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When you come to a fork in the road, take it.
— Yogi Berra
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Abstract

We study the possibility of formation of moduli oscillons analitically in the non relativistic
regime. We start by introducing moduli as the scalar fields that arise in string theory and
see how they can be stabilized in the KKLT scenario. We then consider the possibility of
moduli coming together to form compact objects known as moduli stars and place them
in the broader landscape of boson stars, taking into consideration also their formation
mechanisms and possible experimental signals. The first step to do so is the construction
of the non relativistic effective field theory, which we perform through the means of a
non local operator that enables us to compute non relativistic corrections in a systematic
way. This result is not present in the literature, so we check it by computing the NREFT
via the traditional method of diagram matching: the two results turn out to be related
by a field redefinition and are therefore equivalent low energy descriptions. Next, we
turn to the corresponding effective Hamiltonian, looking for minima and maxima that
would represent stable and unstable configurations. By studying it in different regimes
we conclude that, in the absence of gravity, the only extremal point is a maximum non
compatible with a bound state.
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Chapter 1

Introduction

The search for a unified theory of gravity and the interactions of the Standard Model is
still ongoing. For many physicists, the perhaps most promising candidate remains string
theory, a quantum theory of one dimensional objects that move in a N dimensional
space-time whose vibrations make up the spectrum of all the matter particles and gauge
bosons that we observe. Although elegant and capable of reproducing many aspects of
our Universe, this theory also predicts many features of which we have not seen any ex-
perimental clue so far. The most striking and well known of them is the existence of six
extra-dimensions, needed for internal consistency of the theory, that can be curled up on
a specific geometry called Calabi-Yau manifold. Another feature, less familiar outside of
the circle of string theorists, is the presence of hundreds of gravitationally coupled scalar
fields called moduli that have a central role in defining many fundamental parameters
of the theory through their vacuum expectation values. They, however, arise without a
potential and the question of how to give them one is a significant open problem. One
usually considers the effects of fluxes when compactifying the extra dimensions, but this
is often not enough and further corrections need to be taken into considerations to stabi-
lize all of the moduli of the theory. After being endowed with a potential they acquire a
mass, a fixed VEV and self-interactions and could therefore in principle come together to
form bound states. The compact objects that result are know as moduli stars and would
significantly affect the history of the Early Universe, as well as many of the features of
our current one, by being a source of baryon asymmetry, of a stochastic background of
gravitational waves, by delaying thermalization or catalysing phase transitions.
Despite their importance in the theory, moduli stars are kept in the shadow by axion
stars in the literature. The latter, compact objects made out of pseudo-scalar fields, have
received much more attention in recent years because they could be a plausible candidate
for cold dark matter [1] [4] and have been studied using both analytical and numerical
methods. Moduli stars, on the other hand, have only been investigated through numer-
ical methods and lattice simulations, so we take on the task of building an analytical
approach to the study of their formation. In doing so, we focus on stars held together
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by self-interactions (known as oscillons), as is the case for the objects formed during
pre-heating in the Early Universe, and consider the non relativistic limit as it’s usually
done in the literature.
We start off by giving an overview of moduli in the context of type II string theory as
scalar particles arising in the massless spectrum and from string compactification and see
how their vacuum expectation values parametrize the coupling coefficient of the strings
and the shape and size of the extra-dimensions. We then consider the KKLT scenario to
stabilize the moduli of the theory and the Kähler moduli in particular: this step involves
performing a flux compactification and considering non-perturbative corrections to the
superpotential. The resulting minimum is anti deSitter, so it needs to be uplifted to
values consistent with the cosmological constant by considering the effects of anti D3-
branes at the end of warped throats that extend from the Calabi-Yau manifold of the
extra-dimensions. The parameters of the theory can be fine-tuned to obtain the desired
value for the minimum of the potential, however the corrections considered could back
react on the geometry of the internal compact space and potentially disrupt the mini-
mum itself. Nevertheless, the KKLT scenario remains a valid toy model to explore the
implications of string theory. We conclude chapter 2 by expanding the KKLT potential
in a power series around the minimum. Next, we consider the possibility of moduli stars
as pseudo-solitonic solutions of the coupled Einsten-Klein-Gordon equations and review
the broader landscape of boson stars. We also discuss the mechanisms of amplification of
the fluctuations of the moduli field that could lead to the formation of moduli oscillons
in the Early Universe and consider the possible experimental signals that moduli stars
could give as long lived objects, sources of gravitational waves and origin of black holes
of unusual small mass. In chapter 4 we dwell into the analytical study by constructing an
effective field theory for the Kähler modulus in the KKLT scenario in the non relativistic
regime. To do so we first outline the methods used in the literature for axion stars and
then choose the non-local operator redefinition developed in [8] and extend it to our case
with odd terms in the potential. Computing the equation of motion perturbatively and
then expanding the non local operator in the non relativistic limit allows us to calculate
relativistic corrections in a systematic way and up to an arbitrary order of approxima-
tion. The resulting effective Lagrangian is not found in the literature, so we also compute
effective vertices through diagram matching to check our outcome. The two results are
at first sight quite different, but we show that they are related by a field redefinition
and therefore describe the same low energy theory at the given order of approximation.
In chapter 5, to conclude, we consider the effective Hamiltonian and look for stable and
unstable configurations of moduli objects as minima and maxima. As there is no know
analytical solution to the equation of motion, we assume a reasonable ansatz to compute
the Hamiltonian explicitly in terms of the radius and number of particles of the star.
In order to understand the behaviour of the Hamiltonian and the nature of its extremal
points we study it in different regimes and conclude that only a maximum exists, which
is not compatible with a bound state. Several numerical studies in the literature, on
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the other hand, agree in founding the formation of meta-stable moduli stars possible in
the context of the KKLT scenario [2] [12]. This discrepancy could be attributed to the
two significant simplifications we made: neglecting gravity and considering only the non
relativistic limit. The inclusion of the first could in principle lead to the observation
of a minimum of the Hamiltonian compatible with a bound stable state that could be
identified and studied using the analytical approach described in this thesis. To witness
the formation of oscillons, however, one needs to turn to the full relativistic regime in
order to possibly recover the results in [12].
Throughout all the work we assume the convention c = ~ = 1, which gives us the con-
version rule 1GeV = 1.8 · 10−24g = 5 · 1013cm−1 = 1.5 · 1024Hz. The Planck mass mP

is defined in terms of the Newton constant G mP =
√

~c
G

= 1.2 · 1019Gev = 2 · 10−5g,

while the Planck length is lP =
√

~G
c3

= 1.6 · 10−33. The value of the solar mass is

M� = 2 · 1033g = 1057GeV . Capital latin letters such as N and M are used to indicate
indices spanning over the D-dimensional space time of string theory and range from 0
to (D-1). When assuming a lower dimensional point of view, they are divided into greek
indices for the external non compact space-time (typically µ, ν = 0, 1, 2, 3) and lower case
latin indices for the internal compact space (m,n = D − 3, ..., D). Finally, greek indices
like α and β are reserved for the coordinates of the worldsheet. All of the graphs, ex-
cept where otherwise specified, are obtained using the computational software Wolfram
Mathematica.
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Chapter 2

Moduli

String theory, although elusive, is still one of the most promising theories that attempts
to reconcile the Standard Model with General Relativity and to do so with a great
deal of elegance. One of its prediction is the existence of hundreds of gravitationally
coupled scalar fields that arise from string excitations and from compactification of the six
extra dimensions required for internal coherence. These particles are collectively called
moduli and play a central role in the theory: knowing their vacuum expectation values
(VEVs) would set many values, including coupling constants and the shape and size of
the extra dimension, leaving only the typical scale of strings as a free parameter. Moduli,
however, do no acquire naturally a potential1 and the question of how to construct it, thus
endowing string theory with predictive power, represents one of the main open problems
of string theory, known as moduli stabilization. The principal mechanism understood
so far involves the inclusion of fluxes during compactification. This is however usually
not enough to stabilize all of the moduli of the theory and further corrections (both
perturbative and non-perturbative in nature) need to be taken into account. We are
going to dwell deeper into the scenario proposed by Kachru, Kallosh, Linde and Trivedi in
[11] that also considers the influence of a few number of anti-D3 branes positioned at the
end of warped throats that extend from the Calabi-Yau manifolds of extra dimensions.
The main effect of this addition is to uplift the minimum of the potential generated to
positive values. The parameters of the scenario can be fine-tuned to obtain the proper
deSitter vacuum for our Universe at current times, in accordance with the supposed value
of the cosmological constant.

1This missing potential presents another issue: having massless moduli would result in another long-
range force of which, so far, we have no experimental evidence.
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2.1 String theory

Let us dive straight into string theory and get acquainted to it by calculating its mass-
less spectrum. Strings are one dimensional objects moving in a D-dimensional space-
time2. Doing so they sweep a two dimensional surface know as ”world sheet”, which
we parametrize with the coordinates (σ, τ) with σ running along the string itself. The
evolution of the worldsheet in described by its area embedded in the D-dimensional
space-time, encoded by the so-called Poljankov action

S = − 1

2πα′

∫
dτdσ

√
γγαβηMN∂αX

M∂βX
N (2.1)

where capital latin indices span the D-dimensional manifold (M,N = 0, ..., D− 1) while
greek indices are the coordinates of the worldsheet α = τ, σ. The XM are functions that
define the embedding of the worldsheet in space-time, γαβ is the metric of the worldsheet
while ηαβ is the space-time Minkowski metric. α′ is a parameter linked to tension of the
string T and the typical energy scale of the string 1/ls as T = 1

2πα′
= 1

2πls
. Let us

introduce left- and right- moving coordinates for the worldsheet:

σ± = τ ± σ (2.2)

Varying the action 2.1 with respect to XM gives us the equation of motion, which with
our new coordinates reads

∂

∂σ+

∂

∂σ−
XM(τ, σ) (2.3)

The straight forward conclusion from this equation is that the XM is composed by left-
and right- moving degrees of freedom. Now, σ can either range from 0 to π if it’s
describing an open string or from 0 to 2π in the case of the closed string. Let us choose
the latter and impose as boundary conditions

XM(τ, 0) = XM(τ, 2π) X ′M(τ, 0) = X ′M(τ, 2π) (2.4)

Then we can write XM in a mode expansion as a pair of independently left- and right-
moving travelling waves:

XM(τ, σ) = XM
R (σ−) +XM

L (σ+) (2.5)

XM
R (σ−) =

1

2
xM + α′pMσ− + i

(α′
2

)1/2∑
n6=0

1

n
αMn e

−2inσ− (2.6)

XM
R (σ+) =

1

2
xM + α′pMσ+ + i

(α′
2

)1/2∑
n6=0

1

n
α̃Mn e

−2inσ+

(2.7)

2As is widely known this space is 10-dimensional or 11-dimensional, but as we will see D for now is
just a parameter of the theory.
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where xM and pM are the position and the momentum of the center of mass and asking
for the solution to be real requires αM−n = (αMn )∗ and α̃M−n = (α̃M−n)∗. We can quantize
the theory in a canonical way imposing the commutators

[αPn , α
Q
m] = [α̃Pn , α̃

Q
m] = δn+mη

PQ [xP , pQ] = iηPQ (2.8)

and interpret the alphas as creation and annihilation operators: αMn and α̃Mn create
respectively a left- and a right- moving excitation at level n while αM−n and α̃M−n annihilate
them. The mass of a state is given by the operator3:

M2 =
2

α′

( ∞∑
n=1

αnα−n + α̃nα̃−n − 2
)

(2.9)

Now, varying the action with respect to XM gave us the equation of motion, but we
can also vary it with respect to γαβ to obtain a constraint for physical states. Upon
quantization this requirement turns into the vanishing of the Virasoro operators. Among
the restrictions that this implies is setting a level matching condition for physical states
N = Ñ , where N and Ñ are the number operators for left- and right- moving modes.
The least energetic state that we can construct will therefore need both a left- and a
right- moving creation operator:

|ξMN〉 = ξM ξ̃Nα
M
1 α̃

N
1 |0〉 (2.10)

is the massless state. kM being the momentum of the center of mass, k · k = 0; moreover
the polarization vectors ξM , ξ̃M need to be space-like for the norm of the state to be
positive and orthogonal to kM for the conditions coming from the variation of 2.1 with
respect to γαβ to be realized. This means that with an appropriate choice of coordinates
k can be written as k = (k, k, 0, ..., 0) and hence ξM , ξ̃M live in a space parametrized
by D − 2 coordinates: we can therefore conclude that the states are classified by their
SO(D-2) representation.
Let us define the tensor ξMN := ξM ξ̃N . We can decompose it into a scalar, a symmetric
tensor and an anti-symmetric tensor as

ξMN = ξtηMN + ξsMN + ξaMN (2.11)

with

ξt :=
1

D
ηMNξMN ξsMN :=

1

2
(ξMN+ξNM−2ξtηMN) ξaMN :=

1

2
(ξMN−ξNM) (2.12)

So when we build a state 2.10 that’s actually equivalent to producing a scalar, and two
tensor fields. We call the scalar dilaton Φ: that’s our first modulus. As the tensor fields

3The −2 term comes from normal ordering, i.e. is the zero point energy.
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we recognize a massless spin 2 state, i.e. the graviton, while we call the field associated to
the antisymmetric polarization B-field. There is another point to be made about having
2.10 as a massless state. When applying operator 2.9 to the ground state |0〉 we find it to
have squared mass −1/α′: we have a tachyonic instability that makes the bosonic string
roll down to the true minimum of the theory. To solve this problem (among others) we
will later introduce supersymmetric fermionic string partners. Let us forget about it for
now and upgrade the Poljankov action to fit it in a σ-model:

S = − 1

2πα′

∫
dτdσ

√
γγαβgMN(X)∂αX

M∂βX
N (2.13)

with gMN(X) metric of the background space-time. By writing the path integral for
action 2.13 and expanding it, we can see it as describing coherent states of gravitons,
B-fields and dilatons. Keeping this in mind we can re-write the Poljankov action as

S = − 1

4πα′

∫
dτdσ

√
γ
[(
γαβgMN(X) + iεαβBMN(X)

)
∂αX

M∂βX
N + α′ΦR

]
(2.14)

with R being the Euler density compatible with gMN . Imposing Weyl invariance γαβ →
eωγαβ gives us the equations of motion for the fields of the massless string spectrum. At
one loop4

α′
(
RMN + 2∇M∇NΦ− 1

4
HMPQH

PQ
N

)
+O(α′2) = 0 (2.15)

α′
(
− 1

2
∇PHPMN +∇PΦHPMN

)
+O(α′2) = 0 (2.16)

α′
(D − 26

6α′
− 1

2
∇2Φ +∇MΦ∇MΦ− 1

24
HMNPH

MNP
)

+O(α′2) = 0 (2.17)

with HMPQ := ∂[MBPQ]
5 being the field strength of BPQ. The first equation resembles

Einstein’s equation with ∇Φ and ∇B acting as sources, the second is the generalization
of Maxwell’s equation for the anti-symmetric tensor BPQ and the third implies D = 26
in order to avoid the need for Φ and the B-field to have large gradients of order of the
string energy scale6. The equation of motion for the dilaton set the number of space-
time dimensions! Let us focus on this modulus for another comment. The action 2.14
does not have a potential for it. It does however present it alongside R, meaning that Φ
couples to the Euler number for the worldsheet

χ =
1

4

∫
d2σ
√
−γR (2.18)

4Notice from 2.14 how α′ can be interpreted as a parameter akin to ~, around which to expand.
5Where the indices are anti-symmetrized.
6This solution is actually not mandatory and there are variations of the theory with D 6= 26, like the

linear dilaton one.
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which for a 2-dimensional surface can also be written as χ = 2− 2h− b− c with h being
the number of handles, b of boundaries and c cross-caps. The emission and adsorption of
a close string onto the worldsheets ads an extra handle, so δχ = −2. When considering
the same event from the point of view of a tree level Feynman diagram we have two
vertices, so a factor g2

s (with gs being the coupling constant for the string). As from
the path integral the amplitudes are weighted as e−χΦ we have gs = e〈Φ〉, meaning that
the vacuum expectation value of the dilaton also sets the gs

7. So far we focused on the
closed string 0 ≤ σ ≤ 2π, but we have another option, the open one 0 ≤ σ ≤ π. We
can either impose the Neumann boundary conditions ∂σX

M(τ, 0) = ∂σX
M(τ, π) = 0

or the Dirichlet boundary conditions and let the endpoint of the string be on a (p+1)-
dimensional surface, the Dp-brane. The first case leads to the mode decomposition

XM(τ, σ) = xM + 2α′pMτ + i(2α′)1/2
∑
n6=0

1

n
αMn e

−inτcos(nσ) (2.19)

Upon quantization we get the mass operator

M2 =
1

α′
(
∞∑
n=1

αn · α−n − 1) (2.20)

We can therefore construct the massless state as:

|ξM〉 := ξMα
M
1 |0〉 (2.21)

We no longer have a polarization tensor, but a vector. The corresponding state can
therefore be interpreted as a gauge field AM . Similarly to what we did before we can
find the action for it, which turns out to be the Yang-Mills action

S = −1

4

∫
dDXe−ΦFMNF

MN +O(α′) (2.22)

The Dirichlet boundary conditions, on the other hand, makes the action depend on
D − p − 1 scalars on the boundary of the string. The VEVs of these scalars actually
set the position of the Dp-brane, making it a dynamical object and further proving the
importance of moduli.
Now, starting from strings, we recovered a massless spectrum made out of scalars (the
dilaton in particular), the graviton, the B-field and a gauge field. To complete the picture
with fermions we can introduce the supersymmetric partners of XM : the Majorana-Weyl
spinors ΨM and Ψ̃M . After a Wick rotation, the combined Poljankov action 2.1 becomes

S =
1

4π

∫
d2σηMN [

1

α′
∂XM ∂̄XN + ΨM ∂̄ΨN + Ψ̄M ∂̄Ψ̄N ] (2.23)

7The only free parameter of the theory is in fact the string tension T, or equivalently the string
energy scale.
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where the ∂ are to be intended to be taken with respect with z := eτ−iσ. As done before
we need to set the boundary conditions in order to proceed with a mode expansion.
Being ΨM and Ψ̃M spinors, however, leaves us two different choices:

R : ΨM(τ, 0) = ΨM(τ, 2π) NS : ΨM(τ, 0) = −ΨM(τ, 2π) (2.24)

The one we labelled with R is known as the Ramond condition, while NS stands for
Neveu-Schwarz. Canonical quantization can be achieved by imposing the anticommuta-
tors

{ψMr , ψNs } = {ψ̃Mr , ψ̃Ns } = ηMNδr+s (2.25)

on which we once again have a level-matching condition for physical states. Imposing
Weyl invariance gives us instead the condition D = 108. We can construct the massless
states combining the boundary conditions to get different sectors of the theory

R−R : ξMNψ
M
0 ψ̃

N
0 |0〉 NS −NS : ξMNψ

M
1/2ψ̃

N
1/2|0〉

NS −R : ξMNψ
M
1/2ψ̃

N
0 |0〉 R−NS : ξMNψ

M
0 ψ̃

N
1/2|0〉

(2.26)

where the NS condition is associated to semi-integer modes and R is linked to integer
modes. The same considerations made on ξ and k before make the states classified
by their SO(8) representation. Let us consider a single left-moving R ground state to
understand how to interpret this spectrum. The ψM0 |0〉 form a representation of the
Clifford algebra obeyed by Ψ0 and we can label it with the chiralities possible in four
planes of two dimensions as |s〉 = | ± 1

2
,±1

2
,±1

2
,±1

2
〉. This means that ψM0 |0〉 is a space-

time fermion, although in representation 16. To obtain the appropriate Standard Model
fermions we need to eliminate half of them, as 16 = 8 ⊕ 8. To do so we can project
the state to the Majorana-Weyl spinor subspace of definite chirality. Mathematically we
can do this by requiring (

∑4
i=1 si = 0) with the Gliozzi-Scherk-Olive projectors. This

redundancy in the degrees of freedom gives us the possibility to project out the tachyonic
vacuum that worried us when dealing with the bosonic string alone, and thus to make
the theory stable.
The states 2.26 are therefore to be interpreted as |s〉 ⊗ |s〉, which after GSO-projection
becomes 8⊗8. As left- and right-moving modes are projected indipendently, we can also
choose the same chirality for both or opposite ones. This choice distinguishes between
type IIB superstring theory (which is therefore chiral) or tipe IIA superstring theory9.
Noting that, in the 8-dimensional space-time in which Ψ and Ψ̃ live, spinors s=1/2 and
vectors s=1 both have eight degrees of freedom, we can treat them all as 8 representations
that can be fit for our spectrum. Let us label the vector representation 8v, the spinor
of positive chirality representation 8s and the spinor of negative chirality representation
8c

10. We get:

8Is actually possible to construct a string theory also with D = 11, like M theory.
9As we will see in a moment the II refers to the number of gravitini in the massless spectrum.

10Triality is a symmetry of the theory that swaps the 8v, 8s and 8c among each other.
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• R-R type IIB: 8s ⊗ 8s = 1⊕ 28⊕ 35+ = C0 ⊕ C2 ⊕ C4

R-R type IIA: 8s ⊗ 8c = 8v ⊕ 56t = C1 ⊕ C3

• NS-NS type IIB: 8v ⊗ 8v = 1⊕ 28⊕ 35 = Φ⊕B2 ⊕GMN

NS-NS type IIA: 8v ⊗ 8v = 1⊕ 28⊕ 35 = Φ⊕B2 ⊕GMN

• R-NS type IIB: 8s ⊗ 8v = 8s ⊕ 56s = λ2 ⊕Ψ2M

R-NS type IIA: 8s ⊗ 8v = 8s ⊕ 56s = λ2 ⊕Ψ2M

• NS-R type IIB: 8v ⊗ 8s = 8s ⊕ 56s = λ1 ⊕Ψ1M

NS-R type IIA: 8v ⊗ 8c = 8c ⊕ 56c = λ1 ⊕Ψ1M

We have quite a lot on our hands. The Cn are n-forms and play the part of potentials.
The fermions λ1 and λ2 are the dilatini, while the fermions Ψ1M and Ψ2M are the gravitini.
The Φ, the B2 and the GMN are, respectively, the dilaton, the B-field and the graviton
that we already found in the massless closed bosonic string spectrum. Including the open
superstring gives us the gauge fields and the fermions of the Standard Model that we are
missing. The massless spectrum is actually enough for many application, as the massive
states have masses of order 1/

√
α′ and can therefore be neglected at significantly lower

energies. Type IIA and type IIB can be exchanged under a transformation that maps
representations 8s into 8c and vice versa, known as T-duality. One can make up different
types of string theories11, each connected to one other via dualities. Moduli show their
importance once again: changing their VEVs12 lets you navigate among these options,
which could therefore be different low energy realizations of a single string theory.

2.2 Moduli from compactification

In the previous section we outlined the NSR formulation of superstrings and showed
how starting from one dimensional fundamental objects we can obtain the particles we
are used to, along with many others. There is, however, still a significant point left to
address: the internal consistency of the theory as we described it requires ten space-
time dimensions. To reconcile this feature with our experience we could interpret the
ten dimensional space-time as composed by our usual four dimensional space-time and
a six dimensional compact internal space (M10 = M4 ×M6). The process of curling
up these extra-dimensions to recover our four dimensional phenomenology is know as
compactification. As is often the case in physics, this idea is actually much older than
its application in string theory. The first to use a fifth dimension in the attempt to
reconcile gravity and electromagnetism was Nordström in 1914 [42], followed by Kaluza

11Examples include M-theory, type I string theory, E8xE8 heterotic string theory and SO(32) heterotic
string theory

12The space of all possible moduli VEVs is known as moduli space.
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in 1921. Klein came in 1926 to suggest that this extra dimension should be finite and
describing a circle of radius R. This kind of scenario in useful when dealing with unifica-
tion in the sense that we can see the five-dimensional metric gMN (with indices spanning
from 0 to 4) as including the fourth-dimensional metric gµν , a vector field gµ4 and a
scalar g44 (where µ, ν=0,1,2,3). Writing the vector field as gµ4 = e2σAµ

13, the invariance
of the metric under a transformation x4 → x4 + λ(xµ) implies for Aµ the U(1) gauge
transformation A→ A− dλ: standard gauge symmetries can therefore be derived from
general coordinate transformations in extra-dimensions. Kaluza-Klein theories did not
succeed in their unification programme, but they came back in the spotlight during the
’70s when, with the development of string theory, compactification became a need.
Accounting for phenomenology imposes very strict topological constraints on the choice
of manifold for M6. The N = 8 supersymmetry that we introduced with fermionic
strings needs to break down to N = 2 in the resulting four-dimensional effective the-
ory14. We would also like for this to happen at scales which are low compared to the
compactification scale 1/Rc (where RC is the typical length of the compact internal
space, e.g. the radius of M1 = S1 in Kaluza-Klein theories), as supersymmetry is not
observed at low energies but is indeed very useful in our description. Mathematically
this requirement implies the existence of a covariantly constant spinor on the manifold

∇mη = 0. (2.27)

The existence of a non-vanishing spinor on the whole manifold implies that in a point
where more than one chart is defined their result must be compatible, which translates
as SU(3) as the group of transition functions. Its integrability on the other hand asks
the manifold to have SU(3) as the group of transformations that the spinors undergo
when they are parallel transported with Levi-Civita connection around a closed loop
(aka its holonomy group). Manifolds with these characteristics are called Calabi-Yau
manifolds15 and, as it was demonstrated by Calabi and Yau, they always admit a metric
that is Ricci flat. This is compatible with the equation of motion 2.15 (and its equivalent
in the full superstring NSR formulation), that in the absence of fluxes16 requires Rmn = 0
(m,n = 4, 5, 6, 7, 8, 9). In six dimensions there are many known such manifolds, possibly
infinite.
Let us use a lower dimensional example to illustrate some features of the compactification
procedure. In D = 2 an example of a Calabi-Yau manifold is the torus T2, so let us pick
M10 = M8 × T2. The torus requires periodicity xm = xm + 2πRm for coordinates

13The field σ is actually another modulus, called radion. It is linked to the size of the fifth dimension
through the determinant of gMN , but having no potential nor its mass nor its VEV are specified.

14Including fluxes further breaks down the symmetry to N = 1.
15Calabi-Yau manifolds can also be defined as being Kähler manifolds, so complex and symplectic

manifolds, of trivial first Chern class (c1 = 0).
16As we will see later, fluxes are introduced to give moduli a potential and they actually back-react

on the topology of the manifold.
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m = 8, 9. As the actor of our theory is a one-dimensional object, however, it can also
wind around the torus: the periodicity condition for the (bosonic) string is therefore
Xm(τ, σ + 2π) = Xm(τ, σ) + 2πRmw

m with wm being integer called winding numbers.
This periodicity modifies the mode expansion for left- and right- moving Xm

Xm
L (σ+) = (

α′nm
Rm

+ wmRm)σ+ + oscillations

Xm
R (σ−) = (

α′nm
Rm

− wmRm)σ− + oscillations.

(2.28)

assigning to the states two additional labels: the winding number wm and the Kaluza-
Klein number nm. The massless states of the theory correspond to both of them van-
ishing; considering also the excitations along the torus dimensions gives us additional
states compared to what we would get just on the flat eight-dimensional M8. We get
a metric gMN , that can be tough of as a metric gµν , two vectors gµ8 and gµ9 and three
scalars g88, g89 and g99, the two anti-symmetric form BMN , so a tensor Bµν , two vectors
Bµ8 and Bµ9 and a scalar B89, the scalar Φ. Alongside with the dilaton, we can use the
four scalars that are left to form two complex scalars: the Kähler modulus ρ

ρ = B89 + V(T2) (2.29)

with V(T2) being the volume of the torus, and the complex structure modulus τ , which
contributes to the metric of T2

ds2 =
Im(ρ)

Im(τ)
|dx8 + τdx9|2. (2.30)

Compactification on proper Calabi-Yau manifolds shares an unwanted feature with Kaluza-
Klein theories: an overall scaling symmetry that makes the volume of the extra dimension
completely unfixed. As we have seen, some moduli (like the complex structure moduli
for example) are linked to the size and shape of the extra dimensions, so working out a
mechanism that assigns them a potential would fix this issue too.

2.3 Moduli stabilization: the KKLT scenario

We have seen moduli arising from superstrings and their compactification, we have seen
how they set paramount parameters of the theory such as the coupling constant of the
string gs (and in general four dimensional masses and interactions) or the shape and size
of the extra dimensions, but we do not have a potential for them yet. All these massless
scalars would furthermore result in an additional long-range force in four-dimensions
which has not been observed so far. We need to come up with a mechanism that assigns
a potential to these particles, thereby fixing their VEV and mass: we call this procedure
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moduli stabilization. The only known way to do so is by turning on fluxes and account
for them in the compactification procedure. Fluxes actually break the condition 2.27, so
including them modifies the topology of the manifold which is no longer a Calabi-Yau.
Another effect of this procedure is the breaking of supersymmetry to N = 1, which
is fit for phenomenology17. Flux compactification requires the formalism of generalized
geometry, which was first developed by Hitchin in [43] to construct a unified description
of complex and symplectic geometry18. Just including fluxes, however, does not generally
stabilize all of the moduli. One can add further corrections, both perturbative and non-
perturbative in nature, like the ones to the action in α′ and gs to leading order or the ones
to the superpotential coming from D-brane instantons. The latter one is the approach
devised by Kachru, Kallosh, Linde and Trivedi in [11] to stabilize all moduli in type IIB
string theory compactified on Calabi-Yau orientifolds19. In the so-called KKLT scenario
fluxes stabilize the complex structure moduli but still conserve a rescaling symmetry
in the Lagrangian to leading order in α′ and gs, thus leaving the overall volume of the
extra dimensions and the Kähler modulus ρ unfixed. The inclusion of non-perturbative
corrections to the superpotential takes care of the Kähler modulus too and generates an
exponential term for the superpotential

W = W0 + Ae−aρ (2.31)

where complex structure moduli τ and the dilaton Φ have been fixed to their VEVs, W0

being the tree level contribution coming from the Gukov-Vafa-Witten flux that stabilizes
them. A and a are coefficient whose values depend on the details of the non-perturbative
corrections. The Kähler potential at tree level is

K = −3ln[−i(ρ− ρ̄)]. (2.32)

Let us set the axion making up the real part of our complex valued Kähler modulus to
zero to have ρ = iσ. The system has a supersymmetric minimum at σ0 set by DρW = 0

W0 = −Ae−aσ0
(

1 +
2

3
aσ0

)
. (2.33)

We can calculate the corresponding potential

V =
aAe−aσ

2σ2

(1

3
σaAe−aσ +W0 + Ae−aσ

)
. (2.34)

17The inclusion of fluxes could also provide a solution for the hierarchy between the Planck and the
electroweak scale via a non-trivial warp factor in the 10-dimensional metric.

18It’s interesting how [43], while describing a new mathematical theory, makes large use of the corre-
sponding physical lexicon for the application in string theory.

19The other scenario that is mostly used alongside KKLT is the so-called Large Volume scenario
(LVS).
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Figure 2.1: The KKLT potential for coefficients W0 = −10−4, A = 1 and a = 0.1,
multiplied by a factor 1015 for readability. It presents an Anti deSitter minimum in
σ0 ∼ 113 and a minimum at σ →∞, typical of string theories. If we want the theory to
describe our Universe we need to uplift the AdS minimum to the value of ∼ 10−120l−2

p .

We want its minimum to be an appropriate description of the system at low energy, for
this to be the case we require σ � 1 and aσ > 1. A turns out to be of order O(1) and
tuning fluxes we can make it so W0 � 1 (more precisely W0 ' 10−4− 10−12). a then has
to be positive but smaller than 1. The minimum σ0 is therefore an Anti deSitter one, as
can be seen in Fig. 2.1, where we plotted potential 2.34 with reasonable values for the
coefficients. For this minimum to be an appropriate description of the Universe in its
current days state, we need to break its supersymmetry and to uplift it to the deSitter
value of Vmin ∼ 10−120l−2

p to have a positive cosmological constant. We can obtain this

result by including a small number of anti D3-branes (D3) at the end of warping throats
that lounge out of the Calabi-Yau manifold. Their effects generate a term

δV ∝ 1

Vn
∼ 1

(ρ3/2)n
(2.35)
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Figure 2.2: The KKLT potential 2.36 for coefficients W0 = −10−4, A = 1, a = 0.1 and
D = 3× 10−9, multiplied by a factor 1015. We get a dS minimum very close to zero, the
usual Dine-Seinberg run-away vacuum for string theories and a maximum that separates
them. The scale on the σ axes is different from the one in Fig. 2.1 to improve readability
of this graph, however a closer look shows how the position of the minimum has changed
only slightly and so has the steepness of V around it.

where V is the volume of the extra dimensions20. Only a narrow range for the value of
n is allowed; typically one takes n = 2 to have a term 1/σ3 as in the original paper [11]
or n = 4/3 as in [2] for a term 1/σ2. With the former choice potential 2.34 becomes

V =
aAe−aσ

2σ2

(1

3
σaAe−aσ +W0 + Ae−aσ

)
+
D

σ3
(2.36)

where fine tuning D can gives us the Vmin we are looking for. The resulting potential is
plotted in Fig.2.2. We get a positive minimum very close to zero, whose position σ0 is
shifted only slightly from the one of potential 2.34. More importantly, the behaviour of

20Up until recently this term was added a posteriori, but it can also be induced by a nilpotent superfield
S, S2 = 0.
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V around it is still very similar to before, so in a first approximation one could neglect
the D/σ3 correction and work with the anti deSitter minimum. The term 2.35 has also
generated a maximum, which was not present before, that separates the dS minimum
from the vacuum at σ →∞. This latter additional minimum is known as Dine-Seinberg
run-away vacuum and is a standard feature of string theories. Because of it, any dS
minimum is a false vacuum which can be destabilized by tunnelling effects; however its
lifetime is large enough to account for the age of the Universe [11].
Let us focus on the region of interest by expanding the potential 2.36 around its minimum.
The lagrangian resulting from the Kähler potential and the superpotential has a non
canonical kinetic term, so first we want to enforce a substitution from σ to the canonically
normalised field φ:

L ∈ 3

4

(
∂σ

σ

)2

=
1

2
(∂φ)2. (2.37)

The expansion in a power series of potential 2.36 around the minimum φ0 gets us

V (φ) =
a2A2e−2aσ0

σ0(−1 + aσ0)

[ 1

18
(4− 3aσ0 + 2a3σ3

0)(φ− φ0)2+

− 1

9
√

6
(8− aσ0 − 3a2σ2

0 + 2a3σ3
0 + 2a4σ4

0)(φ− φ0)3+

+
1

324
(100 + 15aσ0 − 18a2σ2

0 + 14a3σ3
0 + 8a4σ4

0)(φ− φ0)4 + ...
]
.

, (2.38)

To better understand the behaviour of V, let us consider the case

δV =
D

σ2
: (2.39)

the expansion around the minimum then looks like

V (φ) =
a3A2e−2aσ0

9

[1

2
(3 + 2aσ0)(φ− φ0)2 − 1

3
√

6
(9 + 13aσ0 + 6a2σ2

0)

(φ− φ0)3 +
1

36
(21 + 28aσ0 + 23a2σ2

0 + 14a3σ3
0)(φ− φ0)4 + ...

]
.

(2.40)

As all the coefficient of each term share the same sign, it is clear that the potential rep-
resented is asymmetric around φ0, being steeper than quadratic to its left and shallower
than quadratic to its right. Given that the focus of this work is on the formation of
compact objects out of moduli, let us notice that such an asymmetry has interesting
consequences on their stability, as it results in a self-interaction that alternates between
being overall attractive and being overall repulsive during an oscillation.
There are two main issues to the KKLT procedure. One is that the potential was ob-
tained by first fixing the complex structure moduli and the dilaton, which are assumed
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to be heavy at the classical level. The correct method would instead ask to minimize
the full potential, but such calculations become highly involved. The other point is that
no corrections to the Kähler potential were considered, however at large volumes the α′

corrections to it start to become dominant. Moreover, the inclusion of D3 branes back-
reacts on the geometry in such a way that may not be compatible with the existence of
the dS minimum found. For these reasons the KKLT scenario should only be taken as a
toy model, though its results remain effective.
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Chapter 3

Moduli stars

String theory predicts a large number of scalar particles coupled gravitationally, specif-
ically moduli and axions, and it’s not the only theory to do so, as spin-0 fields have
gained a central and pervasive role in many models that aim at describing Nature. The
first example that comes to mind is that of the Higgs field, the key for a mass inducing
mechanism in the Standard Model, which was first proposed in 1962 [28] [27] and found
at CERN in 2012 after a long search [29]. From the infinitesimally small to cosmology,
the inflaton is a scalar particle proposed in the context of the Big Bang theory to drive
the exponential expansion of the very Early Universe 1. Examples of other relevant scalar
fields are found in solid milestone theories such us Supersymmetry or the Peccei-Quinn
mechanism that addresses the strong CP problem of QCD [25], as well as in very recent
attempts to extend the Standard Model via asymptotic safety [24]2.
This renewed interest in the topic of spin-0 fields has resulted in many papers in last
few years investigating a particular consequence of the supposed existence of such fields:
scalar stars. The scalar particles could in fact clump up together under the influence of
their gravitational pull, their attractive self-interaction or an interplay of both to form
an exotic object sustained by hydrostatic equilibrium (aka a star). To be more precise we
are talking about a Bose-Einstein condensate, but one in the form of a localized clump
instead of the usual long range one, as suggested in [45] and [26].
Moduli could therefore aggregate to form moduli stars, whose formation, stability and
dynamics can be studied exploiting the literature on generic scalar stars by adapting it
to the specific potential at hand, to form another feature of our Universe. These ob-
jects could form and evolve in the Early Universe or even survive until our present day,
but either way they would leave a trace (e.g. in the stochastic background of gravita-

1Actually at least one scalar field is required in inflation models.
2The method is a UV completion mechanism which employs a non trivial UV fixed point in the

renormalization group to solve problems such as the presence of Landau poles in the theory. Sev-
eral fundamental scalars come into play to allow the presence of such a fixed point, as suggested by
perturbative analysis in the Veneziano limit.
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tional waves) which could even be within the reach of our current detectors like Gaia
[30] or LIGO [31]. Such signals turn out to be extremely model dependent and hence
carry significant information on the corresponding string theory and moduli stabilization
mechanism which is realized. Their detection would give us an invaluable insight into a
possible fundamental theory.

3.1 Scalar stars

The scalars predicted in the context of Supersymmetry give rise to a very natural paral-
lelism: as fermion stars, like neutron stars, are such a common feature of our Universe,
what about a bosonic counterpart? Is it theoretically possible for these objects to exist,
even if we have not yet found them? A key part in the existence of a fermion star is
played by the Pauli’s principle. The Fermi-Dirac statistics forbids two identical par-
ticles from occupying the same energy level at the same time, providing a degeneracy
pressure that counteracts the gravitational pull of the clump and allows hydrodynamical
equilibrium of the fermion gas. The energy profile will therefore exhibit two terms with
opposite signs, and for a spherically symmetric configuration of radius R of N fermions
of mass m of a single field takes the form

E(R) = −GMn

R
+
(9π

4

)1/3N1/3

R
(3.1)

where M = Nm is the total mass of the star. The first term is of course the attractive
gravitational potential, while the second is the relativistic kinetic energy of a fermion on
the surface of the clump. The star will expand and the fermion density decrease until
the kinetic energy is of order ∼ m and balanced by the self-gravitational pull. Supposing
a maximum number Nmax that such a compact object could sustain, the two energetic
terms would be of the same order in that situation. We can therefore have an estimate
of the associated maximum mass for a fermion star3:

Mmax ∼
M3

P

m2
(3.2)

equal to the Chandrasekhar mass. Taking k ∼ m gives us the associated minimum radius
Rmin, as the momentum k is related to the number density in Fermi-Dirac statistics
through k3

3π2 = N
(4/3)πR3 . We obtain

Rmin ∼
MP

m2
. (3.3)

For a neutron star (mN h 1GeV) this means Mmax ∼M� and Rmin ∼ 2km, as expected.
When it comes to bosons we can no longer rely on the Pauli principle, as they obey the

3MP is the reduced Planck mass, defined as M2
P = 1

8πG.
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Bose-Einstein statistics. They however still have to abide the Heisenberg principle. As
∆x∆p ≥ ~, we can interpret ∆x as the radius of the star R and ∆p = mc as the energy
of the boson of mass m and readily make a rough estimate of the minimum radius:

Rmin ∼
1

m
. (3.4)

To get the maximum mass we set the radius to the Schwarzschild value RS = 2GM to
get

Mmass ∼
M2

P

m
. (3.5)

Supposing again a particle of mass m = 1 GeV we are now presented with a compact
object of dimension Rmin ∼ 10−15cm and mass Mmax ∼ 1036 GeV∼ 10−21M�, many
orders of magnitude away from our usual stars and even smaller than an atomic nucleus.
Considering an attractive interaction however increases significantly the capability of
the star to sustain itself and allows it to reach macroscopic dimensions and masses in
the GeV scale. As the analytical study in [32] shows, considering the conglomerate in
a general relativity framework with a quartic interaction term gives a mass akin to the
Chandraseakar limit, considering a coupling λ ∼ O(1).
Bosonic stars are actually realized as pseudo-solitonic solutions of the equation of motion
of the corresponding field (aka the Einstein-Klein-Gordon equations or the Schrödinger-
Poisson equations in the non relativistic limit), that is meta-stable solutions which are
localized, in the sense that their boundary condition at infinity is the same as the one
for the vacuum state, that represent long lived compact objects. Their (meta-)stability
is protected by either the conservation of a topological charge, the conservation of a
Nöther charge or an approximate symmetry4. The first case is that of the class of topo-
logical solitons, which includes monopoles, skyrmions, vortices and kinks, just as a few
examples. While the existence of some has been ruled out, at least in the observable
Universe, by the strict phenomenology that they would impose, others still provide in-
teresting features5. In the absence of a topological charge we talk about non-topological
solitons. Let us restrict for simplicity to the case of an object made out of a single scalar
field. Derrick’s theorem states that stationary localized solutions to the non-linear Klein-
Gordon equation are unstable [46], however one can safeguard stability by requiring a
periodic time-dependence [47]. If the field φ in question is complex and its Lagrangian
presents a global U(1) symmetry, than the transformation φ→ eiαφ can compensate the

4”I think it’s fair to say that these two kinds of objects are in the same family but not the same
genus” [14].

5Topological solitons are topics of interest also in the context of condensed matter systems, where
they are often called topological defects. Skryrmions, in particular, have been shown to exist in magnetic
materials at room temperature [34].Their topological charge could be interpreted as a bit state (i.e. the
presence or absence of a skyrmion), placing them at the core of the next possible generation of data
storage devices[33].
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time translations for φ and allows for a stationary spherically symmetric solution to the
Einstein-Klein-Gordon equation in the form

φ(r, t) = φR(r)eiωt (3.6)

with a static metric ds2 = −A(r)2dt2 + B(r)2dt2 + r2(dθ2 + sin2θdφ). This symmetry
also provides a Nöther charge, whose conservation further ensures the stability of the
solution. When self-interacting terms other then gravity are negligible or weak we call
the resulting objects mini-boson stars, as their dimensions are in the ballpark of those
already calculated in equation 3.4 and equation 3.5 with our simple reflection on the
Heisenberg principle. Turning on strong self-interaction terms allows the solution to
grow up to fermion star scales, earning them the full fledged name of Boson stars. In the
regimes in which we can neglect gravity, the lumps can still aggregate under the influence
of attractive self-interactions of φ. This class of objects was first described by Coleman
in 1985 in his paper [14], where he gave them the name of Q-balls referring to their
conserved charge. By minimizing their Hamiltonian he showed that, for large Q, their
energy and volume grow linearly with Q, or in other words they behave as homogeneous
balls of ordinary matter with Q in the role of a particle number. In fact starting from
the U(1) symmetric Lagrangian

L =
1

2
∂µφ∂µφ

∗ − V (|φ|) (3.7)

we get an associated Nöther charge

Q =

∫
d3xJ0 =

∫
d3x

1

2i
(φ∗φ̇− φ̇∗φ). (3.8)

To find a stable solution we look for minima of the Hamiltonian, enforcing the require-
ment of fixed and non-vanishing Q through a Lagrangian multiplier ω as in

Eω =

∫
d3
[1
2
|φ̇|2 +

1

2
|∇φ|2 + V (|φ|)

]
+ ω

[
Q− 1

2i

∫
d3(φ∗φ̇− φ̇∗φ)

]
. (3.9)

A field of the familiar form
φ(x, t) = φR(x)eiωt (3.10)

cancels the kinetic term and shifts the problem onto finding a field φR(x) that extremizes
a potential Ṽω(|φ|) = V (|φ|)− 1

2
ω2|φ|2. As we are looking for a localized solution, let us

assume that the field vanishes outside of a defined region V and call its value inside it
φ0. Under the thin walls approximation (or large Q) we can neglect the gradients and
eliminate ω from the theory by varying Eω with respect to it. We get ω = Q/(Vφ2

0), that
put back in energy gives

E = V (φ0)V +
Q2

2Vφ2
0

. (3.11)
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Varying the energy with respect to V gives us the volume of the star V = Q/
√

2φ2
0V (φ0)

and consequently the energy E = Q
√

2V (φ0)

φ20
. Both, as promised, grow linearly with Q.

The last thing to do is to find the actual value of φ0, as the one to minimize equation 3.11
and therefore V/φ2

R. Remembering that ω = Q/(Vφ2
0) =

√
2V/φ2

o shows that the φ0 we

are looking for is the same that non only minimizes Ṽ but makes it vanish. As that’s the
same value that we postulated for the energy outside the Q-ball (by taking φR = 0, the
value Ṽ = 0 remains a minimum as long as ω2 > V ′′(0)), this minimum is degenerate and
the Q-ball exists as long as V/|φ|2 has a non vanishing minimum. Outside the thin walls
approximation, solutions can be found numerically and show that there is no classical
lower limit on Q for the formation of a stable compact object, going as low as Q ≥ 1
(when they are called Q-beads6)[35].
The choice of a complex field is not required, but if we instead consider a real scalar
φ field we can no longer rely on a conservation law to protect the stability of our star.
We can however consider cases where there is an approximate symmetry that ensures
the long-life of our compact object, which in this case will be a pseudo-soliton. Notable
real pseudo scalar fields include axions (both the one related to the PQ mechanism for
the strong CP problem of QCD and the ones that arise in string theory as the phase
of an open string moduli or the imaginary part of a closed string moduli) and of course
our dearest, the moduli. Choosing a real field also implies the fact the we can no longer
write it as equation 3.6 and avoid Derrick’s theorem, so the metric needs to become
time dependent and the solution will involve expanding both the field and the metric
components in Fourier series. This kind of solutions are called oscillatons, while if we can
neglect gravity we are talking about oscillons. In general, fields are believed to support
oscillons formation whenever their potential is shallower than quadratic, meaning that
there is an attractive interaction (we will come back to this claim later). Moduli that
present a potential which is asymmetric around the minimum, such as in the KKLT case,
are therefore particularly interesting to study, as the attractive and repulsive overall
potential alternate during an oscillation. While it is natural to assume that this erratic
behaviour renders the corresponding star more unstable, it is actually found it not to
be the case, with stability being very model dependent [2]. This dependence renders
the traces that the moduli star would leave in Universe deeply linked to the specific
model that generates the potential and therefore the underlying string theory, rendering
the topic definitely worth studying (we will come back to this topic in a later section).
Axion stars have actually been more at the center of attention in the literature for two
main reasons: they exhibit a potential which is even around the minimum, thus making
their study easier, and they are of interest being a plausible candidate for dark matter.
Ultra light axions of mass m ∼ 1− 10 · 10−22 eV, for example, could form axion solitons
compatible with the so called fuzzy dark matter or ultra-light dark matter (ULDM). Let

6These kind of variation could actually be more significant for the evolution of our Early Universe,
as Q-ball with small charges could be more easily generated at high temperatures.
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us take a look at one of the most studied cases, the QCD axion clump with spherical
symmetry. The QCD axion is actually a pseudo-Goldstone boson associated with the
spontaneous symmetry breaking of the U(1)PQ and can be described as a scalar field φ
with potential

V (φ) = Λ[1− cos(φ/fa)] (3.12)

where fa is the breaking scale of the U(1)PQ symmetry7 and Λ, of order of the QCD
scale, sets the scale of the potential. We can expand V around its minimum to get

V (φ) =
1

2
m2φ2 −m2f 2

a

∞∑
n=2

(−1)n

(2n)!

( φ
fa

)2n

. (3.13)

As it will be discussed more in depth in the next chapter, looking for a solution in the
non relativistic regime it is useful to express φ in terms of complex field ψ

φ(x, t) =
1√
2m

(
ψ(x, t)e−imt + ψ∗(x, t)eimt

)
(3.14)

π(x, t) = −i
√
m

2

(
ψ(x, t)e−imt − ψ∗(x, t)eimt

)
. (3.15)

Substituting in the Lagrangian

L =
√
−g
[1

2
gµν∂µφ∂νφ− V (φ)

]
(3.16)

in the weak Newtonian gravity approximation of metric

ds2 = −(1 + 2ΦN)dt2 + (1− ΦN)(dx2 + dy2 + dz2) (3.17)

with ΦN being the Poisson potential gives us a naive effective Lagrangian for the non
relativistic regime

Leff =
i

2
(ψ̇ − ψψ̇∗)− 1

2m
∇ψ∗∇ψ −mψ∗ψΦN +

1

16f 2
a

|ψ|4 (3.18)

where we dropped rapidly oscillating terms, considered only the leading non-linearity in
the potential and took |ψ̇|/m � |ψ| in the kinetic term. A Legendre trasform gives us
the effective Hamiltonian for the system, which we can compute explicitly by assuming a
spherically symmetric configuration for the ground state. This is reasonable, as the the-
ory respects rotational invariance and there is no mechanism that would spontaneously
break it. We therefore assume the usual

ψ0(r, t) = Ψ(r)e−iµt (3.19)

7The specific value of fa depends on the details of the model, but typically fa ≤ 1012 GeV.
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Now we can study the system in two different regions. For r → ∞ Ψ → 0, as we are
looking for a localized solution, so for large r we can ignore the non-linear self-interactions.
This leaves as the equation of motion

µΨ ' − 1

2m

(
Ψ′′ +

2

r

)
− Gm2N

r
Ψ (3.20)

where we introduce N = 4π
∫∞

0
dr′r′2Ψ(r′)2 as the total number of particles. This

equation is akin to the Schrödinger time independent equation for an hydrogen atom
(just with e2 → Gm2N). The solutions are therefore of the form

Ψ(r) = Polyn(r)e−Gm
3Nr/n (3.21)

where Polyn(r) stands for a polynomial function in r of degree n. Getting in the near
field region, however, self-interactions can no longer be neglected and there is no known
analytical solution to the equation of motion. One way to gain an understanding of
the system is to impose an ansatz for the whole space, and with that perform explicit
calculation. A natural choice is

ΨR(r) =

√
N

πR3
e−r/R, (3.22)

where R is a variation parameter that sets the decay length scale and the prefactor ensures
N to be the total number of particles. A straightforward evaluation of the Hamiltonian
yields

Heff (R) =
N

2mR2
− 5Gm2N2

16R
− N2

128πf 2
aR

3
. (3.23)

It is useful to perform a rescaling to deal with dimensionless quantities:

R̃ := mfa
√
GR (3.24)

Ñ :=
m2
√
G

fa
N (3.25)

H̃ :=
m

f 3
a

√
G
Heff . (3.26)

We have

H̃(R̃) =
Ñ

2R̃2
− 5Ñ2

16R̃
− Ñ2

128πR̃3
. (3.27)

The solitons that we are looking for will be the maxima and minima for this H̃. Perform-
ing the first derivative of the last equation and setting it to zero gives a simple second
order equation of solutions

R̃ =
8

5Ñ
±
√

512π − 15Ñ2

10
√

2πÑ
(3.28)
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Figure 3.1: Plot of the dimensionless effective non relativistic Hamiltonian for the PQ
axion with respect to the dimensionless Radius of a localized solution, chosen in the
exponential form. H correctly goes to 0 as the parameter R approaches infinity, as
required by the assumption that we are looking for localized solutions, and presents two
critical points with negative energy that are compatible with bound configurations: a
maximum (aka an unstable oscillaton) and a minimum (the stable oscillaton).

where the + solution corresponds to the minimum, while the - solution is the maximum,
as can be seen in 3.1, where the dimensionless Hamiltonian is plotted for Ñ = 9.
The two families of solutions are plotted in Fig. 3.2. As can be seen by both the graphs

and eq. 3.28, there is a limit on Ñ to keep the solution physical (i.e. R̃ as a real, positive
number)

Ñmax =

√
512π

15
' 10.36 (3.29)

As Ñ increases the gravitational and self-interacting terms become comparable, while
for small Ñ there is a significant difference in the configuration, depending on whether
the dominant interaction is gravitation (for the stable solutions) or the quartic self-
interaction (for the unstable solutions), resulting in more compact stars in the latter
scenario. An additional stable branch related to a denser solution is sometimes found
in the literature, but that seems to be an artefact of an inadequate use of the effective
field theory, at least for axions and up to order O(g3

4, g
2
6, g

2
4g6)8, as shown in [13]. The

actual solution of the system that’s been outlined requires numerical methods. Numerical

8g4 and g6 being the coefficient respectively of the quartic and sixth interacting terms in the La-
grangian for the axion expanded around its minimum, which has a Z2 symmetry
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Figure 3.2: Plot of the dimensionless Radius R90 vs the dimensionless total number of
particles for a PQ axion star in the non relativistic regime, where we introduce R90
as the radius inside which 90% of the matter is found (for the exponential ansatz one
can calculate R90 ' 2.661R̃). The minimum and maximum of H̃(R̃) correspond to
two families of solutions: the unstable branch (in yellow) and the stable branch (in
blue). The first case is realized when self-interactions dominate, while in the second
the star is stabilized by the effects of gravity. As N increases the two effects become of
comparable magnitude and the configuration can migrate from one branch to another.
The physicality of the solution requires a maximum value for N ∼ 10. The choice of the
ansatz makes the solution not reliable in the region R90→ 0, where the non relativistic
approximation is no longer valid.
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methods and simulations like Floquet analysis or lattice simulations are the tools of
choice found in most of the literature, however the solutions obtained analytically with
our ansatz are in a nice agreement with the actual results and can be made better with
a more careful choice of ansatz [3].
We can in general identify two regimes for oscillatons, the dense and the dilute one, and
quantify them by labelling Λ as the typical field range of the canonically normalized field
φ. Λ sets the natural scale for the mass of the star and the radius of the star as

M

M̃
' Λ2

m

R

R̃
' 1

m
(3.30)

where M̃ and R̃ are dimensionless parameters to be computed numerically. The density
of the star will therefore be linked to the quantity C = M/R = (M̃/R̃)Λ, with the most
compact objects being those for which Λ = MP as, recalling equation 3.5 and equation
3.4, for a fixed M̃/R̃ the quantity C is suppressed by a factor Λ2/M2

P . In which regime
we are is set by how the core amplitude (i.e. the amplitude of the background field
oscillations max{φ(0, t)}) compares to this scale Λ, as the highest the first the denser
the star. If the first is small compared to the second we are therefore in a diluted regime,
where weak field Newtonian approximation for gravity are applicable and self-interactions
can be neglected. The equations of motion to be solved will then be the Poisson equation
coupled with either the Klein-Gordon equation or the Schrödinger equation, in the non
relativistic limit. If instead the core amplitude is comparable to the scale Λ, we are in
the dense regime and eventual self-interactions can no longer be ignored. For Λ = MP

the system in the absence of self-interactions presents a stable branch of solutions and
an unstable branch, whose perturbed configurations can either collapse to black hole
or migrate to the stable branch, depending on the sign of the perturbation. When
present, however, self-interactions prevail and it becomes possible to self-consistently
neglect gravitational effects, entering in the domain of oscillons.
For both axions and moduli stars the answer to the questions of whether they can form,
how self-gravity affects them and what is their fate (that is if under perturbation they
are stable, disperse or collapse to black hole) is highly model dependent. Moduli stars
can at most be meta-stable because the moduli will eventually decay, however they could
survive until today provided m ≤ 10−2 GeV. In [2] it is shown how including effects of
gravity on a moduli star that would otherwise disperse can either stabilize it or compress
it so much that it eventually collapses to a black hole. Even this effect can have sizeable
consequences in our Universe, as it would imply the formation of more stars than those
predicted by lattice simulations for oscillons in pre-heating scenarios and hence more
of the related signals. For a stable oscillon instead its transition to a oscillaton could
signify an enhancement of the amplitude of φ oscillations (affecting the production of
gravitational waves) or dynamically drive it to collapse into a black hole (which would
affect the reheating history of the Universe). It is found that for the KKLT potential
configurations tend to be meta-stable, even for particularly heavy initial conditions where
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other models,like the α-attractor T model or the α-attractor E model, evolve into a black
hole even for quite large radii (i.e. much larger than the Schwarzschild radius).

3.2 Mechanisms of formation

As stated, the outcomes of moduli vary greatly depending on the specific potential at
hand and the actual formation needs to be checked explicitly via lattice simulations.
Let us focus on oscillons, as that’s the appropriate regime when discussing pre-heating
formation. We need a mechanism that triggers the growth of perturbations. More than
one are possible, they are successful for moduli in different models and they are classified
depending on the values of the background field φ during the growth of perturbations.
Let us assume that our moduli field φ is initially displaced beyond the inflection point,
near the minimum. When φ rolls down towards the minimum it passes a tachyonic region
(V ′′(φ(t)) < 0) and there the infrared modes δφk grow exponentially, for k2/a2 +V ′′(φ) <
09. This is the fist mechanism, which is called tachyonic preheating. There are additional
non linear effects from the interplay of the δφk, but the results are subleading. The
effects on the growth of the perturbations depend of course on the magnitude of the
initial displacement, but to obtain oscillons we always need a follow up, more efficient
mechanism for the growth of the oscillations. After φ reaches the minimum it starts
to oscillate around it, passing periodically the extremant V ′′(φ) = 0 and alternating its
passage in the regions V ′′(φ) < 0 and V ′′(φ) > 0: we have tachyonic oscillations. Each
oscillation provides a growth phase for the perturbations, when φ accelerates rolling
down, and a decreasing phase, as φ decelerates climb up the minimum valley. Taking
into account the expansion of the Universe, these oscillations lead to an overall growth
of the fluctuations, whose spectrum is of course is closely related to the frequency of
oscillations. As we have two processes at work in this mechanism, its efficiency will
depend on how they compare. If the expansion rate of the Universe a(t) is large compared
to the frequency of the oscillations, φ will quickly relax to the minimum and we won’t
have a sufficient enhancement of the fluctuations. If instead the ratio is reversed, the
expansion of the Universe can allow for a large enough number of oscillations so that
non linear interplay among fluctuations with different wave number become relevant
and we enter a non-perturbative regime. A third mechanism, parametric resonance,
can dramatically amplify the perturbations, and it occurs when φ oscillates around the
minimum with a time dependent frequency

ω2
k(t) =

k2

a2
+ V ′′. (3.31)

9a here is the time dependent coefficient of the FLRW metric which we are considering as background:
ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)
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When the adiabatic condition |ω̇k(t)| � |ωk(t)| is violated,a range of fluctuation modes
can grow exponentially, eventually leading to the fragmentation of φ.
The formation of the field perturbations and their dynamics during the evolution of the
Universe can be tracked with lattice simulations. As the Universe expands, the dynamics
between fluctuations eventually becomes less violent and can lead to the formation of
stable,highly energetic, localized regions, which we recognize as oscillons finally being
formed. In the KKLT model parametric resonance is fit to lead to the formation of
oscillons in a gradual way, leading to particularly stable solutions. On the other hand,
for example, the blow-up moduli in the LVS scenario can support oscillons formation
via tachyonic oscillations, but the dynamic is significantly more violent and the stable
configurations are achieved indirectly, through the fragmentation of previous, unsta-
ble inhomogeneities. Other moduli, like the volume modulus in LVS or the fibration
moduli in Swiss cheese Calabi-Yau manifolds just don’t support oscillon formation at
all[biblio:Antush].

3.3 Possible experimentally relevant signals

The possible presence of moduli stars and their prevalence and dynamics would have
significant effects on the cosmological evolution of our Early Universe. They could dom-
inate the energy density before decaying and delay thermalization, catalyze second and
first order phase transitions, be a source of baryon asymmetry, just to name a few. Ad-
herence to phenomenology can only rule out some scenarios, but cannot provide a proof
of existence. Although moduli stars could theoretically still be present in our current
space landscape and direct encounter could be possible, that’s not the preferred method
to find experimental clues about them, especially as the majority of the interest focuses
on how moduli star would affect eras of the Early Universe. We need something able to
probe both the present and the past, to asses the existence of moduli stars at some point
in the history of our Universe, and relatively young in their experimental use, as no data
with a direct link to them has yet to be found: gravitational waves (GWs) represents the
best candidate. GWs carry a signature of the event that originated them, and in some
cases that signature for moduli stars turns out to be sharply distinctive to those with
respect to other objects we are already acquainted to. Moreover since their experimental
discovery in 2015, GWs have been the protagonists of much attention from the scien-
tific community, leading to significant funding and upgrades of experimental facilities,
making them the best area on which to bet at this time. Moduli stars could contribute
both to new events, provided they are long enough lived, or to the stochastic background
of primordial gravitational waves. In moduli star scenarios, GWs are generated during
preheating in the process of the formation of the star itself. They carry a signature of
their origin in the form of a distinctive multiple peaks structure, whose power spectrum
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is defined by the size of the oscillon10 [37].
If the moduli stars are sufficiently long lived to undergo dynamical interaction, they could
form binary systems and eventually collide. Depending on the compactness C = M/R
the result is different: for increasing values of C of the colliding stars we have as a result
[36]
i- an excited stable oscillaton,
ii-the formation of a black hole after collision,
iii-a pre-merger collapse of the oscillatons to separate black holes due to tidal forces.
The first case provides a possibly long lived source of GWs, with multiple post merge
pulses which represents a distinct signature from the analogue black hole-black hole case.
The second case presents a similar waveform to that of a black hole-black hole collision,
but with a significantly bigger amplitude. These events could therefore be disguised
as mergers of more massive black hole, but could have other identifying features. The
last case is extremely akin to a black hole-black hole collision. The profile of the GWs
pertaining to the cases i,ii and iii, compared to corresponding black holes events, ob-
tained by Helfner, Lim, Garcia and Amin [36] are reported in Fig. 3.3. LIGO has the
right frequency range to be sensitive to GW resulting from this collisions for a mass of
the moduli 10−12 eV≤ m ≤ 10−10 eV. Another way in which we could have GWs from
scalar stars is from the dynamics of a single object, provided it doesn’t have a spherical
symmetry. Although a spherically symmetric configuration is a common choice to look
for a solution, there is nothing that imposes it other than usefulness in simplifying the
calculations. For m ∼ 109 GeV the peak of the spectrum f ∼ O(m) falls within the
LIGO frequency range and the energy density of GWs goes as the fourth power of the
oscillon field amplitude, therefore increasing with compactness C [2].
Another array of possibilities is presented when considering moduli stars that have
collapsed to black holes, either as their independent evolution or as a consequence of
clustering with other compact objects. First of all, this contingency would make the
object significantly more long lived: while typically real scalar stars have a lifetime
Tstar ∼ 103 − 104 · m−1, black holes with the same order of mass M ∼ M2

P/m (which

is a reasonable outcome [2]) have a lifetime TBH ∼ M3

M4
P
∼
(
MP

m

)2

·m−1, which is larger

than Tstar for m ≤ 10−2MP . This extended lifetime would contribute to enhance their
dynamics scenarios. Moreover, the black holes that arise as a result of the collapse of a
moduli star would have very small mass compared to usual ones. They would therefore
evaporate quickly into both the Standard Model sector and hidden sectors to be a plau-
sible candidate per dark matter generation [23]. This contingency would provide strong
constraints which so far have non been in contrast with phenomenological findings, e.g.
CMB measurements [22].

10Oscillons, kept together by self interactions instead of gravity, are in fact the right limit to consider
during pre-heating
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Figure 3.3: Graph from [36] showing their results for GWs generated by a scalar star-
scalar star collision obtained with numerical simulations in full GR. Each panel also
reports in a solid black line the GWs generated by the same events involving instead
black holes of the same mass as the stars considered for comparison. From left to right
the value of C is increasing (specifically we have C = 0.03, C = 0.10, C = 0.15). Panel
i: the collision generates an excited oscillaton that keeps on emitting. Panel ii: the
collision results in a black hole, whose formation is marked by the dashed line, and the
GW profile is akin to that of an event involving more massive black holes. Panel iii: the
stars turn into separate black holes under the effect of tidal waves and the collide, at t
marked by the dashed line. They show a signal almost indistinguishable from the black
hole-black hole case of the same mass.
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Chapter 4

Non relativistic effective field theory

In the previous chapters we have seen how oscillons made out of moduli could be a feature
of our Universe and what that would entail. Given the implication of this possibility, we
would like to understand from the analytical point of view whether the KKLT potential
can sustain such formations in the non relativistic regime and compare the result with
the meta-stability found via numerical simulations [2] [12]. As a first step we first need
to construct a non relativistic effective field theory for the moduli. Let us rewrite the
expansion around the minimum for the KKLT potential as

V (φ) =
1

2
m2φ2 − g

3!
φ3 +

λ

4!
φ4 (4.1)

where the coefficients are defined accordingly to result 2.40 of chapter 2 and we took out
the signs to highlight the asymmetric behaviour. The are many papers in the literature
were the authors focus on obtaining a non-relativistic effective Lagrangian for oscillon
formation [17]. The attention however is all reserved for the axion, and the reasons
are mainly two. First of all, axion stars have recently sparked a good deal of interest
for being plausible dark matter candidates; as a second point, their potential presents
a discrete Z2 symmetry which simplifies the calculations. The moduli potential is not
even, but we can still apply the methods developed to our case. To do so let us start
with a review of the procedure for the axion used by Hertzberg and Schiappacasse in [3]
and of the one devised by Namjoo, Guth and Kaiser [8]. Having developed an insight on
the proper construction of the effective Lagrangian we can move onto the moduli case.
We make use of the Namjoo-Guth-Kaiser method to account for relativistic corrections
in a systematic way. The ensuing effective Lagrangian is a result which is not found
in the literature. To check it we calculate effective vertices via Feynman diagrams and
compare the outcome, which turns out to be related to ours by a redefinition of the field.
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4.1 Non relativistic effective Lagrangian for the ax-

ion

We can start from the work that has been done on the axion, specifically on the QCD
axion (which is usually chosen for its sound theoretical base), to construct the effective
Lagrangian in the non-relativistic limit. Let us recall its potential, arising from non-
perturbative effects:

V (φ) = Λ[1− cos(φ/fa)] (4.2)

where fa is the breaking scale of the U(1)PQ Peccei-Quinn symmetry, of typical value
fa ≤ 1012 GeV and Λ is of order of the QCD scale. We can expand V around its minimum
to get

V (φ) =
1

2
m2φ2 −m2f 2

a

∞∑
n=2

(−1)n

(2n)!

( φ
fa

)2n

(4.3)

with m = Λ2/fa. We can actually interpret fa as a loop counter: by taking m/fa � 1,
as is the case of the QCD axion1, the diagrams are suppressed by a factor (m/fa)

2 for
each loop, so constructing a classical effective field theory is tantamount to keeping only
the leading terms when expanding in m/fa. So as a Lagrangian for oscillons formation
we have

L =
1

2
ηµν∂µφ∂νφ−

1

2
m2φ2 +

m2

4!f 2
a

φ4. (4.4)

Now, φ(x) is the (pseudo-)scalar field describing the axion. Its particles are identical
spin-0 bosons, so we can think about an axion star as a localized, short-range order, Bose-
Einstein condensate [45]. Because of its high occupacy number it can be well described
by a classical complex field theory, even in the presence of strong self-interactions [44],
where the complex mean field in question can be though of as the vacuum expectation
value of a complex quantum field ψ(x). For this reason, it’s plausible to assume that in
the non-relativistic regime the field theory for real axion field φ(x) reduces to a theory for
a complex valued non-relativistic scalar field ψ(x). We therefore perform the substitution

φ(x, t) =
1√
2m

(
ψ(x, t)e−imt + ψ∗(x, t)eimt

)
. (4.5)

In may look like we are doubling the number of degrees of freedom, as we are trading
a real field for two (the real and imaginary part of the complex field). Actually with
the substitution φ→ ψ one simultaneously changes the structure of the Lagrangian too:
the relativistic Lagrangian is second order in the time derivative of φ, while the non
relativistic Lagrangian is first order in the time derivative of ψ. As in in the first case
the number of actual propagating degrees of freedom is equal to the number of real fields,

1For the QCD axion m/fa ∼ 10−48.
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while in the latter case it’s equal to just half of them; the reduction 4.5 is perfectly fine.
One last consideration is in order before we can proceed with the substitution of relation
4.5 in the Lagrangian as a first step towards a relativistic reduction. Even though the
two fields have the same number of propagating degrees of freedom, φ(x) is real valued
while ψ(x) is complex valued. In order to have a one-to-one mapping between the two
at a fixed time t we also need to specify the conjugate momentum to φ, π = φ̇:

π(t,x) = −i
√
m

2

(
ψ(t,x)e−imt − ψ∗(t,x)eimt

)
. (4.6)

Now that everything is settled, we can substitute the non relativistic reduction 4.5 into
the Lagrangian 4.4. Considering the non relativistic limit we can drop the rapidly oscil-
lating terms, as they would average to zero over long times, and consider |ψ̇/m| � |ψ|
in the kinetic term. We obtain

L =
i

2
(ψ̇ψ∗ − ψ̇∗ψ)− 1

2m
∇ψ∗∇ψ − λ

16f 2
a

(ψ∗ψ)2. (4.7)

This result, although used in the literature (e.g. in [3]), is indeed very rough. We need
to take into account more terms and to do so a promising solution is offered in [8]. There
Namjoo, Guth and Kaiser develop a construction method based on a non local operator
that enables us to compute the relativistic corrections systematically. Let us consider a
more generic Lagrangian then the one for the QCD axion and only keep the Z2 from it:

L =
1

2
∂µφ∂µφ−

1

2
m2φ2 − λ

4!
φ4. (4.8)

The energy for the free relativistic particle is E =
√
p2 +m2, so by defining the non

local operator P we can express it as E = mP with

P :=

√
1− ∇

2

m2
. (4.9)

We can modify the non-relativistic reductions 4.5 and 4.6 to include P as

φ(x, t) =
1√
2m
P−1/2

(
ψ(x, t)e−imt + ψ∗(x, t)eimt

)
(4.10)

π(x, t) = −i
√
m

2
P1/2

(
ψ(x, t)e−imt − ψ∗(x, t)eimt

)
(4.11)

so that we recover the old relations at leading order when expanding in powers of ∇2/m2

(i.e. the non-relativistic limit). We can think of equations 4.10 and 4.11 as the relativistic
equivalent of equations 4.5 and 4.6: they are in fact exact relations and not relativistic
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reductions as their counterpart. The expansion in a power series of P gives us a way to
systematically compute terms in the non relativistic limit up to arbitrary order. Let us
get acquainted with these redefinitions by considering the free field case. The Lagrangian
4.8 with λ = 0 gives us the Hamiltonian

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2. (4.12)

Applying Hamilton’s equations we can compute the equations of motion

φ̇ =
δH

δπ
= π (4.13)

π̇ = −δH
δφ

= (∇2 −m2)φ.

With the inverse relation of 4.10 and 4.6,

ψ(x, t) =

√
m

2
eimtP1/2

[
φ(x, t) +

i

m
P−1π(x, t)

]
, (4.14)

we can work out the Lagrangian that gives these equations of motion:

L =
i

2
(ψ̇ψ∗ − ψ̇∗ψ)−mψ∗(P − 1)ψ. (4.15)

Although introducing a non-local operator at first sight seems to be a complication, we
actually ended up with a Lagrangian naturally free from rapidly oscillating terms e±inmt,
without the need to neglect any term. The other aspect that emerges without the need
to enforce it is a U(1) explicit symmetry that reflects the conservation of the number of
particles N =

∫
d3xψ∗ψ, which in the non relativistic theory is exact.

Now that we got an understanding of the usefulness of the non local description, let us
put it to the test on the interacting theory of Lagrangian 4.8. Before performing the
substitution 4.10 let us introduce an auxiliary field χ in place of the time derivative of
φ̇, enforcing the relation through a lagrangian multiplier α

L =
1

2
χ2 − 1

2
∂iφ∂jφ−

1

2
m2φ2 − λ

4!
φ4 + α(χ− φ̇) (4.16)

with χ − φ̇ = 0. There is no kinetic term for χ, which is therefore not a dynamical
variable. This means that we can remove it from the theory by varying L with respect
to it to obtain its value:

δL
δχ

= χ+ α = 0 → χ = −α. (4.17)
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Putting it back in we get a Lagrangian in φ and α

L = −1

2
α2 − 1

2
∂iφ∂jφ−

1

2
m2φ2 − λ

4!
φ4 − αφ̇. (4.18)

Given result 4.17, we can construct the equivalent to relations 4.10 and 4.11 as

φ(x, t) =
1√
2m
P−1/2

[
ψ(x, t)e−imt + ψ∗(x, t)eimt

]
(4.19)

α(x, t) = i

√
m

2
P1/2

[
ψ(x, t)e−imt − ψ∗(x, t)eimt

]
(4.20)

and finally substitute them in the Lagrangian to have an expression in terms of the
non-relativistic field ψ (and its complex conjugate ψ∗). After some algebra, which
involves moving around the ∇ operator via an integration by parts2 and recognising(
i
2
ψ̇ψe−2imt + m

2
ψ2e−2imt

)
as the total derivative d

dt

[
i
4
e−2imtψ2

]
, we can write the La-

grangian as:

L =
i

2
(ψ̇∗ψ − ψ̇ψ∗)−mψ∗(P − 1)ψ − λ

4 · 4!m2

(
e−imtP−1/2ψ + eimtP1/2ψ∗

)4
. (4.21)

This result is still exact as we have not made any approximation to Lagrangian 4.8 yet.
We can get the equation of motion by applying the usual Euler-Lagrange equation

∂µ
∂L

∂(∂µψ∗)
=

∂L
∂ψ∗

, (4.22)

which results in

iψ̇ = m(P − 1)ψ +
λ

4!m2
eimtP−1/2

(
e−imtP−1/2ψ + eimtP−1/2ψ∗

)3
. (4.23)

We have everything to start moving towards the non-relativistic limit. There the non
local operator P can be expanded in a power series of ∇2/m2. The equation of motion
becomes

iψ̇ = − 1

2m
∇2ψ +

λ

8m2
|ψ|2ψ +

λ

4!m2

(
e−2imtψ3 + e4imtψ∗3 + 3e2imt|ψ|2ψ∗

)
+O(∇4/m4).

(4.24)
In the first three terms we recognize the usual Schrödinger equation, while the last term
is usually neglected with the justification that the fast oscillating terms would average
to 0 over times ∆t � m−1, just as we assumed before. It is actually worthwhile to be
more careful in treating these terms, as they could back-react on the slowly varying part

2The integration by parts results in an overall - sign for the terms involving ∇ and an overall + sign
when moving P, as P expands in even powers of ∇.
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of ψ and affect the non relativistic effective theory. This is indeed the case, as we can
check by dividing ψ into the slowly varying contribution and a small term that oscillates
fast:

ψ = ψs + δψe2imt. (4.25)

Even if in the Lagrangian we only keep the slowly varying terms, there is still a contri-
bution by δψ:

iψ̇s = − 1

2m
∇2ψs +

λ

8m2
|ψ2
s |ψs +

λ

8m2
ψs(ψsδψ + 2ψ∗sδψ

∗) + .... (4.26)

The correct way to factor in the contribution of the fast oscillating terms is through a
perturbative approach, as Namjoo, Guth and Kaiser do in [8]. To do so, let us take a
closer look at the exact equation of motion 4.23. There we can parametrize the variations
of the field as

∇2ψ

m2
∼ εxψ ,

ψ̇

m
∼ εtψ (4.27)

with εx, εt, λ� 1 and take these coefficients as the small quantities on which to construct
our perturbative analysis. The proper way to isolate the slowly varying portion of ψ is
with the mode decomposition

ψ(x, t) =
∞∑

ν=−∞

ψν(x, t)e
iνmt, (4.28)

where the ψν are slowly varying. Writing the equation of motion 4.23 as

iψ̇(x, t) = m(P − 1)ψ(x, t) +
λ

4!m2
L̃(x, t) (4.29)

we can expand the interaction term

L̃(x, t) := eimtP−1/2
(
e−imtP−1/2ψ + eimtP−1/2ψ∗

)3
(4.30)

collectively as

L̃(x, t) =
∞∑

ν=−∞

L̃ν(x, t)e
iνmt. (4.31)

The non relativistic effective field theory that we are looking for is then given by the
equation of motion for the mode ν = 0, given that we assume that in the non relativistic
limit the full ψ varies only slightly from ψs = ψ0. With the mode expansion in equation
4.23 we can obtain the equation of motion for a fixed mode ψν

iψ̇ν − νmψν = m(P − 1)ψν +
λ

4!m2
L̃ν , (4.32)
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where to obtain the expression

L̃ν(x, t) = P−1/2
∑
µ,µ′

{ΨµΨµ′Ψ2+ν−µ−µ′ + Ψ∗µΨ∗µ′Ψ
∗
4−ν−µ−µ′+ (4.33)

3ΨµΨµ′Ψ
∗
−ν+µ+µ′ + 3Ψ∗µΨ∗µ′Ψ−2+ν+µ+µ′}

we recognized the exponential representation of the delta function and used the notation
Ψν := P−1/2ψν , which will prove to be very useful in the following calculations. The
back-reaction from the higher energy modes that we saw in 4.26 shows here in equation
4.33: to evaluate L̃ν=0 exactly we need the contribution of all the other modes Ψµ, with
µ ranging from 0 all the way up to∞. To see more clearly how to proceed let us multiply
both sides of the equation of motion 4.32 and rearrange it to have

Ψν = − i

m
ΓνΨ̇ν + λLν (4.34)

where we defined

Γν := (1− ν − P)−1 , Lν(x, t) =
Γν

4!m3
P−1/2L̃ν(x, t). (4.35)

The two terms on the right hand side are suppressed relatively to Ψν and  Lν respectively,
as per the parametrization 4.27. We can therefore threat them as a perturbative source
for Ψν and solve the equation iteratively at increasing order of approximation. Let us
write such orders explicitly

Ψν(x, t) =

{∑∞
n=0 Ψ

(n)
ν (x, t) ν 6= 0

Ψs(x, t) ν = 0
(4.36)

and

Lν(x, t) =
∞∑
n=0

L(n)
ν (x, t). (4.37)

As per equation 4.36, we defined the lowest energy mode as being exactly Ψs, while we
consider the other modes relevant only at higher orders of approximation. So, at the
zeroth-order approximation we have

Ψ(0)
ν (x, t) =

{
Ψs(x, t) ν = 0

0 ν 6= 0.
(4.38)

Given these expansions, equation 4.32 for the modes ν 6= 0 is

Ψ(1)
ν = λL(0)

ν (4.39)

41



at first order and

Ψ(n)
ν = − i

m
ΓνΨ̇

(n−1)
ν + λL(n−1)

ν n > 1 (4.40)

at higher order. Now we can finally focus on the mode Ψs: from equation 4.32 at ν = 0
we get its equation of motion

iψ̇s = m(P − 1)ψs +mλΓ−1
0 P1/2L0. (4.41)

The value of the field is exact, while we have to compute L0 at some perturbative order,
thereby approximating it. At order n = 1 we have

L(0)
ν =

ΓνP−1

4!m3

[
Ψ3
sδν,−2 + Ψ∗3s δν,4 + 3|Ψs|2Ψ∗sδν,2 + 3|Ψs|2Ψsδν,0

]
, (4.42)

L(1)
ν =

3ΓνP−1

4!m3

[
Ψ2
sΨ

(1)
ν+2 + Ψ∗2s Ψ

(1)∗
−ν+4 + Ψ2

sΨ
(1)∗
−ν + 2|Ψs|2Ψ(1)

ν + Ψ∗2s Ψ
(1)
−2+ν + 2|Ψs|2Ψ

(1)∗
−ν+2

]
.

We can evaluate the Ψ
(1)
ν 6=0 trough their equation of motion at first order 4.39. By sub-

stituting everything back in the equation of motion we get the first relation which is the
result of some approximation. After some simple algebra we get

iψ̇s =m(P − 1)ψs +
λP−1/2

8m2
|Ψs|2Ψs +

3λ2P−1/2

(4!)2m5

{
3Ψ2

sΓ2P−1(|Ψs|2Ψ∗s)+ (4.43)

Ψ2
sΓ4P−1(Ψ3

s) + Ψ∗2s Γ−2P−1(Ψ3
s) + 6|Ψs|2Γ2P−1(|Ψs|2Ψs)

}
+O(λ3, ε3t , λ

2εt, λε
2
t ).

At this point we are working in the realm of the non relativistic limit, where |∇2ψ| � m2.
We can therefore expand the non local operator P in a power series, and we do so up to
order ε2x ∼ ∇4/m4. We have

iψ̇s =− 1

2m
∇2ψs +

λ

8m2
|ψs|2ψs −

1

8m3
∇4ψs +

λ

32m4
[ψ2
s∇2ψ∗s + 2|ψs|2∇2ψs+ (4.44)

+∇2(|ψs|2ψs)]−
17λ2

768m5
|ψs|4ψs +O[λ3, ε3t , ε

3
x, λ

2εt, λ
2εx, λε

2
t , λε

2
x, λεtεx, εtε

2
x, ε

2
t εx]

which is finally the equation of motion for ψ in the non relativistic limit. There we can
recognize the usual Schrödinger equation for a field with a quartic self-interaction in the
first three terms, but we also have relativistic corrections to it arising from two sources:
the terms involving the ∇ operator come from the expansion of the non-local operator
(and are therefore associated to the relativistic energy of the particles of φ), while the

λ2 term is originated by the effect of the higher energy modes ψ
(1)
ν 6=0. A Lagrangian

that produces such an equation of motion, and that is therefore suitable to be the non
relativistic effective Lagrangian we were looking for, is

Leff =
i

2
(ψ̇sψ

∗
s − ψsψ̇∗s)−

1

2m
∇ψs∇ψ∗s −

λ

16m2
|ψs|4 +

1

8m3
∇2ψs∇2ψ∗s+ (4.45)

− λ

32m4
|ψs|2(ψ∗s∇2ψs + ψs∇2ψ∗s) +

17λ2

2304m5
|ψs|6.
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Let us compare this result with the original Lagrangian 4.8 and with the non relativistic
”effective” Lagrangian of our first attempt 4.7. We have a few more terms here, but the
most interesting one is the |ψ|6 interaction that wasn’t present in the original theory.
Going to higher order in considering the iterative approximations for ψ would give us
more |ψ|2n terms associated with n→ n scattering, all obeying an explicit U(1) symmetry
consistent with the conservation of the number of particles. Processes that violate it in
fact, although permitted in the relativistic theory, require energies that are out of the
range of applicability of the non relativistic field theory that we constructed.

4.2 Non relativistic effective field theory for the mod-

uli

Now that we got acquainted with the non local operator method of [8], we can put it to
work to construct a non relativistic effective theory for moduli in the KKLT scenario.
The Lagrangian we are working on is

L =
1

2
ηµν∂µφ∂νφ−

1

2
m2φ2 +

1

3!
gφ3 − 1

4!
λφ4 (4.46)

and can easily be generalized to different moduli potentials. The Hamiltonian then has
the form

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 − 1

3!
gφ3 +

1

4!
λφ4 (4.47)

where the canonical momentum is π = ψ̇ the related equations of motion are

φ̇ =
δH

δπ
= π (4.48)

π̇ = −δH
δφ

= (∇2 −m2)φ+
1

2
gφ2 − 1

3!
λφ3.

Let us suppose that it’s still appropriate to look at the moduli star as a Bose-Einstein
condensate. The discussion about it being properly described by a complex scalar field ψ
in the non relativistic limit then carries over from the axion case and so do the relations

φ(x, t) =
1√
2m
P−1/2

(
ψ(x, t)e−imt + ψ∗(x, t)eimt

)
(4.49)

π(t,x) = −i
√
m

2
P1/2

(
ψ(t,x)e−imt − ψ∗(t,x)eimt

)
(4.50)

along with the observation that the number of propagating degrees of freedom is con-
served. We therefore want to write the Lagrangian for φ(x) 4.46 as a Lagrangian for
ψ(x). To do so properly we introduce an auxiliary field χ of value χ = φ̇ and enforce this
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relation in the Lagrangian with a lagrangian multiplier α. Having no kinetic term, χ is a
non dynamical variable: it can be removed from the theory by varying L with respect to
it and substituting back in the Lagrangian the resulting expression, which turns out to
be χ = −α. This relation is the same as in the axion case, so we can use relations that
look exactly like the 4.19 and 4.20 to perform the substitution (φ, α) → (ψ, ψ∗) in the
Lagrangian 4.46. After some algebra, which involves integrating by parts to rearrange
terms with ∇ and P and taking out total time derivatives, we get to

L =
i

2
(ψ̇∗ψ − ψ̇ψ∗)−mψ∗(P − 1)ψ +

g

12
√

2m3/2

(
e−imtP−1/2ψ + eimtP1/2ψ∗

)3
(4.51)

− λ

4 · 4!m2

(
e−imtP−1/2ψ + eimtP1/2ψ∗

)4
.

With Euler-Lagrange equation we can calculate the equation of motion for ψ:

iψ̇ = m(P − 1)− g

4
√

2m3/2
G̃+

λ

4!m2
L̃ (4.52)

where we introduced the following notation for the interaction terms

G̃(x, t) := eimtP−1/2
(
e−imtP−1/2ψ + eimtP−1/2ψ∗

)2
, (4.53)

L̃(x, t) := eimtP−1/2
(
e−imtP−1/2ψ + eimtP−1/2ψ∗

)3
. (4.54)

This equation is our starting point to repeat the perturbative approach outlined in the
previous section. As a first step let us expand into modes the field ψ

ψ(x, t) =
∞∑

ν=−∞

ψν(x, t)e
iνmt (4.55)

and the interaction terms as

G̃(x, t) =
∞∑

ν=−∞

G̃ν(x, t)e
iνmt L̃(x, t) =

∞∑
ν=−∞

L̃ν(x, t)e
iνmt. (4.56)

With these expansions into equation 4.52 we can get to the equation of motion for a
single mode ψν

iψ̇ν − νmψν = m(P − 1)ψν −
g

4
√

2m3/2
G̃ν +

λ

4!m2
L̃ν (4.57)

with
G̃ν(x, t) = P−1/2

∑
µ

{ΨµΨ1+ν−µ + Ψ∗µΨ∗3−ν−µ + 2ΨµΨ∗1−ν+µ} (4.58)
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L̃ν(x, t) = P−1/2
∑
µ,µ′

{ΨµΨµ′Ψ2+ν−µ−µ′ + Ψ∗µΨ∗µ′Ψ
∗
4−ν−µ−µ′+ (4.59)

+ 3ΨµΨµ′Ψ
∗
−ν+µ+µ′ + 3Ψ∗µΨ∗µ′Ψ−2+ν+µ+µ′}

where we used again the useful notation Ψν := P−1/2ψν and the indices come from
summing over delta functions in the exponential representation. It is reasonable to
assume that in the non relativistic limit the field will not deviate in a significant way
from the lowest energy, slowly varying mode ψ0 := ψs, |ψ − ψs| � |ψ|. Our goal
of constructing the non relativistic effective field theory can therefore be achieved by
calculating the equation of motion for the mode corresponding to ν = 0. This cannot
be done by simply ignoring any contribution from other terms, as higher energy modes
back-react on the effective behaviour of ψs through the interaction terms. An exact
evaluation of G̃ν and L̃ν would require the calculation of all the higher energy modes,
which is obviously not viable. Let us now rewrite equation 4.57 by multiplying both
sides by P−1/2

Ψν = − i

m
ΓνΨ̇ν − gGν + λLν (4.60)

where we defined the operator

Γν := (1− ν − P)−1 (4.61)

and the interaction terms as

Gν(x, t) =
Γν

4
√

2m2
√
m
P−1/2G̃ν(x, t) , Lν(x, t) =

Γν
4!m3

P−1/2L̃ν(x, t). (4.62)

We constructed the mode decomposition 4.55 defining the ψν as being slowly varying,
so we can parametrize their variation in space and time in terms of small coefficients

∇2ψν
m2

∼ εxψν
ψ̇ν
m
∼ εtψν (4.63)

with εx, εt � 1. Considering that the coupling constants g and λ are small too, all the
terms on the right hand side of the equation 4.60 are suppressed, compared respectively
to Ψν , Gν and Lν . We can therefore treat the equation perturbatively, with the left
hand side acting as a source for Ψν . At the zeroth-order of approximation the field is
completely defined by the slow varying lower energy mode

Ψ(0)
ν (x, t) =

{
Ψs(x, t) ν = 0

0 ν 6= 0
(4.64)

while at higher order we have the contribution of the other modes

Ψν(x, t) =

{∑∞
n=0 Ψ

(n)
ν (x, t) ν 6= 0

Ψs(x, t) ν = 0.
(4.65)

45



We also write the interaction terms is a series of increasing order of approximation

Gν(x, t) =
∞∑
n=0

G(n)
ν (x, t) ; Lν(x, t) =

∞∑
n=0

L(n)
ν (x, t). (4.66)

Equation 4.60 then gives us the expression for Ψν at the first order of approximation

Ψ(1)
ν = −gG0

ν + λL0
ν (4.67)

and at the higher orders

Ψ(n)
ν = − i

m
ΓνΨ̇

(n−1)
ν − gG(n−1)

ν + λL(n−1)
ν . (4.68)

Now that we have a plan to approach equation 4.57 we can write it down for our mode
of interest, ψs

iψ̇s = m(P − 1)ψs −mgΓ−1
0 P1/2G0 +mλΓ−1

0 P1/2L0. (4.69)

For this equation to be exact G0 and L0 have to be computed up to an infinite number of
terms. We can however be satisfied with the correction of order n = 1. Then the cubic
interaction term is the sum of

G(0)
ν =

ΓνP−1

4
√

2m2
√
m

[
Ψ2
sδν,−1 + Ψ∗2s δν,3 + 2|Ψs|2δν,1

]
(4.70)

G(1)
ν =

2ΓνP−1

4
√

2m2
√
m

[
ΨsΨ

(1)
ν+1 + Ψ∗sΨ

(1)∗
−ν+3 + ΨsΨ

(1)∗
−ν+1 + Ψ∗sΨ

(1)
−1+ν

]
and the quartic interaction term is the sum of

L(0)
ν =

ΓνP−1

4!m3

[
Ψ3
sδν,−2 + Ψ∗3s δν,4 + 3|Ψs|2Ψ∗sδν,2 + 3|Ψs|2Ψsδν,0

]
(4.71)

L(1)
ν =

3ΓνP−1

4!m3

[
Ψ2
sΨ

(1)
ν+2 + Ψ∗2s Ψ

(1)∗
−ν+4 + Ψ2

sΨ
(1)∗
−ν + 2|Ψs|2Ψ(1)

ν + Ψ∗2s Ψ
(1)
−2+ν + 2|Ψs|2Ψ

(1)∗
−ν+2

]
.

Substituting relations 4.70, 4.71 and 4.67 into the equation of motion we get to the
equation

iψ̇s =m(P − 1)ψs +
λP−1/2

8m2
|Ψs|2Ψs+ (4.72)

+
g2P−1/2

16m4

{
2ΨsΓ1P−1|Ψs|2 + Ψ∗sΓ3P−1Ψ2

s + 2ΨsΓ1P−1|Ψs|2 + Ψ∗sΓ−1P−1Ψ2
s

}
+

+
3λ2P−1/2

(4!)2m5

{
3Ψ2

sΓ2P−1(|Ψs|2Ψ∗s) + Ψ2
sΓ4P−1(Ψ3

s) + Ψ∗2s Γ−2P−1(Ψ3
s)+

6|Ψs|2Γ2P−1(|Ψs|2Ψs)
}

+O(g3, λ3, ε3t , g
2εt, λ

2εt, gλεt, gε
2
t , λε

2
t ).
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At this point all that’s left is to expand the non local operator P in a power series in the
non relativistic limit up to ε2x ∼ ∇4/m4:

iψ̇s =− 1

2m
∇2ψs +

λ

8m2
|ψs|2ψs −

1

8m3
∇4ψs+ (4.73)

+
λ

32m4

[
ψ2
s∇2ψ∗s + 2|ψs|2∇2ψs +∇2(|ψs|2ψs)

]
− 5g2

24m2
ψs|ψs|2 −

17λ2

768m5
|ψs|4ψs+

+O[g3, λ3, ε3t , ε
3
x, g

2εt, g
2εx, λ

2εt, λ
2εx, gλεt, gλεx, gε

2
t , gε

2
x, λε

2
t , λε

2
x, λεtεx, gεtεx, εtε

2
x, ε

2
t εx],

which is finally an equation of motion for ψs only in terms of the field itself. A Lagrangian
associated to it can be constructed as

Leff =
i

2
(ψ̇sψ

∗
s − ψsψ̇∗s)−

1

2m
∇ψs∇ψ∗s +

1

8m3
∇2ψs∇2ψ∗s+ (4.74)

+

(
5g2

48m4
− λ

16m2

)
|ψs|4 −

λ

32m4
|ψs|2(ψ∗s∇2ψs + ψs∇2ψ∗s) +

17λ2

2304m5
|ψs|6.

This is the effective Lagrangian for the non relativistic limit that we were looking for.
The relativistic corrections changed equation 4.46 quite a bit: we no longer have a cubic
term (it got cancelled due to the value of the indices in equation 4.70), the quartic term
instead survived but its coupling got corrected with a g2 term and a brand new term |ψ|6
emerged. Had we gone further in considering orders of approximation more terms |ψ|2n
would have appeared, representing more n→ n effective vertices and adding corrections
to the ones we already have. The overall Lagrangian presents a U(1) symmetry that’s
related to the fact that the processes allowed by the energies of the non relativistic limit
(E � m) conserve the total number of particles. Considering the effect of the higher
energy modes produced terms proportional to the square of the couplings g and λ so, no
matter the original sign with which they appeared in Lagrangian, they will be attractive
in nature.
Our last result is not found in the literature and we obtained it exploiting a quite unusual
and recent method. Let us check it by comparing it with the effective theory calculated
in the traditional way. We follow the approach outlined in [7] by Mukaida, Takimoto and
Yamada to have a sound starting point for the comparison. They use the Lagrangian

L = −1

2
ηµν∂µφ∂µφ−

1

2
m2φ2 − g3

3
φ3 +

g4

4
φ4. (4.75)

We want to compute effective vertices by integrating out the relativistic fluctuations. To
do so we first separate the latter from the non relativistic part of the field

φ(x, t) = φNR(x, t) + δφ(x, t) (4.76)

and write the two components in momentum space with a Fourier transform

φNR(x) :=

∫
k∈NR

dke−ik·xφ̃(k) δφ(x) :=

∫
k∈NR

dke−ik·xφ̃(k), (4.77)
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where x and k are four vectors and the dot · in the exponential stands for the scalar
product. φ̃ is of course the Fourier transform of the scalar field and, the latter being real,
it satisfies φ̃(k) = φ̃∗(−k). The momentum is integrated over NR, which is the region of
momentum space nearby the on-shell poles for non-relativistic excitations (NR := {k =
(k0,k) : ±k0 ∼ m + O(mv2),k ∼ O(mv) for v := |v| � 1}) or over its complementary
set NR. The non relativistic part can also be expressed in terms of a complex slowly
varying field χ as

φ(x, t) =
1√
2m

(
χ(x, t)e−imt + χ∗(x, t)eimt

)
. (4.78)

Performing these substitutions into the Lagrangian 4.75 we can read out the value for the
vertices of the theory. Our aim is to integrate out the relativistic modes, encapsulating
their contribution into an effective vertex, so the kind of diagrams that we want to build
are of the kind n → n with high energy modes in the inner part. The suitable vertices
to take into consideration are therefore only

=
g3

2
|χ|2δφ (4.79)

= −g4

8
χ3e−3imtδφ (4.80)

The full incoming line represents a non relativistic mode χe−imt while the red dashed
line is a relativistic mode δφ. The operators χ by definition cannot carry relativis-
tic energies nor comparable to the mass scale m, so energy conservation doesn’t allow
terms δφ|χ|2n and only diagrams n → n are suitable. The corresponding diagrams are

=
g3

16
χ2e−2imt −1

m2 + �
χ†2e2imt (4.81)

=
g2

4

64
χ3e−3imt −1

m2 + �
χ∗3e3imt (4.82)
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To compute both let us take out m2 in the propagator3. We then have a term −m2(1 +
�
m2 ), that in the non relativistic limit � � m2 we can expand in a power series of �

m2 .
As the field χ is by definition slowly varying, the leading contribution will come from
the action of ∂t on e3imt. The corresponding corrections from diagram 4.81 and 4.82 are

L ⊃ 5g23
48m2 |χ|4 − g24

512m2 |χ|6.
In [7] the authors consider the effective action

Seff [χ] =

∫
x

1

4

[
χ†(2im∂t − ∂2

t +∇2)χ− Veff (|χ|)
]
− iΓ[χ] (4.83)

that also has an imaginary part that holds relativistic fluctuations and the breaking of
the U(1) symmetry in that regime. Taking into account the 1/4 factor that appears in
the action is, at leading order

Veff (|χ|) = −
(

5g2
3

12m2
+

3g4

8

)
|χ|4 +

g2
4

128m2
|χ|6. (4.84)

This effective potential looks quite different than what is in the Lagrangian 4.74, but the
two effective field theories could be equivalent if they were related by a field redefinition.
Following the suggestion of Namjoo, Guth and Kaiser in Appendix C of [8] for the even
potential, let us compare how we introduced the complex fields redefinition in the two
situations:

1

2

[
χ(x, t)e−imt + χ(x, t)∗eimt

]
=

1√
2m
P−1/2

[
(ψs + ψ∗2)e−imt + (ψ∗s + ψ2)eimt

]
. (4.85)

χ, ψs and ψ2 were all constructed as being slowly oscillating by definition. So the last
equation entails √

m

2
χ = P−1/2(ψs + ψ∗2). (4.86)

There we can work on the right hand side by using 4.67 to compute ψ∗2 = ψ
∗(1)
2 + ... and

expand P . Then√
m

2
χ =

(
1 +

1

4m2
∇2

)
ψs −

λ

16m3
|ψs|2ψs +O(λ2, ε2t , ε

2
x, λεt, λεx, εtεx). (4.87)

Let us move to the equation of motion in order to compare the two effective theories at
low energies. Considering only the real part of the Lagrangian in the action 4.83, we can
derive the equation of motion by varying it:

iχ̇ =
1

2m
χ̈− 1

2m
∇2χ+

1

2m

∂Veff
∂χ∗

. (4.88)

3In the propagator the � actually stands for �− iε to include the correct boundary condition.
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Using relation 4.87 to substitute χ with an expression in ψ we get an equation of motion
for ψ in the diagram matching construction4

iψ̇s =− 1

2m
∇2ψs +

λ

8m2
|ψs|2ψs −

5g2

24m4
|ψs|2ψs+ (4.89)

+
1

2m
ψ̈s −

i

4m2
∇2ψ̇s +

iλ

16m3
ψs(2ψ̇sψ

∗
s + ψsψ̇

∗
s)+

− 1

8m3
∇4ψs +

λ

32m4

[
ψ2
s∇2ψ∗s + 2|ψs|2∇2ψs +∇2(|ψs|2ψs)

]
− 17λ2

768m5
|ψs|4ψs+

+O(ε3).

We already accounted for the different definition of coupling constants in the two La-
grangians5, and yet this equation looks quite different than the one at 4.73. Let us take
a look at the second time derivative of ψs, which we can calculate by looking at 4.89 as
an expression for ψ̇. At order ε3

iψ̈s = − 1

2m
∇ψ̇s +

λ

8m2
ψs(2ψ̇sψ

∗
s + ψsψ̇

∗
s) +O(ε3) (4.90)

which exactly cancels out the second line of equation 4.89. We then have

iψ̇s =− 1

2m
∇2ψs +

λ

8m2
|ψs|2ψs −

1

8m3
∇4ψs+ (4.91)

+
λ

32m4

[
ψ2
s∇2ψ∗s + 2|ψs|2∇2ψs +∇2(|ψs|2ψs)

]
− 5g2

24m2
ψs|ψs|2 −

17λ2

768m5
|ψs|4ψs+

+O[g3, λ3, ε3t , ε
3
x, g

2εt, g
2εx, λ

2εt, λ
2εx, gλεt, gλεx, gε

2
t , gε

2
x, λε

2
t , λε

2
x, λεtεx, gεtεx, εtε

2
x, ε

2
t εx].

This is finally in agreement with our result 4.73, proving that at this order of approx-
imation and for low energies our effective Lagrangian describes the same theory as the
one established in the literature for the non relativistic limit.

4We used the convenient notation O(ε3) to mean O(g3, λ3, ε3t , ε
3
x, g

2εt, g
2εx, λ

2εt, λ
2εx,

gλεt, gλεx, gε
2
t , gε

2
x, λε

2
t , λε

2
x, λεtεx, gεtεx, εtε

2
x, ε

2
t εx).

5Specifically g3 = −g/2 and g4 = −λ/6.
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Chapter 5

Hamiltonian study

In the previous chapter we found an effective Lagrangian in the non relativistic limit for
the moduli in the KKLT scenario. Now we want to understand whether it allows for the
formation of oscillons: to do so we first compute explicitly the Hamiltonian assuming
spherical symmetry and a reasonable ansatz for the ground state, as the equation of
motion 4.73 doesn’t have any known exact analytical solutions. Stable and unstable
configurations will then correspond to minima and maxima of the resulting function with
respect to the radius. Their expression, however, turns out to be quite complicated, so
to gain an intuition on the behaviour of the Hamiltonian we study it in different regimes,
first focusing on just one coupling coefficient at a time and then in different regions of
the values of the radius.

5.1 The Hamiltonian

We have the effective field theory in the non relativistic limit, as described by the La-
grangian

Leff =
i

2
(ψ̇sψ

∗
s − ψsψ̇∗s)−

1

2m
∇ψs∇ψ∗s +

1

8m3
∇2ψs∇2ψ∗s+ (5.1)

+

(
5g2

48m4
− λ

16m2

)
|ψs|4 −

λ

32m4
|ψs|2(ψ∗s∇2ψs + ψs∇2ψ∗s) +

17λ2

2304m5
|ψs|6.

that we build and whose validity we checked in the previous chapter. The number of
particles is a conserved quantity and equal to N =

∫
d3ψ∗ψ, so in the non relativistic limit

we can see n(x) = ψ∗(x)ψ(x) as the local density of particles and ρ(x) = mψ∗(x)ψ(x).
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Performing a Legendre transform gives us the Hamiltonian density

Heff =
1

2m
∇ψs∇ψ∗s −

1

8m3
∇2ψs∇2ψ∗s +

(
− 5g2

48m4
+

λ

16m2

)
|ψs|4+ (5.2)

+
λ

32m4
|ψs|2(ψ∗s∇2ψs + ψs∇2ψ∗s)−

17λ2

2304m5
|ψs|6.

The corresponding equation of motion that we wrote explicitly in the previous chapter
in 4.73 has no known exact analytical solution. We can however construct a reasonable
ansatz that qualitatively mimics the true field and study the Hamiltonian for it. The
first assumption that we can make is for the solution to have a spherical symmetry, as
there are no mechanisms for the Lagrangian that can spontaneously break its rotational
symmetry. We also take out the time dependence of the field to write

ψs(r, t) = Ψ(r)e−iµt (5.3)

where µ is the chemical potential and we can take Ψ(r) to be real. Now to explicitly
calculate the Hamiltonian we need an ansatz for the spacial part Ψ(r). A simple but
effective choice is a damping exponential parametrized by R (which can then be inter-
preted as the radius of the moduli star). To ensure N =

∫
d3x|ψ|2 = 4π

∫
drr2n(r) we

impose an appropriate normalization factor, so the expression reads

ΨR(r) =

√
N

πR3
e−r/R. (5.4)

This ansatz enables us to compute each term of Hamiltonian by writing 5.2 in spherical
coordinates and the using the ansatz to perform the integration in r. All the terms are
of the form rnexp(−ar/R) and can be solved with a number of integration by parts. The
result is

Heff =
N

2mR2
− 5N

8m3R4
+

(−5g2 + 3m3λ)N2

384m4πR3
− 3λN2

128m4πR5
− 17λ2N3

62208m5π2R6
. (5.5)

Let us now perform a rescaling of the quantities involved in the Hamiltonian to turn to
dimensionless variables and simplify the analysis. As is common in theoretical physics
we assumed ~ to be equal to one and dimensionless; it follows that the action must be
dimensionless too, so we can work out the dimensionality of the coupling constants from
any of the Lagrangians. The condition ~ = 1, alongside with c = G = 1, allows us to
interpret everything as having mass-like dimension mn. In particular [λ]=0 and [g]=m,
so we can define the dimensionless ”tilde” quantities

λ =: λ̃

g =: mg̃

R =: R̃/m

N =: Ñ

Heff =: mH̃.

(5.6)
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Substituting these expressions into the Lagrangian we can get rid of all the masses and
have

H̃ =
Ñ

2R̃2
+

(
−5g̃2 + 3λ̃

)
Ñ2

384πR̃3
− 5Ñ

8R̃4
− 3λ̃Ñ2

128πR̃5
− 17λ̃2Ñ3

62208π2R̃6
. (5.7)

We are looking for stable enough configurations compatible with the characteristics of
a moduli star. The compactness is ensured by the form of our ansatz, with the field
being different from zero only inside the radius R. Stationary solutions correspond to the
minima and maxima of the Hamiltonian, the former being stable and the latter unstable.
To find them we have to solve the following equation in R̃

R̃4 + (−5g̃2 + 3λ̃)
Ñ

128π
R̃3 − 5

2
R̃2 − 15λ̃N

128π
R̃− 17λ̃2Ñ2

10368π2
= 0. (5.8)

The four solutions to this quartic equation are quite complicated and long, which makes
it hard to interpret them at first sight. To gain some intuition we can start by selectively
turning off terms in the Hamiltonian 5.7. Let us first disregard the original quartic
interaction by taking λ̃ = 0: the corresponding equation for stationary configurations is
then quadratic and much easier to solve and interpret. It presents two maxima, one in
a positive value R̃1 and the other in the negative value R̃2. To understand to which of
the full solutions they match we can expand those in the limit λ̃ → 0. The comparison
leaves only two options as possible physical solution. The same procedure done for g̃
further restricts the pool, enabling us to understand that out of the four solutions for
equation 5.8 only one is physical and it represents a maximum. This interpretation is
indeed confirmed by the graph in figure 5.1, where we plotted H̃(R̃) for fixed values of
g̃, λ̃ and Ñ .

5.2 Understanding the Hamiltonian

Let us analyse our Hamiltonian more rigorously and ground our interpretation by com-
paring our result to what’s present in the literature. In the third chapter, ”Moduli stars”,
we saw how Schiappacasse and Hertzberg studied the stable and unstable configurations
allowed by the Hamiltonian for the PQ axion in the presence of gravity

Heff (R) =
N

2mR2
− 5Gm2N2

16R
− N2

128πf 2
aR

3
(5.9)

in [3]. As previously seen, this Hamiltonian presents a minimum and a maximum for
negative values of the energy that represent a stable and an unstable bound state respec-
tively. Let us now turn off the gravitational interaction to compare their results with
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Figure 5.1: Plot of the dimensionless effective Hamiltonian for the KKLT potential
vs the dimensionless radius of the configuration, in the absence of gravity and in the
non-relativistic limit, for g̃, λ̃ = 1 and Ñ = 10. For a very small dimensionless radius
R the value of the Hamiltonian drops to minus infinity; for very large dimensionless
radius R the value of the Hamiltonian approaches zero, as is required by a localized
solution. In between those two regimes we have a maximum: its value as a function of
the dimensionless number of particles is plotted in Fig. 5.3. The function representing
the Hamiltonian also has values for negative R, showing a similar although mirrored
behaviour to the positive axis counterpart, but the corresponding maximum is not a
physical solution of equation 5.8.
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Figure 5.2: Plot of the dimensionless Hamiltonian for the PQ axion in the absence of
gravity vs the dimensionless radius for the value of Ñ = 9. Comparing it to the plot of
the full Hamiltonian in Fig. 3.1, where we used the same value of Ñ , we can see how
discarding the gravitational term modifies the asymptotic behaviour for large R̃, that
used to go to zero as ∝ −1/R̃ and now does so as ∝ 1/R̃2 . This change results in having
just one extremal point, a maximum associated to positive values of the energy, which
is no longer compatible with a bound state.

our situation. Then the Hamiltonian 5.9, after the rescaling 5.6, reads

H̃(R̃) =
Ñ

R̃2
− Ñ2

128πR̃3
. (5.10)

We can find the extremals of this function by taking its first derivative with respect to
R̃ and requiring it to be equal to zero. We then find just one maximum in

〈R〉 =
3Ñ

256π
(5.11)

and evaluating the energy in that point we get the positive value H̃ = 65536π2/27Ñ .
Neglecting the gravitational term modified significantly the behaviour of the Hamilto-
nian, resulting not only in the disappearance of the minimum but also in the uplifting
of the maximum, which is no longer compatible with a bound state. This happened be-
cause gravity exerts a stronger impact at large values of R̃, so not considering the term
−5Gm2N2

16R
changed the asymptotic behaviour of H̃ from −1/R̃ to 1/R̃2, as one can see

by comparing Fig. 5.2 with the plot of the full Hamiltonian 5.9 in chapter 2 (Fig. 3.1).
With this understanding of how gravity affects the existence of bound configurations, let
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us now return to our effective Hamiltonian 5.7 and rewrite it to highlight the dependence
from the radius as

H̃ =
C2

R̃2
+
C3

R̃3
− C4

R̃4
− C5

R̃5
− C6

R̃6
, (5.12)

where all coefficients but C3 and C5 have a defined positive sign that comes from the
structure of the Lagrangian. The signs of two mentioned coefficient depend on the
couplings g̃ and λ̃: C3 is positive when λ̃ > 5

3
g̃2, while in the KKLT potential we

consider a repulsive quartic self-interaction that makes C5 positive. Now we can study
the behaviour of the Hamiltonian in different regimes by considering only three terms
at a time. Then we will have equations for the extremal points which are quadratic
in R̃ and therefore easily solvable and interpretable. For large radius the terms that
shape the Hamiltonian the most are those with bigger exponents for R̃, therefore we can
approximate

H̃ =
C2

R̃2
+
C3

R̃3
− C4

R̃4
. (5.13)

Asymptotically, H̃ will behave like 1/R̃2, reaching zero from above, while for small radius
it will head down to −∞ is a way that is at least as steep as −1/R̃4. Taking the first
derivative of 5.13 with respect to R̃ and requiring it to vanish gives us the equation for
the extremal points

2R̃2C2 + 3R̃C3 − 4C4 = 0 (5.14)

which is solved by

〈R̃〉 =
3|C3|
4C2

(
− sgn(C3)±

√
1 +

32C2C3

9C2
3

)
, (5.15)

where the sign of the coefficient C3 depends on how the original couplings of the theory

g̃ and λ̃ compare to each other. They, in fact, define C3 as
(−5g̃2+3λ̃)Ñ2

384πR̃3 and appear in the
Lagrangian with opposite sign; the value of the coefficient then signals whether attrac-
tive or repulsive self-interactions dominate in the quartic term |ψ|4 and is of particular
importance when studying the possibility of stable configurations. For both the case of
C3 being positive and the one of it being negative, however, only the + solution of ex-
pression 5.15 is positive and therefore represents a physical option. Continuity, alongside
our previous considerations on the behaviour of H̃ in the limit R̃→∞ and in the region
of smaller radius, requires this solution to be a maximum in the first quadrant, as it has
to connect the branch of the Hamiltonian coming up from negative values from the left
to the one that, on the right, goes to zero from above.
In the region of small radius, instead, the Hamiltonian behaves like −1/R̃6 for R̃ → 0
before becoming shallower (∝ −1/R̃4) as R̃ grows larger. In our Hamiltonian 5.12 all
the terms that contribute the most in this zone have the same sign, but if instead λ̃
were negative we would have some competition among them which could result in more
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extremal points and, in principle, even a minimum for negative values of H̃, which could
be associated to the bound states we are looking for. To investigate this interesting case,
and to see how the sign of the original quartic self-interaction term affects the formation
of oscillons, let us consider the Hamiltonian approximated by

H̃ = −C4

R̃4
+
C5

R̃5
− C6

R̃6
, (5.16)

where the coefficients C4 and C6 are still positive definite, while we leave the sign of C5

unspecified. We once again have a quadratic equation for the extremal points, of solution

〈R̃±〉 =
5|C5|
8C4

(
sgn(C5)±

√
1− 96C4C6

25C2
5

)
. (5.17)

Now, for sgn(C5) = −1, as is the case for the KKLT potential, both solutions are negative
and the only extremal point we are left with is the maximum found at larger radius.
For C5 positive, however, both solutions are physical and represent two more possible
configurations. Evaluating the second derivative of H̃ in 〈R̃−〉 and in 〈R̃+〉 identifies the
previous as a maximum and the latter as a minimum. We are particularly interested in
the latter, as it could be a stable oscillon. To understand whether it represents a bound
state let us check the sign of the Hamiltonian 5.16 in 〈R̃+〉, only for the case of interest
C5 > 0. We have

sgn(H̃) = −sgn
(

1−

√
1− 96C4C6

25C2
5

− 16C4C6

5C2
5

)
, (5.18)

where we can see that the result depends on the value of the ratio C4C6/C
2
5 . For

C4C6/C
2
5 � 1 we can approximate the square root as 1− 96C4C6

50C2
5

, which gives an overall

plus sign for the Hamiltonian. For 96C4C6

25C2
5
∼ 1, instead, the square root vanishes and we

are left with a positive quantity inside the brackets that corresponds to a negative value
of the Hamiltonian in 〈R̃+〉, which can therefore be a stable bound state. Let us recall
that the coefficients Ci are defined by the Hamiltonian 5.7 with a change of sign for λ̃,
so we can make a more precise statement about the possibility of 〈R̃+〉 corresponding to
configurations of negative energy. Substituting the expression for C4, C5 and C6 back in
the evaluation of the Hamiltonian gives us in fact a positive value, which means that not
even a completely attractive self-interaction is enough for a stable bound state to form.
To conclude we can consider the region for intermediate values of R̃ when C5 > 0, where

H̃ =
C3

R̃3
− C4

R̃4
+
C5

R̃5
. (5.19)

As we still have freedom over the choice of sign of C3, we can have two separate cases.
For both the Hamiltonian behaves like 1/R̃5 from the right and then flattens to the
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Figure 5.3: Plot of the rescaled dimensionless radius R90 as a function of the dimen-
sionless number of particles Ñ . R90 is the (dimensionless) radius encompassing 90% of
the total mass of the star, as introduced in definition 5.21, and in our case it is equal to
∼ 2.661R̃. The dimensions of the star grow linearly with Ñ and do so indefinitely.

ordinate axis as the inverse of the cube of R̃, but it does so coming from either above or
below, depending on the sign of the coefficient. For positive C3 we therefore have room
for a minimum followed by a maximum, whose expressions are

〈R̃±〉 =
2C4

3C3

(
1±

√
1− 15C3C5

4C2
4

)
. (5.20)

In the case of negative C3, instead, the trend of the Hamiltonian allows for only a
minimum, which corresponds to the 〈R̃−〉 of the previous equation.
For our KKLT case we therefore found just one extremal point, a maximum, which is
furthermore associated to a positive value of the energy and cannot represent a bound
configuration, not even an unstable one. Still, let us consider it for a moment as if it
where a star configuration in order to compare it with the result found in the literature
[3]. In Fig. 5.3 we plotted the value of the dimensionless radius, rescaled to encompass
ninety percent of the total mass of the star, as a function of the dimensionless number
of particles. To find the value of the rescaled value for R̃, which we call R90, one has to
solve numerically

0.9N = 4π

∫ R90

0

dr′r′2Ψ(r′)2. (5.21)

For our exponential ansatz 5.3 the solution is R90 ∼ 2.661R. The radius of the ”star”
then grows linearly and indefinitely with the number of particles, as does the solution
5.11 that we found for [3] when turning off gravity.
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Chapter 6

Conclusions

We first introduced moduli as scalar fields arising in string theory in the massless spec-
trum and in the process of compactification of the extra dimensions. We saw how they
hold a central role in the theory, parametrizing many fundamental aspects such as the
coupling of the strings or the shape and size of the extra-dimensions. In order to assign
them a potential and in the process fix their vacuum expectation value, however, one
needs to consider the effects of fluxes during compactification and corrections, both per-
turbative and non perturbative in nature, to the superpotential. We did so in the context
of the KKLT scenario, where we focused on the stabilization of the Kähler modulus. A
peculiar aspect of this particular procedure is the uplifting of the resulting minimum to a
proper deSitter value, which is done by considering the effects of a few anti D3-branes at
the end of warped throats lounging from the Calabi-Yau manifold. We finished chapter
two by expanding the KKLT potential around its minimum: the resulting expression
highlights in a clear way the asymmetric nature of the potential, which translates to an
overall self-interaction that alternates between being attractive and being repulsive dur-
ing oscillations of a bound state. Having understood what moduli are, we then turned
to examining the possibility of compact objects made out of them: moduli stars. This
eventuality actually positions itself in a broader landscape of boson stars, which we out-
lined in chapter 3. Moduli stars could form as oscillatons, i.e. under the influence of
gravity, or as oscillons, kept together by self-interactions. In this last case the fluctu-
ations of the field start from an initial displacement with respect to the minimum and
can grow via three different mechanisms: tachyonic pre-heating, tachyonic oscillations
and parametric resonance. If moduli stars do form, they present an interesting array
of possible experimental signals, particularly as gravitational waves within the range of
LIGO and as black holes with an unusual small mass that would be interesting scenarios
in which to study Hawking radiation.
The literature on scalar stars mainly focuses on axion stars, given their importance as
a plausible candidate for dark matter, so we chose to start from the methods developed
in that context in order to construct our analytical treatise for moduli stars (on which
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only numerical studies exist). The first step consisted in building an effective field theory
for the moduli in the KKLT scenario, chosen because its asymmetric nature mentioned
above provides ground for possible interesting effects on the stability of the star. We
started by reviewing the approaches used on axion stars in [3] and [8]. Having recog-
nized the effectiveness of the non local definition used in the latter, we applied it to our
case. Treating the equation of motion perturbatively and then expanding the non local
operator in the non relativistic limit, we were able to find a non relativistic effective La-
grangian whose relativistic corrections can be computed in a systematic way. This result
is not found in the literature, so to check it we also computed the effective vertices with
the traditional diagram matching method. The two final Lagrangians can be related by
a field redefinition, which proves that they describe the same theory at low energies and
at the considered level of approximation. We then turned to the effective Hamiltonian
and looked for minima and maxima that could represent stable and unstable oscillons.
To evaluate the Hamiltonian we assumed the ground state to have a spherical symmetry
and considered a reasonable exponential ansatz to perform an explicit computation, as
the equation of motion does not have an exact known analytical solution. We computed
the extremal points as the values of the radius for which the first derivative of the Hamil-
tonian vanishes; the results, however, turned out to be quite lengthy and complicated
solutions of an equation of the fourth order. Although we can form an intuition numer-
ically on the nature of these solutions, to perform a proper study we need to consider
the Hamiltonian in different regimes: we did so for small, intermediate and larger values
of the radius. The KKLT scenario presents only one maxima which is not compatible
with a bound configuration, as it is associated with positive values of the energy. Several
numerical studies in the literature, on the other hand, predict the existence of meta-
stable configurations for the moduli of the KKLT potential [2], even in the absence of
gravity [12]. The reason for this discrepancy needs to be searched in the two significant
approximations that we made: considering the non relativistic limit and neglecting the
effects of gravity. A fully analytic relativistic treatment that could in principle recover
the results found for oscillons in [12] is currently out of reach. The inclusion of gravity,
instead, could lead to the presence of a minimum associated to a bound stable state that
could be studied using the method outlined in this thesis. The non-relativistic analysis
requires the consideration of the weak Newtonian limit and the introduction of a metric
expressed in terms of the Poisson gravitational potential ΦN(φ). The system is then
described by the coupled Schrödinger-Poisson equation, that admits a solitonic solution.
We have initiated such an analysis using the non-local field redefinition employed in this
thesis, but found its perturbative treatment technically challenging and so we leave this
extension for future work.
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