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Abstract

In this Master Thesis we study the effects of loop corrections to the inflationary
potential of the Kähler moduli inflation model.
After reviewing basic concepts of String Theory and String Compactifications,
focusing in particular on the Large Volume Scenario (LVS) in Type IIB String
Theory, we introduce the model of Kähler moduli inflation, and the cosmological
predictions thereof. We then consider two forms of open-string loop effects: Kaluza-
Klein andWinding corrections. After comparing their relative magnitude, we study
the inflationary potential arising upon inclusion of these corrections. We constrain
the values of the parameters for which it can still support slow-roll inflation, and
find the preferred range of the compactification volume. Afterwards, we analyze
the post-inflationary dynamics of the model in two possible scenarios, and find a
consistent prediction for the number of e-foldings of inflation in both cases. This
yields a unique prediction for the scalar spectral index, which has to be compared
with the experimental value obtained considering the amount of Dark Radiation
predicted by our model.
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1 Introduction

One of the hardest and most compelling theoretical challenges of the last 50 years has
been the formulation of a theory of Quantum Gravity. The aim is a theory that embeds
all the gravitational phenomena in a coherent quantum framework which is free of non-
renormalizable Ultra-Violet (UV) divergences. These naturally show up in a Quantum
Field Theory including gravity, since the gravitational coupling has the dimension of
an inverse square mass [1]. Despite many efforts, no renormalizable theory of quantum
gravity has been found within the framework of QFT. This led to the idea that QFT
may not be the ultimate UV-complete framework, but it might have to be modified at
scales approaching the gravitational one.
One of the most promising frameworks for a complete theory of quantum gravity is String
Theory. In fact, it is a finite theory, completely free of UV divergences, and naturally
includes the graviton in its spectrum. Throughout the years, different versions of String
Theory have been studied, starting from the theory of the Bosonic String, which, as the
name suggests, only includes bosonic degrees of freedom, up to various types Superstring
theories, which incorporate fermions through the inclusion of Supersymmetry (SUSY).
A common feature of all the versions of string theory is the requirement of a number
of spacetime dimensions which is higher than what we currently observe experimentally.
In particular, we will focus on Type-IIB superstring theory, which needs 10 spacetime
dimensions for consistency. Although this looks like a problem, it may actually be a
point of strength of the theory. In fact, string theory solves it by supposing that the
6 extra spatial dimensions are not extended, but rather compactified in a specific kind
of manifold, called a Calabi-Yau threefold. The 10d theory is brought down to a 4d Ef-
fective Field Theory (EFT) through a procedure called Kaluza-Klein reduction. During
this compactification procedure, many scalar fields are produced, usually called moduli
Moduli fields have a deep geometrical meaning, since their Vacuum Expectation Values
(VEVs) control the shape and size of the compactification space. However, from a 4d
EFT point of view these fields are flat directions of the scalar potential, hence their VEVs
will be undefined. This is a problem, since the number of such moduli could be very high,
up to hundreds or thousands, and the unfixed VEVs will act as a free parameters in the
EFT. This can be solved by considering additional UV effects which produce stabilizing
terms in the 4d N = 1 SUSY EFT. One kind of moduli, called complex structure moduli,
is usually stabilized by switching on 3-form fluxes on the Calabi-Yau, while the other
kind, called Kähler moduli, needs to be stabilized through quantum corrections.
There are various paradigms to stabilize Kähler moduli, all differing in the kind of quan-
tum effects considered. We will mainly focus on the Large Volume Scenario (LVS) of
Type-IIB string theory, in which the stabilization is achieved balancing perturbative cor-
rections to the Kähler potential and non-perturbative effects of the superpotential. The
resulting scalar potential has a non-supersymmetric Anti-de Sitter minimum, which we
can lift up to Minkowski or de Sitter with appropriate uplifting terms. The stabilized
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potential still exhibits exponentially flat directions. Therefore, it seems perfect to sup-
port slow-roll inflation. The inflaton field is represented by (the canonically normalized
version of) one of the so-called ’small’ or ’blow-up’ Kähler moduli. Geometrically, these
represent the volumes of co-dimension-2 surfaces, called 4-cycles, that resolve (blow-up)
point-like singularities of the Calabi-Yau. Since these 4-cycles locally resolve singular
points, their volume is small compared to the overall volume of the Calabi-Yau, which
is taken to be exponentially large in the LVS setting (hence the name).
The resulting model of inflation is called Kähler moduli inflation [2], and it has been
widely studied in the last decades. Sensible predictions for the cosmological parameters
have been formulated studying the post-inflationary evolution of the system [3].
The aim of this work is to study the effect of open string loop corrections to the Kähler po-
tential of the model of Kähler moduli inflation. We will analyze the conditions under
which the corrected potential can still support slow-roll inflation. After that, we will
study the post-inflationary dynamics of the system, and try to extract a prediction for
the number of e-foldings Ne and the spectral index ns, under a general choice of the
parameters.
The thesis is structured as follows. In Section 2 we review the basic ideas behind String
Theory and Superstring Theory, with particular interest in the spectrum of the theo-
ries. In Section 3, we will study the procedure of Kaluza-Klein reduction and introduce
the concept of Calabi-Yau spaces, focusing mainly on their moduli space. In Section 4
we review the most important quantum corrections to the 4d EFT and introduce the
LVS setting for moduli stabilization. In Section 5 we first review the original model of
Kähler moduli inflation and then add loop corrections to it and study their effects. We
will conclude in Section 6.

2 String Theory and Superstring Theory

String theory is a powerful theory which naturally incorporate General Relativity in
a quantum setting. In this section we will review the bosonic string theory and its
quantization, and then move to Superstring theory. We mainly follow the books [4, 5, 6].

2.1 Review of the Classical Bosonic String

The foundational idea behind String Theory is that the fundamental physical entity is
no longer the point particle, but rather the string : an extended 1-dimensional object.
The reason behind this choice lies in the elimination of the UV divergences in loops,
specifically in quantum gravity. In fact, while in point particle scatterings there exists a
precise interaction point, in a string scattering, the interaction gets smeared out, hence
no interaction point is present and strings appear to merge smoothly. This solves the
divergence problem for the following reason. In the case of a point-particle, we can
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make a loop to be infinitely small, i.e. take the interaction points to be infinitely close.
This translates in energies tending to infinity, which can give rise to non-renormalizable
divergences. In string theories, instead, string loops can never go to zero size, thus
completely eliminating UV divergences, see Fig.2.1.

Figure 2.1: Point-Particle Scattering (left) vs (closed) string scattering (right). Credits
to [7] for the image.

To understand why string theory naturally includes gravity, we need to show how to
describe the propagation and evolution of a string through space-time. While the space-
time trajectory of a zero-dimensional point particle was described by a one-dimensional
world-line, the space-time trajectory of a one-dimensional string is described by a two-
dimensional surface called world-sheet. To properly study it, though, we have to embed
the world-sheet in a target space, whose coordinates are usually indicated by Xµ. This
embedding is specified by the set of functions

Xµ = Xµ(σ) (2.1)

with µ = 0, ..., D − 1 where D is the dimension of the target space M. The world-
sheet Σ is parameterized by coordinates which are usually indicated as σ = (τ, σ) and
indexed as σa with a = 1, 2. The most commonly used world-sheet action to describe
the propagation of a free string in a Minkowski target space is the so-called Polyakov
action:

SP = −Ts
2

∫
Σ

√
−hhab∂aXµ∂bX

νηµν dσdτ (2.2)

where hab is the world-sheet metric and h = det(hab). Ts is the string tension, which is
given by

Ts =
1

2πα′ (2.3)

where α′ is an important parameter called Regge slope and it can be interpreted in terms
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of the string length ls
1:

ls =
√
α′ (2.4)

One can see the Polyakov action (2.2) as the action of a 2d QFT featuring D free scalar
fields Xµ. This field theory has the following symmetries:

1) Poincaré symmetry : in this case it can be viewed as a symmetry of the internal
space of the fields Xµ:

Xµ 7→ X ′µ = ΛµνX
ν + Aµ (2.5)

with Λ ∈ SO(1, D − 1) and Aµ a constant D-vector.

2) General world-sheet diffeomorphisms : under a general differentiable transformation
of the world-sheet coordinates σa 7→ σ′a = σ′a(τ, σ):

Xµ(τ, σ) 7→ X ′µ(τ ′, σ′) (2.6)

hab(τ, σ) 7→ h′ab(τ
′, σ′) =

∂σc

∂σ′a
∂σd

∂σ′bhcd(τ, σ) (2.7)

3) 2-dimensional Weyl invariance: the theory is invariant under local rescaling of the
world-sheet metric:

hab(τ, σ) 7→ h′ab(τ, σ) = e2ωhab(τ, σ) (2.8)

with ω = ω(τ, σ) arbitrary function of the world-sheet coordinates.

Among these symmetries, the most characteristic and constraining one is the Weyl in-
variance. It can be shown that given a similar theory featuring p-dimensional dynamical
objects described by world-hypersurface coordinates {σ1, ..., σp+1}, the only case in which
such a theory has a Weyl invariance is p = 1.
While Poincaré invariance is a consequence of the choice of a flat target space, both
diffeomorphism and Weyl invariance are intrinsic properties of the world-sheet action.
Combining the two, it is always possible to make a gauge choice for the world-sheet metric
such that the world-sheet is flat. In fact, one can see that under a Weyl transformation
hab 7→ h′ab = e2ωhab, the curvature scalar of the world-sheet R transforms as:

√
−h′R[h′] =

√
−h(R[h]− 22ω) (2.9)

where 2 = ∇a∂a, being ∇a the covariant derivative on the world-sheet. Therefore, to
make this vanish, one can choose a function ω(τ, σ) such that:

2ω =
1

2
R[h] (2.10)

1The definition of ls in terms of α′ vary in literature of some factors of
√
2 or 2π. Here we stick to

the convention of [4].
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This is called flat gauge, in fact in two dimensions, the Riemann tensor is:

Rabcd =
1

2
(hachbd − hadhbc)R (2.11)

then choosing ω as in (2.10) makes the Riemann tensor vanish and hence, the world-sheet
flat. Once in flat gauge, an appropriate choice of coordinates can make the world-sheet
metric be a Minkowski metric:

hab = diag(−1, 1) (2.12)

Equations of motion

Let us now consider the equations of motion deriving from the Polyakov action. First,
we can see the variation of the action with respect to the world-sheet metric:

δhSP = − 1

4πα′

∫
Σ

√
−h δhab

(
∂aX

µ∂bXµ −
1

2
hab∂

cXµ∂cXµ

)
dσdτ (2.13)

We can then define the energy-momentum tensor on the world-sheet as:

T ab := − 4π√
−h

δSP
δhab

= − 1

α′

(
∂aXµ∂bXµ −

1

2
hab∂cXµ∂cXµ

)
(2.14)

making the equation of motion deriving from (2.13) simply:

Tab = 0 (2.15)

On the other hand, varying the action with respect to the fields Xµ gives:

δXSP =
1

2πα′

∫
Σ

√
−h δXµ2Xµ dσdτ −

1

2πα′

∫ +∞

−∞

√
−h [δXµ∂σXµ]

σ=ls
σ=0 dτ (2.16)

where we supposed that the range of the world-sheet variables is:

−∞ < τ <∞ and 0 ≤ σ ≤ ls (2.17)

To evaluate the boundary term, we have to impose boundary conditions on the fields
Xµ(σ). Different choices of these boundary conditions can be made. then one can choose
the so-called Neumann boundary conditions :

∂σX
µ(τ, 0) = ∂σX

µ(τ, ls) = 0 (2.18)

these describe a freely propagating open string whose endpoints move ate the speed of
light. On the other hand, one can also impose periodic boundary conditions :

Xµ(τ, 0) = Xµ(τ, ls), ∂σX
µ(τ, 0) = ∂σX

µ(τ, ls), hab(τ, 0) = hab(τ, ls) (2.19)
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describing closed strings, and the absence of boundary of the world-sheet. It is immediate
to see that with both choices of the boundary conditions (2.18) and (2.19) the boundary
term of the variation (2.16) vanishes. Therefore, the equations of motion from (2.16)
simply become

2Xµ(τ, σ) = 0 (2.20)

We can solve these equations in flat gauge (2.12), where they simplify to:

(∂2σ − ∂2τ )X
µ = 0 (2.21)

It is more convenient to use light-cone coordinates :

σ± = τ ± σ (2.22)

so that

2 = −4∂+∂− with ∂± =
∂

∂σ± (2.23)

In light-cone coordinates the equations of motion become:

∂+∂−X
µ = 0 (2.24)

We can decouple the equations by choosing the ansatz:

Xµ(σ+, σ−) = Xµ
L(σ

+) +Xµ
R(σ

−) (2.25)

we will refer to Xµ
L as the left-moving part of Xµ and to Xµ

R as the right-moving one.
Let us first solve these in the case of closed strings. The boundary conditions (2.19)
impose that both Xµ and ∂σX

µ are periodic, hence also ∂+X
µ
L and ∂−X

µ
R must be

periodic. Therefore they can be expanded in a Fourier series. Upon integration, this
gives the mode decompositions:

Xµ
L(σ

+) =
x̄µ

2
+ l2sp

µσ+ + i
ls√
2

∑
n̸=0

1

n
α̃µne

−2inσ+

(2.26)

Xµ
R(σ

−) =
x̄µ

2
+ l2sp

µσ− + i
ls√
2

∑
n̸=0

1

n
αµne

−2inσ−
(2.27)

By convention the constant terms are chosen to be equal and such that their sum is equal
to x̄µ, where:

x̄µ =
1

ls

∫ ls

0

Xµ(σ, τ = 0) dσ (2.28)

is the target-space position of the center of mass of the string at τ = 0. Here pµ appears
as an integration constant, but it can be easily interpreted as the target-space momentum
of the center of mass of the string at τ = 0:

pµ =
1

ls

∫ ls

0

∂τX
µ(σ, τ = 0) dτ (2.29)
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The oscillator modes αµn and α̃µn are independent, but the reality of Xµ imposes that:

(αµn)
∗ = αµ−n and (α̃µn)

∗ = α̃µ−n (2.30)

The situation with open strings is similar, but not the same. Enforcing Neumann bound-
ary conditions (2.18) leads to non-independent oscillator modes in the mode expansion
α̃µn = αµn. Thus, one can see that the final result for the overall Xµ is given by:

Xµ = x̄µ + 2l2s p
µτ +

√
2ils

∑
n̸=0

1

n
αµne

−inτ cos(nσ) (2.31)

Before moving on, it can be said that, analyzing the variation (2.16), there is yet another
boundary condition for which the boundary term vanishes, that is

δXµ(τ, 0) = δXµ(τ, ls) = 0 (2.32)

This is called Dirichlet boundary condition, and differently from the Neumann and
periodic boundary conditions, these describe a string whose endpoints are neither free
or coinciding, but rather confined to a fixed hyperplane. These ’membranes’ where
open string endpoints lie are called D-branes (where the D stands for Dirichlet). These
branes are space-filling, meaning that they are extended in various spatial dimensions.
We call Dp-brane a D-brane filling p spatial dimensions. Since the target space must
be stationary, D-branes should always fill the time dimension, so from a space-time
perspective Dp-branes are (p+ 1)-dimensional objects. Notice that it is not mandatory
that we use Dirichlet boundary conditions for all the dimensions of the target space. In
general, for open strings, the boundary conditions will be a combination of Neumann
and Dirichlet, e.g. Dirichlet boundary condition on X i and Neumann on Xµ for µ ̸= i.

2.2 Quantization of the Bosonic String

We want to see how to quantize the Polyakov action. We will only show the so-called
’old covariant’ approach, which has been improved on by more recent approaches such
as BRST quantization. For a detailed description of these alternative approaches see [4].
We start from the flat-gauge Polyakov action for the 2d QFT:

S =
1

4πα′

∫
Σ

(∂τX
µ∂τXµ − ∂σX

µ∂σXµ) dτdσ (2.33)

Notice first of all that, since we fixed the flat gauge, Weyl invariance is lost. Moreover,
even if this is a theory of D free scalars in 2d, one of them, X0, has the wrong sign in
the kinetic term. We define the conjugate momenta Πµ to the canonical variables Xµ as:

Πµ =
δSP

δẊµ
=

1

2πα′∂τXµ (2.34)
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Our aim is to perform canonical quantization, so we impose canonical equal-time com-
mutation relations between the fields and the momenta:

[Πµ(τ, σ), X
ν(τ, σ′)] = −i δ(σ − σ′) δνµ (2.35)

[Πµ,Πν ] = [Xµ, Xν ] = 0 (2.36)

Taking into consideration the expansion of Xµ in terms of oscillator modes ( the sum of
(2.26) and (2.27) for the closed string and (2.31) for the open string), and considering
the analogue expansion for Πµ, which can be directly obtained from that of Xµ by means
of (2.34), we can write down the canonical commutators of the oscillator modes:

[pµ, x̄ν ] = −iηµν , [αµm, α
ν
n] = mδm,−n η

µν , [α̃µm, α̃
ν
n] = mδm,−n η

µν (2.37)

Fixing the momentum p, we can focus only on the algebra of the oscillator modes.
Because of the relations (2.30) we can rewrite it as[

αµm, (α
ν
n)

†] = mδm,n η
µν (2.38)

and similarly for the α̃µn. at this point we are able to perform the construction of a Fock
space using the oscillateor modes as creation and annihilation operators. We define the
vacuum state as |0, 0; p⟩ such that

αµn |0, 0; p⟩ = α̃µn |0, 0; p⟩ = 0 ∀µ = 0, ..., D − 1, n > 0 (2.39)

and the whole Hilbert space is built acting on |0, 0; p⟩ with creation operators αµ−n and
α̃µ−n for n > 0. Looking at the commutation relations (2.38) it is obvious that the modes
α0
n and α̃0

n have the wrong sign in the commutation relations. This will lead to the
presence in the spectrum of non-physical states which must be eliminated. This can be
done imposing a condition defining a physical state based on gauge invariance, in a very
similar way to the Gupta-Bleuler condition in QED.
By fixing the gauge and eliminating the degrees of freedom of hab, we have also eliminated
one of the equations of motion, namely (2.15). This must be imposed as a constraint of
the theory. Using light-cone coordinates (2.22), we notice that:

T+− = T−+ = 0 (2.40)

identically, so we just have to impose that

T++ = T−− = 0 (2.41)

One can check from the definition (2.14) that

T++ = ∂+X
µ
L∂+XLµ and T−− = ∂−X

µ
R∂−XRµ (2.42)
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This leads to the definition of the so called Virasoro operators, which are the coefficients
of the Laurent series expansion of Tab:

Lm =
1

4πα′

∫ ls

0

T−−e
−2imσ dσ =

1

2

+∞∑
n=−∞

αm−n · αn (2.43)

L̃m =
1

4πα′

∫ ls

0

T++e
−2imσ dσ =

1

2

+∞∑
n=−∞

α̃m−n · α̃n (2.44)

where, for simplicity, we set

αµ0 = α̃µ0 =
ls√
2
pµ (2.45)

For the open string, one can use the same definition, recalling the identification of the
oscillator modes. These operators satisfy the so-called Virasoro Algebra:

[Lm, Ln] = (m− n)Lm+n + A(m)δm,−n with A(m) =
m3 −m

12
D (2.46)

and similarly for L̃m. We may now define the physical state condition naively as follows.
A state |χ⟩ is physical if

Lm |χ⟩ = 0 ∀m ≥ 0 (2.47)

While for m > 0 this condition works fine, for m = 0 we encounter some divergence
problems. The reason of these problems is an ambiguity in the ordering of the operators
in the definition of L0. In fact, explicitly we have:

L0 =
1

2

+∞∑
n=−∞

α−n · αn =
1

2
α2
0 +

∑
n̸=0

α−n · αn (2.48)

however, in the final sum we have a clear ordering ambiguity since n can assume both
positive and negative values. This is the core reason of the divergence, which can be
resolved simply by normal ordering. In fact, we can write:

L0 = : L0 : + a where a = −1

2
(D − 2)

∞∑
n=1

n (2.49)

To eliminate the divergence, now explicitly present in the factor a, one regularizes the
sum using Riemann ζ-function. This gives:

L0 = : L0 : + a with a =
D − 2

24
(2.50)

This suggests that the correct way to impose the condition on the physical states is to
say that |χ⟩ is physical if:

(Lm − aδm,0) |χ⟩ = 0 ∀m ≥ 0 (2.51)

A similar condition holds for L̃m as well.
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2.3 Bosonic String Spectrum

We are interested in the spectrum of the bosonic string arising from the quantization
sketched in the previous section.

Open String Spectrum

Let us start off describing the spectrum of open strings. This is the simplest case, since
we only have one set of creation/annihilation operators αµn. The open string vacuum
state will be indicated as |0; p⟩. This is such that:

αµn |0; p⟩ = 0 ∀n > 0 and p̂µ |0; p⟩ = pµ |0; p⟩ (2.52)

where by p̂µ we here mean the target-space momentum operator. On the string vacuum,
the physical condition (2.51) is automatically satisfied for all m > 0, because of (2.52)
and (2.43). The condition for m = 0, on the other hand, can be cast as:(

α′p2 +
∑
n>0

[α−n · αn]− a

)
|0; p⟩ = 0 (2.53)

where we used αµ0 = ls√
2
pµ =

√
α′√
2
pµ. For the mass-shell condition we write M2 = −p2

and thus we get the mass of the open string vacuum state:

M2 = − a

α′ < 0 (2.54)

This means that the ground state of the open string in bosonic string theory is a tachyon,
indicating that this theory is not completely stable. Moving to the first excited state,
we have to consider all the states of the form:

ϵµα
µ
−1 |0; p⟩ (2.55)

where ϵµ is a generic polarization vector. Considering the physical state condition for L0

we get that:
(L0 − a)ϵµα

µ
−1 |0; p⟩ = (α′p2 + 1− a)ϵµα

µ
−1 |0; p⟩ = 0 (2.56)

which implies that

M2 = −p2 = 1− a

α′ (2.57)

Moreover, the condition for m = 1 is also non-trivial. It reduces to:

L1ϵµα
µ
−1 |0; p⟩ = ϵµp

µ |0; p⟩ = 0 (2.58)

which means that the polarization of the state must be transversal to the momentum.
Finally, we get that the norm of the state is

⟨0; p|αν1ϵνϵµα
µ
−1 |0; p⟩ = ⟨0; p|0; p⟩ ϵµϵµ = ϵµϵ

µ (2.59)
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where we used the commutation relations (2.37). Therefore we choose ϵµ to be a real
vector 2.
There are three possible cases to consider. If a > 1 we say the string theory is supercrit-
ical : the mass of the first excited state is M2 < 0, so it is a second tachyon, and pµ is
space-like; this implies, by (2.58), that there exist physical states with ϵµ time-like and
hence with negative norm, which is pathological. If instead a < 1 we have M2 > 0 for
the first excited state and all the following ones. This case is not very interesting phe-
nomenologically speaking, since we would end up in the final spectrum with a tachyon
and a massive vector: this case is called sub-critical. The most interesting case, which
we will stick to, happens when a = 1 and it is called critical string theory. In this case
we have M2 = 0 and also p2 = 0, which means that the polarizations allowed are one
longitudinal, ϵµ ∥ pµ, and (D− 2) transversal ones. The longitudinal polarization brings
about zero-norm states, consistently with what happens in QED upon quantization of a
massless vector field. The choice of a = 1, also fixes the number of dimensions in which
a sensible bosonic string theory can take place. In fact from (2.51) we see that for a
to be 1, we must set D = 26. As a side note, the condition a = 1 is also necessary for
Weyl anomaly cancellation upon BRST quantization. We will not treat this argument
and refer the interested reader to [4] for a thorough derivation.
Sticking to the critical case, we have ruled out negative-norm states by imposing the
physical condition, but still have null states. These can be eliminated if we take the
quotient Hilbert space:

H = Hphys/Hnull (2.60)

Notice finally that we can rewrite the mass-shell condition (L0−1) |phys⟩ = 0 introducing
the level operator:

N :=
∑
n>0

α−n · αn (2.61)

so that the mass-shell relation can be written in an operatorial way as

M2 =
N − 1

α′ (2.62)

which makes it explicit that in the open string spectrum we have a tachyon for N = 0,
a massless vector for N = 1 and massive tensor fields for N > 1.

Closed String Spectrum

The case of the closed string is very similar. The same conditions on a can be found
analyzing the spectrum. Focusing only on the critical case a = 1, D = 26 we can write
down the physical state conditions for m = 0 as:

(L0 − 1) |phys⟩ = (L̃0 − 1) |phys⟩ = 0 (2.63)

2We can always do that, since we can re-define αµ
−1
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We can combine them to obtain:

(L0 − L̃0) |phys⟩ = (L0 + L̃0 − 2) |phys⟩ = 0 (2.64)

Recalling the expression for L0 and L̃0 and the definition of N (2.61) (an analogous
definition for Ñ can be given), we get two conditions called respectively level matching
and mass-shell condition:

(N − Ñ) |phys⟩ = 0 and

(
α′

2
p2 +N + Ñ − 2

)
|phys⟩ = 0 (2.65)

The level matching condition tells us that in the closed string spectrum, there appear
only states in which the number of right-moving and left-moving excitations match. On
the other hand, the mass-shell condition gives us an expression for the mass of each state:

M2 =
2(N + Ñ − 2)

α′ (2.66)

Hence, also for the closed string the vacuum state |0, 0; p⟩, for which N = Ñ = 0 is a
tachyon. On the other hand, the first physical excited state has N = Ñ = 1 due to
the level-matching condition, and it is a massless spin-2 state. Using group-theoretical
arguments, one finds that this spin-2 state is a reducible representation of SO(D − 2)
and can be split into three irreducible representations. The first is a symmetric, traceless
tensor Gµν generically called the graviton, then we have an anti-symmetric tensor Bµν

called Kalb-Ramond field and finally we have a scalar field, the dilaton φ. Hence, the
spectrum of the closed string includes a tachyon at N = Ñ = 0, the graviton Gµν , the
Kalb-Ramond field Bµν and the dilaton φ, which are all massless, at N = Ñ = 1, and
massive excited states for N = Ñ > 1.

2.4 Target-Space Action

If we return to a target-space perspective, it is possible to write down an action based
on the spectrum we found. We will focus on the closed-string spectrum to illustrate how
this process works. In D = 26, excluding the tachyon degrees of freedom, we can write
the simplest action for the massless spectrum of the closed string as:

S26 =
1

κ2

∫
M

√
−Ge−2φ

[
R[G]− 1

12
HµνλH

µνλ + 4∂µφ∂
µφ

]
d26x (2.67)

where Hµνλ can be thought of as the field-strength tensor of Bµν , which in differential-
form language is expressed as:

H = dB (2.68)

with d the exterior derivative operator.
Let us comment on this action. First of all, the value of the constant κ2 can be changed
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with a proper shift of the dilaton. In general we define it as κ2 = cα′12, but the constant
c can be reabsorbed into the dilaton. Notice then that this action is not canonically-
normalized: the Einstein-Hilbert term has a factor of e−2φ and the dilaton kinetic term
has the wrong sign. To fix this, we just Weyl-transform the graviton as:

Gµν 7→ G̃µν = e
φ
6Gµν (2.69)

which modifies (2.67) as:

S26 =
1

κ2

∫
M

√
−G̃

[
R[G̃]− 1

12
e−

φ
3HµνλH

µνλ − 1

6
∂µφ∂

µφ

]
d26x (2.70)

We call this Einstein frame, where the Planck scale is manifestly fixed and the Einstein-
Hilbert term has a canonical form, whereas the form (2.67) is called string frame action.
Notice that taking (2.67) in the case Gµν = ηµν and Bµν = 0 as well as φ = 0 gives
us a solution describing the background in which our original 2d QFT (2.2) lives. This
suggests that a straightforward generalization of the world-sheet Polyakov action would
arise replacing ηµν with a general target-space metric Gµν(X):

S = − 1

4πα′

∫
Σ

√
−hhab∂aXµ∂bX

νGµν(X) d2σ (2.71)

Similar modifications appear when we turn on the fields B and φ. The former introduces
new interaction terms in the 2d QFT of the Xµ, while the role of the latter is subtler.
It appears as the coefficient of the world-sheet Einstein-Hilbert term:

SP ⊃ 1

4π

∫
Σ

φ
√
−hR[h] d2σ (2.72)

This is crucial for what follows, since it will prove the fact that φ governs the string
coupling.
To see that, let us consider the the Polyakov path integral, which is the path integral built
from the Polyakov action. To make it simple, we will suppose the target-space metric is
Minkowski and we only take a non-zero dilaton as a modification to the action (2.2). In
Euclidean world-sheet time, we can write the path integral as:

Z =

∫
DX Dg e−S (2.73)

The action featured in this definition is the sum of two pieces:

S = SX + λχ (2.74)
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where:

SX =
1

4πα′

∫
Σ

√
ggab∂aX

µ∂bXµ d
2σ (2.75)

χ(Σ) =
1

4π

∫
Σ

√
gR[g] d2σ (2.76)

where we used an Euclidean world-sheet metric gab. Notice that the second piece of
(2.74), considering the expression for the Euler number (2.76), has exactly the same
form as in (2.72). This suggests that we identify the apparently arbitrary coefficient λ
exactly with the dilaton φ.
The most interesting aspect of this is considering what happens to the action (2.74) when
we add to the world-sheet a closed string loop. From a purely topological perspective,
adding a closed string loop is equivalent to adding a handle to the world-sheet, raising by
1 the genus of the world-sheet topology. For a closed, oriented surface the Euler number
can be written as:

χ = 2− 2g (2.77)

where g is the genus of the surface. Therefore, adding a handle modifies the Euler number
as χ 7→ χ− 2. From the perspective of the path integral, this means multiplying by an
overall factor of e2λ = e2φ. Going back to the physical perspective of a closed-string
loop we then expect a string coupling factor, gs, each time a closed string is emitted and
reabsorbed, so a closed string loop should come with an overall factor of g2s . But then it
is immediate to identify the string coupling with the exponential of the dilaton:

gs = eφ (2.78)

2.5 Superstring Theory

Up to now, we found string theory is promising. First of all, it naturally includes
the graviton upon quantization, making it a good candidate for a quantum gravity
theory. Second, it appears to be a finite theory, with no UV divergences or need of
renormalization. However, as it stands, bosonic string theory has some deep problems:

i) It does not include fermions. In fact all the open- or closed-string states we dis-
cussed are bosons, since the creation operators are only bosonic. Of course, we
know there are fermions in nature, so we need a way to include them.

ii) The ground state is a tachyon. This indicates the overall theory is unstable, as
the ground state could decay through tachyon condensation [8]. However, in the
context of bosonic string theory there is no way (that we know of) to get rid of
tachyonic states.
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iii) D = 26. The number of spacetime dimensions of critical string theory is way bigger
than the one we observe.

As it is, the theory seems phenomenologically unviable. However, introducing Supersym-
metry in the world-sheet theory will solve problems (i) and (ii) and improve on problem
(iii). Let us sketch how.

World-sheet Supersymmetry

First of all, we have to include some fermionic world-sheet coordinates that we will call θα.
It is easy to verify that with a flat world-sheet metric, the theory is Lorentz-symmetric
if we transform the world-sheet variables as:

σa 7→ σ′a = Λabσ
b and θα 7→ θ′α = Sβαθβ (2.79)

where:
Λ = eiω

abJab and S = eiω
abΣab (2.80)

with Jab being the 2d Lorentz generator in vector representation, while Σab the 2d Lorentz
generator in spinorial representation, and ωab the parameter tensor. As in 4d, we can
write Σab in terms of 2d γ-matrices:

Σab =
i

4

[
γa, γb

]
(2.81)

where the γ-matrices satisfy the usual Clifford algebra 3:

{γa, γb} = −2ηab (2.82)

As it appears manifestly from (2.81), Σab is anti-symmetric, which constrains the pa-
rameter space to only one dimension, so that ωab ∝ ϵab, the 2d Levi-Civita symbol. The
matrix S can be proven to be real, which implies that θα is real too. The condition
θ∗ = θ is equivalent, in 2d, to the Majorana condition, so that θα is a Majorana fermion,
see appendix B of [5] for details.
To introduce SUSY in the world-sheet action, we promote all the scalar fields in the
theory to superfields Xµ(σ) 7→ Y µ(σ, θ) such that:

Y µ(σ, θ) = Xµ(σ) + θ̄ψµ(σ) +
1

2
θ̄θBµ(σ) (2.83)

with θ̄ = θ†γ0. As it is clear from (2.83), ψµ is a fermion and Bµ an auxiliary field. The
SUSY generators on the world-sheet can be expressed in a very similar way to 4d SUSY:

Qα =
∂

∂θ̄α
+ i(γaθ)α∂a (2.84)

3Notice that the signature of our world-sheet metric is (−,+), and since we want to preserve the nice
property (γ0)2 = 1, we take the minus sign outside the commutator.
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It is an easy exercise to prove they satisfy the SUSY algebra:

{Qα, Q̄
β} = −2i(γa)βα∂a (2.85)

hence, the SUSY transformation of the superfield Y µ is akin to the usual four-dimensional
one:

δξY
µ = (ξ̄Q)Y µ (2.86)

Considering relation (2.86) component-wise, we get the SUSY transformations of the
individual component fields 4:

δξX
µ = ξ̄ψµ (2.87)

δξψ
µ = −iγaξ∂aXµ + ξBµ (2.88)

δξB
µ = −iξ̄γa∂aψµ (2.89)

Our purpose now is writing down a generalization of the Polyakov action in a SUSY-
invariant way. To do that, it is useful to introduce the so-called supercovariant derivative
on the world-sheet:

Dα =
∂

∂θ̄α
− i(γaθ)α∂a (2.90)

which is such that:
{Dα, Qβ} = 0 (2.91)

This is useful because we can now easily make our Polyakov action SUSY-invariant just
by substituting Xµ 7→ Y µ, ∂a 7→ Dα and d2σ 7→ d2σd2θ:

S =
i

4πα′

∫
D̄αY µDαYµ d

2σd2θ = − 1

2πα′

∫ [
∂aX

µ∂aXµ − iψ̄µ/∂ψµ −BµBµ

]
d2σ

(2.92)
At the end of the day, since the auxiliary field Bµ can be eliminated through its equation
of motion, the final result of the supersymmetrization the world-sheet is just the addition
to the theory of a fermion for each scalar.

Quantization of the Superstring

Let us now quantize the new SUSY-invariant Polyakov action in a similar way as we
did for the bosonic string. We start from the action (2.92) from which we eliminate Bµ

through its equations of motion 5. First of all, we notice that this action is already in flat
gauge, being hab = diag(−1, 1). Thus, we have to impose by hand the equation of motion

4Notice how the transformation of the field Bµ under SUSY is a total world-sheet derivative. This
is the common behaviour of the auxiliary fields

5The Euler-Lagrange equations for this field simply read Bµ = 0
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for hab, which is the same as (2.15), as a constraint. In this case, the energy-momentum
tensor of the supersymmetric world-sheet theory is:

Tab = ∂aX
µ∂bXµ +

i

2
ψ̄µγ{a∂b}ψµ −

1

2
hab

(
∂cX

µ∂cXµ +
i

2
ψ̄µ/∂ψµ

)
(2.93)

where the curly brackets indicate symmetrization of the indices. We also reckon that,
because of SUSY, the world-sheet metric hab must have a fermionic partner, usually
called world-sheet gravitino χa, which in expression (2.92) is set to zero because of the
flat gauge. From a more general analysis, one can derive its equations of motion, which
are given by the vanishing of the current:

Ja =
1

2
γbγaψµ∂bXµ (2.94)

Therefore Ja = 0 is the second constraint we must implement.
The decomposition in oscillator modes of the bosonic part of the action turns out to be
the same as before, so we will focus on the fermionic part. We can rewrite the part of
the action involving ψµ as:

SF =
i

πα′

∫
(ψ− · ∂+ψ− + ψ+ · ∂−ψ+) d

2σ (2.95)

where we set γ± = γ0 ± γ1. Before solving the equations of motion which stem from
this action, we have to address the question of the choice of boundary conditions for
the fermions. Since all the fermionic observables are always built from bilinears, a sign
is not detectable. This means that we may choose the sign of the fermion to stay the
same at each revolution around the string, in which case we talk about Ramond (R)
boundary condition, or we may set it to change at each revolution, in which case we
have Neveu-Schwarz (NS) boundary conditions. Since we have two fermions and two
boundary conditions we have a total of 4 sectors, identified by the choice of the boundary
conditions on each of the fermions:

ψ+(σ + ls) = ψ+(σ), ψ−(σ + ls) = ψ−(σ) (RR) (2.96)

ψ+(σ + ls) = ψ+(σ), ψ−(σ + ls) = −ψ−(σ) (RNS) (2.97)

ψ+(σ + ls) = −ψ+(σ), ψ−(σ + ls) = ψ−(σ) (NSR) (2.98)

ψ+(σ + ls) = −ψ+(σ), ψ−(σ + ls) = −ψ−(σ) (NSNS) (2.99)

Now we can expand the fermionic fields in oscillator modes as for their bosonic counter-
parts, but we have to take care for the different sectors. We will have:

ψµ+ =
∑
r∈Z+ν

ψ̃µr e
−2ir(τ+σ) and ψµ− =

∑
r∈Z+ν

ψµr e
−2ir(τ−σ) (2.100)
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where

ν =

{
0 for R
1
2
for NS

(2.101)

plus the usual reality condition:

(ψµr )
∗ = ψµ−r and (ψ̃µr )

∗ = ψ̃µ−r (2.102)

Notice that for the open string one only has the RR and NSNS sectors, since the other two
would be inconsistent with the structure of the open string, for details see for example
[9]. We can immediately write down the algebra of the oscillator modes which are derived
from equal-time commutators of the fields:

[αµm, α
ν
n] = mδm,−nη

µν , {ψµr , ψνs} = δr,−sη
µν (2.103)

and similarly for their right-moving counterparts. Once again, we define the Virasoro
operators both for the bosons and for the fermions in a similar way:

Lm =
1

2πα′

∫ ls

0

eimσT++dσ, Gr =

√
2

2πα′

∫ ls

0

eirσJ+dσ (2.104)

These can be written in terms of the oscillator modes and satisfy the so-called super-
Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n + A(m)δm,−n (2.105)

{Gr, Gs} = 2Lr+s +B(r)δr,−s (2.106)

[Lm, Gr] =
(m
2
− r
)
Gm+r (2.107)

where

A(m) = (m3 −m)
D

8
and B(r) = (4r2 − 1)

D

8
(2.108)

The physical state conditions, now are written as:

(Lm − aδm,0) |phys⟩ = 0, Gr |phys⟩ = 0 (2.109)

for all m, r ≥ 0. Notice that there is no ordering ambiguity in G0 because of its fermionic
nature. Therefore, We have that:

a =

{
0 for the R sector
D−2
16

for the NS sector
(2.110)

In the R sector case, the contribution of the fermions precisely cancels the one from the
bosons, while in the NS case, the non-trivial boundary condition spoils the cancellation.
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Let us focus on the open superstring spectrum, and begin analyzing the NSNS sector.
The vacuum state is |0; p⟩, and the creation operators are αµ−n and ψµ−r for n, r > 0.
Now, let us impose the physical state condition for L0 on the vacuum:

(L0 − a) |0; p⟩ = (α′p2 +Nα +Nψ − a) |0; p⟩ (2.111)

where we defined the level operators as:

Nα =
∞∑
m=1

α−m · αm Nψ =
∑
r∈N+ 1

2

rψ−r · ψr (2.112)

Then, at the level zero, we have once again a scalar with a mass:

M2 = − a

α′ (2.113)

Then we have a target-space spinor at level 1/2 given by ϵµψ
µ
−1/2 |0, p⟩, with mass

M2 =
1

α′

(
1

2
− a

)
(2.114)

Now, we want this to be massless, in order to be in a critical string theory, so we set a = 1
2

which means that the critical number of dimensions for superstring theory is D = 10.
For the RR sector of the open string, the only difference from a superficial point of
view is that the sum of Nψ in (2.112) runs over the integers. This means that L0 is
independent of ψµ0 , which does not affect the mass. This means that ψµ0 is a generator
of the Little group. Therefore, each mass eigenstate must carry a representation of the
Clifford algebra (2.103) that ψµ0 satisfies. Therefore, every state in the RR sector of
the theory must be a target-space spinor. In particular, we must have a vacuum |α; p⟩
which is a massless fermion. Since a = 0 here, we cannot infer from this argument the
number of critical dimensions in this sector. It is possible to prove, through central-
charge vanishing arguments [5], that D = 10 also for this sector.
The quantization and spectrum for the closed superstring is very similar and we will
not cover it here. We just remark that exactly as in the bosonic string case, for critical
dimensions D = 10 it contains the graviton, together with its superpartner the gravitino.

2.6 GSO Projection and Type II String Theories

The introduction of world-sheet supersymmetry solved the problem of the absence of
fermionic degrees of freedom in the spectrum. However, in the NSNS sector of the open
string we still have a tachyon. The way we can get rid of it is through an appropriate
projection, called Gliozzi-Scherk-Olive (GSO) projection. The form of this projector is:

PGSO =
1

2
(1 + (−1)F ) (2.115)
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where F is the fermion number. Concretely, one defines the fermion number of the
tachyon state to be odd, in order to eliminate it:

(−1)F |0; p⟩ = − |0; p⟩ (2.116)

This implies that:
PGSO |0; p⟩ = 0 (2.117)

Therefore, restricting the Hilbert space to the image of the GSO projector, we get a
theory which has no tachyons.
This projection also has the property of restricting the possible number of consistent
superstring theories. In particular, it restricts the number of Type-II string theories,
i.e. string theories with N = 2 SUSY. In fact, acting with the GSO projector on the
closed superstring spectrum, and imposing the absence of the tachyon, we only get two
inequivalent and consistent Type-II string theories.
In Type-IIA string theory, we only keep states such that (−1)F = 1 on the left-moving
modes, (−1)F = 1 on right-moving NS states and (−1)F = −1 on right-moving R states.
With these constraints on the spectrum, we get the following field content of Type-IIA
string theory:

1. One scalar field (dilaton) φ, one symmetric traceless tensor (graviton) gµν and an
anti-symmetric tensor (Kalb-Ramond tensor) Bµν

2. Two spinors with opposite chirality and two vector spinors (gravitinos) with oppo-
site chirality

3. A 1-form field C1 and a 3-form field C3, corresponding to D0- and D2-brane states

Type-IIB string theory has a simpler constraint on states, requiring all the states to
satisfy (−1)F = 1. The field content of Type-IIB string theory is:

1. One scalar field (dilaton) φ, one symmetric traceless tensor (graviton) gµν and an
anti-symmetric tensor (Kalb-Ramond tensor) Bµν

2. Two spinors of the same chirality and two vector-spinors of the opposite chirality
with respect to the spinors (gravitinos)

3. One 0-form field C0, a 2-form field C2 and a 4-form field C4 with self-duality
condition: F5 = ∗F5 where F5 = dC4

The clearest difference between the two theories is that Type-IIB string theory is chiral:
one of the two chiralities is preferred over the other.
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3 String Compactification

Including supersymmetry and implementing the right projections solved the problems of
the absence of fermions and of tachyons in the spectrum. One ’problem’ is still standing:
the large number of spacetime dimensions. As we will see in this section, in string theory,
this is not regarded as a problem, but rather as a feature and source of predictions. In
fact, the key insight is that one can compactify the extra dimensions, supposing they
form a specific kind of 6-dimensional compact manifold with a series of topological and
geometrical properties which reflect in phenomenological models.
In this section, we start by showing the 10d action for Type-IIB string theory, then we
move to the main aspects of Kaluza-Klein compactifications. We analyze the structure
of Calabi-Yau manifolds and their mathematical properties, and eventually study the
4d supergravity EFT resulting from the compactification of Type-IIB string theory on a
Calabi-Yau. In this section we follow mainly the references [10, 11, 6].

3.1 10-dimensional Action for Type-IIB String Theory

Among all the possible different superstring theories and generalizations thereof (e.g. M-
theory), the one that today has produced the most promising phenomenological results
is Type-IIB string theory, whose field content we have exposed at the end of the previous
section. The 10d action of the bosonic part of Type-IIB string theory has the following
form:

S10 = SK + SCS + SLOC (3.1)

Let us analyze each of the components separately6. First of all, we have SK , which
contains all the kinetic terms of the fields:

SK =
1

2κ210

∫
M

√
−g

[
e−2φ

(
R+ 4(∂φ)2 − 1

2 · 3!
H2

3

)
− 1

2
F 2
1 − 1

2 · 3!
F̃ 2
3 − 1

4 · 5!
F̃ 2
5

]
d10x

(3.2)
where 2κ210 = (2π)7α′4. H3 is the 3-form field strength potential of the Kalb-Ramond
2-form field B2 as expressed in (2.68), while in general:

Fi = dCi (3.3)

are the field strengths of the form-fields Ci. The square of a differential form in (3.1) has
the following meaning:

F 2
i = Fi ∧ ∗Fi (3.4)

6For simplicity, from now on we will use differential-form notation, see appendix B.4 of [5] for a
complete review.
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where ∗ is the Hodge-star operator. In (3.2) we have a generalization of these form-field
strengths, defined as:

F̃3 = F3 − C0 ∧H3 and F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (3.5)

which are invariant under the gauge transformations:{
C2 7→ C ′

2 = C2 + dλ1

C4 7→ C ′
4 = C4 +

1
2
λ1 ∧H3

(3.6)

where λ1 is a generic 1-form. The second piece of (3.1) is called Chern-Simons action,
and it collects terms that do not involve the metric. In this case we have:

SCS =
1

4κ210

∫
M
eφC4 ∧H3 ∧ F3 (3.7)

The final part of the Type-IIB action collects the contributions of various localized
objects, like the various D-branes that may be present in the model. For example, if we
have a D3-brane, we can express part of the localized action as:

SLOC ⊃ SD3 =
1

2π3α′2

∫
D3

C4 − T3

∫
D3

√
−g d4ζ (3.8)

where ζ are coordinates parametrizing the world-volume of the D3-brane and T3 is the
tension of the D-brane. In general a Dp-brane has tension:

Tp =
e(p−3)φ

4

(2π)pα′ (p−1)
2

(3.9)

Notice that the local part of the action is not complete as is. It must be extended in-
cluding the gauge fields living on the D-branes as open string states and their fermionic
superpartners (the so-called gauginos). Including these and the pullback of B2 on the
brane, one gets the Dirac-Born-Infeld (DBI) action, completely characterizing the dy-
namics of Dp-branes:

SDBI = −Tp
∫
Dp

e−φ
√
− det(gIJ + FIJ)d

(p+1)ζ (3.10)

where ζI are coordinates on the world-volume of the Dp-brane, gIJ is the pullback of the
10d metric to the (p+ 1)-dimensional brane and:

FIJ = BIJ + 2πα′FIJ (3.11)

where BIJ and FIJ are the pullback on the brane respectively of the Kalb-Ramond tensor,
and of the field-strength tensor of the gauge fields living on the D-brane.
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3.2 Kaluza-Klein Compactification

Now that we have our 10d action, we need a way to convert this into a 4d EFT by
compactifying six of the dimensions and leaving the other four extended. The way to do
this is to perform a so-called Kaluza-Klein dimensional reduction.
We can give a simple example of such a process considering the so called Kaluza-Klein
theory. This is a straightforward generalization of the Einstein-Hilbert action to 5 space-
time dimensions, of which 4 are extended and one is taken to be isomorphic to a S1

geometry of radius r.

SKK =
M3

5

2

∫
M

√
−g(5)R5 dy d

4x (3.12)

where M = R4 ×S1, y ∈ [0, 2πr) is the coordinate parameterizing the S1 geometry, and
the prefactor M5 is the 5d reduced Planck mass. The first thing we do is writing the 5d
metric tensor as:

g
(5)
MN =

(
gµν +

2
M2

P
ϕ2AµAν

√
2

MP
ϕ2Aµ

√
2

MP
ϕ2Aν ϕ2

)
(3.13)

withM,N = 0, ..., 4 ; µ, ν = 0, .., 3, and the parameterMP is for the moment a parameter
of the dimension of a mass, which we will later identify as the 4d reduced Planck mass.
Next, since the overall spacetime is a product of a compact dimension times a non-
compact part, we expect that our fields gµν , Aµ and ϕ admit a decomposition in Fourier
modes of the kind:

ϕ(x, y) =
∞∑
n=0

ϕn(x) cos
(ny
r

)
+

∞∑
n=1

ϕ̃n(x) sin
(ny
r

)
(3.14)

What is found is that only one of these modes is massless, namely ϕ0(x), while the
others are an infinite tower of massive modes, called Kaluza-Klein (KK) modes, that in
this case have a mass of mn = n

r
. The mode ϕ0 has no mass, and no potential term

in the dimensionally-reduced EFT: it represents a flat direction of the scalar potential,
namely a modulus. Since it has no potential, its vacuum expectation value (VEV) is not
fixed. This is a very general feature of these zero-modes emerging from Kaluza-Klein
compactifications. Performing the same expansion for all the fields in the decomposition
(3.13), integrating over S1 in the action and keeping only the massless modes in our EFT
(the cut-off of the EFT is, in fact, the mass of the first massive KK state), it is easy to
convince oneself that the result is 7:

SEFT =

∫ √
−g ϕ

[
M2

P

2
R− 1

4
ϕ2FµνF

µν +
M2

P

3

(∂ϕ)2

ϕ2

]
d4x (3.15)

where R is the 4-dimensional Ricci scalar and Fµν is the field strength of the vector
field Aµ. We have effectively reduced the 5d Einstein-Hilbert action to a 4d EFT. This

7We drop the label ’0’ for the zero-states, as they are the only ones we are interested in.
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theory not only features gravity in 4d, but also a scalar field ϕ and a U(1) gauge field
Aµ. Notice that the action (3.15) can be brought to Einstein frame just by rescaling the
metric gµν 7→ gµν

ϕ
. We have found an EFT for each fixed value of r, the radius of the

S1. Therefore, we expect a flat direction in the potential corresponding to the freedom
in the choice of the radius. We recognize that the only field in the final EFT that can
play this role is ϕ. Therefore we regard ϕ as a scalar field governing the size of the extra
dimension: this is a general property of the moduli, which characterize the geometrical
properties of the extra dimensions. The result in (3.15) has made the assumption that:

M2
P = 2πrM3

5 (3.16)

So, interpreting MP as the 4d Planck mass to make sense of the final EFT, this means
that the 5d version of the Planck mass scales as:

M5 =
M

2/3
P

Vol1/3
(3.17)

where Vol is the volume of the extra dimensions. This implies that if we consider a
large compactification volume, the effects of gravity would be much stronger as the new
gravitational energy scale would be M5 and no longer MP .

Now we have to apply the concept of a Kaluza-Klein reduction to our 10d superstring
theory. The essential step to take is the choice of the compact geometry. First of all, we
know we want to go from 10d down to 4d, which means we need to use a 6d manifold
for the compact dimensions. These are real dimensions, but as we will see in a moment,
it may be more useful to consider a complex manifold, with 3 complex dimensions. The
main difference is that a complex manifold is furnished of a complex structure J , which
may be interpreted as a map

J : T ∗
P → T ∗

P (3.18)

corresponding, roughly speaking, to a ’multiplication times i’ in the cotangent space T ∗
P

of every point P of the manifold, with the crucial property that 8:

J2 = −1 (3.19)

Moreover, our manifold should have a metric, and this metric has to be compatible with
J . This automatically classifies our complex manifold as a Kähler manifold, which also
implies the existence of a real function K of the local variables (zi, z̄ȷ̄) such that:

giȷ̄ =
∂2K

∂zi∂z ȷ̄
(3.20)

8Actually, this is not enough for the manifold to be a complex manifold. A manifold with a complex
map (3.18) with property (3.19) is called a almost complex manifold. To be a full-fledged complex
structure, J must have vanishing Nijenhuis tensor [12].

27



The compatibility condition of the Kähler metric and the complex structure lets us lower
one index of the complex structure form J , so we can write it as a 2-form:

J = igiȷ̄ dz
i ∧ dz̄ ȷ̄ (3.21)

called the Kähler form. It is clear that, given the Kähler form, the metric is immediately
determined and vice versa. There are other two properties we want our Kähler manifold
to have. If we set all the fields but the 10d metric tensor gMN to zero, we want this
complex manifold to be a solution of the vacuum Einstein equation:

RMN = 0 (3.22)

This condition is called Ricci flatness and it is common to many simple geometries like
the flat tori T n.
The final request for our manifold is that our 4d theory, upon compactification, preserves
at least the minimal supersymmetry from the 10d theory. This requirement is equivalent
to asking for the existence in the 4d EFT of at least one massless spinor. From our
description of the Kaluza-Klein reduction process, this boils down to asking for the
spinor to have a non-vanishing zero-mode in the expansion. It can be shown that this
condition is immediately satisfied if we ask for the existence of a covariantly constant
spinor in the compactification space.
We should express these requirements in a more geometrical way, in order to have simpler
constraints on the manifold. It can be proved that having a covariantly constant spinor
and Ricci flatness corresponds to having a SU(3) holonomy group. In general, a complex
manifold of complex dimension n will have a holonomy group which is a subset of SO(2n).
A Kähler manifold always has holonomy group U(n) ⊂ SO(2n). Imposing that this
Kähler manifold is Ricci-flat is equivalent to imposing that the actual holonomy group of
the Kähler manifold is SU(n), and this immediately implies the existence of a covariantly
constant spinor.
To recap, we want the extra dimensions to form a compact, Kähler manifold with SU(3)
holonomy group. Such a class of manifolds exists: they are called Calabi-Yau manifolds.

3.3 Calabi-Yau Manifolds

We want to give a formal definition of a Calabi-Yau manifold and analyze its struc-
ture. We will be brief in this description and won’t dive too much in the formalities
of Calabi-Yau geometries and constructions. A more in-depth analysis can be found in
[13, 14]. Formally, a Calabi-Yau n-fold is a compact, connected Kähler manifold whose
first Chern class vanishes. Let us understand what this means. The tangent bundle of a
Kähler manifold can be viewed, due to the U(n) holonomy, as a complex vector bundle
whose curvature is specified by the Riemann tensor R k

iȷ̄ l of the Kähler manifold itself.
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Therefore, the curvature 2-form on the tangent bundle of the manifold X can be written
as:

R(TX) = dzi ∧ dz̄ ȷ̄R k
iȷ̄ l (3.23)

This allows us to define the Chern multi-form:

c(X) = det(1+R(TX)) (3.24)

where the determinant refers to the matrix indices and the product of forms is, of course,
the wedge product. This can be expanded into a series of (2k)-forms ck(X) called kth
Chern class :

c(X) = 1+c1(X)+c2(X)+... = 1+trR(TX)+tr(R(TX)∧R(TX)−2trR(TX)
2)+... (3.25)

Going back to the definition of the Calabi-Yau, then, we can say that a compact
Kähler manifold Y is a Calabi-Yau n-fold if c1(Y ) is exact, i.e. there exists a 1-form
ω such that c1(Y ) = dω. This can be expressed, in a more mathematical way, that
c1(Y ) is zero in cohomology, i.e. it sits in the same cohomology class as the null 2-form.
The main reason behind this formal definition of a Calabi-Yau is that Chern classes are
topological invariants, they are independent of smooth variations of the metric, and this
will be crucial for us later on. In fact, this means that deforming in a smooth way the
metric of a Calabi-Yau does not destroy the Calabi-Yau structure itself.
How does this formal definition relate to the definition based on the SU(n) homol-
ogy given in the previous section? We know that a Kähler manifold X for sure has a
U(n) = U(1) × SU(n) holonomy. It is possible to prove that the field-strength related
to the U(1) bundle can be expressed as:

Fiȷ̄ = −2iRiȷ̄ = −2itrR(TX) = −2ic1(X) (3.26)

Therefore, if c1 vanishes (in cohomology) then also Fiȷ̄ vanishes. Thus if c1 = 0 there is
no U(1) bundle, and the holonomy group is simply SU(n). This result is formalized and
expanded upon by the Yau theorem:
Let Y be a Kähler manifold. If c1(Y ) vanishes in cohomology, then there exists a Ricci-flat
metric in the same cohomology class. This metric is unique and it is called Calabi-Yau
metric.

Hodge diamond of a Calabi-Yau

Let us analyze some consequences of these definitions. First of all, recall that on a
complex manifold, the de Rham cohomology group Hk, i.e. the set of cohomology classes
of differential k-forms, admits a so-called Hodge decomposition:

Hk =
⊕
p+q=k

Hp,q (3.27)
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where Hp,q is called Dolbeault cohomology group, and it contains the cohomology classes
of (p, q)-forms on the complex manifold. A (p, q)-form is a differential form having p
holomorphic components and q anti-holomorphic components. One of the most charac-
terizing features of a complex manifold are the so-called Hodge numbers :

hp,q := dim Hp,q (3.28)

These indicate the number of independent (p, q)-forms defined on the manifold. Clearly,
p+ q ≤ 2n where n is the complex dimension of the manifold. The Hodge numbers are
not all independent. In fact, they obey the Hodge duality :

hp,q = hq,p (3.29)

and also the Serre symmetry :
hp,q = h(n−p),(n−q) (3.30)

The Hodge numbers of a complex manifold are usually displayed in what is called a Hodge
diamond, where the two conditions (3.29) and (3.30) together give rise to horizontal and
vertical mirror symmetries. We display the general Hodge diamond for a complex 3-fold
in Fig.3.1.

Figure 3.1: Hodge diamond for a general complex 3-fold.

Because of the symmetries, only 6 out of the 16 Hodge numbers are independent.
Turning to Calabi-Yau manifolds, we see that the vanishing of the first Chern class or,
equivalently, the SU(3) holonomy, further constrains the number of independent Hodge
numbers. In fact, the Hodge diamond of a Calabi-Yau has a very simple structure, as
shown in Fig. 3.2.

As we can see, the only independent Hodge numbers of a Calabi-Yau 3-fold are
h1,1 and h2,1. Two crucial properties, imposed by the defining holonomy condition of
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Figure 3.2: Hodge diamond for a Calabi-Yau 3-fold.

the Calabi-Yau are h1,0 = h2,0 = 0, which means that there are no 1-forms and no
holomorphic or anti-holomorphic 2-forms, and h3,0 = h0,3 = 1, which means there exists
precisely one holomorphic (3, 0)-form, which we indicate as Ω 9.

3.4 Moduli Spaces of Calabi-Yau Three-folds

Yau’s theorem states that the Calabi-Yau metric, once we fix the complex structure and
cohomology class, is unique. However, what happens if we deform the metric giȷ̄? Do
such deformations exist that maintain the Ricci-flatness of the resulting Calabi-Yau? By
the topological invariance of the first Chern class, we know the answer is yes. However we
now want to classify them and see what these deformations mean from a more physical
point of view.
There are two kind of variations we can perform on the metric of a Calabi-Yau Y :

giȷ̄dz
idz̄ ȷ̄ 7→ giȷ̄dz

idz̄ ȷ̄ + δgiȷ̄dz
idz̄ ȷ̄ + δgijdz

idzj + h.c. (3.31)

Because of Yau’s theorem, these variations of the metric preserving Ricci-flatness must
be accompanied by either a change in the Kähler cohomology class or a change in the
complex structure. We can interpret a change in the metric of the kind δgiȷ̄ directly as a
change of the Kähler form J because of (3.21). These variations can be shown to be in
one-to-one correspondence with the space of harmonic (1, 1)-forms, and can be expanded
as:

δgiȷ̄ = ivk(ωk)iȷ̄ with k = 1, ..., h1,1 (3.32)

where ωk is a basis of harmonic (1, 1)-forms on the Calabi-Yau, and vk are the so-called
Kähler moduli, as they appear from deformations of the Kähler structure. On the other

9The existence and uniqueness of the holomorphic 3-form Ω are a consequence of what is sometimes
called the Bogomolov theorem, and can be seen as alternative defining conditions of a Calabi-Yau 3-fold.
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hand, variations of the metric of the form δgij violate the hermiticity; therefore they
must be coupled with a change in the complex structure. We can establish a one-to-one
correspondence between the space of these so-called complex structure deformations and
the space of (1, 2)-forms as:

δgij =
i

||Ω||2
Ūa(χ̄a)ik̄l̄Ω

k̄l̄
j with a = 1, .., h1,2 (3.33)

here we used the holomorphic (3, 0)-form Ω whose indices have been raised through
the metric, its ’norm’ given by ||Ω||2 = 1

6
ΩijkΩ̄

ijk and we introduced a basis (χ̄a) of
H1,2.Always recall that h2,1 = h1,2 so this argument can be easily converted to H2,1 by
simple conjugation. The (complex) coefficients of this expansion, Ua, are called complex
structure moduli.
The Kähler moduli vk and the complex structure moduli Ua span the moduli space of the
Calabi-Yau, which can be factorized in a Kähler moduli space and a complex structure
moduli space, at least in a simple compactification model:

Mmoduli = MK ×MCS (3.34)

Both these moduli spaces are Kähler manifolds, and their metric can be expressed
through an appropriate Kähler potential. Starting from the complex structure case,
we have that:

KCS = − ln

[
−i
∫
Y

Ω ∧ Ω̄

]
(3.35)

where we see Ω = Ω(U) as a function of the complex structure moduli.
On the other hand, we have the Kähler moduli space MK , which can be spanned by
the Kähler moduli vk. Nevertheless, it is more useful to introduce a different set of
Kähler variables with an explicit geometrical meaning. First of all, we expand the
Kähler form J in a harmonic basis ωi of (1, 1)-forms:

J = tiωi (3.36)

with i = 1, ..., h1,1. It can be seen that the overall volume of the Calabi-Yau can be
expressed as:

V =
1

6

∫
Y

J ∧ J ∧ J =
1

6
kijkt

itjtk (3.37)

where kijk are intersection numbers on the Calabi-Yau given by:

kijk =

∫
Y

ωi ∧ ωj ∧ ωk (3.38)

This way, it is easy to interpret the Kähler variables ti as volumes of the 2-cycles Di,
duals of the 2-forms ωi, which form a basis of divisors for the Calabi-Yau. The correct
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variables to use from an EFT perspective, however, are are the volumes of the associated
4-cycles. We indicate them as τi and define them as:

τi =
∂V
∂ti

=
1

2
kijkt

jtk (3.39)

These variables represent the volume of 4-cycles Σi which are Poincaré-dual to the 2-
cycles Di. As such, they are real variables, as opposed to the complex structure moduli
which are complex. Thus, we can complexify the τi adding, as imaginary part, the
projection of the RR 4-form C4 on the 4-cycle Σi:

bi =

∫
Σi

C4 (3.40)

The fields bi are axions, as they enjoy a shift symmetry around the respective 4-cycle.
The complex version of the Kähler moduli are:

Ti = τi + ibi (3.41)

One can see the volume of the Calabi-Yau as a function of the Ti variables. Then, the
Kähler potential for these moduli is given by:

KK = −2 lnV with V = V(Ti) (3.42)

In all the compactification models, there is always a non-geometrical modulus, the dilaton
φ. It is a real scalar field that can be complexified adding the RR 0-form C0 as its
imaginary part. This new field is usually referred to as the axio-dilaton:

S = e−φ + iC0 (3.43)

Notice that the dilaton appears in (3.43) as e−φ, which, as argued in (2.78), corresponds
to 1

gs
. In fact, one often finds the string coupling written as:

gs =
1

Re(S)
(3.44)

The overall Kähler potential for the moduli space of the Calabi-Yau, then, reads:

K = −2 lnV − ln
(
S + S̄

)
− ln

[
−i
∫
Y

Ω ∧ Ω̄

]
(3.45)

This will be the tree-level Kähler potential of the low-energy EFT, which is going to be
a 4d supergravity theory. Notice that, since we started from a Type-II string theory and
SUSY is unbroken in the compactification process, for now this will be a N = 2 SUGRA
EFT. In fact, one can prove that the Kähler potential (3.45) can be written in terms of
a holomorphic prepotential.
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3.5 Orientifold Projection

To break this N = 2 EFT down to N = 1 one can do two things. Either we introduce
localized sources in the form of D-branes, or we perform an orientifold projection. Intro-
ducing D-branes in a consistent way is not immediate. In fact, they carry a particular
charge in the form of their tension (3.9) we need to neutralize. Therefore, we need to
introduce together with them some objects carrying a negative tension which neutralizes
the charge tadpole. An obvious candidate would be anti D-branes (D̄-branes), which
are the charge-conjugated states of D-branes. However, suppose we have introduced a
D3-brane somewhere in our Calabi-Yau to brake SUSY, then we introduce a D3-brane
to compensate the charge. Since these branes are not fixed in the extra dimensions, but
can freely move around the surface of the Calabi-Yau, they would be statically attracted
towards each other, and when they meet they would annihilate. Therefore, we need
something which carries the opposite charge of D-branes, but cannot annihilate them
upon contact. The most interesting class of objects of this kind are O-planes, which
arise naturally upon orientifold projections.
Let us first of all define an orientifold symmetry. It is a composition of two symmetries:

1. The world-sheet orientation reversal PΣ which exchanges right- and left-moving
modes;

2. An internal symmetry σ of the Calabi-Yau leaving the 4d Minkowski spacetime
untouched.

Since we want our final theory to be a N = 1 SUSY theory, the transformation σ must
be a holomorphic involution of the Calabi-Yau Y . This means that σ must leave the
Kähler form J untouched. Nevertheless, it can act non-trivially on the holomorphic 3-
form Ω. In fact, we can have only two possible overall orientifold actions depending on
how σ acts on Ω [15]:

1. σ̃Ω = −Ω which gives rise to the overall orientifold symmetry O = (−1)FLPΣσ.
Implementing this kind of orientifold projection produces O3/07-planes

2. σ̃Ω = Ω which gives rise to the overall orientifold symmetry O = PΣσ. Implement-
ing this kind of orientifold projection produces O5/09-planes

where we indicated with σ̃ the pullback of the action of σ to the holomorphic 3-form
Ω and FL is the number of target-space fermions in the left-moving sector. Once we
established the orientifold symmetry O, the orientifold projection πO reduces naturally
the overall Calabi-Yau Y to its quotient with respect to O:

πO : Y → Y/O (3.46)

we refer to the quotient space as a Calabi-Yau orientifold.
Op-planes arise in the Calabi-Yau orientifold at points in which the orientifold projection
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is singular. It can be shown that they carry a negative tension which is a rational multiple
of the tension of the corresponding Dp-brane. We will not dive in too much detail,
however the presence of the localized O-planes breaks some of the total supersymmetry
in the 4d EFT, which becomes a N = 1 SUSY theory.

4 Moduli Stabilization

We found that upon compactification a certain number of moduli fields arise. Their
VEVs control the shape and complex structure of the Calabi-Yau, and even the coupling
of the theory. As an important remark, the number of moduli of a Calabi-Yau can
be very high, up to ∼ O(1000), as can be seen in certain examples from the database
[16].Until their VEVs are unfixed, these act as free parameters and the theory has no
use. This brings about the problem of moduli stabilization. In fact, for now the effective
theory admits no superpotential, and therefore the scalar potential for all the moduli is
identically zero. Our goal is to produce such a superpotential considering some extra
effects on the Calabi-Yau orientifold that will eventually fix the VEV of these fields.
First we analyze how to stabilize the complex structure moduli and the axio-dilaton by
turning on fluxes on the Calabi-Yau. Then we move to Kähler moduli stabilization, in
particular focusing on the Large Volume Scenarios (LVS). To do that, we first have to
make an aside on quantum corrections to the Kähler potential, where we will also discuss
the effects of string loops.

4.1 Type IIB Moduli Stabilization via Fluxes

A simple (yet not completely free 10) way to generate a superpotential for the complex
structure moduli in Type-IIB is turning on 3-form fluxes.
To understand what this means let us first give a brief introduction to p-form fluxes in
general. If we have a differential p-form Fp and a localized source, one can see that the
integral of Fp on a p-cycle Σp encircling the source is:∫

Σp

Fp = e (4.1)

This is called a background p-form flux. The idea is very similar to Gauss’s Law in
Electromagnetism. In fact, if we have a localized chargeQ, the flux of the electromagnetic
field through a surface surrounding the source is precisely given by its charge:∫

Σ2

F2 = Q (4.2)

10See for example [17] for an introduction to what is called the tadpole problem of complex structure
moduli stabilization.
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Now, because of Bianchi identities, since for us Fp = dCp−1, we have that dF = 0. This
implies that also the fluxes e must be constant. In particular, we will impose Dirac
quantization condition on the fluxes:

1

2πα′

∫
Σp

Fp = 2πn with n ∈ Z (4.3)

which give a different vacuum for our theory for each choice of n.
In the case at hand, we will turn on 3-form fluxes. In particular, we will have F3 = dC2

where C2 is the RR 2-form of Type-IIB, and H3 = dB2. They can be combined to form
the 3-form field:

G3 = F3 + iSH3 (4.4)

where S is the axio-dilaton defined in (3.43). Turning on the fluxes for G3 on the Calabi-
Yau orientifold Y induces a superpotential called Gukov-Vafa-Witten superpotential :

WGVW =

∫
Y

G3 ∧ Ω (4.5)

where Ω is the holomorphic 3-form of the Calabi-Yau. Notice thatWGVW = WGVW (S, U)
since G3 and Ω do not depend on the Kähler moduli.
Now that we have a non-zero superpotential, we also have a non-zero scalar potential.
For a N = 1 supergravity EFT we can write the F-term scalar potential as:

V = eK
[
KSS̄DSWDS̄W̄ +Kab̄DaWDb̄W̄ +KijDiWDjW̄ − 3|W |2

]
(4.6)

where for us K will be the Kähler potential defined as in (3.45), and W = WGVW . In
(4.6) we used the following notations:

Kαβ = (K−1)αβ where Kα = ∂αK (4.7)

with α, β being generic indices spanning over all the moduli. The Kähler derivatives in
(4.6) are given by:

DS :=
∂

∂S
+KS (4.8)

Da :=
∂

∂Ua
+Ka (4.9)

Di :=
∂

∂τi
+

1

2

∂K

∂τi
(4.10)

Since W , defined as in (4.5) is independent of the Kähler moduli, we can rewrite the
general potential (4.6) as:

V = eK
[
KSSDSWDSW̄ +Kab̄DaWDb̄W̄ + (KijKiKj − 3)|W |2

]
(4.11)
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Looking at the structure of the Kähler potential for the Kähler moduli (3.42) and con-
verting the definition of the volume (3.37) in a function of the τi, it is immediate to find
out that

KijKiKj = 3 (4.12)

This is called no-scale structure of the scalar potential, because the contribution to the
scalar potential by the Kähler moduli identically vanishes. Now the scalar potential
takes the form:

V = eK
[
KSSDSWDSW̄ +Kab̄DaWDb̄W̄

]
(4.13)

The Kähler moduli enter this potential only through the exponential eK , which does not
modify the position of the minima. Hence, one can find the vacuum expectation value for
the complex structure moduli Ua and the axio-dilaton S simply studying the equation

DaW = DSW = 0 (4.14)

Notice that this minimum is supersymmetric. We have stabilized the complex structure
moduli and the axio-dilaton, while the Kähler moduli are still unfixed. From now on,
we will consider the Ua and S as stabilized and sitting at their minimum. With this, the
Gukov-Vafa-Witten potential becomes just a constant that we indicate as:

W0 :=

〈∫
Y

G3 ∧ Ω

〉
(4.15)

4.2 Quantum Corrections to the Low-Energy EFT

Since we are dealing with a N = 1 SUSY theory, the non-renormalization theorems
hold. They state that while the Kähler potential gets corrections at any perturbative
level (KP ), as well as at non-perturbative level (KNP ), the superpotential only gets non-
perturbative corrections (WNP ). Therefore, including the effects of quantum corrections
in our EFT we’ll have:

K = KTree +KP +KNP (4.16)

W = WTree +WNP (4.17)

Let us first of all treat the non-perturbative corrections. In general, we expect these to be
very small compared to perturbative corrections, since they are exponentially suppressed.
However, since the superpotential does not receive perturbative corrections at all, these
are the dominant corrections to W . They arise as a series of negative exponentials of
the Kähler moduli:

WNP =
h1,1∑
i=1

∑
n

A
(n)
i e−naiTi (4.18)
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where, in general, A
(n)
i = A

(n)
i (S, Ua) and some of these coefficients can be vanishing.

Nonetheless, one often disregards this dependence while stabilizing Kähler moduli, as
the complex structure moduli and the axio-dilaton have been fixed already by stronger
tree-level effects. In our study we will always work in a regime in which aiτi ≫ 1, so
that we can simply keep the dominant term for each modulus in (4.18):

WNP ≃
h1,1∑
i=1

Aie
−aiTi (4.19)

Where do these non-perturbative corrections come from? There are mainly two sources
of non-perturbative corrections of the superpotential: Euclidean D3-brane instantons
which yield ai = 2π and gaugino condensation on wrapped stacks of N D7-branes yield-
ing ai = 2π/N . We will not consider non-perturbative corrections to the Kähler potential,
since these are generally subleading with respect to the perturbative ones.
Let us instead move to the perturbative corrections of the Kähler potential. These
come from two different contributions: the expansion in powers of α′, usually called
α′-corrections, and the expansion in powers of gs, usually called string-loop corrections:

KP = δ(α′)K + δ(gs)K (4.20)

Let us show the dominant α′ correction here, and reserve the next section to gs loop
corrections.
The leading α′-correction to K is of order O(α′3) and comes from a correction propor-
tional to R4 of the Einstein-Hilbert term of the action (3.1).11 Upon compactification,
this correction reflects on the Kähler potential as follows:

KTree + δ(α′)K = −2 ln

[
V +

ξ

2g
3/2
s

]
= −2 lnV − ξ

g
3/2
s V

+O
(

1

V2

)
(4.21)

where

ξ = −χ(Y )ζ(3)

2(2π)3
(4.22)

with χ(Y ) = 2(h1,1 − h1,2) the Euler characteristic of the Calabi-Yau, and ζ(3) ≃ 1.2
Apéry’s constant. It is important to stress that the α′ expansion is in the inverse volume,
and thus can be controlled only in the case in which V ≫ 1 as it is visible from (4.21).

4.3 Loop Corrections to the Kähler potential

As mentioned above, K receives perturbative corrections from string loops, and these
can be modelled as a power expansion in the string coupling gs. As of today, we know of

11We will not display the full form of the 10d correction here, see [18] for the complete derivation.

38



two kinds of open string 1-loop corrections which are produced by different UV effects.
The first kind is called Kaluza-Klein (KK) corrections, and originate as the tree-level
exchange, in the closed string channel, of Kaluza-Klein modes between O3/D3- and
O7/D7-branes or parallel D7-branes. We then have winding (W) corrections, originating
form the tree-level exchange of closed strings wound around non-contractible 1-cycles
located at the intersection locus between different stacks of D7 branes. Therefore, we
can write the overall loop correction to the Kähler potential as:

δ(gs)K = δ(gs)K
KK + δ(gs)K

W (4.23)

No explicit calculation of these corrections has been performed on a Calabi-Yau, but we
do have some results for fluxless toroidal orientifolds [19]. Based on those calculations and
on dimensional arguments Berg, Haack and Pajer (BHP) made an educated guess about
the form of these loop corrections on Calabi-Yau’s as well [20]. What they conjectured is
that the contributions to the Kähler potential of string loops have the following functional
form at 1-loop level in Einstein frame:

δ(gs)K
KK
1−loop =

h1,1∑
i=1

gsCKKi f(tj)

V
(4.24)

δ(gs)K
W
1−loop =

h1,1∑
i=1

CWi
Vg(tj)

(4.25)

where f and g are homogeneous functions of degree 1 of the 2-cycles volumes tj. The
loop constants CKKi and CWi are in general possibly complicated functions of the complex
structure moduli, which are unknown to us. However, we consider them simply constants
since complex structure moduli have been fixed by tree-level effects. It was estimated
based on QFT arguments [21], that the KK correction to the Kähler potential should
go as (setting for simplicity h1,1 = 1):

δ(gs)K
KK
1−loop ∼

CKKgs
τE

=
CKKg2s
τst

(4.26)

while the winding correction goes as:

δ(gs)K
W
1−loop ∼

CW

τ 2E
=

CWg2s
τ 2st

(4.27)

where we used the fact that τE = τst/gs where τE is in Einstein frame and τst in the
string frame. Now, we do know that τst is the volume of a 4-cycle Σ4 in string units.
This means that:

Vol(Σ) ∼ τstl
4
s ∼ τstα

′2 (4.28)
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then:
1

τst
∼ O(α′2) (4.29)

Therefore, based on (4.26) and (4.27) we have:

δ(gs)K
KK
1−loop ∼ O(g2sα

′2) (4.30)

δ(gs)K
W
1−loop ∼ O(g2sα

′4) (4.31)

An interesting thing to point out is that, in order to have control over the EFT, we
must require the volumes of the 4-cycles to be larger than 1 in string units. This is the
condition for our moduli fields to be inside the Kähler cone, where we know we can trust
the EFT. Therefore, if we require that τst ≫ 1 what we get is that:

δ(gs)K
KK
1−loop

δ(gs)K
W
1−loop

∼ τst ≫ 1 (4.32)

This means, as argued in [22], that in a regime where we can trust our EFT, the KK
corrections should be dominant with respect to the W corrections, at least at the level
of the Kähler potential. Moreover, one should in general expect KK corrections to
arise independently from the precise topology of the CY. In fact KK modes are an
intrinsic feature of string compactifications, whereas winding corrections, from a purely
microscopic point of view, only arise when the topology of the CY allows two stacks
of intersecting D7-branes and, even more specifically, a non-contractible 1-form which
wraps the intersection site.

4.4 Loop Corrections to the Scalar Potential

Looking at the expressions (4.24) and (4.25) where the volume is expressed in terms
of the 2-cycles ti as in (3.37) we can say that δ(gs)K

KK
1−loop is a homogeneous function

of ti of degree n = −2 while δ(gs)K
W
1−loop is a homogeneous function of ti of degree

n = −4. This peculiar form of the 1-loop corrections is such that the scalar potential
exhibits an extended no-scale structure, i.e. the first KK correction to the scalar potential
vanishes. Let us analyze the open string 1-loop corrections to the scalar potential and
settle which are the dominant ones. For the time being, since we are interested only in
the perturbative corrections to the scalar potential, let us set:

K = KTree + δ(gs)K and W = W0 (4.33)

The scalar potential, with this choice of K and W is simply given by:

V = VTree + δ(gs)V (4.34)
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with

δ(gs)V = (KijKiKj − 3)
|W0|2

V2
(4.35)

We can write the correction δ(gs)V as:

δ(gs)V = δV KK + δV W (4.36)

The extended no-scale structure theorem proved by Cicoli et al. in [21] tells us that the
first contribution from δV KK is zero. As a matter of fact, we can write:

δV KK
1−loop = δV KK

O(g2sα
′2) + δV KK

O(g4sα
′4) +O(g6sα

′6) (4.37)

and one finds that:

δV KK
O(g2sα

′2) = −|W0|2

V2

n

4
(n+ 2)δ(gs)K

KK
1−loop (4.38)

where n is the degree of the homogeneous function δ(gs)K
KK
1−loop. However, as we said,

n = −2, implying:
δV KK

O(g2sα
′2) = 0 (4.39)

The expression for the winding correction to the scalar potential is the same, but this time
the degree of the homogeneous function is n = −4. This does not lead to a cancellation,
so the first perturbative correction we get to V is a winding correction at 1-loop level:

δV W
1−loop = −2

|W0|2

V2
δ(gs)K

W
1−loop (4.40)

As we argued in (4.31) we know δ(gs)K
KK
1−loop ∼ O(g2sα

′4) so that this is true for the
corresponding correction to V as well:

δV W
1−loop = δV W

O(g2sα
′4) +O(g4sα

′8) (4.41)

Therefore, overall, the scalar potential has the following form with leading-order winding
corrections:

V = VTree + δV W
O(g2sα

′4) (4.42)

However, as we argued in the previous section, winding corrections may be less common
than KK corrections, and may be negligible by construction. In [23] it was argued that
corrections with the same functional scaling as winding corrections are present in general
scenarios based on QFT arguments. It must be said that the corrections found therein
are not of the same kind as those considered by the BHP conjecture. In fact, there are
moduli and closed string fields running in loops, suggesting that, from a string theory
perspective, such corrections arise from closed string loops, rather than open string loops
in the closed-string channel as considered in [20]. It must also be said that, from a
purely EFT perspective, one cannot see the difference between open- and closed-string
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modes, as they are all treated equally as fields. However, as we argued in Sec 2.4 around
equation (2.77), adding a closed string loop should carry a factor of g2s . Therefore,
at the moment it is unclear whether the effects described in [23] are dominant over
second-order open-string KK corrections. To be more precise and assess all the string
coupling constants, invisible from an EFT perspective, one should perform a world-sheet
calculation of closed-string loops on some simple toroidal manifolds, as [19] did for open-
string loops and try to generalize it to Calabi-Yau’s as well.
In the case we happened not to have winding corrections by construction, the most
relevant correction to the scalar potential would be the next term in the expansion of
the open-string 1-loop correction δV KK

1−loop:

V = VTree + δV KK
O(g4sα

′4) (4.43)

We can see that:

δV KK
O(g4sα

′4) ∼
|W0|2

V2

(CKK)2g4s
τ 2st

(4.44)

Looking at the general form (4.24) of the open-string 1-loop KK corrections to the
Kähler potential, we expect that at open-string 2-loop level, the correction should go as
[22] (as well as at closed-string 1-loop level as estimated in [23]):

δ(gs)K
KK
2−loop ∼

DKKg2s
τ 2E

=
DKKg4s
τ 2st

∼ O(g4sα
′4) (4.45)

Therefore, in the potential we expect the effects (4.43) and (4.45) to be competing. So,
one could say that:

δV KK
O(g4sα

′4) ∼
[
(CKK)2 +DKK

] |W0|2

V2

g4s
τ 2st

(4.46)

which in Einstein frame becomes:

δV KK
O(g4sα

′4) ∼ [(CKK)2 +DKK ]
|W0|2

V2

g2s
τ 2E

(4.47)

4.5 KKLT Moduli Stabilization

Now that we have talked about the effects that can be used to stabilize the Kähler mod-
uli, let us give an example of such a moduli stabilization models. One of the most
studied techniques for moduli stabilization is the Kachru-Kallosh-Linde-Trivedi (KKLT)
model, first introduced in [24]. The KKLT moduli stabilization scheme uses a tree-level
Kähler potential, and switches on non-perturbative effects in the superpotential as in
(4.19) for all the Kähler moduli. For simplicity, let us treat the case in which h1,1 = 1, so
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that we only have one modulus, T = τ+ib, to stabilize. In this case, the Kähler potential
and superpotential will be:

K = −3 ln
(
T + T̄

)
(4.48)

W = W0 + Ae−aT (4.49)

Inserting these in the general formula for the scalar potential (4.6), having previously
fixed the complex structure moduli and axio-dilaton, yields to [10]:

V =
|aA|2

6τ
e−2aτ +

a|A|2

2τ 2
e−2aτ +

aRe
(
AW ∗

0 e
−ib)

2τ 2
e−aτ (4.50)

Upon fixing the axionic part b to its minimum, we can minimize the potential. One can
prove that the minimum is supersymmetric, so it can be computed simply imposing the
F -flatness condition DTW = 0. This yields the result:

W0 = −Ae−aτ
(
1 +

2

3
aτ

)
(4.51)

Since aτ ≫ 1 to justify the use of a tree-level Kähler potential and only the first non-
perturbative correction, we must have that |W0| is exponentially small. There have
been explicit constructions of models in which |W0| is as low as 10−120 [25]. General
considerations of flux vacuum statistics based on the Bousso-Polchinski model [26], seem
to suggest that it is possible to tune the flux quanta so that |W0| is exponentially small.
With this requirement satisfied, we see that τ is stabilized by the implicit solution of
equation (4.51) and its qualitative behaviour is:

⟨τ⟩ ∼ −1

a
ln |W0| (4.52)

Once we have a VEV for τ we can also look for the mass spectrum of the theory. We
find that (reinstating an appropriate power of MP ):

mT ∼ m3/2 ln

(
MP

m3/2

)
(4.53)

where
m3/2 = e

K
2 |W0|MP (4.54)

is the gravitino mass.

4.6 LVS Moduli Stabilization

An alternative method to stabilize Kähler moduli is the so-called Large Volume Scenario
(LVS). As the name says, this stabilization method has the peculiarity that the volume
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of the Calabi-Yau gets stabilized at an exponentially large value. This introduces strong
hierarchies between scales that could be of interest for various reasons, like low-energy
SUSY breaking, and a better control over the EFT. Let us first of all show how an LVS
moduli stabilization works with a simple 2-moduli field example. Then we are going to
expand on that, computing the mass spectrum of the theory and finally generalizing the
model to a n-moduli case.

Introducing LVS: a Simple Example

Let us follow, as we study our first LVS model, the track of [27], one of the first papers
to develop the EFT for LVS compactifications. In LVS, one considers specific Calabi-
Yau’s that have two kinds of Kähler moduli: the so-called big moduli, TB = τB + ibB,
which regulate the (complexified) volumes of ’big’ 4-cycles determining the global shape
and size of the Calabi-Yau, and the so-called small moduli, Ts = τs + ibs which are the
(complexified) volumes of ’small’ or local 4-cycles. In particular, we will consider, as small
cycles, the so-called blow-up cycles, particular 4-cycles that resolve (blow up) geometrical
point-like singularities of the Calabi-Yau. The simplest possible model of a Calabi-Yau
suited for this kind of compactification is the complex manifold CP4

[1,1,1,6,9][18], also called
a Swiss Cheese Calabi-Yau because of its structure containing a big and a small cycle,
the latter resembling a hole in a Swiss cheese. In the specific case of CP4

[1,1,1,6,9][18], the
volume can be written as:

V =
1

9
√
2

(
τ

3
2
B − τ

3
2
s

)
(4.55)

Now, we consider the Kähler potential corrected with the leading-order α′ correction, as
we did in (4.21):

K = −2 ln

[
1

9
√
2

(
τ

3
2
B − τ

3
2
s

)
+

ξ

2g
3
2
s

]
(4.56)

where ξ is the same as (4.22). Differently from the KKLT case, we consider non-
perturbative corrections to the superpotential for the small modulus only:

W = W0 + As e
−asTs (4.57)

As we discussed in general, the non-perturbative corrections can arise as a result of either
instantons on Euclidean D3-branes, in which case as = 2π or from gaugino condensation
on N-stacks of D7-branes, then as = 2π/N . Notice that we can reabsorb the overall
factor 1

9
√
2
by a simple rescaling of the fields, accompanied by a proper redefinition of

the constants As and W0, so that we can simply write:

K = −2 ln

[(
τ

3
2
B − τ

3
2
s

)
+

ξ

2g
3
2
s

]
(4.58)

W = W0 + As e
−asTs (4.59)
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We postpone to Appendix A the precise calculations for the model, and we limit ourselves
to presenting the main results. Plugging the Kähler potential (4.58) and the superpo-
tential (4.59) in the general expression of the F-term scalar potential (4.6), and fixing
the axions at their minima, we get the following form of the scalar potential:

V =
8(asAs)

2√τs e−2asτs

3V
− 4asAsW0τse

−asτs

V2
+

3ξ̂|W0|2

4V3
(4.60)

where for convenience we set:

ξ̂ ≡ ξ

g
3/2
s

(4.61)

The α′ correction breaks SUSY at the minimum, so we expect a non-supersymmetric
vacuum. Therefore, to find it we have to minimize the potential (4.60) with respect to
τs and V , setting

∂V

∂τs
= 0 (4.62)

∂V

∂V
= 0 (4.63)

We can solve (4.62) for V , obtaining:

1

V
=

1

3

asAs
W0

√
τs

(
1− 4asτs
1− asτs

)
e−asτs (4.64)

From (4.64) we see that:
V ∼ easτs (4.65)

Therefore, the volume can be exponentially large depending on the value of asτs. On the
other hand, inserting (4.64) in (4.63), we get an equation for the VEV of τs:

τ
3
2
s =

3ξ̂

32


(

1−4asτs
1−asτs

)2
1−4asτs
1−asτs − 1

 (4.66)

Therefore, using the definition (4.61) we see that τs gets stabilized around:

τs ∼
ξ

2
3

gs
(4.67)

so that, at the minimum of the potential we have:

V ∼ e
1
gs (4.68)
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Thus, in a perturbative regime of string theory, when gs ≪ 1, we get that V ≫ 1.
Plugging the results we just got into the scalar potential, we find that its minimum is
negative:

⟨V ⟩ < 0 (4.69)

this means that this theory, as it is, predicts an Anti-de Sitter (AdS) vacuum. Since
we know that we live in a (slightly) de Sitter (dS) spacetime, with a positive (but very
small) cosmological constant, this is not phenomenologically viable. However, there exist
various ways to lift the vacuum from a non-SUSY AdS to a non-SUSY dS vacuum. To
do so, one has to add an uplifting term to the scalar potential, δVup. This term must be
sufficiently small not to spoil the moduli stabilization, but sufficiently large to effectively
make the minimum of the potential positive. Usually, one adds a term of the form:

δVup =
D

Vγ
with D > 0 (4.70)

where γ is an exponent that can vary in a range γ ∈ [1, 3], depending on the specific UV
effects considered to perform the uplift. In fact, there are multiple microscopic effects
that can produce such a term, like D3-brane uplifting, in which the uplifting term in the
4d effective action is given by an anti-D3-brane positioned at the end of a heavily warped
Klebanov-Strassler throat of the Calabi-Yau, as explained in [24], or T-brane uplifting
where the positive contribution to the vacuum energy comes from non-zero F-terms of
hidden sector matter fields [28]. We will not enter in too much detail here about the
uplifting mechanism of the potential, as it does not modify significantly the model and
we will neglect the uplifting term altogether for now.
Let us instead go back to the model. We see that, setting MP = 1, the gravitino mass is
given by:

m3/2 = e
K
2 W =

1

V
e−

ξ̂
V [W0 + Ase

−asTs ] ≃ W0

V
(4.71)

as e−
ξ̂
V ≃ 1 and Ase−asTs

V ≪ 1. It is important to stress that in LVS models W0 ∼ O(1),
or in any case it does not need to bee exponentially small as opposed to KKLT models.
Notice also that, to have m3/2 ∼ 1TeV we have to stabilize the volume at around V ∼
O(1015) which is not unreasonably large given (4.68).

Mass Spectrum for the Swiss Cheese Model

From the expression of the Kähler potential of the Swiss Cheese model (4.58), we see that
there is a mixing between τs and τB in the volume. To find the physical mass eigenstates,
we need to diagonalize the mass matrix once we have canonically normalized the fields.
To do that, first of all we compute the mass matrix from the potential:

Mij =
1

2

∂2V

∂τ i∂τ j
(4.72)
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In our case, upon expanding the vacuum expressions (4.64) and (4.67) in powers of
ε = 1

4asτs
(see Appendix A), we find, to second order in ε and at leading order in V :

Mij =

(
27|W0|2ξ̂
16V13/3 [1 + 2ε] −9as|W0|2ξ̂

8V11/3 [1− 5ε+ 4ε2]

−9as|W0|2ξ̂
8V11/3 [1− 5ε+ 4ε2] 3a2s|W0|2ξ̂

4V3 [1− 3ε+ 6ε2]

)
(4.73)

Before going on diagonalizing it, though, we need to canonically normalize the fields. To
do that one has to multiply Mij by the inverse Kähler metric (A.7):

M̃ij = (K−1M)ij =
as⟨τs⟩|W0|2ξ̂

2V3

(
−9 [1− 7ε] −6asV2/3 [1− 5ε+ 16ε2]

− 6V1/3

⟨τs⟩1/2
[1− 5ε+ 4ε2] 4asV

⟨τs⟩1/2
[1− 3ε+ 6ε2]

)
(4.74)

Notice first of all that different powers of the volume introduce in the mass matrix (4.74)
important hierarchies between terms. This tells us that in this simple model, we will have
a great mass hierarchy between the two mass eigenstates. If we expect such a hierarchy,
we can easily find the eigenvalues as:

m2
Φ ≃ tr[M̃ ] ≃

2|W0|2a2s ξ̂
√
⟨τs⟩

3V2
∼
(
W0 lnV

V

)2

(4.75)

m2
χ ≃

det
[
M̃
]

tr[M̃ ]
=

81|W0|2ξ̂
16as ⟨τs⟩ V3

∼ W 2
0

V3 lnV
(4.76)

Here we called Φ the heavy degree of freedom, and χ the light one. Notice that:

mΦ

mχ

∼
√
V lnV ∼ O(108) (4.77)

for V ∼ 1014. Φ is much heavier than the gravitino, while χ is much lighter, as we can
see from (4.71). If we go on and compute the mixing of τB and τs with Φ and χ we get
that, expanding τi = ⟨τi⟩+ δτi, with i = B, s, and finding the eigenvectors of M̃ :

δτB =
[√

6 ⟨τB⟩1/4 ⟨τs⟩3/4 (1− 2ε)
] Φ√

2
+

[√
4

3
⟨τB⟩

]
χ√
2
∼ O(V1/6)Φ +O(V2/3)χ

(4.78)

δτs =

[
2
√
6

3
⟨τB⟩3/4 ⟨τs⟩1/4

]
Φ√
2
+

[√
3

as
(1− 2ε)

]
χ√
2
∼ O(V1/2)Φ +O(1)χ (4.79)

We can see from (4.78) and (4.79) that the dominant component of τB is χ, while the
dominant component of τs is Φ. Therefore, we can say that the volume modulus, which
is mostly given by τ

3/2
B , is very light, while the small modulus τs is quite heavy. The
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large volume gives rise to important hierarchies in the mass spectrum. In fact one can
see that:

mV ∼ mχ ≪ m3/2 ≪ mΦ ∼ mτs (4.80)

This is an appealing feature for modular cosmology. In fact, τs is so heavy that it can
evade the cosmological moduli problem.
This problem is related to the reheating temperature when we have moduli-dominated
epoch following inflation. Since moduli emerge from the compactification of the 10d
graviton down to 4d, their interactions tend to be Planck-suppressed. This implies that
they are usually long-lived. Moreover, the reheating temperature depends on the mass
mτ of the modulus which last dominates the energy density of the early Universe [10]:

TRH ∼
√
mτ

MP

mτ ∼ 1GeV
( mτ

106GeV

)3/2
(4.81)

Therefore, if the mass of the modulus is too small, the reheating temperature drops
very low, and clashes with observations related to BBN [29, 30]. Then since Φ ∼ τs is
way heavier than m3/2 it is immune to the cosmological moduli problem. The problem,
however, persists with χ ∼ τB which results way lighter than the gravitino mass.

General LVS Setting

We want to enlarge our vision of LVS models, and consequently we can generalize what
we did in the two previous sections to ta more general case. Following the notation of [3]
we consider the case in which we have one big cycle τ1 and (n− 1) small cycles τ2, ..., τn
with the hierarchy:

τ1 ≫ τi ∀i = 2, ..., n (4.82)

We consider the case in which we can write the volume of the Calabi-Yau in a ’Swiss-
Cheese fashion’:

V = α

(
τ
3/2
1 −

n∑
i=2

λiτ
3/2
i

)
(4.83)

where α is an overall constant and the λi are intersection numbers that can be thought
as O(1) constants, see [31] for an explicit construction.
Since we are interested in LVS moduli stabilization, we consider the α′-corrected Kähler po-
tential:

K = −2 ln

[
V +

ξ̂

2

]
(4.84)

where ξ̂ is defined as in (4.61). We switch on the non-perturbative corrections to the
superpotential for all the small moduli:

W = W0 +
n∑
i=2

Ai e
−aiTi (4.85)
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Once we stabilized the axions to their minima, we retrieve a scalar potential which is very
close to (4.60), as all the mixed terms are suppressed by stronger exponential factors:

V =
n∑
i=2

[
8(aiAi)

2√τi
3αλiV

e−2aiτi − 4aiAiW0τi
V2

e−aiτi
]
+

3ξ̂W 2
0

4V3
(4.86)

Notice that the negative sign between the first two terms of the potential arises because
of the minimization of the axionic fields bi. As we did for the 2-moduli case, we now
turn to minimize this potential with respect to τi and V . First, the minimization with
respect to τi yields (see Appendix B for a three-moduli example):

aiAie
−aiτi = 3αλiW0

√
τi
V

(
1− aiτi
1− 4aiτi

)
(4.87)

Once again we find that:
V ∼ eaiτi or aiτi ∼ lnV (4.88)

which justifies the assumption that V ≫ 1. Fixing all the small moduli to their minima,
we can write down a scalar potential for the volume only:

V (V) = −3W 2
0

2V3

[
α

n∑
i=2

(
λi

a
3/2
i

)
(lnV)3/2 − ξ̂

2

]
(4.89)

As we discussed in the previous section, we shall add to this potential an uplifting term
as in (4.70), so that it has a Minkowski minimum 12. The final scalar potential for LVS,
therefore, will be:

VLV S = V + δVup =
n∑
i=2

[
8(aiAi)

2√τi
3αλiV

e−2aiτi − 4aiAiW0τi
V2

e−aiτi
]
+

3ξ̂W 2
0

4V3
+
D

Vγ
(4.90)

with 1 ≤ γ ≤ 3. The minimization of the potential (4.90) once again furnishes mass
scales of the model. We will have that:

mτi ≃
W0 lnVMP

V
(4.91)

mV ≃ W0MP

V3/2
√
lnV

(4.92)

and once again we have that mV ≪ mτi , so that V is the lightest of all the geometrical
moduli.

12The constant D can be also tuned so that the minimum is a de Sitter minimum with a very small
cosmological constant, as we observe today.
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5 Kähler Moduli Inflation with Loop Corrections

5.1 Original model

Looking at the scalar potential (4.90) one can easily see that the directions correspond-
ing to the small cycle moduli, albeit not flat, are almost flat. What we mean by that
is that the direction of τi, which was flat at tree level, has been lifted by exponentially
suppressed terms. The resulting potential for one of the small moduli, upon fixing all
the others to their minima, can be seen in Fig.5.1. This inspired [2] to propose a model

τ

V

Figure 5.1: Plot of the (non-uplifted) scalar potential for a generic small modulus τ ,
upon fixing all the others to their minima. For display purposes we set V ∼ 105, W0 ∼ 1
and a ∼ 2π. It can be clearly seen that the exhibits a large plateau upon displacing τ
from its minimum.

for slow-roll inflation based on this potential, which is called Kähler moduli inflation.
In this model the inflaton field is given by a canonically normalized blow-up modulus,
which, incidentally, inspires the alternative name of this model: Blow-Up inflation.
In this section we will study the original model for blow-up inflation, and subsequently an-
alyze, following [3], the predictions this model produces by studying its post-inflationary
dynamics. After that, we will add open string loop corrections to the potential and see
how the predictions of the model get modified.

Inflationary Potential and Parameters

As we said, the role of the inflaton (the scalar field driving inflation) is played by a
(canonically normalized) small 4-cycle, say τn. First of all, we want to write the potential
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for this field as it gets displaced from its minimum. Starting from the potential (4.86) for
all the moduli, we fix τ2, ..., τn−1 to their minima and simply consider the contribution
of τn, writing it as:

V (τn) = V0 −
4anAnW0τn

V2
e−anτn (5.1)

where:

V0 =
βW 2

0

V3
(5.2)

sets the scale for inflation. The β factor appearing in (5.2) is a constant depending on
the geometry of the Calabi-Yau and the uplifting mechanism that we will derive precisely
later on.
Notice that, upon writing the expression (5.1) of the potential, we dropped the first term
which appears in (4.86), since it is doubly exponentially suppressed with respect to the
second one. The resulting potential has exactly the shape displayed in Fig.5.1, featuring
an extended plateau as τn ≫ 1. Looking at the Kähler potential (4.84) with the volume
defined as in (4.83), we see that τn is not canonically normalized. In fact, one computes
that:

Knn̄ =
3λn

8V√τn
(5.3)

Therefore, to properly compute the inflationary parameters we have to canonically nor-
malize it. We define:

ϕ =

√
4λn
3V

τ 3/4n (5.4)

the canonically normalized inflaton field. We can rewrite (5.1) in therms of ϕ as:

V (ϕ) = V0 −
4anAnW0

V2

(
3V
4λn

)2/3

ϕ4/3 e
−
[
an( 3V

4λn
)
2/3

ϕ4/3
]

(5.5)

and we see the potential still has its characteristic exponential suppression. Now, recall
the definition of the slow-roll parameters ϵ and η in terms of the potential13:

ϵ =
1

2

(
V ′

V

)2

(5.6)

η =
V ′′

V
(5.7)

13Here we set MP = 1, we will often do this implicitly when computing inflationary parameters.
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where the prime indicates a derivative with respect to ϕ. After computing them, we
re-express them in terms of the geometrically meaningful field τn:

ϵ =
32(anAn)

2V3

3β2W 2
0 λn

√
τn(1− anτn)

2 e−2anτn (5.8)

η = − 4anAnV2

3λnβW0
√
τn
[1− 9anτn + 4(anτn)

2] e−anτn (5.9)

Notice that both ϵ and η are exponentially suppressed, moreover, for a sufficiently large
value of τn:

ϵ≪ η ≪ 1 (5.10)

We will later compute precisely what are the predictions of this model, but for now the
slow-roll condition seems to work. In addition to this, we can also look at what are the
expressions for the scalar spectral index ns and the number of e-foldings Ne in terms of
τn. First of all we have that:

ns − 1 = 2η − 6ϵ (5.11)

so, plugging in the expressions (5.8) and (5.9) we get:

ns − 1 = − 8anAnV2

3λnβW0
√
τn
e−anτn

[
1− 9anτn + 4(anτn)

2 − 24anAnV
βW0

τn(1− anτn)
2e−anτn

]
(5.12)

On the other hand, the number of e-foldings can be computed as:

Ne =

∫ ϕ∗

ϕE

V

V ′ dϕ (5.13)

where ϕE is the inflaton field evaluated ate the end of inflation, while ϕ∗ is the inflaton
field computed at the pivot scale, i.e., at the time when its wavelength exits the comoving
horizon. Using (5.4) we can express this as an integral over τn:

Ne =
3βW0λn
16V2anAn

∫ τ∗n

τEn

eanτn
√
τn(anτn − 1)

dτn (5.14)

where τEn corresponds to ϕE and τ ∗n to ϕ∗. In the large volume limit, anτ
∗
n > anτ

E
n ∼

lnV ≫ 1, so that this integral can be expressed in terms of the error function erf(x):

Ne =
3βW0λn

8V2a
3/2
n An

[
eanτn
√
anτn

+ i
√
π erf(i

√
anτn)

]τ∗n
τEn

(5.15)

We can now expand the error function asymptotically for anτn ≫ 1

i
√
π erf(

√
anτn) ≃ − eanτn

√
anτn

(
1 +

1

2anτn

)
(5.16)
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so that the expression (5.15) reduces to:

Ne =
3βW0λn
16V2anAn

[
eanτn

(anτn)3/2

]τ∗n
τEn

≃ 3βW0λn
16V2anAn

eanτ
∗
n

(anτ ∗n)
3/2

(5.17)

where we neglected the term in τEn due to the presence of the exponential. This expression
allows us to write ϵ and η in terms of Ne, simply substituting the exponential:

ϵ ≃
(

3λn

8a
3/2
n

V
)

1

N2
e

√
anτn

(5.18)

η = − 1

Ne

[
1 +O

(
1

anτn

)]
(5.19)

To see how well this model performs in terms of concrete predictions, we’ll have to study
the post-inflationary dynamics of the system.

Volume modulus displacement during inflation

Before discussing the evolution of the system when inflation ends, let us show that the
volume VEV gets shifted during inflation and compute this shift.
As shown in (4.80), the volume modulus is the lightest of all the Kähler moduli. There-
fore, during inflation, it experiences a vacuum misalignment, due to the fact that the
potential of the volume modulus depends on the inflaton. We are interested in the deter-
mination of this displacement, which will be of crucial importance for the calculation of
the number of e-foldings in the context of the post-inflationary evolution of the system.
First of all, we need to make sure the volume direction does not experience a runaway
due to inflation. To do that, we need to impose that:

R ≡ λna
−3/2
n∑n

i=2 λia
−3/2
i

≪ 1 (5.20)

Values of R ∼ 0.1 − 0.01 are easily achievable by an appropriate choice of the non-
perturbative effects used to stabilize the potential.
Now we turn to the potential in terms of the volume. We shall start by finding the value
of D, such that that the post-inflationary vacuum of the potential is Minkowski. To do
that, consider the volume potential (4.89) to which we add the uplifting term (4.70):

V = −3W 2
0

2V3

[
α

n∑
i=2

(
λi

a
3/2
i

)
(lnV)3/2 − ξ̂

2

]
+
D

Vγ
(5.21)

To simplify things, let us rewrite this in terms of:

ψ = lnV (5.22)

P = α

n∑
i=2

λia
−3/2
i =

α

R
λna

3/2
n (5.23)
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so that:

V = −3

2
W 2

0 e
−3ψ

(
Pψ3/2 − ξ̂

2

)
+De−γψ (5.24)

We will now set γ = 2. This choice is made for simplicity sake, and it can be seen that
the particular choice of γ does not influence significantly the final result. Let ψm be the
value of ψ at its post-inflationary minimum, then we impose the two conditions:

V (ψm) = 0 (5.25)

∂V

∂ψ
(ψm) = 0 (5.26)

where (5.26) is just the condition for ψm to be the value at which the minimum is realized,
while (5.25) imposes that such minimum is Minkowski. We can expand them as:

− 3

2
W 2

0

(
Pψ3/2

m − ξ̂

2

)
e−ψm +D = 0 (5.27)

3

2
W 2

0

(
3Pψm − 3

2
Pψ1/2

m − 3

2
ξ̂

)
e−ψm − 2D = 0 (5.28)

Combining these two equations we get:

ψ3/2
m − 3

2
ψ1/2
m − ξ̂

2P
(5.29)

which implicitly fixes the value of ψm. We can invert this in terms of ξ̂:

ξ̂

2
= P

(
ψ3/2
m − 3

2
ψ1/2
m

)
(5.30)

and substitute it in (5.27) to get the tuned value of D:

D =
9

4
W 2

0Pe
−ψmψ1/2

m (5.31)

Therefore, we can substitute (5.31) in (5.24) to get:

V (ψ) = −3

4
W 2

0 e
3ψ
[
2Pψ3/2 − ξ̂ − 3Pψ1/2

m e(ψ−ψm)
]

(5.32)

Let us now turn to determine the shift in the volume field during inflation. In order to
do that, we consider the inflationary potential, where we fix all the field except V and
τn fixed at their minima. We can therefore write this as:

Vinf = −3W 2
0

2V3

[
α
n−1∑
i=2

(
λi

a
3/2
i

)
(lnV)3/2 − ξ̂

2

]
+
D

V2
− 4anAnW0τn

V2
e−anτn (5.33)
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We can regard (5.33) as a potential for V , as τn slow-rolls. During most of inflation, we’ll
have that eanτn ≫ V , so that we neglect the last term. We now rewrite Vinf in terms of
ψ:

Vinf (ψ) ≃ −3

4
W 2

0 e
−3ψ

[
2P (1−R)ψ3/2 − ξ̂ − 3Pψ1/2

m e(ψ−ψm)
]

(5.34)

and let ψinf be the minimum of ψ during inflation, i.e. the value of ψ that minimizes
(5.34). We can determine its value imposing the minimization condition:

∂Vinf
∂ψ

(ψinf ) = 0 (5.35)

This produces the following equation:

(1−R)ψ
3/2
inf −

1

2
(1−R)ψ

1/2
inf − ψ1/2

m e(ψinf−ψm) − ξ̂

2P
= 0 (5.36)

which determines ψinf implicitly. What we are really interested in, though, is the shift
of the volume minimum during inflation:

∆ψ = ψinf − ψm (5.37)

To compute this it is useful to write the inflationary potential as:

Vinf (ψ) = V (ψ) + ∆V (ψ) (5.38)

where:

∆V (ψ) =
3

2
W 2

0 e
−3ψPRψ3/2 (5.39)

and V (ψ) is as in (5.32). Then, simply from a Taylor expansion, we can get the value
for ∆ψ as:

∆ψ = −∆V ′(ψm)

V ′′(ψm)
= 4R

ψm + ξ̂
2P
ψ

1/2
m

2ψm − 1
≃ 2Rψm (5.40)

where in the last equality we used (5.30) and the large volume approximation. Now,
the interesting range of volumes for this inflationary model is V ∼ 105 − 106, and we
previously imposed that R ∼ 0.1− 0.01. This means that for us ∆ψ ∼ 0.1MP . Now, we
are interested in the displacement of the canonically normalized volume field, which can
be seen to be:

χ

MP

=

√
2

3
lnV =

√
2

3
ψ (5.41)

so that we can express the volume displacement during inflation in Planck units as:

Y ≡ ∆χ

MP

=

√
2

3
∆ψ = 2

√
2

3
Rψm ∼ 0.1 (5.42)
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We can compute the shift in the minimum of the other small Kähler moduli in a similar
way. Since we know aiτi ∼ lnV , we expect:

ai∆τi ∼ ∆ψ = 2Rψm for i = 2, ..., n− 1 (5.43)

However, their canonically normalized fields are:

σi
MP

=

√
4λi
3V

τ
3/4
i (5.44)

which means that we expect a displacement of the order:

∆σi ∼
MP√
V

∼Ms ≪ ∆χ (5.45)

thus, their displacement is negligible. As a final remark, we can compute the value of β
in the definition (5.2). To do that, we notice that:

V0 = Vinf (ψm) ≃
1

2
V ′′(ψm)∆ψ

2 +∆V (ψm) ≃
3

2
W 2

0PRe
−3ψmψ3/2

m (5.46)

so that:

β =
3

2
PRψ3/2

m =
3

2
PR(lnV)3/2 (5.47)

For our range of volumes, and typical choices of the constants β ∼ O(1).

Estimate of the number of e-foldings

Let us illustrate how we can estimate the number of e-foldings Ne of inflation within
this model. To do that, we have to make some assumptions about the structure of our
Calabi-Yau. We will follow [3], in which it was assumed that the 4-cycle whose volume
is regulated by τn is wrapped by a stack of D7 branes, on which the Standard Model
gauge fields live. If this is the case, the inflaton τn has a preferred decay channel to these
fields. It can be shown, see [32], that the decay rate of the inflaton is about:

Γτn ∼ 0.1
m3
τn

M2
s

∼ W 3
0

10

(lnV)3

V2
MP (5.48)

where we have re-inserted the Planck mass, used (4.91) and the fact thatMs ∼MP/
√
V .

Let us analyze what happens at the end of inflation. As inflation ends, the inflaton
field and the lightest of the geometric moduli, i.e. the volume modulus, find themselves
displaced from their minimum. Therefore, they start oscillating coherently around their
post-inflationary VEV. The energy density associated with these oscillations redshifts as
matter, which means that there will be a first period of matter domination immediately
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following the end of inflation, in which the energy density of the Universe is dominated
by the oscillations of the inflaton. When the inflaton decays, it transfers its energy to
gauge fields, which redshift as radiation. Therefore, a period of radiation domination
starts, caused by the decay products of the inflaton field. If at this point the volume
has not decayed yet (in our present case we will assume a Planck-suppressed coupling of
the volume), there will be a time of matter-radiation equality, as the energy density of
the volume oscillations becomes dominant over that of radiation. Then, a second epoch
of matter domination starts, this time given by the coherent oscillations of the volume.
This lasts until the volume decays and we have a new era of radiation domination.
To find the overall number of e-foldings of inflation, we will use the following formula,
first derived in [33]:

Ne +
1

4
(1− 3ωRH)NRH +

1

4
Nmod ≃ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρE

)
(5.49)

where NRH is the number of e-foldings between the end of inflation and the decay of the
inflaton, ωRH is the effective equation of state parameter during the reheating period,
Nmod is the number of e-foldings of domination of a modulus displaced from its minimum,
r = 16ϵ∗ is the tensor-to-scalar ratio, ρ∗ is the energy density at the scale of horizon exit,
and ρE is the energy density at the end of inflation. We will make some assumptions to
simplify the formula.
First of all, our model is a slow-roll model for inflation, therefore ρ∗ ≃ ρE due to the
plateau; therefore we can neglect the last term of (5.49). We also work in the hypothesis
of sudden thermalization of the decay products. Moreover, we will have two epochs of
moduli domination, respectively the inflaton ϕ and the volume V . The final formula
we will use to determine the number of e-foldings between horizon exit and the end of
inflation, Ne, is:

Ne ≃ 57 +
1

4
ln r − 1

4
Nϕ −

1

4
NV (5.50)

where Nϕ is the number of e-foldings of inflaton domination at the end of inflation and
NV is the number of e-foldings of volume domination. All we have to do, then, is find a
way to express Nϕ and NV in terms of the parameters of our model.
First of all, we know that the energy density stored in the inflaton field at the time of
the end of inflation, tE, is approximately equal to the inflation scale, so:

ρϕ(tE) ≃ V0 =
M4

PW
2
0 β

V3
(5.51)

Also, we can estimate the energy density of the volume field as:

ρV(tE) ≃
1

2
m2

Vψ
2
inf ≃

M4
PW

2
0 Y

2

V3 lnV
(5.52)
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We can easily see that the energy density of the inflaton dominates, in fact:

ρV(tE)

ρϕ(tE)
≃ Y 2

β lnV
≡ θ2 ≪ 1 (5.53)

where we used (5.42). Thus, immediately after the end of inflation, a period of matter
domination starts in which the energy density is dominated by the oscillations of the
inflaton field. We want to find out how long it lasts in terms of e-foldings. To do that,
we first of all find the value of the Hubble ratio at the end of inflation using (5.51):

H(tE) ≃
MPW0

√
β

V3/2
(5.54)

Notice that H(tE) ∼ mV (4.92), which means that the volume modulus starts oscillating
immediately after the end of inflation. the energy density associated with these oscilla-
tions also redshifts as matter, which implies that the ratio (5.53) is constant until the
inflaton decays.
The decay happens at a time tϕ such that:

H(tϕ) ∼ Γτn (5.55)

Therefore, we can compute the number of e-foldings of inflaton domination as:

Nϕ = ln

(
a(tϕ)

a(tE)

)
(5.56)

Since during matter domination:
ρ(t) ∼ a−3(t) (5.57)

then we can rewrite Nϕ as:

Nϕ =
1

3
ln

(
ρϕ(tE)

ρϕ(tϕ)

)
(5.58)

We can now express ρϕ(tE) in terms of H(tE) and ρϕ(tϕ) in terms of H(tϕ) and, using
(5.55) we get:

Nϕ ≃
2

3
ln

(
H(tE)

Γτn

)
≃ 2

3
ln

(
10
√
βV

W 2
0 (lnV)3

)
(5.59)

At this point, the inflaton has decayed, an era of radiation domination starts. Since the
volume oscillations continue to redshift as matter, there will be a time teq of matter-
radiation equality. After that, the volume modulus oscillations will come to dominate
the energy density of the Universe until it eventually decays. Therefore we can express
the duration of the period of volume domination as:

NV ≃ 2

3
ln

(
H(teq)

ΓV

)
(5.60)
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To estimate this, we need the decay rate of the volume modulus. In this particular case
we’ll use:

ΓV ≃ m3
V

16πM2
P

≃ W 3
0

16πV9/2(lnV)3/2
MP (5.61)

as originally found in [34, 35]. On the other hand, we need to find the the Hubble ratio
at teq. To do that, notice first of all that:

H(tϕ) ≃ H(tE)e
− 3

2
Nϕ ≃ H(tE)

W 2
0 (lnV)3

10
√
βV

(5.62)

Then we can determine the time of matter-radiation equality imposing:

ρV(teq) = ρrad(teq) (5.63)

We can rewrite this as:

ρV(tϕ)

(
a(tϕ)

a(teq)

)3

= ρrad(tϕ)

(
a(tϕ)

a(teq)

)4

(5.64)

Since, as we said, the ratio between ρV and ρϕ is constant until ϕ decays, ρV(tϕ)/ρrad(tϕ) =
θ2. Thus, we get that a(tϕ)/a(teq) = θ2, yielding ρ(teq) ≃ ρrad(tϕ)θ

8. This implies that:

H(teq) ≃ H(tϕ)θ
4 = H(tE)

W 2
0 (lnV)3θ4

10
√
βV

(5.65)

Therefore inserting (5.65) and (5.61) in (5.60) we can determine:

NV ≃ 2

3
ln

(
16πV5/2(lnV)5/2Y 4

10β2

)
(5.66)

where we used (5.53) to express θ in terms of Y .
As a final remark, we can compute the final reheating temperature TRH . To do that, we
want to compute H(tV), i.e. the Hubble ratio at the time of the decay of the volume
modulus. Clearly:

H(tV) ≃ ΓV ≃ MPW
3
0

16πV9/2(lnV)3/2
(5.67)

This can be used to derive the reheating temperature using the relation:

3M2
PH

2(tV) ≃
π2

30
g∗T

4
RH (5.68)

where g∗ is the effective number of degrees of freedom which thermalize. For a volume
in the range of V ∼ 105−106 and g∗ ∼ 100 this gives TRH ≳ 103GeV, which shows there
is no tension with the success of Big Bang Nucleosynthesis, and the cosmological moduli
problem is evaded.
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Determination of the inflationary parameters

Now that we have our expressions for NV and Nϕ we can use some general values of
the parameters to retrieve a prediction for the spectral index ns. First of all, we have
to impose that the scalar perturbations at the scale of horizon exit match the observed
amplitude of the primordial density fluctuations. Using the notation of [36], the power
spectrum of scalar perturbations can be written as:

∆2
s(k) = As

(
k

k∗

)ns−1

(5.69)

where As is the amplitude of scalar perturbations, and k∗ is the mode at horizon exit.
The value of As has been determined by [37] to be:

As = (2.105± 0.030)× 10−9 (5.70)

It is possible to see that the power spectrum can also be expressed in terms of the
potential V as:

∆2
s(k) =

1

24π2

V

ϵ

∣∣∣∣
ϕ=ϕ(k)

(5.71)

Evaluating this expression at the scale of horizon exit ϕ∗ = ϕ(k∗), substituting ϵ with ist
definition (5.6) and comparing it to (5.69), one retrieves the relation:

V 3

V ′2

∣∣∣∣
ϕ=ϕ∗

= 12π2As ≡ Âs ≃ 2.5× 10−7 (5.72)

which is the COBE normalization condition our model has to match. In our case, we
can write this expressing it in terms of τn:(

gse
KCS

8π

)
3λnβ

3W 2
0

64
√
τn(1− anτn)2

(
W0

anAn

)2
e2anτn

V6
= 2.5× 10−7 (5.73)

Notice that we included an extra factor in front of the potential containing gs and
eKCS , see Appendix A of [38] for a precise derivation. The idea is that it encapsulates
the contribution of the stabilized complex structure moduli and dilaton to the scalar
potential in Einstein frame.
Now we can substitute (5.17) in (5.73), and working in the limit anτn ≫ 1 we obtain:

τn ≃ 7.3× 10−14

(
6πλn

gsβeKCS

)2 V4

W 4
0 a

4
n

1

N4
e

(5.74)

We can then substitute in (5.74) in the expression (5.18) and get the nice result that ϵ
does not depend on Ne:

ϵ ≃ 3.7× 106
(
gsβe

KCS

16π

)
W 2

0

V3
(5.75)
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This implies that the tensor-to-scalar ratio r = 16ϵ in this model is independent of the
post-inflationary history of the Universe at leading order. However, we have to be careful
about the choice of the parameter since these must be such that the approximation
anτn ≫ 1 holds. Therefore, combining this and (5.74) we get an upper bound for r
depending on Ne

r ≪ 3.1× 10−3

√
6π

gsβeKCS

λ
3/2
n

W0a3nN
3
e

(5.76)

so taking an = 2π, gs ∼ 0.1 and eKCS = 1,W0, β, λn ∼ O(1), we get:

r ≪ 10−4N−3
e (5.77)

which yields r ≪ 5 × 10−10 for Ne = 60 and r ≪ 10−9 for Ne = 40. Therefore it is safe
to assume a value of r ∼ 10−10, which makes it is undetectable for this model. Now, if
we turn to the spectral index ns, we can write it in terms of Ne as:

ns = 1 + 2η − 6ϵ ≃ 1− 2

Ne

(5.78)

since, as we have previously seen η ≫ ϵ. Then, to get a nice prediction for the spectral
index, we just need an estimate of the number of e-foldings of the model. To have that,
we’ll have to perform a choice for the various parameters. The preferred range for the
volume in Kähler inflation turns out to be around V ∼ 105 − 106, moreover generic
choices of the parameters in (5.59) (W0, β ∼ O(1)) yield Nϕ ≃ 1. The same choice of
parameters, with also Y ∼ 0.1, plugged in (5.66) returns NV ≃ 25. Thus:

Ne ≃ 57 +
1

4
ln r − 1

4
Nϕ −

1

4
NV ≃ 57− 2.5 ln(10)− 0.25− 6 ≃ 45 (5.79)

Plugging this result in (5.78) yields:

ns ≃ 0.955 (5.80)

This value for ns is about 2σ−3σ lower than the experimental value by Planck 2018 [37]

ns = 0.9665± 0.0038 (68%CL) (5.81)

In the next section, we are going to include in this model loop corrections of the kind
we introduced in Sec.4.3-4.4 in the Kähler potential, and study how these corrections
modify these predictions.

5.2 Inclusion of Loop Corrections

We hereby consider a simpler Swiss-cheese structure for our model, which includes only
two small cycles which we call τs and τϕ respectively, so that the volume of the Calabi-Yau
can be written as:

V = α
(
τ
3/2
B − λsτ

3/2
s − λϕτ

3/2
ϕ

)
(5.82)
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where we simply set n = 3 in (4.83). As usual in the LVS setting, for stabilization
purposes, we include the first α′-correction to the Kähler potential, as in (4.84) and turn
on non-perturbative effects for the small-cycle moduli in the superpotential:

W = W0 + As e
−asTs + Aϕ e

−aϕTϕ (5.83)

At this stage, we have a scalar potential which is similar to the one in (4.86) but with
only two small moduli. We can write the inflationary potential using τϕ as the inflaton,
and it turns out to be:

V (τϕ) = V0 −
4aϕAϕW0τϕ

V2
e−aϕτϕ (5.84)

exactly as we had above, where V0 is still given by (5.2).
We now aim to include loop corrections to the scalar potential for our specific model.
As argued in Sec 4.4, loop corrections to the scalar potential for a single modulus take
the form (4.40) if we consider winding corrections, or (4.47) if we consider Kaluza-Klein
corrections. In [21], a general formula for leading-order KK corrections was derived in
terms of the derivatives of the tree-level Kähler potential KTree:

δ(gs)V
KK ≃ W 2

0

V2

h1,1∑
i=1

(gsC
KK
i )2

∂2KTree

∂T 2
i

(5.85)

Then, in our specific case, considering the volume expressed as in (5.82), we can get the
KK correction for one specific small modulus τi (i = s or ϕ) as:

δ(gs)V
KK
τi

≃ W 2
0

V2
(gsC

KK
i )2

(
3αλi
2V√τi

+
9α2λ2i τi
2V2

)
(5.86)

Since we expect a volume V ≫ τ
3/2
i , the relevant 1-loop KK correction will be given by:

δgsV
KK
τi

≃ W 2
0

V2
(gsC

KK
i )2

3αλi
2V√τi

(5.87)

As argued in Sec.4.4, this correction is expected to be at the same order as a hypothetical
2-loop KK correction. Therefore, the full KK correction to the potential may be written
as:

δ(gs)V
KK
τi

∼ W 2
0

V3
g2s
[
(CKK

i )2 +DKK
i

] 1
√
τi

(5.88)

On the other hand, if we consider winding corrections, we have the formula (4.40) which
relates the correction of the scalar potential to the winding correction of the Kähler po-
tential which is conjectured by BHP to be of the form (4.25). Therefore, we can write
that, for a small-cycle τi in our model, this correction amounts to:

δ(gs)V
W
τi

∼ −2
W 2

0

V3

CW
i√
τi

(5.89)
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Comparing(5.88) and (5.89) we see that they are very similar to each other. We can
therefore write a unique form of the open-string loop corrections we expect as:

δ(gs)V ≃ −W
2
0

V3

cloop√
τi

(5.90)

where we set:

cloop ∼

{
CW
i for W corrections

−g2s
[
(CKK

i )2 +DKK
i

]
for KK corrections

(5.91)

Notice that we factored an overall minus sign in the correction, which gets compensated
in the KK case by an additional minus sign in the definition of cloop, we will come back
to the importance of this sign later. For now, it is worth noting that while we have two
different effects, we only included one correction in the final expression of the potential.
The reason is the following: if winding corrections are present, these are dominant over
the Kaluza-Klein corrections, since the latter are g2s -suppressed. On the other hand,
winding corrections may be eliminated by construction, so if we do not allow for them
to be present, the only relevant ones are KK corrections.
Adding these corrections computed for τϕ to the inflationary potential yields:

V ≃ V0 −
4aϕAϕW0τϕ

V2
e−aϕτϕ − W 2

0 cloop
V3√τϕ

(5.92)

Notice that the first term is exponentially suppressed, while the last term only has a sup-
pression of τ

−1/2
ϕ . Moreover, during inflation, we displace the field τϕ from its minimum,

located at aϕτϕ ∼ lnV , which means that during inflation e−aϕτϕ ≪ 1
V , accounting for

the extra 1/V factor in the second term. Therefore, the first term does not contribute
significantly to the inflationary potential, and we can write directly that:

V ≃ V0 −
W 2

0 cloop
V3√τϕ

(5.93)

and recalling (5.2), we can express this as:

V ≃ V0

(
1− cloop

β

1
√
τϕ

)
(5.94)

As we can see from Fig 5.2, the potential still exhibits a plateau, but it is less flat than
its uncorrected counterpart in Kähler moduli inflation.

Now we shall rewrite this in terms of the canonically normalized inflaton field, ϕ.
Exactly like in the uncorrected case, we have:

ϕ =

√
4λϕ
3V

τ
3/4
ϕ (5.95)
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τϕ

V

Figure 5.2: Plot of the corrected potential (5.94). For display purposes, the following
values for the parameters were used: V = 104, cloop = 0.01, W0 = 10, β = 1.

So that we can rewrite (5.94) as:

V = V0

(
1− cloop

b

ϕ2/3

)
(5.96)

where we collected all the constants in:

b =
1

β

(
4λϕ
3V

)1/3

(5.97)

Inflationary parameters and constraints

The potential (5.96) is different from the uncorrected potential (5.5) in that it does
not have an exponentially flat direction, but rather an inverse-power suppression. The
question, then, is whether this may still be a good potential to support slow-roll inflation.
To understand this, we have to compute the slow-roll parameters and see under which
conditions on cloop and b they satisfy the inflationary requirements.
Before doing that, let us impose some bounds on the range of values τϕ can take not to
spoil the consistency of the theory. First of all, τϕ must be a small modulus, meaning that
it should not exceed the value of τB, otherwise the theory completely loses its geometrical
sense. This means that:

τϕ ≪ τB ∼ V2/3 (5.98)
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Inverting the relation (5.95) for τϕ and plugging the result in (5.98), we get a condition
on ϕ:

ϕ≪
√

4λϕ
3

(5.99)

For generic choices of λϕ ∼ O(1) we get:

ϕ≪ 1 (5.100)

In particular, this also means that the inflaton at the scale of horizon exit should never
exceed 1 in Planck units:

ϕ∗ ≪ 1 (5.101)

Therefore, we should rely on choices of the parameters b and cloop such that these con-
ditions are satisfied. Now, if we compute the inflationary parameters in terms of ϕ we
get:

ϵ =
1

2

(
V ′

V

)2

≃ 2

9
b2c2loopϕ

−10/3 (5.102)

η =
V ′′

V
≃ −10

9
bcloopϕ

−8/3 (5.103)

ns − 1 = 2η − 6ϵ ≃ −20

9
bcloopϕ

−8/3 − 4

3
b2c2loopϕ

−10/3 (5.104)

Moreover, we can also write down the number of e-foldings as a function of ϕ∗ as:

Ne(ϕ∗) =

∫ ϕ∗

ϕE

V

V ′ dϕ ≃ 9

16

ϕ
8/3
∗

bcloop
(5.105)

where we only kept the upper limit of the integral since we suppose ϕ∗ ≫ ϕE.
From these definitions, we immediately see one first requirement we must impose on
cloop. We know η must be negative, otherwise we would get a spectral index larger than
one, we have to impose that bcloop > 0, but since b is defined as (5.97), and λϕ is an
intersection number which is positive, then b > 0 and therefore also cloop must be positive.
Now, looking at (5.91) we notice that, in the case of winding corrections, this simply
amounts to requiring that CW

ϕ is positive. On the other hand, if we consider Kaluza-Klein
corrections, then this imposes non-trivial conditions on the 2-loop constant:

−
[(
CKK
ϕ

)2
+DKK

ϕ

]
> 0 =⇒ DKK

ϕ < 0 and |DKK
ϕ | > (CKK

ϕ )2 (5.106)

Notice that in the parameter ϵ we have a factor of ϕ−10/3. Because of the bound
(5.100), we see that this quantity may be quite large. Therefore, since during inflation
we have that ϵ≪ 1, it must be the factor (cloopb)

2 that make the slow-roll parameter small

65



enough for inflation. Let us then consider the values of cloop and V for which inflation
is feasible. First of all, consider relation (5.105). This gives us a relation between ϕ∗,V
and cloop. Considering for simplicity a number of e-foldings around 50 (which is midway
between the Kähler moduli inflation prediction and the standard cosmological range
centered in 55), we get:

(Vϕ8
∗)

1/3

cloop
∼ 100 (5.107)

Now let us consider again the COBE normalization condition (5.72), but this time for
our corrected potential (5.96):

9V0
4c2loop

ϕ
10/3
∗

b2
= 2.5× 10−7 (5.108)

Including in V0 the prefactor containing the contribution from the complex structure
moduli as we did in (5.73), we get, as an order of magnitude (neglecting O(1) constants):(

gse
KCS

8π

)
W 2

0

V7/3

ϕ
10/3
∗

c2loop
∼ 10−7 (5.109)

The prefactor in parenthesis in (5.109) is of order 10−2 if we take gs ∼ 0.1. Multiplying
and dividing by V1/3 the left-hand side, we get:

W 2
0 (Vϕ8

∗)
1/3ϕ

2/3
∗

V8/3c2loop
∼ 10−5 (5.110)

substituting (5.107) in (5.110) we get:

W 2
0 ϕ

2/3
∗

V8/3cloop
∼ 10−7 (5.111)

Now, we already know that ϕ∗ ≪ 1 for consistency, therefore, to get the maximal value
for V we can see what happens if we set ϕ∗ ∼ O(0.1). Then we would have:

W 2
0

V8/3cloop
∼ 10−6 (5.112)

Then the allowed range for the volume depends heavily on cloop and W0. We will talk
about constraints on W0 in a moment, but for now let us assume that W0 can get as
high as O(10). In this case, we have that:

1

V8/3cloop
∼ 10−8 (5.113)
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What are natural choices for the order of magnitude of the parameter cloop? If we
considered winding corrections, the only way to make cloop small is to suppose some
hidden suppressing factor inside CW

ϕ , like some inverse power of 2π. Instead, considering
Kaluza-Klein corrections, the constant cloop contains an explicit factor of g2s as it is visible
from (5.91). In that case, for CKKϕ ∼ DKK

ϕ ∼ O(1) we would have a naturally small loop
constant of order cloop ∼ O(10−2). if we plug this value of cloop in (5.113) we get a
maximal value for the volume:

V ∼ 104 (5.114)

Notice how this is pretty small with respect to the range of volumes we expected in the
standard version of Kähler moduli inflation. Relaxing some of the previous assumptions
(W0 ∼ O(1 − 10), cloop ∼ O(0.1 − 0.01)) we get a suitable range for the inflationary
volume:

V ∼ 103 − 104 (5.115)

Notice that in this calculation we have assumed ϕ∗ ∼ O(0.1). As we will see, this is
precisely the order of magnitude of the value for ϕ∗ we will find taking into account the
number of e-foldings Ne from the post-inflationary dynamics. For the moment, we can
see that plugging in (5.105) cloop ∼ 0.01, V ∼ 104, Ne ≃ 50 and solving for ϕ∗ we get
ϕ∗ ≃ 0.3. This allows us to have an estimate for the tensor-to-scalar ratio r as well.
For a range of e-foldings between Ne ∼ 40 − 60 we always get ϕ∗ ∼ 0.29 − 0.34, which
ultimately gives:

r = 16ϵ∗ ∼ (3− 5)× 10−5 (5.116)

notice that this is much higher than the tensor-to-scalar ratio in the uncorrected Kähler mod-
uli inflation, which was around r ∼ 10−10.

Tadpole constraint on W0

Looking at the relation (5.112) we immediately see that, the higher the value for W0 is,
the higher the volume V . This may suggest that we could retrieve the same range of
values for V as in the uncorrected case if we consider a model with a large W0. However,
this is not the case. In fact we will now prove a constraint onW0 emerging from D3-brane
charge tadpole cancellation, which was introduced in [39]. This constraint is given as
a lower bound on the D3-charge Q3 from O3/O7-planes and D7-branes in the model in
order to cancel the contribution of D3-branes (for example used for uplifting [40]). In
our normalization of the potential we can write this bound as:

−Q3 ≥ 4π
gsW

2
0

2
(5.117)

We can read this as a bound on the maximal value of W 2
0 which appears in (5.112):

W 2
0 ≤ − Q3

2πgs
(5.118)
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As a side note, an anti-D3 brane used for uplifting has a negative D3-charge, which
means that Q3 < 0, therefore (5.118) is only concerned with the absolute value of the
D3 charge coming from non-D3 sources. The maximal value for |Q3| reported in [39]
is around −Q3 ∼ 250. For a more generic case, we can simply set −Q3 ∼ 100. This
translates into a bound on W0:

W 2
0 ≲ O(100) (5.119)

thus motivating that (5.114) is really the maximal volume we can achieve in this model.
As a side note, in [40] the tadpole constraint is used to get a consistency condition on the
warping factors in the Klebanov-Strassler throat (without considering backreactions) for
anti-D3 brane uplifting. This may be used to constrain the volume of our model from
below and used as a consistency check. If the value of the volume we get happened to
be too low, this would just be an indication that the uplifting could not be achieved by
anti-D3 brane in warped throats, but with other mechanisms, like D-term effects [41] or
dilaton-dependent non-perturbative effects [42, 43].

5.3 Post-Inflationary Dynamics in Loop-Corrected Inflation

We now turn to get precise predictions from our loop-corrected model for Kähler moduli
inflation. We will analyze two scenarios. Scenario I is quite similar to what we previously
displayed in the uncorrected case of Kähler moduli inflation. The inflaton 4-cycle whose
volume is controlled by τϕ is wrapped by a stack of hidden sector D7-branes (so that Tϕ-
dependent non-perturbative effects can be generated), while the Standard Model (SM)
is realized on another stack of D7-branes wrapped around an additional blow-up mode,
which we shall call τSM , that is expected to be stabilised by loop corrections. Scenario
II, instead, represents the case in which the inflaton 4-cycle is not wrapped by any D7-
brane, and again τSM is an additional blow-up modulus which is stabilised by loops and
supports the SM D7-stack. In this case, the preferred decay channel of the inflaton field
is much more suppressed with respect to Scenario I, as we will see shortly.

Let us explain more in detail why the 4-cycle carrying the SM cannot be stabilized
via non-perturbative effects. Hereby we give a brief idea of why, and refer the interested
reader to [44]. Suppose the SM lives on a stack of D7-branes wrapping the 4-cycle
τSM , which we complexify as TSM = τSM + ibSM . Now, if the effects stabilizing the
Kähler modulus TSM were non-perturbative, we would have a term in the superpotential
going as:

WSM ∼ e−aSMTSM (5.120)

However, TSM becomes charged under the U(1)Y of the SM, which implies that the
expression (5.120) is not gauge-invariant. The way to make it gauge invariant is to write
it as:

WSM ∼ OY e
−aSMTSM (5.121)
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where OY is an operator which is charged under U(1)Y in such a way that the product
with e−aSMTSM is overall gauge invariant. This means that OY must be a product (or
a combination of products) of the SM fields which are charged under U(1)Y . However,
since the U(1)Y symmetry is not broken at the string scale, we must have that the VEV
of the SM fields must be zero. Thus, ⟨OY ⟩ = 0 and therefore WSM = 0. Therefore,
there must be some perturbative effect stabilizing the SM-carrier 4-cycle. We will follow
[45] and suppose the SM cycle (which we simply call τs here) is stabilized through loop
effects, so that:

Vloop(τs) =
W 2

0

V3

(
µ1√
τs

− µ2√
τs − µ3

)
(5.122)

where µ1 and µ2 only depend on the complex structure moduli and can be thought as
constants in this case, while µ3 may also depend on some other small cycle, but we
suppose it fixed at the scale where these corrections are relevant. We delay the details
of the calculations of the stabilization and mixing of the fields to Appendix C.

Loop-enhanced Higgs coupling

Before considering both these scenarios, we will retrieve a loop-modified coupling of the
volume modulus to the Higgs scalar which will vastly enhance its decay rate. To do that,
we will follow the track of [45], where this coupling was originally discovered.
Consider the Higgs mass matrix at the Kaluza-Klein scale MKK on the D-brane hosting
the SM. The KK scale is such that for energies below MKK we have a 4d SUSY EFT
which can be used to run the elements of the Higgs mass matrix down to the SUSY-
breaking scale m3/2. We know that the scale at which SUSY is broken is set by the
F-terms of the Kähler moduli Ti, in particular one has that:

m3/2

MP

∼ FT
T

(5.123)

Moreover, when the MSSM is realized with D7-branes, the gaugino mass m1/2 is propor-
tional to the gravitino mass:

m1/2 ∼ m3/2 (5.124)

These considerations suggest that at least some of the entries of the Higgs mass matrix
must be of orderm2

3/2. At loop-level, the scale of the Higgs mass matrix can be suppressed
by a loop factor c̃, but at the same time it gets enhanced by the logarithm resulting from
the running of the coupling. For example, we may have the gaugino mass contribution
to the Higgs matrix as:

m2
g ∼ c̃ m2

1/2 ln

(
MKK

m3/2

)
(5.125)

Below m3/2, SUSY is broken, and the Higgs mass matrix loses one linear combination of
the two Higgs doublets of the MSSM. The remaining combination has its mass fixed by
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the determinant of the Higgs mass matrix which is then fine-tuned to a small value. We
can express the main contributions to the Higgs mass as:

m2
H ∼ m2

3/2

[
c0 + c̃ ln

(
MKK

m3/2

)]
(5.126)

We know that in this model the SM wraps a small cycle, whose volume is about O(1−10)
in string units. Therefore, the KK scale is close to the string scale:

MKK ∼Ms ∼
MP√
V

(5.127)

On the other hand, the SUSY-breaking scale is lower :

m3/2

MP

∼ W0

V
(5.128)

Substituting these two relations in (5.126) we get:

m2
H ∼

(
W0

V

)2
[
c0 + c̃ ln

(√
V

W0

)]
M2

P (5.129)

We now canonically normalize the volume modulus as in (5.41) and expand χ around its
VEV:

χ = ⟨χ⟩+ χ̂ (5.130)

Since the gravitino mass, at least in the model at hand, is way higher than the observed
value of the Higgs mass, we know there must be a severe fine-tuning, which translates
into the constant c0 being very small. This is not a bad thing in the present case. In fact,
the fine tuning is such that the logarithmic term dominates. Therefore, in the Lagrangian
we will have a term which goes as:

L ⊃

(
m2

3/2c̃

2

√
2

3

)
χ̂

MP

h2 ∼ m2
3/2c̃

χ̂

MP

h2 (5.131)

where h is the Higgs scalar field. This is a trilinear coupling, which gives rise to a decay
channel of V into a pair of h. Its decay rate parametrically scales as:

Γ(χ→ hh) ∼
c̃2m4

3/2

mVM2
P

∼ (c̃V)2m
3
V

M2
P

(5.132)

There is a small catch, though. The volume, during inflation, due to its mixing with the
inflaton, is not constant. The volume modulus gets displaced from its minimum ⟨χ⟩ to
its inflationary minimum. This displacement is usually indicated as:

Y =
∆χ

MP

(5.133)
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It’s been calculated that Y ∼ O(0.1) for un-corrected Kähler moduli inflation [3], how-
ever, the scalar potential for the volume does not get any important loop correction,
which means this should also be valid for the loop-corrected case. Therefore, we may
say that during inflation there is no fine tuning of mH , which instead scales as:

m2
H ∼ c̃ m2

3/2

∆χ

MP

(5.134)

This means that during inflation and immediately after its end:

m2
H > m2

V as long as V >
MP

c̃∆χ
∼ O(103) (5.135)

where we estimated c̃ ≃ 1
16π2 ∼ O(10−2). So the decay of the volume modulus into

the Higgs seems to be kinematically forbidden. However, we do know that the volume
modulus, at the end of inflation, starts oscillating as soon as :

HOSC ∼ mV (5.136)

and decays only when:
HDEC ∼ Γχ→hh (5.137)

Since we are in matter domination and the amplitude of the oscillations redshifts exactly
like H, we can estimate the Hubble ratio HEQ at the time when mH ≃ mV . This is as
simple as computing:

HEQ =
∆χ(EQ)

∆χ(OSC)
HOSC ≃ M2

P

c̃V5/2∆χ(OSC)
(5.138)

And we can compare this to the decay-time H:

HEQ

HDEC

∼ MP

c̃3∆χ(OSC)
∼ 107 (5.139)

assuming ∆χ(OSC) = YMP ∼ 0.1MP . This tells us that the two masses become com-
parable way before V decays, and when this happens mH < mV due to the fine tuning,
making the decay kinematically allowed.

Scenario I: Reheating from volume mode decay

In this subsection we simply follow what we already did in the study of the post-
inflationary dynamics for the uncorrected Kähler moduli inflation model, but with the
loop-enhanced Higgs coupling for the volume. This means that we are going to use a
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decay rate for the volume modulus which is (5.132), which can be expressed explicitly in
terms of the volume as:

ΓV ≃ c̃2V2m3
V

M2
P

≃ c̃2W 3
0

(lnV)3/2V5/2
MP (5.140)

while we will keep the inflaton decay rate Γτϕ the same as (5.48). We can easily see that
the inflaton decays before the volume, since:

Γτϕ
ΓV

∼ (lnV)9/2

c̃2

√
V ≫ 1 (5.141)

Therefore, the history of the Universe in this scenario will be the same as the one in the
uncorrected case: after inflation we will have a (brief) period in which the energy density
is dominated by the coherent oscillations of the inflaton; after that the inflaton decays
and a radiation-dominated era begins while the volume modulus is still oscillating; at
some point we will have matter-radiation equality and from that moment onward the
oscillations of the volume will dominate, until it ultimately decays and a second era of
radiation domination starts. The expression for the number of e-foldings of inflaton-
domination will be exactly the same as in the uncorrected case, (5.59). The same is true
for the expression of H(teq) which ultimately depends only on the ratio of the energy
densities, θ (5.53), which we assume is unaffected by the loop corrections. Therefore,
the only expression that differs from the previously studied case is the final expression
of NV . We will have:

NV ≃ 2

3
ln

(
H(teq)

ΓV

)
≃ 2

3
ln

(
θ4(lnV)9/2

√
V

10c̃2

)
≃ 2

3
ln

(
(lnV)5/2

√
VY 4

10β2c̃2

)
(5.142)

where in the first equality we used the value of H(teq) we computed in (5.65) and the
expression (5.140) for ΓV , while in the second one the definition of θ in terms of Y (5.53).
We can evaluate Nϕ and NV in this scenario for a generic choice of the parameters. One
thing we have to be careful about, however, is the choice of W0. In fact, if we consider
(5.59), plugging in W 2

0 ∼ 100 and V ∼ 104 gives a negative result. This would mean
that the inflaton field decays before the end of inflation. This is a pathological situation
and we shall avoid this region. This is solved if we take smaller values of W0 ∼ O(1),
which inevitably also lowers the volume. The result is that in the best-case scenario, in
which W0 ∼ 1 and V ∼ 104 still (which may be achieved lowering the loop constant to
cloop ∼ 10−3), Nϕ ≃ 0.25. For what concerns the volume, we take β ∼ 1, c̃ ∼ 10−2 and
Y ∼ 0.1, and get NV ≃ 4. Therefore, we can get the total number of e-foldings predicted
by this scenario using the formula (5.50):

Ne ≃ 57 +
1

4
ln r − 1

4
Nϕ −

1

4
NV ≃ 57− 2.5− 0.1− 1 ≃ 53 (5.143)

where we used the value of r ≃ 4× 10−5 which is in the range (5.116).
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Scenario II: Inflaton decay rate

The scenario in which the inflaton cycle is not wrapped by any D7-brane was studied in
detail in [45]. Since the inflaton field does not have a direct decay channel to the gauge
fields living upon the D7-branes, the decay rate, as we will see, is drastically smaller.

Let us first of all retrieve the decay rate of τϕ in the dominant decay channel. In
this scenario, the SM has to be attached to D7-branes wrapping some other blow-up
cycle, τSM . As argued in [45], the dominant decay channel of τϕ is the kinetic-coupling
induced decay to SM gauge fields. This happens through the mixing of τϕ and τSM in
the Kähler potential. Given that τSM is a local blow-up mode as τs, its mixing with τϕ
has the same volume scaling as the mixing of τs with τϕ. We shall therefore focus just on
the volume form (5.82) which shows that the canonically normalized counterparts of τϕ
and τs, which are ϕ and σ respectively, will have a small mixing suppressed by powers of
the volume. Moreover, since the SM lives of D7-branes wrapped around τSM , the latter
will be the (real part of the) gauge kinetic function of the SM gauge fields:

L ⊃ τSM tr [FµνF
µν ] (5.144)

which shows the coupling of τSM to the gauge fields Aµ. Expanding τSM around its VEV
as τSM = ⟨τSM⟩+ δτSM , and canonically normalizing the gauge fields, (5.144) becomes:

L ⊃ 1

2
tr
[
F c
µνF

µν
c

]
+

1

2

δτSM
⟨τSM⟩

tr
[
F c
µνF

µν
c

]
(5.145)

where the label c indicates canonical normalization. We will understand this label in
what follows not to make the notation too heavy. The mixing of the various 4-cycles in
this case is derived precisely in Appendix C 14 Therefore, we have:

L ⊃ 1

2

δϕ√
2 ⟨τSM⟩

(v⃗ϕ)s tr [FµνF
µν ] (5.146)

where (v⃗ϕ)s controls the mixing between τϕ and τSM , and is derived in (C.24). Therefore,
we can plug in the approximate result and get:

Lϕ−A ∼ 1

2
√
2 ⟨τSM⟩

(
4(m12m31 +m22m33) ⟨τϕ⟩1/4√
6λϕm22(m22 −m33) ⟨τB⟩3/4

)
δϕ tr [FµνF

µν ] (5.147)

Now, looking at the expression of the elements of the mass matrix in (C.10)-(C.18) we
see that m22m33 ≫ m12m31 and also m22 ≫ m33 (see (C.26)). Then we can rewrite this
as:

Lϕ−A ≃ m32 ⟨τϕ⟩1/4√
3λϕm22 ⟨τSM⟩ ⟨τB⟩3/4

δϕ tr [FµνF
µν ] ≃

√
3λϕ ⟨τϕ⟩3/4

2 ⟨τB⟩3/4
δϕ tr [FµνF

µν ] (5.148)

14In Appendix C, the role of τSM is played by a generic τs.
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We can therefore write down the decay rate of the inflaton field to SM gauge fields
following [45] as:

Γ(ϕ→ AA) ≃ 3λϕNg

64π

(
⟨τϕ⟩
⟨τB⟩

)3/2 m3
τϕ

M2
P

≃ 3λϕNgW
3
0 (lnV)9/2

8πa
3/2
ϕ V4

MP (5.149)

where Ng is the number of available decay channels, i.e. the number of gauge bosons
the inflaton can decay to. This is the dominant decay channel of the inflaton field in
Scenario II, and in what follows we will refer to (5.149) simply as Γϕ.

Scenario II: Reheating from inflaton decay

Let us now turn to derive the post-inflationary evolution of Scenario II. We will follow
exactly the same steps we followed in Scenario I and in the uncorrected case before that,
but using the decay rate (5.149) for the inflaton. Notice that this decay rate is much
more suppressed with respect to the one we used in Scenario I. In fact, it was observed
in [45] that it may be so suppressed that the volume modulus actually decays before
the inflaton does in this scenario. While for the range of volumes considered in the
aforementioned article that was most certainly true, it is not in our present case. In fact,
consider the ration between the Γϕ (5.149) and ΓV (5.140):

Γτϕ
ΓV

≃ 3λϕNg(lnV)6

8πc̃2a
3/2
ϕ V3/2

(5.150)

Now, for a generic choice of the parameters (Ng ∼ 10, c̃ ∼ 0.01, aϕ ∼ 2π, λϕ ∼ 1) and
taking our maximal volume V ∼ 104, we get that:

Γτϕ
ΓV

∼ 102 (5.151)

It must be noted that if we had, like in the uncorrected Kähler moduli inflation case,
a range of volumes of V ∼ 105 − 106 then the ratio (5.150) would be close to 1, and
depending on the specific choices of the constants could also be smaller. However, in our
case the history of the Universe will follow a similar path to that we already encountered,
however we will see that the oscillations of the inflaton will last way longer than before.
In fact, we can plug our new decay rate in the usual formula (5.59):

Nϕ ≃
2

3
ln

(
H(tE)

Γϕ

)
≃ 2

3
ln

(
8πa

3/2
ϕ

√
βV5/2

3λϕNgW 2
0 (lnV)9/2

)
(5.152)

Now we need the expression of H(teq) which can always be obtained from (5.65):

H(teq) ≃ θ4H(tϕ) ≃ H(tE)
3λϕNgW

2
0 (lnV)9/2θ4

8πa
3/2
ϕ

√
βV5/2

(5.153)
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This is where the phenomenology of this scenario differs from the ones we have seen
before. In fact, consider the ratio:

H(teq)

ΓV
≃ 3λϕNg(lnV)4Y 4

8πβ2a
3/2
ϕ c̃2V3/2

(5.154)

where we have used relation (5.53) to rewrite θ in terms of the displacement Y . Plugging
in (5.154) reasonable values of the parameters (Ng ∼ 10, aϕ ∼ 2π, β ∼ 1, Y ∼ 0.1, λϕ ∼ 1
and c̃ ∼ 0.01), for our range of volumes V ∼ 103 − 104 we get:

H(teq)

ΓV
∼ 10−2 − 10−3 (5.155)

This means that the volume modulus decays before the time of matter-radiation equality,
while the Universe is still dominated by the radiation produced by the inflaton decay.
Thus, in this scenario the coherent oscillations of the volume modulus never come to
dominate the energy density of the Universe, so that we will have to set:

NV = 0 (5.156)

Therefore, we can now use the formula (5.50) to get an estimate of the number of e-
foldings in this scenario. Plugging in the generic values Ng ∼ 10, aϕ ∼ 2π, λϕ ∼ 1, β ∼
1,W0 ∼ 1− 10 in (5.152) we get Nϕ ≃ 10.6− 8, which we can roughly round to Nϕ ≃ 10.
Therefore, we will get:

Ne ≃ 57 +
1

4
ln r − 1

4
Nϕ ≃ 57− 2.5− 2.5 ≃ 52 (5.157)

where we set NV = 0 identically as discussed above and r ≃ 4×10−5 which is the central
value of (5.116).

5.4 Inflationary Parameters in the Loop-Corrected Case

Now that we have a solid prediction for the number of e-foldings in both scenarios, we
can finally look at the predicted values for the inflationary parameters. First of all we
can determine the value of the field ϕ at the end of inflation, ϕE imposing that:

ϵ(ϕE) ≃
2

9
b2c2loopϕ

−10/3
E ≃ 1 (5.158)

Using (5.97) for V ∼ 104 and β ∼ λϕ ∼ 1, and setting cloop ∼ 10−2 and we get:

ϕE ≃ 0.007 (5.159)
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which is much lower than the value we expect for ϕ∗. This justifies keeping only the
dominant upper bound in the expression of (5.105). Now we can simply use the relation
(5.105) and invert it to obtain:

ϕ∗ ≃
(
16

9
bcloopNe

)3/8

(5.160)

We now simply have to insert in this formula the values for Ne we computed from the
post-inflationary evolution in the two possible scenarios (5.143) and (5.157). Setting
Ne ≃ 53 as prescribed by Scenario I, (5.160) gives 15

ϕ∗ ≃ 0.32 (5.161)

Inserting this in (5.104) will give us the prediction for the spectral index in Scenario I:

ns ≃ 0.9764 (5.162)

Similarly, plugging in (5.160) the value Ne ≃ 52 from Scenario II, the result is very close:

ϕ∗ ≃ 0.33 (5.163)

which yields a spectral index of:
ns ≃ 0.9759 (5.164)

Therefore, accounting for the variability of some parameters, we can roughly estimate
an overall predicted value of the spectral index of:

ns ≃ 0.976 (5.165)

Notice that, while the predicted value in the original Kähler moduli inflation model with-
out loop corrections is about 2σ below the value measured by the Planck collaboration
in 2018 [37](5.81), the value we found including the loop corrections is above (5.81) by
about 2σ. However, this does not mean that this model is completely wrong. In fact,
it must be said that the Planck value from ns arises from a fit of the data, which takes
as input a cosmological model, which is the ΛCDM standard model of cosmology. In
particular, one of the assumptions underlying the value of ns of (5.81) is that there is
no dark radiation in the history of the Universe. As we will see below, this is indeed the
case in Scenario I, while Scenario II predicts a small, but non negligible amount of Dark
Radiation, which yields to a change in the effective number of neutrino species ∆Neff

which may actually close the gap between our predicted value of ns and the one inferred
from CMB data in the presence of extra dark radiation. In fact, the Planck collaboration
in 2015 performed an analysis of the variation of ns with respect to the amount of Dark
Radiation [46]. It was found that the effect of the inclusion of ∆Neff > 0 was to increase
the spectral index. They found:

ns = 0.983± 0.006 (68%CL) for ∆Neff = 0.39 (5.166)
15Throughout these calculations we assume V ∼ 104, β ∼ λϕ ∼ 1, and cloop ∼ 10−2.
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Kähler cone constraints

Let us now remark some technical aspects regarding the Kähler cone of this model.
Since we did not specify explicitly the intersection numbers of the Calabi-Yau we are
using, we shall treat what follows simply as an indicative discussion about how close to
the boundary of the Kähler cone we are getting. First of all, we shall convert back ϕ∗,
(which we indicatively take as 0.3) to τ ∗ϕ inverting relation (5.95):

τ ∗ϕ ≃
(
3V
4

)2/3

ϕ4/3
∗ ≃

(
3

4

)2/3

τBϕ
4/3
∗ (5.167)

where in the second equality we used the fact that V2/3 ∼ τB. Now we convert back τϕ
and τB to the dual 2-cycles we call tϕ and tB as:

τϕ ∼ t2ϕ (5.168)

τB ∼ t2B (5.169)

where the precise relation depends on the intersection numbers of the divisors basis.
Then we can rewrite (5.167) in terms of the 2-cycles:

(t∗ϕ)
2 ∼ t2Bϕ

4/3
∗ (5.170)

which translates into:
t∗ϕ
tB

∼ ϕ2/3
∗ ∼ 0.4 (5.171)

Now, considering that usually τB has a O(10) coefficient multiplying t2B, see for example
the explicit construction of [31], we can safely state that tϕ ≪ tB at all times during
inflation, hence we are not getting close to the boundary of the Kähler cone.

5.5 Dark Radiation from moduli decays

The effective number of neutrino species Neff is a standard indicator of the fraction of
the total energy density that lies in the photon plasma at the time it is measured. It
constrains the fraction of energy density which, after inflation, is transferred to hidden
sector fields redshifting as radiation, i.e. Dark Radiation. At the CMB temperature, we
can determine Neff as [34]:

ρTOT = ργ

(
1 +

7

8

(
4

11

)4/3

Neff

)
(5.172)

If there was dark radiation either at CMB or BBN times, this would lead to a non-trivial
fraction of the total energy density of the Universe being stored in a plasma which is
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decoupled from the photon bath. Then, from (5.172) we would be able to see a non-zero
shift of Neff :

∆Neff = Neff −N0
eff (5.173)

where, with N0
eff we indicate the number of Standard Model effective neutrino species

during the evolution of the Universe (with zero Dark Radiation). The most relevant
component of the Dark Radiation which is predicted by string-inflation models is made
of non-thermally produced axions. These are usually the axionic counterparts of the
Kähler moduli which take part in inflation (e.g. the inflaton and the volume modulus for
Kähler moduli inflation). In [34, 35, 47, 48] a formula was derived which relates ∆Neff

with the branching ratio of the decay of a modulus φ to its axions a:

∆Neff ≃ 6.1

(
11

g4∗g
−3
∗,S

)1/3

B(φ→ aa) ≃ 6.1

(
11

g4∗g
−3
∗,S

)1/3
ρDR

ρSM + ρDR

∣∣∣∣
T=TRH

(5.174)

where g∗ is the effective number of degrees of freedom of the energy density and g∗,S the
effective number of degrees of freedom of the entropy density. The branching ratio is
defined as:

B(φ→ aa) =
Γ(φ→ aa)

Γφ
(5.175)

where Γφ is the total decay rate of φ. The Planck collaboration observations of the CMB
and large scale structure [37], in 2018 constrained ∆Neff to:

∆Neff ≲ 0.2− 0.4 (5.176)

depending on the specific data-set used. Following [45], we are going to evaluate ∆Neff

in both of our post-inflationary scenarios. In the present model we have two moduli
fields that actively play a role during inflation: the volume V and the inflaton ϕ. The
volume modulus drives reheating in Scenario I, while the inflaton does so in Scenario II.
Let us analyze them separately.

Scenario I: Dark radiation from volume decay

If we do not immediately stabilize the axions bi to their minima, they are regarded
as dynamical fields and appear in the kinetic term of the Lagrangian with the same
coefficients as their corresponding 4-cycle fields τi. In the specific case of the volume
mode τB we have:

L ⊃ KBB(∂µτB∂
µτB + ∂µbB∂

µbB) =
3

4τ 2B
∂µτB∂

µτB +
3

4τ 2B
∂µbB∂

µbB (5.177)

where we used KBB which we retrieve in Appendix B and Appendix C. Now we can
canonically normalize the fields and expand them around their VEVs to get the trilinear
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coupling between τB and bB, see for example [34]. The resulting decay rate is then given
by:

Γ(V → bBbB) =
1

48π

m3
V

M2
P

(5.178)

This has to be compared with the loop-enhanced decay rate of the volume modulus to
Higgs fields retrieved in (5.132). We get that:

Γ(V → hh)

Γ(V → bBbB)
≃ 48π(c̃V)2 ≫ 1 (5.179)

since 104 ∼ V ≫ 1/c̃ ∼ 102. This means that the decay channel of the volume to its
axions is heavily suppressed, and therefore we get a negligible branching ratio. Therefore,
(almost) no dark radiation is produced by the decay of the volume modulus. So for
Scenario I we have ∆Neff ≃ 0.

Scenario II: Dark radiation from inflaton decay

We will now perform a similar analysis for the inflaton field in Scenario II. The first thing
we notice is that the axion of the inflaton field has the same mass of the inflaton itself.
The reason for that is that we are using a supersymmetric non-perturbative stabilization
for this particular field: the α′-correction which stabilizes the volume does not depend
on Tϕ and neither do the loop corrections stabilizing τSM . Therefore, the decay of ϕ into
a pair of bϕ is kinematically forbidden. Another important thing to notice is that, as
shown in [45], the decay rate to the axions of the other moduli is the same ass the decay
rate to the respective 4-cycle field, and the dominant decay amplitude is given by the
kinetic terms. Therefore, we shall work out only the decay rates to the 4-cycles through
the kinetic terms. To do that, we have to expand the kinetic term of the Lagrangian up
to third order around the VEV of the 4-cycles τi, and only keep the terms on which δτϕ
appear:

L ⊃ (∂τϕKij)δτϕ∂µδτ
i∂µδτ j (5.180)

What we can do now is eliminate the derivatives. Since we are looking for a tree-level
decay, the products of the decay will be on shell. Therefore, we can integrate by parts
(5.180) and use Klein-Gordon equation to substitute the derivatives with the respective
masses :

L ⊃ 1

2
Kϕij(m

2
τϕ
−m2

i −m2
j)δτϕδτ

iδτ j (5.181)

Since we are considering the specific case i = j ̸= ϕ, and the inflaton field is the heaviest,
we can simply replace the difference in (5.181) all simply with m2

τϕ
:

Lϕij ∼ m2
τϕ
Kϕijδτϕδτ

iδτ j (5.182)
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Now we have to work out the decay rate to the volume modulus. To do that, we simply
set i = j = B in (5.182). first of all, we keep the whole formula of the volume and
compute:

∂τϕKBB ∼
√
τϕ

τ
7/2
B

(5.183)

so that the term in the Lagrangian will be:

LKϕBB ∼ m2
τϕ

τB
√
τϕ

V3
δτϕδτ

2
B (5.184)

Upon canonical normalization of the fields, we get a decay amplitude of:

Γ(ϕ→ VV) ≃ Γ(ϕ→ bBbB) ≃
τ
9/2
ϕ

V4
MP (5.185)

The exact formula can be retrieved taking care of all the O(1) factors we neglected here,
see appendix D of [45], and we get:

Γ(ϕ→ bBbB) ≃
3λϕW

3
0 a

3
ϕτ

9/2
ϕ

64πV4
MP (5.186)

To retrieve the decay rate to the small modulus τSM we follow the same procedure. The
result we get is very similar, but enhanced by a factor of 4:

Γ(ϕ→ bSMbSM) ≃
3λϕW

3
0 a

3
ϕτ

9/2
ϕ

16πV4
MP (5.187)

We can notice that the decay rate of the inflaton to the SM gauge fields (5.149) is
Γ(ϕ → bBbB) but enhanced by a factor of 8Ng where Ng is the number of SM gauge
bosons. Therefore, by setting Γ ≡ Γ(ϕ → bBbB) we can finally compute the branching
ratio of the inflaton to dark radiation as:

B(ϕ→ DR) ≃ (1 + 4)Γ

(8Ng + 5)Γ
≃ 5

8Ng

≃ 0.05 (5.188)

where we have used Ng = 12. All the other decay rates are subleading and can be
ignored. Therefore, we are finally able to get a precise prediction for the difference in
the effective number of neutrino species:

∆Neff ≃ 0.05× 6.1

(
11

g4∗g
−3
∗,S

)1/3

≃ 0.14 (5.189)

where we used g∗ = g∗,S = 106.75, since the reheating temperature of our model is
roughly 103 GeV [49].
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6 Conclusions

In this thesis we studied the effects of string-loop corrections to the famous Kähler mod-
uli inflation model in the LVS setting of Type IIB string compactification.
We began with a fast and general overview of string theory, starting from the dynamics
and spectrum of bosonic strings up to the inclusion of supersymmetry and the formula-
tion of superstring theory. We studied how the latter solves the problem of the absence
of fermions in the spectrum and how it eliminates the tachyonic ground states of bosonic
strings, but still predicts the presence of 10 spacetime dimensions. This is dealt with
through compactification. We presented the Kaluza-Klein dimensional reduction mecha-
nism and introduced the geometric spaces on which such compactifications take place in
the context of String Theory: Calabi-Yau threefolds. After studying the topological and
geometrical properties of Calabi-Yau’s, we noticed how, upon compactification, many
(possibly thousands) moduli fields are produced. At tree level, they represent flat direc-
tions of the scalar potential and therefore their VEV is a free parameter. The procedure
to fix these VEVs is called moduli stabilization. We have seen how the inclusion of
quantized 3-form fluxes on the Calabi-Yau managed to stabilize the complex structure
moduli and the dilaton field, but left the Kähler moduli unfixed. To stabilize the latter,
we had to include quantum corrections to the Kähler potential and superpotential of
the 4d EFT, stemmed from different UV effects. Because of the non-renormalization
theorems of supersymmetric theories, we could only introduce non-perturbative correc-
tions to the superpotential, while the Kähler potential receives perturbative corrections.
These are of two kinds, the α′-corrections descend from higher-derivative terms of the
10d theory, while gs-corrections originate from string loops. We showed the form of these
loop corrections to the Kähler potential as postulated by the BHP conjecture [20], and
studied how these propagated to the scalar potential. We then turned to applying what
we found and displayed the two most-used moduli stabilization paradigms: KKLT and
LVS.
The main focus was on the latter, since the scalar potential of LVS theories exhibits al-
most flat directions, which can support a model for slow-roll inflation called Kähler mod-
uli inflation. First we showed the original model and the predictions deriving from the
study of its post-inflationary dynamics following [3]. We found the value for the spectral
index ns = 0.955 the model predicts, and showed it is below the experimental value [37]
by about 2σ.
At this point we introduced loop corrections to the scalar potential for the inflaton field,
and argued that they ’spoil’ the almost flat direction. However, if the parameter cloop
is small enough, inflation is still feasible. We worked out the inflationary parameters
and found first of all that the expected range of volumes for this corrected model is
much lower than the preferred range of the standard version of Kähler moduli inflation:
Vcor ∼ 103 − 104 ≪ Vstd ∼ 105 − 106. Then, we turned to analyzing the post-inflationary
evolution of this model in two different scenarios. We called Scenario I the case in
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which which the inflaton 4-cycle is wrapped by D7-branes supporting a hidden sector,
and Scenario II the case in which it is not wrapped by D7-branes at all. We used the
recently-found loop-enhanced coupling of the volume modulus to Higgs scalars [45] in
order to compute the corresponding decay rate.
In Scenario I the situation was very similar to what happened in the original model, with
the exception of a faster decay of the volume, leading to a higher number of e-foldings
N

(SI)
e ≃ 53. On the other hand, in Scenario II we worked out the decay rate of the

inflaton field to visible sector gauge fields through the mixing with the loop-stabilized
modulus. Eventually, we computed the post-inflationary dynamics of this scenario. The
oscillations of the volume modulus never comes to dominate the energy density of the
Universe, since it decays in the era still dominated by the radiation produced by the
decay of the inflaton. The number of e-foldings we found was surprisingly close to that
of Scenario I: N

(SII)
e ≃ 52.

With these results, we managed to find a solid prediction for the spectral index ns ≃ 0.976
and for the tensor-to-scalar ratio r ≃ 4× 10−5.
This time, the value of the spectral index is higher with respect to the experimental value
by Planck 2018 [37] of about 2σ. However, the Planck analysis does not include Dark
Radiation in the cosmological model it uses to fit the data. We showed that our model
predicts a non-zero difference in the number of effective neutrino species: ∆Neff ≃ 0.14.
This is within bounds, but high enough to make a difference in the expansion of the
Universe which is within reach of upcoming CMB experiments [50]. The Planck collabo-
ration performed a similar analysis for a varying value of ∆Neff in 2015 [46], and found
that higher values of ∆Neff tend to increase the central value for ns. Therefore, to see
whether the model produces an acceptable prediction for the spectral index, one should
redo the fit of Planck data inserting by hand our value of ∆Neff (5.189), similarly to
what has been done in [51] for Fiber Inflation.
Another interesting development would be to explicitly build a model of a Calabi-Yau
supporting loop-corrected blow-up inflation. This would mean to explicitly specify the
intersection numbers λi, choose a flux vacuum configuration by fixing the 3-form flux
quantization yielding a value for W0, and explicitly characterize the quantum effects
stabilizing the Kähler moduli. Such a construction has already been carried out, for ex-
ample in [31], and one would just have to adapt that model to support a loop-stabilized
4-cycle.
Another interesting and wider direction which might be explored is that of closed string
loop corrections to the Kähler potential. We mentioned briefly in section 4.3 that from
an EFT point of view, some of the effects involving, for example, the graviton running in
the loop have already been studied. A more detailed analysis, based on world-sheet cal-
culations of bulk loop corrections should be considered. A possible way to follow may be
an approach similar to [19], in which toroidal orientifolds were used as compactification
spaces, and the effects found therein then generalized to Calabi-Yau’s. These effects,
if present, may produce corrections to the Kähler potential comparable in magnitude
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to second-order Kaluza-Klein open-string corrections, which, in the absence of winding
corrections, are the dominant loop effects considered here.
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A Calculations for the LVS Swiss Cheese

Given the Kähler potential and the superpotential

K = −2 ln

[(
τ

3
2
B − τ

3
2
s

)
+

ξ

2g
3
2
s

]
(A.1)

W = W0 + As e
−asTs (A.2)

First we expand the Kähler potential in the volume for V ≫ 1 as suggested by (4.21):

K ≃ −2 lnV − ξ̂

V
(A.3)

So that we can compute its derivatives:

KB =
1

2

∂K

∂τB
= −3

2

√
τB

[
1

V
− 1

2

ξ̂

V2

]
(A.4)

Ks =
1

2

∂K

∂τs
=

3

2

√
τs

[
1

V
− 1

2

ξ̂

V2

]
(A.5)

Supposing that τB ≫ τs so that V ≃ τ
3
2
B the leading order Kähler metric can be written

as:

Kij =

 3
4τ2B

− 9
√
τs

8τ
5/2
B

− 9
√
τs

8τ
5/2
B

3

8
√
τsτ

3/2
B

 (A.6)

and, inverting this, we get:

Kij ≡ (K−1)ij =

(
4τ2B
3

4τBτs

4τBτs
8
√
τsτ

3/2
B

3

)
(A.7)

Now we can compute the scalar potential using the inverse Kähler metric (A.7) and the
Kähler derivatives computed from the superpotential (A.2) and the derivatives of the
Kähler potential (A.4) and (A.5). Inserting them in the general formula (4.6). After
stabilizing the axionic parts of the moduli, the final expression is:

V =
8(asAs)

2√τs e−2asτs

3V
− 4asAsW0τse

−asτs

V2
+

3ξ̂|W0|2

4V3
(A.8)

To minimize this, we impose: {
∂V
∂τs

= 0
∂V
∂V = 0

(A.9)
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The first equation of (A.9) yields:

W0

V
(1− asτs) =

asAs
3
√
τs
(1− 4asτs)e

−asτs (A.10)

We can invert this to get an expression for e−asτs at the minimum :

e−asτs =
3|W0|
asAs

√
τs
V

(
1− asτs
1− 4asτs

)
(A.11)

Similarly, from the second equation of (A.9), one can get:

−4(asAs)
2√τse−2asτs +

12asAs|W0|τse−asτs
V

− 27|W0|2ξ̂
8V2

= 0 (A.12)

Substituting in (A.12) the volume one can find from (A.10), we get an equation for τs,
which can be cast as:

τ
3
2
s =

3ξ̂

32


(

1−4asτs
1−asτs

)2
1−4asτs
1−asτs − 1

 (A.13)

At this point, one can expand the expressions (A.11) and (A.13) in powers of ε = 1
4asτs

.

Keeping up to order ε2, we get:

e−asτs ≃ 3

4

|W0|
asAs

√
τs
V

(1− 3ε− 3ε2 +O(ε3)) (A.14)

τ
3
2
s ≃ ξ̂

2
(1 + 2ε+ 9ε2 +O(ε3)) (A.15)

Now we shall compute the mass matrix by evaluating the Hessian of the potential (A.8)
at the minimum. Let us then compute the second derivative of the potential:

∂2V

∂τ 2B
=

27|W0|2ξ̂
8τ

13/2
B

(1 + 2ε) (A.16)

∂2V

∂τB∂τs
= −9as|W0|2ξ̂

4τ
11/2
B

(
1− 5ε+ 4ε2

)
(A.17)

∂2V

∂τ 2s
=

3a2s|W0|2ξ̂
2τ

9/2
B

(
1− 3ε+ 6ε2

)
(A.18)

We can get the mass matrix setting V ≃ τ
3/2
B :

Mij =
1

2

∂2V

∂τ i∂τ j
=

(
27|W0|2ξ̂
16V13/3 [1 + 2ε] −9as|W0|2ξ̂

8V11/3 [1− 5ε+ 4ε2]

−9as|W0|2ξ̂
8V11/3 [1− 5ε+ 4ε2] 3a2s|W0|2ξ̂

4V3 [1− 3ε+ 6ε2]

)
(A.19)
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where we neglected additional terms which are suppressed by higher powers of V . Notice
that the fields τB and τs are not canonically normalized. As a matter of fact, their kinetic
term is given by:

LK(τ) ∼ Kij∂τ
i∂τ j (A.20)

Therefore, to get the physical degrees of freedom, we have to canonically normalize them.
As a result of the canonical normalization of the fields, the physical state mass matrix
becomes:

M̃ij = (K−1M)ij =
as ⟨τs⟩ |W0|2ξ̂

2V3

(
−9 [1− 7ε] −6asV2/3 [1− 5ε+ 16ε2]

− 6V1/3

⟨τs⟩1/2
[1− 5ε+ 4ε2] 4asV

⟨τs⟩1/2
[1− 3ε+ 6ε2]

)
(A.21)

B Mixing in the case of two Small Moduli

In this appendix we work out the mixing of the canonically normalized 4-cycles in the
case of 3-moduli Kähler inflation, following [32] and neglecting the loop corrections, since
they do not add a significant contribution in our specific case of interest. The volume of
the Calabi-Yau has the expression:

V = α
(
τ
3/2
B − λsτ

3/2
s − λϕτ

3/2
ϕ

)
(B.1)

the Kähler potential has the usual LVS form (4.84) and the superpotential is:

W = W0 + Ase
−asTs + Aϕe

−aϕTϕ (B.2)

We can write down the Kähler metric at leading order as:

Kij =
9

8τ 2B


2
3

−λsεs −λϕεϕ
−λsεs λs

3εs
λsλϕεsεϕ

−λϕεϕ λsλϕεsεϕ
λϕ
3εϕ

 (B.3)

where

εi =

√
τi
τB

for i = s, ϕ (B.4)

which means that εi ≪ 1. The inverse Kähler metric can therefore easily be computed
as:

(K−1)ij = 4τ 2B

 1
3

ε2s ε2ϕ
ε2s

2
3λs
εs ε2sε

2
ϕ

ε2ϕ ε2sε
2
ϕ

2
3λϕ

εϕ

 (B.5)
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Now we shall work out the scalar potential in order to get the mass matrix. After axion
minimization, it takes the following form:

V =
γs
√
τse

−2asτs

V
+
γϕ
√
τϕe

−2aϕτϕ

V
− µsτse

−asτs

V2
− µϕτϕe

−aϕτϕ

V2
+

ν

V3
(B.6)

where we used:

γi =
8(aiAi)

2

3αλi
(B.7)

µi = 4W0Aiai (B.8)

ν =
3ξ̂W 2

0

4
(B.9)

where ξ̂ is defined as in (4.61). With this potential, we can work out the VEV of the
moduli exactly as we did for the 2-moduli case in Appendix A. The results are:

ai ⟨τi⟩ ≃
(
4ν

J

)2/3

(B.10)

⟨V⟩ =
(
γi
2µi

)√
⟨τi⟩ eai⟨τi⟩ (B.11)

for i = s, ϕ with:

J =
∑
i=s,ϕ

(
µ2
i

γia
3/2
i

)
(B.12)

At this stage, we can expand all the moduli around their VEV:

τi = ⟨τi⟩+ δτi (B.13)

for i = B, s, ϕ. Then, the lagrangian at leading order in δτi will be:

L = Kij∂µδτ
i∂µδτ j − ⟨V ⟩ − 1

2
Vijδτ

iδτ j +O(δτ 3) (B.14)

Now we shall properly canonically normalize the perturbations around the VEV. We call
in general σi the canonically normalized fields τi

16. We will have to perform a change
of basis, writing: δτBδτs

δτϕ

 = v⃗B
δσB√
2
+ v⃗s

δσs√
2
+ v⃗ϕ

δσϕ√
2

(B.15)

16In the main text we will use χ as the canonically normalized volume V, ϕ as the canonically
normalized inflaton τϕ, and σ for the canonically normalized small cycle τs
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such that the Lagrangian (B.14) takes the form:

L =
1

2
∂µδσi∂

µδσi − ⟨V ⟩ −
∑
i

m2
i

2
δσ2

i (B.16)

This is possible if the vectors v⃗i and the square masses m2
i are chosen to be the eigen-

vectors and eigenvalues of the canonically-normalized mass matrix:

M2
ij =

1

2
(K−1)ki Vkj (B.17)

satisfying an orthonormality condition:

Kkl(v⃗i)
k(v⃗j)

l = δij (B.18)

We can compute the Hessian of the potential evaluated at the minima at leading order
in 1/τB:

Vij =
α−3

⟨τB⟩13/2

c− cs ⟨τs⟩3/2 − cϕ ⟨τϕ⟩3/2 − 4
27
ascs ⟨τB⟩ ⟨τs⟩3/2 − 4

27
aϕcϕ ⟨τB⟩ ⟨τϕ⟩3/2

− 4
27
ascs ⟨τB⟩ ⟨τs⟩3/2 8

81
a2scs ⟨τB⟩

2 ⟨τs⟩3/2 0

− 4
27
aϕcϕ ⟨τB⟩ ⟨τϕ⟩3/2 0 8

81
a2ϕcϕ ⟨τB⟩

2 ⟨τϕ⟩3/2


(B.19)

where we defined:

c =
99ν

4
(B.20)

ci =
81µ2

i

16γi
(B.21)

for i = s, ϕ. Then we can get the canonically normalized mass matrix applying (B.17).
To be more concise, we are going to set As = Aϕ = λs = λϕ = W0 = 1, and reinsert
them later on.

M2
ij =

α−3

⟨τB⟩9/2

−9(as ⟨τs⟩5/2 + aϕ ⟨τϕ⟩5/2)(1− 7δ) 6a2s ⟨τB⟩ ⟨τs⟩
5/2 (1− 5δ) 6a2ϕ ⟨τB⟩ ⟨τϕ⟩

5/2 (1− 5δ)

−6as
√

⟨τB⟩ ⟨τs⟩2 (1− 5δ) 4a2s ⟨τB⟩
3/2 ⟨τs⟩2 (1− 3δ) 6a2ϕ ⟨τs⟩ ⟨τϕ⟩

5/2

−6aϕ
√

⟨τB⟩ ⟨τϕ⟩2 (1− 5δ) 6a2s ⟨τϕ⟩ ⟨τs⟩
5/2 4a2ϕ ⟨τB⟩

3/2 ⟨τϕ⟩2 (1− 3δ)


(B.22)

We want to find the eigenvalues and eigenvectors of this matrix. To do that, we impose
the eigenvalue relation :

M2v⃗i = m2
i v⃗i (B.23)

and the normalization condition (B.18). This yields the eigenvectros:

v⃗B =

⟨τB⟩
a−1
s

a−1
ϕ

 v⃗s =

 ⟨τB⟩1/4 ⟨τs⟩3/4

⟨τB⟩3/4 ⟨τs⟩1/4

⟨τB⟩−3/4 ⟨τs⟩7/4

 v⃗ϕ =

 ⟨τB⟩1/4 ⟨τϕ⟩3/4

⟨τB⟩−3/4 ⟨τϕ⟩7/4

⟨τB⟩3/4 ⟨τϕ⟩1/4

 (B.24)
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Therefore, from (B.15) we can retrieve the combinations that give rise to the canonically
normalized fields:

δτB
⟨τB⟩

≃ O(1)δσB +O(ϵ)δσs +O(ϵ)δσϕ (B.25)

δτs
⟨τs⟩

≃ O
(

1

lnV

)
δσB +O

(
1

ϵ

)
δσs +O(ϵ)δσϕ (B.26)

δτϕ
⟨τϕ⟩

≃ O
(

1

lnV

)
δσB +O(ϵ)δσs +O

(
1

ϵ

)
δσϕ (B.27)

where:

ϵ =

(
⟨τs⟩
⟨τB⟩

)3/4

=

(
⟨τϕ⟩
⟨τB⟩

)3/4

≪ 1 (B.28)

This means that, as we discovered in the two-mosuli case, each δτi is mostly δσi, with
small mixings among the fields determined by the corresponding components of the
respective eigenverctors.

C Loop-Stabilization of a Small Modulus

We want to study the stabilization and mixing of a three-moduli system τB, τϕ and τs
with the usual Swiss-cheese structure of the volume:

V = τ
3/2
B − λϕτ

3/2
ϕ − λsτ

3/2
s (C.1)

and the usual LVS Kähler potential (4.84). This time, however, we only turn on the
non-perturbative effects for τϕ, so that:

W = W0 + Aϕ e
−aϕTϕ (C.2)

Being the Kähler potential formally identical to the one in Appendix B we conclude that
also the Kähler metric at leading order will have the same form:

Kij =
3

4τ 2B


1 −3λϕ

√
τϕ

2
√
τB

−3λs
√
τs

2
√
τB

−3λϕ
√
τϕ

2
√
τB

λϕ
√
τB

2
√
τϕ

3λϕλs
√
τϕτs

2τB

−3λs
√
τs

2
√
τB

3λϕλs
√
τϕτs

2τB

λs
√
τB

2
√
τs

 (C.3)

as well as its inverse:

Kij ≡ (K−1)ij =


4τ2B
3

4τBτϕ 4τBτs

4τBτϕ
8τ

3/2
B

√
τϕ

3λϕ
4τϕτs

4τBτs 4τϕτs
8τ

3/2
B

√
τs

3λs

 (C.4)
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The form of the potential, this time will be different from the usual LVS one. For the
4-cycles τB and τϕ we will have the usual form (upon axion minimization):

VLV S(V , τϕ) =
8(Aϕaϕ)

2√τϕ e−2aϕτϕ

3λϕV
− 4Aϕaϕτϕe

−aϕτϕ

V2
+

3ξ̂W 2
0

4V3
(C.5)

on the other hand, the other small modulus τs will be stabilized by a perturbative
potential:

Vloop(V , τs) =
W 2

0

V3

(
µ1√
τs

− µ2√
τs − µ3

)
(C.6)

where we regard µ1, µ2 and µ3 as constants. Now we stabilize the moduli and expand
them around their VEV, as we did in (B.13). The Lagrangian will have the same form
as (B.14):

L = Kij∂µδτ
i∂µδτ j − ⟨V ⟩ − 1

2
Vijδτ

iδτ j +O(δτ 3) (C.7)

We now have to diagonalize this by canonically normalizing the fields. First of all, let us
compute the Hessian matrix of the potential, Vij:

Vij =


9(11W 2

0 (µ1µ̃+µ2
√
τs)+3W 2

0 µ̃λϕτ
3/2
ϕ

√
τs)

4µ̃τ
13/2
B

√
τs

−9W 2
0 λϕaϕτ

3/2
ϕ

2τ
11/2
B

9W 2
0 (µ1µ̃

2−µ2τs)
4µ̃2τ

3/2
s τ

11/2
B

−9W 2
0 λϕaϕτ

3/2
ϕ

2τ
11/2
B

3W 2
0 λϕaϕτ

3/2
ϕ

τ
9/2
B

9λϕ
√
τϕ(W

2
0 (µ2τs−µ1µ̃2)−3W 2

0 λsτ
2
s µ̃

2)

4µ̃2τ
3/2
s τ6B

9W 2
0 (µ1µ̃

2−µ2τs)
4µ̃2τ

3/2
s τ

11/2
B

9λϕ
√
τϕ(W

2
0 (µ2τs−µ1µ̃2)−3W 2

0 λsτ
2
s µ̃

2)

4µ̃2τ
3/2
s τ6B

W 2
0 (3µ1µ̃

3−µ2(µ3−3
√
τs)τs)

4µ̃3τ
5/2
s τ

9/2
B


(C.8)

where µ̃ = µ3 −
√
τs, where all the fields are computed at their minima (not shown here

for brevity). Now we want to construct the canonically normalized mass matrix again
using (B.17). We write the result as:

M2
ij =

 m11

V3
m12

V7/3
m13

V7/3

m21

V8/3
m22

V2
m23

V3

m31

V8/3
m32

V3
m33

V2

 (C.9)

Where:

m11 =
3W 2

0

[
−6µ̃2√τsλϕaϕτ 5/2ϕ + 14µ̃2µ1 + 11µ̃µ2

√
τs − 3µ2τs

]
2µ̃2

√
τs

(C.10)

m12 = 6W 2
0 λϕa

2
ϕτ

5/2
ϕ (C.11)

m13 =
W 2

0 [6µ̃
3µ1 − 3µ̃µ2τs + µ2τs(3

√
τs − µ3)]

2µ̃3τ
3/2
s

(C.12)

m21 = −6W 2
0 aϕτ

2
ϕ (C.13)

m22 = 4W 2
0 a

2
ϕτ

2
ϕ (C.14)
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m23 = −
τϕ[18W

2
0 λsµ̃

3τ 2s +W 2
0 (µ2τs(µ3 − 3

√
τs)− 12µ̃3µ1 + 3µ̃(2µ̃2µ1 + µ2τs))]

2µ̃3τ
3/2
s

(C.15)

m31 =
3W 2

0 (µ̃
2µ1 − µ2τs)

λsµ̃2τ 2s
(C.16)

m32 =
3λϕW

2
0

[
2λsτ

2
s µ̃

2a2ϕτ
5/2
ϕ +

√
τϕ(µ2τs − µ1µ̃

2)
]

λsµ̃2τs
(C.17)

m33 =
W 2

0 (3µ̃
3µ1 + µ2τs(3

√
τs − µ3))

3λϕµ̃3τ 2s
(C.18)

To canonically normalize the fields and diagonalize the mass matrix, we have to find the
eigenvalues m2

i and the normalized eigenvectors v⃗i of M
2 satisfying the relation (B.18),

where i = B, ϕ, s. Only then we can write:δτBδτϕ
δτs

 = (v⃗B)
δσB√
2
+ (v⃗ϕ)

δσϕ√
2
+ (v⃗s)

δσs√
2

(C.19)

Imposing the conditions we stated above, we find the eigenvalues:

m2
B =

m11m22m33 −m13m22m31 −m12m21m33

V3m22m33

(C.20)

m2
ϕ =

m22

V2
(C.21)

m2
s =

m33

V2
(C.22)

and the corresponding eigenvectors:

v⃗B ≃


2τB√

3

− 2m21√
3m22−2m31√

3m33

 (C.23)

v⃗ϕ ≃


4m12τ

1/4
B τ

1/4
ϕ√

6λϕm22

−4τ
3/4
B τ

1/4
ϕ√

6λϕ

4(m12m31+m22m32)τ
1/4
ϕ√

6λϕm22(m22−m33)τ
3/4
B

 (C.24)

v⃗s ≃


4m13τ

1/4
B τ

1/4
ϕ√

6λsm22

4(m13m21+m22m33)τ
1/4
s√

6λsm33(m33−m22)τ
3/4
B

4τ
3/4
B τ

1/4
s√

6λs

 (C.25)
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Notice that, with this stabilization we get that:

m2
ϕ

m2
s

=
m22

m33

∼ a2ϕτ
2
ϕτ

2
s ≫ 1 (C.26)
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