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Abstract

This thesis delves into the exploration and enhancement of passage reranking

in Information Retrieval (IR) systems, particularly focusing on the distillation

of knowledge from Large Language Models (LLMs) to augment the capabili-

ties of smaller cross-encoders. The research pivots the feasibility of distilling

the knowledge of LLMs into smaller models without compromising reranking

capabilities, and the impact of the distillation process on the adaptability of the

resultant model across diverse scenarios. To navigate through these inquiries,

a novel distillation method, termed TWOLAR (TWO-step LLM-Augmented

distillation method for passage Reranking), is introduced. TWOLAR is char-

acterized by a new scoring strategy and a distillation process consisting in the

creation of a novel and diverse training dataset. The dataset consists of 20K

queries, each associated with a set of documents retrieved via four distinct re-

trieval methods to ensure diversity, and then reranked by exploiting the zero-

shot reranking capabilities of an LLM. The ablation study demonstrates the

contribution of each introduced component. The experimental results show

that TWOLAR significantly enhances the document reranking ability of the

underlying model, obtaining state-of-the-art performances on the TREC-DL

test sets and the zero-shot evaluation benchmark BEIR, thereby contributing a

novel perspective and methodology to the discourse on optimizing IR systems

via knowledge distillation from LLMs.



Chapter 1

Introduction

Text IR is the task of finding relevant information, in the form of documents

or passages, to user-defined queries, where both the queries and resources are

expressed in natural language text.

Since the advent of machine learning and deep learning, we have seen a

rapid evolution of text retrieval systems which no longer require hand-crafted

features. In particular, the transformer architecture [52] and Pretrained Lan-

guage Models (PLMs) [11] have signed a significant leap, and the vast major-

ity of recent dense retrieval systems are based on this paradigm.

The state-of-the-art text rerankers are traditional cross-encoders likemono-

BERT [32], monoT5 [33, 43], and RankT5 [58], and more recently rerankers

based on Large Language Models (LLMs) like RankGPT [46], LRL [29] and

PRP [39].

Large Language Models (LLMs), such as ChatGPT [37], GPT-4 [36],

PaLM [7], LLama[50], and Claude[1] are quickly solving a large diversity of

tasks, when previously different and specialized models were needed. The ca-

pabilities of those models are the outcome of well-engineered pretraining on

large-scale text corpora and alignment fine-tuning to follow human instruc-

tions. Thanks to this recipe, LLMs have shown remarkable performances in

language understanding, generation, and reasoning. Recently, research has

sought to leverage LLMs to improve IR systems [57]. Adapting LLMs for IR
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tasks is not straightforward as high efficiency is needed, and the task is not

easily expressible in the usual way of language modeling.

Cross-encoders heavily rely on large human-annotated datasets, which

renders them not easily scalable and weak in out-of-domain scenarios. On

the other hand, the higher performances of LLMs come with higher computa-

tional costs. To this end, this work investigates how to mitigate the mentioned

limitations. Specifically it focus on the following two questions:

• (RQ1) Is it possible to distill the knowledge of LLMs into smaller cross-

encoders to match their reranking capabilities?

• (RQ2) How does the distillation process affect the adaptability of the

student model to different scenarios?

To answer these questions this thesis introduces a new distillation method

for passage reranking called TWOLAR (a TWO-step LLM-Augmented dis-

tillation method for passageReranking). The distillation consists in exploiting

the capabilities of an LLM as a reranker to produce high-quality annotations.

The annotations are applied to a dataset of queries generated artificially, either

as cropped sentences or again by a specialized language model. In this way

I obtain a compact model that ranks among top performing supervised, zero-

shot, and LLM-based distillation methods in various popular benchmarks. 1

The remainder of the thesis is structured as follows: Chapter 2 provides

background on text retrieval and ranking methods. Chapter 3 details my ap-

proach, subdivided into scoring and distillation strategies. Chapter 4 covers

the experimental setup, including datasets, training, baselines, and results.

Chapter 5 discusses the results and 6 illustrates the ablation studies. Chap-

ter 7 concludes the thesis.

1The work presented in this thesis is currently under review; after publication all the data,
code and models will be made available at https://github.com/Dundalia/TWOLAR

https://github.com/Dundalia/TWOLAR


Chapter 2

Background

IR is a discipline concerned with enabling users to find relevant information

from an organized collection of documents [8]. IR systems typically typically

start from a user query and return a ranked list of documents based to their

relevance to the query.

Formally, given a query and a passage from a large text collection, text

ranking requires returning a ranked list of the n most relevant texts according

to the relevance scores of a model.

Early text retrieval systems are based on the bag-of-words assumption, and

both the queries and the documents are represented as sparse term-based vec-

tors. Those vectors are built with term weighting rule-based methods, and the

relevance can be estimated as the similarity between such text embeddings.

Among those methods, tf-idf [44] and BM25 [42] still represent strong base-

lines, and are widely adopted.

Subsequently, statistical language modeling has been widely explored for

text ranking [55]. With the development of machine learning, supervised ap-

proaches, that still rely on hand-crafted features as well as lexical features,

have been proposed [27, 24]. Further progress was made with the adoption of

neural networks mapping pieces of text into low-dimensional vectors to obtain

better representations [18, 30, 19].
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Figure 2.1: Visual illustration of dual-encoder and cross-encoder architec-
tures. Image from [56].

The advent of pretrained language models (PLMs) [11, 41, 40] and large-

scale human annotated datasets [31, 22, 54] marked a significant advancement

in the field.

The core idea of dense retrieval is to model the semantic relation between

queries and documents based on the model representations. Those approaches

can be divided into two families: bi-encoder architectures and cross-encoder

architectures (see Fig. 2.1). In bi-encoder architectures, two separate encoders

compute the query embedding and the document embedding. This is accom-

plished by inputting the language model with a query (respectively, a doc-

ument) and use as embedding vector the learned representation of a special

token (”[CLS]” in BERT). Then the relevance score is computed via some

similarity function (e.g., cosine similarity or dot product) between the query

embedding and the document embedding. On the other hand, in cross-encoder
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Figure 2.2: The illustration for the overall pipeline of an IR system. Image
from [56].

architectures a single PLM is fed with the concatenation of a query and a doc-

ument. In this way a relevance score can be directly derived by the model’s

output.

It is important to note that the cross-encoder approach requires every query-

document pair to be encoded, and hence does not scale to large collections of

documents. On the other hand, with a bi-encoder architecture documents and

queries are encoded independently so that the corpus can be processed offline

and at inference time I only need to encode the query and compute the sim-

ilarity score. For an extensive survey on PLM-based dense retrieval models

refer to [56].

Recently, a new paradigm emerged [12, 25, 56, 35, 57], consisting of mul-

tiple stages (see Fig 2.2): using a first-stage retriever that aims to reduce the

candidate space by retrieving a subset of relevant candidates, often number-

ing in the hundreds or thousands, and then refining these initial results with a

second-stage reranker.

With the rapid development of LLMs, recent research has sought to lever-

age their capabilities to improve IR systems [57].

Most of the neural retrieval systems are trained on large datasets like Nat-

ural Questions (NQ) [22] (133k training samples) or MS MARCO [31] (533k

training samples), which are composed of a corpus and a set of questions or

short keyword-based queries. However, creating a large training corpus is of-

ten unfeasible and hence it is crucial for an IR system to perform well in a

zero-shot setup. To this aim, the BEIR benchmark [49] has been proposed,
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which is composed of 18 retrieval datasets for the evaluation of model gener-

alization. A more detailed review of the datasets is presented in chapter 3.

In recent works [33, 58, 3] the reranker is usually initialized as a T5 model

[41]. The Text-to-Text Transfer Transformer (T5)model, developed byGoogle

Research, is a state-of-the-art Natural Language Processing model designed to

handle a variety of NLP tasks, including translation, summarization, question-

answering, and more. T5 operates under the paradigm of treating every text

processing problem as a “text-to-text” problem, i.e. taking text as input and

producing new text as output. This model is pre-trained on a large corpus of

web crawled text and fine-tuned on downstream tasks. The versatility and ef-

fectiveness of T5 have made it a popular choice among researchers and prac-

titioners in the field of NLP. To enhance the capabilities of T5, the flan-T5

model [9] was conceived by scaling the number of tasks and including Chain

of Thoughts data.

Now, I am going to present the recent advancements in dense text retrieval

and reranking, presenting the State-of-The-Art models, and reviewing the re-

cent approaches to distill LLMs’ capabilities.

2.1 SoTA retrievers

Various improvements have been proposed to the classical bi-encoder ap-

proach.

SPLADE. The idea behind SPLADE [15, 14, 13] is to estimate the impor-

tance of each term of the vocabulary implied by each term of the document,

i.e. to compute an interaction matrix between the document or query tokens

and all the tokens from the vocabulary. Given an input query or document se-

quence (after WordPiece tokenization) t = (t1, t2, . . . , tN) and its correspond-

ing BERT embeddings (h1, h2, . . . , hN), we consider the importancewij of the

token j (vocabulary) for a token i (of the input sequence):
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wij = transform(hi)T Ej + bj j ∈ {1, . . . , |V |}

where Ej denotes the BERT input embedding for token j, bj is a token-level

bias, and transform(.) is a linear layer with GeLU activation [23] and Lay-

erNorm. The final representation is then obtained by aggregating importance

predictors over the input sequence tokens. In the latest version (SPLADEv2)

the aggregation is computed as: wj = maxi∈t log(1 + ReLU(wij)).

The transformer encoder is initialized as a DistilBERT [45].

DRAGON. Inspired by the success of curriculum learning, knowledge dis-

tillation, and data augmentation, DRAGON [26] has been conceived. The

model is trained using only augmented queries, which have been built with

two approaches:

• Sentence cropping, which consists in extracting a sentence from a doc-

ument to use as a query;

• Pseudo query generation, in which, given a document, synthetic queries

are generated by a specialized T5 model [34].

The queries are then coupled with positive and negative documents with

a progressive label augmentation approach. Given a retrieval model as the

source of supervision, positive and negative documents are sampled respec-

tively from the top 10 passages and top 46-50 passages the model has retrieved

to form a triplet. At each training iteration, a new source of supervision is

added in ascending order of better generalization capability.
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2.2 SoTA rerankers

The task of a reranker is to output a fine-grained ordered list of relevant docu-

ments, reranking the top retrieved documents from a first-stage retriever, usu-

ally the top 100 or top 1000 documents. As the amount of documents to eval-

uate is far lower than the documents a retriever has to process, rerankers are

often implemented as a cross-encoder architecture, so to better model the se-

mantic interaction between any two tokens of a query-document pair.

MonoBERT The most straightforward approach is to adapt BERT model

to accomplish this task. In [32] the authors trained a BERT model on the MS

MARCO dataset, feeding the model with concatenated query-document pairs.

Then, they have inputted the ”[CLS]” vector to a single layer neural network to

obtain the probability of the document being relevant for the specified query.

The model has been fine-tuned using the cross-entropy loss:

L = −
∑

j∈Jpos

log(sj) −
∑

j∈Jneg

log(1 − sj),

where Jpos and Jneg are respectively the sets of indexes of relevant and non-

relevant documents.

It is important to note that the model is trained on a binary classification

task, inwhich the reranker has to classify each query-document pair as relevant

and non-relevant. The scores assigned to the positive class is used at inference

time as the probability of the document to be relevant for the respective query.

MonoT5 The idea behindMonoT5 [33, 43] is to adapt a pretrained sequence-

to-sequence model, T5 [41], to the task of document reranking. Instead of

modifying the architecture with a classification head, the model is fine-tuned

to produce the words ”true” or ”false” depending on whether the document

is relevant or not with respect to the query. The input sequence is:

Query: q Document: d Relevant:
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where q and d are the query and document texts. To compute the scores for

each query-document pair, a softmax is applied to the logits of the ”true” and

”false” token, and the probability assigned to the ”true” token is used as

relevance score.

InPars A key challenge in IR is the lack of domain-specific training data.

To this aim zero-shot and few-shot learning models are particularly effective.

The proposal of InPars [3, 21] is to efficiently use LLMs in reranking, by

generating labeled data in a few-shot manner, and finetune reranking models

on this synthetic data. As a result, this approach requires different models for

each dataset.

The training recipe and the strategy to obtain the scores are analogous to

MonoT5.

RankT5 The main contribution of [58] is the application of ranking losses

to train T5-based rerankers. Among others they have tested the RankNet loss

[5] and the listwise softmax cross-entropy loss [4].

Since the ranking loss functions require a score for each query-document

pair at training time, the authors have used as score the logit of a special unused

token in T5 vocabulary: ”<extra_id_10>”.

RankGPT In [46] the authors investigate the potential of LLMs in rerank-

ing. For this goal, they have developed a sliding window approach that enables

to generate the permutations of the reranked documents, despite the limited

amount of input tokens allowed. Given M passages, a window size w of 20

and a step size s of 10, the LLM ranks the passages from (M − w)th to M th,

utilizing w documents per prompt to generate the document permutations. At

this point the window is slided in steps of s, so that in the second step the

LLM reranks the passages from (M − w − s)th to (M − s)th, and the process

is repeated until all the passages have been re-ranked. In total the model has

to be inputted (M//s) × w times.
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In order to overcome the expenses of utilizing a proprietary model, the au-

thors have proposed an approach to distill the ranking capabilities of ChatGPT

into a specialized model. To do so, they have generated a dataset of GPT gen-

erated permutations to train a DeBERTaV3 model [20]. To build the dataset,

they have randomly sampled 10K queries fromMSMARCO, retrieved 20 can-

didate passages using BM25 for each query, and finally they have prompted

ChatGPT to generate the permutations.

PRP. Recently in [39] it has been presented the first application ofmoderated-

sized open-sourced LLMs to text ranking. They proposed a novel approach to

reduce the complexity of the task for the LLM: Pairwise ranking prompting

(PRP). It consists in asking the LLM to compare which of two given passages

is more relevant to a specific query, and using the pairwise comparison as the

basic computation unit for three different approaches.

The first approach is to extract a score for each query-document pair prompt-

ing the LLMwith the comparison between each possible couple of documents.

It requires O(N2) calls to the LLM.

As pairwise comparison is the basic operator of sorting algorithms, the sec-

ond proposed approach is to use the LLM as the comparator for the Heapsort

algorithm, requiring O(N log(N)) LLM calls.

The last approach is analogous to sliding window approach in [46], which

corresponds to the Bubblesort algorithm when the comparator is binary. By

noticing that ranking usually only cares about Top-K ranking metrics, where

K is small, they can perform K passes, leading to O(N) calls to the LLM.

The authors have tried different open-sourced LLMs from the Flan-T5 [9]

and Flan-UL [48] families.
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2.3 Distilling LLMs

In recent literature we have seen an increased interest in distilling LLMs’ ca-

pabilities in smaller architectures because although ChatGPT and GPT-4 are

highly capable, they are also expensive. One of the first attempt is Self-instruct

[53], in which the authors have tried to enhance the capabilities of the OpenAI

davinci model by artificially building a dataset with the LLM itself.

Furthermore it has been observed that ChatGPT outperforms crowd-worker

annotators on text-annotation tasks [16].

Later on, since Alpaca [47], many approaches to distill GPT-3’s and GPT-

4’s capabilities using their own instructional outputs came out [38, 6]. In those

studies the student language model is often initialized as LLama [50]. Despite

the initial enthusiasm, it has been proven that this form of broad imitation of

a proprietary model does not lead to better performances as the student model

learns to imitate the style, not the factuality of the teacher[17]. Nonetheless,

the authors found out that training student models on proprietary LLMs re-

mains a promising approach in task-specific settings, and [46] represents a

successfull example in text reranking.



Chapter 3

Methodology

The proposed reranking method is based on Flan-T5 [9]. To adapt it to the

task, I use the following input template:

Query: [Q] Document: [D] Relevant:

where [Q] and [D] are the query and document texts, respectively, similar to

the one adopted in monoT5 [33, 43]

3.1 Scoring Strategy

Flan-T5 can be straightforwardly applied to various tasks due to its text-to-

text nature, such as summarization, translation, and classification. However,

adapting to the ranking task is not trivial, because for each query-document

pair, we usually ask models to answer with a score representing the degree of

relevance. The state-of-the-art rerankers, monoT5 [33, 43] and RankT5 [58],

which are specialized text-to-text models, suffer from this limitation.

MonoT5. In MonoT5 this is solved by training the model with a binary clas-

sification task: given a query-document pair the model is finetuned to produce

the words ”true” if the document is relevant to the query and ”false” other-

wise. At this point the ranking score is obtained from the logits of the ”true”
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Figure 3.1: Illustration of the different score strategies from monoT5 [33, 43],
RankT5 [58] and the proposed approach.

and ”false” tokens as follows:

s = eztrue

eztrue + ezfalse
(3.1)

where ztrue, zfalse are the logits of ‘true’ and ‘false’, respectively.

RankT5. Another approach has been proposed with RankT5 [58]. In this

case the model directly learns to rank by optimizing a ranking-based loss func-

tion. This family of loss functions requires the model to directly output the

ranking score for each query-document pair at training time, so that the un-

normalized logit of a special unused token (‘extra_id_10’) in the vocabulary

is used as ranking score.

Proposed score strategy. On one hand, monoT5 is not directly finetuned

as a ranking model, which may not optimize its ranking performance. On the

other hand, RankT5 does not exploit the learned representation in the language

modeling head.
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To overcome both limitations, I propose a new approach. The idea con-

sists of using the difference between the unnormalized logits corresponding

to the ‘true’ and ‘false’ tokens. In this way, the model is able to output a

score directly at training time, and since it is optimized on top of the learned

representations of the two tokens, I can make full use of the knowledge from

the PLMs.

An illustration of these scoring strategies is shown in Fig. 3.1.

3.2 Datasets

The largest annotated dataset for IR is the MS MARCO passage reranking

dataset [31]. It contains around 530K train queries and 6.8K ”dev” queries.

The corpus is composed of more than 8.8 millions passages. The labels are

binary: for each query, relevant passages are annotated with 1 and others are

annotated with 0. For the evaluation I have adopted test sets of the 2019 and

2020 competitions: TREC-DL2019 and TREC-DL2020 [10], which provides

dense human relevance annotations for each of their 43 and 54 queries. For the

evaluation of zero-shot performances I used the BEIR benchmark [49]. It is an

heterogeneus benchmark containing 18 retrieval datasets, covering different

retrieval tasks and different text domains.

3.3 Distillation strategy

The proposed distillation strategy aims to capture the reranking capability of

LLMs, in this case ChatGPT, through constructing a query-document dataset.

The core design principle is the synthesis of suitable artificial queries by query

augmentation, and the subsequent use of multiple retrieval models and stages

of distillation.

This dataset is characterized by a two-tier distillation process, which in-

corporates an initial retrieval phase involving four distinct models, followed
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Figure 3.2: Illustration of the proposed two-steps LLM-augmented distillation
method used for the construction of the dataset.

by a second phase where ChatGPT is employed. The selection of advanced re-

trieval models in the first phase is purposeful, intending to introduce a higher

level of complexity in the dataset and providing a robust challenge for the

subsequent use of ChatGPT.

In parallel, the utilization of two different types of artificially generated

queries introduces a layer of diversity to the tasks. This variety encourages a

wider spectrum of responses from ChatGPT, furthering the understanding of

its capabilities and potential weaknesses across a broader range of situations.

The following subsections will delve into the specifics of each component

(see Fig 3.2) in the construction of this distillation dataset, providing a clearer

understanding of its design and the underlying rationale.

Query Augmentation. My approach to query augmentation was inspired

by the successful application of a method introduced in [26].

According to [26], two common automatic approaches are often adopted

to amplify the size of training queries from a given corpus: sentence cropping
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and pseudo query generation. The former can readily scale up the size of the

query without involving any computationally expensive operation. The latter,

on the other hand, generates high-quality but more computationally expensive

human-like queries using large language models, and has been utilized in [3,

21] to adapt a ranking model to specific datasets, where a reasonable amount

of queries for training is often lacking.

Building on these insights, I developed the query generation process using

both sentence cropping and pseudo query generation. I randomly sampled

10,000 queries fromDRAGON’s collection of cropped sentences, drawn from

the MS MARCO corpus consisting of 28 million sentences, originating from

8.8 million passages. Simultaneously, I sampled an additional 10,000 queries

from the query pool created by docT5query [34], a specialized T5 model that

generates queries based on a given passage.

The combination of these two subsets, each consisting of 10,000 queries,

forms a diverse set, boosting the challenge and complexity of the task. My

study, details of which will be discussed in subsequent sections, found that

a mixed set of queries, including both cropped sentences and docT5query

queries, proved to be the most effective approach. This aligns with the find-

ings from the DRAGON paper, thereby validating the choice of a balanced

mixture of query types.

First-stage distillation: retrieval. The initial phase of the distillation pro-

cess involves splitting each of the two sets of 10K queries - one set composed

of cropped sentences and the other of docT5query-generated queries - into

four subsets of 2.5k queries each. To retrieve documents for these queries, I

chose four distinct retrieval models, designed not only to provide high-quality

results but also to diversify the types of challenges and contexts presented to

ChatGPT in the subsequent distillation stage. The models I have chosen are:

• BM25 [42]: A state-of-the-art bag-of-words approach that relies pri-

marily on word overlap to match documents to queries. Consequently,
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its hard negatives are expected to challenge the languagemodel on lexical-

level matches.

• DRAGON [26]: A dense retrieval model designed to detect semantic

similarity between queries and passages. It pushes the language model

towards understanding deeper semantic relations and contexts. I have

chosen the DRAGON+ version.

• SPLADE [15, 13, 14]: It serves as a kind of midpoint between BM25’s

focus on word overlap and DRAGON’s emphasis on semantic similar-

ity. It introduces a different level of complexity by considering inter-

actions between the tokens of the document or query and all the tokens

from the vocabulary. I have chosen the SPLADE++ version.

• monoT5 [33, 43]: A combination of BM25 and monoT5 where the

top-100 documents retrieved by BM25 are re-ranked using monoT5. It

introduces negatives that are influenced by the ranking capabilities of a

cross-encoder.

In all cases, I retrieve the top 30 documents for each query, resulting in a

diverse and challenging set of documents for the next stage of the distillation

process.

To substantiate the diversity of the documents retrieved by the four dis-

tinct models, I computed the intersection rate between the sets of documents

obtained from any two sources of supervision. For each query, I took the

two sets of documents retrieved by two different sources and calculated the

intersection between them, subsequently dividing by the total number of doc-

uments (which in this case is 30).

This process was carried out separately for both types of queries: the

cropped sentence queries and the docT5query-generated queries. The mean

of the intersection rates was then calculated to provide a comprehensive view

of the overall overlap among the retrieved documents from all sources:
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Table 3.1: Average intersection rate between each pair of sources. The up-
per triangular part of the table represents the intersection rate for cropped
sentences and the lower triangular part represents the intersection rate for
docT5query-generated queries.

doct5query \ sentence (%) BM25 SPLADE DRAGON monoT5
BM25 \ 20.0 29.0 49.8
SPLADE 17.8 \ 35.8 26.0
DRAGON 25.0 41.0 \ 38.4
monoT5 46.4 27.2 38.5 \

∑
q∈Q

S1
q ∩S2

q

30
|Q|

where Q is the whole query set, S1
q and S2

q represent the retrieved docu-

ment set from two sources given the query q. The results of these calculations

are summarized in the Table 3.1

The table demonstrates a low mean intersection rate, providing clear evi-

dence of the considerable diversity among the retrieved document sets for both

types of queries. This substantial range of retrieval contexts further enhances

the complexity of the distillation dataset and effectively showcases the vari-

ety of retrieval challenges that ChatGPT encounters in the second stage of the

distillation process.

Second-stage distillation: reranking. Upon completion of the first stage

of document retrieval, I proceed with the reranking process using ChatGPT,

in particular the checkpoint ”gpt-3.5-turbo-16k-0613”. I adopted the list-

wise prompting template developed by [46], illustrated in Figure 3.3.

The reranking method is directly inspired by the approach presented in

the work [46], and I have directly adopted their public repository 1. In this

methodology, I input each of the 20,000 queries and their corresponding top

30 retrieved documents into ChatGPT. The language model is then prompted

to provide permutations of the indices of these documents, ordered according

to their relevance to the associated query.

This approach requires significant computational resources due to the com-

plexity of the task and the vast number of queries and documents involved.
1https://github.com/sunnweiwei/RankGPT

https://github.com/sunnweiwei/RankGPT
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Figure 3.3: Illustration of the permutation generation prompt template devel-
oped by [46] .

Notably, the total cost of this reranking operation using the ChatGPT API

amounted to $212, demonstrating the feasible financial aspect of employing a

large-scale language model in creating such a diverse and complex dataset.

Train-Validation split. The next step in my methodology involved the cre-

ation of distinct training and validation sets. Given the importance of main-

taining a balanced representation of the different types of queries, I adopted a

stratified approach in the partitioning of the dataset. In this process, I reserved

a total of 1,000 queries for the validation set, including 500 queries generated

by docT5query and 500 queries extracted as cropped sentences. Subsequently,

the remaining 19,000 samples were allocated to the training set.
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Ranking Loss. In this work, I adopt the RankNet loss [5], a pairwise loss

function that models the probability of one document being more relevant than

another given a query. RankNet has shown compelling results in the domain

of IR and provided a solid foundation for the optimization process.

Given a query q and and M passages (p1, …, pM ) (M = 30 in my im-

plementation), ChatGPT produces the ranking results of the M passages R =

(r1, . . . , rM), where ri ∈ [1, 2, . . . , M ] is the rank of the passage pi: if ri = 1,

it means that pi is the most relevant passage according to ChaGPT. Now the

student model works as a cross-encoder which takes as input each query-

document pair (q, pi) and outputs a relevance score si.

Therefore, I optimize the model with the following loss function measur-

ing the correctness of relative passage orders:

LRankNet =
M∑

i=1

M∑
j=1

Iri<rj
log(1 + esi−sj )

However, it is important to note that the landscape of ranking loss func-

tions is vast and diverse, and the adoption of different loss functions could

potentially lead to alternative outcomes. Thus, while I utilize RankNet in the

present study, I acknowledge the potential benefits of other ranking loss func-

tions and plan to explore these in future works. This exploration could shed

light on the nuanced impact of various loss functions on the fine-tuning of

transformer-based ranking models and yield new insights into their perfor-

mance and learning behavior.
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Experimental setup

4.1 Datasets

All comparisons on TREC-DL2019 and TREC-DL2020 are based on the rerank-

ing of top 100 passages retrieved by BM25 [42] for each query. This is the

same setting as existing works evaluating zero-shot LLM methods [46, 39].

The evaluation on the BEIR benchmark is based on the the reranking of the

top 100 passages retrieved by three different retrievers: BM25, SPLADE++[13],

andDRAGON+[26]. The objective is to evaluate the adaptability of the rerankers

to different retrievers. I also present the evaluation by reranking the top-1000

documents retrieved by BM25, to give a broad view of the performances on

different setting

4.2 Training

I initialized the ranking model with pretrained Flan-T5-xl checkpoint [9]. I

set the maximum input sequence length to 500. The batch size is set to 32,

meaning that the parameters are updated after computing the score for 30×32

query-document pairs. I utilize the AdamW[28] optimizer with a constant

learning rate of 5e − 5. I trained the model for one epoch, requiring approxi-

mately 30 hours on a A100 NVIDIA GPU.
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4.3 Baselines

I evaluate the model on the TREC-DL2019 and TREC-DL2020 competitions

against the following baselines supervised baselines:

• monoBERT [32];

• monoT5-3B [33, 43]

• RankT5 [58]

I also consider the following zero-shot LLM-based baselines:

• RankGPT [46]: the listwise prompting based approach using both gpt-3.5-turbo

and gpt-4;

• PRP [39]: the sliding window approach performed only for 10 passes

using Flan-T5-xl (3B), Flan-T5-xxl (11B) and Flan-UL2 (20B).

I include in the comparison the distilled model based on DeBertaV2 proposed

in [46] as the only other LLM distillaiton method other than ours.

Regarding the zero-shot evaluation on the BEIR benchmark, I evaluate the

models against three different rerankers:

• InParsV2 [3, 21];

• monoT5-3B [33, 43];

• the distilled DeBertaV2 model proposed in [46].

4.4 Results

The results on the TREC-DL2019 and TREC-DL2020 benchmarks are sum-

marized in Table 5.1. Tables 5.2 and 5.3 instead summarize respectively the

results on the BEIR benchmark by reranking the top-100 and the top-1000

documents.
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Discussion

OnTREC-DL. In the evaluation on the TREC-DL2019 and TREC-DL2020

benchmarks, my model demonstrated outstanding performance. When com-

pared against both established supervised methods and LLM-distilled base-

lines, the proposed approach consistently outperformed them, underlining its

robustness and effectiveness. Notably, my model even surpassed the teacher

LLM used for the distillation process, i.e. gpt-3.5-turbo emphasizing the

potency of the proposed distillation strategy. When set against zero-shot LLM

baselines, my model either matches or exceeds their performance. The sole

model that distinctly outperformed ours was GPT-4. This performance differ-

ence suggests that leveraging a more advanced LLM for distillation within my

methodology might lead to even more enhanced outcomes. Importantly, this

is achieved with significantly reduced computational overhead during infer-

ence. This dual advantage of superior performance and efficiency positions

my method as a compelling benchmark for future reranking tasks.

OnBEIRBenchmark. In the evaluation on the BEIR benchmark, TWOLAR

consistently surpassed the performance of most existing baselines. This is par-

ticularly significant when juxtaposed with the approach taken by models such

as InPars. InPars employs a strategy of fine-tuning a monot5-3b on gener-

ated, topic-specific data tailored for each of the 18 datasets within the BEIR
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Table 5.1: Results on TREC-DL2019 and TREC-DL2020 datasets by rerank-
ing top 100 documents retrieved by BM25. The column titled ‘#Calls’ indi-
cates the exact number of inference times of LLMwhen reranking the top 100
documents. The ‘Input Size’ column uses the notation |q|+n|d|: |q| represents
one query and n|d| indicates the number of documents included. For instance,
|q| + 20|d| signifies an input of one query with 20 documents. Best model is
highlighted in boldface and the second best is underlined for each metric. All
the results apart from the LLM distillationMethods are taken from the original
papers.

Method LLM Size #Calls Input Size TREC-DL2019 TREC-DL2020
nDCG@1 nDCG@5 nDCG@10 nDCG@1 nDCG@5 nDCG@10

BM25 - - - - 54.26 52.78 50.58 57.72 50.67 47.96
Supervised Methods

monoBERT BERT 340M 100 |q| + |d| 79.07 73.25 70.50 78.70 70.74 67.28
monoT5 T5-xl 3B 100 |q| + |d| 79.07 73.74 71.83 80.25 72.32 68.89
RankT5 T5-xl 3B 100 |q| + |d| 77.38 73.94 71.22 80.86 72.99 69.49

LLM distillation Methods
RankGPT DeBertaV2 184M 100 |q| + |d| 78.68 69.77 66.56 59.26 59.83 59.43
TWOLAR-large Flan-T5-large 783M 100 |q| + |d| 79.84 75.94 72.82 79.94 71.35 67.61
TWOLAR-xl Flan-T5-xl 3B 100 |q| + |d| 78.29 76.71 73.51 80.25 73.73 70.84

Zero-shot LLM Methods
RankGPT gpt-3.5-turbo 154B∗ 10 |q| + 20|d| 82.17 71.15 65.80 79.32 66.76 62.91
RankGPT gpt-4 1T∗ 2† |q| + 20|d| 82.56 79.16 75.59 78.40 74.11 70.56
PRP-Sliding-10 Flan-T5-xl 3B 990 |q| + 2|d| 75.58 71.23 68.66 75.62 69.00 66.59
PRP-Sliding-10 Flan-T5-xxl 11B 990 |q| + 2|d| 64.73 69.49 67.00 75.00 70.76 67.35
PRP-Sliding-10 Flan-UL2 20B 990 |q| + 2|d| 78.29 75.49 72.65 85.80 75.35 70.46
∗ OpenAI has not publicly released the amount of parameters and the numbers are based on public estimates [51] [2].
† in [46] gpt-4 reranks the top-30 passages reranked by gpt-3.5-turbo

benchmark. This strategy means that, for each dataset, their model has been

exposed to data related to the topic in question.

In contrast, TWOLAR has never been exposed to any topic-specific data,

making it genuinely zero-shot when facing new topics and tasks. Furthermore,

the efficiency of my method is evident as I utilize a single model that negates

the necessity for continuous fine-tuning for different applications.

It’s worth noting the performance variations across different datasets within

BEIR. In datasets with a specific focus, such as BioASQ, InPars tends to

perform better due to its targeted fine-tuning on artificial topic-specific data.

However, in datasets where queries are centered around general knowledge,

like DBpedia entity, TWOLAR demonstrates a clear advantage over InPars.

This marked performance difference in more generalized datasets highlights

the strength of TWOLAR’s unsupervised approach and its applicability in a

broad range of scenarios.
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Table 5.2: Results on the BEIR Benchmark by reranking the top 100 docu-
ments with different retrievers. Best model is in boldface and second best is
underlined for each dataset. Evaluation for InPars on CQADupStack is absent
due to its unavailability on the Hugging Face hub.

Retriever BM25 SPLADE DRAGON

Reranker

- M
onoT5-3B

InPars

RankG
PT-D

eberta

TW
O
LA

R-xl

TW
O
LA

R-large

- M
onoT5-3B

InPars

RankG
PT-D

eberta

TW
O
LA

R-xl

TW
O
LA

R-large
- M

onoT5-3B

InPars

RankG
PT-D

eberta

TW
O
LA

R-xl

TW
O
LA

R-large

nDCG@10
TREC-COVID 59.5 79.8 82.5 79.4 82.7 84.3 72.8 82.9 85.7 80.1 85.2 86.9 75.8 82.8 84.8 82.6 84.6 86.8
NFCorpus 32.2 37.4 35.0 33.3 36.6 35.7 34.8 39.2 38.8 33.2 37.3 35.5 33.9 39.7 39.3 33.2 37.9 35.7
FiQA-2018 23.6 46.1 46.2 32.7 41.9 41.1 34.8 50.0 50.0 33.7 44.8 43.8 35.7 51.2 50.9 43.1 45.3 44.8
ArguAna 30.0 33.4 32.8 21.1 32.9 34.7 38.8 31.7 31.2 18.6 32.9 34.6 46.9 41.5 40.9 25.7 42.8 45.5
Tóuche-2020 44.2 31.6 29.6 37.7 37.1 33.4 24.6 29.8 28.7 36.4 35.2 30.4 26.3 30.6 29.4 38.2 36.0 31.5
Quora 78.9 84.1 84.8 78.8 87.2 86.0 83.5 84.3 85.1 80.3 87.4 86.0 87.5 83.5 84.4 78.7 87.2 85.7
SCIDOCS 14.9 19.0 19.2 16.1 19.5 18.3 15.9 19.9 20.9 16.4 20.2 18.8 15.9 19.8 20.7 16.4 20.2 18.8
SciFact 67.9 76.4 73.5 70.5 76.5 75.6 70.2 76.4 76.0 69.1 75.6 74.7 67.8 76.0 75.7 69.4 75.6 74.7
NQ 30.6 56.8 57.8 46.1 58.0 57.7 53.7 65.9 66.4 50.6 66.8 65.8 53.8 65.1 66.6 50.6 66.9 66.2
HotpotQA 63.3 74.2 76.5 69.9 76.7 75.9 68.7 74.1 77.1 70.5 77.7 76.4 66.2 72.9 75.7 69.8 76.4 75.3
DBPedia 31.8 44.8 44.0 41.9 48.0 47.8 43.6 48.2 51.1 45.9 52.9 51.6 41.9 47.2 50.3 44.9 52.1 51.3
FEVER 65.1 83.2 85.5 80.2 84.9 83.4 79.3 85.0 88.0 81.8 87.5 85.4 78.0 84.7 87.7 81.7 87.2 85.2
Climate-FEVER 16.5 27.4 30.1 24.2 26.9 26.1 22.9 28.7 32.8 25.9 28.9 27.9 22.7 28.6 32.5 25.9 28.6 27.4
CQADupStack 30.2 41.5 - 34.7 41.2 40.6 33.4 43.7 - 35.9 43.6 42.7 35.4 44.4 - 36.0 44.2 43.4
Robust04 40.8 56.6 58.7 52.8 57.9 58.3 46.7 62.1 64.3 57.3 64.9 65.2 48.1 61.3 63.2 56.6 63.4 63.7
Signal-1M 33.1 32.2 32.9 33.4 33.8 33.9 30.0 29.4 30.3 30.0 30.1 30.5 30.0 29.7 30.4 29.4 30.2 30.1
BioASQ 52.3 57.2 59.8 53.0 56.2 56.0 49.7 54.1 57.2 49.5 54.6 53.8 43.4 51.9 54.4 48.0 51.9 50.8
TREC-NEWS 39.5 48.5 49.8 51.8 52.7 50.8 41.5 50.0 50.9 53.4 53.3 50.7 44.4 49.5 50.8 52.1 53.8 50.0

avg nDCG@10
BEIR 18 41.9 51.7 - 47.6 52.8 52.2 46.9 53.0 - 48.3 54.4 53.4 47.4 53.4 - 48.5 54.7 53.7
BEIR 17 42.6 52.3 52.9 48.4 53.5 52.9 47.8 53.5 55.0 49.0 55.0 54.0 48.1 53.9 55.2 49.2 55.3 54.3

Table 5.3: Results on the BEIR Benchmark by reranking the top 1000 BM25
retrieved documents. Best model is in boldface and second best is underlined
for each dataset. All the results, apart from TWOLAR-xl, are from [21].

BM25 monoT5-3B InPars-v2 RankT5 TWOLAR-xl
nDCG@10

TREC-COVID 59.5 80.1 84.6 82.3 84.3
NFCorpus 32.2 38.3 38.5 39.9 37.3
FiQA-2018 23.6 50.9 50.9 49.3 45.2
ArguAna 30.0 37.9 36.9 40.6 32.7
Tóuche-2020 44.2 30.9 29.1 48.6 35.9
Quora 78.9 83.5 84.5 81.9 87.3
SCIDOCS 14.9 19.7 20.8 19.1 20.3
SciFact 67.9 77.4 77.4 76.0 76.8
NQ 30.6 62.5 63.8 64.7 64.2
HotpotQA 63.3 76.0 79.1 75.3 79.5
DBPedia 31.8 47.2 49.8 45.9 52.0
FEVER 65.1 84.8 87.2 84.8 86.7
Climate-FEVER 16.5 28.8 32.3 27.5 27.8
CQADupStack 30.2 44.9 44.8 - 43.8
Robust04 40.8 61.5 63.2 - 64.2
Signal-1M 33.1 30.2 30.8 31.9 31.5
BioASQ 52.3 56.6 59.5 57.9 56.0
TREC-NEWS 39.5 47.7 49.0 - 53.2

avg nDCG@10
BEIR 18 41.9 53.3 54.5 - 54.4
BEIR 15 42.9 53.7 54.9 55.0 54.5
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Ablation studies

I conducted an extensive ablation studies in order to validate the design choices.

Due to computational constraints, these experiments were performed using

the smaller flan-t5-small checkpoint, with 77M parameters. Furthermore,

I evaluated the models on reranking the top-100 documents from a subset of

8 smallest datasets from the BEIR benchmark, including TREC-COVID, Sci-

Fact, NFCorpus, Tóuche-2020, DBPedia, Robust04, Signal-1M, and TREC-

NEWS.

The results are summarized in Table 6.1.

Scoring Strategy Effectiveness. I compared the proposed scoring strategy,

which utilizes the difference between the ’True’ and ’False’ logits, with the

strategy used in RankT5, based on the logit of an extra token in the T5 vo-

cabulary. My analysis indicated superior performance for my proposed strat-

egy, achieving an average nDCG@10 of 46.5, in comparison to 45.7 for the

RankT5 scoring approach.

Documents per training samples. I trained models with varying numbers

of documents per training sample: 10, 20, and 30. The results suggest a clear

advantage in usingmore than 10 documents per sample. The trade-off between

20 and 30 is less clear, with nDCG@10 scores of 46.3 and 46.5 respectively,
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suggesting diminishing returns beyond 20 documents.

Effectiveness of first source of supervision. In an attempt to ascertain the

impact of each retrieval strategy in my first stage of distillation, I carried out

four individual experiments by strategically excluding each source of supervi-

sion (BM25, SPLADE, DRAGON,monoT5) from the training set and training

the model on the residual data. This approach allowed us to understand the

individual contribution of each retrieval strategy to the overall performance of

the model.

Intriguingly, the results demonstrate that BM25, even being a traditional

bag-of-words method, still plays a critical role in the model’s performance.

The exclusion of BM25 led to a decrease in performance, indicating its sig-

nificance in the retrieval phase. It further underscores the fact that despite the

advent of more complex and semantic-based retrieval methods, the impor-

tance of traditional retrieval strategies like BM25 in training effective rerank-

ing models should not be underestimated.

Impact of Query Type. I also trained models exclusively on cropped sen-

tences, doct5query generated queries, and a mixed subset of both types. The

model trained only with doct5query generated queries, which are formulated

as natural language questions, demonstrated an overall higher average perfor-

mance than the model trained only on cropped sentences.

Interestingly, for datasets where the queries were predominantly formed

as ’what’ or ’how’ questions, such as TREC-COVID, the model trained on

doct5query queries delivered strong superior performance.

Conversely, the mode trained with cropped sentences performed better in

specific datasets where the queries are not expressed as a question in natu-

ral language. For example, the queries in SciFact are expert-written claims,

aiming to find evidence in annotated abstracts. Here, the model trained with
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TREC-COVID SciFact NFCorpus Tóuche-2020 DBPedia Robust04 Signal-1M TREC-NEWS avg nDCG@10
Score Strategy effectiveness of score strategy - 19K train samples
Difference 74.0 67.9 31.9 35.7 38.8 47.4 32.5 43.7 46.5
Extra id 74.1 69.2 31.5 32.2 36.2 47.0 34.1 41.2 45.7
# documents effectiveness of amount of documents - 19K train samples
30 74.0 67.9 31.9 35.7 38.8 47.4 32.5 43.7 46.5
20 73.0 69.8 32.5 31.7 37.9 47.5 31.9 40.8 46.3
10 72.3 65.6 29.6 28.4 34.2 43.2 30.4 37.9 42.7
Not used source effectiveness of first source of supervision - ∼14K train samples
- BM25 72.7 70.3 31.8 31.8 37.7 47.0 31.9 41.5 45.6
- SPLADE 73.9 70.9 33.6 32.7 38.6 48.8 32.4 42.5 46.3
- DRAGON 74.0 67.7 32.9 33.9 37.6 47.7 33.1 43.2 46.2
- monoT5 73.9 69.4 31.8 33.0 36.3 46.6 32.5 43.6 45.9
Type of query effectiveness of type of query - 9.5K train samples
Mixed 75.5 67.3 30.4 34.0 37.2 46.2 31.8 41.6 45.5
Sentence 67.2 67.9 31.4 32.7 32.2 44.8 31.7 39.7 43.4
docT5query 74.6 59.4 31.2 33.4 37.8 44.9 28.1 44.0 44.2

Table 6.1: Ablation studies

cropped sentences achieved an nDCG@10 score of 67.9, significantly outper-

forming the model trained with doct5query queries, which scored 59.4.

When I trained the model on a mixed subset comprising an equal pro-

portion of both query types, it exhibited the best overall performance. This

highlights the benefit of a diverse training regimen incorporating both natural

language questions (doct5query) and sentences cropped directly from docu-

ments.

These results, summarized in 6.1, underscore the value of the proposed

scoring strategy, the importance of incorporating sufficient documents per

training sample, the significant contribution of BM25 as a supervision source,

and the advantages of a mixed query approach.
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Conclusion

The paradigm shift, enabled by LLMs, suggests that traditional methods rely-

ing heavily on handcrafted labeled data might no longer be the most effective

or efficient approach for certain machine learning tasks. Indeed, as LLMs con-

tinue to showcase their prowess, there is a promising realization that they can

be harnessed to provide the needed supervision, reducing the need for manual

data labeling. However, tasks that demand efficiency, such as IR, often can-

not deploy LLMs directly due to their substantial computational overhead. In

such scenarios, distillation enables the retention of the LLM’s capabilities in

a more computationally amenable format.

In this work, I presented a novel two-step LLM-Augmented distillation

approach for passage reranking. My method capitalizes on the strengths of

LLMs to enable computationally efficient IR systems, with performance com-

parable or even superior to that of state of the art baselines and a reduction

in size by several orders of magnitude. The experiments, conducted across

various benchmarks, demonstrate robustness and generality of my approach

across domains. An ablation offers further insight about the crucial elements

of my architectural design. All the data, code and models will be made pub-

licly available.1

Looking forward, TWOLAR offers promising avenues for scalability. In
1https://github.com/Dundalia/TWOLAR

https://github.com/Dundalia/TWOLAR
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the future, I plan to further the experimentation by substituting the 3B model

with an 11B version, expanding the number of queries, increasing the sources

of supervision, or even refining the quality of the LLMused for distillation, for

example by experimenting with more powerful generative language models.
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Model Checkpoints

Language Models:

• Flan-T5-small: https://huggingface.co/google/flan-t5-small

• Flan-T5-large: https://huggingface.co/google/flan-t5-large

• Flan-T5-xl: https://huggingface.co/google/flan-t5-xl

Retrievers:

• DRAGON+: https://dl.fbaipublicfiles.com/dragon/checkp

oints/DRAGON-Plus/checkpoint_best.ckpt

• SPLADE++: https://huggingface.co/naver/splade-cocondens

er-ensembledistil

Rerankers

• MonoT5: https://huggingface.co/castorini/monot5-3b-msmar

co-10K

• deberta-10K-rank_net: https://drive.google.com/file/d/1-KEp

J2KnJCqiJof4zNEA4m78tnwgxKhb/view?usp=share_link

InPars Models:

https://huggingface.co/google/flan-t5-small
https://huggingface.co/google/flan-t5-large
https://huggingface.co/google/flan-t5-xl
https://dl.fbaipublicfiles.com/dragon/checkpoints/DRAGON-Plus/checkpoint_best.ckpt
https://dl.fbaipublicfiles.com/dragon/checkpoints/DRAGON-Plus/checkpoint_best.ckpt
https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/castorini/monot5-3b-msmarco-10K
https://huggingface.co/castorini/monot5-3b-msmarco-10K
https://drive.google.com/file/d/1-KEpJ2KnJCqiJof4zNEA4m78tnwgxKhb/view?usp=share_link
https://drive.google.com/file/d/1-KEpJ2KnJCqiJof4zNEA4m78tnwgxKhb/view?usp=share_link
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• TREC-COVID: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-trec_covid

• NFCorpus: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-nfcorpus

• FiQA-2018: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-fiqa

• ArguAna: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-arguana

• Tóuche-2020: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-touche

• Quora: https://huggingface.co/zeta-alpha-ai/monot5-3b-inp

ars-v2-quora

• SCIDOCS: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-scidocs

• SciFact: https://huggingface.co/zeta-alpha-ai/monot5-3b-i

npars-v2-scifact

• NQ: https://huggingface.co/zeta-alpha-ai/monot5-3b-inpar

s-v2-nq

• HotPotQA: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-hotpotqa

• DBPedia: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-dbpedia

• FEVER: https://huggingface.co/zeta-alpha-ai/monot5-3b-i

npars-v2-fever

https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-trec_covid
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-trec_covid
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-nfcorpus
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-nfcorpus
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-fiqa
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-fiqa
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-arguana
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-arguana
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-touche
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-touche
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-quora
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-quora
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-scidocs
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-scidocs
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-scifact
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-scifact
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-nq
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-nq
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-hotpotqa
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-hotpotqa
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-dbpedia
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-dbpedia
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-fever
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-fever
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• Climate-FEVER: https://huggingface.co/zeta-alpha-ai/mono

t5-3b-inpars-v2-climate_fever

• Robust04: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-robust04

• Signal-1M: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-signal

• BioASQ: https://huggingface.co/zeta-alpha-ai/monot5-3b-i

npars-v2-bioasq

• TREC-NEWS: https://huggingface.co/zeta-alpha-ai/monot5-3b

-inpars-v2-trecnews

https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-climate_fever
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-climate_fever
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-robust04
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-robust04
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-signal
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-signal
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-bioasq
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-bioasq
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-trecnews
https://huggingface.co/zeta-alpha-ai/monot5-3b-inpars-v2-trecnews
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