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“Chaque génération, sans doute, se croit vouée à
refaire le monde. La mienne sait pourtant qu’elle ne
le refera pas. Mais sa tâche est peut-être plus grande.
Elle consiste à empêcher que le monde se défasse.”

Albert Camus.



Abstract

In colliders particle physics experiments, the beam energy and the luminosity
are the key figures of merit. To probe new physics with particle colliders requires a
high centre-of-mass energy. In addition, to reduce statistical errors, a large number
of events should be generated, especially when exploring rare events with a small
production cross section.

In this work, the focus is on analysing the evolution of luminosity at LHC
during Run 2, which is the basis for providing strategies for integrated luminosity
optimisation. To achieve this, we study an efficient model describing the luminosity
evolution in a circular collider based on the evolution of the dynamic aperture. This
model takes into account various factors such as burn-off and additional pseudo-
diffusive effects.



Introduction

In a colliding storage ring, such as the CERN Large Hadron Collider (LHC),
luminosity is a crucial indicator for assessing the overall machine performance, as
its integrated value is proportional to the data collected by physics detectors.

During a collider run, the primary objective is to maximise the integrated
luminosity accumulated over the designated time for physics, which, in turn, leads
to an increased number of interactions between particles, thereby enhancing the
likelihood of discovering new physics phenomena.

However, these high-energy collisions also give rise to different beam dynamics
processes that can lead to particle losses. Minimising these losses is one of the key
strategies to boost the delivered luminosity.

The scope of this work is to study a scaling law for luminosity evolution,
incorporating both burn-off and additional pseudo-diffusive effects. Notably, the
proposed framework can accommodate the time dependence of various beam para-
meters providing a comprehensive and flexible model.

A dynamic aperture model is used to analyse the data collected by the ATLAS
experiment during the LHC Run 2. By employing this sophisticated model, we
aim to gain deeper insights into beam dynamics and its evolution in terms of
luminosity.

Ultimately, the goal is to enhance the performance of a circular collider by
optimising and pushing the limits of integrated luminosity.
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Chapter 1

Principles of Beam Dynamics

Beam dynamics focuses on understanding how charged particles behave inside an
accelerator. Indeed, the phase-space region of particle motion within a collider
might be affected by the presence of non-linearities in the magnetic field of the su-
perconducting machine. Therefore, it is essential to provide a thorough description
of beam dynamics. In this chapter, we present a brief overview of single-particle
dynamics with particular emphasis on the transverse beam dynamics and the re-
lativistic nature of the particle’s motion.

1.1 Basic Concepts

In a circular collider like the LHC, the particle beams are contained around a
reference trajectory, which is a circular closed orbit. On top of this, the motion
of a charged particle is guided and controlled by the presence of electromagnetic
fields, which give rise to a force known as the Lorentz force, represented as

F⃗ = e(E⃗ + v⃗ × B⃗). (1.1)

The driving force F⃗ acting on a charged particle with charge e and velocity
v⃗, as described in Eq. (1.1), is a fundamental framework for understanding how
charged particles interact with electromagnetic fields. The first term in Eq. (1.1)
represents the effect of the electric field E⃗ that accelerates the charged particle
along the longitudinal direction of the motion (synchrotron motion). The second
term is the transverse force needed to focus and bend the particle around the

1
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s

Reference Orbit

r

ρ

Particle

x

y

Figure 1.1: The local comoving coordinate system (x, y, s) for particle motion along a
circular accelerator, with an ideal closed orbit whose radius of curvature is ρ.

reference orbit (betatron motion); this component is perpendicular to both the
particle velocity v⃗ and the magnetic field direction.

To describe the particle dynamics around a circular, closed orbit, one often
introduces a comoving local coordinate system (x, y, s), the so-called Frenet-Serret
coordinate system1 for convenience see Fig. 1.1. The s coordinate describes the
longitudinal position of the particle along the reference orbit, where x and y denote
the transverse dimensions.

1.2 Transverse Dynamics

In a colliding beam storage ring such as the LHC, the beam dynamics are dom-
inated by magnetic fields in the transverse planes. The transverse motion of a
particle inside the bunch is complex and can exhibit a non-linear behaviour [14].
To keep the trajectory of a particle within the reference orbit with a curvature ra-
dius ρ, a constant magnetic field is applied along the y plane B⃗(0, 0, s) = (0, 0, By).
This bending radius ρ results from the equilibrium between the centrifugal force
and the centripetal Lorentz force acting on the particle with momentum p = mv,

1One curvilinear coordinate system for particle motion along the reference orbit.
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where the quantity Bρ is the so-called beam rigidity, expressed as

Bρ =
p

e
(1.2)

Equation (1.2) means that a particle with higher momentum requires a stronger
magnetic field to maintain the circular orbit radius ρ constant, thus ensuring that
the particle does not deviate from its path within the accelerator.

In this context, it becomes crucial to evaluate the contribution of the magnetic
field to particles close to the design orbit (0, 0, s), and the typical approach is to
expand the magnetic field into its multipolar components, namely

By(x, y) + iBx(x, y) =
p

e

∑
n

(bn + ian)(x+ iy)n−1, (1.3)

where the coefficients an and bn are the skew and upright multipolar components,
respectively, and, i.e n = 1 corresponds to a dipole, n = 2 is quadruple, etc.

Magnetic element designs generate fields with only one multipolar component.
Accordingly, multipolar expansion allows for breaking down the magnetic field into
upright or skew dipoles, quadrupoles, sextupoles, octupoles, and so on, depending
on their effect on the particle’s dynamics.

Generally, the dominant forces in an accelerator are dipolar (bending) and
quadrupolar (focusing - defocusing) fields. Dipole magnets guide and curve the
trajectory of the particles, allowing them to follow the circular path. Simultan-
eously, quadrupole magnets serve the dual purpose of focusing and defocusing the
particle beam within the transverse plane. Higher-order and skew multipoles, on
the other hand, are commonly used as correctors to address higher-order effects
and imperfections in the magnetic field. They play a crucial role in fine-tuning the
particle beam and compensating for deviations from the desired trajectory caused
by higher-order magnetic field components.

1.3 Linear Beam Dynamics

The configuration of dipoles and quadrupoles around the whole storage ring in both
transverse planes is known as accelerator optics or magnetic lattice. In this lattice
design, the absence of skew and multipoles results in linear beam dynamics and
allows the equations of motion to be treated independently in the two transverse



4 Principles of Beam Dynamics

planes. Hence, these equations can be written in terms of some focusing function,
often denoted by k(s)2, and using the magnetic rigidity (see Eq. (1.2)), the solution
of Eq. (1.1) is given by the following second-order differential equations

x′′(s) +

(
1

ρ2(s)
− k(s)

)
x(s) =

1

ρ(s)

∆p

p0
(1.4)

y′′(s) + k(s)y(s) = 0 (1.5)

as a synthesis of the inhomogeneous equation Eq. (1.4) and the homogeneous
one Eq. (1.5) with s-dependent coefficients. The quadrupole strength k(s) and
the dipolar radius ρ satisfy a periodic condition, and the quantity ∆p/p0 is the
fractional momentum offset (p0 is the design momentum of the reference particle).

In the absence of any coupled motions, Eqs.(1.4), and (1.5) are linear, and
have the characteristics of Hill’s equation, defined as

u′′(s) + ku(s)u(s) = 0 (1.6)

where u stands either for x or y, while ku(s) ≡ {kx(s) or ky(s)}, with kx(s) =

−
(
k(s)− 1

ρ2(s)

)
and ky(s) = k(s). As we proceed, the concept of phase-space,

which corresponds to the coordinate space (u, u′), is introduced. The coordinate
u represents the local transverse positions (x or y as illustrated in Fig.1.1), while
u′ is the angle (particle slope). Later in this chapter, the momentum component
pu will also become relevant.

1.3.1 Lattice Maps

To clarify the structure of the linear betatron motion, the concept of lattice maps
comes into play [16]. By imposing initial conditions at s = s0, Hill’s equation for
piece-wise constant ku treated as a harmonic oscillator with solution

u(s) = C (s | s0)u(s0) + S (s | s0)u′(s0)

u′(s) = C ′ (s | s0)u(s0) + S ′ (s | s0)u′(s0)
(1.7)

C (s | s0) and S (s | s0) hold as the cosine-like and sine-like solutions, respectively,
and their derivatives with respect to s are C ′ (s | s0) and S ′ (s | s0). The boundary

2An function of the quadrupole magnetic field strength, dependent on the longitudinal position
(s).
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conditions for these solutions, determined by the initial conditions, are outlined as
follows

C (s0 | s0) = 1, S (s0 | s0) = 0, C ′ (s0 | s0) = 0, S ′ (s0 | s0) = 1. (1.8)

By representing the phase-space coordinates (u, u′) at location s with the
state-vector u(s), i.e.

u(s) =

(
u
u′

)
s

(1.9)

The solution to Hill’s equation can then be elegantly expressed in a matrix form-
alism as follows(

u
u′

)
s

= M (s | s0)
(

u
u′

)
s0

=

(
C (s | s0) S (s | s0)
C ′ (s | s0) S ′ (s | s0)

)(
u
u′

)
s0

(1.10)

here, M (s | s0) represents the betatron transport matrix from a point s0 to s, and
has unit determinant det(M (s | s0)) = 1.

In accelerator design, a sequence of magnetic elements is involved, as sketched
in Fig.1.2. Hence, this configuration can be represented through a series of matrix
multiplications, notably

M (sn | s0) = M (sn | sn−1) . . .M (s3 | s2) · M (s2 | s1) · M (s1 | s0) (1.11)

s0 = sL

M0→ 1

s1
M0→ 2

s2 M0→ 3

s3

sL−1

M0→L

si
M0→ i

si+1

M0→ i

sn−i

M0→ i

Figure 1.2: Schematic view of a circular accelerator as a series of ith magnetic
elements, with i = 0, 1, 2, ..,n. sL represents the length of the accelerator, for a section

starting at s0 = 0 and ending at s0 = sL, it forms a complete one-turn map.
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The matrices for transverse planes given as(
x(s)
x′(s)

)
=

(
Cx(s) Sx(s)
C ′

x(s) S ′
x(s)

)(
x0

x′
0

)
(1.12a)(

y(s)
y′(s)

)
=

(
Cy(s) Sy(s)
C ′

y(s) S ′
y(s)

)(
y0
y′0

)
(1.12b)

By combining the above matrices (1.12a) and (1.12b), we achieve a comprehensive
4× 4 matrix representation, reads

x(s)
x′(s)
y(s)
y′(s)

 =


Cx(s) Sx(s) 0 0
C ′

x(s) S ′
x(s) 0 0

0 0 Cy(s) Sy(s)
0 0 C ′

y(s) S ′
y(s)




x0

x′
0

y0
y′0

 (1.13)

The zeros in the upper and the lower triangular elements of the matrix (1.13) are
the signature of an uncoupled motion.

The solution of Eq. (1.6) using the ansatz that incorporates an s-dependent
amplitude and phase stated by Floquet theorem as

u(s) =
√
2Juβu(s)cos(φu(s) + φu,0) (1.14)

along the ring, where s is the longitudinal variable,
√
2Juβu(s) and φu(s) are the

betatron amplitude and the betatron phase advance, respectively, where Ju and
φu,0 are constants of integration.

Upon substitution of the Eq. (1.14) into Hill’s equation (1.6), a relationship
emerging between φu(s) and βu(s) given by

φu(s) =

∮ s

0

1

βu(s)
dS (1.15)

Additionally, in a machine with a circumference L, the so-called betatron
function or β-function has a periodic condition βu(s) = βu(s+ L), and with the
constraint φu(L) = Qu, where Qu is the transverse betatron tune defined from one
turn phase, i.e. number of betatron oscillations around the reference trajectory
per revolution, the β-function is related to the machine tune by

Qu =
1

2π

∫ L

0

1

βu(s)
ds. (1.16)

the tune Qu ≡ Qx,y is imposed by the quadrupole configuration, and its position in
the transverse plane Qx versus Qy defines the machine’s adjustable working point,
designed to avoid resonances.
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Area:2Juπ

u

u′

tan2
φ =

2α

(γ−
β)

φ

√
2Juβ

−α
√
2Ju/β

√
2Juγ

−α
√

2Ju/γ

Figure 1.3: The Courant-Snyder ellipse describing the particle motion in a transverse
phase-space (u, u′).

1.3.2 Courant-Snyder Invariant

The betatron function βu(s) has been identified as a unique function to the config-
uration of the periodic lattice, and also known as one of Twiss Parameters3 that
defines the other two associated parameters αu(s) and γu(s), denoted as

αu(s) = −1

2
β′
u(s), γu(s) =

(1 + α2
u(s))

βu(s)
(1.17)

The introduction of twiss parameters yields the definition of the Courant-Snyder
Invariant 2Ju that maps the betatron motion of a single particle in a phase-space
(u, u′) by an invariant ellipse, namely

2Ju = γuu
2 + 2αuuu

′ + βuu
′2 (1.18)

The invariant in Eq. (1.18) remains constant as the particle advances through
the accelerator lattice; the ellipse will twist and rotate without changing the area
with a constant enclosed area of 2πJu, as shown in Fig.1.3.

The solution of Hill’s equation for a constant ku takes the following form at
a position s within the accelerator after N revolutions:{

u(s) =
√
2Juβu(s)cos(φu(s) +Nφu,0))

u′(s) = −
√

2Ju
βu(s)

[sin(φu(s) +Nφu,0)) + αu(s)cos(φu(s) +Nφu,0))]
(1.19)

3Are the Courant-Snyder parameters αu(s), β and γu(s) that are functions of the lattice only
and don’t depend in the initial condition of the particle.
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The Courant-Snyder invariant provides insight into the phase-space evolution
of a particle and helps to understand the structure of its linear dynamics within
an accelerator. For a beam with many particles, all particles move on nested
ellipses. Indeed, knowing how these ellipses transform and evolve is equivalent to
understanding the overall dynamics of the particle beam as it travels through the
accelerator lattice.

1.3.3 Emittance

Since the twiss parameters that describe the orientation of the phase-space ellipse
are independent of the particle’s initial conditions, while the location of the particle
on the ellipse and the size (area) of the ellipse depends on the initial conditions of
the particle, it is convenient to define an alternative, Betatron representation of
the orbit formulated as

u(s) =
√
ϵu
√

βu(s)cos(φu(s) + φu,0) (1.20)

where ϵu is the single-particle transverse emittance, and is equal to twice the
betatron action Ju, represented as

πϵu = const = 2πJu (1.21)

Nevertheless, when dealing with a distribution of particles in the beam, the
transverse emittance is defined as the average measure of the beam phase-space
area (divided by π) that will contain a specified fraction of the beam particles, i.e.

ϵrms =

√
[⟨u2⟩⟨u′2⟩ − ⟨uu′⟩2] (1.22)

where ϵrms is the rms transverse emittance and ⟨...⟩ is the distribution Average.

The statistical measure in Eq. (1.22) characterizes the spread of particles
in both position and momentum spaces, effectively quantifying their dispersion.
The phase-space area of the multiparticle beam is constant, but the particles are
randomly distributed in the phase-space volume. If the beam distribution in the
action space is Gaussian, which is the case at LHC, the beam size σu is linked to
the beam emittance ϵu as

σu =
√

βuϵu (1.23)

here, ϵu is the full emittance equal to four times the rms emittance, i.e. ϵu = 4ϵrms

guarantees that the enclosed area phase-space volume is πϵrms. Hence, the quant-
ity defined in Eq. (1.23) determines the beam’s envelope radius.
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The effective area of the Courant-Snyder ellipse ϵu is of fundamental interest
within the realm of accelerator physics. Liouville’s theorem states that as the
ellipse rotates in the u−u’ plane, the emittance of a particle beam subjected to
conservative forces remains constant, thereby preserving the beam envelope area.
However, a dichotomy arises when the particle beam is accelerated along the cir-
cumference of the circular path, resulting in a decrease in emittance with increasing
particle momentum, referred to as adiabatic damping4.

To gain a deeper insight into the shrinkage of the physical emittance ϵu, we
consider the particle momentum p(u,s) before and after the acceleration process,
as shown in Fig.1.4.

pu

ps

u’

pu

ps +∆ps

u′ +∆u′

Figure 1.4: Evolution of momenta before (left) and after particle acceleration (right).

In a machine with linear optics, the particle’s longitudinal momentum ps
increases to ps + ∆ps while the transverse component pu remains constant, and
the angle u′ becomes smaller; the trajectory slope changes because the transverse
velocity of a particle doesn’t change during acceleration. Therefore, the length of
the hypotenuse becomes u′ +∆u′, and the change of trajectory slope corresponds
to

∆u′ = −u′∆p

p0
(1.24)

where ∆p/p0 is the momentum deviation from the reference momentum. Any
change in the slope will reduce the emittance as a function of the momentum.
Therefore, to maintain consistency within this dynamic framework, the adiabatic
damping becomes explicit by scaling the emittance into a normalized emittance in
the following form

ϵn = βrγrϵu (1.25)
Here, βr and γr are the relativistic factors, ϵu is the physical emittance, while the
normalized emittance ϵn independent on the beam energy remains conserved even
under acceleration.

The normalized emittance remains constant throughout the entire circum-
ference of the ring independently from the beam energy, adhering to Liouville’s

4A misnomer there is no damping process involved.
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theorem. This property presents a notable benefit for beam diagnostics, enabling
the evaluation of beam emittance at collision energy and the estimation of its
influence on accelerator luminosity, as detailed in the subsequent sections.

1.3.4 Off-momentum Particles

The discussion above assumes that all particles in the beam have the same mo-
mentum p0. Nevertheless, in practice, this ideal scenario doesn’t hold. A spread
in particle momentum causes particles within a bunch to follow shifted trajector-
ies through the magnetic elements. Considering a dipolar field and recalling the
equation of rigidity5(see Eq. (1.2)), one obtains that off-momentum particles fol-
low different orbits around the accelerator lattice. The deviation from the design
momentum p0 with non-zero momentum offset ∆p is quantified as

δ =
∆p

p0
(1.26)

where δ is the spread in momenta. This deviation can be associated with chromatic
effects that arise from the dipolar field, i.e. chromaticity is a measure of how the
focusing properties change for particles that are off their design momentum.

The spread in momentum manifests as dispersion, a phenomenon in which
particles with different momentum deviate from the design trajectory. This disper-
sion affects the dynamics of the particle and can introduce chromatic aberrations
in the beam dynamics, particularly in the presence of a dipolar field. The inhomo-
geneous equation of motion, previously provided by Eq. (1.5), can be extended to
account for these effects by considering the effects of dispersion and chromaticity
on off-momentum particles, thus

u′′(s) + ku(s)u(s) =
1

ρ(s)

∆p

p0
(1.27)

The solution of Eq. (1.27) can be written as the sum of its homogeneous and
inhomogeneous solutions, namely

u(s) = uH(s) + uI(s) = uH(s) +Du(s)
∆p

p0
(1.28)

5Considering a constant effective length of the dipole (ρ∆u′) ≡ constant, off-momentum
particles rigidity: B(ρ + ∆ρ) = (p + ∆p)/e =⇒ ∆ρ

ρ = ∆p
p0

=⇒ ∆u′ = −u′∆p
p0

( different
deflection =⇒ different orbit).
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where uH(s) represents the homogeneous solution given by Eq. (1.14), while the
inhomogeneous part uI(s) given in terms of dispersion function Du(s), and can be
defined as

∆u(s) = uI(s) = δDu(s). (1.29)

Thus, the dispersion equation satisfies

D′′
u(s) + ku(s)Du(s) =

1

ρ(s)
(1.30)

Using the matrix formalism in Eq. (1.10), the solution for the dispersion

Du(s | s0) = S(s | s0)
∫ s

s0

C(s̄)

ρ(s̄)
ds̄+ C(s | s0)

∫ s

s0

S(s̄)

ρ(s̄)
ds̄ (1.31)

This solution indeed satisfies the differential equation of the dispersion. The gen-
eral betatron solutions can be obtained from applying the 3× 3 transfer matrices
including dispersion propagation from s to s0, yielding

M3×3 =

 C(s | s0) S(s | s0) D(s | s0)
C ′(s | s0) S ′(s | s0) D′(s | s0)

0 0 1

 (1.32)

Recalling Eq. (1.30), a particular solution for the inhomogeneous equation is given
by setting Du(s) = constant = D0, takes the form u

u′

∆p/p


s

= M3×3

 u
u′

∆p/p


s0

and

 D(s)
D′(s)
1

 = M3×3

 D0

D′
0

1


(1.33)

In a periodic lattice, the dispersion function has to fulfill the periodic boundary
conditions, this implies D(s0) = D(s0 + L), where L presents the length of one
period of the lattice.

1.4 Non-linear Beam Dynamics

The transverse dynamics discussed above considers only the linear terms, while
the non-linear components are conveniently ignored. In the linear regime, the
beam dynamics is described by the linear differential equations (1.4) and (1.5)).
However, in high-energy physics, the particle beam lines or accelerators do not
operate under such ideal and linear circumstances. Non-linear magnetic fields are
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often incorporated within an accelerator lattice, either by design purpose or due
to intrinsic lattice imperfections.

Explicitly, non-linear components can be integrated into the accelerator lat-
tice to correct specific effects in lattice functions. As already mentioned, effects
such as dispersion, determined by δDu, occur within the beam transport system
due to the deviations in the particle momentum from the ideal design momentum.
The dispersion effect introduces perturbations in the focusing magnets, leading to
a shift in the tune, a phenomenon known as chromaticity, i.e. a dominant source of
the lattice non-linearity. For the sake of beam stability and to prevent beam loss
due to tune shifts into resonances, sextupole magnets are needed for compensating
the chromatic aberrations.

On the other hand, the inclusion of non-linear elements through the powering
of non-linear magnets, or through magnetic errors, can have a deep impact on
the beam dynamics. It may cause particles to diffuse to large amplitudes, or be
pushed onto resonances. Indeed, non-linearities in the beam transport system
contribute significantly to the Dynamic Aperture (DA), which manifests in the
form of perturbations in the betatron function or through resonances. These effects
can be detrimental to both the beam lifetime and luminosity production.

Non-linear effects stand as a primary factor limiting performance within the
accelerator. Therefore, the linear formalism used so far has to account for non-
linear phenomena. In the following section, the Beam-Beam Interaction, is intro-
duced as a main source of non-linear effects within the lattice.

1.4.1 Beam-Beam Force

The beam-beam interaction is likely one of the main limitations to collider per-
formance, leading to emittance blow-up, beam losses, and a reduction of the beam
lifetime. These interactions generate electromagnetic potentials with a non-linear
characteristic, resulting in significant perturbations in high-density beams, thus
limiting the machine’s luminosity production.

Since we are interested in the transverse fields, adopting the approximate
approach presented in [25, 35], assuming the charge density within a bunch of
particles follows a bi-Gaussian distribution in the transverse frame, for a round
beam (σx = σy = σr), expressed as

ρ(r) =
n

σr

√
2π

e
−−r2

2σ2
r , where r = (x, y) (1.34)
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The potential function arising from the system therefore is

φ(r) =
ne√
4ϵ0

1√
π

∫ ∞

0

dq
e
−
(

r2

qr

)
√
qr

, with qr = 2σ2
r + q (1.35)

here, n denotes the number of particles in the bunch, e represents the elementary
charge, and ϵ0 is the permittivity of free space.

The associated potential in Eq. (1.35) satisfies the equation of the Poisson
equation [17], which links the potential to the charge-density distribution ρ

∇2φ(r) =
−ρ(r)

ϵ0
(1.36)

and relates the potential to the transverse electric field of the bunch by the gradient
of the scalar potential, accordingly

E(r) = −∇φ(r) (1.37)

In the bunch’s rest frame (v = 0), the electric field lines radiate uniformly in all
directions,

Er(r) = − ne

4πϵ0

1

r

[
1− e−(r

2/2σ2
r)
]

with r2 = x2 + y2 (1.38)

For details of the calculation the reader is referred to Refs. [25, 35, 14]

To obtain the force exerted on particles in the counter-rotating beams, one
must first compute the force that the electric fields generate. This involves boosting
the electric field into a co-moving frame (v ≈ c), using a Lorentz boost, the field
lines confined almost in the transverse planes. The Lorentz force that acts on a
particle with charge q as presented in Eq. (1.1) can be reformulated as

F⃗ = q (Er + βrcBϕ) r⃗ (1.39)

From Eq. (1.35) and with r2 = x2+y2, one can get the electric and magnetic fields
in the collision, namely

Er(r) = − γnq

4πϵ0

1

r

[
1− e−(r

2/2σ2
r)
]
, Bϕ(r) = −nqβrcµ0

4π

[
1− e−(r

2/2σ2
r)
]
(1.40)

Using ϵ0µ0 = c−2, the radial force, obtained in a closed form

Fr(r) = −ne2 (1 + β2
r )

2πϵ0

1

r

[
1− e−r2/2σ2

r

]
(1.41)
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the force in Eq. (1.41), depends only on distance r from bunch centre, hence, for
a component in the action space u = {x, y}, we get

Fu(r) = −ne2 (1 + β2
r )

2πϵ0

u

r2

[
1− e−r2/2σ2

r

]
(1.42)

The forces described in Eq1.41 and Eq1.42 are computed under the assumption
that the charges of the test particle and the opposing beam are of opposite charges.
Indeed, the particles passing through or nearby the Gaussian bunch are deflected
by the beam-beam force, i.e. the change of the slope of the particle trajectory im-
parted by the momentum kick. The kick can be respectively, focusing or defocusing
if the particle have opposite or same sign sign with respect to the counter-rotating
beam producing the force.

For small amplitude r (i.e. r ≪ σr), the single particle experiences a linear
beam-beam force and as the radial amplitude grows, larger than 1σr (i.e. r ≫ σr),
the force deviates sharply from its linear trend leading to a non-linear behavior in
the lattice.

The kick profile as a function of the radial amplitude r is illustrated in Fig.1.5.
The linear force component, relevant for short-range interactions as presented
within the pink-highlighted segment maintains a linear pattern for r ≲ 1σr, res-
ults in a steady beam-beam tune shift, acting like a quadrupole. In contrast, the
nonlinear component, acting over large distances as showcased by the purple re-
gion, induces an amplitude-dependent tune shift (detuning), analogous with the
non-linear dynamics seen with higher-order multipoles. The particle’s radial dis-
tance from its counteracting beam center has an important impact on the beam
dynamics. In short-range interactions when two bunches overlap (i.e. ⟨r⟩ = 0),
this is known as head-on (HO) beam-beam force. When the non-linear force acts
from large distances, it’s referred to as the long-range (LR) beam-beam interaction.
These two regimes are elaborated upon in Chapter 2.

The Beam-Beam Parameter

Introducing the time-like variable, i.e. multiply the two-dimensional force by the
longitudinal Gaussian distribution with a width of σs, which depends on both
position s and time t.

Fr(r, s, t) = −ne2 (1 + β2
r )√

(2π)3ϵ0σs

1

r

[
1− e

r2

2σ2
r

] [
e
− (s+vt)2

2σ2
s

]
. (1.43)
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Figure 1.5: The beam–beam force (blue line) for round Gaussian beam in arbitrary
units versus the radial component in units of rms beam size σ.

and using the Newton’s law, the radial kick ∆r′ that a particle receives from
the opposing beam is computed from the integral of the force in Eq1.43 over the
collision (i.e. time of passage) as

∆r′ =
∆r

r
=

1

mcβrγr

∫ +∞

−∞
Fr(r, s, t)dt (1.44)

Hence, the radial kick is given by

∆r′ = −2nr0
γr

1

r

[
1− e

− r2

2σ2
r

]
(1.45)

where r0 designates the classical particle radius, i.e. r0 = e2/4πϵ0mc2, m is the
mass of the particle. The expressions for the kick, in the transverse planes with
u = {x, y}, given as

∆u′ = −2nr0
γr

u

r2

[
1− e

− r2

2σ2
r

]
(1.46)

For small amplitudes r, one can derive the linear tune shift. The bunch
behaves like a focusing lens for a particle traveling in the opposite direction and is
equivalent to a lens with focal lengths 1

f
, in a linear approximation

∆u′|r→0 = − nr0
γrσ2

r

u = − 1

f
u (1.47)
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where the slope of the force at zero amplitude (i.e. the asymptotic limit at r = 0),
is the linear kick with a focal length 1

f
given as proportionality factor which relates

to the tune shift ∆Q as

∆Q =
1

4π

β∗

f
=

nr0β
∗

4πγrσ2
r

(1.48)

where β∗ is the amplitude function (β∗-function) at the interaction point.

The quantity in Eq. (1.48) represents the linear beam-beam tune shift, also
known as the linear beam–beam parameter ξ.

The beam-beam parameter ξ quantifies the strength of the beam-beam force
but does not reflect the nonlinear nature of the force.



Chapter 2

The CERN Large Hadron Collider
Performance

In a circular collider such as the LHC, the centre-of-mass energy enables the dis-
covery of heavy particles and limits the mass of the collision products, and their
branching ratios. The LHC foremost aims to probe the unknown realms beyond
the Standard Model, targeting a centre-of-mass collision energy of up to 14 TeV.
However, achieving optimal performance is a complex endeavour with challenges
such as minimising beam losses and maintaining beam quality.

To this end, it is essential to consider the number of effective collisions (events)
to gauge the collider’s performance. Hence, the ability of a particle physics exper-
iment to generate events during the collision of two particle beams is quantified
by the so-called luminosity, which determines the collision rate assigned to the
available statistics for a given running time.

In this chapter, the LHC machine layout, performance, and operations chal-
lenges are addressed. In addition, the concept of luminosity as a figure of merit
of a particle collider performance is introduced. We will delve deeper into this
concept in the following chapters.

17
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2.1 The CERN Accelerator Complex

CERN, the European Organization for Nuclear Research, is located on the Swiss-
French border near Geneva and hosts the world’s largest accelerator complex. This
facility houses multiple particle accelerators, with several dedicated to supplying
to the Large Hadron Collider (LHC) proton nad ion beams. Figure 2.1 shows a
schematic of the accelerator complex. The LHC is a circular collider, designed to

Figure 2.1: The CERN accelerator complex [28].

achieve a centre-of-mass energy of 14 TeV; so far up to 13.6 TeV has been achieved
during Run 3. It operates mainly with proton beams but also functions as an
ion collider. Therefore, to reach the nominal collision energies at LHC interaction
points, proton beams are guided through a series of injectors that systematic-
ally boost their energy. The LHC proton injectors consist of a linear accelerator
(LINAC4), the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS),
the Super Proton Synchrotron (SPS), culminating in the LHC itself as illustrated
in Fig. 2.1.

In this section, a brief overview of the different stages of proton beam accel-
eration at the LHC injector chain during Run 2 together with the machine layout
is discussed.
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2.1.1 LHC Injector Chain

In Run 2, the main physics program is to operate LHC with proton beams accel-
erated to 6.5 TeV. Protons are produced by the ionization of hydrogen gas in a
plasma chamber, leaving only protons at 100 KeV to enter the linear accelerator
(LINAC2) [32].

LINAC2 compresses the protons into packets, referred to as bunches and
pre-accelerates them to 50 MeV of kinetic energy. LINAC2 then delivers the high-
intensity proton bunches to the Proton Synchrotron Booster (PSB) to be acceler-
ated to 2 GeV (kinetic energy) before transferring them to the Proton Synchrotron
(PS) ring. The PS Booster and PS rings establish the bunch train structure com-
patible with the LHC RF system, accelerating the beams up to 26 GeV. Once
the beam reaches the extraction energy, it is transferred to the SPS for a further
increase in energy.

The Super Proton Synchrotron (SPS) requires up to 4 PS injections of 72
bunches at 25 ns spacing to accumulate up to 288 bunches in the ring, each injection
corresponds to a batch (group of bunches). Once completed, the 26 GeV beams
are then accelerated to the LHC injection energy of 450 GeV. Depending on the
desired filling scheme, it takes up to 39 SPS batch injections per ring of 72 bunches
each (a total of about 2500 bunches per ring) to fill the LHC with 25 ns separation
bunches.

Afterward, the LHC itself provides the last energy boost, accelerating the
beam in each ring up to nominal collision energies at LHC interaction points.

2.1.2 LHC Lattice Geometry

LHC is a 26.6 km twin-ring collider that produces luminosity to study the physics
of the Standard Model, as well as, potential physics beyond the Standard Model.
Structurally, it is segmented into 8 circular arcs with rectilinear insertion regions
(IRs) in between, as shown in Fig. 2.2. The design of the LHC allows for the
storage of two beams that counter-rotate in separate vacuum chambers (rings). It
is only in proximity to the predetermined Interaction Points (IPs) that the beams
merge into a common vacuum chamber, where they collide.

Four interaction regions have been chosen for housing the experiments, namely
the Interaction Points, i.e. IP1, IP5, IP2, and IP8.
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Figure 2.2: Schematic of the LHC rings [5].

Specifically, the two high-luminosity experiments ATLAS [11] and CMS [12]
are located at IP1 and IP5, operating to reach a Peak luminosity of LPEAK

ATLAS&CMS ≈
2·1034 cm−2 s−1. On the contrary, the ALICE [10] and LHCb [13] detectors, located
at IP2 and IP8, respectively, operate at significantly lower luminosity levels than
the former detectors, LPEAK

ALICE ≈ 1.1031 cm−2 s−1 and LPEAK
LHCb ≈ 2.1033 cm−2 s−1. The

experiment’s main operational parameters required to reach the target luminosity
during Run 2 (e.g. transverse emittance, intensity, batch spacing,etc.) are specified
in [13].

The LHC arcs are constructed from FODO cells, and each arc is made up
of 23 cells 106.9 m long, with 6 dipoles located between the focusing quadrupoles
of every cell as depicted in Fig. 2.3. Note that an upgrade project is ongoing to
increase the luminosity at the LHC (HL-LHC) [1] to be implemented during the
long shutdown 3 (LS3, 2026-28) . This is also combined with the LHC Injector
Upgrade (LIU) [15] that occurred during the long shutdown 2 (LS2, 2019-21).
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Figure 2.3: Schematic layout of the LHC arc cell including the corrector magnets [5].
MBA/B are the dipoles and MQ are the quadrupoles. The smaller magnets in between

are dipolar (orbit), quadrupolar (tune), and higher-order correctors.

2.2 Luminosity of a Circular Collider

The key parameter describing the performance of a circular collider is its luminosity
(integrated over time). The instantaneous luminosity L(t), defined as the ratio
between the number of events per second dR/dt and the corresponding interaction
cross section σint .

dR

dt
= L(t)σint , (2.1)

usually measured in cm−2 s−1. Moreover, its integrated value is related to the total
number of events collected during a physics run [19], and

R = σint

∫ T

0

L(t) dt = σint L (2.2)

where R is the total number of events during the run, T is the total time allocated
for physics and L is the integrated luminosity delivered to the physics experiments,
and its unit is femtobarns fb−1.

A higher integrated luminosity indicates a larger dataset, which can improve
the statistical accuracy of measurements and increase the potential for making
new discoveries, especially when looking for rare events.

At LHC, the luminosity is produced by colliding bunches of particles and
is closely related to the beam density distribution. In the case of two colliding
bunches containing n1 and n2 particles, one can derive the expression of the in-
stantaneous luminosity can be derived following the procedure in [14, 19, 26, 27,
30].

L ∝ κ

∫ +∞

−∞
ρ1 (x, y, s,−s0) ρ2 (x, y, s, s0) dr

4, (2.3)



22 The CERN Large Hadron Collider Performance

n2ρ2(x, y
, s, s0)

n1ρ1(x, y
, s,−s0)

v⃗1
v⃗2

IP

s

s0

Figure 2.4: Sketch of a head-on collision, the two bunches moving against each other
with increasing overlap.

where ρ1 and ρ2 represent the charge density distribution in the phase-space r =
(x, y, s, s0) and s0 = c · t is the time-like component, while κ is the kinematic
relativistic factor expressed as

κ =

√
(v⃗1 − v⃗2)

2 − (v⃗1 × v⃗2)
2 /c2. (2.4)

Assuming bunches with uncorrelated Gaussian density distributions,

ρ(x, y, s, s0) =
1

(
√
2π)3σsσ∗

xσ
∗
y

e
− x2

σ∗2
x e

− y2

σ∗2
y e

− (s−s0)
2

2σ2
s , (2.5)

where σs denotes the rms bunch length; assuming equal bunches (σ1s ≈ σ2s), while
σ∗
x and σ∗

y characterize the horizontal and vertical transverse rms bunch dimension
at the interaction point.

Considering only head-on colliding bunches travelling towards each other (as
shown in Fig. 2.4), ∥v⃗1∥ = ∥v⃗2∥ ≈ c, the combined integral of both distributions
correlates directly to the luminosity, described as

L =
2n1n2frevkb

(
√
2π)6σ2

sσ
∗2
x σ∗2

y

∫∫∫∫
e
− x2

σ∗2
x e

− y2

σ∗2
y e

− s2

σ2
s e

− s20
σ2
s dxdydsds0, (2.6)

where the kinematic factor becomes κ ≈ 2, since the crossing angle at collision
point is null. the parameter frev is the collider revolution frequency, and kb is the
number of colliding bunches.

In the scenario under discussion, integrating Eq. (2.6) and using:∫ +∞

−∞
e−At2dt =

√
π/A (2.7)
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the fundamental expression of L is given by

L =
frev kb n1 n2

4πσ∗
xσ

∗
y

(2.8)

where frev is the collider revolution frequency and kb is the number of colliding
bunches. σ∗

x and σ∗
y characterise the horizontal and vertical transverse rms bunch

dimension at the interaction point.

Equation (2.8) shows that the luminosity depends on the number of particles
per bunch and the size of the beam. Due to the impossibility of measuring the
beam size at the collision point [32], the beam width at the IP is inferred from the
calculated beam emittance, which is provided by beam profile monitors.

Assuming round optics1, with equal beam parameters for both beams σ∗
x =

σ∗
y = σ∗ =

√
β∗ϵ∗/(γrβr), the luminosity can be recast in terms of the rms norm-

alised transverse emittances ϵ∗ and the amplitude function β∗ at the IP, namely

L =
γr frev kb n1 n2

4πϵ∗β∗ (2.9)

where γr and βr are the relativistic factor at the IP, and β∗ commonly referred to
as the β-function.

For optimal performance, the LHC injector chain must generate beams with
high brightness, i.e. beam of high intensity with minimal normalised emittance.
Then, the LHC should generate very small β-function at the IPs [36].

2.3 Performance Limitation

The previous discussion centered on the ideal scenario of head-on collisions between
bunches with uncorrelated Gaussian profiles in all planes, and the solution of
Eq. (2.9) neglects any complexities that might impact the luminosity computation.
In practise, a crossing angle is introduced to prevent unwanted collisions on either
side of the interaction point, which would spoil the quality of the beam. However,
the crossing angle results in a reduction in luminosity.

1This assumes that the β-function at the collision point is equal for the two beams and for
both planes, i.e. β∗

1x = β∗
2x = β∗

1y = β∗
2y [27].
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2.3.1 Geometric Luminosity Reduction

Following the approach used in [30], a new coordinate system has been adopted to
highlight the geometry of the crossing region where the beams collide (see Fig. 2.5).
The two beams are related by the following transformations

Beam
2

ρ
2 (x, y, s, s

0 )Be
am

1

ρ1(
x, y

, s,
−s0

)

s

s1

s2

x
x1 x2

θc

Figure 2.5: Sketch of the coordinate system of two bunches colliding with a crossing
angle θc at the IP.

x1 = x cos(θc/2)− s sin(θc/2) s1 = s cos(θc/2) + x sin(θc/2)
x2 = x cos(θc/2) + s sin(θc/2) s2 = s cos(θc/2)− x sin(θc/2).

(2.10)

with θc is the full crossing angle at IP.

The value of the overlap integral of Eq. (2.3), is reduced when beams are
colliding with a crossing angle at the IP according to

L = 2 cos2(θc/2)n1n2frevκb

∫∫∫∫ +∞

−∞
ρ1x (x1) ρ1y (y1) ρ1s (s1 − s0)

×ρ2x (x2) ρ2y (y2) ρ2s (s2 + s0) dr̂
4

(2.11)

where 2 cos2(θc/2) ≡ κ, is the kinematic factor and and r̂ = (x1,2, y1,2, s1,2, s0).

Using the identity
∫ −∞
−∞ e−(at

2+bt+c)dt =
√

π/ae
b2−ac

a , the reduction in lumin-
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osity is quantified by the reduction factor, namely

L =
n1n2frevkb
4πσ∗

xσ
∗
y

F(θc) (2.12)

where F(θc) is the luminosity geometric reduction factor due to the crossing angle
at the IP. In particular, for small values of x and crossing angles tan(θc) ≈ θc, after
integrating in y and s0, and using the approximation σs ≫ σ∗

x,y, the reduction
factor F(θc) can be expressed as

F(θc) =

(
1 +

(
σs

σ∗
x

θc
2

)2
)− 1

2

(2.13)

The calculation above takes into account only the effect of the crossing angle.
However, in reality, there is an additional effect that arises from the transverse
beam separation when the two beams are not colliding head-on.

IP
δu

Figure 2.6: Sketch of two beams that do not overlap in the transverse plane and
collide with an offest δu at the IP.

As presented in Fig. 2.6, the two bunches collide with an offset δu in the
transverse plane, with u = {x, y}. Collision offset can arise either parasitically,
due to orbit imperfections, or intentionally for luminosity control or beam separ-
ation scans [18]. To address the reduction in luminosity owing to such transverse
separation, a specific metric is used, known as the separation factor

F(σ∗
u) = exp

(
− δu2

4σ∗2
u

)
. (2.14)

In the overall geometry, the luminosity reduction counts as including a cor-
rection factor e

B2

A when the crossing angle and collision offset occur simultan-
eously. Taking into account the geometric factors only in the horizontal plane, i.e.
F(σ∗

u) = F(σ∗
x) = F(σ∗) and F(θc) given as in Eq. (2.13), and introducing the

variables A and B as [26, 14]

A =
sin2 θc

2

σ∗2 +
cos2 θc

2

σ2
s

, B =
(δ) sin

(
θc
2

)
2σ∗2 (2.15)
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the luminosity expression in Eq. (2.9) is recalculated by including the three reduc-
tion terms F(σ∗), e

B2

A , F(θc) [26], namely

L =
γr frev kb n1 n2

4 πϵ∗β∗ · F(σ∗) · eB2

A · F(θc). (2.16)

In general, when discussing symmetric interaction region optics and removing
any unwanted effects at the IP, it is often assumed that the betatron function β(s)
is constant throughout the length of the bunch and equal to its smallest value,
β∗ [27].

Nevertheless, the β-functions have their minima at the collision point and
vary away from the IP. In a collider, when β∗ is comparable to the rms bunch
length or even smaller (i.e. β∗ ≲ σs), the variation of the β-function becomes
significant and couples the transverse bunch size with the longitudinal position
(i.e. σu ∼ σs) [14]. The β-functions depend only on the longitudinal coordinate s
as

β(s) = β∗
[
1 +

(
s

β∗

)2
]
, (2.17)

causing a parabolic behavior in the transverse bunch size σu, as a function of s

σu(s) = σ∗
u

√
1 +

(
s

β∗

)2

. (2.18)

Equation (2.18) implies that the beam size σu is not constant due to the growth
of the betatron function away from the IP. In the literature this parabolic effect
is known as the hourglass effect ; beam size has the shape of an hourglass, as
illustrated in Fig. 2.7, the hourglass effect due to the change in β(s) along the
bunch length is more important when β∗(s) is very small.

In a limiting case without crossing angle and for a head-on symmetric, round
Gaussian beams, after changing the integration variable into Ŝ = s/σs, and using
the ratio h = β∗/σs [33], we obtain the hourglass reduction factor luminosity as

H =
L(σs)

L(0)
=

1√
π

∫ +∞

−∞

e−Ŝ2[
1 +

(
Ŝ/h

)2]dŜ, (2.19)

where H is the hourglass correction factor

H =
√
π · h · eh2 · erfc(h) (2.20)
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Figure 2.7: Schematic visualization reflecting the parabolic behavior caused by the
hourglass effect for two different values of β∗ at IP (the origin of the s-coordinate is

such that s = 0 corresponds to the IP).

where erfc(h) is the complementary error function [20].

At this point, given the various geometric factors that may limit the luminos-
ity evolution, one can perform a global correction to the nominal luminosity value,
including those factors. Putting all the geometric factors together, the nominal
luminosity expression in Eq. (2.9) modified to get the design luminosity as

L =
γr frev kb n1 n2

4 πϵ∗β∗ · F(σ∗) · eB2

A · F(θc) · H. (2.21)

2.3.2 Beam-Beam Limit

In colliding-beam facilities, the electromagnetic forces generated by the counter-
rotating beams that interact with each other are the most noteworthy factor
limiting the accelerator’s performance. As already detailed in Section 1.4.1 in
Chapter 1, this force has two distinct regimes: a linear component for head-on
(HOI) beam-beam interactions at very small distances, and a strongly non-linear
behaviour when the Coulomb forces act at large distances, a feature known as
long-range (LRI) beam-beam interactions.
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Figure 2.8: A schematic of head-on and long-range beam-beam interactions between
two beams colliding at a crossing angle θc.

The core concept is shown in Fig. 2.8, the two counter-rotating beams share
the same region around the IP for more than 120m and spatially maintain a
crossing angle. In particular, at LHC, the bunches are spaced 25 ns apart, and
when two bunches collide in the centre or pass close to each other, several long-
range encounters are made left and right of head-on collisions. As a consequence,
the bunches continuously experience the non-linear electromagnetic fields from the
opposite beam’s bunches. This, in turn, limits the maximum particle density per
bunch, and given the definition of luminosity and its direct relation to the number
of collision points, the machine luminosity is inherently reduced.

Beam-Separation Dependence

In order to mitigate the undesirable effects of LRI [29], the bunches are separated
and configured to collide at a finite crossing angle (quasi-head-on). Although
widening the separation between beams weakens the LRI, this comes at the cost
of lowering luminosity, since operating with a large crossing angle reduces the
overlapping region between the two colliding bunches. Therefore, a minimum
separation is essential to ensure that the bunches collide at a very small crossing
angle. Conversely, a smaller beam-beam separation increases the force exerted
during LRI, which in turn shrinks the stable area, causing particle instability and
ultimately particle losses.

Traditionally, the strength of the LRI is quantified through the linear beam-
beam parameter ξ (see Eq. (1.48)), and this parameter represents the largest tune
shift attributable to the HOI in a bunch. As for the specific tune shift arising from
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LRI, it is worth addressing the beam-beam force as outlined in Eq. (1.41)

Fr(r) ∝ −n

σ
· 1
r

[
1− e−r2/2σ2

]
. (2.22)

Given a beam-beam separation distance dsep between the two beams in the
horizontal plane and considering r2 = (x+dsep)

2+y2, the kick experienced in both
transverse planes can be represented as

∆x′ = −2nr0
γr

(x+ dsep)

r2

[
1− e

− r2

2σ2
r

]
, ∆y′ = −2nr0

γr

(y)

r2

[
1− e

− r2

2σ2
r

]
. (2.23)

For large enough beam-beam separation distance dsep, the exponential term

becomes negligible, i.e. e−
r2

2σ2 ≪ 1, making the tune shift from LRI to first order,
inversely proportional to the square of the beam-beam separation distance dsep as

∆QLRI = − nr0β
∗

2πγr(d2sep)
. (2.24)

In this framework as shown in Fig. 2.9b, the tune shift ∆QLR ∝ − n
d2sep

is
calculated as a function of the beam separation dsep.

∆x′

(a)

∆x′ dsep
25ns

Beam 1

Beam 2

(b)

Figure 2.9: (a): Schematic view of the orbit change due to the beam-beam deflection,
(b): Sketch of the geometry of beam-beam interactions at an IP.

This implicitly states that, for a given beam separation, all particles in the
bunch experience the same beam-beam kick, equivalent to that affecting a zero-
amplitude particle for that specific value of dsep, i.e. its effect depends on beam-
beam separation dsep, and the beam-beam separation dsep at first LRI is propor-
tional to the crossing angle, written as

dsep =
θc
2

√
γrβ∗

ϵ
. (2.25)
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Thus, to ensure that LRI remains within tolerable limits by providing a min-
imum beam separation dsep, a sufficiently large crossing angle is vital.

More importantly, the exponential component retains its significance for small
separations, leading to an amplitude-dependent tune shift, i.e. detuning with amp-
litude or tune spread. Additionally, when the two beams collide with an offset and
in the presence of non-linearities, both bunches undergo a dipole-like collective
force or coherent beam-beam kick. This force causes the beam to deviate from its
intended path, as shown in Fig. 2.9a, leading to orbit changes from its predefined
closed orbit by introducing an amplitude-independent contribution. Mathematic-
ally, this is seen as a constant contribution in the kick formula in Eq. (2.23) when
it is developed in series [25].

∆x′ =
const

d
·
[
1− x

d
+O(

x2

d2
) + ...

]
. (2.26)

This particular shift affects the dynamical stability of the beam differently
than the HOI. All particles oscillate around the orbit at different tunes, deviating
from the coherent tune and forming the tune footprint in tune space as presented
in Fig. 2.10.

Figure 2.10: The tune footprint from long-range interactions only. Vertical separation
and amplitudes between 0 and 20σ [35].

In particular, the particles within a bunch spread out in phase space and
oscillate at different frequencies, forming filaments or streaks. Such tune spread is
indicative of the bunch losing its coherence, acting like a collection of individual
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particles, each following its own path and some may shift onto resonances. As a
result, the stability of particles is not preserved anymore and can get lost from the
beam and the bunch decoheres, the emittance increases, and the dynamic aperture
region in which stable motion occurs is reduced. In such a scenario, the beam-
beam effects set the limit on the machine’s peak luminosity; thus, it is crucial to
highlight the impact of the beam-separation dependence on luminosity production.

In high-energy colliders, the beam-beam effects often stand as a primary
constraint on machine luminosity optimisation. This phenomenon necessitates
a deep understanding of its impact on luminosity to ensure peak performance.
To this end, it becomes crucial to revise the luminosity formula in Eq. (2.9),
to explicitly incorporate these effects. Central to this adjustment is the beam-
beam parameter ξ. This parameter emerges as a factor that offers insight into the
luminosity in relation to the beam-beam effects. For equally populated, equally
sized round beams, the luminosity in terms of the tune shift parameter ξ is

L =
γrkbfrevn

r0β∗ ξ (2.27)

where ξ is provided in Eq. (1.48) and is measured as the largest tune shift owing
to the HOI in a bunch.

Equation (2.27) shows that, for a fixed beam-beam parameter ξ, the luminos-
ity is proportional to the number of particles per bunch n, the number of bunches,
and inversely proportional to the low β-function insertion at the IP, β∗. Since
LRI has been identified as the major factor limiting the dynamic aperture, which
is strongly dependent on the crossing angle, β∗ and beam population n, hence,
lowering the beam-beam tune shifts provides the possibility of further reducing
the beta functions at the IP to push the luminosity production. Nevertheless, it
is essential to optimise the luminosity while ensuring that the beam-beam tune
shifts remain within allowed limits. Therefore, the tolerable value of the tune shift
is smaller than the typical maximum value for the HOI one.



Chapter 3

Luminosity Evolution Including
Dynamic Aperture Effects

In the domain of superconducting colliders, magnet imperfections cause lattice
nonlinearities, which reduce the luminosity lifetime. To quantify this, significant
efforts have been devoted to developing models that shed light on the evolution
of beam losses in circular colliders, based on the concept of time evolution of the
dynamic aperture (DA). The dynamic aperture is a metric that gives the extent
of the stable phase-space region occupied by particles in motion within the beam
envelope. Referring to non-linear single-particle dynamics, models that merge the
notion of dynamics aperture and that of luminosity evolution have been developed.

3.1 Beam Intensity Evolution

As detailed in the previous chapters, non-linear effects such as magnetic field er-
rors or the beam-beam interactions, specifically the long-range beam-beam effects
discussed in Section 2.3.2, lead to particle losses due to the shrinking of the re-
gion in phase space where stable motion occurs, which is the so-called DA, defined
as the extent of the phase-space region where bounded motion occurs. Although
analytical examination of the DA is still out of reach, a practical approach is to
numerically compute the DA and establish a link between the DA and physical
observables, such as beam lifetime [21].

It becomes evident when the dynamic aperture is within the phase-space

32
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region occupied by the stable motion of the beam, the particles with higher amp-
litudes and lie outside the boundary of stability defined by the DA are likely to be
lost after N revolution, causing a decrease in the beam intensity and an associated
decay in luminosity. Interestingly, if we calculate the DA in the action space and
refer to the definition of the Courant-Snyder invariant J in Section 1.3.2, a relation
between the DA and beam intensity can be derived. The approach considers the
collision of Gaussian bunches in the following form

ρ(q, p; ϵ) =
1

2πϵ
e
−
(

q2

2ϵ
+ p2

2ϵ

)
(3.1)

and the beam distribution can be represented in the x− y phase space as

f(x, px, y, py) = Ib(1)ρ(x, px; ϵx)ρ(y, py; ϵy). (3.2)

Here, (x, px, y, py) is the vector of the Courant-Snyder coordinates at a given section
of the machine, and Ib(1) denotes the beam intensity at first turn N = 1.

Given the relation x2 + p2x = 2Jx and y2 + p2y = 2Jy in which Jx and Jy follow
the standard definition of the consistent phase-space area divided by 2π, f can be
described in terms of angle-action variables (φ, J) as

f(Jx, Jy, φx, φy) =
Ib(1)

4π2ϵxϵy
e
−
(

Jx
ϵx

+
Jy
ϵy

)
(3.3)

and

f̂(Jx, Jy) =

∫ 2π

0

∫ 2π

0

f(Jx, Jy, φx, φy)dφxdφy =
Ib(1)

ϵxϵy
e
−
(

Jx
ϵx

+
Jy
ϵy

)
. (3.4)

It is noteworthy to state that we are dealing with a distribution of particles in the
beam, thus,

⟨Jx⟩ =
∫ ∞

0

∫ ∞

0

Jxf̂(Jx, Jy)dJxdJy = ϵx (3.5a)

⟨Jy⟩ =
∫ ∞

0

∫ ∞

0

Jyf̂(Jx, Jy)dJxdJy = ϵy (3.5b)

The average measure in Eqs.(3.5a) and (3.5b) define the beam envelope that will
contain a specified fraction of the beam particles. Introducing the coordinates
r ∈ [0,∞[ and θ ∈ [0, π/2[, we get√

Jx =
√
ϵxr cos θ and

√
Jy =

√
ϵyr sin θ (3.6)
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Since our focal point is to determine the fraction of particles contained within a
specific volume given by r ≤ R, thus, the surviving particles can be calculated by

Ib(R) =

∫ ∞

0

∫ ∞

0

ΘR(r, θ)f̂(Jx, Jy)dJxdJy, ΘR(r, θ) =

{
1 for r ≤ R
0 else. (3.7)

where r and θ are considered functions of Jx and Jy. From the definition we have

dJxdJy = 4ϵxϵyr
3 cos θ sin θdrdθ , (3.8)

and
−Jx
ϵx

− Jy
ϵy

= −r2 (3.9)

Inserting Eqs.(3.8), and (3.9) in Eq. (3.7) we deduce the expression for Ib(R)
in a simplified way as

Ib(R) = 4Ib(1)

∫ π/2

0

∫ R

0

e−r2r3 cos θ sin θdrdθ. (3.10)

The integration over θ can directly be performed, and the integral over r can also
be solved analytically, and we arrive at the following expression

Ib(R)

Ib(1)
= 1− (1 +R2)e−R2

, (3.11)

which represents the relative intensity contained in the region r ≤ R. Furthermore,
R = D(N), where D(N) is the DA value that varies with the number of turns N .
As a result, the direct link between the beam intensity and dynamic aperture at
some turn number N is given by

Ib(N)

Ib(1)
= 1−

[
1 +D2(N)

]
e−D2(N). (3.12)

3.1.1 Dynamic Aperture Scaling-Law

Since the late 1990s, considerable efforts have been made to study and model the
evolution of the dynamic aperture as a function of the number of turns [2, 21, 34].
These studies highlighted the profound dependence between dynamic aperture,
beam stability, and the resulting luminosity. Given the fact that DA is a key
concept of nonlinear beam dynamics in the circular collider, the aim has been to
reliably predict the DA value, as a central measure for predicting and evaluating
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the overall machine performance. Therefore, it is worth mentioning that in [2] some
DA models were proposed. From this array of models, the Model 2 is particularly
highlighted for its applicability in our study as an effective scaling law tied to the
luminosity evolution, and it reads

Model 2 ⇒ D(N) = ρ∗
( κ

2e

)κ 1

lnκ N
N0

, (3.13)

where D(N) is the dynamic aperture as a function of turn number N , while ρ∗, κ
and N0 are free parameters. For simplicity, N0 = 1, therefore, only two parameters
are considered.

Equation (3.13) shows an inverse logarithmic decay of the dynamic aperture
with the turn number N . An initial strong reduction of DA settles down when N
becomes very large, the logarithmic term dominates, and the function stabilises.

3.2 DA Model for Luminosity Evolution

The effort of our study gravitates toward connecting the time evolution of lumin-
osity with the DA model after a finite number of turns. This effort is strongly
guided by the methodologies developed in [22, 23, 24], emphasising the ground-
breaking connection between DA and the intensity evolution in the presence of
non-linear effects, as showcased in Eq. (3.12) and by extending the DA scaling law
given in Eq. (3.13), we have addressed the time evolution of beam intensity within
a circular collider, thus developing a new luminosity model based on the concept
of dynamic aperture.

In this work, we present the luminosity evolution as a function of the number
of turns, including both effects from burn-off losses and any pseudo-diffusive effects
arising from DA evolution. It is worth noting that for a direct application of the
DA model, the time frame t is re-scaled into a new time variable τ , expressed as

τ − 1 = frev t giving
d

dt
= frev

d

dτ
(3.14)

Here, τ stands as a dimensionless variable, symbolizing the number of turns, where
a deviation of the origin of τ with respect to t has been introduced. In the following,
the derivative with respect to τ is indicated by ˙ , while ′ indicates the derivative
with respect to t.
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3.2.1 Luminosity Evolution from Burn-Off Losses

In a real-world collider like the LHC, delivered luminosity is the most important
figure of merit for its performance, its expression without taking into account the
hourglass effect [26], formulated as

L =
γr frev kb n1 n2

4 πϵ∗β∗ F (θc, σz, σ
∗), (3.15)

where the parameters in Eq. (3.15) are already introduced in Chapter 2, with
γr is the relativistic γ-factor, frev the revolution frequency, and kb indicates the
number of colliding bunches. The variable ni gives the particle count per bunch
in each colliding beam. Furthermore, ϵ∗ denotes the RMS normalized transverse
emittance, while β∗ represents the value of beta-function at IP. The total beam
population is defined as Nj = kb nj and the fact that not all bunches collide at the
high-luminosity experimental points is taken into account by introducing a scale
factor.

The factor F accounts for the reduction in volume overlap between the col-
liding bunches due to the presence of a crossing angle. F is a function of the
half-crossing angle θc/2, and the RMS dimensions σ∗andσz, as outlined in Sec-
tion 2.3.1, thus it is expressed as

F (θc, σz, σ
∗) =

1√
1 +

(
θc
2

σz

σ∗

)2
. (3.16)

Note that σ∗ =
√

β∗ ϵ∗/(βr γr), where βr is the relativistic factor β. Equa-
tion (3.15) is valid in the case of round beams (ϵ∗x = ϵ∗y = ϵ∗) and round optics
(β∗

x = β∗
y = β∗). For our scope, Eq. (3.15) will be recast in the following form:

L = ΞN1N2, Ξ =
γrfrev

4πϵ∗β∗ kb
F (θc, σz, σ

∗) (3.17)

in which the dependence on the total intensity of the colliding beams is highlighted
and the other quantities are included in the term Ξ.

In the context of an ideal collider, excluding any levelling gymnastics or
dynamic-beta effects, only the emittances and the bunch intensities can change
over time, luminosity burn-off stands out as the main mechanism that drives beam
losses during collisions. Under these conditions which are well fulfilled for the
parameters of the (HL)-LHC luminosity L at a collision point, Eq. (3.15) is more
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correctly interpreted as the peak luminosity at the beginning of the fill. Further-
more, given the definition of the instantaneous luminosity as the number of events
per second normalised to the interaction cross section, its evolution over time is
closely related to its peak value and the beam intensity, which turns out to be
derived from the following equation

N ′(t) = −σint nc L(t) = −σint nc ΞN2(t) (3.18)

where σint represents the inelastic p−p cross section for the interaction of charged
particles. Assume that there are two colliding beams with equal intensities, where
nc represents the number of collision points. The solution of Eq. (3.18) provides
the time-dependent bunch population, namely

N(t) =
Ni

1 + σint nc ΞNi t
, (3.19)

Here, Ni stands for the initial intensity. From Eq. (3.19), we deduce that the
luminosity gradually decreases as

L(t) =
ΞN2

i

(1 + σint nc ΞNi t)
2 . (3.20)

In the most general case, where the beams can have different intensities, the
intensity evolution is described by the following equations{

N ′
1(t) = −σint nc ΞN1(t)N2(t)

N ′
2(t) = −σint nc ΞN1(t)N2(t)

(3.21)

The solution of Eq. (3.21), indicated as N bo
1,2(τ) to highlight that it only in-

cludes the burn off contribution, can be obtained by re-writing:{
Ṅ bo

1 (τ) + Ṅ bo
2 (τ) = −2 εN bo

1 (τ)N bo
2 (τ)

Ṅ bo
1 (τ)− Ṅ bo

2 (τ) = 0
(3.22)

with
ε =

σint nc Ξ

frev
(3.23)

and from which one finds{
N bo

1 (τ) = N bo
2 (τ) + ξ

Ṅ bo
2 (τ) = − εN bo

2 (τ)
[
N bo

2 (τ) + ξ
] (3.24)
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Equation (3.24) has two solutions depending on the value of ξ. If ξ = 0 then

N bo
1 (τ) =

Ni

1 + εNi (τ − 1)

N bo
2 (τ) = N bo

1 (τ),
(3.25)

where Ni = Ni,1 = Ni,2 stands for the initial beam intensity.

Otherwise, if ξ ̸= 0 then


N bo

1 (τ) = ξ
1

1−Nr e−ε ξ (τ−1)

N bo
2 (τ) = ξ

Nr e
−ε ξ (τ−1)

1−Nr e−ε ξ (τ−1)
,

(3.26)

where ξ = Ni,1 − Ni,2 and Nr =
Ni,2

Ni,1
. It is worth noting that the outcomes are

invariant to the sign of ξ, although, from a computational point of view a negative
exponent is preferred, as τ can grow to very large values. Note also that Eq. (3.25)
can be easily recovered from Eq. (3.26) by expanding the exponential and setting
Ni,1 = Ni,2.

For colliding beams with equal intensities, and considering the beam losses
are exclusively due to the burn-off effect, the luminosity can be modeled as

Lbo(τ) =
Li

[1 + εNi (τ − 1)]2
(3.27)

where Li, is the peak luminosity at the start of the filling scheme. The observation
in Eq. (3.27) demonstrates that luminosity gradually decreases with the number
of turns τ and the intensity of the beam Ni.

The drawback of the luminosity burn-off model lies in the fact that a wide
range of additional processes contribute to beam degradation. Effects such as intra-
beam scattering (IBS) and synchrotron radiation are just the tip of the iceberg.
Notably, the beam-beam interactions and the machine non-linearities add another
layer of variability to this scenario. However, even this list is not all-inclusive.
The interplay of these factors impacts the intensity of the beam at different stages
during the beam cycle within the collider.
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3.2.2 Luminosity Evolution Including Pseudo-Diffusive Ef-
fects

Achieving a definitive formulation for luminosity is not trivial, as its performance
is limited by a series of effects that come into play in its degradation over time. In
fact, particles within the dynamic aperture may still be subjected to losses because
of diffusive mechanisms. The diffusive processes cause the particle amplitudes to
increase arbitrarily, which in turn can lead to particles hitting the physical aperture
of the machine and eventually getting lost. As a result, these diffusive effects can
further degrade the beams and affect the luminosity model grounded only on the
burn-off processes. Hence, the model suggested in Eq. (3.27) is not valid and a
more refined model based on the concept of DA is proposed that is not entirely
phenomenological.

In a diffusive framework, the luminosity can be described mathematically as
follows

L(τ) = Lbo(τ) · [1 + ζ(τ) · f(DA(τ))] (3.28)
where L(τ) represents the luminosity evolution with the number of turns τ , Lbo

denotes the burn-off component of luminosity. The term ζ is a coefficient capturing
the pseudo-diffusive effects on the luminosity, and f(DA(τ)) is a function that
maps the evolution of the DA with the number of turns, while the product ζ(τ) ·
f(DA(τ)), provides a holistic view of how DA impacts luminosity over time.

This approach assumes that besides the inevitable beam losses due to the
particle burn-off and emittance change during the collision at IPs, it is plausible
to model all possible pseudo-diffusive effects within the dynamical system of the
beam. To this end, a more comprehensive model of luminosity is developed at the
end of this section (see Eq. (3.33)).

At the LHC, the proton burn-off predominantly targets the core of the beam
distribution, an area densely populated with particles. Meanwhile, diffusive pro-
cesses exert their influence primarily on the tails of the beam distribution. Es-
sentially, proton burn-off and diffusive actions take place in distinct regions of the
beam distributions and at different intervals during the beam cycle, ensuring that
they act independently without significant overlap.

Then, under these assumptions, it is justified to describe the intensity evolu-
tion as {

N ′
1(t) = −σint nc ΞN1(t)N2(t)− D̂1(t)

N ′
2(t) = −σint nc ΞN1(t)N2(t)− D̂2(t) .

(3.29)

The terms D̂i represent the intensity-independent pseudo-diffusive effects. The
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reason for the origin change of τ with respect to t is now clear: it is needed so that
t = 0 corresponds to τ = 1 and then D(1) = +∞ according to Eq. (3.13).

Equation (3.21) becomes{
Ṅ1(τ) = −εN1(τ)N2(τ)−D1(τ)

Ṅ2(τ) = −εN1(τ)N2(τ)−D2(τ) ,
(3.30)

with Di = D̂i/frev.

The explicit expression for Di(τ) can be found by noting that these functions
are solutions of {

Ṅ1(τ) = −D1(τ)

Ṅ2(τ) = −D2(τ)
(3.31)

and that the explicit solution has been assumed to be of the form (3.12). Therefore,
one obtains

Dj(τ) = −2Ni,j Dj(τ) Ḋj(τ) e
−D2

j (τ)
(
2 +D2

j (τ)
)

j = 1, 2 . (3.32)

The detail of the derivation can be found in [22], but under the assumptions
that the initial beam intensities are the same as well as the terms Dj, then an ex-
plicit expression at the lowest order in ε (see Eq.(3.23)) can be given for luminosity,
namely

L(τ)

Li

=
1

[1 + εNi(τ − 1)]2
−
[
1 +D2(τ)

]
e−D2(τ)

{
2−

[
1 +D2(τ)

]
e−

D2(τ)
2

}
(3.33)

where Li is the initial luminosity value, given by Li = ΞN2
i . In the forthcoming

analysis and chapters, we will refer to this mathematical model in Eq. (3.33) as
DA Model−2.

The experimental verification and validation of the DA Model−2 will be dis-
cussed in the next chapter.4, using the experimental data from LHC Run−2 as a
benchmark to assess the effectiveness of our model.



Chapter 4

Dynamic Aperture Model
Qualification

The proposed scaling law for the time evolution of the luminosity in Chapter 3
has been verified numerically by applying the model in Eq. (3.33) to the LHC Run
2 data collected from the ATLAS detector [7]. In this chapter, we first provide
a brief overview of the extracted luminosity data. Afterward, we stress out the
results obtained by implementing the luminosity model fitting procedure.

4.1 LHC Run 2 Data

The luminosity data used in our study were extracted from the ATLAS detector
during the LHC Run 2 physics run, i.e. 2016, 2017, and 2018. The data considered
exclusively targets proton-proton collision events, and each recorded physics data
during a specific time frame run block is catalogued in a file as a luminosity
dataset [9], termed as physics fill. For a detailed insight into the nature of these
data files, one can delve into the comprehensive descriptions provided in [6, 19].

As already mentioned in the previous chapter, the peak luminosity is recorded
at the start of the fill, and given that the time evolution of luminosity heavily
depends on its initial value and the decay of the beam intensity, this results in a
gradual decrease of the luminosity over the fill duration.

In particular, fills that start with a higher peak luminosity tend to decay

41
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Figure 4.1: Measured luminosity evolution at the ATLAS experiment over typical fills
of 2016, 2017, and 2018 LHC operation. (a) Absolute luminosity (b) Relative

luminosity.

faster as the fill progresses, as illustrated in Fig.4.1 for an example of LHC fills in
2016, 2017, and 2018.

4.1.1 Selection Criteria

For the purposes of our study, which focuses strictly on physics fills, we introduce
some selection criteria that have been taken into account to evaluate the entire
dataset collected during LHC Run 2.

Following the selection procedure in [19], we additionally further our analysis
by defining cut-off values on the initial luminosity and fill length; thus, only fills
with values beyond this limit are considered. Fill selection based on peak lumin-
osity and fill length is illustrated, respectively, in Figs. 4.2a and 4.2b, while the
values below the cutoff (dashed lines) are removed.

Furthermore, given the detailed annual report of the full Run 2 dataset in [8],
we extend our investigation by checking all physics fills and removing the fills
that are preceded by any interruptions due to special events, such as technical
breakdowns.
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Figure 4.2: Fills selection during LHC Run 2. The selection is based on: (a) Initial
luminosity, (b) Fill length.

4.1.2 DA Model 2 Fitting Results

The DA Model 2, as described in Eq. (3.33), has been successfully validated
through experimental data. Its direct application to the luminosity measurements
from the LHC Run 2 is clearly seen to be in good agreement, as shown in Fig. 4.3
for a typical LHC fill, respectively, for 2016, 2017 and 2018.
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Figure 4.3: The DA Model−2 fit to normalised luminosity L/Li as a function of the
number of turns for typical LHC fills: 5069, 6143 and 7256, respectively, for years 2016,

2017 and 2018.

All other selected fills have been studied and are more or less similar in fit
quality. Therefore, for a global evaluation, in Fig. 4.4 we present, the peak lumin-
osity value (Fig. 4.4a), the fit quality R2

adj (Fig. 4.4e), and χ2 in logarithmic scale
(Fig. 4.4f). The values of the fit parameters: κ (Fig. 4.4c), ρ∗ (Fig. 4.4d), and εNi
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(Fig. 4.4b) are also shown.

The statistical measure used in this study to assess the effectiveness of our
model is the so-called adjusted coefficient of determination, R2

adj , mathematically
expressed as

R2
adj = 1− n− 1

n− p− 1

Σ2

σ2
(4.1)

where n stands for the total number of observations, and p represents the count of
adjustable parameters within the fit, while Σ2 and σ2 are, respectively, the squared
sum of residuals and the total sum of squares which is proportional to the data
variance, namely

Σ2 =
n∑

i=1

(yi − fi)
2 (4.2)

σ2 =
n∑

i=1

(yi − ȳ)2 (4.3)

with ȳ is the average overall measured data yi, while fi is the fit model.

If the value of R2
adj is significantly less than one, or even negative, this means

that the model is of poor quality and that the mean of the data gives a better
fit to the given model. A desirable fit is considered optimal if the R2

adj closely
approaches one, i.e. R2

adj → 1. In our analysis, R2
adj serves as an essential metric

for evaluating the goodness of our fitting model to luminosity evolution at LHC.

Therefore, one can see in Fig. 4.4e, all fits are of good quality with R2
adj >

98%. Another important observation is the growth of the fit parameter εNi on a
yearly basis, reflecting the increasing trend of the peak luminosity.

As previously reported in Chapter.4, the εNi parameter is fundamentally
related to the core process burn-off phenomena, and the initial beam intensities
Ni. Indeed, it is worth noting that two major aspects arise from this:

• The strong correlation between peak luminosity and initial beam intensities
is mirrored in the mutual variation of εNi with peak luminosity.

• The εNi parameter is not static and tends to change as the beam intensity
decays. Its time dependence therefore requires an in-depth evaluation to
determine the most suitable approach for data analysis.

In line with the study presented in Ref.[23], the time dependence of εNi can be
safely neglected in our model. Such a decision stems from a thorough comparison
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Figure 4.4: Peak luminosity, fit quality R2
adj , Reduced-χ2 and fit parameters of DA

Model 2 (κ, ρ∗, and εNi) for LHC during Run 2.
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between models neglecting the temporal variability of εNi cross-checked against
models in which εNi is assumed to be time-dependent. The resultant differences
were found to be minimal, thereby validating the choice to overlook the time-
sensitive aspect of εNi in our analysis.

4.2 DA Model 2 parameters evolution with time

Determining whether or not the DA Model 2 free parameters are time independent
is crucial for the model’s qualification. In an effort to address this, a study on the
parameter evolution over time has been carried out by taking a small amount of
data and then gradually increasing the number of data points until the end of the
physics fill.

Fig. 4.5 shows the time evolution of the fit quality R2
adj and DA Model 2 free

parameters κ, ρ∗, and εNi, combining all the fills in the same plot for a given
year of LHC Run 2 (2016, 2017, and 2018). The plots in Fig. 4.5 show that the
parameters tend to remain stable over time, which is not the case when applying
a double exponential model (see Fig. 4.6b and Fig. 4.7b).

In our endeavour to validate the robustness of the proposed model, a compar-
ative analysis was conducted between the DA Model 2 and the Double Exponential
model. he Double Exponential model for luminosity evolution description, given
as follow

L(t) = a exp(−bt) + c exp(−dt) (4.4)

where a, b, c, d are the fit parameters. a+ c represents the peak luminosity, while
b and d are the time constants of the luminosity decay.

To investigate how the fit parameters of the considered models behave in a
typical physics fill, we made a summary plot that displays the fit quality R2

adj ,
the normalised fit parameters, as well as the normalised luminosity and the fitted
model over time. The outcome of this analysis for the physics fills 5069 and 6161
are presented, respectively, in Fig. (4.6) and Fig. (4.7).

Examination of the Model 2 fit parameters evolution as a function of the
fill length as shown in Fig. 4.6a and Fig. 4.7a, shows that the parameters remain
within a stable region, with slight changes at some points due to changes in data
blocks. In contrast, for the Double Exponential model, the fit parameters are
not stable through the fill length. As depicted in Fig. 4.6b and Fig. 4.6b, the
parameters jump abruptly from one wide range of values to another.
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Figure 4.6: Physics fill 5069: Time evolution of normalised luminosity L/Li, fit
quality R2

adj and normalised fit parameters for: (a) Model 2, and (b)
Double Exponential Model.
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Figure 4.7: Physics fill 6161: Time evolution of normalised luminosity L/Li, fit
quality R2

adj and normalised fit parameters for: (a) Model 2, and (b)
Double Exponential Model.
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Figure 4.8: Physics fill 5069: (a) Time evolution of normalised luminosity L/Li, fit
quality R2

adj for Model 2 with a scan over κ and fit parameters (ρ∗ and εNi) in
normlised scale. (b) The χ2 in logarithmic scale as function of scanned κ.
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Figure 4.9: Physics fill 6161: (a) Time evolution of normalised luminosity L/Li, fit
quality R2

adj for Model 2 with a scan over κ and fit parameters (ρ∗ and εNi) in
normlised scale. (b) The χ2 in logarithmic scale as function of scanned κ.
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Furthermore, in order to improve the fit quality of Model 2, we did consider
scanning over one parameter κ and fitting only two parameters: ρ∗ and εNi. The
approach is to find the global χ2 minimum and take the corresponding κ values
as input for Model 2, to check the evolution of the fit parameters over time, see
Fig. 4.8a and Fig. 4.9a. Additionally, the plots of χ2 as a function of κ on a
logarithmic scale are presented in Fig. 4.8b and Fig. 4.9b, respectively for the
same physics fills as above, namely 5069 and 6161. Interestingly, the global χ2

minimum is clearly visible in both fills.

The analysis conducted on the LHC Run 2 instantaneous luminosity data
using different models, namely DA Model 2 and Double Exponential model, com-
bined with the observation of their free parameters evolution during a physics
fill, provide an initial understanding of our model’s performance. In the following
section, the extrapolation approach serves as a first step towards predicting the
evolution of luminosity in a circular collider.

4.3 Luminosity Extrapolation

For the sake of the accuracy of our study, starting with a small amount of data,
using various models for extrapolation up to the end of the physics fill, we assess
the validity of our techniques. Fig. 4.10 shows that the relative difference in
integrated luminosity L(t) between the LHC data and the chosen model tends to
decrease over time with increasing data points. While for instantaneous luminosity
L(t) the relative difference is greater, as shown in Fig. 4.11. More importantly,
the results of this analysis can be summarised as follows:

• DA Model 2 relative difference with reference to LHC data continuously is
steadily decreasing, maintaining its inherent trend. Essentially, this means
that as we integrate more data points, our predictive values get closer to
the actual luminosity values, reflecting the model’s ability to account for any
diffusive effect within the machine.

• Double Exponential model relative difference in comparison to the LHC data
decreases with the number of data points that have been taken into ac-
count. However, notable fluctuations are observed throughout the filling
time, analogously to the time-dependent evolution of its fitting parameter.
This suggests that the model is sensitive to specific machine dynamics, which
compromises its ability to effectively predict the evolution of luminosity, par-
ticularly given the non-linear challenges in circular devices.
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Figure 4.10: The relative difference in terms of integrated luminosity L(t) over time
between the LHC data and the extrapolated data for 2016 (left), 2017 (middle), 2018
(right). Extrapolated data using: Model 2 with three free parameters (κ, ρ∗, and εNi)
(top), Model 2 with two free parameters (ρ∗, and εNi) and a scan of κ (centre), and

double exponential model with four parameters (bottom).
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Figure 4.11: The relative difference in terms of instantaneous luminosity Linst over
time between the LHC data and the extrapolated data for 2016 (left), 2017 (middle),
and 2018 (right). Extrapolated data using: Model 2 with three free parameters (κ, ρ∗,

and εNi) (top), Model 2 with two free parameters (ρ∗, and εNi) and a scan over κ
(centre), and double exponential model with four parameters (bottom).
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In summary, for luminosity modelling, any functional form fitted to the meas-
ured luminosity evolution can be used, providing a good fit quality. Although a
Double Exponential model initially provides a good empirical description of the
evolution of luminosity over time, in practice, complexities arise. Factors such as
particle losses due to diffusive phenomena can affect the beams, leading to radical
changes in the model parameters, and making the model inconsistent. We therefore
advocate a model based on the concept of DA, which includes all pseudo-diffusive
effects on the model. Given these insights, reinforce our conviction in the DA
Model 2 as a potential candidate to predict the evolution of luminosity in circular
colliders.



Chapter 5

Optimisation Strategies

This chapter presents the main computational techniques that could be applied
to the LHC to enhance its overall integrated luminosity. First, we implemen-
ted a numerical optimiser that predicts luminosity evolution, making optimal de-
cisions based on the beforehand accessible LHC Run-2 data and DA Model 2, i.e.
Off-line Strategy. Then, for real-time luminosity predictions and to determine op-
timal measures, we propose an optimisation strategy that operates during the LHC
Run filling scheme, i.e. On-line Strategy. In both approaches, the optimisation
is performed with the constraint that the sum of the optimised fill lengths equals
that of the actual fill lengths.

t

E

Injection InjectionStart fill End fill

tf

Start fill

tta

Figure 5.1: Sketch of the luminosity production process in a circular collider.
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The process of luminosity production in a circular collider is schematically
illustrated in Fig.5.1, highlighting the magnetic cycle and introducing process-
related main components.

From an analytical point of view, the luminosity measurement L(t) through-
out a fill can be described by adopting any mathematical model that aims to
provide a customised approach for collecting luminosity in a circular collider.

Since the goal is to maximise the integrated luminosity, in deterministic case,
achieving this aim, means maximising the following

Ltot(tf) = Nf

∫ tf

0

dt L(t)

=
T

tta + tf

∫ tf

0

dt L(t)

(5.1)

where Ltot(tf) is the total integrated luminosity in the machine, Nf refers to the
number of fills considered in our study, while T is the total time allocated for
physics, tta refers to the so-called turnaround, i.e. the time between the end of a
physics fill and the start of the subsequent one, tf is the length of an individual
physics fill. Special attention must be given to the second component of Eq. (5.1)
to ensure accuracy and meticulous handling. Ideally, the expression should be
presented as

Ltot(tf) =

⌊
T

tta + tf

⌉∫ tf

0

dt L(t) (5.2)

where ⌊·⌉ stands for the nearest integer. However, under the assumption that
T ≫ tta + tf , which is always the case in reality, one can simply consider the
form (5.1) that will be correct with a high degree of accuracy.

Under these assumptions, the optimisation is performed by noting that Ltot =
Ltot(tf) and the maximum can be found by solving the equation

dLtot

dtf
= 0 (5.3)

Henceforth, we consider the possibility of optimising the performance of a
circular collider, focusing on maximising the annual integrated luminosity at LHC
in the dynamic aperture framework. The computational foundation of our study
relies on the adaptation of the proposed strategies discussed in Ref.[19], applying
the DA Model 2 scaling law to derive the analytical expressions for the optimized
integrated luminosities for the optimum fill lengths.
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5.1 Off-line Optimisation

The numerical optimiser in this study uses the Python’s minimize routine. Specific-
ally, we employ the Sequential Least Squares Programming (SLSQP) Algorithm,
a gradient-based optimization technique that addresses constrained optimisation
problems through a sequential quadratic programming approach[19].

Given the intriguing challenge that no single model can accurately describe all
fills, it becomes imperative to compute the total integrated luminosity by summing
the individual integrated luminosities, L(tf) obtained from the integral of their
respective fill-fitting model, which, for our study, is predominantly based on the
DA Model 2.

Utilizing insights from the DA framework, we have scaled and refined the DA
Model 2 to optimally project integrated luminosities for the optimum fill lengths
at the LHC.

Given that the storage of luminosity data is presented in terms of time rather
than the number of turns, the most efficient computational approach to derive the
pseudo-diffusive contribution to luminosity prediction data involves applying the
DA Model 2 model in such a way the integrated luminosity per fill reads

L(ti) =
Li

frev

∫ ti

0

dt Lnorm(t) (5.4)

where L(ti) is the maximum integrated luminosity per fill, computed from t = 0 to
the optimal fill time t = ti defined by the optimiser. Lnorm(ti) is the fill normalised
luminosity evolution form provided by the DA Model 2 in Eq.(3.33). Hence, to
remove the normalization and go from the dimensionless turn variable to the time
variable, a fill-related scaling factor is introduced and given by Li/frev, with Li is
the initial luminosity value and frev is the revolution frequency of the machine.

It is straightforward to express the total integrated luminosity Ltot to be
optimised as

Ltot =

Nf∑
i

L(ti) (5.5)

with imposing the constraint which assumes the total optimum fill lengths determ-
ined by the optimisation algorithm equal to the total actual machine fill lengths,

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html#optimize-minimize-slsqp
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namely
Nf∑
i

ti −
Nf∑
i

tri = 0. (5.6)

where Nf as already mentioned is the number of fills selected by the optimiser,
and tri is the fill time that took place at LHC.

5.2 On-line Optimisation

Now, let’s examine the potential of real-time optimization and prediction of lu-
minosity production during the filling process. Before diving deep into solving the
Eq.(5.3) for the purpose of enhancing the machine luminosity, for the purpose of
enhancing the machine luminosity, we aim first to get a firm grasp on our primary
issue by tackling the statistical nature of both the turnaround time and the phys-
ics fill length. Focusing on a scenario where we have n exponentially-distributed
values ti representing n realisations of the turnaround time, the goal is to maximise

Ltot(t̂) = n

∫ t̂

0

dt L(t) , (5.7)

Interestingly, the underlying premise here is that all fills should be of equal length,
even though the turnaround times might vary, subjected to the constraint

n∑
i=1

ti + n t̂ = T . (5.8)

One can simplifying the sum of the exponentially-distributed values with a
term n τ , resulting in

n =
T

τ + t̂
(5.9)

Hence, inserting Eq. (5.9) in Eq. (5.7), the optimisation of Eq. (5.7) becomes of
the same type as the problem (5.1). It is worth noting that the implicit assumption
here, is that τ is the average value of the turnaround distributions, τ = ⟨ti⟩, for
further invisi.

It can be checked a posteriori that the assumption of optimising the integrated
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luminosity by using equal fills lengths is the correct one. In case one would consider

Ltot(t̂1, t̂2) = (n− 1)

∫ t̂1

0

dt L(t) +

∫ t̂2

0

dt L(t)

=
T − (t̂2 + τ)

τ + t̂1

∫ t̂1

0

dt L(t) +

∫ t̂2

0

dt L(t) ,

(5.10)

where the constraint (5.8) has been adapted to this new case. The maximisation
of Ltot(t̂1, t̂2) is obtained by solving

∂Ltot

∂t̂1
= 0

∂Ltot

∂t̂2
= 0 ,

(5.11)

and by direct inspection, one finds that t̂1 = t̂2.

Since the fill length is a key measure for evaluating the performance of a
circular collider, an in-depth analysis of how to optimise this quantity to reach the
maximum integrated luminosity has been presented in Refs.[3, 19].

Clearly, in the realistic case, the n values of the turnaround are not known
a priori, which modifies the scheme previously described. Let us assume that
tj, 1 ≤ j ≤ i and t̂j, 1 ≤ j ≤ i − 1 are the turnaround times and the optimal fill
times, respectively for all the fills from 1 to i. The problem is to determine t̂i so
to maximise

Ltot(t̂i, t̂) =
i−1∑
j=1

L(t̂j) +
∫ t̂i

0

dt L(t) +
T −∑i

j=1

(
tj + t̂j

)
1
i

∑i
j=1 tj + t̂

∫ t̂

0

dtLmp(t) , (5.12)

where and additional optimisation parameter has been introduced, namely t̂, which
represents the optimum fill time of future fills. Here, L stands for the integrated
luminosity in a single fill. The third term in Eq. (5.12) introduces a relationship
between t̂i and t̂. We remark that Lmp(t) stands for the most probable value of
the function representing the luminosity evolution. It is clear that in case the
luminosity function is Gaussian distributed, the most probable value corresponds
to the average value. Such a value should be determined on the basis of the
collection of fills already occurred. Moreover the term

1

i

i∑
j=1

tj (5.13)
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is intended to provide an estimate of the average turnaround time.

The optimisation is performed as usual, namely

∂Ltot

∂t̂i
= L(t̂i)−

1
1
i

∑i
j=1 tj + t̂

∫ t̂

0

dtLmp(t) = 0

∂Ltot

∂t̂
= L(t̂)− 1

1
i

∑i
j=1 tj + t̂

∫ t̂

0

dtLmp(t) = 0 ,

(5.14)

which gives 
t̂i = t̂

L(t̂) =
1

1
i

∑i
j=1 tj + t̂

∫ t̂

0

dtLmp(t) .

(5.15)

The proposed strategies have been evaluated by optimizing the fill length
using a numerical optimizer while retaining the same number of fills as for the
actual run. Afterward, we tested the online strategy designed to optimize the
integrated luminosity for a single year of run. The following chapter.6 will provide
a detailed verification and showcase the outcomes of these strategies in enhancing
the integrated luminosity.



Chapter 6

Optimisation Results

In the previous chapter, we discussed several optimisation strategies that could
be applied to the LHC to improve its luminosity performance. In this chapter,
we have undertaken the integration of these techniques in such a way that the
sum of the optimised fill lengths is equivalent to the sum of the actual fill lengths.
The main objective of this initiative is to predict and explore the possibility of
enhancing the integrated luminosity using the proposed DA Model 2 compared
with the combined integrated luminosity collected over the three years of LHC
Run 2. To achieve this, we implemented a numerical optimiser, which will be
further elaborated in the following section.

6.1 Off-line Results

It is noteworthy that for operational accelerators, offline optimisation plays a cru-
cial role, particularly for facilities that require frequent recalibrations or changes
in configuration, such as the LHC with its multiple experiments and varied oper-
ational modes. Although many accelerator can, in theory, access the optimisation
resources, practical constraints, especially computational ones, often prevent in-
depth studies, i.e. LHC is expensive in terms of time. Therefore, an optimisation
procedure, taking into account these boundary conditions becomes essential.

Once the operational characteristics of the machine are well understood, nu-
merical optimisation using the established procedures, as was done for the early
store, can indeed improve the machine’s performance and safety.

62
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As an initial step, we employed a numerical optimiser following the proced-
ure outlined in Refs.[19, 31]. However, instead of using the Double Exponential
model, we adopted the DA Model 2 proposed by our study. Hence, the numer-
ical optimisation presented herein is rooted in the offline approach, as detailed in
Sec. 5.1. The purpose of this approach is to optimise the fill length, ensuring max-
imum integrated luminosity from each run. This optimisation is achieved while
maintaining the constraint condition that the total optimised fill lengths are equi-
valent to the total considered run fill lengths, as shown in Fig. 6.2. Aditionally,
the optimised individual fill time compared to the actual fill time is showcased in
Fig. 6.1.
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Figure 6.1: (left) Comparisons between the Actual fill times that took place at LHC
during Run 2 and the optimal fill times chosen by the DA Model 2. (middle) The

relative difference on integrated luminosity L(t) by the optimiser with reference to the
measured one at LHC during Run 2 (right) Optimal fill times vs Actual fill times that

took place at LHC during Run 2.
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Figure 6.2: (left) Comparisons between the fill times that took place at LHC during
Run 2 and the optimal fill times chosen by DA Model 2; (right) Comparisons between

the measured integrated luminosities at LHC during Run 2 and the optimal ones
obtained by Model 2.
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The optimisation results are presented by the histograms in Fig. 6.2. Indeed,
we can observe an improvement in the integrated luminosity by the optmiser using
DA Model 2 relative to the integrated luminosity accumulated over the three years
of the LHC Run 2. This implies that with the same operational time and fill
lengths, and using the DA Model 2 to predict the luminosity evolution within the
machine, the LHC could increase the collision rates, thus offering a gateway to
more experimental outcomes.
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Figure 6.3: Plots of the convergence study for the outliers removal for the three years
of Run 2.

Moreover, despite the strict fill selection procedure we carried out in Sec. 4.1.1,
there may still exist outliers in our dataset. These outliers, overlooked by our meth-
odology, might inadvertently amplify or attenuate the expected results. Therefore,
to ensure the accuracy of our study, we made an internal check to identify any po-
tential outliers in the luminosity data. In the Fig. 6.1 we represent the relative
difference in terms of the integrated luminosity Lnum(t) from the numerical opt-
miser with reference to the actual luminosity LLHC recorded at LHC, i.e. the LHC
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2016 2017 2018

Relative Increase Before Cut 1.12% 2.35% 0.79%

Relative Increase After Cut 1.04% 2.35% 0.83%

Table 6.1: Integrated luminosity Relative increase before and after cutting procedure.

integrated luminosity for each fill stored in the ATLAS data directory summary
files [9].

The plots of the relative difference in terms of the integrated luminosity L(t),
as illustrated in Fig. 6.1, show that there were two visible outliers in 2016, and
one in 2018. Subsequent to this analysis, our focus was solely on fills that met the
criteria

|Lmod2 − LLHC|
LLHC

≤ 0.02 (6.1)

The premise here in Eq. (6.1) is we attempt to remove all outliers by applying
a cut that discards values above 0.02. The underlying logic behind choosing a
threshold of 0.02 is shown in shown in Fig. 6.3.

Therefore, the optimisation results after performing the cut-off in Eq. (6.1)
are provided in Fig. 6.4. In order to evaluate the effectivness of the numerical
optimiser both before and after implementing the cut-off in Eq. (6.1), we have
outlined in Tab.6.1 the relative increase in integrated luminosity from the optmiser
with respect to the actual integrated luminosity at LHC. This comparison reveals
variations in gains both across different years and depending on whether the cut-
off has been applied. For instance, in 2016, there was a slight reduction in the gain
post-cut, which can be attributed to the removal of some fills. In contrast for 2018,
after removal of the outliers, the gain increased slightly. The interpretation here is
that outliers can sometimes distort or skew the apparent performance, leading to
misleading conclusions. Thus, the deeper our knowledge of the data, the greater
the potential gains in integrated luminosity.

To have a general view of how the offline optimiser predicts luminosity, we
have illustrated the modelled luminosity as a function of the optimal time for
consecutive optimised fills in Fig. 6.5, shown in red. At the same time, this figure
displays the nominal luminosity evolution at the LHC during the actual run and its
fitted curve using DA Model 2, shown in blue and green, respectively. Furthermore,
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Figure 6.4: (left) Comparisons between the fill times that took place at LHC during
Run 2 and the optimal fill times chosen by DA Model 2; (right) Comparisons between

the measured integrated luminosities at LHC during Run 2 and the optimal ones
obtained by Model 2.
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Figure 6.5: Luminosity evolution as a function of time, at LHC (in blue) and from the
fit DA Model 2 (in green), and the predicted from the numerical optimiser (in red) for

successive fill numbers 5849, 5872, 5950, 6024.

the integrated luminosity value at the end of the fill, obtained from numerical
optimisation, DA Model 2, and the actual run, are also presented.

It can be concluded from this schematic view that the optmiser decides if the
fill is optimal or not, i.e. whether to continue the fill to collect more luminosity or
to interrupt it.

6.2 On-line Results

At the start of each LHC fill, the beams at the IPs are adjusted to ensure the beam
head-on collisions. This is done to achieve the maximum number of collisions,
thereby maximising the luminosity production.

Throughout LHC Run 2, the configuration of the LHC machine configuration
configuration was significantly modified, which had a significant impact on its
luminosity performance. An overview of the evolution of the main parameters of
the machine during LHC Run 2 is provided in Refs.[37]. Indeed, not only were
different beam types used, but also several new operational features known as
control parameters were introduced, i.e. β∗, ϵ∗, aperture [4]. In 2018, after careful
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optimisation, the machine moved into an advanced operational mode, reaching a
remarkable peak luminosity around 2 ·1034 cm−2 s−1.

Given the running conditions, the control parameters have a direct correl-
ation with the machine’s peak luminosity performance. These parameters with
the target luminosity ensure that the instantaneous luminosity with the help of
dedicated detectors aligns with the predefined target luminosity throughout the
fill’s duration or until the instantaneous luminosity reaches the natural luminosity
decay. This results in thus, the luminosity production depending on the control
parameter that defines the design luminosity. Our task in this section is to at-
tack the main challenge in the LHC control room, namely the online optimisation
and control of the delivered luminosity to the machine. In fact, our goal is to
implement an online optimisation to improve luminosity production following the
strategy proposed in Section 5.2.

The approach relies on scanning all physics fills from the previous year, as
described in Eq. (5.13), and then determining the most probable value of the
luminosity distribution for every specific fill time defined during the scan. It then
determines the most probable value of the luminosity distribution for each specific
fill time defined during the scan. The evaluated mode is updated whenever a new
fill occurs in the ongoing year. Subsequently, the DA Model 2 is employed to derive
the analytical representation required for luminosity. Before initiating a new fill,
the algorithm checks the imposed constraints to ensure that the combined sum of
turnaround times and fill times executed during the run does not exceed the total
time allocated for physics. This is followed by finding the optimal times, t̂ that
solve Eq. (5.15).

Note that the luminosity provided by the DA Model 2 in Eq. (3.33) is nor-
malised to its initial value. In offline techniques, it is simple to obtain the initial
luminosity value; it is extracted from the stored data for each fill. In the case of on-
line optimisation, the predictions are done in real-time, thus here in our study, we
simulate the luminosity evolution at LHC by conidering two distinct perspectives
regarding the initial luminosity:

• Simulation with the assumption that initial luminosity Li as the one provided
by the control parameters to model the target luminosity, thus, Li = ΞN2

i

as given in Eq. (3.17).

• The simulation, assuming that the initial luminosity for each fill is consistent
with what was observed during the run.
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Online simulations are performed on LHC Run 2 data for 2018, with complete
knowledge of the fitting parameters. The results of our analysis are presented by
violin plots as illustrated in Fig. 6.6, in which we can observe the distributions
of the total integrated luminosity per day for the three distinct studies, ie, LHC,
online optimisation, and numerical optimisation.
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Figure 6.6: On-line optimisation results with complete knowledge of the fit model for
2018 (left). The Initial luminosity was estimated from the LHC Run 2 control

parameters provided during the run for luminosity prediction and modelling (right).
The initial luminosity is the one recorded at LHC during Run 2 in 2018. The bottom

plot represents the fill time during the run and the optimised fills.

The two top figures in Fig. 6.6 show comparative results in terms of integ-
rated daily luminosity. The difference in the gains between the two figures stems
from the chosen initial luminosity. In the top left Fig. 6.6 the initial luminosity
provided by the control parameters, one can see a significantly more improvement
in daily integrated luminosity with a gain in integrated luminosity/day of 17.9%.
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This relative increase underscores the impact of the control parameters on lumin-
osity predictions and how crucial it is to adjust and align them with real-time
requirements.

However, the top-right figure gives a more conservative estimate by consid-
ering the already provided initial luminosity. Although the gain here seems rel-
atively modest, it underlines the importance of the online optimisation strategy,
even when starting with a predetermined initial luminosity. Even a marginal in-
crease of 0.40% in integrated luminosity per day can have significant implications
in high-energy physics experiments where every collision event counts.

The bottom figure focusses on the overall fill duration, indicating that the
sum of optimised fill times by adopting the offline or on-line strategy can achieve
the total actual fill lengths during LHC Run 2, without demanding extended op-
erational hours. This efficiency is indicative of the success of the implemented
optimisation techniques.



Conclusions

Throughout this work, we have proposed a candidate model based on the concept
of dynamic aperture for luminosity optimisation within the Large Hadron Collider
(LHC). The mathematical framework of the dynamic aperture offers a compre-
hensive model for the evolution of luminosity within a colliding machine containing
diffusive effects (see Chapter .3 and 4). This approach has an interesting potential
for optimising integrated luminosity, which consequently enhances the performance
of circular colliders.

The encouraging results obtained from the offline optimisation, followed by
the promising results from the online optimisation (see Chapter .5 and 6), not
only validate the reliability of the proposed model, but also pave the way for
future efforts that could potentially incorporate more sophisticated algorithms to
further refine the predictions.
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