute the parameters tOP ,
t∗ and tW (Equations 2.7, 2.17 and 2.29) at the beginning of the simulation. Given
the aforementioned initial configuration (particles are moving on circular orbits with
vϕ(R) = vc(R); see Section 3.2.2), the computation of T from the total kinetic energy

1In this subsection we use µ instead of m to indicate the particle mass, to avoid confusion with the
Fourier mode m.
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K is the same for tOP , t
∗ and tW (see Section 2.3 and Equation (2.24)). Numerically,

at t = 0 we compute K as in have

K =
1

2

N∑
j=1

mjv
2
j , (4.20)

T =(1− 2α)2K, (4.21)

and Π =8α(1− α)K, (4.22)

where α is the fraction of retrograde stars and the j index refers to the j-th particle
(j = 1, .., N). (See Appendix D for the analytical computation of Equations D.20 and
D.21.)

The gravitational potential energy components ofW are computed both analytically
and numerically. The total gravitational energy of the system W is computed using
Equation (2.5), while in the evaluation of Wdh we use the trace of the Chandrasekhar
potential-energy tensor (Equation 1.8). Given N particles, the discrete computation
of Wd and Wd↔h is:

Wd =
1

2

N∑
j=1

mjΦd(Rj, 0) (4.23)

Wd↔h =
N∑
j=1

mjΦh(Rj) (4.24)

The calculation ofWh is purely analytical and its expression is given in Equation (3.14).
As far as we can see, Wdh cannot be computed analytically using elementary func-

tions. For this reason, once written

Wdh =

∫
d3x ρd(x)⟨x,∇Φh(x)⟩ =

= −
∫ R

0

∫ 2π

0

∫ z

0

Σd(R)δ(z = 0)
GMh

(R2 + z2)1/2 + a
R dR dφ dz =

= −2πGMhΣ0

∫ R

0

e−R/Rd
R

R + a
dR ,

(4.25)

from now on, the integral in the last line of Equation (4.25) is evaluated numerically.
Given the initial values of T and of all the W -components, the computation of the

tOP , t
∗ and tW parameters at t = 0 is straightforward.

4.2 Initial parameters of the N-body simulations

Table 4.1 give an outline of all the simulations performed in this work. Some of
them are presented in Sections 4.3 and 4.4 to illustrate the main results we have found
from our simulations.
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Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh0ah0α0 4.3.1 0 0 17.27 0 0.5 0.5 0.5 No
Mh0ah0α0 4.3.2 0 0 17.27 1/2 0 0 0 No

Mh2ah0.01α0 / 2 0.01 9.7 0 0.014 0.059 0.433 No
Mh2ah0.1α0 / 2 0.1 10.23 0 0.079 0.073 0.411 No
Mh400ah0.1α0 / 400 0.1 0.72 0 0.0005 0.0006 0.5 Yes
Mh1.5ah1α0.5 / 1.5 1 12.393 0 0.239 0.241 0.5 No
Mh2ah1α0 / 2 1 11.5 0 0.202 0.205 0.5 No
Mh4ah1α0 / 4 1 9.22 0 0.124 0.129 0.5 No
Mh10ah1α0 / 10 1 6.4 0 0.057 0.061 0.5 No
Mh20ah1α0 / 20 1 4.69 0 0.03 0.033 0.5 No
Mh50ah1α0 / 50 1 3.03 0 0.012 0.014 0.5 Yes
Mh100ah1α0 / 100 1 2.16 0 0.006 0.007 0.5 Yes
Mh200ah1α0 / 200 1 1.54 0 0.003 0.003 0.5 Yes
Mh400ah1α0 / 400 1 1.09 0 0.0016 0.0017 0.5 Yes
Mh2/3ah2α0 / 2/3 2 15.6 0 0.356 0.401 0.5 No
Mh1.5ah2α0 / 1.5 2 14.1 0 0.255 0.321 0.5 No
Mh2ah2α0 / 2 2 13.38 0 0.217 0.287 0.5 No
Mh4ah2α0 / 4 2 11.31 0 0.134 0.201 0.5 No
Mh10ah2α0 / 10 2 8.3 0 0.061 0.106 0.5 No
Mh20ah2α0 / 20 2 6.24 0 0.032 0.0594 0.5 No
Mh50ah2α0 / 50 2 4.1 0 0.013 0.0256 0.5 Yes
Mh100ah2α0 / 100 2 2.95 0 0.007 0.013 0.5 Yes
Mh200ah2α0 / 200 2 2.1 0 0.003 0.0066 0.5 Yes
Mh400ah2α0 / 400 2 1.48 0 0.0016 0.003 0.5 Yes
Mh2ah5α0 / 2 5 15.75 0 0.252 0.403 0.5 No
Mh4ah5α0 4.4.1 4 5 14.58 0 0.153 0.338 0.5 No
Mh4ah5α0.5 4.4.2 4 5 14.58 1/2 0 0 0 No
Mh10ah5α0 4.4.3 10 5 12.18 0 0.063 0.228 0.5 No
Mh10ah5α0.5 / 10 5 12.18 1/2 0 0 0 No
Mh20ah5α0 / 20 5 9.94 0 0.03 0.148 0.5 No
Mh20ah5α0.5 / 20 5 9.94 1/2 0 0 0 No
Mh50ah5α0 / 50 5 7.02 0 0.011 0.072 0.5 No
Mh50ah5α0.5 / 50 5 7.02 1/2 0 0 0 No
Mh100ah5α0 / 100 5 5.18 0 0.005 0.039 0.5 No
Mh200ah5α0 / 200 5 3.75 0 0.003 0.02 0.5 Yes
Mh400ah5α0 4.4.4 400 5 2.68 0 0.001 0.01 0.5 Yes
Mh400ah5α0.5 / 400 5 2.68 1/2 0 0 0 Yes

Table 4.1: Summary table of our simulations named as indicated in the first column.
All simulations have number of particles N = 102400, total disc mass Md/Mu = 1,
disc scale length Rd/lu = 1, disc truncation radius Rd,max/Rd = 10, initial time step
∆tin = 10−3tdyn, softening length ϵ = 0.013Rd and opening parameter θmin = 0.4. α
is the fraction of retrograde orbits (see Section 3.4.1). Mh is the total halo mass Mh

and ah is the halo scale length. The dynamical time tdyn is defined by Equation (3.29).
For the computation of tOP , t

∗ and tW (Equations (2.7), (2.17) and (2.29)) at t = 0,
see Section 4.1.7. The symbol ’§’ refers to the subsection in which the simulation is
described (when applicable).
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4.3 Simulations without dark halo

4.3.1 Simulation Mh0ah0α0 (Mh = 0, α = 0)

Initial conditions and parameters

Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh0ah0α0 4.3.1 0 0 17.27 0 0.5 0.5 0.5 No

Table 4.2: Summary table of the simulation Mh0ah0α0. All the input parameters are
explained in the caption of Table 4.1.

For the initial mass distribution of the disc particles, see Figures 3.1, 3.2, 3.3, and
4.1. The initial speed curves are shown in Figure 3.5 (dashed line). The initial kinetic
energy and angular momentum distributions are shown in Figures 4.2.

Results

In case of a razor-thin exponential disc-only system, whose particles are moving
around pure circular orbits with vφ = vc under the potential well of the disc itself, the
system is not stable. In particular, the Toomre (1964) parameter Q = 0 because there
is no velocity dispersion (σ2 = 0). Since the first dynamical time, Figures 4.3 (top
panels) show that substructures are forming through local instabilities (e.g., Jeans,
1902; Toomre, 1964). After 10tdyn, the two main dense regions are merging, orbiting
around each other, with no hint of a bar formation. It is worth noticing that all the
disc particles are free to move, with no constraints on the motion along a privileged
plane. However, in every simulation run we have found that all the disc particles move
only on the z = 0 plane, developing no vertical motions along the z axis.

These results help us to the interpretation of Figure 4.3 (bottom left), which shows
the ratio A2/A0 (see Section 4.1.6), because there is a steep rise of the m = 2 modes
in less than 1tdyn. Even though there is a high A2/A0 > 0.1 ratio, no bar is present in
the system. Furthermore, the nature of the disc has changed during the time: there
were more substructures colliding to each other, as a consequence of the disruption of
the disc from its unstable equilibrium of the initial conditions. Although the system is
not axisymmetric anymore, we compute its half-mass radius (Section 4.1.5), which we
can see in Figure 4.3 (bottom right). One main information that we achieve from the
Rh − t plot is the disc has been extending throughout the simulation period.

The surface density profiles also confirm this scenario: the nature of the system has
changed so much that the initial exponential profile of the disc is no longer present.

The kinetic energy content (Figures 4.5) is made up of both ordered and random
motions, where the latter are always prevailing the former. Central regions (R/Rd < 2)
give little contribution to the kinetic energy of the system because of the lower density
there. The main part of K is concentrated between 2 < R/Rd < 6 at t = 1.5tdyn. The
interpretation of the two peaks at t = 10tdyn can be related to the main substructures
that are orbiting around each other, in a phase of merging. This physical aspect is also
confirmed by the angular momentum plots (Figures 4.6), where two peaks are visible
in the final snapshot at t = 10tdyn as in Figure 4.6 (right).

We now turn our attention to the analysis of the main global quantities that are
associated with the kinetic aspect of the system. Specifically, we focus on the ordered
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Figure 4.2: Simulation Mh0ah0α0. (Left) Initial profiles of the kinetic energy compo-
nents. Radii and energies are normalized to Rd and GM2

d/Rd, respectively. (Right)
Initial profiles of the angular momentum components. R and all the L-components are
normalized to Rd and (GM3

dRd)
1/2, respectively.
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Figure 4.3: (Top panels) Simulation Mh0ah0α0. Evolution of the disc density map of
the (x, y) plane with time. x and y axes are normalized to Rd, while Σ (colour bar) is
normalized to Md/R

2
d. (Bottom left) Evolution of the bar amplitude A2/A0 with time.

(Bottom right) Evolution of the fractional variation of the half-mass radius with time.
Time is normalized to tdyn.

Figure 4.4: Simulation Mh0ah0α0. Disc surface density profiles (black) at t = 1.5tdyn
(left) and t = 10tdyn (right) compared to the initial one (dashed red). R and Σ(R) are
normalized to Rd and Md/R

2
d, respectively.
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Figure 4.5: Simulation Mh0ah0α0. Evolution of the kinetic energy components with
time, compared to the initial profile (dashed gray line). Radii and energies are normal-
ized to Rd and GM2

d/Rd, respectively.

Figure 4.6: Simulation Mh0ah0α0. Evolution of the angular momentum compo-
nents with time, compared to the initial profile (dashed gray line). R and all the
L-components are normalized to Rd and (GM3

dRd)
1/2, respectively.
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kinetic energy of rotation T , the random kinetic energy of rotation Π and the total
angular momentum in the z-axis Lz,tot of the disc. Both the ordered and random kinetic
energies of the disc (Figure 4.7) change drastically in the subsequent times, giving an
additional hint that the system is not stable. In particular, random motions become
dominant, as we also see in Figure 4.5. We know from Hohl (1976) that an unstable
disc has a time-decreasing ordered kinetic energy T . Even though the radial profile of
the angular momentum changes with time, the total angular momentum is not. Since
only Lz ̸= 0, Figure 4.7 (right) shows only Lz,tot, which is not changing with time. This
means that the total angular momentum of an isolated system is conserved.

Figure 4.7: Simulation Mh0ah0α0. (Left) Evolution of the total ordered and random
kinetic energies T and Π with time. Radii and energies are normalized to Rd and
GM2

d/Rd, respectively. (Right) Evolution of the total angular momentum Lz,tot with
time. R and Lz,tot are normalized to Rd and (GM3

dRd)
1/2, respectively.
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4.3.2 Simulation Mh0ah0α0.5 (Mh = 0, α = 0.5)

Initial conditions and parameters

Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh0ah0α0.5 4.3.1 0 0 17.27 0.5 0 0 0 No

Table 4.3: Summary table of the simulation Mh0ah0α0.5. All the input parameters are
explained in the caption of Table 4.1.

Figure 4.8: Simulation Mh0ah0α0.5. (Left) Initial profiles of the kinetic energy compo-
nents. Radii and energies are normalized to Rd and GM2

d/Rd, respectively. (Top right)
Initial rotation velocity of particles. R is normalized to Rd, while the v-components
are normalized to (GMd/Rd)

1/2. (Bottom right) Initial profiles of the angular momen-
tum components. R and all the L-components are normalized to Rd and (GM3

dRd)
1/2,

respectively.

For the initial mass distribution of the disc particles, see Figures 3.1, 3.2, 3.3, and
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4.1. The initial rotation curve of the particles, the initial kinetic energy and angular
momentum distributions are shown in Figures 4.8.

Results

By inverting half of the total number of orbits, in order to have 50% of retrograde
stars (see Section 3.4.1) and vanishing total angular momentum Ltot = 0, the disc
behaves different from the case discussed in Section 4.3.1 (simulation Mh0ah0α0). The
azimuthal velocity dispersion σ2

φ contributes to weaken the local instability, thus pre-
venting the formation of substructures. In the first dynamical times, as we see from
Figures 4.9, the disc is divided into a central area and a surrounding external ring
(t = 2.5tdyn), without the formation of a bar. This ring feature disappears lately at
t = 4tdyn, leading to a barely axisymmetric denser region surrounded by a mantle of
stars that are not distributed axisymmetrically.

Figure 4.9: Simulation Mh0ah0α0.5. Evolution of the disc density map of the (x, y)
plane with time. x and y axes are normalized to Rd, while Σ (colour bar) is normalized
to Md/R

2
d.

Also here, the absence of a bar cannot be seen through the A2/A0 ratio, reported
for this simulation in Figure 4.10 (left), has a steep rise up to A2/A0 ∼ 10−1. The
growth of the half-mass radius is from 25% to 30%, but still shows the system has not
been changed dramatically as in the α = 0 scenario (Section 4.3.1).

The evolution of the surface density profile shows that the disc is also changing its
Σ(R), comparing to the initial profile (Figures 4.11, red lines), which is lower in the
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Figure 4.10: Simulation Mh0ah0α0.5. (Left) Evolution of the bar amplitude A2/A0

with time. (Right) Evolution of the fractional variation of the half-mass radius with
time. Time is normalized to tdyn.

inner regions and less steep in the outermost regions.

Figure 4.11: Simulation Mh0ah0α0.5. Disc surface density profile (black) at t = 2.5tdyn
(left) and t = 10tdyn (right) compared to the initial one (dashed red). R and Σ(R) are
normalized to Rd and Md/R

2
d, respectively.

The plots of the kinetic energy components show the effect of the presence of the
retrograde orbits. The ordered motions, both radial and azimuthal, are negligible with
respect to the random components, which are the main contribution to the total kinetic
energy at every radius. A kinetic energy peak in the innermost regions of the disc is
detected in this simulation (Figures 4.12), which shifts from R/Rd < 1 to 1 < R/Rd < 2
in the outside. At t = 2.5tdyn (Figure 4.12, left) there is an external rise of the total
kinetic energy at 4 < R/Rd < 6, which is related to the presence of the ring surrounding
the central structure. In fact, as the ring vanishes later on in the simulation, only the
innermost peak survives (Figure 4.12, right).

The total angular momentum is initially null (L = 0), because half of the orbits,
picked randomly from the whole set, have been inverted. The main consequence of
this choice is that the range value of the local angular momentum is also 1/10 of the
respective α = 0 case (Section 4.3.1) and Lz – the main and only contributor – oscillates
in values close to zero. In particular, at t = 10tdyn, Lz is negligible (|Lz|/(GM3

dRd)
1/2 <

10−3) with respect to the α = 0 scenario.
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Figure 4.12: Simulation Mh0ah0α0.5. Evolution of the kinetic energy components
with time, compared to the initial profile (dashed gray line). Radii and energies are
normalized to Rd and GM2

d/Rd, respectively.

Figure 4.13: Simulation Mh0ah0α0.5. Evolution of the angular momentum compo-
nents with time, compared to the initial profile (dashed gray line). R and all the
L-components are normalized to Rd and (GM3

dRd)
1/2, respectively.
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Figure 4.14: SimulationMh0ah0α0.5. (Left) Evolution of the total ordered and random
kinetic energies T and Π with time. Radii and energies are normalized to Rd and
GM2

d/Rd, respectively. (Right) Evolution of the total angular momentum Lz,tot with
time. R and Lz,tot are normalized to Rd and (GM3

dRd)
1/2, respectively.

Concerning the global kinematic properties of the disc, in this case the total ordered
kinetic energy of the disc T is always negligible – which is expected also from the radial
profile of T (Figure 4.12), while the total random kinetic energy Π changes within
t ≃ 5tdyn, then its value is conserved (Figure 4.14, left). This means that also in this
case Π changes in subsequent times, even when the disc is less unstable than in the
simulation Mh0ah0α0. Since only Lz ̸= 0, Figure 4.14 (right) shows Lz,tot varying
during time. However, these variations are small and close to zero, as in our models
all the cases with α = 1/2 have vanishing total angular momentum – together with T .

4.4 Simulations with dark halo

4.4.1 Simulation Mh4ah5α0 (Mh/Md = 4, ah/Rd = 5, α = 0)

Initial conditions and parameters

Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh4ah5α0 4.4.1 4 5 14.58 0 0.153 0.338 0.5 No

Table 4.4: Summary table of the simulation Mh4ah5α0. All the input parameters are
explained in the caption of Table 4.1.

For the initial mass distribution of the disc particles, see Figures 3.1, 3.2, 3.3, and
4.1. The initial rotation curve of the particles, the initial kinetic energy and angular
momentum distributions are shown in Figures 4.15.

Results

As we can immediately see from Figures 4.16, in this simulation the disc is evolving,
which means the system is not stable. From the surface density maps shown in Figures
4.16, some parts of the disc develop local instabilities. We should notice that the
initial conditions generate a cold disc with σ = 0, thus with an initial Toomre (1964)
parameter Q = 0.
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Figure 4.15: Simulation Mh4ah5α0. (Left) Initial profiles of the kinetic energy compo-
nents. Radii and energies are normalized to Rd and GM2

d/Rd, respectively. (Top right)
Initial rotation velocity of particles. R is normalized to Rd, while the v-components
are normalized to (GMd/Rd)

1/2. (Bottom right) Initial profiles of the angular momen-
tum components. R and all the L-components are normalized to Rd and (GM3

dRd)
1/2,

respectively.

56 Results



Global instability of stellar discs in presence of DM halos Sebastiano Cantarella

Figure 4.16: Simulation Mh4ah5α0. Evolution of the disc density map of the (x, y)
plane with time. x and y axes are normalized to Rd, while Σ (colour bar) is normalized
to Md/R

2
d.
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After few dynamical times, the disc reveals denser region in the centre, which are
more concentrated in an elongated shape, which we might call a weak bar. This
behaviour is also confirmed by the evolution of the m = 2 modes through the time –
see Figure 4.17, left –, which are greater than A2/A0 = 0.1 within 5tdyn. m = 2 modes
are a signal for the presence of a bar pattern, which is slightly present within 8tdyn.
After that time, the bar pattern loses its coherence and eventually vanishes, leading to
a more symmetrical structure whose size is bigger than the initial one. We stress that
the rise of m = 2 can be due to both the presence of spirals of a bar inside the disc.
The half-mass radius, shown in Figure 4.17 (right), is also evolving in time, but it keep
the same value after t ∼ 7tdyn.

Figure 4.17: Simulation Mh4ah5α0. (Left) Evolution of the bar amplitude A2/A0 with
time. (Right) Evolution of the fractional variation of the half-mass radius with time.
Time is normalized to tdyn.

Another consequence of the evolution of the disc is that its surface density profile
changes during the time: in fact, the growing of the disc size changes the spatial
distribution of the stars. At the final stage of the simulation (t ∼ 8tdyn), the new
surface density profile shows a cusp in the centre of the disc and a cut-off at large
radius – see Figures 4.18.

Figure 4.18: Simulation Mh4ah5α0. Disc surface density profile (black) at t = 1.6tdyn
(left) and t = 8tdyn (right) compared to the initial one (dashed red). R and Σ(R) are
normalized to Rd and Md/R

2
d, respectively.
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Figure 4.19: Simulation Mh4ah5α0. Evolution of the kinetic energy components with
time, compared to the initial profile (dashed gray line). Radii and energies are normal-
ized to Rd and GM2

d/Rd, respectively.

Figure 4.20: Simulation Mh4ah5α0. Evolution of the angular momentum compo-
nents with time, compared to the initial profile (dashed gray line). R and all the
L-components are normalized to Rd and (GM3

dRd)
1/2, respectively.
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The kinetic energy components also change during the simulation. The ordered
motion T are totally given by the azimuthal component Tφ, while the random com-
ponent has both radial and azimuthal contributions. After few dynamical times, the
initial speed profile is no longer present and, during the slight formation of the bar
at 2.8tdyn (Figure 4.19, left), we can see two peaks in ordered and random motions in
the central regions of the disc. We notice that random motions are more significant
in the innermost regions, while ordered motions are preponderant the peak between
2 < R/Rd < 4. After the bar dissolution, at t = 8tdyn (Figure 4.19, right) this lat-
ter peak vanishes, but the random motions in the innermost regions hold on. As in
the 2.8tdyn snapshot, the ordered motions are prevalent starting from R/Rd = 2. In
both these snapshots, azimuthal motions are the main component of the stellar kinetic
energy.

The analysis of the angular momentum evolution with time gives more information
about the kinetic energy peak at t = 2.8tdyn in the region 2 < R/Rd < 4. From Figure
4.20 (left) we can see that the above-mentioned peak is also represented by a peak in
Lz, the only non-null component of the angular momentum of the disc. This peak is
erased after the bar dissolution (Figure 4.20, right) and most of the Lz contribution,
comparing to the initial profile, is translated outside of the disc.

Figure 4.21: Simulation Mh4ah5α0. (Left) Evolution of the total ordered and random
kinetic energies T and Π with time. Radii and energies are normalized to Rd and
GM2

d/Rd, respectively. (Right) Evolution of the total angular momentum Lz,tot with
time. R and Lz,tot are normalized to Rd and (GM3

dRd)
1/2, respectively.

Focusing now on the the total ordered kinetic energy T and on the total random
kinetic energy Π of the disc, they evolve in this scenario, but after t = 10tdyn their
change becomes less significant (see Figure 4.21, left). T is predominant in the first
2.5tdyn, but then random motions are the principal kinetic energy component of the
systems, even though the ordered motions are still significant over time. Figure 4.21
(right) shows that Lz,tot is well conserved in the subsequent times.

4.4.2 Simulation Mh4ah5α0.5 (Mh/Md = 4, ah/Rd = 5, α = 0.5)

Initial conditions and parameters

For the initial mass distribution of the disc particles, see Figures 3.1, 3.2, 3.3, and
4.1. The initial rotation curve of the particles, the initial kinetic energy and angular
momentum distributions are shown in Figures 4.22.
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Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh4ah5α0.5 4.4.2 4 5 14.58 1/2 0 0 0 No

Table 4.5: Summary table of the simulation Mh4ah5α0.5. All the input parameters are
explained in the caption of Table 4.1.

Figure 4.22: SimulationMh4ah5α0.5. (Left) Initial profiles of the kinetic energy compo-
nents. Radii and energies are normalized to Rd and GM2

d/Rd, respectively. (Top right)
Initial rotation velocity of particles. R is normalized to Rd, while the v-components
are normalized to (GMd/Rd)

1/2. (Bottom right) Initial profiles of the angular momen-
tum components. R and all the L-components are normalized to Rd and (GM3

dRd)
1/2,

respectively.
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Results

Figure 4.23: Simulation Mh4ah5α0.5. Evolution of the disc density map of the (x, y)
plane with time. x and y axes are normalized to Rd, while Σ (colour bar) is normalized
to Md/R

2
d.

In presence a fraction α = 0.5 of retrograde orbits – i.e., before starting the simu-
lation, we invert half of the stellar orbits –, the results are totally different from that
seen in Section 4.4.1. As we can notice from the density maps in Figures 4.23, no
apparent bar is forming during the evolution of the disc, even though the A2/A0 ratio
(see Figure 4.24, left) has a peak at t ∼ 1tdyn, slightly lower than A2/A0 = 0.1. This is
due to the fact that there is a phase of readjustment of the initial conditions, which are
undergoing local instabilities. After t ∼ 2tdyn, the disc develops a more concentrated
centre and a ring-like structure which is surrounding it. The m = 2 modes are always
of the order of A2/A0 ∼ 10−2÷10−3, which confirms the absence of a bar in this system.
Not only the disc is stable to bar formation, but it also keeps roughly the same size
from the initial conditions. In the final stage (t ∼ 8tdyn), the disc has a size 5% more
extended with respect to the initial one and the external ring structure is vanishing.

Considering that the disc, thanks to the azimuthal velocity dispersion, is deviating
little from of its initial conditions, we expect quite the same in the surface density
profile. In fact, the only departure from initial conditions is given by the central cusp
that forms after few dynamical times, as we can see from Figures 4.25.

The kinetic energy components show no substantial change during the whole simu-
lation. The azimuthal motions are always prevailing with respect to the radial motions.
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Figure 4.24: Simulation Mh4ah5α0.5. (Left) Evolution of the bar amplitude A2/A0

with time. (Right) Evolution of the fractional variation of the half-mass radius with
time. Time is normalized to tdyn.

Figure 4.25: SimulationMh4ah5α0.5. Disc surface density profile (black) at t = 2.88tdyn
(left) and t = 8tdyn (right) compared to the initial one (dashed red). R and Σ(R) are
normalized to Rd and Md/R

2
d, respectively.
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Figure 4.26: Simulation Mh4ah5α0.5. Evolution of the kinetic energy components
with time, compared to the initial profile (dashed gray line). Radii and energies are
normalized to Rd and GM2

d/Rd, respectively.

Figure 4.27: Simulation Mh4ah5α0.5. Evolution of the angular momentum compo-
nents with time, compared to the initial profile (dashed gray line). R and all the
L-components are normalized to Rd and (GM3

dRd)
1/2, respectively.
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In particular, the latter have a peak in the innermost regions, where it has the same
value of the azimuthal kinetic energy. The ordered motions T are negligible in the
whole simulation, leading to totally prevalent random motions, which seem to prevent
bar formation in the central regions. At the end of the simulation, even though the
disc has different features with respect to the initial conditions, it keeps barely the the
same features during within 8tdyn (Figure 4.26, left), forming a cusp at the centre.

As a consequence from the absence of negligible kinetic energy (Figures 4.26), the
angular momentum (Figure 4.27), only represented by Lz, is approaching to a null
value: |Lz| < 0.004, which has to be compared to the angular momentum of the same
simulation with α = 0 (Section 4.4.1, Figures 4.20), where the peak was at least five
times bigger than in this case.

Figure 4.28: SimulationMh4ah5α0.5. (Left) Evolution of the total ordered and random
kinetic energies T and Π with time. Radii and energies are normalized to Rd and
GM2

d/Rd, respectively. (Right) Evolution of the total angular momentum Lz,tot with
time. R and Lz,tot are normalized to Rd and (GM3

dRd)
1/2, respectively.

Similarly to the simulation Mh0ah0α0.5, the total ordered kinetic energy of the disc
T is keeping null for the simulation run, while the total random kinetic energy Π keeps
barely constant with time after some initial fluctuations before t = 3tdyn (see Figure
4.28, left). The behaviour of Π is different to the Mh4ah5α0 case and can be related
to the less presence of instabilities (both local and global). Figure 4.28 (right) shows
that Lz,tot is varying at small scales as in the simulation Mh0ah0α0.5.

4.4.3 Simulation Mh10ah5α0 (Mh/Md = 10, ah/Rd = 5, α = 0)

Initial conditions and parameters

Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh10ah5α0 4.4.2 10 5 12.18 0 0.063 0.228 0.5 No

Table 4.6: Summary table of the simulation Mh10ah5α0. All the input parameters are
explained in the caption of Table 4.1.

For the initial mass distribution of the disc particles, see Figures 3.1, 3.2, 3.3, and
4.1. The initial rotation curve of the particles, the initial kinetic energy and angular
momentum distributions are shown in Figures 4.29.
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Figure 4.29: Simulation Mh10ah5α0. (Left) Initial profiles of the kinetic energy compo-
nents. Radii and energies are normalized to Rd and GM2

d/Rd, respectively. (Top right)
Initial rotation velocity of particles. R is normalized to Rd, while the v-components
are normalized to (GMd/Rd)

1/2. (Bottom right) Initial profiles of the angular momen-
tum components. R and all the L-components are normalized to Rd and (GM3

dRd)
1/2,

respectively.
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Results

Figure 4.30: Simulation Mh10ah5α0. (Top) Disc density map of the (x, y) plane at
t = 10tdyn. x and y axes are normalized to Rd, while Σ (colour bar) is normalized to
Md/R

2
d. (Bottom) Disc surface density profile (black) at t = 2.5tdyn (left) and t = 6tdyn

(right) compared to the initial one (dashed red). R and Σ(R) are normalized to Rd

and Md/R
2
d, respectively.

Figure 4.31: Simulation Mh10ah5α0. (Left) Evolution of the bar amplitude A2/A0 with
time. (Right) Evolution of the fractional variation of the half-mass radius with time.
Time is normalized to tdyn.
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By increasing the halo mass at Mh/Md = 10 (maintaining ah/Rd = 5), the pre-
vention of a global instability in the disc is still far away: as we can see in Figures
4.30, both the density maps and the surface density distribution are changing with
time, forming local instabilities (e.g., Jeans, 1902; Toomre, 1964). In particular, at
t = 2.5tdyn we can notice the formation of a weak bar at the centre of the disc, which
disappears at t = 6tdyn. The presence of a weak bar is confirmed also by the behaviour
of the m = 2 modes (Figure 4.31, left), which are A2/A0 > 10−1 for 1 < t/tdyn < 3. At
the end of the simulation (Figure 4.30, top right), the local inhomogeneity is no longer
present, leading to a smoother density distribution with an increased half-mass radius
(Figure 4.31, right).

Figure 4.32: Simulation Mh10ah5α0. Evolution of the kinetic energy components with
time, compared to the initial profile (dashed gray line). Radii and energies are normal-
ized to Rd and GM2

d/Rd, respectively.

If we look at the kinetic energies (Figures 4.32), we see that the random motions
(both radial and azimuthal) are mainly present in the innermost regions of the disc,
while the ordered motions (only made by the azimuthal component) give a primary
contribution in the regions R/Rd ≳ 1. The inner K-spike at t = 2.5tdyn (Figure
4.32, left) is given by the presence of a denser region in the surrounding area, as also
confirmed in Figure 4.32 (right) at t = 6tdyn. At this latter time, a second spike at
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Figure 4.33: Simulation Mh10ah5α0. Evolution of the angular momentum compo-
nents with time, compared to the initial profile (dashed gray line). R and all the
L-components are normalized to Rd and (GM3

dRd)
1/2, respectively.

R/Rd ≃ 2 is formed, probably related to the local overdensities at that distance from
the centre.

The distribution of the angular momentum at t = 2.5tdyn and at t = 6tdyn is
different from the initial one (Figure 4.29, bottom right). In particular, at t = 2.5tdyn
the region 3 < R/Rd < 6 has a higher angular momentum than in the innermost zones,
but the latter show less angular momentum for increasing time. At t = 6tdyn we can
see the same spike at R/Rd ≃ 2 we have noticed in Figure 4.32 (right).

Figure 4.34: Simulation Mh10ah5α0. (Left) Evolution of the total ordered and random
kinetic energies T and Π with time. Radii and energies are normalized to Rd and
GM2

d/Rd, respectively. (Right) Evolution of the total angular momentum Lz,tot with
time. R and Lz,tot are normalized to Rd and (GM3

dRd)
1/2, respectively.

For this simulation run, the total ordered kinetic energy of the disc T decreases but
seems to approach an asymptotic value, as well as the random motions Π are increasing
with time and are asymptotically reaching a constant value (see Figure 4.34, left). The
change of both T and Π manifests the instability of this disc-halo system. Also in this
case, Figure 4.34 (right) shows that Lz,tot is conserved during all the simulation run
time.
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4.4.4 Simulation Mh400ah5α0 (Mh/Md = 400, ah/Rd = 5, α = 0)

Initial conditions and parameters

Name § Mh

Md

ah
Rd

tdyn/tu α tOP t∗ tW stable

Mh400ah5α0 4.4.2 400 5 2.68 0 0.001 0.01 0.5 Yes

Table 4.7: Summary table of the simulation Mh400ah5α0. All the input parameters
are explained in the caption of Table 4.1.

Figure 4.35: Simulation Mh400ah5α0. (Left) Initial profiles of the kinetic energy
components. Radii and energies are normalized to Rd and GM2

d/Rd, respectively.
(Top right) Initial rotation velocity of particles. R is normalized to Rd, while the
v-components are normalized to (GMd/Rd)

1/2. (Bottom right) Initial profiles of the
angular momentum components. R and all the L-components are normalized to Rd

and (GM3
dRd)

1/2, respectively.

For the initial mass distribution of the disc particles, see Figures 3.1, 3.2, 3.3, and
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4.1. The initial rotation curve of the particles, the initial kinetic energy and angular
momentum distributions are shown in Figures 4.35.

Results

Figure 4.36: Simulation Mh400ah5α0. (Top left) Disc density map of the (x, y) plane
at t = 10tdyn. x and y axes are normalized to Rd, while Σ (colour bar) is normalized to
Md/R

2
d. (Top right) Disc surface density profile (black) at t = 10tdyn compared to the

initial one (dashed red). R and Σ(R) are normalized to Rd and Md/R
2
d, respectively.

(Bottom left) Evolution of the bar amplitude A2/A0 with time. (Bottom right) Evolu-
tion of the fractional variation of the half-mass radius with time. Time is normalized
to tdyn.

In the case of Mh/Md = 400, the disc behaves essentially as a tracer with negligible
self-gravity. In fact, all the particles are moving under the most prevalent potential
field, which is, in this case, the halo one. The circular speed assigned to the disc
particles follows Equation (3.25), but in the case of Φh ≫ Φd, we have

v2c ≃ R
∂Φh

∂R
. (4.26)

The disc particles are moving under the potential field of the halo and the disc, but the
latter is negligible compared to the former, thus they behave almost as tracers of the
halo potential. For this reason, at t = 10tdyn (Figure 4.36, top left) the system keeps
its rotation with no signatures of instabilities and has the same initial surface density
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profile (Figure 4.36, top right). The absence of a bar is confirmed by the m = 2 modes
plot (Figure 4.36, bottom left), where A2/A0 < 10−2 and the half-mass radius is quite
unchanged (the relative variation computed using Rh(t) and Rh(t = 0) is of the order
of 10−3).

The angular momentum and the kinetic energy content conserve the initial prop-
erties (see Figures 4.37). Nevertheless, small random motions form in the innermost
regions of the disc, even though the disc particles are moving under the main influence
of the halo potential well. These random motions are negligible with respect to the
ordered kinetic energy T , and can be ascribed to numerical noise.

Figure 4.37: Simulation Mh400ah5α0. (Left) Profiles of the kinetic energy components
at t = 10tdyn. Radii and energies are normalized to Rd and GM2

d/Rd, respectively.
(Right) Profiles of the angular momentum components at t = 10tdyn. R and all the
L-components are normalized to Rd and (GM3

dRd)
1/2, respectively.

As a confirm of our previous analysis, both the total ordered and random kinetic
energies of the disc T and Π are not changing with time, in the absence of consistent
fluctuations (see Figure 4.38, left). Figure 4.38 (right) displayed the same scenario
with the total z-component of the angular momentum Lz,tot, which is conserved at a
fixed value.

72 Results



Global instability of stellar discs in presence of DM halos Sebastiano Cantarella

Figure 4.38: SimulationMh400ah5α0. (Left) Evolution of the total ordered and random
kinetic energies T and Π with time. Radii and energies are normalized to Rd and
GM2

d/Rd, respectively. (Right) Evolution of the total angular momentum Lz,tot with
time. R and Lz,tot are normalized to Rd and (GM3

dRd)
1/2, respectively.

4.5 Results on tOP , t
∗ and tW

After showing some of our simulations, we now focus on the behaviour of the stabil-
ity indicators tOP , t

∗ and tW , defined by Equations (2.7), (2.17) and (2.29), depending
on the disc-halo initial configuration. In Figures 4.39, 4.40 and 4.41 we plot these
parameters as functions of Mh/Md and ah/Rd, with α = 0, for every simulation, high-
lighting stable and unstable systems.

Figure 4.39: At t = 0, tOP , t
∗ and tW for all the simulations in Table 4.1 with ah/Rd = 1

and α = 0. The colour green refers to stable discs, while the colour red to unstable
discs.
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Figure 4.40: At t = 0, tOP , t
∗ and tW for all the simulations in Table 4.1 with ah/Rd = 2

and α = 0. The colour green refers to stable discs, while the colour red to unstable
discs.

During our simulation analysis, we have found that the stability of the disc depends
not only on the halo-to-disc mass ratioMh/Md, but also on the halo-to-disc scale length
ratio ah/Rd. In fact, for ah/Rd < 2, the disc is stable for Mh/Md ≥ 50, while for
ah/Rd = 5 the stability is reached for Mh/Md ≥ 200.

From Figures 4.39 (ah/Rd = 1, α = 0), 4.40 (ah/Rd = 2, α = 0) and 4.41 (ah/Rd =
5, α = 0) we can find that, by definition, tOP = t∗ = tW ≡ 0.5 when there is no halo
in the simulation (namely Mh/Md = 0; see Section 2.5). We can also see that we
have found unstable systems even in simulations the Ostriker-Peebles criterion (based
on tOP ; Condition 2.11) states the system should be stable. We can say the same
thing about the Efstathiou-Lake-Negroponte criterion (based on t∗; Condition (2.23)).
Nevertheless, the behaviour of both tOP and t∗ is described by curves that are mono-
tonically decreasing as the halo-to-disc mass ratio increases and the halo-to-disc scale
length is fixed. We can also state that the curves of tOP and t∗ tend to superpose when
the halo-to-disc scale length ratio ah/Rd is decreasing; we can see this difference by
comparing Figures 4.39 and 4.41.

The behaviour of tW in all simulation runs suggests it is insensitive to the choice
of Mh/Md and ah/Rd, because its value is always tW = 1/2 (see Figure 4.44). Our
explanation is related to both the construction of the parameter (Section 2.5), which is
strictly connected to the virial theorem of the disc embedded in an external potential
– the dark halo – and our initial conditions for the N -body runs. In fact, from the
theoretical construction of tW we already knew that 0 ≤ tW ≤ 1/2 (Equation 2.32)
and that, in case the disc has no random motions (namely Πd = 0), we always have
tW = 1/2. This is our case, because in the initial conditions described in Section 3.3 we
set all the disc particles in motion on circular orbits such that they are in equilibrium
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Figure 4.41: At t = 0, tOP , t
∗ and tW for all the simulations in Table 4.1 with ah/Rd = 5

and α = 0. The colour green refers to stable discs, while the colour red to unstable
discs.

with the total disc-halo potential. For this reason, in our simulations tW has fixed
value and is not sensitive to the change of the disc-halo configuration. In particular, if
we introduce a fraction of retrograde orbits α, we can explicit T as function of α – see
Appendix D, Equation D.20. In our specific case, this means that

tW =
1

2
(1− 2α)2 (4.27)

for every choice of T and WD. This result tells us that tW is strictly dependent on
α, thus it appears insensitive to the other parameters T and WD that described the
whole system. Now, if we connect the construction of tW with t∗ (Equation 2.31), we
can explain better why in t∗ ELN82 introduced a (1 + fext)

2 factor, thus not following
an accurate derivation from the virial theorem of the disc (Equation 2.13).

Another common point of tOP , t
∗ and tW is that when we introduces a fraction

α = 1/2 of retrograde orbits in our simulations, all the global stability parameters
are forced to be always equal to 0 – see Figures 4.42, 4.43 and 4.44. The explanation
is simple and is related to the construction of these parameters: since we use the
ordered kinetic energy of the disc particles T , it vanishes when α = 1/2 because of the
relation between T and α (Equation D.20). For this reason, if Td = 0, then tOP , t

∗ and
tW always vanish, no matter the disc is stable or not. This behaviour was expected
analytically, but the null value is not a hint of stability: as we have seen in Sections
4.3 and 4.4, the presence of retrograde orbits (thus, of azimuthal velocity dispersion)
gives little contribution to prevent local instabilities, but does not ensure the global
stability of the disc.

We end with a few considerations regarding the different sensitivity of each of the
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indicators tOP and t∗ on the two main parameters (relative halo concentration ah/Rd

and halo-to-disc mass ratio Mh/Md). tOP (Figure 4.42) is only slightly sensitive to
the variation of the halo-to-disc scale length ratio when ah/Rd ≳ 1. We can give
an explanation by reminding that tOP (Equation 2.7) contains the total gravitational
potential energy W = Wd +Wh +Wd↔h at its denominator. Now, if the halo-to-disc
mass ratio increases, so Wh does, thus lowering the value of tOP with no distinction
of the halo-to-disc scale length ratio. However, for lower Mh/Md (see simulations with
Mh/Md = 2 in Table 4.1), the values of tOP become increasingly different as ah/Rd

lowers. On the other hand, because its different construction, t∗ behaves differently

Figure 4.42: At t = 0, tOP for all the simulations in Table 4.1. The colour green refers
to stable discs, while the colour red to unstable discs.

from tOP . First, it is more sensitive to the variation of the halo-to-disc scale length ratio.
This is something we have already seen in Figures 4.39, 4.40 and 4.41, but in Figure
4.43 it is explicitly clear that the t∗ curves are different depending not only on the halo-
to-disc mass ratio, but also on the halo-to-disc scale length. This behaviour is possible
because of the absence of the gravitational self-energy of the halo in t∗ (Equation
2.17). We can also say that t∗ is less sensitive than tOP when a concentrated halo is
present with low Mh/Md. In fact, if for simulations Mh2ah0.1α0 and Mh2ah0.01α0
tOP gives two well separated far values, t∗ does not change so much between these two
simulations. As for tOP , all curves of t

∗ tend to superpose as Mh/Md increases.
Overall, looking at Figures 4.42 and 4.43, it is evident that for none of the parame-

ters the green (stable) and red (unstable) symbols can be separated tracing a horizontal
line. This implies that none of these parameters works as a stability indicator (at least
for our idealized systems). However, from Figure 4.42 we see that all systems with
tOP ≳ 0.14 are unstable, but there are several unstable systems with tOP ≲ 0.14. Sim-
ilarly, from Figure 4.43 we see that all systems with t∗ ≳ 0.2 are unstable, but there
are several systems with t∗ ≲ 0.2 that are unstable.
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We can conclude that among our models we have found several counterexamples
that, though idealized, violate both OP73 and ELN82 criteria.

Figure 4.43: At t = 0, t∗ for all the simulations in Table 4.1. The colour green refers
to stable discs, while the colour red to unstable discs.
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Figure 4.44: At t = 0, tW for all the simulations in Table 4.1. The colour green refers
to stable discs, while the colour red to unstable discs.
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Chapter 5

Conclusions and future perspectives

Together with a new parameter tW (Section 2.5), in this thesis work we studied
the behaviour of the OP73 (tOP ) and ELN82 (t∗) classical stability indicators through
N -body simulations performed via the Fortran Version of a Fast Poisson Solver code
(FVFPS, Londrillo et al., 2003), where we set a razor-thin exponential disc embedded
in an external Hernquist (1990) halo, where the latter is treated as a fixed external
potential. In Chapter 3 we set the initial conditions for our simulation suite such that
every disc particle starts with a circular motion around the centre of the disc, with or
without the presence of the halo. In Chapter 4 we reported the results of our simulation
suite, which we summarize as follows:

� In case of disc-only simulations with no retrograde orbits (α = 0), starting from
our initial conditions (Section 3.2.1), the system is always globally unstable and
by construction tOP = t∗ = tW = 1/2, thus the three parameters degenerate
in only one, whose behaviour depends on the velocity distribution function of
the particles. We note that the 1/2 value is due to the initial conditions of the
system – all disc particles are moving in circular orbits in equilibrium with their
own potential. In general, when we could have Πd ̸= 0, all the three parameters
might have lower values than 1/2, namely tOP = t∗ = tW ≤ 1/2. In disc-only
simulations with α = 1/2, although Td = 0 and thus tOP = t∗ = tW = 0, the
system is globally unstable; different from the Mh0ah0α0 case, the presence of
the azimuthal velocity dispersion σ2

φ, through the insertion of a fraction α of
retrograde orbits, gives a significant contribution to limit the disc disruption.

� In the disc-halo simulations with no retrograde orbits (α = 0), the presence of
the halo removes the degeneration between tOP , t

∗ and tW . The global stability
of the disc now depends essentially on the halo-to-disc mass ratio Mh/Md and
scale length ratio ah/Rd. From our simulation suite, we found that the discs are
globally stable: for Mh/Md ≳ 50 if ah/Rd ≲ 2; for Mh/Md ≳ 200 if ah/Rd ≃ 5.

� tW = 1/2 in all our simulations because of its definition (Equation 2.29) and our
set-up for the initial conditions (Section 3.3). This result is actually expected:
with the introduction of the retrograde orbits with α in our simulation suite,
the ordered and random kinetic energies has an explicit dependence with α (see
Appendix D). From Equation (D.20) and our initial conditions (Section 3.3), we
have 2T + |WD| = 0, thus tW ≡ T/|WD| = (1 − 2α)2/2, and when α = 0 we
always have tW = 1/2. This could be the reason that led ELN82 to insert another
1/(1 + fext) factor in the t∗ ratio.
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� While tW does not provide useful information for the construction of an alter-
native global stability criterion (at least for the idealized systems here consid-
ered), tOP and t∗ behave differently. In particular, tOP seems to be more sen-
sitive on the halo-to-disc mass ratio Mh/Md and not to its scale length ratio
ah/Rd: if the former increases, tOP lowers mainly because of the presence of Wh

in W in the tOP definition (Equation 2.7); if the latter has small values (namely,
ah/Rd = 0.1, 0.01), tOP appears to be very sensitive to this parameter choice and
thus lowers significantly even though Mh/Md ≃ 2, because the halo concentration
reflects on the value of Wh (see Figure 4.42).

� Due to the absence of Wh in its definition, t∗ is instead quite sensitive to the
variation of both Mh/Md and ah/Rd (Figure 4.43), in particular when the ah/Rd

ratio increases with fixed Mh/Md, but it is less sensitive in case of small but con-
centrated halos (e.g., simulations Mh2ah0.1α0 and Mh2ah0.01α0). Furthermore,
concerning the global stability criteria related to tOP and t∗ (Equations 2.11 and
2.23), we note that several of our models are unstable even if they have tOP,crit

and t∗crit lower than the critical values (Conditions 2.11 and 2.23).

� From our simulation runs, the global stability of a disc can be reached only if
the dark matter halo is massive. If present, the azimuthal velocity dispersion σ2

φ,
obtained through the insertion of a fraction α of retrograde orbits, gives a little
contribution to prevent local instabilities, although they are still present. Given
our initial conditions described in Section 3.3, when α = 1/2 we have Td = 0 and
thus tOP = t∗ = tW = 0 independently of the disc-halo input parameters. Even
though the three indicators have null value, it is not necessary a hint of stability:
simulations Mh0ah0α0.5 and Mh4ah5α0.5 are two examples that support the last
sentence. This result suggests that the explicit presence of random motions Πd

should be present in a new formulation of a global stability criterion.

� When a bar is forming at the centre of the disc, it is weak and dissolves after few
dynamical times from its formation. We may explain this feature by considering
our initial conditions for every N -body run, where radial motions are absent and
σR = 0. However, it is well-known that random motions generally contribute to
the disc stability and might prevent bar formation (see, e.g., Athanassoula and
Sellwood, 1986; Sellwood, 2016).

Though the results of this work are limited, due to some simplifying assumptions in the
simulation suite we performed, our conclusions could be the basis for future research
on this topic. In particular, we did not adopt a ’live’ halo capable of evolving during
the simulation run, but we treated the halo as a fixed external potential, as OP73 and
ELN82 do in their work (see also Kataria et al., 2020). In our case, we preferred to
start with this simple scenario, also because the presence of a ’live’ halo in a disc-halo
system needs the introduction of proper distribution functions of the whole system,
thus a deep study on this topic would be necessary. Furthermore, we could also adopt
different (and more realistic) models for the disc, from other two-dimensional models
(e.g., Kuzmin, 1956) to three-dimensional ones (e.g., Smith et al., 2015). We could also
model the dark matter halo, especially when rigid, with a different spherical profile –
(for instance, Navarro et al., 1997).

Taking the numerical implementation apart, the primary focus should always be
on the construction of a new global stability criterion. As seen in Section 2.4, neither
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tOP nor t∗ are universally valid, so the search for a more efficient parameter for global
stability of galactic discs is still open.
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Appendix A

Mixed terms W12 and W21 in a
two-component system

We can explicit the expressions of the interacting gravitational energies W12 and
W21 using the definition of Φ (Equation 1.2):

W12 = −
∫

d3x ρ1(x)⟨x,∇Φ2(x)⟩ = G

∫
d3x

∫
d3x′ ρ1(x)ρ2(x

′)

〈
x,

x′ − x

|x′ − x|3

〉
;

(A.1)

W21 = −
∫

d3x ρ2(x)⟨x,∇Φ1(x)⟩ = G

∫
d3x

∫
d3x′ ρ2(x)ρ1(x

′)

〈
x,

x′ − x

|x′ − x|3

〉
.

(A.2)

We can also rewrite Equations (A.1) and (A.2) by interchanging the dummy variables
x and x′:

W12 = G

∫
d3x′

∫
d3x ρ1(x

′)ρ2(x)

〈
x′,

x− x′

|x− x′|3

〉
; (A.3)

W21 = G

∫
d3x′

∫
d3x ρ2(x

′)ρ1(x)

〈
x′,

x− x′

|x− x′|3

〉
. (A.4)

Now, summing Equation (A.1) with Equation (A.4) (or, similarly, Equation (A.2) with
Equation (A.3)), we have

W12 +W21 ≡ W1↔2 = −G

∫
d3x

∫
d3x′ ρ1(x)ρ2(x

′)

〈
x′ − x,

x′ − x

|x′ − x|3

〉
=

= −G

∫
d3x

∫
d3x′ ρ1(x)ρ2(x

′)

|x′ − x|
.

(A.5)

Recalling again the definition of of Φ (Equation 1.2), we can have two possible expres-
sions of W1↔2:

W1↔2 =

∫
d3x ρ1(x)Φ2(x) =

∫
d3x ρ2(x)Φ1(x). (A.6)

Equation (A.6) is also treated in Ciotti (2021) (Section 10.5.1), which adopts a different
notation – see Ciotti (2021) and Section 1.2.5 for further details.
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Appendix B

Details about OP73 and ELN82

B.1 OP73

B.1.1 Acceleration computation

OP73 computed the acceleration of the i-th particle as

ai = − (1.1)2xiMH

Rmax(xi + 0.1Rmax)2
+
∑
j ̸=i

(xj − xi)

(x2
ij + c2)3/2

, (B.1)

where xij = |xi − xj| is the distance between the i-th and the j-th particle, Rmax is the
disc (and halo) size, MH is the halo mass, xi = ∥xi∥ is the distance magnitude of the
i-th particle from the centre of the reference system and c is the softening length. The
first term of Equation (B.1) is the contribution by the spherically symmetric halo mass
MH . Equation (B.1) holds for R < Rmax. At R > Rmax the contribution of the halo
is −xiMH/x

3
i . The second term is an approximation of the Newtonian gravitational

potential, which holds true when xij ≫ c. Because of this approximation, the virial
theorem was not exactly satisfied in OP73, but their numerical models show a departure
of the order of 10 percent with respect to the virial theorem, with the consequence that
the uncertainty of t is of the same order. In OP73, the gravitational constant G = 1.
The softening c avoids divergent accelerations in the close encounters situation during
the N -body simulation.

B.1.2 Initial conditions

The initial surface density distribution of the axisymmetric disc is Σ(R) ∝ R−1, so
that the distribution of the points is uniform in the radius interval 0 < R < Rmax. At
the beginning of the simulations, all the disc particles lie on the disc plane and also
have a velocity component that is perpendicular to the disc plane. The disc thickness
is determined by this vertical velocity.

The first step is assigning the initial velocities in order to hold each particle in
circular orbit. The initial velocity of each particle is directed in the plane perpendicular
to the radial vector, with a magnitude of ⟨−xi · ai⟩1/2. Through N -body simulations,
OP73 noted that the rotation curve of the disc is essentially unchanged when the
halo with the same surface density distribution of the disc is added. In order to
have a Toomre (1964) stability with Toomre parameter Q > 1, OP73 added a velocity
dispersion to the disc particles, so to avoid the development of small-scale irregularities.
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Assuming cylindrical coordinates (R,φ, z), OP73 used random normal distributions
with standard deviations σR, σφ and σz. They chose a value of σ such that the Toomre
parameter is Q ≃ 1.2. OP73 also obtained σφ from σR using the equilibrium expression
required for steady epicyclic motions and put σz = σφ. Finally, OP73 modified the
initial velocity vi of each particle in order to have the same total kinetic energy of the
former equilibrium state, before adding the velocity dispersion.

OP73’s simulations have the following parameters in common: number of particles
N ≃ 102; disc radius Rmax/Rs = 1; softening c/Rs = 0.05; time step ∆t/τ = 0.001,
where Rs is a scale radius and τ is the orbital period at the half-mass radius of the
disc.

B.1.3 Energies computation

OP73 numerically computed the ordered kinetic energy of the system T (Equation
2.2) by dividing the axisymmetric disc into rings:

T =
1

2

∑
k

nk⟨vk⟩2 (B.2)

where nk and ⟨vk⟩ is the number density of stars and their mean velocity vϕ within the
k-th ring, respectively. To obtain ⟨vk⟩, OP73 sum each velocity assuming vϕ > 0 for
forward-moving particles and vϕ < 0 for backward-moving ones.

B.2 ELN82

B.2.1 Numerical computation

ELN82 performed two-dimensional simulations using a Fourier transform potential
solver (Hohl and Hockney, 1969) and the cloud-in-cell (CIC) technique for the mass
assignment and force interpolation. They also used a time-centred leap-frog scheme
in order to advance the particle coordinates, which were N = 20000 in all the simula-
tions. The unresponsive halo component was included through the addition of a fixed
axisymmetric force (ELN82), which changes the velocity of the disc particles. In all
ELN82’s simulations, the halo extends out to one half the active mesh length. They
used from 150 to 500 time steps per rotation period τ . (Note that τ also depends on
the potential of the external halo component.) ELN82’s studies are insensitive to the
specific choice of the time step, as also shown in (OP73).

B.2.2 Galaxy models

Main model

After generating the initial density distribution (2.21), ELN82 assigned the velocity
to the disc particles using a Gaussian distribution. Stellar hydrodynamics equations
were solved to determine the angular velocity of the disc. The radial velocity dispersion
was set to be the minimum value to stabilize all the local axisymmetric instabilities
(from Toomre, 1964):

σr(r) = Q(R)σmin(R) (B.3)

σmin(R) = 3.36GΣd(R)/κ(R) (B.4)
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where Q(R) is the Toomre parameter and κ(R) the epicyclic frequency at distance R
from the disc centre. Observations of stellar motion in our Galaxy showed that the
disc is cold (σR ≪ vmax) with Q ≃ 1 (Toomre, 1964, 1974). For this reason, ELN82
modelled initially cold discs with a uniform constant value Q = 1.05 or a position-
dependent Toomre parameter Q(R) = 1 + exp(−α2

dR
2).

All these assignment were performed using the analytic expressions for density,
force and rotational velocity. Particles were divided amongst radial bins and the mean
radial force Fi in the i-th ring was calculated and compared to the expected radial
force FG

i , which adopts 1/r2 gravity. So the velocity of each particle within the i-th
ring was multiplied by a factor (∥Fi∥/∥FG

i ∥)1/2. ELN82 set up disc-halo models in the
parameter ranges 0.1 ≤ R̂max ≤ 1.3 and 0.7 ≤ v̂max ≤ 1.3. In all these models the
exponential disc was truncated at Rd,max = 5/αd. ELN82 stated that the gravitational
softening did not affect the results of their simulations.

Other models

ELN82 added two other sets of models, which now used a fixed potential given by
the mass distribution

ρext(R) =
ρh

1 + R2

R2
h,max

(B.5)

together with an exponential disc with αdRh,max = 0.2 or a disc with a Hunter surface
density (see Hohl, 1970)

Σd(R) =
11

2πR2
d,max

Md(1−R2/R2
d,max)

9/2 (B.6)

with Rd,max/Rd,max = 0.1.

B.2.3 m = 2 modes, bar strength δ2 and bar length lb

In order to determine the formation of bar-like modes, ELN82 divided the spatial
domain in radial rings, each one contained about 600 ÷ 1300 particles. Then they
computed the amplitude and phase of the m = 2 modes and they computed the A2/A0

ratio in each ring in order to measure the bar strength, where

Am(t) =

∣∣∣∣∣
N∑
j=1

µje
imϕj

∣∣∣∣∣ , (B.7)

and µj is the mass of the j-th particle and ϕj(t) is the cylindrical polar angle of the
j-th particle at the time t (see, e.g., Sellwood, 2016).

In particular, ELN82 took the maximum value of Equation (B.7) in each ring as a
measure of the bar strength, defining:

δ2 =

(
ρm=2

ρm=0

)
max

(B.8)

Since t∗ and δ2 show the stabilizing effect of a rigid halo component, but do not
distinguish a bar from a spiral, ELN82 also defined a bar length lb as the region over
which the phases are coherent to ±10◦.

Some of ELN82’s models included Kalnajs’s (1972) distribution functions, whose
system have been included in a rigid spherical halo.
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B.2.4 Results from other models

Models with surface density profile (B.6) and Rd,max/Rd,max = 0.1 have a constant
value of the m = 2 amplitude during the evolution, giving no evidence of a dissolution
of a bar.

ELN82’s attempts to stabilize models with halo density profile (B.5) and αdRh,max =
0.2 using high velocity dispersion at the centre were not successful; for this reason,
ELN82 suggested to investigate in detail the initial conditions generated from a self-
consistent solution to the collisionless Boltzmann equation, in order to examine this
problem.

ELN82 found out that in models with halo density profile by Equation (B.5) with
0.1 ≤ R̂max ≤ 1.3 and 0.7 ≤ v̂max ≤ 1.3, t∗ does not determine by itself the stability
of the initial configuration to bar formation, because t∗ depends on R̂max. However,
ELN82 found that such models will be stable against the growth of large-scale bar-like
modes if

v̂max ≥ 1.1 for 0.1 ≤ R̂max ≤ 1.3 ⇒ t∗ ≤ 0.2 (B.9)

In one Kalnajs’s model there is a development of a bar, but the final density profile
differs from an exponential distribution.

B.2.5 Comparison with observations

ELN82 made a comparison of their work with observations. The values of Rmax,
vmax and α−1

d may be estimated from the observation of the rotation curve and photom-
etry. The morphology of the galaxy may be used to set a constraint to the mass-to-light
ratio of the cool disc component. ELN82 stated their numerical models may be applied
on Sc and late type galaxies as they have rotation curves for which R̂max lies within
the range where the criterion (2.23) has been tested in their work.

ELN82 found out that the stability criterion of cool discs in Sc galaxies is related
to a low mass-to-light ratio:

Md

Ld

≤ 1.5h (B.10)

where h is the Hubble parameter normalized to 100 km s−1Mpc−1 and Md/Ld is in
units of (M/L)⊙. In case of real disc galaxies, the HI mass has to be considered and
the bar instability analysis has found to be difficult to understand in terms of global
stability criteria discussed in ELN82’s work.
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Appendix C

Equations of motion in polar
coordinates

C.1 General motion

Assuming a point mass moving in a 2-dimensional plane, its Cartesian coordinates
(x, y) can be expressed in terms of polar coordinates (R,φ):{

x = R cosφ

y = R sinφ
. (C.1)

From System (C.1) it is straightforward to obtain

cosφ =
x

R
; sinφ =

y

R
. (C.2)

The time derivative of System (C.1) is:{
ẋ = vx = Ṙ cosφ−Rφ̇ sinφ

ẏ = vy = Ṙ sinφ+Rφ̇ cosφ
, (C.3)

where ṙ = vR is the radial velocity, while Rφ̇ = vφ is the tangential velocity. System
(C.3) can be also expressed as(

vx
vy

)
=

(
cosφ − sinφ
sinφ cosφ

)(
Ṙ
Rφ̇

)
= R

(
vR
vφ

)
, (C.4)

where R is the 2D rotation matrix.
The squared magnitude of the total velocity is

v2 = v2x + v2y = Ṙ2 +R2φ̇2 = v2R + v2φ. (C.5)

From Equation (C.4) (or System (C.3)) we can also obtain{
vR = vx cosφ+ vy sinφ

vφ = −vx sinφ+ vy cosφ,
(C.6)

or, equivalently, (
vR
vφ

)
=

(
cosφ sinφ
− sinφ cosφ

)(
vx
vy

)
= R−1

(
vx
vy

)
. (C.7)
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C.2 Pure circular motion (vR = 0, vφ ̸= 0)

System (C.3) reduces to {
vx = −Rω sinφ

vy = Rω cosφ,
(C.8)

where we define φ̇ = ω as the angular velocity of the point mass. From Equation (C.5)
the squared magnitude of the total velocity is now:

v2 = v2x + v2y = (−vφ sinφ)
2 + (vφ cosφ)

2 = v2φ. (C.9)

Taking a step back to System (C.8), substituting cosφ = x/R and sinφ = y/R
from System (C.1) gives: {

vx = −ωy

vy = ωx
. (C.10)

Isolating ω from System (C.10) gives a way to compute its magnitude:

ω = −vx
y

=
vy
x
. (C.11)

It follows that
vx
y

+
vy
x

= 0. (C.12)

88 APPENDIX C. EQUATIONS OF MOTION IN POLAR COORDINATES



Appendix D

T and Π computation
in presence of retrograde orbits

Suppose an axisymmetric system whose particles are moving in pure circular motion
under its own potential on the (R,φ) plane, where R and φ are the polar coordinates.
Then

vR(R, z) = 0 (D.1)

and vφ(R, z) = R
∂Φ(R, z)

∂R
êφ = vcêφ (D.2)

for every (R, z) pair, where vc is the circular speed and êφ is the unit vector in the
azimuthal direction. The consequence is that every disc particle has an angular mo-
mentum J directed along z:

|J| = |Jz| = Jz. (D.3)

Now, assume a fraction α of particles which are moving in the opposite direction
with respect to the other ones, with opposite angular momentum −Jz. The distribution
function (DF) of the disc can be split into two parts:

f+ = f+(Jz) (D.4)

and f− = f+(−Jz). (D.5)

The whole DF can be written as a combination of both f+ and f−:

f(Jz) = (1− α)f+ + αf−. (D.6)

If all the system particles are moving on circular orbits, then two possible expressions
of both f+ and f− as functions of the phase-space coordinates (v, r) are:

f+(v, r) = δ(v(r)− vc(r))ρ(r) (D.7)

and f−(v, r) = δ(v(r) + vc(r))ρ(r), (D.8)

where vc = vcêφ, δ is the Dirac delta and ρ(r) is the local density. Hereafter we will
omit in the expression of the dependence of v and vc on r, in order to lighten the
notation.

Combining Equations (D.7) and (D.8), the DF becomes

f(v, r) = [(1− α)δ(v − vc) + αδ(v + vc)]ρ(r). (D.9)
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We now insert Equation (D.9) in the kinetic energy components T and Π, which
are, recalling their traces from Equations (1.29a) and (1.29b),

T =
1

2

∫
⟨v(r)⟩2f(v, r) d3v d3r (D.10)

and Π =

∫
(v − ⟨v(r)⟩)2f(v, r) d3v d3r , (D.11)

where ⟨v(r)⟩ is the streaming velocity of the particles (Equation 2.4) and we make
explicit ρ(x) =

∫
d3v f(x,v). If we compute ⟨v(r)⟩ (see Equation 2.4) with the DF

seen in Equation (D.9), we get

⟨v(r)⟩ =
∫
vf(v, r) d3v∫
f(v, r) d3v

=

∫
v[(1− α)δ(v − vc) + αδ(v + vc)]ρ(r) d

3v∫
[(1− α)δ(v − vc) + αδ(v + vc)]ρ(r) d3v

. (D.12)

We recall two useful Dirac delta properties:∫
f(x)δ(x− x′) d3x = f(x′) (D.13)

and

∫
δ(x− x′) d3x = 1, (D.14)

where the integration is over all the R3 domain. We apply Equations (D.13) and
(D.13) on Equation (D.12), we take out ρ(r) from the integrals and decompose the
latter, obtaining:

⟨v(r)⟩ =
ρ(r)[(1− α)

∫
vδ(v − vc) d

3v + α
∫
vδ(v + vc) d

3v]

ρ(r)[(1− α)
∫
δ(v − vc) d3v + α

∫
δ(v + vc) d3v]

=

=
(1− α)vc − αvc

(1− α) + α
=

= (1− 2α)vc(r).

(D.15)

Remembering that the velocity dispersion is

σ2
v = (v − ⟨v⟩)2 = ⟨v2⟩ − ⟨v⟩2, (D.16)

we can also apply Dirac delta properties (Equations D.13 and D.14) on the ⟨v2⟩ term,
which becomes

⟨v2(r)⟩ =
∫
v2f(v, r) d3v∫
f(v, r) d3v

= (1− α)v2
c + αv2

c =

= v2
c(r).

(D.17)

Now we combine Equations (D.15) and (D.17) into Equation (D.16), which gives

σ2
v = v2

c − (1− 2α)2v2
c = 4α(1− α)v2

c(r). (D.18)

Reminding that: ∫
f(v, r) d3v = ρ(r), (D.19)
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we can simplify both T (Equations D.10) and Π (Equation D.11) as

T = (1− 2α)2
1

2

∫
v2
c(r)ρ(r) d

3r = (1− 2α)2K (D.20)

and Π = 4α(1− α)

∫
v2
c(r)ρ(r) d

3r = 8α(1− α)K, (D.21)

where

K =
1

2

∫
v2
c(r)ρ(r) d

3r (D.22)

is the total kinetic energy K and has this form because each particle moves in a circular
orbit.

From Equations (D.20) and (D.21), it is straightforward to verify that for every α
the following condition holds:

T +
1

2
Π = K. (D.23)
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