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Abstract

The next generation of galaxy redshift surveys will provide us data with unprece-
dented levels of precision, allowing us to extract new cosmological information
from both lower and higher-order clustering statistics. For this reason, new the-
oretical models capable of effectively describing these data sets, as well as new
statistical strategies able to reach an advanced accuracy, are required.

This Thesis project lies within this context, intending to develop the neces-
sary framework and tools to investigate the combination of two-point correlation
function (2PCF) and three-point correlation function (3PCF) of astrophysical
objects. Specifically, we proposed an extension of the redshift-space bispectrum
model of Scoccimarro et al., 1999 (hereafter SCF99), including the tidal bias bt
as an additional parameter, and a revision of the redshift-space 3PCF model
of Slepian and Eisenstein, 2017 (hereafter SE17). After having theoretically
derived the new 3PCF model and having implemented it in the free software
C++/Python libraries for cosmological calculations CosmoBolognaLib (CBL;
Marulli et al., 2016), we performed a thorough validation through a comparison
with the 3PCF model used by Veropalumbo et al., 2022. After that, we explored
the necessary components to develop a statistical and numerical framework for
the probe combination of the 2PCF and 3PCF, a technique which allows us
to reduce the statistical errors in the estimates of the cosmological parame-
ters, while breaking some parameter degeneracies. In particular, we applied
our pipeline to the 298 MINERVA mock catalogues (Grieb et al., 2016), us-
ing the extended Taruya-Nishimichi-Saito (eTNS) model for the 2PCF and our
new model for the 3PCF. We carried out a Bayesian analysis separately on the
2PCF and on the 3PCF. The analysis in real space demonstates the goodness
of our developed models, and shows the potential of the combination of 2PCF
and 3PCF in lifting degeneracies in cosmological parameters determination and
in increasing the accuracy of the constraints. The analysis in redshift space
paves the way to an actual application of this kind of analysis to real data, with
several interesting expansion and possible extension in view of the next large
spectroscopic surveys.
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Introduction

Over the last few decades, an exponential growth in astrophysical data has been
facilitated by remarkable advancements in computational technology, enabling
the processing of substantial amounts of information, commonly referred to as
Big Data. Within this context, cosmology has entered a new precision era,
benefiting from the availability of extensive astrophysical data sets (see e.g.
Huterer and Shafer, 2018).

Large-scale clustering analyses of astrophysical probes, such as galaxies and
galaxy clusters, has emerged as a crucial observational tool for constraining
cosmological parameters (see e.g. Alam et al., 2021). Measurements of two-
point statistics of the spatial distribution of these objects, either the power
spectrum P (k) in Fourier space or the two-point correlation function (2PCF)
in configuration space, have been decisive in defining the Λ-cold dark matter
(ΛCDM) model, i.e. the concordance cosmological model (see e.g. Mohammad
et al., 2018; Icaza-Lizaola et al., 2019; Wang et al., 2020). This model is based on
Einstein’s theory of General Relativity (Einstein, 1915). It claims the existence
of cold dark matter, which is non-relativistic matter that does not interact with
the electromagnetic force and makes up for approximately 26% of the energy
content of the Universe, and dark energy, defined as the component of the
Universe responsible for its accelerated expansion, which makes up for roughly
the 69% of the energy content of the Universe (Planck Collaboration et al.,
2020). These two dark components completely dominate our cosmos, yet we
are far from a satisfactory understanding of their nature. For this reason, they
represent some of the most intriguing open questions of modern cosmology.

The large-scale structure (LSS) of the Universe contains information about
the matter peculiar velocity field, which induces the so-called redshift-space dis-
tortions (RSD) on the clustering properties of matter. Furthermore, the LSS
encodes information about the cosmological parameters e.g. in the form of over-
densities of objects at a well-defined distance (around 100h−1Mpc), inherited
from the initial distribution of matter in the primordial Universe. These over-
densities appear in the P (k) in the form of wiggles, called baryonic acoustic
oscillations (BAO), and in the 2PCF in the form of a single peak. Both RSD
and BAO have been demonstrated to be fundamental features to constrain the
cosmological model (see e.g. Bautista et al., 2020; Gil-Marín et al., 2020; Marulli
et al., 2021).

While the 2PCF and P (k) can fully describe a perfectly Gaussian field, going

7



beyond these two-point statistics is fundamental to capture the non-Gaussian
behavior of structures, which is caused by multiple factors, such as the nonlinear
evolution of matter due to gravity and measurement limitations. For this reason,
the moments of the density field beyond the second one are crucial, containing
valuable cosmological information. As a result, n-point statistics have acquired
great significance in the last decades. The simplest one is represented by three-
point statistics, either in the form of the bispectrum B(k) in Fourier space, or
the three-point correlation function (3PCF) in configuration space, which are
sensitive to deviations from Gaussianity in the primordial density perturbations.
In recent years, three-point statistics arose as an essential cosmological probe
(see e.g. Slepian and Eisenstein, 2017; Moresco et al., 2021). For this reason,
numerous works have tackled the issue of developing theoretical models for both
the 3PCF and B(k). Many models for the redshift-space bispectrum have been
proposed, either derived analytically (see e.g. Heavens et al., 1998; Smith et al.,
2008), or through numerical simulations (see e.g. Gil-Marín et al., 2015). SCF99
derived a model for the redshift-space bispectrum using Perturbation Theory
(PT) going up to second-order in the linear density field. SE17 proposed a
model for the redshift-space 3PCF derived from PT, basing their analysis on
the Fourier space model of SCF99. However, we found some calculation errors
in the 3PCF model of SE17. For this reason, one of the major goals of this
Thesis work was to develop a new 3PCF model, based on the bispectrum model
of SCF99. This model has been implemented within the CosmoBolognaLib
(CBL), a set of C++ and python libraries for cosmological calculations.

So far, very few works exploited the full potential of the combination of
second- and third-order statistics, and mostly in Fourier space (see e.g. Se-
fusatti et al., 2006; Yankelevich and Porciani, 2019; Veropalumbo et al., 2021).
These papers showed the advantages of combining both statistics, which in-
clude reducing the statistical errors when estimating cosmological parameters,
and breaking some parameter degeneracies. An important goal of this project
was to develop the necessary framework to exploit the joint likelihood analysis
of the 2PCF and 3PCF. We used the CBL to build a computational infrastruc-
ture with the purpose of modelling the 2PCF and 3PCF and, by sampling the
posterior distribution using a Monte Carlo Markov Chain (MCMC) method, to
estimate the cosmological model parameters. We then proceeded by preparing
the necessary environment for the joint analysis of 2PCF and 3PCF. We ap-
plied our models and pipelines on 298 mock catalogues of dark matter haloes
obtained from the MINERVA N-body simulations, analyzing both real and red-
shift space. The real space analysis demonstrate the strength of this approach,
showing how the combination of 2PCF and 3PCF can be crucial to precisely
determine the bias parameters of the analyzed samples and significantly reduce
the error bars on the derived parameters. The natural continuation of this work
would be the analysis of the joint constraints through a MCMC analysis, but
it was not possible to include the results in this work due to CPU constraints;
however a full analysis is currently ongoing.

We organize our work as follows:
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• in Chapter 1 we present an introduction to the cosmological framework
upon which the concordance cosmological model is built;

• in Chapter 2 we introduce the concepts of 2PCF and 3PCF, escribing the
cosmological information they encode;

• in Chapter 3 we discuss the model used in our analysis for the modelling
of the 2PCF;

• in Chapter 4 we present the 3PCF model we developed, based on an
extension of the SCF99 model for the bispectrum and a revision of the
SE17 model for the 3PCF, showing our mathematical derivation;

• in Chapter 5 we describe the implementation of the codes developed in
this work, and in particular the derivation of the covariance matrices for
the joint 2PCF and 3PCF analysis, and the modelling of the 2PCF and
3PCF, including the addition of the new 3PCF model;

• in Chapter 6 we present and discuss the results of our cosmological anal-
ysis exploring separately the analysis of the 2PCF and of the 3PCF, and
comparing their results. We conclude discussing the developed framework
for the joint analysis of 2PCF and 3PCF, and presenting the obtained
results.

• in Chapter 7 we summarize our results and discuss future developments
of this work;

• finally, in Appendices A, B and C we discuss in more detail the imple-
mentation of new CBL functions regarding covariance matrices, 2PCF
modelling, and 3PCF modelling, respectively.

9



Chapter 1

Cosmological background

In this chapter, we present the cosmological background, which serves as the
fundamental cornerstone for the foundation of this Thesis work. First, we pro-
vide insight into the mathematical framework that underlies modern cosmol-
ogy by introducing the core principles of Einstein’s theory of General Rela-
tivity. Subsequently, we focus on both the geometry of the Universe, illustrat-
ing the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and the Hubble-
Lemaître Law, and on its content. Then, we proceed to describe the Friedmann
equations, which are found by applying Einstein’s field equation to a homo-
geneous Universe. Afterwards, the concordance ΛCDM model is introduced.
Finally, we give an insight on the Jeans theory of cosmic structure formation
starting from density perturbations.

1.1 Rudiments of General Relativity
At cosmological scales, the dominating interaction is gravity, which is remark-
ably described by General Relativity (GR), that connects the geometrical prop-
erties of spacetime to the energy content of the Universe. GR constitutes a
classic field theory, in which interactions are transported at a finite velocity, the
speed of light, by a field, which is spacetime itself.

GR is based on the so-called equivalence principle, which states that in a
small region of the Universe the effects of gravity are indistinguishable from the
effects of an acceleration. As a consequence, an experiment carried out inside
an accelerated laboratory should yield the same results as if it was performed
inside a laboratory subject to a gravitational field of the same measure.

A notable peculiarity of GR is that it is background independent: this rep-
resents a significant departure from Newtonian and special relativity. For this
reason, GR is formulated using tensorial equations, which allow for a manifestly
covariant formalism. Therefore, some first considerations concerning coordi-
nates should be made.

Let us consider a 2-dimensional surface Σ with a point P on it and the plane
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tangent to Σ in P . We can project the points of the plane onto the surface Σ,
so that we can write the Cartesian local coordinates of the point P :

Xi
P = (XP , YP ). (1.1)

If xµ
P are arbitrary coordinates of the point P, the Jacobian of the map Xi

P (x
µ)

between the two coordinate systems is:

eiµ =
∂Xi

P (x
µ)

∂xµ

∣∣∣∣∣
xµ=xµ

P

. (1.2)

This quantity is defined as the frame field and it captures the distance between
points.

If we consider now the two points xµ and xµ + dxµ on Σ, we can write:

dXi =
∂Xi(xµ)

∂xµ
dxµ = eiµ(x)dx

µ. (1.3)

Then the distance between these two points is:

ds2 = δijdX
idXj = δije

i
µ(x)e

j
ν(x)dx

µdxν , (1.4)

where we use the Einstein summation convention, that implies the summation
over the repeated indices in a formula, for brevity. If we define the metric tensor
as:

gµν(x) ≡ δije
i
µ(x)e

j
ν(x), (1.5)

then we can write:
ds2 = gµν(x)dx

µdxν . (1.6)

The metric tensor gµν is a symmetric, hence gµν = gνµ, rank (0, 2) tensor field
and it specifies the local geometric structure of spacetime at each point.

With the metric tensor we are able to derive the length of a curve γ on the
spacetime manifold:

L[γ] =

∫
ds =

∫ √
gµν

(
x(τ)

)
dxµdxν =

∫ √
gµν

(
x(τ)

)
ẋµẋνdτ, (1.7)

where τ is the variable through which the curve is parametrized.
By means of the metric tensor we can also define angles. Indeed, we have

that:
vµ ≡ eµi(x)v

i, (1.8)

from which we can define the angle θ:

cos θ = v ·w = δijv
iwj = gµν(x)v

µwν , (1.9)

where equation (1.5) was used.
For simplicity we have considered the surface Σ, which is a 2-dimensional

manifold, but all these considerations can be generalized to the case of an n-
dimensional manifold.
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The shortest path between two points in a curved space is called a geodesic.
In the context of GR, it represents the path of an object subject to gravity only.
We can obtain the equation of a geodesic by differenciating the length of a curve
in equation (1.7):

δL[γ] =

∫
δ
√

gµν ẋµẋνdτ. (1.10)

After some calculations, we can derive the geodesic equation:

ẍµ + Γµ
αβ ẋ

αẋβ = 0, (1.11)

where Γµ
αβ are the Christoffel symbols, defined as:

Γµ
αβ =

1

2
gµν

(
∂αgνβ + ∂βgαν − ∂νgβα

)
. (1.12)

Let us consider a vector vν . We define its covariant derivative as:

∇µv
ν = ∂µv

ν + Γν
µαv

α. (1.13)

On the other hand, the covariant derivative of the covariant vector wν is defined
as:

∇µwν = ∂µwν − Γα
µνwα. (1.14)

In a flat, Euclidean space, we have Γµ
αβ = 0, meaning that the covariant deriva-

tive coincides with the partial derivative. Conversely, in a curved space the
Christoffel symbols are non-zero and they encode information about how tan-
gent spaces are connected as one moves along a curve on the manifold. Indeed,
if the covariant derivative of a tensor is equal to zero, it means that the vector
is parallel transported along a curve on the manifold.

It can be proven that:

∇µ∇νv
α −∇ν∇µv

α = Rα
βµν , (1.15)

where Rα
βµν is the Riemann tensor, defined as:

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + Γα

µρΓ
ρ
βν − Γα

νρΓ
ρ
βµ. (1.16)

If Rα
βµν = 0 in a region of spacetime, it implies that the curvature of spacetime

in that region is flat.
The main result of GR is the Einstein’s field equation:

Rµν − 1

2
Rgµν =

8πG

c4
Tµν , (1.17)

where G is the gravitational constant, c is the speed of light, and Rµν and R
are the Ricci tensor and Ricci scalar, respectively, defined as:

Rµν ≡ Rρ
µνρ, (1.18)

R = gµνRµν . (1.19)
Tµν is the energy-momentum tensor and it quantifies the matter and energy
content of the Universe. Equation (1.17) implies that the curvature of the
Universe, described on the left-hand side, is determined by its matter and energy
content, specified on the right-hand side.
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1.2 The Friedmann-Lemaître-Robertson-Walker
metric

Cosmology is founded on the so-called Cosmological Principle, which states that
the Universe is homogeneous and isotropic at large scales (tipically hundreds of
Mpc). In other words, there is no preferred position or direction in the Universe.

If we consider two events in spacetime (t1, x1, y1, z1) and (t2, x2, y2, z2), their
distance is:

ds2 = gµνdx
µdxν = g00dt

2 + 2g0idtdx
i + gijdx

idxj , (1.20)

where g00dt
2 is the time component, gijdxidxj is the spatial component (i and j

are the spatial indices and they can assume the values of {1, 2, 3}) and 2g0idtdx
i

is the mixed component. As a consequence of the Cosmological Principle, the
mixed component is equal to zero. For light, we have ds2 = 0, which implies
that g00 = c2, where c is the speed of light. Therefore, we can write:

ds2 = c2dt2 + gijdx
idxj = c2dt2 − dl2. (1.21)

The line element dl2 depends on the geometry of the Universe. If we consider
the spacetime as a plane the line element is:

dl2 = dx2 + dy2 + dz2, (1.22)

which in polar coordinates, becomes:

dl2 = dρ2 + ρ2dϕ2, (1.23)

where 0 ≤ ρ < ∞ and 0 ≤ ϕ ≤ 2π. If we define ρ ≡ ar, where a has the
dimensions of a length and r is dimensionless:

dl2 = a2
[
dr2 + r2dϕ2

]
. (1.24)

If we consider the spacetime as a spherical surface of radius R, then we have:

dl2 = R2
[
sin2 θ dϕ2 + dθ2

]
, (1.25)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. If we define R ≡ a and sin θ ≡ r, then:

dl2 = a2
[
r2dϕ2 +

1

1− r2
dr2

]
. (1.26)

If we consider the spacetime as a hyperbolic surface of radius R, then we have:

dl2 = R2
[
sinh2 θ dϕ2 + dθ2

]
. (1.27)

If we define R ≡ a and sinh θ ≡ r, then:

dl2 = a2
[
r2dϕ2 +

1

1 + r2
dr2

]
. (1.28)
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Therefore, we can write in general:

dl2 = a2
[
r2dϕ2 +

1

1− kr2
dr2

]
, (1.29)

where k can only assume the values of 0, +1 or −1.
We can move to 3-dimensions by replacing the angle ϕ in equation (1.29)

with the solid angle Ω, knowing that dΩ2 = dθ2 + sin2 θdϕ2:

dl2 = a2
[ dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
. (1.30)

Thus, we can write the distance in the 4-dimensional spacetime as:

ds2 = c2dt2 − a2(t)
[ dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (1.31)

also known as the FLRW metric. The parameter a is called scale factor and it
encodes information about the expansion of volumes in the Universe, while the
parameter k is called curvature parameter and, depending on the geometry of
spacetime, it can assume three values:

• k = 0: flat geometry (flat Universe);

• k = +1: spherical geometry (closed Universe);

• k = −1: hyperbolic geometry (open Universe).

We define the proper distance as the distance between two points when
dt = 0 and by rotating the reference frame so that dθ = dϕ = 0, we can write:

dpr(t) = a(t)

∫ r

0

dr′√
1− kr′2

= a(t)χ(r), (1.32)

where the first term contains the temporal part and the second term contains
the spatial one. Depending on the geometry of the Universe the spatial term
χ(r) can assume different values:

χ(r) =


r, k = 0

arcsin r, k = +1

arcsinh r, k = −1

. (1.33)

The comoving distance is the proper distance computed at the present time t0:

dc =
a0
a(t)

dpr(t), (1.34)

where a0 ≡ a(t0). A comoving reference frame is a reference frame which is
comoving with the variation of a(t), so with the expansion of the Universe.

Two other quantities can be introduced: the particle horizon and the event
horizon. The particle horizon is defined as the largest comoving distance from
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which a photon emitted by a particle can have travelled to the observer in the
age of the Universe, so it sets the size of the observable Universe:

Rph(t) = a(t)

∫ t

0

cdt′

a(t′)
. (1.35)

On the other hand, the event horizon identifies the largest comoving distance
that a photon emitted now can ever reach an observer in the future, then it sets
the maximum size reached by the Universe in the future (potentially it could
be infinite):

Reh(t) = a(t)

∫ tend

t

cdt′

a(t′)
. (1.36)

1.3 Hubble-Lemaître Law and redshift
The expansion of the Universe causes the scale factor a to change as a function
of cosmic time. As a consequence, also the proper distance separating two points
grows over time, and by calculating its time derivative, we can deduce the radial
velocity between these points:

vr(t) =
d

dt
dpr(t) = ȧ(t)F (r) =

ȧ

a
dpr(t). (1.37)

Therefore, the radial velocity is proportional to the distance, meaning that
points that are more distant from one another recede from each other with
greater velocity. By defining the Hubble parameter as H ≡ ȧ/a, we can write
the well-known Hubble-Lemaître Law:

vr(t) = H(t) dpr(t). (1.38)

If we compute the Hubble parameter at the present time we obtain the Hubble
function H0 ≡ H(t0). Its value, as measured e.g. by Wang et al., 2017 using
the latest baryonic acoustic oscillation measurements from the eBOSS survey,
is:

H0 = (67.27± 1.55) km s−1Mpc−1. (1.39)

Conventionally, we introduce the dimensionless Hubble parameter h as follows:

H0 ≡ 100h km s−1Mpc−1. (1.40)

The inverse of the Hubble constant represents a first-order approximation for
the age of the Universe. It is important to underline that one of the open
questions of modern cosmology is the so-called Hubble tension, which refers to
a discrepancy in the value of H0 measured in the late and early Universe (for a
detailed review see Verde et al., 2019; Abdalla et al., 2022). This inconsistency
might potentially be an indication of the existence of new physics.

The expansion of the Universe causes objects to recede from us, but this
does not mean that we are the center of the expansion. Indeed, the cosmo-
logical principle states that there is not a preferred position in the Universe.
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Consequently, from any point of spacetime we would see objects receding from
us. This implies that the observed spectrum of such receding objects under-
goes a reddening, caused by the shift towards longer wavelengths. The so-called
redshift is defined as:

z =
λobs − λem

λem
=

∆λ

λ
, (1.41)

where λobs is the observed wavelength and λem is the emitted wavelength. Since
the objects are moving away from us, λobs is always greater than λem, meaning
that the redshift z is always positive.

Let us consider a photon which is emitted at time tem with wavelength λem

and is observed at time tobs with wavelength λobs. Since photons move along
null geodesics by definition, we have ds2 = 0 and by choosing a suitable reference
frame we also have dθ = dϕ = 0, then:∫ tobs

tem

cdt

a(t)
=

∫ r

0

dr′√
1− kr′2

= Fk(r). (1.42)

We now introduce a second photon, emitted at time tem+ δtem with wavelength
λem and observed at time tobs + δtobs with wavelength λobs. Analogously, we
can write: ∫ tobs+δtobs

tem+δtem

cdt

a(t)
=

∫ r

0

dr′√
1− kr′2

= Fk(r), (1.43)

since the spatial part remains unchanged. Therefore, if δtem ≪ 1 and δtobs ≪ 1,
so that a(t) can be considered roughly constant:

δtobs
aobs

=
δtem
aem

, (1.44)

from which, knowing that δt ∝ 1/ν and λν = c, we derive:

aem
λem

=
aobs
λobs

. (1.45)

Remembering the definition of redshift in equation (1.41), we obtain:

aobs
aem

= 1 + z. (1.46)

If we consider an observer at present time and a photon emitted at time t we
find the more general relation:

a0
a(t)

= 1 + z. (1.47)

These considerations regarding distances and redshift will be extremely useful
to understand the distortions in the clustering properties of cosmic tracers (see
section 2.3).
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1.4 Content of the Universe
From now on we simplify the notation by using units in which:

c = ℏ = kB = 1, (1.48)

where ℏ is the reduced Planck constant and kB is the Boltzmann constant.
After having familiarized with the geometry of spacetime, contained in the

left-hand side of equation (1.17), we now turn to the content of the Universe,
described by the right-hand side of the same equation. Let us consider the
energy-momentum tensor Tµν . We consider the content of the Universe to be
a perfect fluid, in which the particles have a mean free path much smaller than
their physical scales of interaction. As a consequence, we can write the energy-
momentum tensor as:

Tµν = (ρ+ p)uµuν + pgµν , (1.49)

where ρ is the energy density, p is the pressure and ui is the i-th component
of the 4-velocity of the fluid element. Knowing that in Cartesian comoving
coordinates:

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 (1.50)

and:
Tµ

ν = gανT
µα, (1.51)

we derive that:

Tµ
ν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.52)

If we take the covariant derivative of the energy-momentum tensor we obtain
the following condition:

∇µT
µ
ν = 0, (1.53)

which is the GR version of the continuity and Euler equations. Equation (1.53)
actually consists of 4 equations since ν = 0, 1, 2, 3. In particular, if we take the
ν = 0 component we obtain:

∂Tµ
0

∂xµ
+ Γµ

αµT
α
0 − Γα

0µT
µ
α = 0. (1.54)

We know that T i
0 = 0 since we are assuming isotropy, consequently the µ index

in the first term and the α index in the second term must be equal to zero:

−∂ρ

∂t
− Γµ

0µρ− Γα
0µT

µ
α = 0. (1.55)
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Knowing that the only non-zero components of the Christoffel symbols are:

Γ0
ij = δij ȧa, (1.56)

Γi
0j = Γi

j0 = δij
ȧ

a
, (1.57)

we can conclude that Γµ
0µ = 0 and Γα

0µ does not vanish only in the case in which
α and µ are spatial indices. Then we obtain:

∂ρ

∂t
+

ȧ

a

[
3ρ+ 3p

]
= 0, (1.58)

which can be rewritten as:

a−3 ∂[ρa
3]

∂t
= −3

ȧ

a
p. (1.59)

We can now define the equation of state parameter ws:

ws ≡
ps
ρs

, (1.60)

where the subscript s refers to a generic component of the Universe. Recalling
that the sound velocity is defined as:

v2s =

(
∂p

∂ρ

) ∣∣∣∣
S=const

, (1.61)

where S is the entropy, we deduce that, since vs must be smaller than c:

0 ≤ ws < 1. (1.62)

We can integrate equation (1.58) and, by assuming that ws does not change
with time, we derive:

ρs(a) ∝ a−3(1+ws). (1.63)

Therefore, depending on the value of ws, we have different evolutions of the
different components of the Universe:

• matter (wm = 0): ρm ∝ a−3 ∝ (1 + z)3, which is not surprising as the
matter energy density scales like a cubic length, due to the expansion of
volumes in the Universe;

• radiation (wr = 1/3): ρr ∝ a−4 ∝ (1+ z)4, in which an extra (1+ z) term
with respect to the matter case is present, which can be understood as
due to the shift of the photon’s energy towards greater wavelengths.

Understanding the evolution of matter with cosmic time is essential to study its
clustering properties, described in chapter 2.
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1.5 Friedmann equations
We have already discussed about Einstein’s field equation in section (1.1), deriv-
ing equation (1.17). If we apply it to the special case of a homogeneous Universe,
we can derive the so-called Friedmann equations, which are fundamental in cos-
mology. Let us begin with the calculation by assuming the FLRW metric and
k = 0. We can conveniently write the Ricci tensor, defined in equation (1.18),
as:

Rµν = Γα
µν,α − Γα

µα,ν − Γα
βαΓ

β
µν − Γα

βνΓ
β
µα, (1.64)

where the comma indicates a derivative with respect to x, so that Γα
µν,α ≡

∂Γα
µν/∂x

α.
We can derive the time-time component of Rµν :

R00 = Γα
00,α − Γα

0α,0 − Γα
βαΓ

β
00 − Γα

β0Γ
β
0α. (1.65)

Recalling that the Christoffel symbol vanishes when the two lower indices are
equal to zero, the first and third term of the right-hand side of the previous
equation are cancelled; for the same reason, the indices α and β in the second
and fourth terms must be spatial. Then:

R00 = −Γi
0i,0 − Γi

j0Γ
j
0i, (1.66)

which, if we use equation (1.57), becomes:

R00 =− δij
∂

∂t

(
ȧ

a

)
−

(
ȧ

a

)2

δijδij

− 3

(
ä

a
− ȧ2

a2

)
− 3

(
ȧ

a

)2

− 3
ä

a
,

(1.67)

where in the second line we have used the fact that δijδij = δii and after
summing we get a 3 factor. We can now derive the spatial part of Rµν :

Rij = δij

[
2ȧ2 + aä

]
. (1.68)

The Ricci scalar, defined in equation (1.19), becomes:

R = gµνRµν = g00R00 + gijRij = −R00 +
1

a2
Rij , (1.69)

where we have used the fact that we have the FLRW metric (equation 1.50).
Then:

R = 6

[
ä

a
+

(
ȧ

a

)2
]
. (1.70)
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Therefore, if we consider the time-time component of equation (1.17), we obtain:

R00 −
1

2
g00R = 8πGT00. (1.71)

Knowing that the energy-momentum tensor is defined in equation (1.49), this
becomes: (

ȧ

a

)2

=
8πG

3
ρ, (1.72)

which is the first Friedmann equation.
Similarly, we can derive the second Friedmann equation by considering the

space-space component of equation (1.17):

Rij −
1

2
gijR = 8πGTij , (1.73)

which becomes:
ä

a
= −4πG

3
(ρ+ 3p) . (1.74)

1.6 ΛCDM model
The ΛCDM model is the concordance cosmological model and it describes the
composition and the evolution of the Universe. It provides a theoretical frame-
work that matches a wide range of cosmological observations and experiments,
making it a cornerstone of modern cosmology. Estimates of cosmological pa-
rameters, such as the one performed in this work (see chapter 6), try to improve
our constraints and to test the validity of the ΛCDM model.

As the name suggests, according to this model there are two main con-
stituents of the Universe, which completely dominate its energy content: dark
energy, represented by the cosmological constant Λ, which is the component
of the Universe responsible for its accelerated expansion, and cold dark matter
(CDM), which stands for non-relativistic matter that is not visible since it does
not interact with the electromagnetic force.

With the aim of having the energy densities of the constituents of the Uni-
verse in the same units, we define the density parameter of the species s as:

Ωs ≡
ρs(t0)

ρc
, (1.75)

where the critical density ρc is defined as:

ρc ≡
3H2

0

8πG
. (1.76)

As a consequence, we can write the evolution of the energy density of the species
s as:

ρs(a) = Ωsρca
−3(1+ws). (1.77)
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The species, referred to with the subscript s, which we consider are radiation (γ),
referring to relativistic particles like photons and neutrinos, baryons (b), CDM
(c) and dark energy (Λ). In addition to these, we indicate all the non-relativistic
matter components with the subscript m, so that we have Ωm = Ωb+Ωc; more-
over we denote all the relativistic components with the subscript r, which in-
clude photons, relativistic neutrinos and relativistic matter. To be independent
of the value of the Hubble constant H0, when we make a measurement we are
constraining ωs ≡ Ωsh

2, rather than Ωs only, since the h2 term contains our
ignorance regarding H0.

Observations suggest that today Ωtot ≃ 1, which means that the energy
density of the Universe today is consistent to the critical density ρc and that,
consequently, the Universe is flat. The contributions of the various components
of the Universe can be summarized as:

• Ωγ ≈ 10−5;

• Ωb ≈ 0.05;

• Ωc ≈ 0.26;

• ΩΛ ≈ 0.69.

1.7 Jeans theory
In this section, we consider the gravitational instabilities which lead to the
formation of cosmic structures, described by the so-called Jeans theory. Un-
derstanding the formation of these structures is fundamental to analyze their
clustering properties, described by the 2PCF and 3PCF (see sections 2.1 and
2.2), which are central concepts in this work.

Jeans instabilities are thought to be driven by density fluctuations, tiny os-
cillations in the density of the primordial fluid. The Universe at Mpc scales
appears quite inhomogeneous today, since we can observe, for instance, galax-
ies, galaxy clusters and other astrophysical objects, implying that the evolution
today is highly non-linear. However, the early Universe was extremely homoge-
neous at such scales, with oscillations in density which can be derived from the
oscillations in temperature observed in the CMB, of the order of:

δT

T
≈ 10−5. (1.78)

Jeans theory provides an analytic explanation for the growth of density pertur-
bations as long as they remain linear, while their non-linear evolution can only
be described by numerical simulations.

1.7.1 Jeans theory in a static Universe
Let us consider a homogeneous, isotropic and static, hence non-expanding, Uni-
verse, filled with a perfect fluid with a constant matter density ρ(x, t). Adopting
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a Newtonian approach, we can write the following equations of motion of such
fluid: 

∂ρ
∂t +∇ · (ρv) = 0
∂v
∂t + (v · ∇) · v = − 1

ρ∇p−∇Φ

∇2Φ = 4πGρ

p = p(ρ, S) = p(ρ)
dS
dt = 0

, (1.79)

where v is the velocity of a fluid element, Φ is the gravitational potential and
S is the entropy. The first equation of the system (1.79) is the continuity
equation, the second one is the Euler equation, the third one is the Poisson
equation, the fourth one is the equation of state and the last one is the adiabatic
condition, which is assumed since observations suggest that the majority of
density fluctuations are adiabatic. Let us assume to know the exact solutions
for the background, which, since the Universe is static, can be written as:

ρ = ρB = const

p = pB = const

v = 0

Φ = ΦB = const

. (1.80)

Before proceeding it is worth mentioning that the latter set of equations is not
correct since the Poisson equation implies that if ΦB = const, then ρB = 0.
Despite this inconsistency here, we will not encounter any problem, since it will
not be present in the expanding Universe case, considered in section 1.7.2. Let
us introduce now some small perturbations to the background solution:

ρ = ρB + δρ

p = pB + δp

v = δv

Φ = ΦB + δΦ

, (1.81)

where δρ, δp, δv, δΦ ≪ 1, so that we can neglect all the terms beyond the linear
ones. We can now define the density contrast δ(x, t) as:

δ(x, t) ≡ δρ(x, t)

ρB
≡ ρ(x, t)− ρB

ρB
, (1.82)

implying that the first equation of the system (1.81) can be written as:

ρ = ρB(1 + δ). (1.83)

Now we can substitute the solutions in (1.81) into the system (1.79) and, moving
to Fourier space considering plane waves as solutions, we obtain a set of three
equations in three variables:

ωδk + kδvk = 0

ωδvk = −v2skδk − kδΦk

−k2δΦk = 4πGρBδk

, (1.84)
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where ω is the angular frequency of the wave, k ≡ |k| is the wave vector, δk,
δvk, δΦk are the Fourier transforms of δ, v, Φ respectively and vs ≡

√
∂p/∂ρ

is the sound velocity. By requiring that the Jacobian of the system is equal to
zero, we get the dispersion relation:

ω2 = k2v2s − 4πGρB . (1.85)

By imposing that ω2 = 0, we find:

kJ =

√
4πGρB

v2s
, (1.86)

which is the wave vector corresponding to the so-called Jeans scale λJ :

λJ =
2π

kJ
= vs

√
π

GρB
. (1.87)

We can discriminate between two cases:

• λ < λJ : equation (1.85) can be rewritten as:

ω2 = k2v2s

[
1−

(
λ

λJ

)2
]
. (1.88)

In this case we have ω2 > 0, implying that we have 2 real solutions:

ω± = ∓kvs

√√√√[
1−

(
λ

λJ

)2
]
. (1.89)

If we substitute these solutions into the wave equation:

ρ(r, t) = δρke
iωt+ikr, (1.90)

we can see that the temporal part remains imaginary, therefore the ampli-
tude does not change with time. This implies that these solutions represent
plane waves which propagate, but do not grow with time.

• λ > λJ : equation (1.85) can be rewritten as:

ω2 = −4πGρB

[
1−

(
λJ

λ

)2
]
. (1.91)

In this case we have ω2 < 0, implying that we have 2 imaginary solutions:

ω± = ∓i

√√√√4πGρB

[
1−

(
λJ

λ

)2
]
= ∓|ω|. (1.92)
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If we substitute these solutions into equation (1.90) we obtain:

δ(r, t) = δρke
∓|ω|teikr, (1.93)

implying that the amplitude changes with time. Therefore, we have one
exponentially growing solution and one exponentially decaying solution.

Thus, we can conclude that in the case of a static Universe, the perturbations
with a scale larger than the Jeans scale λJ grow exponentially.

1.7.2 Jeans theory in an expanding Universe
Let us now consider a homogeneous, isotropic and expanding Universe. This
implies that in this case the energy density of the background depends on time,
ρB = ρB(t). Now that the Universe is expanding, it becomes necessary to dis-
tinguish between the proper distance, denoted as r, and the comoving distance,
represented by the variable x. Their relation is the following:

r = ax. (1.94)

If we derive the proper distance r with respect to time, we get the velocity u:

u =
dr

dt
= ȧx+ aẋ = Hr + aẋ = Hr + v, (1.95)

where Hr is the Hubble flow, due to the expansion of the Universe, and v is the
peculiar velocity, due to gravity. We can write the exact solutions of the system
(1.79) for the background as: 

ρ = ρB(t)

p = pB

u = Hr

Φ = ΦB

. (1.96)

Here we no longer have the problem of incoherency we have encountered in sec-
tion 1.7.1 when we have wrote equation (1.80). Now we proceed using the same
strategy we adopted in section 1.7.1, therefore we introduce small perturbations
to these background solutions, and then we substitute them into equation (1.79).
Then, if we move to Fourier space and we search for plane waves, we can obtain
the following dispersion relation:

δ̈k + 2
ȧ

a
δ̇k + δk

[
k2v2s − 4πGρB

]
= 0, (1.97)

where the second term is related to the Hubble friction, due to the expansion of
the Universe, and the δkk

2v2s term accounts for the characteristic velocity field
of the considered fluid. Both these terms have the effect of damping the growth
of the density fluctuations. Equation (1.97) is valid for both baryons and DM,
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with the only difference being that when we are considering DM we substitute
the sound velocity vs with the velocity dispersion, since DM is assumed to be
non-collisional. We define the Jeans scale as:

λJ ≃ vs

√
π

GρB
. (1.98)

Similarly to the static Universe case, for λ < λJ the perturbation does not grow
and it propagates as a stationary wave. On the other hand, for λ > λJ the
dispersion relation has a growing and a decaying solution:

δ(x, t) = A(x)δ+(t) +B(x)δ−(t), (1.99)

where A and B are two functions depending on the comoving coordinate x,
while δ+ and δ− are the growing and decaying solutions, respectively. We are
interested to the growing solution, since it is the one which gives rise to the grav-
itational instabilities, and its expression for a generic Universe can be written
as:

δ+(t) = H(t)

∫
dt

a2H2(t)
. (1.100)

The integral in equation 1.100 does not have an analytic solution, but we can
write an approximated parametric solution:

f ≡ d log δ+
d log a

= Ω0.55
M +

ΩΛ

70

(
1 +

1

2
Ω0,M

)
. (1.101)

This equation suggests that the growth rate f has a strong dependence on the
matter density parameter ΩM and a relatively small dependence on the density
parameter of Λ, meaning that Λ does not play a relevant role in the growth
of density fluctuations. Moreover, the exponent of ΩM , 0.55, is a prediction
of GR, consequently its measurement is extremely useful to put understand
whether GR is still valid at cosmological scales.
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Chapter 2

Statistical properties of the
large-scale structure

Statistical tools are crucial in cosmology, since they provide the mathematical
and computational framework necessary to analyze, interpret, and make pre-
dictions about the Universe based on observational data, while accounting for
uncertainties and the inherent complexity of cosmological phenomena. Over the
last few decades, galaxy clustering emerged as a pivotal cosmological probe, be-
coming fundamental for deriving cosmological constraints. This chapter begins
with a description of the Bayesian analysis, a fundamental approach to infer
model parameters, and of the Monte Carlo Markov Chain method, which is an
extensively exploited approach for sampling probability distributions. Then, we
delineate the concepts of two-point statistics, namely the 2PCF in configuration
space and the power spectrum in Fourier space, and three-point statistics, that
is the 3PCF in configuration space and the bispectrum in Fourier space. After
that, we introduce the dynamical distortions, generated when neglecting the
peculiar velocities of the sources, and geometrical distortions, produced when
considering a cosmology different from the true one. These clustering distor-
tions are crucial for the definition of the new model for the 3PCF presented in
chapter 4 and for the cosmological parameter estimation discussed in chapter 6.

Assuming the cosmological principle, let us consider the density contrast
field of the Universe δ(x), defined in equation (1.82), to be homogeneous and
isotropic at cosmological scales. This implies that δ(x) has the same statistical
properties in all points of the Universe and at all directions. Since the density
contrast field is produced at the end of the inflationary phase by statistical
fluctuations of the metric, we do not expect to have phase correlations between
different points, implying that the field is assumed to be stochastic. Therefore,
the probability field P (δ) of finding a perturbation δ at a certain point is assumed
to be, initially, almost Gaussian. Since, by definition, the Universe is unique,
the so-called ergodic hypothesis has a crucial importance. It states that the
statistical average over many volumes is equivalent to the spatial average over
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sufficiently large subregions of the same volume. This implies that we can
average over different regions of the Universe, given that they are sufficiently
large, so that they can be considered as statistically independent. Today, a fair
sample in which we have homogeneity and isotropy is reached at scales ≳ 100
Mpc. Moreover, in the case of a Gaussian distribution, the ergodic hypothesis
becomes a theorem.

We can write the expression of the δ(x) in configuration space through the
Fourier anti-trasform:

δ(x) =
1

(2π)3

∫
δ(k)eik·xdk, (2.1)

while the expression of the δ(k) in Fourier space can be written using the Fourier
transform of (2.1):

δ(k) =

∫
δ(x)eik·xdx, (2.2)

where δ(x) is adimensional, whereas δ(k) has the dimensions of a cubic length.

2.1 Two-point correlation function and power
spectrum

The 2PCF, ξ(r), is defined as follows:

ξ(r) ≡ ⟨δ(x)δ(x+ r)⟩, (2.3)

where r = |r| and the angular brackets indicate a spatial average. In particular,
here there is a double averaging: one over all the points x in the Universe, the
other over all the points at a distance r from the fixed point x. The 2PCF
measures the degree of correlation of the density field δ at different points of the
Universe. If we substitute the expression of δ(x) in equation (2.1) into equation
(2.3) we obtain:

ξ(r) =
1

(2π)6

∫
dk

∫
dk′⟨δ(k)δ(k′)⟩eik·(x+r)eik

′·x. (2.4)

Let us introduce the 3-dimensional Dirac delta, defined as follows:

δ
(3)
D ≡ 1

(2π)3

∫
eik·xd3x, (2.5)

with the dimensions of a cubic length. We can also provide an operative defini-
tion: ∫

d3z′F (z′)δ
(3)
D (z − z′) = F (z). (2.6)

Given this definition, we can now introduce the power spectrum P (k) as:

⟨δ(k)δ(k′)⟩ ≡ (2π)3P (k)δ
(3)
D (k+ k′), (2.7)
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where k = |k|. Therefore, by substituting it into equation (2.4) we derive:

ξ(r) =
1

(2π)3

∫
d3kP (k)eik·r, (2.8)

which implies that the power spectrum, defined in Fourier space, is the Fourier
transform of the 2PCF, defined in configuration space. Thus, these two quan-
tities provide the same information, but in two different spaces. Moreover, it
is easy to prove that the 2PCF is adimensional, whereas the power spectrum
has the dimensions of a cubic length. The density field δ(x) is real, meaning
that δ(k) is imaginary. As a consequence, we have that δ∗(k) = δ(−k), where
the superscript ∗ indicated the complex conjugate. From equation (2.8) we can
deduce that:

P (k) ∝ ⟨δ(k)δ(k′)⟩ ∝ ⟨δ2(k)⟩. (2.9)

In order to be rigorous, it is worth mentioning that P (k) is not properly a power
spectrum, which should be adimensional. Instead, it is a sort of power density,
since the true power spectrum is represented by P (k)d3k. The definition of the
power spectrum can be also written in the following form:

⟨δ(k)δ∗(k′)⟩ ≡ (2π)3P (k)δ
(3)
D (k− k′). (2.10)

In the case of k = k′, the 3-dimensional Dirac delta becomes:

δ
(3)
D (0) =

1

(2π)3

∫
d3x =

VU

(2π)3
, (2.11)

where VU ≡
∫
d3x is the volume of the Universe. This implies that:

⟨δ(k)δ∗(k′)⟩ = ⟨|δ2(k)|⟩ = (2π)3P (k)δ
(3)
D (0) = VUP (k), (2.12)

which implies that, as we mentioned, the power spectrum is proportional to the
square mean value of the amplitude of fluctuations in Fourier space δ(k), with
the normalization factor represented by the volume of the Universe VU .

Since the amplitudes of fluctuations are Gaussian distributed, their mean
value is equal to zero by definition, while their variance is defined as:

σ2 ≡ ⟨|δ2(x)|⟩. (2.13)

By applying the ergodic hypothesis, we can divide the Universe into independent
regions large enough to be fair samples, we can compute the variance σ2 with a
double average: the statistical average over all the volumes of the spatial average
of the quadratic value of δ:

σ2 =
1

VU

∫ ∞

−∞
⟨δ(x)⟩dx. (2.14)

The Parseval theorem in 3-dimensions can be written as:∫ ∞

−∞
f(x)g∗(x)dx =

1

(2π)3

∫ ∞

−∞
f̂(k)ĝ∗(k)dk, (2.15)
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which implies that the integral in configuration space of the product of the two
complex functions f(x) and g∗(x) is proportional to the integral in Fourier space
of the product of the Fourier transforms of the two functions f̂(k) and ĝ∗(k),
with a normalization factor equal to 1/(2π)3. We can use this result in order to
rewrite equation (2.14) in Fourier space as:

σ2 =
1

(2π)3
1

VU

∫ ∞

−∞
⟨δ(k)δ∗(k)⟩dk, (2.16)

where we can recognize the power spectrum P (k), so that it becomes:

σ2 =
1

(2π)3

∫ ∞

−∞
P (k)d3k, (2.17)

which is also called punctual variance.
If the density field δ is perfectly Gaussian, meaning that we have:

P (δ) =
1√
2πσ2

e−
δ2

2σ2 , (2.18)

then Wick’s theorem ensures that all the statistical information is encoded in
two-point statistics, namely the 2PCF in configuration space and the power
spetrum in Fourier space. Indeed, in Fourier space we have:

⟨δ(k1) . . . δ(k2p+1)⟩ = 0, (2.19)

⟨δ(k1) . . . δ(k2p)⟩ =
∑

all pair associations

∏
p pairs (i,j)

⟨δ(ki)δ(kj)⟩. (2.20)

This means that all the odd moments are equal to zero, whereas all the even
moments can be written in terms of the power spectrum.

Let us now go back to the 2PCF, which is strictly related to the multi-point
probability function. Indeed, if we consider a discrete distribution of objects
with mean number density n̄, the probability of finding an object within the
volume element dV1 is given by dP1 = n̄dV1. Then, the joint probability of
finding on object within the volume element dV1 and another one within the
volume element dV2 at a distance r from the first in the case of independent
probabilities is:

dP12 = n̄2dV1dV2. (2.21)

In general, these probabilities are not independent and we can have some cor-
relations. Specifically, the 2PCF is the quantity that measures the excess prob-
ability that two particles at volume elements dV1 and dV2 are separated by a
distance r with respect to a random uniform distribution, that is:

dP12 = n̄2dV1dV2 [1 + ξ(r)] . (2.22)

We can have three cases:
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• ξ(r) = 0: the objects are not correlated and the distribution is completely
random and hence uniform;

• ξ(r) > 0: the objects are correlated, meaning that the probability of
finding the two objects within the two volume elements is larger than the
one of a random distribution;

• ξ(r) < 0: the objects are anti-correlated, meaning that the probability of
finding the two objects within the two volume elements is smaller than
the one of a random distribution.

Since the definition of probability implies that 0 ≤ dP12 ≤ 1, we deduce that:

ξ(r) ≥ −1 (2.23)

for all r. Operatively, we can obtain an estimator for the 2PCF by counting
pairs of objects. Let us assume to have a data catalogueue with ND objects
and a random catalogue with NR objects uniformly distributed. We can define
a grid whose cells have a size r and count, in every cell, the pairs of objects
coming from the data catalogue, DD(r), the pairs of objects coming from the
random catalogue, RR(r), and the pairs of objects in which one comes from the
data catalogue and the other comes from the random catalogue, DR(r). This
allows us to write the estimator of the 2PCF introduced by Landy and Szalay,
1993:

ξ̂LS(r) = 1 +
NRR

NDD

DD(R)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)
, (2.24)

where NDD, NRR and NDR are the total number of data-data, random-random
and data-random pairs, respectively, and their values are:

NDD =
ND(ND − 1)

2
, (2.25)

NRR =
NR(NR − 1)

2
, (2.26)

NDR = NDNR. (2.27)

The estimator expressed in equation (2.24) is one of the most used, mainly
because its dependence on the uncertainty on the mean density, due to the
discretization, is of the second-order, but also because it can be proven to be
almost of minimal, hence Poissonian, variance (Labatie et al., 2012).

2.2 Three-point correlation function and bispec-
trum

In previous section 2.1, we have mentioned that a perfectly Gaussian random
field encodes the entirety of its statistical information in two-point statistics.
Nevertheless, it is unattainable to have a perfectly Gaussian random field in
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real-world scenarios, because of the concurrence of a variety of factors. These
include the nonlinearity of the equations regulating the gravitational evolution of
cosmic structures, but also effects due to spatial correlations and measurement
limitations (see Desjacques and Seljak, 2010). Consequently, n-points statistics
provide significant information and become fundamental for clustering analysis
(e.g. Szapudi, 2005).

In general, correlation functions, of any order, are defined as the connected
part of the joint ensemble average of the density in an arbitrary number of
positions. They can be written as:

ξN (x1, ...,xN ) =⟨δ(x1)...δ(xN )⟩c
⟨δ(x1)...δ(xN )⟩−∑
S∈P({x1,...,xN})

∏
si∈S

ξ#si(xsi(1), ...,xsi(#si)),
(2.28)

where the subscript c stands for connected, the sum is made over the proper
partitions (any partition except the set itself) of {x1, ...,xN}, referred to as
P({x1, ...,xN}) and si is a subset of {x1, ...,xN} contained in the partition S.

Let us now move to Fourier space. Due to the homogeneity of space,
⟨δ(k1)...δ(kN )⟩c is always proportional to δ

(N)
D (k1 + ... + kN ). Therefore, we

can define PN (k1, ...,kN ) as:

⟨δ(k1)...δ(kN )⟩c = (2π)NPN (k1, ...,kN )δ
(N)
D (k1 + ...+ kN ). (2.29)

The case of N = 1 is not interesting, since we have defined the density field
δ(x) to have zero mean. We have already addressed the case N = 2 in section
2.1 when we discussed about the 2PCF and the power spectrum. Then, the
most simple statistics beyond the second-order is the three-point statistics, that
is the case of N = 3. The 3PCF ζ(r12, r13, r23) is defined as:

ζ(r12, r13, r23) ≡ ⟨δ(r1)δ(r2)δ(r3)⟩, (2.30)

where r12 ≡ |r1−r2|, r13 ≡ |r1−r3| and r23 ≡ |r2−r3|. Let us consider a discrete
distribution of objects with mean number density n̄. The joint probability of
finding three objects within the independent volume elements dV1, dV2 and dV3,
centered at the positions r1, r2 and r3, respectively, is given by:

dP123 = n̄3dV1dV2dV3 [1 + ξ3(r12, r13, r23)] , (2.31)

where the function ξ3(r12, r13, r23) contains redundant information, since the
probability of finding triplets of objects is artificially increased by the presence
of pairs, then we can write:

ξ3(r12, r13, r23) = ξ(r12) + ξ(r13) + ξ(r23) + ζ(r12, r13, r23), (2.32)

where ζ(r12, r13, r23) is the connected 3PCF. Fig. 2.1 shows the ξ3(r12, r13, r23)
function, in which we can discriminate between the different terms we have also
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in equation (2.32): the first one is equal to zero, since it is made of singlets only
and we have defined the average of δ(x) to be zero, the second, third and fourth
terms are the 2PCF terms ξ(r12), ξ(r13) and ξ(r23), and the last term is the
connected 3PCF ζ(r12, r13, r23). If we consider equation (2.29) and apply the

Figure 2.1: Graphic representation of the ξ3(r12, r13, r23) function. The last
term represents the connected part, which is the ζ(r12, r13, r23) function. Image
of Bernardeau et al., 2002.

case of N = 3, we obtain the definition of the bispectrum B(k1,k2,k3):

⟨δ(k1)δ(k2)δ(k3)⟩c = (2π)3B(k1,k2,k3)δ
(3)
D (k1 + k2 + k3). (2.33)

The bispectrum is the Fourier transform of the 3PCF, and the 3PCF is the
Fourier anti-transform of the bispectrum. In chapter 4, we present a new model
for both the bispectrum and the 3PCF.

There are several estimators of the 3PCF which consist of counting the
triplets of galaxies contained in a certain portion of the total volume, similarly
to what we have discussed for pairs of galaxies with the 2PCF (see e.g. Sza-
pudi and Szalay, 1998). Indeed, if we want to measure the 3PCF up to some
scale Rmax, there are N (nVRmax)

2 possible triangles, where N is the total num-
ber of galaxies, n is the galaxy number density and VRmax

= 4/3πR3
max is the

considered volume. As a consequence, such algorithms scale as the number of
possible triangles, i.e. N (nVRmax

)
2. In the past years, alternative techniques

have emerged, such as those utilizing multiple kd-trees, which prove to be faster
than simply enumerating all triangles (see e.g. Gardner et al., 2007; Gray et al.,
2004). However, even these methods fall short in terms of speed when dealing
with extensive surveys like the Baryon Oscillation Spectroscopic Survey (BOSS),
which has an average separation of 13h−1Mpc. Recently, Slepian and Eisen-
stein, 2015b proposed a new algorithm for the measurement of the 3PCF based
on a spherical harmonic decomposition (SHD method). Explicitly, the 3PCF is
parametrized through two triangle sides r12 and r13 and the angle θ between
them. We can expand it onto Legendre polynomials:

ζ(r12, r13, θ) =
∑

ζℓ(r12, r13)Pℓ(θ), (2.34)

where ζℓ(r12, r13) are the coefficients of the expansion, or multipole moments,
and Pℓ(θ) are the Legendre polynomials. Such decomposition has the great
advantage that the multipole moments of the 3PCF can be obtained much
faster than other 3PCF decompositions without sacrificing accuracy, since this
method is exact in angles. Specifically, using the spherical harmonic addition
theorem we can decompose the Legendre polyomials into factors depending on
a single angle each. As a result, this algorithm scales as N (nVRmax

), that is a
factor (nVRmax) faster than the direct triplet counting approach.
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2.3 Clustering distortions
In the previous section we have analyzed one of the main statistical tools used
to constrain cosmology, that is the 2PCF and the 3PCF, and their Fourier coun-
terparts. We can now direct our study to analyze the strategies of exploitation
of such statistics, some of which are used in chapter 6 to estimate some cosmo-
logical parameters.

Let us assume to have a redshift survey, which maps the spatial distribution
of of galaxies, or other cosmic tracers. Let us consider a galaxy at a comoving
distance χ(z) (1.34) from us. Its observed position can be written as:

xobs(z, θ, ϕ) = χ(z)n̂(θ, ϕ), (2.35)

where n̂(θ, ϕ) = xobs/|xobs| is the unit vector which identifies the direction of
the galaxy in the sky, as Fig. 2.2 shows. In cosmology, we usually express the

Figure 2.2: Graphic representation of the process of observation of a galaxy,
whose direction in the sky is identified by the unit vector n̂(θ, ϕ). The galaxy
is selected within the redshift range identified by the solid arcs centered at
redshift z̄ identified by the dashed arc. The observed position of the galaxy xobs

is displayed in yellow, whereas its true position x is shown in orange. On the
right of the diagram there is a zoom in to show the relation between these two
positions. Image of Dodelson, 2003.

distance of an object in terms of redshift. However, in the context of clustering,
this introduces two problems. The first one is due to the fact that in order to
relate distances to redshifts, we need to assume a cosmology, which is in general
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different from the true one, so that:

χfid(z) = χ(z) + δχ(z), (2.36)

where χfid(z) is the fiducial distance-redshift relation, χ(z) is the true one and
δχ(z) is the difference between the two. Assuming a cosmology that deviates
from the true one leads to the emergence of what we term as geometrical dis-
tortions in the clustering of cosmic tracers. These distortions can be used to
get cosmological constraints by exploiting the peak of the baryonic acoustic os-
cillations (BAO). The second problem consists on the fact that xobs does not
correspond to the true position of the galaxy if it is not at rest with respect to
the background Universe, but it has a peculiar velocity u. In the latter case,
the observed redshift of the galaxy would be:

1 + z =
1

aem

[
1 + u∥

]
, (2.37)

where aem is the scale factor at the moment of the emission of the radiation
from the galaxy and u∥ ≡ u · n̂ is the component of the peculiar velocity of
the galaxy parallel to the unit vector n̂. The factor 1/aem is the cosmological
redshift and it takes into account the expansion of the Universe, whereas the
u∥/aem term represents the linear-order Doppler shift due to the fact that the
galaxy has a peculiar velocity with respect to the observer. We are allowed to
use the linear-order Doppler shift since the peculiar velocity u is much smaller
than the speed of light c. We can compute the error that we make in equation
(2.35) in this case:

∆x =
∂xobs

∂u∥

∣∣∣∣∣
u∥=0

u∥ =
1

aH
u∥n̂ (2.38)

Since only the component of the velocity parallel to line of sight u∥ enters in
the equation, the direction which identifies the galaxy, that is the unit vector
n̂, remains unchanged. Moreover, as we can deduce from equation (2.38), if
the peculiar velocity is positive, it means that the galaxy is receding from us,
resulting in an increase of the observed distance, hence a positive ∆x. Peculiar
velocities of galaxies give rise to another class of distortions known as redshift
space distortions (RSD), sometimes referred to as dynamical distortions. In nu-
merical simulations, we can deal with galaxies with vanishing peculiar velocities,
resulting in the absence of RSD. In such cases, we commonly refer to the space
as real space. Conversely, when galaxies have non-vanishing peculiar velocities,
hence in all real scenarios, we have RSD, and we denote the space as redshift
space. Combining the effects of equations (2.36) and (2.38), we obtain:

xobs = x+

[
δχ(z) +

1

aH
u∥(x)

]
n̂, (2.39)

where x is the true position of the galaxy, that is the position of the galaxy in
absence of geometrical and RSD.
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The first studies regarding the relation between the redshift-space and the
real-space power spectra were carried out by Kaiser, 1987, whose starting point
was the fact that the number of galaxies in a specific region does not change if
we use the observed position xobs or the true one x. If we consider the galaxy
number density field ng, we can write:

ng,obs(xobs)d
3xobs = ng(x)d

3x, (2.40)

where ng,obs(xobs) is the number density of galaxies in redshift space, whereas
ng(x) is the number density of galaxies in real space, xobs = |xobs| and x = |x|.
The volume elements d3xobs and d3x can be written as:

d3xobs = x2
obsdxobsdΩ, (2.41)

d3x = x2dxdΩ, (2.42)

where dΩ is the angular volume element, which does not change whether we are
in redshift space or in real space. For this reason, we can write:

ng,obs(xobs) = ng(x)J, (2.43)

where J is the Jacobian of the change of coordinates:

J ≡
∣∣∣∣ d3x

d3xobs

∣∣∣∣ = ∣∣∣∣ dx

dxobs

∣∣∣∣ x2

x2
obs

. (2.44)

By considering equation (2.39), the Jacobian becomes:

J =

(
1 +

δχ

x
+

u∥

aHx

)−2 ∣∣∣∣1 + d

dx
δχ+

1

aH

∂

∂x
u∥

∣∣∣∣−1

. (2.45)

The derivative of δχ with respect to x can be computed as:

d

dx
δχ =

dz

dx

dδχ

dz
= Hδ

(
H−1

)
= −H−1δH, (2.46)

where we have used dz/dx = dz/dχ = H and

δH(z) = H(z)−Hfid(z) (2.47)

is the difference between the true Hubble parameter H(z) and the fiducial one
Hfid(z). Therefore we obtain:

J =

(
1 +

δχ

x
+

u∥

aHx

)−2 ∣∣∣∣1−H−1δH +
1

aH

∂

∂x
u∥

∣∣∣∣−1

≃
(
1− 2

δχ

x
+H−1δH − 2

u∥

aHx

)(
1− 1

aH

∂

∂x
u∥

)
,

(2.48)

where in the second line we have removed all second-order terms. Let us now
consider the terms in the first parentheses. The ones with δχ and δH depend on
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x only through the redshift z. Assuming that we are observing sources within
a narrow redshift range centered at z̄, we can set x to χ̄ = χ(z̄), which is
the distance to the mean redshift z̄. Moreover, we can evaluate both δχ, δH
and H at z̄. By doing so, the first three terms of the first parentheses can be
considered as constant. Let us focus on the fourth term, 2u∥/aHx. The ratio
u∥/aH represents the apparent displacement of galaxies due to the component
of their peculiar velocity parallel to the line of sight. Using linear theory, it can
be found that this displacement is typically ≲ 10h−1 Mpc. Conversely, x ∼ χ̄ is
typically of the order of hundreds of Mpc in current redshift surveys, implying
that this term can be neglected. Consequently, the first parentheses can be
considered as a constant prefactor, which we denote with J̄ :

J ≃ J̄

(
1− 1

aH

∂

∂x
u∥

)
, (2.49)

where:
J̄ = 1− 2

δχ(z̄)

χ(z̄)
+H−1(z̄)δH(z̄). (2.50)

If we refer to the average number density of galaxies with n̄g, we can write
the number density of galaxies in true and observed coordinates as, respectively:

ng = n̄g (1 + δg) , (2.51)

ng,obs = n̄g (1 + δg,obs) . (2.52)

Considering equation (2.43), substituting the Jacobian in equation (2.49) and
expanding to first-order in perturbations we obtain:

1 + δg,obs(xobs) = J̄

[
1 + δg (x[xobs])−

1

aH

∂

∂x
u∥ (x[xobs])

]
, (2.53)

where both the galaxy density δg and the galaxy peculiar velocity u∥ in the
right-hand side are evaluated at the true position x. In the next two sections
we will analyze separately the effects of RSD and geometrical distortions.

2.3.1 Redshift-space distortions
Fig. 2.3 graphically shows the distortions introduced by neglecting the peculiar
velocity of cosmic tracers when computing comoving coordinates from redshifts,
both in the linear, hence at large-scales, and in the nonlinear, hence at small-
scales, regimes.

Let us first consider the linear RSD, meaning the RSD at large scales, that
is of the order of tens to hundreds of Mpc. The overdense region, represented
as an orange circle, is situated at the center. In a scenario where galaxies are at
rest with respect to the observer, hence their peculiar velocities are zero, then
the shape of a contour of constant density would be circular and we would be
in real space. On the other hand, if galaxies have non-zero peculiar velocities,
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Figure 2.3: Graphic representation of linear (left panel) and nonlinear (right
panel) RSD. In both cases, there is a central overdensity displayed with the
orange circle. The observer is assumed to be far below the figure, so that the
line of sight n̂ can be considered vertical. In both cases, the circular dashed line
indicates a contour of constant density in real space, while the solid line denotes
its distortion in redshift space. The observed position of the galaxy is shown in
yellow, while the true one is represented in orange. Image of Dodelson, 2003.

then they tend to fall towards the central region, due to its gravitational attrac-
tion. Consequently, galaxies beyond the overdensity are moving towards us and
will appear closer to us than they actually are, whereas galaxies preceding the
overdensity are moving away from us and will appear farther to us than they
actually are. The resulting effect is an apparent anisotropy in the contours of
constant density, which in redshift space are flattened in the direction perpen-
dicular to the line of sight. Galaxies moving towards each other result in an
increase of their number density, consequently we have a stronger clustering in
redshift space than in real space.

Let us now examine the nonlinear RSD, hence the RSD at small scales, of
the order of 1h−1Mpc. At these scales, the velocities are a bit larger and, more
significantly, the displacement of galaxies due to the component of their peculiar
velocity parallel to the line of sight, the u∥/aH term, becomes much larger than
the distance x separating the two galaxies. As a result, the contours of constant
density appear to be elongated along the line of sight. Furthermore, as the right
panel in Fig. 2.3 displays, a galaxy located beyond the overdensity is mapped
onto a point which precedes the overdensity.

The effects introduced by the RSD can be efficiently exploited to constrain
cosmology. Specifically, we can measure the power spectrum and the bispec-
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trum, or, analogously, the 2PCF and the 3PCF, in redshift space and then
perform a fit in order to constrain the values of the linear growth rate of per-
turbations. This strategy will be thoroughly described in chapter 3.

2.3.2 Alcock-Paczynski effect
Let us now turn to the distortions introduced when a cosmology different from
the true one is assumed, resulting in the assignment of comoving distances us-
ing a distance-redshift relation different from the true one. These geometrical
distortions, also called Alcock-Paczynski effect (Alcock and Paczynski, 1979),
induce the apparent displacement of tracers from their true position by a quan-
tity δχ(z), as Fig. 2.4 shows. The displacement δχ(z) depends on the redshift

Figure 2.4: Graphic representation of the Alcock-Paczynski effect. The true
positions of galaxies (in orange) are shifted by a quantity δχ(z) and mapped
onto their observed positions (in yellow). In absence of this effect the contours
of constant density would be circular (dashed line), but they become elliptical
(solid line) when it is present. Image of Dodelson, 2003.

z, specifically the higher is the redshift, the lower is the displacement, implying
that sources closer to us are subject to a larger displacement compared to far-
ther ones. The resulting effect is that the contours of constant density, which
would be circular in absence of these distortions, appear to be elliptical.

Practically, we assume a fiducial distance-redshift relation χfid and we assign
the 3-dimensional observed position xobs to a galaxy by using the redshift z and
the two angles (θ, ϕ) which identify the galaxy in the sky. We assume the flat-
sky approximation, which allows us to consider the position of the galaxy in the
sky to be a 2-dimensional vector θ. We choose the origin such that:

xobs = 0 ⇔ θ = 0, z = z̄, (2.54)
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which means that the origin of the reference frame corresponds to an angular
position in the sky of θ = 0, that is a point at the center of the survey, and
a redshift z = z̄, which is the central value of the considered redshift range.
The transverse components, namely the components perpendicular to the line
of sight, that we assign to the galaxy are:

(x1
obs, x

2
obs) = χfid(z)(θ

1, θ2). (2.55)

The true transverse components that we should assign the the galaxy are in-
stead:

(x1, x2) = χ(z)(θ1, θ2) =

[
1− δχ(z)

χfid(z)

]
(x1

obs, x
2
obs), (2.56)

which implies that if δχ(z) > 0, then we assign galaxies a comoving distance
larger than the true one, resulting to the fact that the assigned transverse com-
ponents (x1

obs, x
2
obs) are farther form the origin compared to the true transverse

components (x1, x2). Conversely, if δχ(z) < 0, then the comoving distance as-
signed to the galaxies is smaller than the true one, meaning that the assigned
transverse components (x1

obs, x
2
obs) are closer to the origin with respect to the

true ones (x1, x2).
While the transverse components are identified by the angular position of

the galaxy in the sky, the line of sight component x3
obs is determined by the

redshift z. In our reference frame z = z̄ corresponds to x3 = 0, then:

x3
obs(z) = χfid(z)− χfid(z̄). (2.57)

If we assume to have a narrow redshift range, so that (z− z̄) ≪ 1, we can expand
around (z − z̄) and, up to linear order, we obtain:

x3
obs(z) ≃

1

Hfid(z̄)
(z − z̄), (2.58)

where we have used that dχ/dz = 1/H. The true line of sight component is:

x3(z) ≃ 1

H(z̄)
(z − z̄) =

Hfid(z̄)

H(z̄)
x3
obs(z). (2.59)

Knowing that δH(z) = H(z) −Hfid(z) and keeping only linear order terms in
δH, we can write:

x3(z) =

[
1− δH(z̄)

Hfid(z̄)

]
x3
obs(z). (2.60)

Therefore, considering all the three components, we have:

x(xobs) =
(
[1− α⊥]x

1
obs, [1− α⊥]x

2
obs, [1− α∥]x

3
obs

)
, (2.61)

where:

α⊥ =
δχ

χfid

∣∣∣∣∣
z̄

, (2.62)
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α∥ =
δH

Hfid

∣∣∣∣∣
z̄

. (2.63)

By measuring the power spectrum or the bispectrum, we can get constraints
on the parameters α⊥ and α∥, which are extremely important in cosmology.
Indeed, from equation (2.61) we can derive:

χ(z̄) = χfid(z̄) [1 + α⊥] , (2.64)

H(z̄) = Hfid(z̄)
[
1 + α∥

]
, (2.65)

implying that constraints on α⊥ and α∥ impose constraints on the comoving
distances χ of cosmic tracers and on the Hubble rate H at a specific redshift z̄.

2.3.3 Baryonic acoustic oscillations
The Alcock-Paczynski effect can be effectively quantified using the peak of the
BAO, which represents a standard ruler in cosmology (refer to Bassett and
Hlozek, 2009 for an in-depth review). These oscillations are fluctuations in the
density of baryonic matter, arising from acoustic waves in the early Universe.
Indeed, during the hot and dense phase of the Universe, photons and baryons
formed a tightly interlinked medium known as the photon-baryon fluid, primar-
ily interacting through Thomson scattering. The complex interplay between
photons and baryons resulted in a competition between the radiation pressure,
which tended to avoid the collapse, and gravity, which tended to favour the
collapse. Consequently, spherical acoustic waves were generated, propagating
at the speed of sound. Then, the Universe underwent cooling and H recom-
bination occurred: photons were liberated to free stream reaching us today,
producing the CMB. At this point, the radiation pressure offered by photons
was removed, causing the acoustic waves to freeze-out. These waves left an im-
print in the CMB, which can be observed bystudying its anisotropies, but also
in the clustering properties of the large-scale structure (LSS) of the Universe at
a specific scale. This scale, corresponding to the sound horizon at the epoch of
H recombination, is, as Planck Collaboration et al., 2020 measured:

r∗ = (144.57± 0.22)Mpc. (2.66)

Indeed, as it is shown in Fig. 2.5, we can observe the BAO feature in the 2PCF
at a scale around 100h−1Mpc. Furthermore, the BAO feature can be detected
also in the power spectrum, where, instead of the peak we observe in the 2PCF,
it appears as a series of oscillations, as Fig. 2.6 displays. The first peak of these
oscillations is located at a wave number k∗ = 2π/r∗.

The scale rs is known with high accuracy from the CMB, therefore measuring
this feature with clustering analysis at redshift z̄ provides an efficient method
to measure α⊥ and α∥. Indeed, the BAO peak is a feature of well-known size
imprinted in the distribution pattern of galaxies and other cosmic tracers, thus
measuring its observed size at a given redshift z̄ allows us to measure the distance
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Figure 2.5: BAO peak in the 2PCF ξ(s) of a sample of Luminous Red Galax-
ies (LRGs) from the Sloan Digital Sky Survey. The green, red and blue lines
represent models with Ωmh2 = 0.12, 0.13, 0.14, respectively. The purple line
represents a pure CDM model with Ωb = 0. Image from Eisenstein et al., 2005.

to that redshift. Specifically, through α⊥ we can obtain a direct measurement
of the angular diameter distance dA(z̄), defined as:

dA(z̄) =
r(z̄)

1 + z̄
, (2.67)

which in an Euclidean Universe is equal to the comoving distance χ(z̄).
To summarize, the BAO feature is a well determined scale imprinted in

the clustering properties of the LSS of the Universe and it can be exploited
to measure the angular diameter distance dA(z̄), via α⊥, and the Hubble rate
H(z̄), via α∥.
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Figure 2.6: BAO feature in the power spectrum of the main sample (bottom
curve) and the LRG sample (top curve) from the Sloan Digital Sky Survey.
The solid lines show the ΛCDM fits and the dashed lines include also nonlinear
corrections. Image from Tegmark et al., 2006.
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Chapter 3

Modelling the two-point
correlation function: the
eTNS model

In this chapter, we describe the theoretical model used for the analysis of the
2PCF, for the cosmological parameter estimation presented in chapter 6. First,
we discuss the galaxy bias model, which represents the relation between the
dark matter and the galaxy density fields. Then, we introduce the model we
adopt for the anisotropic power spectrum, that is the one proposed by Beutler
et al., 2014, which we call extended-TNS (eTNS) model since it is an extension
of the model proposed by Taruya et al., 2010 (TNS). We finally present the
2PCF model, obtained through the Fourier anti-transformation of the power
spectrum model.

3.1 Galaxy bias model
As we have discussed in chapter 2, the matter power spectrum and bispectrum
encode extremely rich information for cosmology. However, we do not have a
direct way of measuring them, since the majority of matter is non-baryonic, and
much of the baryonic matter is not easily visible (e.g. it is in the form of diluted
hot gas). Instead, we can directly observe galaxies, or any other astrophysical
objects, as tracers of the large-scale matter distribution. The galaxy distribution
only indirectly reflects the underlying matter distribution. Thus, the galaxy
density field is not the same as the matter density field. Therefore, we need a
way to relate them. In principle, this relation should be predicted by a given
cosmological model. However, the formation and evolution of galaxies, despite
the significant progress made in recent years (e.g. Cen and Ostriker, 2000;
Katz et al., 1999), is still poorly understood, since the models rely on simplified
descriptions of the main physical processes, such as star formation, supernova
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feedback, and active galactic nuclei (AGN) feedback, all of which continue to
elude a complete understanding. Consequently, the parameters of the relation
between the matter density field and that of galaxies, called bias parameters,
must be determined from the data themselves. In general, we can write the
biasing relation as:

δg(x) = Bδ(x), (3.1)

where δg(x) is the galaxy density field, δ(x) is the matter density field, and
B [δ(x)] is the galaxy bias. Since there is not a universally accepted model for
the galaxy bias yet, we can choose the parametrization which best suites our
needs. Indeed, in literature many different approaches have been proposed.

A widely used model for the galaxy bias B consists of a Taylor expansion in
δ of δg (Fry and Gaztañaga, 1993):

δg(x) =
∑
m=0

bm
m!

δm(x). (3.2)

The simplest possible galaxy bias model can be obtained by truncating this
Taylor expansion at first-order, resulting in a linear relation between the galaxy
density field and the matter density field:

δg(x) = b1δ(x), (3.3)

where b1 is called the linear bias parameter. This model does not account for
nonlinearities in the evolution of structures. For this reason, it is more accurate
to include also the nonlinear bias parameter in our description. Then, truncating
the Taylor expansion in equation (3.2) at second-order, we obtain:

δg(x) = b1δ(x) +
b2
2
δ2(x), (3.4)

where b2 is called the nonlinear bias parameter. Furthermore, recent works
have shown that we must include in the model also non-local effects, due to
the fact that the evolution of the matter density field is influenced by large-
scale tidal fields, even in the case of local initial conditions (Catelan et al.,
1998). Consequently, neglecting these contributions can lead to errors in the
estimations of the other bias parameters, even when considering linear regimes.
As a result, we introduce the tidal bias parameter bt, which accounts for these
effects, into our galaxy bias model1:

δg(x) = b1δ(x) +
b2
2
δ2(x) + bts

2(x), (3.5)

where s2(x) is the square of the tidal field, defined as s2(x) = sij(x)sij(x), with
sij(x) = ∂i∂jΦ(x)− δKr

ij δ(x), where Φ(x) is the gravitational potential, related
to the density field through ∇2Φ(x) = δ(x), and δKr

ij is the Kronecker delta.

1In the literature, also other notations can be found, like the one of McDonald and Roy,
2009, who has an additional factor 1/2 in the definition of the tidal bias.
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3.2 Power spectrum model
The TNS model is defined as follows:

Pg(k, µ) = e−(fkµσv)
2

[
Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pg,θθ(k)

+A(k, µ) +B(k, µ)

]
,

(3.6)

where µ is the cosine of the angle between the wavenumber vector k and the line
of sight, f is the growth rate defined in equation (1.101), σv is the 1-dimensional
velocity dispersion, whose estimate at linear order can be obtained from:

σ2
v =

1

3

∫
dq

(2π)3
Plin(q, z)

q2
, (3.7)

where Plin(q, z) is the linear power spectrum calculated at q, where q is the mod-
ulus of the wave vector |q|, and redshift z. The exponential factor in equation
(3.6) represents the damping function accounting for the Finger-of-God effect,
while the first three terms in the square brackets describe an extension of the
Kaiser factor (see Kaiser, 1987) and the A and B terms are corrections deriving
from the higher-order correlation between Kaiser terms and velocity fields in
mapping to redshift space (we refer to Taruya et al., 2010 for their definitions).
The velocity divergence θ is defined as:

θ ≡ − ∇u

aHf
. (3.8)

The spectra Pg,δδ and Pg,δθ denote, respectively, the auto power spectrum of
density and velocity divergence, while Pg,θθ refers to their cross power spectrum.
Let us define the velocity bias as the parameter describing the tendency for
galaxies to have a different velocity distribution compared to that of the overall
matter distribution. That is, it is the relation between the velocity field of
galaxies, θg, and the velocity field of matter, θ. Beutler et al., 2014 assumes
no velocity bias, hence θg = θ, and its extension to the TNS model consists
in the fact that it includes five galaxy bias parameters: the linear bias b1, the
nonlinear bias b2, the tidal bias bt, the 3rd-order non-local bias b3nl, which is
important to explain the large-scale power spectrum (Saito et al., 2014), and
the constant stochasticity term N , which accounts for any random or poorly
understood process that affect the distribution of galaxies, but is not directly
tied to the underlying matter density field. Indeed, the spectra Pg,δδ and Pg,δθ

are written as:

Pg,δδ(k) = b21Pδδ(k) + 2b2b1Pb2,δ(k) + 2btb1Pbs2,δ(k) + 2b3nlb1σ
2
3(k)Plin(k)

+ b22Pb22(k) + 2b2btPb2s2(k) + b2tPbs22(k) +N,

(3.9)

Pg,δθ(k) = b1Pδθ(k) + b2Pb2,θ(k) + btPbs2,θ(k) + b3nlσ
2
3(k)Plin(k), (3.10)

45



where Plin is the linear matter power spectrum. The power spectra Pg,δδ, Pg,δθ

and Pg,θ,θ are evaluated with the publicly available RegPT code2 (Taruya et al.,
2012) at 2-loop order. The expressions for the other power spectra in equations
(3.9) and (3.10) can be found in equations (42)-(48) of Beutler et al., 2014, as
well as the definition of σ2

3 , which is shown in equation (53) of the same paper.
Now that we have obtained the model for the power spectrum in Fourier

space, we have to move to configuration space and derive the model for the
2PCF. This is a straightforward process, since it only consists of computing
the inverse-Fourier transform of the eTNS model, expressed in equations (3.6),
(3.9) and (3.10). To do so, we exploit FFTLog3 (Hamilton, 2000), a code
to take the fast Fourier or Hankel transform of a discrete periodic sequence of
logarithmically spaced points, to take the inverse Fourier transform of the power
spectrum model and obtain the 2PCF model.

2The code is available at https://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_
code.html.

3The code is available at http://jila.colorado.edu/~ajsh/FFTLog/.

46

https://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
https://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
http://jila.colorado.edu/~ajsh/FFTLog/


Chapter 4

Modelling the three-point
correlation function: a new
approach

In this Thesis work, we propose an extension of the bispectrum model proposed
by Scoccimarro et al., 1999 (hereafter SCF99), including an additional bias pa-
rameter, that is the tidal bias. Furthermore, we propose a revision of the model
proposed by Slepian and Eisenstein, 2017 (hereafter SE17), which includes some
calculation errors. For this reason, starting from our model for the bispectrum,
we theoretically derived our model for the 3PCF. In this chapter, we present
our results regarding the models for both the bispectrum and the 3PCF.

4.1 Bispectrum model
We extend the bispectrum model proposed by SCF99 by including in our anal-
ysis also the contribution from the tidal bias parameter bt. Specifically, our
model contains an additional term, with respect to SCF99, in the definition
of the second-order perturbation theory redshift-space kernel Z2. This term,
btS2(k1,k2), accounts for the effect of the tidal field, whose kernel is S2, which
affects the evolution of the matter density field (see section 3.1). In this section,
we present the theoretical derivation of our bispectrum model.

4.1.1 Perturbation theory
We define the first- and second-order perturbation theory (PT) redshift-space
kernels Zn for the galaxy density field as:

Z1(ki) = (b1 + fµ2
i ), (4.1)
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Z2(k1,k2) = b1F2(k1,k2) + fµ2G2(k1,k2) +
fµk

2

[
µ1

k1
(b1 + fµ2

2)

+
µ2

k2
(b1 + fµ2

1)

]
+

b2
2

+ btS2(k1,k2),

(4.2)

where µ ≡ k · ẑ/k, with k ≡ k1 + ... + kn, and µi ≡ ki · ẑ/ki. F2 and G2 are
the second-order kernels for the real-space density and velocity-divergence fields
and they are defined as:

F2(k1,k2) =
5

7
+

x

2

(
k1
k2

+
k2
k1

)
+

2x2

7
, (4.3)

G2(k1,k2) =
3

7
+

x

2

(
k1
k2

+
k2
k1

)
+

4x2

7
, (4.4)

where x ≡ k1·k2

k1k2
≡ cos θ. Finally, the second-order kernel S2 for the tidal tensor

sij is defined as1:

S2(k1,k2) =
k1 · k2

k1k2
− 1 = x2 − 1. (4.5)

4.1.2 Derivation of the model
We define the tree-level redshift-space galaxy bispectrum as follows:

Bs(k1,k2,k3) = 2Z2(k1,k2)Z1(k1)Z1(k2)P (k1)P (k2) + cyc., (4.6)

where “cyc.” refers to a sum over cyclic permutations of {k1,k2,k3}, since we
have to account for the indistinguishability of the vertices of the triangles. In-
deed, when computing the bispectrum, we deal with the expectation value of
δg(k1)δg(k2)δg(k3), where δg is defined in (3.5). If we only keep terms up to
the fourth (leading) order in δ, we will have two linear terms and one second-
order term. For simplicity, we assume that the second-order density field is
always contributed by the galaxy at k1, which is also the origin of the reference
frame. By doing so we obtain the so-called pre-cyclic solution, that is the so-
lution prior to the cyclic summing over {k1,k2,k3}, which assures that all the
galaxies contribute to all the density fields.

The variables which characterize the bispectrum are five: three of them are
needed to define the triangles’ shape (the two sides k1 and k2 and the angle
between them, θ), while the other two are required to describe the triangles’
orientation with respect to the line-of-sight (the polar angle ω and the azimuthal
angle ϕ). Following the choice of SFC99, we define:

µ1 = µ = cosω = k̂1 · ẑ, (4.7)

µ2 = µ cos θ −
√

1− µ2 sin θ cosϕ, (4.8)

µ3 = −k1
k3

µ− k2
k3

µ2. (4.9)

1In the literature it is common to find also the alternative definition S2(k1,k2) = x2 − 1
3
.
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We can decompose the tree-level redshift-space galaxy bispectrum Bs using the
spherical harmonics Yℓm:

Bs(k1,k2,k3) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

B(ℓm)
s (k1, k2, θ)Yℓm(ω, ϕ). (4.10)

We consider for simplicity the m = 0 terms only, which is equivalent to average
over the azimuthal angle ϕ. In this case, it is convenient to decompose the
bispectrum Bs using the Legendre polynomials Pℓ:

Bs(k1,k2,k3) =

∞∑
ℓ=0

B(ℓ)
s (k1, k2, θ)Pℓ(µ). (4.11)

By substituting the Zn kernels into the (4.6), and then performing the Legendre
expansion of the result, we obtain an expression for the multipoles of the tree-
level redshift-space galaxy bispectrum, which can be arranged as:

B(ℓ)
s (k1, k2, θ) =P (k1)P (k2)b

4
1

[
F2(k1,k2)D

(ℓ)
SQ1 +G2(k1,k2)D

(ℓ)
SQ2

+
(
γ + 2γt S2(k1,k2)

)
D

(ℓ)
NLB +D

(ℓ)
FOG

]
+ cyc.,

(4.12)

where γ = b2/b1 and γt = bt/b1. D
(ℓ)
SQ1 and D

(ℓ)
SQ2 represent the first- and

second-order contributions for the large-scale squashing (also called Kaiser ef-
fect or pancakes-of-God), D

(ℓ)
NLB accounts for the nonlinear bias contribution

and D
(ℓ)
FOG refers to the damping effect due to the velocity dispersion (also

called fingers-of-God). Here we consider the monopole only, hence the ℓ = 0
terms. Knowing that β = f/b1, we can write the expressions for the different
contributions:

D
(0)
SQ1 =

2(15 + 10β + β2 + 2β2x2)

15b1
, (4.13)

D
(0)
SQ2 =2β(35k21 + 28βk22 + 3β2k21 + 35k22 + 28βk21 + 3β2k22 + 70k1k2x

+ 84βk1k2x+ 18β2k1k2x+ 14βk21x
2 + 12β2k21x

2 + 14βk22x
2

+ 12β2k22x
2 + 12β2k1k2x

3)/(105k23b1),

(4.14)

D
(0)
NLB =

(15 + 10β + β2 + 2β2x2)

15b1
, (4.15)
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D
(0)
FOG =β(210k1k2 + 210βk1k2 + 54β2k1k2 + 6β3k1k2 + 105k21x

+ 189βk21x+ 99β2k21x+ 15β3k21x+ 105k22x+ 189βk22x

+ 99β2k22x+ 15β3k22x+ 168βk1k2x
2 + 216β2k1k2x

2

+ 48β3k1k2x
2 + 36β2k21x

3 + 20β3k21x
3 + 36β2k22x

3

+ 20β3k22x
3 + 16β3k1k2x

4)/(315k1k2).

(4.16)

4.2 3PCF model
SE17 developed a model for the redshift-space 3PCF by converting the bispec-
trum model of SCF99 to configuration space. However, their model includes
some calculation errors. For this reason, we propose a revision of the model of
SE17. In this section, we present the theoretical derivation of our 3PCF model,
which is based on the procedure of SE17, but applied to our bispectrum model,
discussed in section 4.1.

Since it will be used later in the calculations, let us consider the Legendre
expansion of the arbitrary function f(r, θ) onto the Legendre polynomials Pℓ:

f(r, θ) =
∑
ℓ

fℓ(r)Pℓ(x), (4.17)

where r is a spatial variable and x = cos θ, where θ is an angular variable.
After the expansion, the multipole moments fℓ(r) do not depend on the angular
variable anymore, since the angular dependence is included in the Legendre
polynomials. If we want an expression for the multipole moments fℓ(r), we
need to solve the following integral:

fℓ(r) =
2ℓ+ 1

2

∫ 1

−1

f(r, θ)Pℓ(x)dx. (4.18)

When we will discuss the Legendre expansion of a term in the following sections,
we will refer to equations (4.17) and (4.18) as an example. For the whole
mathematical derivation we are about to discuss, hence to solve all the integrals,
we used the Python library for symbolic mathematics SymPy2 (Meurer et al.,
2017).

4.2.1 Legendre decomposition
First of all, we can write a Legendre expansion of the 3PCF as follows (see
equation 4.17):

ζ(r1, r2, r̂1 · r̂2) =
∑
ℓ

ζℓ(r1, r2)Pℓ(r̂1 · r̂2), (4.19)

2The full documentation of SymPy is available at https://docs.sympy.org/latest/citing.
html.
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where Pℓ are the Legendre polynomials and the coefficients ζℓ(r1, r2) can be
obtained through (see equation 4.18):

ζℓ(r1, r2) =
2ℓ+ 1

2

∫ 1

−1

dx12Pℓ(x12)
[
ζpc(r1, r2, x12) + ζpc(r1, r3, x13)

+ ζpc(r2, r3, x23)
]
,

(4.20)

where x12 ≡ cos θ12 is the cosine of the angle between r1 and r2, x13 ≡ cos θ13
is the cosine of the angle between r1 and r3, x23 ≡ cos θ23 is the cosine of the
angle between r2 and r3 and ζpc refers to the pre-cyclic 3PCF.

4.2.2 Pre-cyclic 3PCF
In order to get an expression for ζpc(r1, r2, x), where we use x ≡ x12, we have to
cast the bispectrum monopole3, derived in (4.12), to configuration space. We
begin by projecting it on a basis of Legendre polynomials (see equation 4.17):

Bs(k1, k2, x) =
∑
ℓ

Bs,ℓ(k1, k2)Pℓ(x). (4.21)

This form is convenient, since, as Slepian and Eisenstein, 2015a proved, the
inverse Fourier transform of (4.21) is:

ζpc(r1, r2, x) =
∑
ℓ

ζpc,ℓ(r1, r2)Pℓ(x), (4.22)

with:

ζpc,ℓ(r1, r2) = (−1)ℓ
∫

k21k
2
2dk1dk2
(2π2)2

Bs,ℓ(k1, k2)jℓ(k1r1)jℓ(k2r2). (4.23)

The terms in (4.13), (4.15) and (4.16) can be easily put in this form, while
the term in (4.14) causes some difficulties due to its dependence on 1/k23, with
|k3| = |k1 + k2|. As noted by SE17, we could expand 1/k3 in a Legendre
series and then square it, but this would lead to the squaring of an infinite
Legendre series with coefficients of the form (k1/k2)

ℓ for k1 < k2 and (k2/k1)
ℓ

for k1 > k2. This poses a significant challenge, since moving to configuration
space requires integrals of arbitrary powers of k1 and k2, which, if computed
independently, may not generally converge. Nevertheless, it has been observed
that these integrals converge when calculated as a 2-D integral depending on
the ratio k1/k2. Therefore, we aim to express the inverse Fourier transform of
the terms including k3 as a product of separable 1-D integrals. For this reason,
we can rewrite (4.21) as:

Bs(k1, k2, x) =
∑
ℓ

[
Bs,ℓ,no k3(k1, k2) +Bs,ℓ,with k3(k1, k2)

]
Pℓ(x). (4.24)

3In order to simplify the notation, we drop the superscript (0) in the bispectrum monopole
and write Bs ≡ B

(0)
s .
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4.2.3 Expansion of the k3 independent terms
We can now proceed to expand the k3 independent terms in eq.(4.24). For the
purpose of clarity and to make a direct comparison with the work of SE17 easier,
we address the expansion of each term in (4.12) separately.

Let us consider the F2(k1,k2)D
(0)
SQ1 term. Its multipole moments can be

computed by solving the integral in equation 4.18 with F2(k1,k2)D
(0)
SQ1 instead

of f(r, θ). In particular, we find:

ℓ = 0 :
34

21 b1

[
1 +

2

3
β +

49

425
β2

]
ℓ = 1 :

G(k1, k2)
b1

[
1 +

2

3
β +

11

75
β2

]
ℓ = 2 :

8

21 b1

[
1 +

2

3
β +

18

35
β2

]
ℓ = 3 :

G(k1, k2)
b1

4

75
β2

ℓ = 4 :
64β2

3675 b1
,

(4.25)

where:
G(k1, k2) ≡

(
k1
k2

+
k2
k1

)
. (4.26)

We have non-zero terms up to ℓ = 4 because of angular momentum addition,
since both F2(k1,k2) and D

(0)
SQ1 have x2 terms, then ℓ = 2 each.

Let us now take into account the γD
(0)
NLB term. Its multipole moments can

be computed by solving the integral in equation 4.18 with γD
(0)
NLB instead of

f(r, θ). In particular, we find:

ℓ = 0 :
γ

b1

[
1 +

2

3
β +

1

9
β2

]
ℓ = 2 : γ

4β2

45 b1
.

(4.27)

Given that D
(0)
NLB solely contains terms that are either independent of x or

proportional to x2, we find that only ℓ = 0 and ℓ = 2 moments are non-zero.
Let us analyze the 2γt S2(k1,k2)D

(0)
NLB term. Its multipole moments can

be computed by solving the integral in equation 4.18 with 2γt S2(k1,k2)D
(0)
NLB

instead of f(r, θ). In particular, we find:

ℓ = 0 : −4

3

γt
b1

[
1 +

2

3
β +

7

75
β2

]
ℓ = 2 :

4

3

γt
b1

[
1 +

2

3
β +

1

21
β2

]
ℓ = 4 :

32

525 b1
β2γt.

(4.28)
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Since here D
(0)
NLB is multiplied by S2(k1,k2), which has a term in x2, we have

moments up to ℓ = 4 because of angular momentum addition.
Let us now study the D

(0)
FOG term. Its multipole moments can be computed

by solving the integral in equation 4.18 with D
(0)
FOG instead of f(r, θ). In par-

ticular, we find:

ℓ = 0 :
2

3
β +

38

45
β2 +

2

5
β3 +

2

25
β4

ℓ = 1 : G(k1, k2)
[
1

3
β +

3

5
β2 +

67

175
β3 +

3

35
β4

]
ℓ = 2 :

16

45
β2 +

16

35
β3 +

32

245
β4

ℓ = 3 : G(k1, k2)
[

8

175
β3 +

8

315
β4

]
ℓ = 4 :

128

11025
β4.

(4.29)

The multipole moments here reach ℓ = 4 since D
(0)
FOG has terms in x4.

4.2.4 Expansion of the k3 dependent term

Now we can expand the k3 dependent term in (4.24), which is G2(k1,k2)D
(0)
SQ2,

since k3 only enters through D
(0)
SQ2. In particular, we can rewrite D

(0)
SQ2 as

follows:

D
(0)
SQ2 =

2

105 b1

[
35β +

(
28 + 3β + 2x2 (7 + 6β)

)
− β2

k23
4β2k1k2x (7 + 3β)

(
x2 − 1

)]
,

(4.30)

where we have used the relation:

k21 + k22 = k23 − 2k1k2x. (4.31)

This form is convenient since we have isolated the part of D(0)
SQ2 which contains

k3.
Let us consider the first term in the square brackets of (4.30), and let us

multiply it by G2(k1,k2). Let us now compute the multipole moments of the
resulting term by solving the integral in equation (4.18) with the result of the
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multiplication instead of f(r, θ):

ℓ = 0 :
26

63b1
β +

628

1575b1
β2 +

346

3675b1
β3

ℓ = 1 :
G(k1, k2)

b1

[
1

3
β +

26

75
β2 +

17

175
β3

]
ℓ = 2 :

16

63 b1
β +

808

2205 b1
β2 +

832

5145 b1
β3

ℓ = 3 :
G(k1, k2)

b1

[
4

75
β2 +

8

175
β3

]
ℓ = 4 :

128

3675 b1
β2 +

256

8575 b1
β3.

(4.32)

The second term in the square brackets of (4.30) depends on 1/k23 and, as
earlier addressed, we use the strategy proposed by SE17 to compute its inverse
Fourier transform. First, let us multiply it by G2(k1,k2). Then, let us compute
the multipole moments of the resulting term by substituting in the integral of
equation (4.18) the result of the multiplication instead of f(r, θ):

ℓ = 0 :
8

1575 b1k23
β2

(
k21 + k22

)
(7 + 3β)

ℓ = 1 :
176

8575 b1k23
β2k1k2 (7 + 3β)

ℓ = 2 :
8

2205 b1k23
β2

(
k21 + k22

)
(7 + 3β)

ℓ = 3 : − 496

33075 b1k23
β2k1k2 (7 + 3β)

ℓ = 4 : − 32

3675 b1k23
β2

(
k21 + k22

)
(7 + 3β)

ℓ = 5 : − 256

46305 b1k23
β2k1k2 (7 + 3β) .

(4.33)

We now use the relation (4.31) in the even multipoles, so that they become
dependent of k1k2 only. This reintroduces an x-dependence, therefore we need
to reproject the result of the substitution, again, onto the Legendre polynomials,
computing the integral of equation (4.18). In particular, we need to reproject
each ℓ term in equation (4.33) separately. Thus, we compute the integral of
equation (4.18) with each ℓ term in equation (4.33) instead of the function
f(r, θ), and we only consider the first moment of the expansion (hence the ℓ = 0
term resulting from the integral). Therefore, for the k3 dependent part of the
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G2(k1,k2)D
(0)
SQ2 term, we find:

ℓ = 0 :
8

1575 b1
β2 (7 + 3β)

ℓ = 1 : − 16

1225 b1

k1k2
k23

β2 (7 + 3β)

ℓ = 2 :
8

2205 b1
β2 · (7 + 3β)

ℓ = 3 :
16

4725 b1

k1k2
k23

β2 (7 + 3β)

ℓ = 4 : − 32

3675 b1
β2 (7 + 3β)

ℓ = 5 :
64

6615 b1

k1k2
k23

β2 (7 + 3β) .

(4.34)

4.2.5 Adding all the terms together
We can now sum all the terms in (4.25), (4.27), (4.28), (4.29), (4.32) and the
even moments only of (4.34), since the odd ones depend on k3. By including

55



also the pre-factor P (k1)P (k2)b
4
1 in (4.12), we find:

ℓ = 0 : P (k1)P (k2)

{
b41

[
2

3
β +

38

45
β2 +

2

5
β3 +

2

25
β4

]

+ b31

[
34

21

(
1 +

47

51
β +

163

425
β2 +

201

2975
β3

)

+ γ

(
1 +

2

3
β +

1

9
β2

)
+−4

3
γt

(
1 +

2

3
β +

7

75
β2

)]}

ℓ = 1 : P (k1)P (k2)

{
b41

[
1

3
β +

3

5
β2 +

67

175
β3 +

3

35
β4

]

+ b31

[
1 + β +

37

75
β2 +

17

175
β3

]}
G (k1, k2)

ℓ = 2 : P (k1)P (k2)

{
b41

[
16

45
β2 +

16

35
β3 +

32

245
β4

]

+ b31

[
8

21

(
1 +

4

3
β +

54

35
β2 +

111

245
β3

)

+
4β2γ

45
+

4

3
γt

(
1 +

2

3
β +

1

21
β2

)]}

ℓ = 3 : P (k1)P (k2)

{
b41

[
8

175
β3 +

8

315
β4

]

+ b31

[
8

75
β2 +

8

175
β3

]}
G (k1, k2)

ℓ = 4 : P (k1)P (k2)

{
128

11025
β4b41

+ b31

[
− 32

3675
β2 +

32

8575
β3 +

32

525
β2γt

]}
.

(4.35)

The k3-dependent terms, instead, are the odd multipoles of equation (4.34):

ℓ = 1 : − 16

1225 b1

k1k2
k23

β2 (7 + 3β)

ℓ = 3 :
16

4725 b1

k1k2
k23

β2 (7 + 3β)

ℓ = 5 :
64

6615 b1

k1k2
k23

β2 (7 + 3β) .

(4.36)
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The sum of (4.35) and (4.36) describes the full Legendre decomposition of
the line-of-sight averaged bispectrum model. Therefore, the next step consists
of the computation of the inverse Fourier transform of these multipole moments.

First, we assess the inverse Fourier transform of the coefficients in (4.35),
exploiting (4.22) and (4.23). We define the following integrals of the power
spectrum:

ξ
[n]
i =

∫
k2dk

2π2
P (k)jn(kri)

ξ
[n±]
i =

∫
k2dk

2π2
k±1P (k)jn(kri),

(4.37)

where jn(kri) is the Bessel function of the first kind of order n and the subscript
i refers to one of the three sides of the triangles. These expressions will be useful
in presenting the result more concisely.

Then, we consider the inverse Fourier transform of the coefficients in (4.36).
As it is shown in Appendix A of SE17, the k3-dependent terms, which con-
tribute to the odd moments only in Fourier space, enter in all the ℓ-terms in
configuration space, as follows:

0 ≤ ℓ < ∞ : b31β
2 (7 + 3β)κℓ(r1, r2), (4.38)

with:

κℓ(r1, r2) =
64

77175

[
9I1ℓ(r1, r2)− 14I3ℓ(r1, r2) + 5I5ℓ(r1, r2)

]
, (4.39)

ILℓ(r1, r2) =
∑
l1

(−1)l1+ℓ(2l1 + 1)(2ℓ+ 1)

(
l1 ℓ L
0 0 0

)2

×
∫

rdrfℓl1(r1; r)fℓl1(r2; r),

(4.40)

fℓl1(r1; r) =

∫
k2dk

2π2
jℓ(kr2)jl1(kr)P (k). (4.41)

Thus, the inverse Fourier transform of the line-of-sight averaged bispectrum
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model, which is the line-of-sight averaged 3PCF model, is:

ℓ = 0 : ξ
[0]
1 ξ

[0]
2

{
b41

[
2

3
β +

38

45
β2 +

2

5
β3 +

2

25
β4

]

+ b31

[
34

21

(
1 +

47

51
β +

163

425
β2 +

201

2975
β3

)

+ γ

(
1 +

2

3
β +

1

9
β2

)
− 4

3
γt

(
1 +

2

3
β +

7

75
β2

)]}
+ b31β

2 (7 + 3β)κ0(r1, r2)

ℓ = 1 : −
[
ξ
[1+]
1 ξ

[1−]
2 + ξ

[1+]
2 ξ

[1−]
1

]{
b41

[
1

3
β +

3

5
β2 +

67

175
β3 +

3

35
β4

]

+ b31

[
1 + β +

37

75
β2 +

17

175
β3

]}
+ b31β

2 (7 + 3β)κ1(r1, r2)

ℓ = 2 : ξ
[2]
1 ξ

[2]
2

{
b41

[
16

45
β2 +

16

35
β3 +

32

245
β4

]

+ b31

[
8

21

(
1 +

4

3
β +

54

35
β2 +

111

245
β3

)

+
4β2γ

45
+

4

3
γt

(
1 +

2

3
β +

1

21
β2

)]}
+ b31β

2 (7 + 3β)κ2(r1, r2)

ℓ = 3 : −
[
ξ
[3+]
1 ξ

[3−]
2 + ξ

[3+]
2 ξ

[3−]
1

]{
b41

[
8

175
β3 +

8

315
β4

]

+ b31

[
8

75
β2 +

8

175
β3

]}
+ b31β

2 (7 + 3β)κ3(r1, r2)

ℓ = 4 : ξ
[4]
1 ξ

[4]
2

{
128

11025
β4b41 + b31

[
− 32

3675
β2 +

32

8575
β3 +

32

525
β2γt

]}
+ b31β

2 (7 + 3β)κ4(r1, r2)

ℓ ≥ 5 : b31β
2 (7 + 3β)κℓ(r1, r2).

(4.42)

4.3 Correction of the SE17 3PCF model
In the previous section, we derived our 3PCF model, expressed in equation
(4.42). Our 3PCF model is different from the 3PCF model of SE17, which
includes some errors. To make the comparison between the two 3PCF models
easier, our specific corrections of the SE17 model are:
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• we added a missing b−1
1 factor in the expansions of the F2(k1,k2)D

(0)
SQ1

(equation (4.25) in this work and equation (6) in SE17), γD(0)
NLB (equa-

tion (4.27) in this work and equation (8) in SE17) and G2(k1,k2)D
(0)
SQ2

(equations (4.32) and (4.34) in this work and equations (11) and (13) in
SE17) terms;

• we completely changed the term corresponding to the non-local bias pa-
rameter, whose expansion is shown in equation (4.28), while in SE17 this
contribution is given by equation (22).

These corrections result in our corrected 3PCF model presented in equation
(4.42), in opposition to equation (21) of SE17. The difference between the two
3PCF models can be visualized in Fig. 4.1, where the 3PCF ζ(r12, r13, θ) is
shown as a function of the angle θ, rescaled as θ/π. The two models have been
computed using the model parameters obtained by Veropalumbo et al., 2022,
which are b1 = 2.7, b2 = 0.75, bt = −0.75, and they are represented along with
the real-space MINERVA 3PCF at the fixed illustrative scales r12 = 25h−1Mpc
and r13 = 45h−1Mpc. It is evident that the new 3PCF model presented in this
work (red curve) better approximates the data (black circles), compared to the
SE17 model (blue curve).
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Figure 4.1: Comparison between the corrected 3PCF model presented in this
work (red curve) and the 3PCF model of SE17 (blue curve) with the model
parameters obtained by Veropalumbo et al., 2022. The black circles represent
the data coming from the MINERVA simulations for the scales r12 = 25h−1Mpc
and r13 = 45h−1Mpc. The error bars are the square root of the diagonal
elements of the covariance matrix, estimated from the mock catalogues, divided
by the square root of the number of mock catalogues, and they are not visible
since they are very small.
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Chapter 5

Analysis framework and
methodology

One of the primary objectives of this Thesis work is to develop analytical and
numerical methods for the combined analysis of 2PCF and 3PCF. Achieving this
purpose necessitated the development of new theoretical models for the bispec-
trum and the 3PCF (see chapter 4), and the implementation of new methods
to estimate the covariance matrix, which has to take into account the corre-
lation between the 2PCF and 3PCF. In this chapter, we present and discuss
the codes produced in this regard as part of this work, implemented within
the CosmoBolognaLib (CBL)1 framework, using C++ programming language.
First, we consider the improvements we introduced to the handling of covariance
matrices, whose computation is made more user-friendly. Then, we deal with
the modifications regarding the 2PCF modelling, focusing on the 2PCF mul-
tipoles. In particular, we implemented a new function for the model in which
the tidal bias parameter bt is free to vary in the fit and the parametrization is
consistent with the one of the 3PCF model. Furthermore, we describe the devel-
opments concerning the 3PCF modelling, which are one of the major results of
this Thesis project. Specifically, we implemented our new model for the 3PCF
(see section 4.2). Finally, we show four tests with which we validated our new
3PCF model, comparing it with the 3PCF model of Veropalumbo et al., 2022.

5.1 CosmoBolognaLib
The CBL2 are a large set of free software C++/Python libraries for cosmological
calculations. These libraries provide a wide computational framework that can
be exploited, among many other things, to measure the 2PCF and 3PCF and
to model RSD and BAO. Indeed, the CBL include different estimators and

1For more information visit https://gitlab.com/federicomarulli/CosmoBolognaLib.
2The full documentation of the CosmoBolognaLib can be found at https://federicomarulli.

github.io/CosmoBolognaLib/Doc/html/index.html.

61

https://gitlab.com/federicomarulli/CosmoBolognaLib
https://federicomarulli.github.io/CosmoBolognaLib/Doc/html/index.html
https://federicomarulli.github.io/CosmoBolognaLib/Doc/html/index.html


models for two-point and three-point statistics. Furthermore, they can be used
to handle catalogues of different populations of objects, such as galaxies, galaxy
clusters or cosmic voids.

5.2 Implementation of the full 2PCF+3PCF co-
variance matrix

Let us consider two variables xi and xj . The covariance matrix Cij between
these two variables is defined as:

Cij ≡ E [(xi − ⟨xi⟩)(xj − ⟨xj⟩)] , (5.1)

where E(x) is the expectation value of the variable x, and ⟨x⟩ is the mean value
of the variable x.

Inside the CBL, there is a class, cbl::data::CovarianceMatrix, developed
to compute and manage the covariance matrices for various data sets. This class
offers the possibility to either read the covariance matrix from a file or compute
it from the provided data. It is able to manage multiple sets of data, providing
their covariance and cross-covariance, as well as other related quantities, such
as the correlation matrix, precision matrix, variance, and standard deviation.

With the purpose of making the method used to measure the covariance
matrix of a collection of data sets (see appendix A) more user-friendly, mainly
for Python users, we implemented two new functions for the estimate of the
covariance matrix from mock catalogues, which are then used to compute the
covariance matrices of the data analyzed in chapter 6. Specifically, they are
exploited to estimate the covariance matrix of the 2PCF and of the 3PCF, and
the total covariance matrix of the two statistics together.

5.3 Two-point correlation function
The modelling of the 2PCF implemented in the CBL allows the user to ex-
ploit the eTNS model, described in equations (3.6), (3.9) and (3.10) in chap-
ter 3. It is possible to model the multipoles of the 2PCF with the class
cbl::modelling::twopt::Modelling_TwoPointCorrelation_multipoles.
This class provides a range of functions, such as e.g. to define the fit range
and store the model in an output file. It also offers the possibility to select
among different models to be utilized for the fitting process, such as e.g. the
Scoccimarro model (Scoccimarro, 2004), the de-wiggled model (Vargas-Magaña
et al., 2018), the TNS model, and, as said, the eTNS model, the latter two
described in section 3.2 (see Garcıéa-Farieta et al., 2020 for a description of the
implementations).

In this work, we adopt the eTNS model for the 2PCF multipoles, since it
is the model providing the most accurate estimate of fσ8 (Beutler et al., 2014;
Di Benedetto, 2023). Previously, the tidal bias parameter bt was fixed at the
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value given by local Lagrangian biasing (Baldauf et al., 2012; Chan et al., 2012):

bt = −4

7
(b1 − 1). (5.2)

However, since bt is a free parameter in the 3PCF analysis, we need it to be
a free parameter of the fit also in the analysis of the 2PCF, so that we can
constrain it by combining these statistics. For this reason, the model functions
were modified in order to let the parameter bt free to vary (see appendix B).

5.4 Three-point correlation

0 20 40 60 80
Triangle index

0.0003

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

(r 1
2,

r 1
3,

r 2
3)

Figure 5.1: 3PCF model at all scales obtained with the best-fit parameters and
the cut in scales of the analysis carried out in section 6.6. The ζ(r12, r13, r23) is
shown as a function of the triangle configuration {r12, r13, r23}, identified by an
index.

Within the CBL framework, it is possible to model the comoving connected
3PCF using the class cbl::modelling::threept::Modelling_ThreePointCor
relation_comoving_connected. In particular, the CBL contained different
models to analyze the 3PCF. There were two models for the real space 3PCF,
based on Slepian and Eisenstein, 2015a and Barriga and Gaztañaga, 2002 re-
spectively, and a model for the redshift space 3PCF, based on SE17.
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However, as we have discussed in chapter 4, the SE17 model contains some
calculation errors, implying that the model for the redshift space 3PCF imple-
mented in the CBL was not correct. Therefore, we implemented our new model
for the 3PCF (see section 4.2) from scratch, organizing it into multiple func-
tions, crafted to optimize both the computational efficiency and the clarity of
the implementation.

Furthermore, the existing parametrization only allowed the study of the
3PCF at fixed scales, varying the angles between two sides of the triangles. Thus,
we implemented new functions which allows to consider a different parametriza-
tion, that is expressing the 3PCF as a function of the three sides of the tri-
angles (see appendix C for a more detailed description). This enables to ana-
lyze the 3PCF at all scales, as done in other works (Veropalumbo et al., 2021;
Veropalumbo et al., 2022). A representative plot of the new 3PCF model at
all scales is shown in Fig. 5.1. The 3PCF is represented as a function of the
triangle configuration {r12, r13, r23}, identified by an index. The indices are
organized in a way such that the configurations change through a cascading
iteration. We fix the first side r12 while sequentially varying the second side
r13, and subsequently, when the second side is held constant, the third side r23
is iterated through. The range of scales is between 5h−1Mpc and 145h−1Mpc,
with a binning size of 10h−1Mpc.

5.4.1 Testing our model
To validate our new model for the 3PCF, we carried out four tests, comparing
it to the 3PCF model used by Veropalumbo et al., 2022 for their analysis. In
particular, we considered the multipoles moments of the two models after having
expanded them onto Legendre polynomials. The model parameters used in the
four tests are shown in Tab. 5.1.

b1 b2 bt β

Test 1 1 0 0 0
Test 2 1 1 0 0
Test 3 1 0 1 0
Test 4 1 0 0 1

Table 5.1: Model parameters of the four tests we carried out to validate our
3PCF model.

We tested the two models at various different scales, but we show only the
result of the comparison for the scales r12 = 45h−1Mpc and r13 = 105h−1Mpc
as a representative example, since it includes the BAO scales as a function of
the angle θ. As Figs. 5.2-5.5 display, for all tests the models agree, with an
average difference on ζℓ smaller than 3 × 10−6. The small discrepancies that
we find are due to the different numerical methods used in the integration. In
fact, Veropalumbo et al., 2022 uses a fast Fourier transform (FFT) algorithm,
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Figure 5.2: Top panel : comparison of the multipoles moments of our new 3PCF
model (AB, orange) and the one of Veropalumbo et al., 2022 (AV, blue) for test
1 (b1 = 1, b2 = 0, bt = 0, β = 0). Bottom panel : difference between the two
models.

whereas in this work we use the quadrature method. Thus, we can conclude
that the two models are compatible, implying that our corrected model works
properly.
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Figure 5.3: As in Fig. 5.2, but for test 3 (b1 = 1, b2 = 1, bt = 0, β = 0).
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Figure 5.4: As in Fig. 5.2, but for test 3 (b1 = 1, b2 = 0, bt = 1, β = 0).
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Figure 5.5: As in Fig. 5.2, but for test 3 (b1 = 1, b2 = 0, bt = 0, β = 1).
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Chapter 6

Cosmological parameter
estimation

One of the primary goals of this Thesis work is to prepare the necessary frame-
work for a joint likelihood analysis of the 2PCF and 3PCF to estimate cosmolog-
ical parameters. In this chapter, we present our results based on the MINERVA
2PCF and 3PCF, and the developed statistical method and analysis for the joint
analysis of these statistics. First, we introduce the concepts of Bayesian analysis
and Monte Carlo Markov Chain method. Then, we describe our dataset, repre-
sented by the 298 MINERVA mock catalogues. After that, we illustrate how we
derived the covariance matrices we used in our analyses, by estimating it from
the MINERVA mocks. Then, we show and discuss the results of the analyses
regarding the 2PCF and 3PCF. In the first one, we model the multipoles of the
2PCF using the modified eTNS model (see section 5.3) and sample the posterior
distribution using an MCMC method. From this fit, we obtain estimates of the
parameters of the eTNS model. In the second analysis, we model the 3PCF
both at fixed scales and at all scales using our new model (see sections 4.2 and
5.4), again, using an MCMC method to sample the posterior distribution. As
a result, we derive estimates of the parameters of our new model. Finally, we
present the developed environment for the joint analysis of 2PCF and 3PCF,
and discuss the obtained results.

6.1 Bayesian analysis
Bayesian analysis is a statistical approach for making probabilistic inferences
about unknown quantities based on available data and prior knowledge. The
starting point of this method is the Bayes’ theorem. Let us consider two events
A and B. The Bayes’ theorem asserts that:

P (A|B) =
P (B|A)P (A)

P (B)
, (6.1)
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where P (A|B) represents the conditional probability of the event A given the
occurrence of the event B, and similarly, P (B|A) represents the conditional
probability of the event B given the occurrence of the event A. Let us assume
to have a set of data D and a model M(θ), where θ is the vector of model
parameters. We define the posterior distribution P (M(θ)|D) as the conditional
probability of obtaining the model M(θ) given the data D. Therefore, using
Bayes’ theorem, we can write:

P (M(θ)|D) =
P (D|M(θ))P (M(θ))

P (D)
, (6.2)

where:

• P (D|M(θ)) is the likelihood function, which quantifies the plausibility of
the observed data given a specific set of model parameters. It is usually
denoted as L(D|M(θ)) and, typically, in cosmology we assume Gaussian
likelihoods.

• P (M(θ)) is the prior distribution, which is the probability of the model
prior to the observed data. It represents our prior knowledge about the
process and it could be, for example, the posterior distribution of a pre-
vious experiment. It is usually written as π(M(θ)).

• P (D) is the evidence and it can be expressed as:

P (D) =

∫
L(D|M(θ))π(M(θ))dθ. (6.3)

Since the data do not change, the evidence is a constant.

Thus, we can rewrite equation (6.2) as:

P (M(θ)|D) ∝ L(D|M(θ))π(M(θ)), (6.4)

where the evidence has been omitted since it is only a constant factor in which
we are not interested here, and it does not depend on the model.

6.2 Monte Carlo Markov Chain method
The Monte Carlo Markov Chain (MCMC) method is a computational technique
used for sampling from complex probability distributions, such as the posterior
distribution. Specifically, this method returns in output points, which we call
samples, in parameter space, that are statistically independent and whose distri-
bution follows the posterior distribution. In particular, one of the most common
MCMC method is the Metropolis-Hastings algorithm, which is based on the de-
tailed balance, which can be expressed as:

K(xn+1|xn)f(xn) = K(xn|xn+1)f(xn+1), (6.5)
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where xn and xn+1 are consecutive elements of the Markov chain, the probability
K is the Markov chain’s transition kernel and f is a stationary distribution. We
can think of the detailed balance as the requirement that the flow of points
out of state xn into state xn+1 is equal to the counter flow of points out of
state xn+1 into state xn. If we start at the point xn of parameter space, the
Metropolis-Hastings algorithm can be summarized in the following steps:

• we choose a trial point xt from a proposal distribution q(xt|xn), which
can be, for example, a Gaussian distribution;

• we calculate the value of α, which is defined as:

α(xt,xn) = min

{
1,

q(xn|xt)

q(xt|xn)

f(xt)

f(xn)

}
. (6.6)

• if α < 1 we draw a number r from a uniform distribution between 0 and
1. If α > r we accept the trial point and we set xn+1 = xt. Otherwise,
we refuse it and we set xn+1 = xn.

Then, we repeat these steps until the MCMC algorithm converges. In the
CBL, the Stretch Move algorithm, described in Goodman and Weare, 2010
and Foreman-Mackey et al., 2013, is implemented.

6.3 The dataset: MINERVA simulations
The MINERVA simulations are a set of 298 N-body simulations performed with
the GADGET-2 code (Springel, 2005) with N = 10003 DM particles per real-
ization in a cubic box of side length L = 1500h−1Mpc with periodic boundary
conditions. The initial redshift of the simulation is zini = 63 and the input linear
power spectrum for the initial conditions was calculated using CAMB (Lewis et
al., 2000) for the cosmological parameters reported in tab. 6.1, which are the pa-
rameters matching the best-fitting ΛCDM model of the WMAP9 + BOSS DR9
ξ(r) analysis (Sánchez et al., 2013). DM halos are identified with a Friends-of-

h Ωm Ωb ns σ8

0.695 0.285 0.046 0.9632 0.828

Table 6.1: Cosmological parameters of the MINERVA simulations.

Friends algorithm with a linking length equal to 0.2 times the mean separation
between particles. The positions and velocities of particles were stored for five
different redshifts: z ∈ {2.0, 1.0, 0.57, 0.3, 0}. In this work, however, we consider
only the z = 1 output and DM halos with a mass M > 1.12 × 1013 h−1M⊙,
which corresponds to a mean number density n̄ = 2.13 × 10−4 h3Mpc−3, since
this is approximately the number density of H-α line emission galaxies which
will be the target of forthcoming redshift surveys, such as Euclid.
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6.4 Covariance matrices
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Figure 6.1: Correlation matrix used in the MINERVA 2PCF only analysis,
measured from the 298 MINERVA mock catalogues. The matrix is composed
by nine square sub-blocks. The three diagonal sub-blocks correspond to the
2PCF monopole, quadrupole and hexadecapole, respectively in the bottom-
left, central and top-right regions. The other sub-blocks represent the cross-
correlation between the different moments.

For all the three analyses, we built the likelihood function using the co-
variance matrix measured from the 298 MINERVA mock catalogues, exploiting
the new implemented CBL function CovarianceMatrix::measure() (see sec-
tion 5.2). The covariance matrix Cij has been computed using the following
maximum likelihood estimator (Barlow, 1991):

ĈML
ij =

1

Nm − 1

Nm∑
k=1

(d
(k)
i − d̄i)(d

(k)
j − d̄j), (6.7)

where Ns is the number of mock catalogues, d
(k)
i is the data in the i-th bin

and k-th mock catalogue, and d̄i is the mean value of the data in the i-th bin
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Figure 6.2: Correlation matrix used in the MINERVA 3PCF only analysis,
measured from the 298 MINERVA mock catalogues.

(averaged over all the mock catalogues). The size of the covariance matrix
depends on the number of bins used in the data vector. Specifically, if Nb is
the number of bins, the covariance matrix will be a Nb × Nb matrix. It is
important that the number of bins Nb does not exceed the number of mocks
Nm, because the covariance matrix estimator in equation (6.7) yields a singular,
hence non-invertible, matrix in the case of Nb > Nm.

To compute the likelihood function L, we need the inverse of the covariance
matrix, also called precision matrix. However, if we invert the estimator in
equation (6.7), we obtain an estimator of the precision matrix, that we call
Ĉ−1

∗ = (ĈML)−1, which is consistent, but not unbiased. In order to make it
unbiased, we need to add a normalization factor (Hartlap et al., 2007), so that
the unbiased estimator of the precision matrix becomes:

Ĉ−1 = 1− Nb + 1

Nm − 1
Ĉ−1

∗ , forNb < Nm − 2. (6.8)

Neglecting this normalization factor results in an underestimation of the size of
the confidence regions, making the log-likelihood function steeper. However, the
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Figure 6.3: Correlation matrix used in the joint analysis of the MINERVA 2PCF
and 3PCF, measured from the 298 MINERVA mock catalogues. We can identify
the two sub-blocks corresponding to the 2PCF multipoles (bottom-left) and
3PCF (top-right). The other sub-blocks represent the cross-correlation between
the two probes.

introduction of this factor does not change the point of maximum likelihood,
implying that it does not modify the estimate of the parameters, while it only
affects their errors.

Furthermore, the estimate of the covariance matrix expressed in equation
(6.7) has a numerical error itself. Therefore, we have to take this error into
account when we compute the errors on the parameters. Specifically, let us
consider a parameter P , whose posterior distribution has a standard deviation
σP , which can be considered the error on the estimate of P . The correction that
we have to include is the following (Percival et al., 2014):

σP,corr = σP

√
1 +B(Nb −Np)

1 +A+B(Np + 1)
(6.9)
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where Np is the number of parameters, and A and B are defined as:

A =
2

(Nm −Nb − 1)(Nm −Nb − 4)
, (6.10)

B =
Nm −Nb − 2

(Nm −Nb − 1)(Nm −Nb − 4)
. (6.11)

Since it is easier to visualize, instead of showing the covariance matrix, we
show the correlation matrix of our data, which is defined as:

Corrij =
Cij√
CiiCjj

. (6.12)

In Fig. 6.1, we show the correlation matrix of the multipoles of the MINERVA
2PCF. Since we have 34 bins for each multipole moment, we have 102 bins in
total, implying that the covariance matrix is a 102× 102 matrix.

In Fig. 6.2, we show the correlation matrix of the MINERVA 3PCF, com-
puted using all the available scales. After the cut in the scales (see section 6.6),
we are left with 82 bins, therefore the covariance matrix is a 82 × 82 matrix.
We can appreciate here that the cross-correlation terms in the 3PCF are much
more relevant, compared with the 2PCF multipoles.

In Fig. 6.3, we show the total correlation matrix of the MINERVA 2PCF
and 3PCF.

Once we have found the covariance matrix, computing the likelihood function
is a straightforward process. We assume a multi-variate Gaussian likelihood, so
that it can be written as:

L =
1

(2π)Nb/2|C|1/2
e−

1
2

∑
ij [di−µi(θ)]C

−1
ij [dj−µj(θ)], (6.13)

where |Cij | ≡ detCij , di is the data at the i-th bin, and µi(θ) is the model
prediction at the i-th bin. The posterior distribution of each parameter is then
obtained by multiplying the likelihood function to the prior distribution.

6.5 The analysis of 2PCF in the MINERVA sim-
ulations

In the first analysis, we performed the fit of the MINERVA 2PCF multipoles
using the eTNS model (see section 3.2). We sampled the posterior distribution
using an MCMC method with 64 walkers and the chain size parameter set to
3000. The model parameters are fσ8, b1 σ8, b2 σ8, bt σ8, σv, α⊥ and α∥, where
f is the growth rate of cosmic structures, σ8 is the amplitude of matter density
fluctuations, b1 is the linear bias, b2 is the nonlinear bias, σv is the velocity
dispersion, α⊥ and α∥ are the parameters related to the Alcock-Paczynski effect
defined in equations (2.62) and (2.63). In this analysis, we fixed the bt parameter
to the value expected from the local Lagrangian bias model (equation 5.2), since
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Figure 6.4: Multipole moments (monopole in blue, quadrupole in red, hexade-
capole in green) of the MINERVA 2PCF. Circles, squares and diamonds repre-
sent the data. The error bars are the square root of the diagonal elements of the
covariance matrix divided by the square root of the number of mock catalogues,
and they are not visible since they are very small. The solid curves show the
best-fit model, while the grey shaded areas display the 1-σ error on the model.

with the 2PCF only we are not able to constrain it and allowing it vary worsened
the fit of the other parameters. Therefore, we assume a uniform prior for the
parameter btσ8 equal to the value of bt derived from equation (5.2) times the
value of σ8 of the MINERVA simulations (see table 6.1) consistently rescaled
at the considered redshift. All the other parameters of the model are free to
vary, and their priors are assumed to be uniform, as table 6.2 shows. The

fσ8 b1 σ8 b2 σ8 σv α⊥ α∥

U(0, 2) U(0, 2) U(0, 2) U(0, 10) U(0, 2) U(0, 2)

Table 6.2: Prior distributions for the free parameters used in the MINERVA
2PCF analysis, where U(a, b) indicates a uniform distribution between a and b.

data and the best-fit model are shown in Fig. 6.4. It appears evident that
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Figure 6.5: 1D and 2D posterior distributions for the free parameters fσ8, b1σ8,
σv, α⊥ and α∥ of the eTNS model, obtained from the analysis of the MINERVA
2PCF multipoles. The darker/lighter shades in each box indicate the 68% and
95% confidence regions, respectively. The dashed lines represent the theoretical
predictions for the parameters.

the model accurately approximates the data in the range 30h−1Mpc < s <
200h−1Mpc, which is the range of the fit. In Fig. 6.5 we display the 1D and
2D posterior distributions for the free parameters of the fit fσ8, b1σ8 σv, α⊥
and α∥. The parameter b2σ8 is not shown since it is not constrained by this
analysis. The dashed lines in Fig. 6.5 represent the expected theoretical values
for the parameters. Specifically, the values of f and σ8 have been computed from
the cosmological parameters of the MINERVA simulations (see Tab. 6.1) and
consistently rescaled to the considered redshift. Moreover, the reference value
for σv is estimated using equation (3.7), and the reference value for both α⊥
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and α∥ is 1, due to the fact that we know the true cosmology of the simulations
we are analyzing.

6.6 The analysis of 3PCF in the MINERVA sim-
ulations

In the second analysis, we performed the fit of the 3PCF of the MINERVA mock
catalogues using our new 3PCF model (see section 4.2), whose parameters are
β, b1, b2 and bt, where β ≡ f/b1 with f the linear growth rate, b1 is the linear
bias, b2 is the nonlinear bias, and bt is the tidal bias.

First of all, the MINERVA 3PCF data set was given in the form of the coef-
ficients of the Legendre expansion of the 3PCF, namely the ζℓ in the following
equation:

ζ(r12, r13, θ) =

ℓmax∑
ℓ=0

ζℓ(r12, r13)Pℓ(cos θ), (6.14)

where ζ is the 3PCF, parametrized as a function of the first side of the trian-
gles, r12, the second side of the triangles, r13, and the angle between them, θ.
Pℓ are the Legendre polynomials. Therefore, we proceeded to reconstruct the
3PCF, ζ, by multiplying the coefficients ζℓ by the Legendre polynomials, up to
ℓmax = 10, which is the value of the provided data set. The result model of the
MINERVA 3PCF is showed in Fig.6.6 for the illustrative scales of the {r12 =
25h−1Mpc, r13 = 105h−1Mpc} and {r12 = 45h−1Mpc, r13 = 115h−1Mpc},
which were chosen since they include the BAO feature, indicated, in each panel,
by the red arrow.

After that, we performed a fit of the real-space MINERVA 3PCF at fixed
scales, in order to compare our results with the one obtained by Binetti, 2020 in
configuration space and Oddo et al., 2020 in Fourier space (both these analyses
have been carried out on the same real-space data from the MINERVA simula-
tions). We sampled the posterior distribution using an MCMC method with 64
walkers and the chain size parameter set to 3000. In particular, the β parameter
is fixed to zero, since we are dealing with real-space data, while the other pa-
rameters are free to vary, their prior distributions being represented in Tab. 6.3.
In Fig. 6.7 we show the data and the best-fit model for the illustrative scales
r12 = 25h−1Mpc and r13 = 45h−1Mpc, which are the same scales considered
by Binetti, 2020. Fig. 6.8 displays the 1D and 2D posterior distributions for

b1 b2 bt

U(0.5, 5) U(−10, 10) U(−5, 5)

Table 6.3: Prior distributions for the free parameters used in the analysis of the
real-space MINERVA 3PCF at fixed scales, where U(a, b) indicates a uniform
distribution between a and b.
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Figure 6.6: The model 3PCF, ζ, as a function of the angle θ between the two
sides r12 and r13 of the triangles for two different configurations, indicated in
the title of each box. In each panel, the red arrow displays the position of the
BAO peak.

the free parameters of the fit. The results show a perfect agreement with the
results of both the configuration space analysis of Binetti, 2020 and the Fourier
space analysis of Oddo et al., 2020.

After that, we performed a fit of the redshift-space MINERVA 3PCF at all
scales. Again, we set the number of walkers in the MCMC method to 64 and the
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Figure 6.7: Real-space 3PCF of the MINERVA mock catalogues, for the fixed
scales r12 = 25h−1Mpc and r13 = 45h−1Mpc. The red circles represent the
data, whose error bars are the square root of the diagonal elements of the co-
variance matrix divided by the square root of the number of mock catalogues,
and they are not visible since they are very small. The blue curve show the
best-fit model, while the grey shaded areas display the 1-σ error on the model.

chain size parameter to 3000. In this case, β is considered as a free parameter
of the model, as b1, b2 and bt. We did not fit all the configurations, but we
performed two cuts in the scales. The first one excludes the configurations which
do not satisfy the triangle inequality. The second one excludes all the scales
smaller than rmin = 60h−1Mpc, since the model is expected to be less accurate
at small scales (see Veropalumbo et al., 2022), larger than rmax = 250h−1Mpc,
and with an η parameter larger than ηmin. The η parameter is defined as:

η ≡ r13 − r12
∆r

, (6.15)

where ∆r = 10h−1Mpc is the binning size. Then, if we set ηmin = 0, it cor-
responds to consider all the available triangles with sides within the range of
scales [rmin, rmax]. If we set ηmin = 1, it corresponds to the exclusion of isosceles
configurations, hence with r12 = r13, and higher values of ηmin would further
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Figure 6.8: 1D and 2D posterior distributions for the free parameters b1, b2
and bt of our new 3PCF model, obtained from the analysis of the real-space
MINERVA 3PCF for the fixed scales r12 = 25h−1Mpc and r13 = 45h−1Mpc.
The darker/lighter shades in each box indicate the 68% and 95% confidence
regions, respectively. The dashed lines represent the results of the analysis of
Binetti, 2020 at the same scales.

reduce the triangle set. Since the estimator based on the SHD method (see
section 2.2) cannot properly recover the 3PCF corresponding to isosceles con-
figurations (Slepian and Eisenstein, 2015b; Veropalumbo et al., 2022), we set
ηmin = 4. Our choice of rmin and rmax was made with the aim of excluding the
scales with a reduced chi-square significantly larger than 1. Fig. 6.9 displays the
data along with the best-fit model, showing that the model is able to reproduce
the expected behaviour in the data. The 1D and 2D posterior distributions for
the free parameters of the fit are represented in Fig. 6.10. The dashed lines indi-
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Figure 6.9: Redshift-space MINERVA 3PCF at all scales. The red circles repre-
sent the data, whose error bars are the square root of the diagonal elements of
the covariance matrix divided by the square root of the number of mock cata-
logues, and they are not visible since they are very small. The blue curve show
the best-fit model, while the grey shaded areas, which are really small, display
the 1-σ error on the model.

cate the results obtained by Veropalumbo et al., 2022 with a different cut in the
scales, since they used rmin = 40h−1Mpc, rmax = 130h−1Mpc and η = 3. The
differences in the estimates of the parameters can be attributed to the different
scales considered, and to the fact that Veropalumbo et al., 2022 took advantage
of a binned model, computing the multipoles as:

ζ̃ℓ(r12, r13) =
2ℓ+ 1

2

∫ 1

−1

dµPℓ(µ)

∫ r12+∆r/2

r12−∆r/2

dqq2
∫ r13+∆r/2

r13−∆r/2

dpp2ζ(p, q, µ),

(6.16)
where Pℓ are the Legendre polynomials, µ is the cosine of the angle between
the two triangle sides r12 and r13, and p and q are mute variables. This in-
tegral is significantly demanding in terms of computing resources, particularly
if it is evaluated at each MCMC step. For this reason, we did not include it
in our analysis. Further investigations are needed to understand whether the
differences in the estimated parameters are fully due to this aspect.
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Figure 6.10: 1D and 2D posterior distributions for the free parameters b1, b2,
bt and β of our new 3PCF model, obtained from the analysis of the real-space
MINERVA 3PCF at all scales. The darker/lighter shades in each box indicate
the 68%, 95% and 99.7% confidence regions, respectively. The dashed lines
represent the results of the analysis of Veropalumbo et al., 2022, which used a
different cut in the scales.

6.7 Towards a joint analysis of 2PCF and 3PCF
After having modified the CBL functions for the 2PCF modelling letting bt
free to vary, having derived and implemented a new model for the redshift-
space 3PCF, and having estimated the cross-covariance terms of both 2PCF
and 3PCF, we are ready to prepare the computational framework for the joint
analysis of 2PCF and 3PCF.

We consider the two probes as dependent, and we use a method to combine
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the posterior distributions which consists of running the MCMC chain and, at
each chain step θi, evaluating the logarithm of the posterior log [Ptot(θi)] as the
sum of the logarithms of the posteriors of the considered probes log [Pj(θi)].
Considering N probes, we have:

log [Ptot(θi)] =

N∑
j=1

log [Pj(θi)] . (6.17)

In terms of likelihood L and prior π the latter equation can be written as:

log [Ptot(θi)] =

N∑
j=1

{log [Lj(θi)] + log [πj(θi)]} . (6.18)

This method is implemented in the CBL1. In this way, we are able to estimate
1It is implemented in the CBL class cbl::statistics::CombinedPosterior
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the parameters of the two models exploiting information coming from both the
2PCF and 3PCF in the fit.

In Fig. 6.11 we show the comparison of the 1D and 2D posterior distributions
of the parameters b1 and b2 obtained with the 2PCF analysis described in section
6.5 and the 3PCF analysis, in real space, discussed in section 6.6. This plot
shows the interdependence and synergy between the 2PCF and the 3PCF. The
combination of these two probes has the potential of increasing the accuracy of
the constraints in cosmological parameters estimation and breaking degeneracies
between them. Due to CPU limitations, it was not possible to include the results
in this Thesis, but a full analysis is currently ongoing.
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Chapter 7

Conclusions and future
prospects

Scientific context
The extremely significant advancements in the study of the properties of the
LSS of the Universe that we have witnessed in the last decades have led to the
definition of the concordance ΛCDM model. As presented in Chapter 1, this
model is based on Einstein’s theory of GR, assuming the validity of the Cosmo-
logical Principle. The assumption of homogeneity and isotropy of space at large
scales (typically hundreds of megaparsec) leads to the derivation of the FLRW
metric, which describes the distances in the Universe, and to the formulation
of the Friedmann equations, which describe the gravitational evolution of the
cosmic fluid. The ΛCDM model predicts that the majority of the mass of the
Universe is in the form of cold dark matter, and that the expansion of the Uni-
verse is accelerating due to the presence of dark energy. The existence of these
two dark components, which completely dominate the energy content of the
Universe, despite being generally accepted by the scientific community, opens
several new challenges. In fact, the nature of CDM and dark energy represents
one of the main open questions of modern cosmology.

The study of the clustering properties of the LSS represents an effective
statistical tool to constrain cosmology and to widen our knowledge regarding
the Universe. Specifically, the 2PCF and 3PCF (see sections 2.1 and 2.2 re-
spectively), along with their Fourier counterparts, the power spectrum and the
bispectrum, constitute extremely powerful cosmological probes. They encode
information about the RSD, the distortions in the density field induced by the
matter peculiar velocity field, and the BAO peak, a well defined distance im-
printed in the matter distribution in the primordial Universe. The analysis of
these clustering distortions represents one of the fundamental probes to obtain
estimates of the cosmological parameters (see section 2.3).

Forthcoming redshift surveys, such as Euclid (Laureijs et al., 2006), the Vera
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C. Rubin Observatory LSST (Ivezić et al., 2019), and the Nancy Grace Roman
Space Telescope (Spergel et al., 2015), aim to push the accuracy of cosmological
measurements to unprecedented levels. Within this context, it is necessary to go
beyond two-point statistics, which is no longer sufficient to extract all the avail-
able cosmological information, and analyze higher-order clustering statistics. In
particular, three-point statistics plays a crucial role, encoding information about
deviations from Gaussianity in the primordial density field. Consequently, de-
veloping new and effective theoretical models, and exploring their application,
becomes of utmost importance. Moreover, new and efficient statistical tools
need to be implemented, in order to maximize the retrieved cosmological infor-
mation.

This Thesis project aims to address these challenges, by deriving a new 3PCF
redshift-space model, and developing the necessary computational framework for
a joint analysis of the 2PCF and 3PCF.

Main results
We can summarize the main results of this Thesis work as follows:

• We proposed an extension of the redshift-space bispectrum model of Scoc-
cimarro et al., 1999 (SCF99), by including the tidal bias bt as an additional
parameter, as shown in section 4.1. The SCF99 model for the bispectrum
considered the following galaxy bias relation:

δg(x) = b1δ(x) +
b2
2
δ2(x), (7.1)

where δg is the galaxy density field, δ is the matter density field, x is a point
in space, b1 is the linear bias, and b2 is the nonlinear bias. We included
an additional bias parameter in our galaxy bias relation as follows:

δg(x) = b1δ(x) +
b2
2
δ2(x) + bts

2(x), (7.2)

where bt is the tidal bias, and s2(x) is the square of the tidal field, which is
proportional to the second derivative of the gravitational potential Φ(x).
For this reason, we include an additional term, with respect to SCF99,
in the definition of the second-order PT redshift-space kernel Z2(k1,k2).
This term, btS2(k1,k2), accounts for the tidal field contribution through
its kernel S2. From this, we derived the resulting bispectrum model, which
is presented in equation (4.12), along with equations (4.13), (4.14), (4.15),
and (4.16).

• Using the previously derived expression for the bispectrum, we obtained a
new formulation for the redshift-space model of the 3PCF, that improves
with respect to the model of Slepian and Eisenstein, 2017 (SE17) by re-
vising some incorrect terms in their calculations. We theoretically derived
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the new 3PCF model from scratch, as described in section 4.2, using the
Python library for symbolic mathematics SymPy, through which we solved
all the integrals involved in the calculation. We began the derivation by
expanding the 3PCF, ζ, onto Legendre polynomials, Pℓ, as equation (4.19)
shows. The coefficients of such expansion can be recovered through an in-
tegral of the so-called pre-cyclic 3PCF (see equation 4.20) that is the 3PCF
prior to the summation over cyclic permutations of the triangle sides r12,
r13, r23, needed to ensure the indistinguishability of the triangle vertices.
Then, we expanded the pre-cyclic 3PCF, again, onto Legendre polynomi-
als (see equation 4.22). The coefficients of this expansion, ζpc,ℓ, can be
recovered through the expression in equation (4.23), which depends on the
multipole coefficients of the bispectrum, Bs,ℓ. In order to derive the ζpc,ℓ,
we proceeded to expand the different terms of the bispectrum monopole
Bs derived in section 4.1 onto Legendre polynomials. The final result
is the line-of-sight averaged 3PCF model, which we report here since it
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represents one of the major achievements of this Thesis work:
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These are the multipole moments of the 3PCF, where ξ
[n]
i and ξ

[n±]
i are

integrals of the power spectrum defined in equation (4.37), the κℓ terms
are defined in equation (4.39), and we used γ ≡ b2/b1, γt ≡ bt/b1, and
β ≡ f/b1, f being the linear growth rate.

• We validated the new 3PCF model by performing various tests, comparing
its multipole moments to the ones of the 3PCF model of Veropalumbo et
al., 2022 (see section 5.4.1). For each test, we used the model parameters
showed in Tab. 5.1. As Figs. 5.2-5.5 show, the two models are in very good

89



agreement, with an average difference on ζℓ smaller than 8×10−7, roughly
a factor 50 smaller than the average values of the multipole moments. The
small discrepancies are accountable for the different method of integration
adopted in the two models, since in this analysis we used the quadrature
method, whereas Veropalumbo et al., 2022 used an FFT algorithm.

• We implemented the new codes used for our analysis in the CosmoBolog-
naLib (CBL) libraries. We can categorize the modifications in the CBL as
follows:

– we added two new functions for the estimate of the covariance matrix
of a collection of data sets, aiming at making the use of this CBL class
more user-friendly, mainly for Python users (see section 5.2);

– we modified the model functions related to the 2PCF modelling in
order to make the tidal bias bt a free parameter. Indeed, since bt is
a free parameter in the 3PCF analysis, we need it to be free also in
the 2PCF analysis. In this way, we can obtain constraints from the
combination of both statistics (see section 5.3);

– the only model in the CBL for the analysis of the redshift-space 3PCF
was based on SE17, therefore it was not correct. For this reason, we
implemented our new 3PCF model from scratch, organizing it into
multiple functions, described in detail in Appendix C. Furthermore,
the CBL offered the study of the 3PCF only with the parametrization
depending on two triangle sides, r12 and r13, and the angle between
them, θ. Therefore, we introduced new functions which allow the
expression of the 3PCF with a new parametrization, depending on
the three sides of the triangles r12, r13, r23. This enables to study
the 3PCF at all scales, analyzing all the configurations, rather than
just fixing two triangle sides, and vary the angle between them (see
section 5.4).

• We performed two cosmological parameter estimation analyses: one with
the MINERVA 2PCF (see section 6.5) and one with the MINERVA 3PCF
(see section 6.6). In the first analysis, we used the eTNS model for the
modelling of the MINERVA 2PCF multipoles, where we found a perfect
agreement between the estimated parameters and the expected theoretical
values. In the second analysis, we exploited the new 3PCF model for the
analysis of the MINERVA 3PCF at all scales. The modelling of the 3PCF
in real space is statistically consistent with the works of Binetti, 2020 in
configuration space and Oddo et al., 2020 in Fourier space. The results in
redshift space are promising, but still require some further optimization.
As Fig. 6.11 shows, the probe combination of the 2PCF and 3PCF has a
very strong potential both in in increasing the precision on cosmological
parameter constraints, and in lifting parameter degeneracies.

All these results have the common purpose of developing a framework for the
probe combination of the 2PCF and 3PCF. It was not possible to include the
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results of such combination in this Thesis work, due to CPU constraints, however
a full analysis is currently ongoing.

Future perspectives
The natural development of this Thesis project consists of exploiting the de-
veloped framework to perform a joint analysis of the 2PCF and 3PCF, which
is currently in progress. Moreover, further investigations are needed to under-
stand the nature of the differences in the estimates of the parameters from the
3PCF analysis with respect to the ones estimated by Veropalumbo et al., 2022.
After that, another development of this Thesis project will consist of applying
the derived models and pipelines on a sample of real data. The results of this
work will be exploited for the next work of the “Cluster Clustering Cosmology
(C3)” project, whose first paper, Marulli et al., 2021, dealed with the analysis of
the anisotropies of the 2PCF of a large spectroscopic sample of galaxy clusters
extracted from the Sloan Digital Sky Survey (SDSS); while the second paper,
Moresco et al., 2021, concerned the investigation of the 3PCF of these galaxy
clusters up to the BAO scale. The next step of the C3 project will consist of
exploiting a joint analysis of the 2PCF and 3PCF of the SDSS galaxy clusters,
with the goal of providing tighter constraints on cosmological parameters and
breaking degeneracies between them.
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Appendix A

Implementated methods:
covariance matrix

For what concerns the covariance matrix computation, we added two new func-
tions to the CBL class cbl::data::CovarianceMatrix. In particular, we added
two overloaded versions of the method CovarianceMatrix::measure()1, used
to compute the covariance matrix of a given dataset. The two existing over-
loaded versions of this method took a vector of smart pointers (in particular
std::shared_ptr2 objects) to the CBL class cbl::data::Data or a vector of
vectors of smart pointers to the CBL class cbl::data::Data as arguments, re-
spectively. As a result, the user should have turned the dataset into a pointer to
the cbl::data::Data class before measuring the covariance matrix. This can
be problematic, mainly for Python users, since the handling of smart pointers
in Python is not straightforward. Consequently, with the purpose of making
this class more user-friendly, we added two overloaded versions of the method
CovarianceMatrix::measure() which take a vector of vectors of doubles (a
2-dimensional vector in which each element is a vector of doubles) and a vector
of vectors of vectors of doubles (a 3-dimensional vector in which each element
is a 2-dimensional vector) as arguments, respectively.

1We dropped the cbl::data:: prefix for clarity.
2For more information visit https://en.cppreference.com/w/cpp/memory/shared_ptr.
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Appendix B

Implementated methods:
two-point correlation function

We modified some existing functions of the CBL class cbl::modelling::twopt
::Modelling_TwoPointCorrelation_multipoles, to make the tidal bias pa-
rameter bt a free parameter of the fit. In particular, we modified the following
functions1:

• Modelling_TwoPointCorrelation_multipoles::set_model_eTNS();

• Modelling_TwoPointCorrelation_multipoles::set_fiducial_
PkDM();

• xiMultipoles();

• Pkmu();

• Pkmu_eTNS().

1We dropped the cbl::modelling::twopt:: prefix for clarity.
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Appendix C

Implementated methods:
three-point correlation
function

We implemented our new model for the 3PCF (see section 4.2) from scratch and
added it to the CBL class cbl::cosmology::ThreePointCorrelation. Since
it is organized into multiple functions, we present here a detailed description of
the implementation. In particular, let us start from the following methods1:

• zeta_ell_0_factor();

• zeta_ell_0_factor_tidal();

• zeta_ell_1_factor();

• zeta_ell_2_factor();

• zeta_ell_2_factor_tidal();

• zeta_ell_3_factor();

• zeta_ell_4_factor();

• zeta_ell_4_factor_tidal();

that provide the content of the curly brackets of equation (4.42). Indeed, as
the names suggest, these functions compute the terms corresponding to the
ℓ = 0, 1, 2, 3, 4 orders of the Legendre expansion, the contribution from the
tidal bias being included in the ones labelled as tidal. Then, implemented the
following functions:

1We drop the cbl::cosmology::ThreePointCorrelation:: prefix for clarity.
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• zeta_precyclic_RSD(): this function computes the precyclic 3PCF ζpc
by multiplying the multiple moments expressed in equation (4.42) times
the Legendre polynomials Pℓ, obtaining the result of equation (4.22). Then
it sums together the different precyclic 3PCFs in order to get the content
of the square brackets of equation (4.20);

• zeta_expansion_RSD(): this method integrates the product of the result
of zeta_precyclic_RSD() times the Legendre polynomials to get the co-
efficients of the Legendre expansion of the 3PCF, ζℓ, which is the result
of equation (4.20);

• zeta_RSD(): this function calculates the 3PCF ζ at fixed scales by ex-
panding the coefficients ζℓ computed by zeta_expansion_
RSD() onto Legendre polynomials, as shown by equation (4.19). There are
two overloaded versions of this function, the first one takes a single angle
as an argument and returns a single ζ, while the second one takes a vector
of angles as an argument and returns a vector of ζ;

• zeta_RSD_all_scales(): this method computes the 3PCF ζ at all scales
by cycling over all the possible scales and calling zeta_RSD() at each cycle
step.

After having described the implementation of the model in the class cbl::co
smology::ThreePointCorrelation, we can turn to the modifications to the
methods belonging to the cbl::modelling::threept namespace. Specifically,
the following functions were added2:

• Modelling_ThreePointCorrelation_comoving_connected::set_mode
l_RSD(): this function defines the parameters to model the connected
3PCF in comoving coordinates at fixed scales;

• Modelling_ThreePointCorrelation_comoving_connected::set_mode
l_RSD_all_scales(): this function defines the parameters to model the
connected 3PCF in comoving coordinates at all scales;

• zeta_RSD(): this method selects cbl::cosmology::ThreePoin
tCorrelation::zeta_RSD() as the function that must be used for the
modelling of the data;

• zeta_RSD_all_scales(): this method selects cbl::cosmolog
y::ThreePointCorrelation::zeta_RSD_all_scales() as the function
that must be used for the modelling of the data.

2We drop the cbl::modelling::threept:: prefix for clarity.
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