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Introduction

The Hilbert metric was introduced by D. Hilbert in 1894, as a generalization of the
Cayley-Klein metric on the hyperbolic space, in a letter [21] addressed to F. Klein.
In this letter, Hilbert followed Klein’s construction of the projective model of the
hyperbolic space, and generalized the construction for generic bounded convex sets
rather than ellipsoids.

A Hilbert geometry is a pair (Ω, dΩ) given by a properly convex domain Ω, that
is an open subset of the n-dimensional real projective space Pn, which is also convex
and bounded in some affine chart, and the Hilbert metric dΩ defined on Ω.

In particular, given two distinct points x and y in Ω, there exists a unique pro-
jective line passing through them and the intersection of this line with the boundary
of Ω defines exactly two points. The Hilbert distance between x and y is defined as
the logarithm of the cross-ratio of x and y and the two points of the boundary of Ω
obtained in this way.

Many have been interested in finding conditions for a Hilbert geometry to be
isometric to the hyperbolic space of the same dimension. Among the literature,
notable works come from Y. Benoist [4], J. Benzécri [5]. and H. Busemann and P.
Kelly [11].

The thesis is divided in two chapters. In the first one, we present the main objects
of interest of a metric space from a geometric point of view, such as geodesics and
horospheres, and we begin the study of isometries, which will be ended in the second
chapter. A common thread throughout the thesis is the fact that in the case in which
the space underlying the Hilbert geometry is strictly convex, i.e. whose boundary
contains no segment, there are many analogies with hyperbolic space. For example,
it can be proved that in this case there exists a unique geodesic passing through two
distinct points. In [10],[11], and [14] some first studies of these geometric objects
have been carried out.

In the second part of the first chapter, we study projective isometries of a given
Hilbert geometry. A projective isometry is a projective transformation that pre-
serves the domain Ω underlying the geometry. Since every projective transformation
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vi 0. Introduction

preserves the cross-ratio of any quadruple of aligned points, it is clear that these
transformations are isometries. The main tool for studying such isometries is the
Jordan form of the representative with determinant ±1 of a projective transforma-
tion. Also lots of information can be obtained from the action of these isometries
on the set of horospheres. Projective isometries can be classified according to their
fixed points. Again, we will remark that the classification of isometries in the case
of a strictly convex domain is the same as in the hyperbolic space. In the general
case, many more types of dynamics have to be considered, which play precisely on
the existence of convex faces in the boundary of the domain. Among those who have
dealt with the study of projective isometries we mention [3], [13], and [12].

When working with projective spaces one cannot avoid talking about duality.
Even in this context, the transition to the dual space is fundamental for a complete
understanding of the subject. In this context, we define the dual of a properly
convex domain as the set

Ω∗ = {ψ ∈ P∗ | ψ(x) ̸= 0 ∀x ∈ Ω}.

In the second chapter we deal with the isometries of a Hilbert geometry in all their
generality, following the work of C. Walsh in [28], [24], and [30]. What stands out
in particular is that either the group of the isometries coincides with the group
of projective isometries, or the former is generated from the latter by means of a
particular map introduced by Vinberg [27]. In the case of symmetric domains, i.e.
self-dual and such that the group of projective isometries acts transitively on them,
the Vinberg map induces an isometry which is an involution and which generates
all the isometries together with the projective isometries. To address this study, we
extend the Hilbert metric to a particular compactification of the space on which
the isometries act. What is most interesting is that such compactification strongly
depends on the structure of the faces of the domain and of its dual. Similarly, the
action of a generic isometry is determined precisely by the action on these faces.



Chapter 1

Hilbert geometries

In this chapter, we will introduce the main characters of this thesis, the Hilbert
geometries. The space we will mainly work with will be an open, bounded, convex
subset of the projective space. We will equip this space with a metric structure
by defining the Hilbert metric. It is important to note that we refer to Hilbert
geometries because geometric properties, such as Gromov hyperbolicity, are heavily
dependent on the shape of the convex set we work with, leading to distinct geome-
tries.

1.1 Convex domains and cones

In this section, we will study convex domains in both affine and projective spaces.
The contents of this section are fundamental to the thesis and include many classical
notions from convex geometry and convex analysis. For a detailed exploration of
the first field, we refer to [6], and for the second one we refer to [19].

In what follows, we will make use of some notions of projective geometry. For
further readings, we refer to [6]. Throughout this section and the thesis, we will fre-
quently move from projective spaces to affine spaces, and viceversa. For this reason,
we will maintain two different notations when we are in the projective context and
when we are in the affine context.

Throughout this thesis, we will denote by Pn the real n-dimensional projective
space. Moreover, we will denote by π : Rn+1 {0} → Pn the natural quotient
projection.

Definition 1.1.1. Let Ω be an open subset of Pn. We say that Ω is convex if the
intersection of Ω with any projective line is a connected set. Additionally, we say

7



8 1. Hilbert geometries

that Ω is a properly convex domain if it is convex and there exists an affine chart
(U, ϕU), with U ⊆ Pn and ϕU : U → Rn a homeomorphism, such that Ω ⊆ U and
ϕ(Ω) is bounded within Rn.

Definition 1.1.2. Let Ω be a properly convex domainand x ∈ ∂Ω be a point of
its boundary. We say that x is a strictly convex point if it is not contained in the
relative interior of any segment of Ω. We say that x is a C1-point if x is a point
of regularity C1. Moreover, if x is a C1-point and also strictly convex, then we say
that x is a round point.

Definition 1.1.3. Let Ω be a properly convex domain. We say that Ω is a strictly
convex domain when every point of the boundary ∂Ω is a strictly convex point.
Similarly, we say that Ω is a round domain when every point of the boundary is a
round point.

Let us consider the natural quotient projection π : Rn+1 {0} → Pn. The preimage
of a properly convex domain gives rise to a cone in Rn+1 defined as follows.

Definition 1.1.4. Let C be an open, connected, and non-empty subset of Rn+1. We
say that C is a cone if it is invariant under the action of any positive homothety.
Moreover, we say that C is proper if it contains no affine line. We say that a cone is
properly convex if it is convex and proper.

We want to establish a connection between the projective and vectorial view-
points. Given a properly convex domain Ω ⊆ Pn we consider its preimage π−1(Ω),
which is clearly an convex open cone. Furthermore, if Ω is properly convex, then
π−1(Ω) does not contain any complete affine line. In this case, π−1(Ω) consists of
two disjoint open properly convex cones. Indeed, if π−1(Ω) contains a line ℓ, then
the intersection of any hyperplane in Rn+1 with ℓ, and consequently with π−1(Ω), is
non-empty. Therefore, in any affine chart, Ω contains a point at infinity, making it
unbounded.

Definition 1.1.5. Let Ω ⊆ Pn be a convex domain. We define the cone above Ω as
one of the connected components1 of π−1(Ω), and we denote it as CΩ.

On the other hand, given an open cone C ⊆ Rn+1, we define the domain under C
as ΩC = π(C). The projection π gives a correspondence between open cones in Rn+1

and domains in Pn, that maps (properly) convex open cones to (properly) convex
domains.

1When Ω is a properly convex domain π−1(Ω) is made of two connected components, each of
which is a properly convex open cone. In what follows, nothing depends of the choice of one of the
two components.
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1.1.1 Supporting hyperplanes

Let C ⊆ A be a proper, non-empty, and convex open set in an affine space A. The
geometric version of the Hahn-Banach Theorem [Theorem 11.4.1, [6]] asserts that
for every affine subspace L ⊆ A that does not intersect C, there exists an affine
hyperplane in A containing L and disjoint from C.

Given the fixed convex set C, each hyperplane H disjoint from C defines two
half-spaces, one of those contains the convex and the other disjoint from it. We
denote the half-space containing C as the positive half-space, denoted by H+.

Applying the Hahn-Banach Theorem to all points in A C, we conclude that C
is the intersection of open half-spaces.

Now, let us focus on a properly convex domain Ω ⊆ Pn. Consider a point p on
the boundary ∂Ω and look at Ω in an affine chart that contains both Ω and p. Here,
we can apply the Hahn-Banach Theorem to the singleton {p} and we find that there
exists an affine hyperplane in this chart containing p and disjoint from Ω. We refer
to the completion in Pn of such a hyperplane as a supporting hyperplane for Ω at p.
It always exists a supporting hyperplane for Ω at a point Pn in its boundary. We
will see, in the next section, that it is not always unique.

On the other hand, we can work with the cone CΩ associated with Ω. This cone is
convex, so by the Hahn-Banach Theorem, for each ray in the boundary of the cone,
there is a (linear) hyperplane that contains the ray and is disjoint from CΩ. Such
a hyperplane is called supporting hyperplane for CΩ. It is clear that a supporting
hyperplane for Ω at a point p of its boundary is the projectivization of a supporting
hyperplane for the cone CΩ at the ray in ∂CΩ corresponding to p.

To conclude this section, we notice that the closure Ω of a properly convex
domain Ω can be partitioned into faces. A convex subset F ⊆ Ω is a face of Ω if for
any two points x, y in Ω such that the open line segment from x to y intersects F
in at least one point, then the closure of the segment is contained in F . The entire
domain Ω and the empty-set are the improper faces of Ω, and any other face is a
proper or exposed face of Ω and lies in the boundary.

For a point x ∈ Ω, the face of x is defined as the face Fx of maximal dimension
that contains x in its relative interior. Notice that if x ∈ Ω is a point of the
boundary, then Fx ⊆ ∂Ω and can be determined by intersecting Ω with all the
supporting hyperplanes at x.

A point of the boundary whose face consists of a single point is called a vertex,
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and a face F contained in the boundary whose projective co-dimension is 1 is called
a facet.

In the same way we define the faces of a convex cone C. We change the notations
a little bit, and call extremal faces the faces of C contained in the boundary ∂C, and
we call extremal ray a face consisting of a single ray. We call extremal generator a
point contained in an extremal ray.

Notice that the faces of a (properly) convex cone are (properly) convex cones.
Finally, we observe that when we consider the projection ΩC, extremal faces corre-
spond to exposed faces, and extreme rays correspond to vertices.

1.1.2 John’s Ellipsoid

In this section, we introduce a useful construction that can be done with a bounded
convex domain in Rn. In particular, we want to define the ellipsoid of maximal
volume contained in it. This notion can be extended to properly convex domains
in Pn, by considering them in an appropriate affine chart. But the definition will
depend on the chosen affine chart.

An ellipsoid in Rn is the image of the unit ball Bn centered at 0 under a non-
singular affine transformation ϕ : Rn → Rn. Then ϕ(x) = Ax + b with det(A) ̸= 0

and b ∈ Rn. Notice that the matrix A can be chosen to be positive definite. Indeed,
if we consider the polar decomposition A = PU , where P is positive definite and U
is orthogonal, we have that ABn + b = PBn + b, since UBn = Bn.

The volume of the ellipsoid E = PBn + b is

vol(E) = det(P )vol(Bn).

Therefore, in order to study the volume of an ellipsoid, we have to investigate the
behavior of the determinant of positive definite matrices. We need the following
lemma to prove the main result of this section.

Lemma 1.1.6 (Minkowski’s determinant inequality). Let P and Q be two positive
definite matrices of dimension n. Then

det(P +Q)
1
n ≥ det(P )

1
n + det(Q)

1
n

and the equality holds if and only if there is a constant c so that Q = cP .
In particular if the equality holds and det(P ) = det(Q), then P = Q.

Proof. Since P is positive definite, it has a positive definite square root S. Then



1.1 Convex domains and cones 11

det(P +Q)
1
n = det(S)

2
n det(I + S−1QS−1)

and

det(P )
1
n + det(Q)

1
n = det(S)

2
n (1 + det(I + S−1QS−1))

Let us consider the positive definite matrix R = S−1QS−1, to get the thesis it suffices
to prove that det(I +R)

1
n ≥ 1 + det(R)

1
n and that the equality holds if and only if

there exists c ∈ R such that R = cI.
Let λ1, . . . , λn the (real and positive) eigenvalues of R, then the two conditions

above are equivalent to

( n∏
k=1

(1 + λk)
) 1

n ≥ 1 + (λ1 · . . . · λn)
1
n ,

and
λ1 = · · · = λn = c.

Now we compute

n∏
k=1

(1 + λk) = 1 +
n∑
k=1

( ∑
1≤i1<···<ik≤n

λi1 · . . . · λik

)

= 1 +
n∑
k=1

((
n

k

) ∑
1≤i1<···<ik≤n

λi1 · . . . · λik(
n
k

) )

≥ 1 +
n∑
k=1

((
n

k

) ∏
1≤i1<···<ik≤n

(λi1 · . . . · λik)
1

(nk)

)

= 1 +
n∑
k=1

((
n

k

)
(λ1 · . . . · λn)

(n−1
k−1)
(nk)

)

=
n∑
k=0

(
n

k

)
(λ1 · . . . · λn)

k
n

= (1 + (λ1 · . . . · λn)
1
n )n,

where the inequality in the third line comes from the one between the arithmetic and
geometric means (i.e. given x1, . . . , xm ≥ 0 it holds that x1+···+xm

m
≥ (x1 . . . xm)

1
m

with equality if and only if x1 = · · · = xm). Thus, it is an equality if and only if for all
the choices of two subsets of the same size {i1, . . . , ik}, {j1, . . . , jk} ⊆ {1, . . . , n} we
have that λi1 · . . . ·λik = λj1 · . . . ·λjk , this is true if and only if λ1 = ... = λn =: c.
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We are ready to study the volume of any ellipsoid contained in a properly convex
domain and we want to show that only one of them has maximal volume.

Theorem 1.1.7. Let C be a bounded convex domain in Rn. Then there exists a
unique ellipsoid E(C) of maximal volume contained in C.

Proof. Let K be the closure of C, we prove that there exists a unique closed ellipsoid
E(K) of maximal volume contained in K. Then, we take the interior of E(K) to
obtain E(C). Let us consider the set that represents all the closed ellipsoids that
are contained in K

E = {(A, b) | A positive definite matrix of size n, b ∈ Rn, ABn + b ⊆ K}.

Since K has non-empty interior and it is convex, E is non-empty and

((1− t)A1 + tA2, (1− t)b1 + tb2) ∈ E for all (A1, b1), (A2, b2) ∈ E and t ∈]0, 1[.

Moreover, E is compact with respect to the product topology. The function
det : (A, b) 7→ det(A) is continuous. So, there is an element of E that achieve the
maximum of det on E . We want to show that such element is unique.

Let E1 = A1B
n + b1 and E2 = A2B

n + b2 in E such that det(A1) = det(A2) =

max(A,b)∈E det(A). By the convexity of E , the ellipsoid E3 = A3B
n + b3, with A3 =

1
2
(A1 +A2) and b3 = 1

2
(b1 + b2), is an element of E . We first show that A1 = A2. By

Lemma 1.1.6 we have that

det(A3)
1
n ≥ 1

2
(det(A1)

1
n + det(A2)

1
n ) = det(A1)

1
n

so, by the maximality of det(A1) this is an equality, hence A1 = A2.
Now, if b1 ̸= b2 K contains the convex hull of E1∪E2. If E1 is different from E2,

we can assume up to an affine transformation, that the two ellipsoids are Bn − e1

and Bn + e1, as in Figure 1.1, with e1 the first element of the canonical basis of R3.
Then the convex hull of E1 ∪ E2 contains the ellipsoid E3 given by(

2
1

...
1

)
Bn,

which has volume greater than vol(E1). This contradicts the maximality of E1.

Definition 1.1.8. Let C ⊆ Rn be a bounded convex domain. The John’s ellipsoid
of C is the ellipsoid E(C) of maximal volume contained in C.
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Figure 1.1: Configuration of ellipsoids considered in the proof of Theorem 1.1.7.

We want to prove that there also exists a unique ellipsoid of maximal volume
centered on a fixed point, among the ellipsoids contained in a bounded convex do-
main. The proof of Theorem 1.1.7 can be modified to this case: we have to consider
the set Eb = {A |A positive definite matrix of size n, ABn + b ⊆ K} instead of E .
Then we have the following result.

Theorem 1.1.9. Let C ⊆ Rn be a bounded convex domain and b ∈ C be a point.
Then there exists a unique ellipsoid E(C, b) centered at b, of maximal volume and
contained in C.

Definition 1.1.10. Let C ⊆ Rn be a bounded convex domain and b ∈ C be a point.
The John’s ellipsoid centered at b of C is the ellipsoid E(C, b) of maximal volume
centered at b and contained in C.

Remark 1.1.11. In the following, we will use the notion of John’s ellipsoid in the
context of properly convex domain in Pn, but this notion is very extrinsic, indeed it
depends on the affine chart in which we study this domain.

1.2 The Hilbert metric

In this section, we will introduce the concept of Hilbert geometry. We will define a
Hilbert geometry as a properly convex domain endowed with its Hilbert metric. We
will explore how Hilbert geometries serve as a generalization of hyperbolic geometry.
Throughout this section, we will study classical geometric objects, such as geodesics
and horospheres, highlighting both the similarities and distinctions between Hilbert
and hyperbolic cases. Finally, we will analyse the group of projective isometries,
revealing parallels with the group of isometries of the hyperbolic space.
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1.2.1 Definition and basic properties

Recall that in the projective space Pn it is defined the cross-ratio of four aligned
points. In this thesis, given four aligned points x∞, x, y, y∞ ∈ Pn, we compute their
cross-ratio using the formula:

[x∞, x, y, y∞] =
∥y − x∞∥
∥x− x∞∥

∥x− y∞∥
∥y − y∞∥

, (1.1)

where the norm appearing in the right-hand side of (1.1) is the Euclidean norm
within an affine chart where Ω is bounded. With abuse of notation, x∞, x, y and
y∞ on the right-hand side denote the images of these four points in Rn under the
homeomorphism given by the considered affine chart.

It is a well-known fact that this formula for the cross-ratio is independent of the
specific affine chart used for the computation.

Let Ω be a properly convex domain. Consider two distinct points x and y within
Ω. Due to proper convexity, the projective line passing through them intersects the
boundary of the domain in exactly two distinct points. We call these two points x∞
and y∞, so that in every affine chart where Ω is bounded, x lies between x∞ and y,
and y lies between x and y∞.

Definition 1.2.1. Let Ω be a properly convex domain. The Hilbert distance on Ω

is defined as the function dΩ : Ω× Ω −→ R≥0 given by

dΩ(x, y) =

log[x∞, x, y, y∞] if x ̸= y

0 if x = y.

The metric space (Ω, dΩ) is a Hilbert geometry.

Multiplying this expression by k
2
, where k is a positive integer, one can produce

a family of non-isometric distances on a fixed properly convex domain. When we
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consider the unit disk as domain, and multiply the Hilbert distance by 1
2
, we obtain

the projective or Cayley-Klein model for the hyperbolic space Hn.
The next two theorems are classical results of projective geometry, and their

proofs can be found in [6].

Theorem 1.2.2 ([6, Corollary 6.1.4]). Let ℓ1 and ℓ2 be two projective lines in a
projective space Pn. Given {a1, a2, a3, a4} points in ℓ1 and {b1, b2, b3, b4} points in
ℓ2, there exists a projective trasformation f ∈ PGL(n+1,R) such that f(ai) = f(bi)

for i = 1, 2, 3, 4 if and only if [a1, a2, a3, a4] = [b1, b2, b3, b4].

Theorem 1.2.3 ([6, Proposition 6.5.2]). Let ℓ1, ℓ2, ℓ3, ℓ4 ∈ P2 be four lines passing
through a common point p ∈ P2. Given two sets of collinear points, {a1, a2, a3, a4}
and {b1, b2, b3, b4}, such that ai, bi ∈ ℓi, there exists a projective transformation
that fixes p, and for i = 1, 2, 3, 4, preserves ℓi and maps ai to bi. Thus, it holds
[a1, a2, a3, a4] = [b1, b2, b3, b4].

Proposition 1.2.4. The function dΩ is a distance.

Proof. Since x∞ is closer to x than to y, it follows that ∥y−x∞∥
∥x−x∞∥ ≥ 1, and the same

holds for ∥x−y∞∥
∥y−y∞∥ . Hence, dΩ(x, y) ≥ 0 ∀ x, y ∈ Ω. Moreover, from the definition,

equality holds if and only if x = y.
It is clear from the definition that dΩ(x, y) = dΩ(y, x) for all x, y ∈ Ω.
Let x, y, z ∈ Ω be three distinct points. To prove the triangular inequality, we

can work in the affine plane defined by these three points.
Within this plane, we consider the construction shown in Figure 1.2, with the

following points:

• x∞ and y∞ obtained from the intersection of ∂Ω with the line through x and
y, where x∞ is the point nearest to x and y∞ the one nearest to y;
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Figure 1.2: Configuration of points used for the triangular inequality.

• x′∞ and z′∞ obtained from the intersection of ∂Ω with the line through x and
z, where x′∞ is the one nearest to x and z′∞ the one nearest to z;

• y′′∞ and z′′∞ obtained from the intersection of ∂Ω with the line through y and
z, where y′′∞ is the one nearest to y and z′′∞ the one nearest to z;

• p obtained from the intersection (possibly at infinity) of the line through x′∞
and z′′∞ with the line through y′′∞ and z′∞;

• u obtained from the intersection of the line through x and y with the line
through p and z;

• a obtained from the intersection of the line through x and y with the line
through x′∞ and z′′∞;

• b obtained from the intersection of the line through x and y with the line
through y′′∞ and z′∞.

Applying Theorem 1.2.3 to the two configurations of lines highlighted in Figure 1.3,
we get the equations

[x′∞, x, z, z
′
∞] = [a, x, u, b] (1.2)

[z′′∞, z, y, y
′′
∞] = [a, u, y, b]. (1.3)
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Figure 1.3: Configurations of lines used for the triangular inequality.

Furthermore, since a, x, u, y and b are aligned in this order, we have

[a, x, y, b] = [a, x, u, b][a, u, y, b]. (1.4)

Combining the equations (1.2) and (1.3) with (1.2), and applying the logarithm on
both sides of each equation, we get the equation

log[a, x, y, b] = log[x′∞, x, z, z
′
∞] + log[z′′∞, z, y, y

′′
∞]. (1.5)

Since [a, x, y, b] ≥ [x∞, x, y, y∞], from (1.5), we conclude that the triangular inequal-
ity holds for all x, y and z in Ω.

Let us observe that the topology induced on Ω by the Hilbert distance dΩ is the
Euclidean topology in any affine chart. We can express the cross-ratio in 1.1 for the
Hilbert distance between two distinct points x, y ∈ Ω as

[x∞, x, y, y∞] =

(
1 +

∥y − x∞∥
∥x− x∞∥

)(
1 +

∥y − x∞∥
∥y − y∞∥

)
. (1.6)

Using the notationD = diam(Ω) = sup
z,w∈∂Ω

dΩ(z, w) and d = dΩ(x, ∂Ω) = inf
z∈∂Ω

dΩ(x, z),

from 1.6 we deduce that if ∥x− y∥ ≤ d, then

0 ≤ 2 log

(
1 +

∥x− y∥
D

)
≤ dΩ(x, y) ≤ log

((
1 +

∥x− y∥
d

)(
1 +

∥x− y∥
d− ∥x− y∥

))
.

Therefore, the topology induced by the Hilbert distance is equivalent to the Eu-
clidean topology on Ω.
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From this fact, it follows the next proposition.

Proposition 1.2.5. Let Ω be a properly convex domain. The metric space (Ω, dΩ)

is proper and complete.

To conclude this section we illustrate some useful properties of the Hilbert dis-
tance.

Proposition 1.2.6. Let Ω and Ω′ be two properly convex domains in Pn. If Ω′ ⊆ Ω,
then

dΩ′(x, y) ≥ dΩ(x, y) ∀x, y ∈ Ω′.

Proof. This relationship is a direct consequence of the definition of the Hilbert dis-
tance. For any pair of distinct points, x and y in Ω′, the projective line through
them intersects ∂Ω′ at two points, namely x′∞ and y′∞. This line intersects also
∂Ω at two points, x∞ and y∞, such that in any affine chart where Ω is bounded,
these six points are aligned in the following order: x∞, x′∞, x, y, y′∞, y∞. Note that
x∞ = x′∞ or y′∞ = y∞ might occur.

Using the formula 1.1, we get [x′∞, x, y, y
′
∞] ≥ [x∞, x, y, y∞].

As stated in Proposition 1.2.5, the metric balls of a Hilbert geometry (Ω, dΩ) are
relatively compact. Moreover, they are also convex. Let x be a point in Ω and take
r > 0. We denote the ball centered at x with radius r as BdΩ(x, r).

Given two distinct points y and z in BdΩ(x, r), let us consider a point p in the
line segment joining y and z. We have to show that dΩ(x, p) ≤ r. As usual, we can
suppose that the projective dimension of Ω is 2.

If dΩ(x, y) = dΩ(x, z), we can consider the quadrilateral Ω′ with vertices at the
points where ∂Ω intersects the line through x and y and the line through x and z,
as shown in Figure 1.4.

Figure 1.4: The quadrilateral considered to prove the convexity of metric balls.

We will prove in the next example that, in this case, the point p lies on the
boundary of the ball BdΩ′ (x, dΩ(x, y)). By Proposition 1.2.6 dΩ(x, p) ≤ dΩ′(x, p) =

dΩ(x, y) ≤ r.
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Since the distance from a distinct point increases when approaching the bound-
ary, when dΩ(x, y) > dΩ(x, z), we can find a point z′ on the half-line from x to z such
that dΩ(x, z

′) = dΩ(x, y). Then the line through y and z′ intersects the line through
x and p in a point p′ that is farther from x than p. Hence, dΩ(x, p) ≤ dΩ(x, p

′) and
the results follow from the previous case applied to y, z′ and p′. Similarly, when
dΩ(x, y) < dΩ(x, z), using the same reasoning we get the thesis.

Moreover, following what we have done to show the convexity of a metric ball,
we can observe that metric balls in strictly convex domains are strictly convex.

Exemple 1.2.7. Metric balls of a polygonal domain are polygons with at least the
same number of edges of the domain and at most twice this number.

Let Ω be a properly convex polygonal domain in P2 that is a n-gon in any affine
chart where it is bounded, with n > 2. We work in such an affine chart. Fix a point
x ∈ Ω and take r > 0.

Figure 1.5: The construction of a metric ball on the left and the resulting metric
ball on the right.

We can triangulate Ω by considering the triangles that arise from the lines passing
through x and each vertex. Let us consider two opposite triangles. On the common
line, set the point p1 such that dΩ(p1, x) = r in the first triangle and the point p2
such that dΩ(p2, x) = r in the second one. Define p as the intersection point of the
lines containing the external edges of these two triangles.

Then, define q1 as the intersection point of the line through p and p1 and the
internal edge of the first triangle that does not contain p1. Similarly, define q2 as
the intersection point of the line through p and p2 and the internal edge of the
second triangle that does not contain p2. An example of this construction is shown
in Figure 1.5. This figure also shows that the number of edges of the ball depends
on the position of the center of the ball.

By Theorem 1.2.3, all points lying within the segment connecting p1 and q1, as
well as within the segment connecting p2 and q2, have distance r from x. In this
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way, on each internal edge of the triangulation, we get a point. The polygon whose
boundary is the union of the closed segments joining two consecutive of these points
is exactly the metric ball BdΩ(x, r). Indeed, when traveling along any ray originating
from x, the distance from x increases as the Euclidean distance from x increases.

This example shows that the balls of a triangle are hexagonal. This is an ex-
pression of the fact that every n-simplex with its Hilbert metric is isometric to the
normed vector space W = Rn+1

/
Span (1, . . . , 1) endowed with the variation norm

∥[x]∥var = max
i
xi −min

j
xj.

This property will be proved in Section 2.2.
Projective isometries

The group PGL(n + 1,R) of projective transformations acts on the real projective
space Pn. Each projective transformation preserves the cross-ratio of four aligned
points. Thus, any transformation that preserves a properly convex domain is an
isometry for the associated Hilbert geometry.

We denote the group of isometries of the (Ω, dΩ) (Ω, dΩ) as Isom(Ω, dΩ). Addi-
tionally, we define the group of projective isometries as

PGL(Ω) = {A ∈ PGL(n+ 1,R) | AΩ = Ω}.

This group represents the subgroup of isometries that are projective transformations.
Each linear isomorphism’s projective class contains an element with determinant

±1 and has to preserve the two connected components of π−1(Ω). Indeed, if there
exist two distinct points within the same connected component, where the first is
mapped into the component to which it belongs, and the second is mapped into the
other component, then the images of these two points are in an affine line that has
to be contained in the image of the cone, leading to a contradiction. Hence, we have
the following isomorphism

PGL(Ω) ∼= {A ∈ SL±(n+ 1,R) | ACΩ = CΩ} =: SL±(Ω).

Where SL±(n + 1,R) is the set of non-singular matrices with determinant ±1. In
what follows we will work with SL(n+ 1,R), but the same arguments work also for
SL-(n+ 1,R).

Before discussing projective isometries, we introduce two important geometric
objects that will be useful in the study of the group of projective isometries, geodesics
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and horospheres.

1.2.2 Geodesics

Given a metric space, we refer to a geodesic as a simple curve in which the length
of the arc between any two interior points realizes their distance. Moreover, we say
that a metric space is geodesic if for any pair of distinct point in the space there
exists a geodesic joining them. A geodesic space in which there exists a unique
geodesic joining any two distinct points is uniquely geodesic.

In this section, we study the geodesics of a Hilbert geometry.

Proposition 1.2.8. Every Hilbert geometry (Ω, dΩ) is a geodesic metric space.

Proof. Let x and y be two distinct points in Ω. The intersection of the line through
them with Ω forms a geodesic. Indeed, for any set of three ordered collinear points,
the equality in the triangle inequality holds.

From now on, we will refer to a line in a properly convex domain as the intersec-
tion of a projective line with the domain. Therefore, every line in a properly convex
domain is a geodesic.

As a direct consequence of the proof of Proposition 1.2.4, we get the following
result, which gives a characterization of geodesics in Hilbert geometries.

Proposition 1.2.9. Let (Ω, dΩ) be a Hilbert geometry and x, y ∈ Ω two distinct
points. There exists a point z ∈ Ω that does not lie in the line through x and y, such
that dΩ(x, y) = dΩ(x, z) + dΩ(z, y), if and only if x∞ and y∞ lie in two coplanar
segments of the boundary.

Proof. Using the notations of the proof of Proposition 1.2.4, a point z ∈ Ω satisfying
dΩ(x, y) = dΩ(x, z)+dΩ(z, y) exists if and only if a = x∞ and b = y∞, so the equality
in (1.5) holds. In this case, by convexity, a lies in the segment through x′∞ and z′′∞,
and b lies in the segment through y′′∞ and z′∞.

Remark 1.2.10. From the previous proposition, given two distinct points, x, y ∈ Ω,
there exists a unique geodesic through them, the straight line, if and only if the two
points in the intersection between the line through x and y and the boundary of the
domain does not lie in two coplanar segments of the boundary.

This remark yields the following corollary.

Corollary 1.2.11. Let (Ω, dΩ) be a Hilbert geometry. If Ω is strictly convex, then
(Ω, dΩ) is uniquely geodesic.
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Definition 1.2.12. Let (Ω, dΩ) be a Hilbert geometry and γ : R → Ω be a geodesic.
We say that γ is a unique-geodesic if for each pair of distinct points along its image,
any other geodesic that contains them in its image is a reparametrization of γ.

1.2.3 Horospheres

In hyperbolic geometry, horospheres play a fundamental role in the study of isome-
tries and their action on the hyperbolic space. The basic idea is of a sphere centered
at a point of the boundary. This idea is formalized by considering the level sets
of Busemann functions centered on geodesic rays. The boundary of the hyperbolic
space is identified with the set of geodesic rays, and the level sets of the Buse-
mann function centered at a geodesic ray depend only on the point of the boundary
towards which the geodesic ray approaches.

However, in the context of Hilbert geometry, a remarkable difference arises. Here,
the level sets of the Busemann function centered at a geodesic ray may depend, not
only on the boundary point, but also on the geodesic ray itself.

Therefore, a new concept, known as algebraic horospheres, has been introduced
by Cooper, Long, and Tillmann in [12]. This notion represents a significant ad-
vancement, particularly in the study of projective isometries.

Let us start with the definition of the Busemann function associated with a
geodesic ray. This function has been introduced by H. Busemann in the book [10]
in the generalized context of metric spaces. Here, we adjust the definition given in
[10] for our aim.

Definition 1.2.13. Let (Ω, dΩ) be a Hilbert geometry and r : [0,+∞[ → Ω be a
geodesic ray parametrized by its arc length. The Busemann function centered at r
is the function βr : Ω → R defined as

βr(x) = lim
t→∞

dΩ(x, r(t))− t, ∀x ∈ Ω. (1.7)

We will see below that the limit in (1.7) exists and is finite. Thus, we can define
a horosphere centered at r as a level set of the Busemann function βr.

By triangular inequality, the function given by [0,+∞[ ∋ t 7→ dΩ(x, r(t))− t ∈ R
is decreasing, indeed we have that

dΩ(x, r(t2) ≤ dΩ(x, r(t1))+dΩ(r(t1), r(t2)) = dΩ(x, r(t1))+t2−t1 ∀x ∈ Ω, 0 ≤ t1 ≤ t2,

and it is bounded below by − dΩ(x, r(0)). Moreover, the Busemann function is
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continuous since for every x, y ∈ Ω it holds that

|βr(x)− βr(y)| ≤ dΩ(x, y).

The next lemma shows that the sets of horospheres centered on distint straight
geodesic rays that converges to the same C1-point coincide. In Section 2.3, we will
see that this is true for two arbitrary geodesic rays. In this case we can talk about
horospheres centered at a point of the boundary.

Lemma 1.2.14. Let (Ω, dΩ) be a Hilbert geometry. Given a C1-point, p ∈ ∂Ω,
and two straight geodesic rays r1 and r2 converging to p, the associated Busemann
functions βr1 and βr2 differ by an additive constant.

Proof. Let x, y ∈ Ω two distinct points, then

|βr1(x)− βr2(x)− βr1(y) + βr2(y)| ≤ 2 lim
t→∞

dΩ(r1(p(t)), r2(q(t))) (1.8)

for every two reparametrizations of r1 and r2 given by p and q. Indeed, the
followings hold

βr1(x)− βr1(y) = lim
t→∞

dΩ(x, r1(t))− dΩ(y, r1(t)) = lim
t→∞

dΩ(x, r1(p(t)))− dΩ(y, r1(p(t))),

βr2(x)− βr2(y) = lim
t→∞

dΩ(x, r2(t))− dΩ(y, r2(t)) = lim
t→∞

dΩ(x, r2(q(t)))− dΩ(y, r2(q(t))),

dΩ(x, r1(p(t)))− dΩ(x, r2(q(t))) ≤ dΩ(r1(p(t)), r2(q(t))),

dΩ(y, r2(q(t)))− dΩ(y, r1(p(t))) ≤ dΩ(r1(p(t)), r2(q(t))).

Combining 1.8 with the next lemma we get that

|βr1(x)− βr2(x)− βr1(y) + βr2(y)| = 0

hence, the function given by Ω ∋ x 7→ βr1(x)− βr2(x) is constant, as required.

Lemma 1.2.15. Let r1, r2 be two straight geodesic rays converging to the same point
p ∈ ∂Ω. If p is a C1-point, then there is a reparametrization r̃2 of r2 such that

lim
t→∞

dΩ(r1(t), r̃2(t)) = 0.

Proof. Let us consider first the case when p is also a strictly convex point.
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Let us extend the geodesic rays r1 and r2 to geodesics connecting two points of
the boundary, and denote q1 and q2 as the endpoints respectively of r1 and r2 that
are distinct from p.

We can work in the affine chart of P2 containing the two geodesics, whose inter-
section with Ω is bounded.

Figure 1.6: First case of the proof of Lemma 1.2.15.

Let ℓ be the supporting line at p and L−∞ be the line through q1 and q2. Since
Ω is strictly convex, up to a chart’s change, the intersection between ℓ and L−∞ is
the point at infinity of the affine chart, hence we can assume that ℓ and L−∞ are
parallel, as in Figure 1.6.

Now, we can reparametrize r2 by setting r̃2(t) to be the intersection point between
the image of r2 and the line Lt parallel to L−∞, that contains the point r1(t).

Since r1 is parametrized by arc length, also r2 is parametrized by its arc length,
by Theorem 1.2.3.

To show that lim
t→∞

dΩ(r1(t), r̃2(t)) = 0, let us consider an arbitrary sequence
(tn)n∈N⊆ R converging to +∞. Let xn and yn the two points of Ltn ∩∂Ω, xn the one
nearest to r1 and yn the one nearest to r̃2. If we denote by x′n the intersection point
between L0 and the line through p and xn, and y′n the intersection point between
L0 and the line through p and yn, by Theorem 1.2.3 we have that

dΩ(r1(tn), r̃2(tn)) = log[x′n, r1(0), r̃2(0), y
′
n].

To conclude the proof in this first case, it suffices to observe that log[x′n, r1(0), r̃2(0), y′n]
tends to 0, as n→ ∞. Indeed, by construction since p is a round point, ∥r1(0)−x′n∥,
∥r̃2(0)− y′n∥ → ∞, as n→ ∞.

For the second case, we suppose that p is a C1-point and non-strictly convex.
We get the reparametrization r̃2 of r2 as above. Then we can consider a properly
convex domain Ω′ ⊆ Ω such that both the endpoints of the completions of r1 and r̃2
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lie in ∂Ω′, and p is a strictly convex and C1-point and the supporting line at p for
Ω and Ω′ is the same.

By the first case, dΩ′(r1(t), r̃2(t)) → 0 as t→ ∞. Since Ω′ ⊆ Ω, the same is true
for dΩ(r1(t), r̃2(t)), by Proposition 1.2.6.

Definition 1.2.16. We define a Busemann horospere as a level set of a Busemann
function centered at a round point.

Algebraic horospheres

Let Ω be a properly convex domain. The definition of algebraic horosphere
depends on a point p ∈ ∂Ω and a supporting hyperplane H for Ω at p. Denote with
W the linear hyperplane of Rn+1 whose projection is H and fix a point v ∈ Rn+1

such that p = [v].
We denote SL(H, p) the subgroup of SL(n + 1,R) whose matrices preserve W

and have v as an eigenvector. Then, we define the subgroup I(H, p) ≤ SL(H, p)

whose elements act as identity on W and preserve each plane containing v.
As usual, if we consider the projective transformation associated with an element

of SL(H, p), we can identify the group SL(H, p) with its projectivized.

We want to study the group I(H, p) and its action on Ω. Fix a basis (v, v2, . . . , vn, w)
of Rn+1 given by v2, . . . , vn ∈ W and w ∈ Rn+1 W .

Let A ∈ I(H, p). Since A preserves each plane containing v, there exist t, s ∈ R
such that Aw = tv + sw. We want to prove that s = 1 and therefore that A is
uniquely determined by t.

For this aim, let us consider w′ ∈ Rn+1 (W ∪ Span(w)). Since A preserves
the plane spanned by v and w′, there exist t′, s′ ∈ R such that Aw′ = t′v + s′w′.
Moreover, there exist a, a2, . . . , an, b ∈ R such that w′ = av+ a2v2+ · · ·+ anvn+ bw.

On one hand, we have Aw′ = av+a2v2+ · · ·+anvn+b(tv+sw) and on the other
we have Aw′ = (t′ + s′a)v + s′(a2v2 + · · · + anvn + bw). It follows that s = s′ = 1

and t′ = bt. Therefore, we have

Aw′ = (bt)v + w′ and Aw = tv + w. (1.9)

Once chosen w ∈ Rn+1 W , we get the group isomorphism

R ∋ t
∼=7−→ At ∈ I(H, p), (1.10)
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where At is the unique element of I(H, p) that satisfies Atw = tv + w.

Remark 1.2.17. From (1.9) we get that if we consider w′ ∈ Rn+1 W different
from w, the isomorphism R ∋ s 7→ As ∈ I(H, p), where As is the unique element of
I(H, p) that satisfies Asw′ = sv+w′, differ from (1.10) by a multiplicative constant.

We denote S0 ⊆ ∂Ω the subset obtained from the boundary ∂Ω by deleting p

and all the line segments in ∂Ω with one endpoint at p.
Let CΩ be the cone above Ω. We want to show that if we choose w ∈ ∂CΩ W ,

the isomorphism in (1.10) satisfies the following condition:

At(S0) {p} ⊆ Ω if t > 0, At(S0) {p} ⊆ Pn Ω if t < 0, and A0(S0) ⊆ ∂Ω.

Let t ∈ R. For each point x ∈ ∂Ω {p} such that x ̸= [w], we can define the
intersection point q between H and the projective line through x and [w].

Figure 1.7: Action of I(H, p) on Ω.

Now, we can restrict to the 3-dimensional projective space containing x, [w] and
At[w] and we can work in an affine chart where Ω is bounded. In this 3-dimensional
affine chart q may be a point at infinity.

Since every element of I(H, p) preserves each plane passing through v, we know
that the projective action of At preserves each projective line passing through p.
Thus, At(x) belongs to both the projective line passing through p and x and the
projective line passing through q and At[w]. The convexity of Ω implies that the
intersection point between these two lines is contained in Ω if At[w] ∈ Ω and it is
contained in Pn Ω if At[w] ∈ Pn Ω, see Figure 1.7. Finally, from (1.9) we know
that At[w] ∈ Ω if and only if t > 0.
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We fix such an isomorphism R ∼= I(H, p), and we denote At the element of
I(H, p) corresponding to t, for all t ∈ R. Moreover, denote wΩ the point of ∂CΩ W

that satisfies AtwΩ = tv + wΩ for all t ∈ R.

Definition 1.2.18. Let Ω ⊆ Pn be a properly convex domain. For each t > 0 we
denote St the image of S0 under At ∈ I(H, p) and we say that St is an algebraic
horosphere centered at (p,H).

Remark 1.2.19. Although we change wΩ ∈ ∂CΩ W in the construction of the
isomorphism I(H, p) ∼= R, the set {St | t ∈ R≥0} does not change, by Remark
1.2.17. So, the set of algebraic horospheres is well defined and independent of any
choice.

Now, we examine the conjugacy action of SL(H, p) on I(H, p). First of all we
fix a basis (v, v2, . . . , vn, w) of Rn+1, with v2, . . . , vn ∈ W and w ∈ Rn+1 W . For
each B ∈ SL(H, p) the image of w is Bw = w̃ + µw, for some w̃ ∈ W and µ ̸= 0.
Since B preserves W , we get that µ is an eigenvalue for B. Indeed, after a change
of basis, the last row of the matrix contains 0 in every column except the last one
which contains µ.

Remark 1.2.20. The eigenvalue µ does not depend on the choice of w ∈ Rn+1 W .
Let us consider another w′ ∈ Rn+1 W . Then, w′ = z + bw for some z ∈ W

and b ∈ R {0}. If Bw = w̃ + µw, for some w̃ ∈ W and µ ̸= 0, then Bw′ =

(Bz + bw̃ − µz) + µ(z + bw). Since Bz + bw̃ − µz ∈ W , we get that the eigenvalue
µ does not depend on the choice of w.

Therefore, the eigenvalue µ(B) which satisfies that for every w ∈ Rn+1 W there
exists w̃ ∈ W such that Bw = w̃ + µ(B)w is well defined. We denote λ(B) the
eigenvalue of B relative to v. Then, we define the map τ : SL(H, p) → R given by

τ(B) =
λ(B)

µ(B)
.

Proposition 1.2.21. The conjugation of I(H, p) into SL(H, p) is an automorphism
of I(H, p). Moreover, we have that BAtB−1 = Aτ(B)t for all B ∈ SL(H, p) and
t ∈ R.

Proof. Fix t ∈ R and B ∈ SL(H, p). We have to show that BAtB−1 acts as the
identity on W and preserves each plane passing through v.

We set w = wΩ. Then, Atw = tv + w and there exists w̃ ∈ W such that
Bw = w̃ + µ(B)w.
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For each z ∈ W it holds

BAtB
−1(z) = B(A(B−1(z))) = B(B−1(z)) = z,

since B−1(z) ∈ W . Thus, (BAtB−1)|W ≡ IdW .
Now, we have to show that for each u ∈ Rn+1 W the point BAtB−1(u) belongs

to the plane spanned by u and v. Once u ∈ Rn+1 W is fixed, there exist z ∈ W

and b ∈ R {0} such that u = z + bw. Thus, we have

BAtB
−1(u) = z + bBAB−1(w)

= z +
b

µ(B)
BAt(w −B−1w̃)

= z +
b

µ(B)
B(tv + w −B−1w̃)

= z +
b

µ(B)
(tλ(B)v + w̃ + µ(B)w − w̃)

=
(λ(B)

µ(B)
bt
)
v + u. (1.11)

Therefore, BAB−1 ∈ I(H, p).

From (1.11) we get also that BAB−1(w) =
λ(B)

µ(B)
tv + w. Hence, BAtB−1 =

Aτ(B)t.

Remark 1.2.22. From this proposition, if B ∈ SL(H, p)∩PGL(Ω) and A ∈ I(H, p)
correspond to t ≥ 0, then we have that

B(St) = BAt(S0) = BAB−1(B(S0)) = BAtB
−1(S0) = Sτ(B)t.

Then any B ∈ SL(H, p) ∩ PGL(Ω) such that τ(B) = 1 preserves each algebraic
horosphere.

Definition 1.2.23. Let Ω ∈ Pn be a properly convex domain, p ∈ ∂Ω be a point of
its boundary and H ⊆ Pn be a supporting hyperplane for Ω at p. The homomor-
phism h : PGL(Ω) ∩ SL(H, p) → R given by h(B) = log τ(B) is called horosphere
displacement function centered at (p,H).

In the next section, we will study the group PGL(Ω) and the displacement func-
tion associated with the elements which fix the center (p,H).

Proposition 1.2.24. Let p ∈ ∂Ω be a round point and H be the supporting hyper-
plane for Ω at p. The set of algebraic horospheres centered at (p,H) coincides with
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the set of Busemann horospheres centered at p.

Proof. Let βγ be the Busemann function centered on a geodesic ray γ : [0,+∞[ → Ω

parametrized by arc length that converges to p.

To prove the assertion, we look for a particular affine chart, where the point p
is a point at infinity, algebraic horospheres are given by vertical translations of the
boundary and the image of γ lies on the en-axis.

Let [w] ∈ ∂Ω the endpoint, different from p, of the geodesic extension of γ to the
whole R.

Such affine chart can be obtained taking H as the hyperplane at infinity and
identifying Pn H with Rn in such a way that if (e1, . . . , en) is the canonical basis,
then p corresponds to the direction given by en, the image of γ(0) is en, and [w]

corresponds to the origin of the coordinate axes.

Figure 1.8: Algebraic horospheres in a particular affine chart.

We can consider the isomorphism R ∋ t 7→ At ∈ I(H, p) given in (1.10),
induced by w. Then, the action of I(H, p) on Rn is given by vertical translation
At(x) = x+ ten, for every x ∈ Rn.

On the other hand, the identification with Rn in the construction of the affine
chart above, can be done so that γ(t) = eten, for all t ≥ 0.

Take q ∈ Ω that does not lie on the xn-axis. Let y be the point on ∂Ω vertically
below q. The straight line ℓ through γ(t) and q has two intersections with ∂Ω; denote
the one on the q side by q∞(t) and the other by γ∞(t). Denote the xn-coordinate of
q by qn, of y by yn, and of q∞(t) by q∞,n(t). The xn-coordinate of γ∞(t) is et+s, for
a well defined s ∈ R. Figure 1.9 shows the considered configuration.

Theorem 1.2.3 implies that [q∞(t), q, γ(t), γ∞(t)] = [(0, q∞,n(t)), (0, qn), γ(t), γ(t+s)].
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Figure 1.9: Busemann function at a round point.

Thus, we have

dΩ(γ(t), q)− t = log
∣∣ et − q∞,n(t)

qn − q∞,n(t)
· qn − et+s

et − et+s
· e−t

∣∣
= log

∣∣1− e−tq∞,n(t)

qn − q∞,n(t)
· e

−(t+s)qn − 1

e−s − 1

∣∣.
Now, as t→ ∞, q∞(t) tends to y, so q∞,n(t) → yn, and s→ ∞.

Taking the limit as t→ ∞ gives

βγ(q) = lim
t→∞

dΩ(γ(t), q)− t = − log |qn − yn|.

It follows that the level sets of βγ in this chart are obtained from ∂Ω by vertical
translation.

1.3 Duality

The concept of duality is essential in the study of geometric objects within projective
spaces. We establish a connection between the study of objects in projective spaces
and their duals. We denote (Pn)∗ the dual projective space obtained by the projec-
tivization of the vector space (Rn+1)∗ dual to Rn+1. When there is no ambiguity, we
will omit the dimension in the notation and use P∗.

Definition 1.3.1. Let Ω ⊆ Pn be a properly convex domain. We define the dual of
Ω as the set

Ω∗ = {ψ ∈ P∗ | ψ(x) ̸= 0 ∀ x ∈ Ω}.

Under the canonical bijection between points of P∗ and projective hyperplanes of
Pn, the projective class of a linear functional is mapped to the projectivization of its
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kernel. Therefore, points of Ω∗ correspond to projective hyperplanes disjoint from
Ω. Moreover, its boundary ∂Ω∗ corresponds to the set of all supporting hyperplanes
for Ω.

We will see below that the dual of a properly convex domain is a properly convex
domains. Furthermore, this duality is an involution.

Remark 1.3.2. For every p ∈ ∂Ω, the set of all the supporting hyperplanes for Ω

at p forms a face of the boundary of the dual Ω∗. In fact, it corresponds to the set
{ψ ∈ Ω∗ | ψ(p) = 0}, which is clearly convex.

We extend the concept of duality to convex cones in Rn+1.

Definition 1.3.3. Let C ⊆ Rn+1 be a convex open cone. We define the dual of C
as the set

C∗ = {φ ∈ (Rn+1)∗ | φ(v) > 0 ∀v ∈ C [0]C},

where2 [0]C = {v ∈ ∂C | −v ∈ ∂C}.

Given a properly convex domain Ω ∈ Pn, we can consider the cone CΩ associated
with Ω. When considering the dual cone C∗

Ω of CΩ, it is clear that its projection
π(C∗

Ω) coincides with Ω∗, and that C∗
Ω = CΩ∗ .

On the other hand, given a non-proper convex open cone C ⊆ Rn+1, the dual of
its projection ΩC is empty, even if C∗ is non-empty.

Remark 1.3.4. Let C be a convex open cone. Then, its closure is

C∗ =
⋂
v∈C

{φ ∈ (Rn+1)∗ | φ(v) ≥ 0}.

Indeed, from the continuity of each linear functional we have

C∗ = {φ ∈ (Rn+1)∗ | φ(v) > 0 ∀v ∈ C [0]C}
⊆ {φ ∈ (Rn+1)∗ | φ(v) > 0 ∀v ∈ C}
⊆ {φ ∈ (Rn+1)∗ | φ(v) ≥ 0 ∀v ∈ C}
= {φ ∈ (Rn+1)∗ | φ(v) ≥ 0 ∀v ∈ C}.

On the other hand, for any φ0 ∈ {φ ∈ (Rn+1)∗ | φ(v) ≥ 0 ∀v ∈ C} and for any
ψ ∈ C∗ the sequence

{(
1− 1

n

)
φ0 +

1
n
ψ
}

is contained in C∗ and converges to φ0.

Proposition 1.3.5. Let C be a properly convex open cone. Then the dual C∗ is also
a properly convex open cone.

2The notation [0]C will be clear in the next chapter.
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Proof. First, we observe that C∗ is invariant under positive homotheties and is con-
vex. Moreover, it is non-empty since C is proper. To show that C∗ is properly
convex, let us consider two linear functionals φ0, φ ∈ (Rn+1)∗ with φ ̸= 0. We
have to show that the line R ∋ t 7→ φ0 + tφ is not contained in C∗. Let v ∈ C
be such that φ(v) ̸= 0. It is clear that we can always find a real value t such that
φ0(v) + tφ(v) ≤ 0. So, the line φ0 + tφ t ∈ R is not contained in C∗.

To complete the proof, we need to show that C∗ is open. From Remark 1.3.4
we know that C∗ is intersection of closed half-spaces. Moreover, from Hahn-Banach
theorem, we know that there is a supporting hyperplane for C∗ passing through any
point of ∂C∗. It follows that φ ∈ ∂C∗ if and only if there is v ∈ ∂C {0} such that
φ(v) = 0. Since C is proper, we have C∗ = {φ ∈ (Rn+1)∗ | φ(v) > 0 ∀v ∈ C {0}},
and hence C is open.

Remark 1.3.6. If C ⊊ Rn+1 is a non-proper convex cone, then, its dual has empty
interior. Indeed, C∗ is contained in the intersection of the hyperplanes {φ ∈ (Rn+1)∗ |
φ(v) = 0}, for v ∈ [0]C.

Proposition 1.3.7. Let C be a properly convex open cone. The canonical isomor-
phism Rn+1 → (Rn+1)∗∗ maps C onto C∗∗.

Proof. The canonical isomorphism, ι : Rn+1 → (Rn+1)∗∗, maps a vector v ∈ Rn+1 to
the linear functional ι(v) : (Rn+1)∗ ∋ φ 7→ φ(v) ∈ R.

If v ∈ C, then for every φ ∈ C∗, by definition, ι(v)(φ) = φ(v) = 0. Hence,
ι(C) ⊆ C∗∗. Let us identify ι(C) with C. From Proposition 1.3.5, both C and C∗ are
convex open cones. Since C ⊆ C∗∗, either ∂C = ∂C∗∗ or ∂C∩C∗∗ ̸= ∅. In the first case,
we have C = C∗∗. In the second case, we can consider v ∈ ∂C ∩ C∗∗, and H ⊆ Rn+1

be a supporting hyperplane for C at v. Then the functional φ ∈ (Rn+1)∗ defining
H vanishes at v and is positive on C. However, v ∈ C∗∗ implies that φ(v) > 0, a
contradiction.

Remark 1.3.8. The open cones in Rn+1 that are not properly convex are always
the interior part of the product of a vector space of dimension k, for some k ∈ N
and 1 ≤ k ≤ n, and a properly convex cone of dimension n + 1 − k. In fact, if
a cone C ⊆ Rn+1 contains a complete affine line ℓ, then its boundary ∂C contains
the vector line subspace given by translation of ℓ, this follows by convexity and
invariance under positive homotheties. Moreover, the boundary of the cone has to
contain the linear subspace spanned by all these vector lines. Let k be the dimension
of the maximal linear subspace W of Rn+1 contained in ∂C. By maximality, if we
cut C with a linear subspace of dimension n + 1 − k that intersects W only at the
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origin, we obtain a properly convex cone C ′. Again, by convexity and homogeneity,
C is isomorphic to the product W × C ′.

Remark 1.3.9. The first part of the proof of Proposition 1.3.5 shows that the dual
of a convex open cone is always a properly convex cone. The proper convexity of
the cone with which we started gives the openness of the dual cone. If the cone is a
product of a vector space of dimension k and a properly convex cone of dimension
n+ 1− k, then its dual is a properly convex cone of dimension k.

Corollary 1.3.10. Let Ω be a properly convex domain in Pn, then the dual the Ω∗

is a properly convex domain.

We want to explore better the link between a properly convex domain and its
dual. Let us start by observing that the uniqueness of a supporting hyperplane at a
point of the boundary, depends on the regularity of ∂Ω at the point. In particular,
it holds the following proposition.

Lemma 1.3.11 ([19, Theorem 2.7]). Let f : D → R be a convex function from a
convex open subset D of Rn, and p ∈ int(D). Then the followings are equivalent:

1. f is differentiable at p.

2. Gr(f) has a unique supporting hyperplane at f(p), given by {(x, y) ∈ Rn×R |
y = f(p) +∇f(p) · (x− p)}.

Lemma 1.3.12 ([19, Theorem 2.8]). Let f : D → R be a convex and differentiable
function from on an open subset D of Rn. Then f is of class C1.

Proposition 1.3.13. Let Ω be a properly convex domain in Pn. Then ∂Ω is of class
C1 if and only if Ω∗ is strictly convex.

Proof. Suppose that ∂Ω is of class C1. Let p ∈ ∂Ω be a point of the boundary. Fix
a supporting hyperplane H for Ω at p. In any affine chart that contains the point p,
locally we can see ∂Ω as the graph of a convex C1 function defined in a neighborhood
of p in H. Lemma 1.3.11 implies that there exists a unique supporting hyperplane
for Ω at p. Moreover, as we noticed in Remark 1.3.2, the set of all the supporting
hyperplanes for Ω at p is a convex face in the boundary ∂Ω∗ of the dual. From the
arbitrariness of p, we conclude that Ω∗ is strictly convex.

Conversely, suppose that Ω∗ is strictly convex. As above, for each point p ∈
∂Ω of the boundary, we can see ∂Ω, in a suitable affine chart, as the graph of a
convex function defined on a neighborhood of p in some supporting hyperplane. By
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Lemma 1.3.11 we deduce that ∂Ω is the graph of a function that is differentiable in
a neighbourhood of p. Lemma 1.3.12 implies that ∂Ω is of class C1 at p. For the
arbitrariness of p, we conclude that ∂Ω is of class C1.

Remark 1.3.14. In general, if a point p ∈ ∂Ω in the boundary of a properly convex
domain is a C1-point, by Lemma 1.3.11 we can conclude that there exists a unique
supporting hyperplane fro Ω at p.

In conclusion of this section, we present the canonical isomorphism between a
properly convex domain and its dual, introduced by Vinberg in [27]. The isomor-
phism is firstly defined between a properly convex open cone and its dual. Then,
given a properly convex domain Ω, we can work with the cone CΩ associated with
Ω, and project to the domains ΩC = Ω and ΩC∗ = Ω∗.

What is very useful about this isomorphism is that it is equivariant with respect
to the action of the group of projective isometries.

The group of projective isometries PGL(Ω) of a properly convex domain Ω acts
on the left on Ω through left multiplication, and it acts on the dual Ω∗ on the right
through right multiplication by the transpose inverse. In particular, we have the
induced actions of SL(Ω) on CΩ given by

ρCΩ : SL(Ω) −→ Aut(CΩ)
A 7→ ρ(A) : CΩ −→ CΩ

v 7→ Av

and on the dual cone C∗ given by

ρC∗
Ω
: SL(Ω) −→ Aut(C∗

Ω)

A 7→ ρ(A) : C∗
Ω −→ C∗

Ω

φ 7→ A∗φ

Definition 1.3.15. Let C ⊆ Rn+1 be a properly convex open cone and dψ a parallel
volume form on (Rn+1)∗. The characteristic function of C is

f : C −→ R

v 7→
∫
C∗
e−ψ(v)dψ

This function is well defined up to scaling since two parallel volume forms differ
by the multiplication by a constant.

Given v ∈ C, we want to define a partition of C∗ depending on v. Then, for every
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t ∈ R, let us consider the cross-section

C∗
v(t) = {ψ ∈ C∗ | ψ(v) = t} = C∗

v ∩ V ∗
v (t)

where V ∗
v (t) = {ψ ∈ (Rn+1)∗ | ψ(v) = t}. For each v ∈ C we have

C∗ =
⊔
t>0

C∗
v(t)

and for each s > 0 the diffeomorphism hs : V
∗
v (t) ∋ ψ 7→ sψ ∈ V ∗

v (st) satisfies the
condition hs ◦ ht = hst.

Now, we can fix a volume form dψt on V ∗
v (t) for all t ∈ R. Since the pull-

back h∗sdψst is a volume form on V ∗
v (t) and is a parallel translated of tn−1dψt, the

decomposition dψ = dψt ∧ dt yields:

f(v) =

∫ ∞

0

(
e−t
∫
C∗
v (t)

dψt

)
dt

=

∫ ∞

0

(
e−ttn

∫
C∗
v (1)

dψ1

)
dt

= (n)! vol(C∗
v(1))

=
(n+ 1)!

(n+ 1)n+1
vol(C∗

v(n)).

From Proposition 1.3.5, C∗
v(1) is bounded. Hence, this computation shows that

f(C) ⊆ R.

The Vinberg’s canonical bijection is defined as

Φ : C −→ C∗

v 7→ −d log f(v)
(1.12)

where the functional −d log f(v) : Rn+1 −→ R can be computed as

−d log f(v)(u) =

∫
C∗
ψ(u)e−ψ(v)dψ∫
C∗
e−ψ(v)dψ

, for all u ∈ Rn+1. (1.13)

The image of Φ is in C∗. Indeed, if u ∈ C then ψ(u) > 0 for every ψ ∈ C∗, so
Φ(v)(u) > 0.

Moreover, using the same decomposition of the volume form as above, we can
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compute the image under Φ of a point v ∈ C as

Φ(v) =

∫ ∞

0

e−ttn

(∫
C∗
v (1)

ψ1dψ1

)
dt

∫ ∞

0

e−ttn

(∫
C∗
v (1)

ψ1dψ1

)
dt

=
(n+ 1)!

n!

∫
C∗
v (1)

ψ1dψ1∫
C∗
v (1)

dψ1

= n+ 1 centr(C∗
v(1))

= centr(C∗
v(n+ 1)), (1.14)

where centr(C∗
v(n)) is the centroid (or center of mass) with respect to the measure

defined by dψn, of C∗
v(n) in the affine space defined by the cross-section {ψ ∈ C∗ |

ψ(v) = n}. So, the computation in (1.14) gives us a geometric interpretation of the
Vinberg’s isomorphism.

Lemma 1.3.16. The characteristic function f approaches +∞ on ∂C.

Proof. Let v∞ ∈ ∂C and (vn)n>0 ⊆ C converging to v∞. For every n > 0 the function
Fn : C∗ −→ R given by

Fn(ψ) = e−ψ(vn)

is non-negative and the sequence (Fn)n∈N converges uniformly on every compact
set to the function F∞ : ψ 7→ e−ψ(xn). By Beppi Levi’s Theorem

lim inf
n→+∞

f(xn) ≥
∫
C∗
F∞(ψ)dψ. (1.15)
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Moreover, if the linear functional ψ0 represents a supporting hyperplane at v∞ and
K ∈ C∗ is a closed ball, then K + R+⟨ψ0⟩ is a cylinder with cross-section K1 =

K ∩ ψ−1
0 (c) for some c ∈ R and from (1.15) we have that limn→+∞ f(vn) exists and

lim
n→+∞

f(vn) ≥
∫
K+R+⟨ψ0⟩

F∞(ψ)dψ ≥
∫
K1

(∫ ∞

0

dt

)
e−ψ(v∞)dψ = +∞.

Lemma 1.3.17. Let v ∈ C be a fixed point. Denote with Sv the level set of f : C → R
containing v. Then the tangent space at v to the level set Sv is

TvSv =
(
Φ(v)

)−1
(n).

Proof. The linear functional Φ(v) is parallel to df(v), then each level hyperplane of
Φ(v) is parallel to the tangent space of Sv at v. Since Φ(v)(v) = n, we have that
TvSv =

(
Φ(v)

)−1
(n).

Theorem 1.3.18. The map Φ : C → C∗ is a bijection.

Proof. First, we note that, using Hölder inequality, the function log f is convex. Let
ψ0 ∈ C∗, we want to show that it exists a unique v0 ∈ C such that Φ(v0) = ψ0.
Consider the affine hyperplane

Q0 = {u ∈ Rn+1 | ψ0(u) = n}

then by Lemma 1.3.16 the function log f|Q0 is convex and approaches to +∞ on
∂(Q0 ∩ C). Thus the function f|Q0∩C has a unique critical point v0.

By Lemma 1.3.17 v0 is a critical point if and only if Tv0Sv0 = Q0. Thus Φ(v0) = ψ0

and no other v ∈ C has the same image since there is a unique critical point.

Let us prove that Vinberg’s isomorphism is equivariant with respect to the action
of SL(ΩC) given above. Let v be a point in C and A ∈ SL(ΩC). From the formula in
(1.13), we have that

Φ(v)(u) =

∫
C∗
ψ(u)e−ψ(v)dψ∫
C∗
e−ψ(v)dψ

, (1.16)

for every u ∈ Rn+1. On the other hand, if we act on C with A, using the same
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formula, we have

Φ(Av)(u) =

∫
C∗
ψ(u)e−ψ(Av)dψ∫
C∗
e−ψ(Av)dψ

.

If we work with the canonical basis and its dual basis, the transposed of A given by
ψ 7→

[
v 7→ ψ(Av)

]
is given by the multiplication by AT . Hence, we have

Φ(Av)(u) =

∫
C∗
ψ(u)e−A

Tψ(v)dψ∫
C∗
e−A

Tψ(v)dψ

.

Now we can make a change of variables and, since A∗C∗ = C∗, we get

Φ(Av)(u) =

∫
C∗
A∗ψ(u)e−ψ(v)dψ∫
C∗
e−ψ(v)dψ

= A∗(Φ(v))(u),

since the integration is a linear operation.

Now, let us consider a properly convex domain Ω ⊆ Pn. The Vinberg’s map
Φ : CΩ → C∗

Ω is well defined. Moreover, from (1.16) we can see that Φ(λv) = 1
λ
Φ(v)

holds for all v ∈ CΩ and λ ∈ R. Hence, the map Φ induces a canonical isomorphism
Ψ : Ω → Ω∗ equivariant with respect to the action of the group of projective
isometries PGL(Ω).

Remark 1.3.19. Proposition 1.3.5 tells us that there is a canonical isomorphism
ι from a properly convex open cone C to its bidual C∗∗. Hence, by composing the
Vinberg map Φ : C∗ → C∗∗, with ι−1 : C∗∗ → C, we obtain a canonical isomorphism
Φ∗ : C∗ → C. The same construction can be done for Ω and Ω∗∗.

In chapter 2, we will see that the map Φ∗ is the inverse of Φ only for a specific
type of cones.

1.4 Projective isometries

The aim of this section is to classify the elements of the group of projective isometries
of a properly convex domain and to study how they act on algebraic horospheres.
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Recall that the group of projective isometries is

PGL(Ω) = {A ∈ PGL(n+ 1,R) | AΩ = Ω}

and it is a subgroup of the group of Isom(Ω, dΩ). In what follows we will work with
PGL(Ω) and with SL(Ω), but the same arguments work also for SL−(Ω).

Definition 1.4.1. Let A ∈ SL(Ω) be a projective isometry. We say that A is elliptic
if it fixes a point in Ω. If A acts freely on Ω, we say that it is parabolic if every
eigenvalue has modulus 1 and it is hyperbolic otherwise.

We can refine the definition above by introducing the translation length of an
isometry A ∈ PGL(Ω) as

t(A) = inf
x∈Ω

dΩ(x,Ax).

If A ∈ PGL(Ω) is hyperbolic and the infimum in t(A) is not achieved we say that A
quasi-hyperbolic.

Lemma 1.4.2. Let G ≤ PGL(Ω) be a compact subgroup of projective isometries.
Then the elements of G have a common fixed point.

Proof. Consider the set S of non-empty, compact, convex G-invariant subsets of Ω.
This set is non-empty since the convex hull of the G-orbit of any point is compact.
Moreover, we can consider the partial order in S given by A < B if B ⊃ A. By
Zorn’s lemma, there is a maximal element K of S.

Suppose that the relative interior of K is non-empty. Then, we can consider the
Hilbert geometry that arise from the relative interior of K. Since K is G-invariant,
we can see G as a subset of PGL(K). Hence, the convex hull of the G-orbit of a point
y in the relative interior of K is closed and contained in the relative interior of K.
Thus, we found a proper G-invariant subspace of K, contradicting its maximality.

Now, suppose that K has empty relative interior. By hypothesis, K is convex,
hence it consists of a single point. It follows that this point is a common fixed point
for the action of every element of G.

Proposition 1.4.3. Let A ∈ PGL(Ω) be a projective isometry. Then A is elliptic
if and only if it is conjugate to an element of O(n+ 1,R).

Proof. If A is elliptic, a point x ∈ Ω is fixed by A. Let us consider the image x∗ ∈ Ω∗

of x under Vinberg’s bijection. Since this map is equivariant under the action of
PGL(Ω), the point x∗ ∈ Ω∗ is fixed by the action of A∗ and A preserves the affine
chart defined by x∗. Then A is an affine transformation and preserves the John’s
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ellipsoid of Ω centered at x in the affine chart defined by x∗. Hence, A is conjugate
to an element of O(n+ 1,R).

Conversely, if A is conjugate to an element of O(n+1,R), it generates a compact
subgroup of isometries. By Lemma 1.4.2 we have that A has a fixed point in Ω.

Let us consider now the projective isometries that are not elliptic. We denote
by r(A) the spectral radius of A and we say that the power of a Jordan block of A
is (|λ|, k) if k is the size of the block and λ is the eigenvalue relative to the block.
We introduce a lexicographic order of the block’s powers. The power of A is the
maximum power (r(A), kmax), where kmax is the size of the most powerful blocks.
Recall that the fixed points of a projective isometry A on a properly convex domain
Ω correspond to eigenvectors of A contained in CΩ and relative to real positive
eigenvalues. If λ is such an eigenvalue we denote by Fix(A, λ) the intersection of the
projection of the relative eigenspace with Ω. The union of these sets is denoted by
Fix(A).

The following result gives some information about the Jordan form of a non-
elliptic projective isometry.

Proposition 1.4.4. Let Ω be a properly convex domain and A ∈ SL(Ω) non-elliptic.
Then A has a most powerful Jordan block with real eigenvalue r = r(A) and the set
Fix(A, r) is non-empty and contained in the boundary ∂Ω. Furthermore, if Ω is
strictly convex, then there is a unique block of maximum power.

We need some tools for the proof of Proposition 1.4.4. In particular, to study
the behavior of the Jordan blocks of maximum power of A ∈ PGL(Ω), we have to
study the ω-limit set ω(A,U) of specific subsets U of Pn. The set ω(A,U) consists
of the accumulation points of the orbits {An(x) | n > 0} of points x ∈ U .

For this aim, let us consider the polynomial

h(t) =
q(t)∏

λ∈R
(t− λ)

where q(t) is the minimal polynomial of A and R is the set of (distinct) eigenvalues
relative to the Jordan blocks of maximum power. We denote E = Imh(A) and
K = Kerh(A).

Exemple 1.4.5. Let us consider the projective transformation induced by the 8×8
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block-matrix

M =



3 1 0

0 3 1

0 0 3

1 1 0

0 1 1

0 0 1

3 1

0 3


.

The minimal polynomial of M is q(t) = (3− t)3(1− t)3, we have one Jordan block
of maximum power and the eigenvalue relative to this block is 2. Thus, it follows
that h(t) = (3− t)2(1− t)3. Moreover, we have

(2I−M)2 =



0 0 1

0 0 0

0 0 0

4 -4 1

0 4 -4
0 0 4

0 0

0 0


and (I−M)3 =



-8 -12 -6
0 -8 -12
0 0 -8

0 0 0

0 0 0

0 0 0

-8 -12
0 -8


.

If we denote by {v1, . . . , v8} the Jordan basis, we have that E = Span{v1} and we
obtain K removing v3 from the basis and taking the subspace generated by the
remaining 7 vectors, hence K = Span{v1, v2, v4, v5, v6, v7, v8}.

On the other hand, we have for every n ∈ N

Mn =



3n n3n−1
(
n
2

)
3n−2

0 3n n3n−1

0 0 3n

1 n
(
n
2

)
0 1 n

0 0 1

3n n3n−1

0 3n


.
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We can divide by
(
n
2

)
3n−2 and obtain that

[M ]n =



18
n(n−1)

6
n−1

1

0 18
n(n−1)

6
n−1

0 0 18
n(n−1)

2
3n−2n(n−1)

2
3n−2(n−1)

1
3n−2

0 2
3n−2n(n−1)

2
3n−2(n−1)

0 0 2
3n−2n(n−1)

18
n(n−1)

6
n−1

0 18
n(n−1)


.

Therefore, [M ]n(x) → 0 as n → ∞ for all x ∈ P(K), and if x ∈ Pn P(K), then
[M ]n(x) → [v1] as n→ ∞. It follows that P(E) = {[v1]}.

Lemma 1.4.6. Take A ∈ PGL(n + 1,R) and W ⊆ Pn P(K) with non-empty
interior. Then ω(A,W ) is a subset of P(E) with non-empty interior. Moreover, the
action of A on P(E) is conjugate into the orthogonal group.

Proof. Let us consider the Jordan decomposition ⊕iVi induced by the generalized
eigenspaces of the complexified extension AC of a representative M ∈ GL(n+ 1,R)
of A. It is not restrictive to assume that M is a block matrix made of Jordan blocks.

Then EC is spanned by the eigenvectors from the most powerful blocks and
KC contains the Vi relative to the blocks that do not have maximum power and it
contains also the maximal proper invariant subspaces of the Vi whose blocks have
maximum power.

Let k be the size of the biggest Jordan block of M relative to an eigenvalue of

modulus r = r(M). For every n ∈ N we can multiplyMn by
1(

n
k−1

)
rn−k+1

, and obtain

a matrix equivalent to Mn. So, as we saw in Example 1.4.5, after projectivizing,
only the most powerful blocks contribute to the ω–limit ω(A,W ).

Therefore, we consider a k×k most powerful Jordan block Λ = λI +N , where I
is the k×k identity matrix and N is a nilpotent k×k matrix of index k, i.e. Nk = 0

and Nk−1 ̸= 0. For any n ≥ k

Λn = λnI +

(
n

1

)
λn−1N + . . .

(
n

k − 1

)
λn−k+1Nk−1.

If λ ∈ R then for every vector v in the generalized eigenspace relative to this
block, as n→ ∞, Λn([v]) converges to the projective class of the relative eigenvector,
that belongs to P(E).
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If λ = r(A)eiθ, with θ ∈]0, 2π[ {π}, we consider at the same time this block and
the corresponding block relative to λ = r(A)e−iθ. Then the subspace Eλ spanned
by the two respective eigenvectors is preserved by the action of A and every point
of Eλ is an accumulation point of the set of orbits of points in the union of the two
generalized eigenspaces relative to the complex-conjugated blocks. Applying this
reasoning to every block of AC we get the thesis.

Moreover, the action of A on P(E) is block-diagonal with eigenvalues of the same
modulus r(A), and each non-diagonal block represents a rotation, then the action
of A on P(E) is conjugated into the orthogonal group.

Proof of Proposition 1.4.4. Using the previous notations, from Lemma 1.4.6, we de-
duce that the set H = ω(A,Ω P(K)) is a subset of P(E)∩Ω. Therefore, Ω∩P(E)
is a non-empty, compact, convex set preserved by A. According to the Brouwer
Theorem [Corollary 2.15, [20]], there exists a point in Ω ∩ P(E) that is fixed by
A. This point corresponds to an eigenvector with a positive eigenvalue. Since the
eigenvalues contained in E has modulus r(A), this eigenvalue is r(A). Since A is
non-elliptic, we have that Fix(A, r(A)) ⊆ ∂Ω.

Now, suppose that Ω is strictly convex. SinceA is non-elliptic, the set Fix(A, r(A))
consists of a single point x ∈ ∂Ω. Indeed, two points in Fix(A, r(A)) would cor-
respond to two eigenvectors relative to the same real eigenvalue. Then, the line
segment through them would be fixed by A. But, either the segment is contained
in the boundary or there is a fixed point in Ω for the action of A. In both cases we
would have a contradiction.

Let d be the dimension of E. The dimension of E is the number of Jordan blocks
of maximum power. So, we want to show that d = 1.

Suppose that d > 1. Then, we can consider Ω′ = Ω∩P(E). Since H ⊆ Ω∩P(E)
has non-empty interior in P(E), then Ω′ has dimension d − 1. Moreover, since A
preserves both Ω and P(E), we have that A|E is a projective isometry of the Hilbert
geometry on Ω′. Since, A|E is conjugated to a matrix in O(d), it represents an elliptic
isometry of Ω′, by Proposition 1.4.3. Then, there is a fixed point y ∈ Ω′. It is clear
that y is also a fixed point for A in Ω. Since Ω is strictly convex, the point x has
to be contained in ∂Ω′, where the boundary is relative to the immersion into P(E).
Then, x ̸= y. So, x and y are two distinct points in Fix(A, r(A)), and we obtain a
contradiction.

Let Ω be a properly convex domain. If A ∈ SL(Ω) is a projective isometry
of parabolic or elliptic type, then the fixed points correspond to the eigenvectors
whose eigenvalue is 1. Hence Fix(A) = Fix(A, 1) and this subset is connected and
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convex. If A is a hyperbolic isometry, then both λ+ = r(A) and λ− = 1
r(A−1)

are eigenvalues relative to fixed points in the boundary. The points in F+(A) =

Fix(A, λ+) are attracting fixed points and points in F−(A) = Fix(A, λ−) are repelling
fixed points. We denote by F0(A) the (possibly empty) union of the remaining fixed
sets. Thus Fix(A) = F−(A) ⊔ F0(A) ⊔ F+(A) is a disjoint union of convex subsets
of the boundary.

Remark 1.4.7. Let Ω be a properly convex domain and A ∈ PGL(Ω). Notice that
if a point x ∈ ∂Ω is fixed by A, then the set of supporting hyperplanes for Ω at x
is preserved by A. Since this set is convex and compact, see Remark 1.3.2, from
the Brouwer Theorem, we have that A presereves at least one of these supporting
hyperplanes. Moreover, the supporting hyperplanes that are preserved by the action
of A on Ω, correspond to the points in ∂Ω∗ that are fixed by the action of A∗ on Ω∗.

Remark 1.4.8. If Ω is strictly convex and A ∈ SL(Ω) is non-elliptic, then each set
of fixed points relative to an eigenvalue of A is a convex subset in the boundary,
hence it has to be a single point. Therefore a parabolic isometry of a stricly convex
domain has exactly one fixed point in the boundary. Moreover, a hyperbolic isometry
has exactly two fixed points, an attracting one and a repelling one. Indeed, from
Proposition 1.4.4 there are two such points, each with a supporting hyperplane
preserved by the isometry. By strictly convexity these two hyperplanes are distinct
and the intersection is a codimension-2 subspace preserved by the isometry and
disjoint from Ω, hence there are no other fixed points.

Proposition 1.4.9. Let Ω be a properly convex domain. If A ∈ SL(Ω) is parabolic,
then the size of the blocks of maximum power is odd and at least 3.

Proof. Let us consider the Jordan block of maximum power relative to 1. Denote
the size of this block by k. Then the block is Λ = I+N , where I is the k×k identity
matrix and N is a nilpotent k × k matrix of index k, i.e. Nk = 0 and Nk−1 ̸= 0.
For any n ≥ k

Λn = I +

(
n

1

)
N + . . .

(
n

k − 1

)
Nk−1.

Given x ∈ Ω Ker(Nk−1), let us consider v ∈ CΩ such that x = [v], then if k − 1 is
odd

lim
n→−∞

Λnv = − lim
n→+∞

Λnv

and ∂CΩ contains two opposite points, contradicting the proper convexity. Hence k
is odd. Moreover, if k = 1, every Jordan block of A would have size 1 and A would
be in O(n+ 1), hence elliptic.
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Proposition 1.4.10. Let Ω be a properly convex domain and A ∈ SL(Ω) a non-
elliptic isometry. Then there is a pencil of hyperplanes that is preserved by A whose
intersection with Ω is a foliation and no leaf is stabilized by A.

Proof. Thanks to the characterization of the dual of a properly convex domain, it is
equivalent to find a foliation that satisfies the request of the statement and to find
a projective line ℓ ⊆ Pn in the dual projective space such that ℓ intersects Ω∗ and
the action of A∗ preserves ℓ ∩ Ω∗ and has no fixed points within Pn Ω∗.

The first hypothesis on ℓ implies that the center of the pencil, i.e. the intersection
of all its hyperplanes, does not intersect Ω. Then, any two hyperplanes of the pencil
defined by ℓ do not intersect within Ω. Therefore, the intersection of the pencil with
Ω foliates Ω, as in Figure 1.10.

Figure 1.10: The pencil of hyperplanes in the hyperbolic case on the left and in the
parabolic case on the right.

The latter hypothesis on ℓ guarantees that no leaf is stabilized by A. Indeed,
each leaf of the foliation corresponds to a point of ℓ ∩ Pn Ω∗, since this point is
mapped by A∗ to a different point of ℓ ∩ Pn Ω∗ that corresponds to a different leaf
of the foliation.

The equivariance of the Vinberg’s map guarantees that the action of A∗ on Ω∗

is non-elliptic.
Therefore, if A is hyperbolic, applying the result in Proposition 1.4.4 to the

action of A∗ on Ω∗, we conclude that there is at least a pair made of an attracting
point H+ ∈ ∂ and a repelling point H− ∈ ∂ for the action of A∗. Let us consider the
projective line ℓ passing through H+ and H−. The action of A∗ on ℓ ∩ Pn Ω∗ has
no fixed points, since the eigenvalues relative to H+ and H− are distinct. Moreover,
due to the convexity of Ω∗, the line ℓ intersects Ω∗.

If A is parabolic, we can consider a Jordan block of A∗ of maximum power relative
to a fixed point H ∈ ∂Ω∗. By Proposition 1.4.9 this block is of size at least 3, then
there is a projective line in P∗ that contains the fixed point H and is preserved by
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A∗. The point H can be chosen to correspond to a supporting hyperplane at a point
x ∈ ∂Ω fixed by A. Then the projective line that contains H is the desired one.

Corollary 1.4.11. The translation length of a hyperbolic isometry A acting on a
properly convex domain Ω is t(A) = log λ+

λ−
, where λ+ and λ− are the maximum and

minimum real eigenvalues of A.

Proof. Let x+ ∈ ∂Ω and x− ∈ ∂Ω be respectively an attracting and a repelling fixed
point. The action of A on the segment through x+ and x− has translation length
log λ+

λ−
. Thus, t(A) ≤ log λ+

λ−
.

To prove the opposite inequality, let us consider a foliation of Ω induced by a
pencil of hyperplanes as in Proposition 1.4.10. Given a point x in Ω, denote by
Hx ∈ Pn Ω∗ be the point corresponding to the hyperplane corresponding to the
leaf to which x belongs. The image Ax belongs to a hyperplane corresponding to
a different leaf, denote by HAx ∈ Pn Ω∗ the corresponding point of the dual. To
compute the Hilbert distance between x and Ax, we can work in the projective plane
defined by x and Ax. So, we can assume that the projective dimension of Ω is 2.
Recall that the cross-ratio of four aligned points in P2 belonging to four lines that
intersects in a common point equals the cross-ratio of the four lines, seen as points
of the dual projective plane.

Thus, we have dΩ(x,Ax) ≥ dΩ∗(Hx, HAx) = log λ+
λ−
.

The next proposition shows that the translation length of a parabolic isometry
is zero. To prove this result, we need to introduce another space associated with a
properly convex domain and a point of its closure. This is the space of lines through
the fixed point.

Definition 1.4.12. Let p ∈ ∂Ω be a point of a properly convex domain Ω. Define
the line U ⊆ Rn+1 to be the preimage of p under the usual quotient projection and
the map Rp : Pn {p} → P(Rn+1/U) given by Rp[v] = [v+U ]. The map Rp is called
radial projection towards p and the image RpΩ of Ω is called space of directions of
Ω at p.
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IfA ∈ SL(Ω) fixes the point p, then it induces Ap ∈ SL(RpΩ) given byAp[v+U ] =
[Av + U ]. The matrix in SL(RpΩ) associated with Ap is given by A by deleting the
first row and column and multiplying by 1

n√
λ
, where λ is the (real and positive)

eigenvalue associated with the fixed point p.
The space of directions is isomorphic to the projection of the n-dimentional

vector space W given by the intersection between the orthogonal U⊥ ⊆ Rn+1 and
the intersection of all semi-hyperspaces defined by supporting hyperplanes at p that
contain CΩ. Hence, its projection RpΩ ∈ Pn is open and convex. In general, it is
not properly convex, hence it is projectively equivalent to a product RpΩ ∼= Ak×Ω′

that is invariant under the induced action of any projective isometry of Ω. Moreover,
RpΩ ∼= An−1 if and only p is a C1-point.

Figure 1.11: The cone on the space of directions of a C1-point and a non-C1-point.

Exemple 1.4.13. Let Ω ∈ P2 be a triangle, up to a projective transformation Ω is
the projectivization of the cone CΩ = R3

+. Figure 1.11 shows that if p is a C1-point,
then W is an open half-plane and RpΩ ∼= An−1, and if p is not a C1-point, then W
is an open proper cone and RpΩ is a properly convex domain of P1.

Proposition 1.4.14. Let A ∈ SL(Ω) be a parabolic isometry. Then for every ε > 0,
there exists a point x ∈ Ω such that dΩ(x,Ax) < ε.

Proof. Let p ∈ ∂Ω be the fixed point of A. First, assume that p is a C1-point. Choose
a geodesic ray r converging to p. Then Ar is a geodesic ray. Since A preserves the
foliation of Ω given by the algebraic horosperes centered at p, see Remark 1.2.22,
we can parametrize r such that r(t), Ar(t) ∈ St. Arguing as in the proof of Lemma
1.2.15, we have that lim

t→∞
dΩ(r(t), Ar(t)) = 0. Hence, for any ε > 0 there exists a

point x ∈ r sufficiently near to p such that dΩ(x,Ax) < ε.

Now, if p is not a C1-point, then in the decomposition of space of direction
RpΩ ∼= Ak × Ω′ the properly convex domain Ω′ is not a point. We proceed by
induction on the projective dimension n = dimΩ. When n = 1, the result is
trivially true.
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For n > 1, the action of Ap on Ω′ is non-hyperbolic and has a fixed point w ∈ Ω′.
If w ∈ Ω′, the preimage of w under the radial projection onto Ω′ is the intersection

of Ω with a projective subspace. This is a properly convex Ω′′ ⊆ Ω which is preserved
by A. By induction, there is x ∈ Ω′′ with the required property.

If w ∈ ∂Ω′, then the action on Ω′ is parabolic. By induction, there is x′ ∈ Ω′

such that dΩ′(x′, Apx
′) < ε. Since the projection onto Ω′ given by Dp is projective,

it preserves cross-ratios. If we choose x ∈ D−1
p (x′), then Dp(Ax) = Apx

′. It follows
that dΩ(x,Ax) = dΩ(x

′, Apx
′) < ε.

We can summarize the content of this section in the following table.

A ∈ SL(Ω) Fix(A) r(A) t(A)
elliptic Fix(A) = Fix(A, 1) r(A) = 1 t(A) = 0 and

Fix(A) ∩ Ω ̸= ∅ it is achived
parabolic Fix(A) = Fix(A, 1) r(A) = 1 t(A) = 0 and

Fix(A) ∩ Ω = ∅ it is not achived
hyperbolic Fix(A) ⊃ Fix(A, λ+) ⊔ Fix(A, λ−) r(A) > 1 t(A) > 0 and

Fix(A) ∩ Ω = ∅ it is achived
quasi-hyperbolic Fix(A) ⊃ Fix(A, λ+) ⊔ Fix(A, λ−) r(A) > 1 t(A) > 0 and

Fix(A) ∩ Ω = ∅ it is not achieved



Chapter 2

Isometries of a Hilbert geometry

In this chapter, we will study the group of isometries of a Hilbert geometry. The
discussion is based on the work of C. Walsh and B. Lemmens contained in [30],
[24], and [28] and contains some results adapted from [1] and [29]. The study
of isometries of a Hilbert geometry is based on the study of their behavior on a
particular compactification of the space.

Definition 2.0.1. Let C ⊆ Rn+1 be a properly convex open cone and ΩC be the
domain under C. We say that C is homogeneous if PGL(ΩC) acts transitively on ΩC.

Definition 2.0.2. Let C ⊆ Rn+1 be a properly convex open cone. We say that C
is self-dual if there exists an inner product of Rn+1 such that under the induced
identification between Rn+1 and (Rn+1)∗ the cone C corresponds to its dual C∗.

Definition 2.0.3. Let C ⊆ Rn+1 be a properly convex open cone. We say that C is
symmetric if it is both homogeneous and self-dual.

The main theorem that will be proved in this chapter is the following.

Theorem 2.0.4. Let (Ω, dΩ) be a Hilbert geometry and CΩ be the cone above Ω. We
have the following characterization of the group of isometries of (Ω, dΩ).

If CΩ is symmetric, and non-Lorentzian, then the group of projective isometries
PGL(Ω) has index 2 into the group of isometries Isom(Ω, dΩ). Otherwise, we have
that PGL(Ω) = Isom(Ω, dΩ).

2.1 Horofunction compactification

The construction of the horofunction compactification of a semi-metric space is
due to Gromov, who introduced it in [18]. In this section, we follow Gromov’s
construction to define the horofunction compactification of a Hilbert geometry.

49
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2.1.1 Horofunction boundary

Let (Ω, dΩ) be a Hilbert geometry and C(Ω,R) be the space of continuous real-valued
functions on Ω, endowed with the topology of uniform convergence on compact sets.
We fix a base point b ∈ Ω and define the function Ψb : Ω −→ C(Ω,R) that maps a
point z ∈ Ω to the continuous function Ψb,z defined by

Ψb,z : Ω −→ R
x 7→ dΩ(x, z)− dΩ(b, z)

The next two propositions show that the closure of the image of Ω under Ψb gives
rise to a compactification of Ω.

Proposition 2.1.1. Let (Ω, dΩ) be a Hilbert geometry and b ∈ Ω be a base point.
Then, Ψb(Ω) is compact.

Proof. For every z ∈ Ω and x1, x2 ∈ Ω we have

|Ψb,z(x1)−Ψb,z(x2)| = |dΩ(x1, z)− dΩ(x2, z)| ≤ dΩ(x1, x2).

Moreover, for every z ∈ Ω it holds Ψb,z(x) ∈ [− dΩ(x, b), dΩ(x, b)] for all x ∈ Ω.
Hence, Fx = {Ψb,z(x)|z ∈ Ω} is relatively compact for all x ∈ Ω. By Ascoli-Arzelà
Theorem [25, Theorem 47.1], the set {Ψb,z | z ∈ Ω} has compact closure with respect
to the topology of uniform convergence on compact sets.

Lemma 2.1.2. Let (zn)n∈N be a sequence in Ω. The sequence (Ψb,zn)n∈N converges,
up to a subsequence, to an element of Ψb(Ω) if and only if (zn)n∈N is bounded.

Proof. Suppose that (zn)n∈N is bounded. Since dΩ is proper, there is a subsequence
(znk

)k∈N of (zn)n∈N that converges to a point z ∈ Ω. Since for all z, z′ ∈ Ω and for
all x ∈ Ω it holds

|Ψb,z −Ψb,z′ | ≤ |dΩ(x, z)− dΩ(x, z
′)|+ |dΩ(b, z)− dΩ(b, z

′)| ≤ 2 dΩ(z, z
′),

we have that Ψb is continuous. Then, the sequence (Ψb,znk
)k∈N converges to Ψb,z ∈

Ψb(Ω).
Conversely, suppose that (zn)n∈N is not bounded. Proposition 2.1.1 implies that

the sequence (Ψb,zn)n∈N converges to a point ξ ∈ Ψb(Ω), up to a subsequence. We
want to prove that ξ ̸= Ψb,z for all z ∈ Ω.

We fix an arbitrary z ∈ Ω. Since dΩ(z, zn) converges to infinity, for every r > 0

there exists some m = m(r) ∈ N such that for every n ≥ m there is a point xn, on
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the geodesic straight segment from z to zn, such that dΩ(z, xn) = r. In this way, we
obtain a sequence (xn)n≥m.

The sequence (xn)n≥m is contained in the closed ballBdΩ(z, r), so it converges to a
point x ∈ BdΩ(z, r), up to a subsequence. Moreover, for every n ≥ m, since xn lies on
a geodesic through z and zn, it holds the equality dΩ(z, zn) = dΩ(z, xn)+dΩ(xn, zn).
Then Ψb,zn(xn) = Ψb,zn(z)− dΩ(z, xn). Taking the limit for n→ ∞ on this equality,
we get ξ(x) = ξ(z)− d(z, x).

Therefore, Ψb,z(x) − ξ(x) = 2 dΩ(z, x) − ξ(z) − dΩ(b, z). Since x ∈ BdΩ(z, r), if
we choose r > 1

2
(ξ(z) + dΩ(b, z)), we obtain that ξ ̸= Ψb,z.

Proposition 2.1.3. The map Ψb is an embedding for every base point b ∈ Ω.

Proof. The map Ψb is injective. Indeed, for every z, z′ ∈ Ω, if Ψb,z = Ψb,z then

dΩ(z, z)− dΩ(b, z) = dΩ(z, z
′)− dΩ(b, z

′)

and
dΩ(z

′, z)− dΩ(b, z) = dΩ(z
′, z′)− dΩ(b, z

′).

So, dΩ(z, z
′) = − dΩ(z

′, z) and thus z = z′.

To prove the continuity of Ψb, it suffice to observe that for every z, z′ ∈ Ω and
for every x ∈ Ω it holds

|Ψb,z −Ψb,z′| ≤ |dΩ(x, z)− dΩ(x, z
′)|+ |dΩ(b, z)− dΩ(b, z

′)| ≤ 2 dΩ(z, z
′)

In order to prove that the inverse
(
Ψ

|Ψb(Ω)
b

)−1

is continuous, we show that if a
sequence (Ψb,zn)n∈N in Ψb(Ω) converges to Ψb,z, where z ∈ Ω and zn ∈ Ω for every
n ∈ N, then the sequence (zn)n∈N converges to z.

From Lemma 2.1.2, the convergence of (Ψb,zn)n∈N to a point of Ψb(Ω) implies
that the sequence (zn)n∈N is bounded. Hence, (zn)n∈N is contained in a compact
closed ball. Recall that (Ψb,zn)n∈N converges to Ψb,z with respect to the topology
of uniform convergence on compact sets. Thus, for every ε > 0 there exists some
n ∈ N such that |dΩ(zn, zn)− dΩ(b, zn)− dΩ(zn, z) + dΩ(b, z)| < ε for every n ≥ n,
implying that dΩ(zn, z) <

ε
2
. Hence, (zn)n∈N converges to z.

Remark 2.1.4. If b, b′ ∈ Ω are two different base points, then for every z ∈ Ω and
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for all x ∈ Ω it holds

Ψb′,z(x) = dΩ(x, z)− dΩ(b
′, z)

= dΩ(x, z)− dΩ(b, z)− dΩ(b
′, z) + dΩ(b, z)

= Ψb,z(x)−Ψb,z(b
′). (2.1)

Now, we can look at the limit ξ ∈ Ψb(Ω) of a sequence (zn)n∈N in Ω under the map
Ψb. Similarly, we can look at the limit ξ′ ∈ Ψb′(Ω) of the same sequence under the
map Ψb′ .

What we get from (2.1) is that

ξ′ = ξ − ξ(b′) (2.2)

where ξ(b′) states for the constant function Ω ∋ x 7→ ξ(b′) ∈ R.

Thanks to these two propositions, we can identify Ω with its image under the
map Ψb, where b ∈ Ω is a fixed base point. Moreover, the space Ψb(Ω) is a com-
pactification of the space Ω.

Henceforth, when we say that a sequence (zn)n∈N in Ω converges to a point
ξ ∈ Ψb(Ω) we mean that ξ is the limit of (Ψb,zn)n∈N in the topology of uniform
convergence on compact sets.

By Remark 2.1.4, different base points give rise to homeomorphic compactifica-
tion. To define the horofunction compactification, we fix a base point b ∈ Ω.

Definition 2.1.5. Let (Ω, dΩ) be a Hilbert geometry and b ∈ Ω be a fixed base
point. The closure of the image of Ω under the map Ψb is called horofunction
compactification of Ω. We denote this space Ω

∞
= Ψb(Ω). The set

∂∞Ω = Ω
∞

Ψb(Ω)

is called horofunction boundary of Ω and its points are called horofunctions.

For simplicity we do not indicate the dependence on the base point in the nota-
tions, but we always assume that a base point is fixed.

Remark 2.1.6. If we considered the quotient of the set C(Ω,R) of continuous
real-valued functions, given by the identification of two functions that differs by an
additive constant, we could obtain a definition independent of the base point. But
it is more convenient to fix a base point and use it for all the computations.
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A subset of the horofunction boundary of particular interest for our dissertation
is the set of Busemann points. These points are those that arise from the limits of
the so-called almost-geodesics. The next definition of almost-geodesic is the same
that first appeared in the paper [26] by M. Rieffel. We call it Rieffel almost-geodesic
to distinguish this definition from the one that we will give in Section 2.2.2.

Definition 2.1.7. Let (Ω, dΩ) be a Hilbert geometry. A path γ : R+ → Ω is a
Rieffel almost-geodesic if for every ε > 0 there exists some T = T (ε) > 0 such that

|dΩ(γ(0), γ(s)) + dΩ(γ(s), γ(t))− t| < ε for all t ≥ s ≥ T.

Definition 2.1.8. Let (Ω, dΩ) be a Hilbert geometry. A horofunction ξ ∈ BΩ is a
Busemann point if it arises as the limit of a Rieffel almost-geodesic. In other words,
ξ is a Busemann point if there exists some Rieffel almost-geodesic γ : R+ → Ω such
that ξ(x) = lim

t→+∞
Ψb,γ(t)(x) for every x ∈ Ω and the convergence is uniform on every

compact set of Ω. We denote the set of Busemann points by BΩ.

Proposition 2.1.9. Every Rieffel almost-geodesic converges to a Busemann point.

Proof. Let γ : R+ → Ω be an Rieffel almost-geodesic. It follows from the definition
that for every ε > 0, there exists some T > 0 such that

|dΩ(γ(0), γ(t))− t| < ε for all t ≥ T. (2.3)

Thus, dΩ(γ(0), γ(t)) → +∞ as t → +∞. From Remark 2.1.4, it is not restrictive
to assume that the base point is b := γ(0). Lemma 2.1.2 implies that if the limit
of Ψb,γ(t) as t → ∞ exists, then it is a horofunction. From the compactness of
Ψb(Ω), there is an increasing sequence (tn)n∈N in R+ such that (Ψb,γ(tn))n∈N converges
to a horofunction ξ ∈ ∂∞Ω. We want to prove that for every x ∈ Ω it holds
lim
t→+∞

Ψb,γ(t)(x) = ξ(x) and that the convergence is uniform on every compact subset
of Ω.

Let K ⊆ Ω be a compact set and take ε > 0. For every x ∈ K, t ∈ R+ and
n ∈ N we have∣∣Ψb,γ(t)(x)− ξ(x)

∣∣ = ∣∣Ψb,γ(t)(x)−Ψb,γ(tn)(x) + Ψb,γ(tn)(x)− ξ(x)
∣∣

≤
∣∣Ψb,γ(t)(x)−Ψb,γ(tn)(x)

∣∣+ ∣∣Ψb,γ(tn)(x)− ξ(x)
∣∣. (2.4)

Now, for a sufficiently large n = n(ε) ∈ N we have that∣∣Ψb,γ(tn)(x)− ξ(x)
∣∣ < ε, (2.5)
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independently on the choice of x in K.

Moreover, for any sufficiently large s ∈ R+ and t ≥ s we have for every x ∈ K∣∣Ψb,γ(t)(x)−Ψb,γ(s)(x)
∣∣ = |dΩ(x, γ(t))− dΩ(γ(0), γ(t))− dΩ(x, γ(s)) + dΩ(γ(0), γ(s))|
≤ | dΩ(x, γ(s)) + dΩ(γ(s), γ(t))− dΩ(γ(0), γ(t))− dΩ(x, γ(s))+

+ dΩ(γ(0), γ(s))|
= |dΩ(γ(s), γ(t)) + dΩ(γ(0), γ(s))− dΩ(γ(0), γ(t))|
≤ |dΩ(γ(s), γ(t)) + dΩ(γ(0), γ(s))− t|+ |t− dΩ(γ(0), γ(t))|
< 2ε, (2.6)

where the last inequality follows from (2.3) and the definition of Rieffel almost-
geodesic.

From (2.4), combined with (2.5) and (2.6), we get that for any sufficiently large
t ∈ R+ it holds ∣∣Ψb,γ(t)(x)− ξ(x)

∣∣ < 3ε for every x ∈ K.

Thus, Ψb,γ(t) converges to the horofunction ξ uniformly on K.

Remark 2.1.10. From Proposition 2.1.1, we know that every sequence of points in
a properly convex domain converges to a function in the horofunction compactifica-
tion, with respect to the topology of uniform convergence on compact sets. So, the
pointwise limit of such a sequence is always a horofunction.

2.1.2 Detour metric

On the horofunction compactification of a Hilbert geometry (Ω, dΩ) we define the
detour cost as the function H : Ω

∞ × Ω
∞ → R ∪ {+∞} given by

H(ξ, η) = inf
(zn)n∈N∈S

(
lim inf
n→∞

dΩ(b, zn) + η(zn)
)

for all ξ, η ∈ Ω
∞

where S is the set of all sequences (zn)n∈N ⊆ Ω that converge to ξ.

Lemma 2.1.11. Let (zn)n∈N be a sequence in Ω and b, b′ ∈ Ω be two base points.
If ξ is the limit of (zn)n∈N under Ψb and ξ′ is the limit of the same sequence under
Ψb′, then

lim inf
n→∞

dΩ(b, zn) + ξ(zn) = lim inf
n→∞

dΩ(b
′, zn) + ξ′(zn).
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Proof. From Remark 2.1.4, we have that ξ′ = ξ − ξ(b′). Hence, we have

lim inf
n→∞

dΩ(b
′, zn) + ξ′(zn) = lim inf

n→∞
dΩ(b

′, zn) + ξ(zn)− ξ(b′)

= lim inf
n→∞

dΩ(b
′, zn)− dΩ(b, zn) + dΩ(b, zn) + ξ(zn)− ξ(b′)

= lim inf
n→∞

dΩ(b, zn) + ξ(zn) + lim
n→∞

dΩ(b
′, zn)− dΩ(b, zn)− ξ(b′)

= lim inf
n→∞

(dΩ(b, zn) + ξ(zn) + ξ(b′)− ξ(b′)

= lim inf
n→∞

dΩ(b, zn) + ξ(zn).

Proposition 2.1.12. Let ξ, η, ν ∈ Ω
∞ be three points of the horofunction compact-

ification. The following properties hold.

1. H(ξ, η) ≥ 0,

2. ξ(x)− ξ(y) ≤ dΩ(x, y) for all x, y ∈ Ω,

3. η(x) ≤ ξ(x) +H(ξ, η) for all x ∈ Ω,

4. H(ξ, ν) ≤ H(ξ, η) +H(η, ν).

Proof. Let (zn)n∈N be a sequence in Ω that converges to ξ and (xn)n∈N be a sequence
in Ω that converges to η. For every n ∈ N we have

dΩ(b, zn) + η(zn) = dΩ(b, zn) + lim
k→∞

(
dΩ(zn, xk)− dΩ(b, xk)

)
= lim

k→∞

(
dΩ(b, zn) + dΩ(zn, xk)− dΩ(b, xk)

)
≥ lim

k→∞

(
dΩ(b, xk)− dΩ(b, xk)

)
= 0.

Hence, lim inf
n→∞

dΩ(b, zn) + η(zn) ≥ 0. Taking the infimum on all the sequences that
converges to ξ, we get the firts assertion.

To prove the second one, we observe that for every x and y in Ω, we have

ξ(x) = lim
n→∞

dΩ(x, xn)− dΩ(b, xn)

= lim
n→∞

dΩ(x, xn)− dΩ(y, xn) + dΩ(y, xn)− dΩ(b, xn)

≤ dΩ(x, y) + lim
n→∞

dΩ(y, xn)− dΩ(b, xn)

= dΩ(x, y) + ξ(y).



56 2. Isometries of a Hilbert geometry

The third assertion follows from the second one. Indeed, for every n ∈ N

η(x) ≤
(
dΩ(x, zn)− dΩ(b, zn)

)
+
(
dΩ(b, zn) + η(zn)

)
for all x ∈ Ω,

and the conclusion follows by taking the limit infimum as n → ∞ and then the
infimum over all sequences that converge to ξ.

The fourth statement follows from the third one. Indeed, for all n ∈ N we have

dΩ(b, zn) + ν(zn) ≤ dΩ((b, zn) + η(zn) +H(η, ν).

Corollary 2.1.13. Let ξ ∈ BΩ be a Busemann point. Then, for every almost-
geodesic γ : R+ → Ω converging to ξ

lim
t→+∞

dΩ(b, γ(t)) + ξ(γ(t)) = 0.

Hence, we have H(ξ, ξ) = 0.

Proof. From Lemma 2.1.11, it is not restrictive to assume that the base point is
b := γ(0). Since γ is an almost-geodesic, for every ε > 0 it holds

dΩ(γ(0), γ(s)) + dΩ(γ(s), γ(t))− t < ε, (2.7)

for every sufficiently large s and t ≥ s.
Moreover, from (2.3) we have

− dΩ(γ(0), γ(t)) + t < ε, (2.8)

for all sufficiently large t.
Combining (2.7) and (2.8), we get

dΩ(γ(0), γ(s)) + dΩ(γ(s), γ(t))− dΩ(γ(0), γ(t))− 2ε < 0.

By taking the limit as t→ ∞, we get

lim sup
s→∞

dΩ(γ(0), γ(s)) + ξ(γ(s)) ≤ 0.

The thesis follows from the first point of Proposition 2.1.12.

Busemann points can be characterized using the detour cost. Indeed, the follow-
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ing proposition hold.

Proposition 2.1.14. Let ξ ∈ ∂∞Ω be a horofunction. Then ξ is a Busemann point
if and only if H(ξ, ξ) = 0.

Proof. If ξ is a Busemann point, it follows from Corollary 2.1.13 that H(ξ, ξ) = 0.

Conversely, suppose that H(ξ, ξ) = 0. We get from Lemma 2.1.11 that for every
b′ ∈ Ω

inf
(zn)n∈N∈S

(
lim inf
n→∞

dΩ(b
′, zn) + ξ(zn)− ξ(b′)

)
= 0,

where S is the set of all sequences that converges to ξ.

Therefore, for every ε > 0 there exists a sequence (zn)n∈N ∈ S such that for every
m ∈ N there exists some n ≥ m that satisfies

0 ≤ dΩ(b
′, zn) + ξ(zn)− ξ(b′) < ε.

Moreover, by Lemma 2.1.2, we can choose m ∈ N such that dΩ(b, zn) > M , for every
arbitrarily large M ∈ R.

We use this property to construct an almost-geodesic that converges to ξ.

Fix ε > 0. Starting from the base point, we set x0 = b. Then, we can construct
a sequence (xn)n∈N in Ω that satisfies the following condition for every n ∈ N

|dΩ(xn+1, xn) + ξ(xn)− ξ(xn+1)| <
ε

2n+1
, (2.9)

and such that dΩ(b, xn) monotonically diverges at +∞.

The second condition guarantees that, if we consider for every n ∈ N a geodesic
path from xn and xn+1, and then we concatenate these paths, the resulting path γ

is defined on the whole R+. Moreover, if we define tn =
∑n−1

k=0 dΩ(xk, xk+1), we have
that xn = γ(tn). It remains to prove that γ is an almost-geodesic.

Applying the triangular inequality, since x0 = b, we have

dΩ(x0, xm) + dΩ(xm, xn)− dΩ(b, xn) ≤ 0 for all m ≤ n.

On the other hand, from Proposition 2.1.12 we have

dΩ(x0, xm) + dΩ(xm, xn) ≥ ξ(x0)− ξ(xm) + ξ(xm)− ξ(xn) = −ξ(xn). (2.10)
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Thus, combining (2.10) with (2.9) we get

dΩ(x0, xm) + dΩ(xm, xn)− tn = dΩ(x0, xm) + dΩ(xm, xn)−
n−1∑
k=0

dΩ(xk, xk+1)

= dΩ(x0, xm) + dΩ(xm, xn)−
( n−1∑
k=0

(
dΩ(xk, xk+1) + ξ(xk+1)− ξ(xk)

)
− ξ(xn+1)

)
≥ −ξ(xn+1)−

n−1∑
k=0

ε

2k−1
+ ξ(xn+1)

≥ −ε.
(2.11)

Therefore, we have

|dΩ(x0, xm) + dΩ(xm, xn)− tn| < ε for all m ≤ n.

Now, we prove that for every δ > 0 there exists some Nδ ∈ N such that

|dΩ(x0, xm) + dΩ(xm, xn)− tn| < δ for all Nδ ≤ m ≤ n.

Let us define for every n ∈ N

an = dΩ(x0, xn)− tn

We can rewrite an in the following way

an =
n−1∑
k=0

(
− dΩ(x0, xk)− dΩ(xk, xk+1) + dΩ(x0, xk+1)

)
,

and notice that (an)n∈N is a decreasing sequence, since − dΩ(x0, xk)−dΩ(xk, xk+1)+

dΩ(x0, xk+1) ≤ 0 for every k ∈ N and an+1 = an +
(
− dΩ(x0, xn) − dΩ(xn, xn+1) +

dΩ(x0, xn+1)
)
. Moreover, from (2.11) we have that (an)n∈N is bounded below by −ε.

It follows that the sequence (an)n∈N converges to a finite limit. So, it satisfies the
Cauchy condition. Hence, for every δ > 0 there exists some Nδ ∈ N such that

|am − an| < δ for all Nδ ≤ m ≤ n.
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Therefore, for every Nδ ≤ m ≤ n we have

|dΩ(x0, xm) + dΩ(xn, xm)− tn| ≤ |dΩ(x0, xm) + dΩ(xn, xm)− dΩ(x0, xn)|

≤

∣∣∣∣∣dΩ(x0, xm) +
n−1∑
k=m

dΩ(xk, xk+1)− dΩ(x0, xn)

∣∣∣∣∣
= |am − an| < δ.

To conclude the proof, let δ > 0. For every r, s ∈ R+ such that tNδ
≤ r ≤ s,

define nr ∈ N such that tnr ≤ r < tnr+1 and ns ∈ N such that tns ≤ s < tns+1.
Then, we have

dΩ(γ(0), γ(r)) + dΩ(γ(r), γ(s))− s ≥ dΩ(γ(0), γ(s))− s

≥ dΩ(γ(0), )xns+1 − dΩ(γ(s), xns+1)− s

≥ dΩ(γ(0), )xns+1 − dΩ(γ(s), xns+1)+

− tns+1 + dΩ(γ(s), xns+1)

= dΩ(γ(0), )xns+1 − tns+1

≥ −δ,

since γ|[tns ,tns+1]
is a geodesic path.

On the other hand, we have

dΩ(γ(0), γ(r)) + dΩ(γ(r), γ(s))− s ≤ dΩ(γ(0), xnr) + dΩ(xnr+1, xns) + dΩ(xns , γ(s))− s

≤ dΩ(γ(0), xnr) + dΩ(xnr+1, xns) + dΩ(xns , γ(s))+

− tns − dΩ(xns , γ(s))

= dΩ(γ(0), xnr) + dΩ(xnr+1, xns)−
ns−1∑
k=0

dΩ(xnk
, xnk+1),

since γ|[tns ,tns+1]
is a geodesic path.

It follows that for every δ > 0, there exists Tδ > 0 such that for every Tδ ≤ r ≤ s

it holds
|dΩ(γ(0), γ(r)) + dΩ(γ(r), γ(s))− s| < δ.

The next proposition shows how to compute the detour cost from a Busemann
point to a horofunction.
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Proposition 2.1.15. Let ξ ∈ BΩ be a Busemann point and η ∈ ∂∞Ω be a horofunc-
tion. Then, for every almost-geodesic γ : R+ → Ω converging to ξ

lim
t→+∞

dΩ(b, γ(t)) + η(γ(t)) = H(ξ, η).

Proof. Let γ : R+ → Ω be an almost-geodesic converging to ξ. It follows from
Proposition 2.1.12 that

dΩ(b, γ(t)) + η(γ(t)) ≤ dΩ(b, γ(t)) + ξ(γ(t)) +H(ξ, η) for all t ∈ R+.

Taking the limit supremum as t→ ∞, it follows from Corollary 2.1.13 that

lim sup
t→∞

dΩ(b, γ(t)) + η(γ(t)) ≤ H(ξ, η).

From the definition of detour cost we also have

H(ξ, η) ≤ lim sup
t→∞

dΩ(b, γ(t)) + η(γ(t)).

Remark 2.1.16. Let ξ ∈ int(Ω
∞
) be an interior point of the horofunction compact-

ification of Ω. Then, ξ(·) = dΩ(·, x)−dΩ(b, x), for some x ∈ Ω. We can consider the
constant sequence (xn)n∈N with xn = x for all n ∈ N. From Proposition 2.1.12 we
get that for all η ∈ Ω

∞ it holds

H(ξ, η) ≥ η(x)− ξ(x)

= η(x)− dΩ(x, x) + dΩ(b, x)

= dΩ(b, x) + η(x).

On the other hand, by definition dΩ(b, x)+η(x) ≥ H(ξ, η). Thus, we have H(ξ, η) =

dΩ(b, x) + η(x).

Definition 2.1.17. Let (Ω, dΩ) be a Hilbert geometry. The detour metric on the
horofunction compactification of Ω is the function δ : Ω

∞ × Ω
∞ −→ [0,∞] defined

by the symmetrization of the detour cost, so it is given by

δ(ξ, η) = H(ξ, η) +H(η, ξ) for all ξ, η ∈ ∂∞Ω.

Proposition 2.1.18. The detour metric restricted to the set of Busemann points
δ|BΩ×BΩ

: BΩ × BΩ −→ [0,∞] is an extended metric. Moreover, it is independnt of
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the choice of the base point.

Proof. It is clear that δ is symmetric. From Proposition 2.1.12 we have that δ is
non-negative and satisfies the triangular inequality. Corollary 2.1.13 implies that
δ(ξ, ξ) = 0 for every ξ ∈ BΩ.

Now, let b, b′ ∈ Ω be two distinct base points and ξ, η ∈ BΩ be two Busemann
points with respect to the base point b. From Remark 2.1.4 we have that the
corresponding Busemann points with respect to the base point b′ are ξ′ = ξ − ξ(b′)

and η′ = η − η(b′). Then, if γ′ : R+ → Ω is an almost-geodesic converging to ξ′,
from Proposition 2.1.15 we have

H(ξ′, η′) = lim inf
t→∞

dΩ(b
′, γ′(t)) + η′(γ′(t))

= lim inf
t→∞

dΩ(b
′, γ′(t))− dΩ(b, γ

′(t) + dΩ(b, γ
′(t) + η(γ′(t))− η(b′)

= H(ξ, η) + ξ(b′)− η(b′),

since γ′ converges under Ψb to ξ. With the same reasoning it can be shown that
H(η′, ξ′) = H(ξ, η) + η(b′)− ξ(b′). Hence, H(ξ′, η′) = H(ξ, η).

Remark 2.1.19. From Remark 2.1.16 we have that if ξ ∈ int(Ω
∞
) is given by

ξ(·) = dΩ(·, x) − dΩ(b, x), for some x ∈ Ω, then for all η ∈ Ω
∞ it holds H(ξ, η) =

dΩ(b, x) + η(x). Therefore, if η ∈ int(Ω
∞
) is given by η(·) = dΩ(·, y) − dΩ(b, y), for

some y ∈ Ω then

δ(ξ, η) = dΩ(b, x) + η(x) + dΩ(b, y) + ξ(y)

= dΩ(b, x) + dΩ(x, y)− dΩ(b, y) + dΩ(b, y) + dΩ(y, x)− dΩ(b, x)

= 2 dΩ(x, y). (2.12)

On the other hand, if η ∈ BΩ, then we have

δ(ξ, η) = dΩ(b, x) + η(x) +H(η, ξ)

= dΩ(b, x) + η(x) + inf
(zn)n∈N∈S

(
lim inf
n→∞

dΩ(b, zn) + ξ(zn)
)

= η(x) + inf
(zn)n∈N∈S

(
lim inf
n→∞

dΩ(b, zn) + dΩ(zn, x)
)

= +∞, (2.13)

where S is the set of all sequences (zn)n∈N ⊆ Ω that converges to η, and the last
equality holds because (zn)n∈N∈ S if and only if dΩ(b, zn) → ∞ as n → ∞, see
Lemma 2.1.2.
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It follows that δ defines an extended metric on the space int(Ω
∞
) ∪ BΩ. From

(2.12) we have that the distance between two points in int(Ω
∞
) is finite. Moreover,

the homeomorphism Ψb : Ω → int(Ω
∞
) maps geodesics into geodesics, where b is

a fixed base point. Furthermore, the pre-image of a geodesic in int(Ω
∞
) ∪ BΩ that

is entirely contained in int(Ω
∞
) is a geodesic in Ω connecting two points of the

boundary. From (2.13) we have that the distance between a point in int(Ω
∞
) and a

point in BΩ is infinite.

Definition 2.1.20. Let (Ω, dΩ) be a Hilbert geometry and ξ, η ∈ BΩ be two Buse-
mann points. We say that ξ and η belong to the same part of the horofunction
boundary if δ(ξ, η) <∞.

In section 2.4 we will see that the partition of the set of Busemann points into
parts is related to the partitions of ∂Ω and ∂Ω∗ into faces.

The goals of the next sections will be to determine the set of Busemann points
of a Hilbert geometry and to study the action of isometries on this set, in order to
reach the proof of Theorem 2.0.4.

2.2 Birkhoff’s version of Hilbert metric

The Birkhoff’s version of the Hilbert metric is the extension of the Hilbert metric on a
properly convex domain to the cone above the domain. Moreover, this extension can
be defined also for non-proper convex cones. Birkhoff used this version of the Hilbert
metric in [7] to analyse the spectral properties of linear operators. In particular, he
used this metric to give a proof of Perron-Frobenius theorem.

2.2.1 Gauge function

Let (Ω, dΩ) be a Hilbert geometry. Using the folmula in (1.1), given two distinct
points x, y ∈ Ω their Hilbert distance can be computed as

dΩ(x, y) = log
∥y − x∞∥
∥x− x∞∥

+ log
∥x− y∞∥
∥y − y∞∥

, (2.14)

where x∞ and y∞ are the points in the intersection of line through x and y and the
boundary ∂Ω; we denote x∞ the point nearest to x and y∞ the point nearest to y.

The Hilbert distance dΩ turns out to be the symmetrization of the semi-metric

Ω× Ω ∋ (x, y) 7→ log
∥x− y∞∥
∥y − y∞∥

∈ R+, (2.15)
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Moreover, it is equivalent to do these computations in an affine chart where Ω is
bounded or in a relatively compact cross-section of the cone CΩ associated with Ω.

The definition of Hilbert metric can be extended to convex cones, possibly non-
proper, by considering Birkhoff’s version of the Hilbert metric.

If the cone is proper, it turns out that the Birkhoff’s version of the Hilbert metric
restricted to a bounded cross-section of the cone coincides with the Hilbert metric
on the projectivization of the cone.

The reason behind this definition is that in what follows we have to work also
with non-proper cones. These cones will be associated with the faces of the dual.

Definition 2.2.1. Let C be a convex open cone in Rn+1. We associate with C a
pre-order ≤C on Rn+1 such that u ≤C v if v − u ∈ C for all u, v ∈ Rn+1.

Remark 2.2.2. If C is proper ≤C is a partial order. For every v ∈ Rn+1 we have
v ≤C v since v − v = 0 ∈ C. The antisymmetry follows by the proper convexity.
Indeed, if u and v in Rn+1 are such that u ≤C v and v ≤C u, then u − v ∈ C and
v− u ∈ C, so u− v = v− u = 0. Given u, v, w ∈ Rn+1 such that u ≤C v and v ≤C w

then u ≤C w, indeed w − u = (w − v) + (v − u) ∈ C, since C is convex and closed
under the action of positive homotheties.

Definition 2.2.3. Let C be a convex open cone in Rn+1. Given u, v ∈ RN+1, the
gauge between u and v is defined as

MC(u/v) = inf{λ > 0 | u ≤C λv}.

Notice that if v ∈ C the value MC(u/v) is finite. Otherwise, MC(u/v) = +∞
when the set {λ > 0 | u ≤C λv} is empty.

Figure 2.1: Geometric interpretation of the gauge.

This remark inspires the definition of an equivalence relation on C.

Definition 2.2.4. Let u, v ∈ C be two points of the closed convex cone C, we say
that u ∼C v if and only if the two sets {λ > 0 | u ≤C λv} and {µ > 0 | v ≤C µv} are
both non-empty. We denote the equivalence class of a point v ∈ C as [v]C.
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For u, v ∈ Rn+1 and λ > 0, the condition u ≤C λv can be checked in the cone C ′

obtained from the intersection of C with the plane spanned by u and v. Then, as
we can see in Figure 2.1, the points in C are all in the same equivalence class and
any point in ∂C is equivalent to a point in ∂C. Since each face of a cone is a closed
cone, reasoning by induction, we get the following lemma.

Lemma 2.2.5. Let C ⊆ Rn+1 be a convex cone. If x ∈ C, then the the set of points
in [x]C is the relative interior of the face of x.

Remark 2.2.6. The equivalence class of 0 is the set of points

[0]C = {v ∈ C | −v ∈ C}.

So, the equivalence class of the 0 in a properly convex cone C is [0]C = {0}.
On the other hand, we saw in Remark 1.3.8 that if the cone C is not properly

convex then [0]C ∼= Rk for some 1 ≤ k ≤ n + 1. Thus, the structure of the cone is
C ∼= [0]C × C ′, where C ′ is a properly convex cone of dimension n+ 1− dim[0]C.

Figure 2.2: The gauge for non-proper cones.

Therefore, for every u, v ∈ C, if we denote u′ the projection of u onto C ′ and v′

the projection of v onto C ′, we get

MC(u/v) =MC′(u′/v′).

Figure 2.2 shows an example of this situation.



2.2 Birkhoff’s version of Hilbert metric 65

This remark introduces the following definition.

Definition 2.2.7. Let C ⊂ Rn+1 be an open convex cone. The dimension of the
Hilbert geometry associated with C is n− dim[0]C.

This number is indeed the projective dimension of the Hilbert geometry asso-
ciated with the properly convex domain π(C/[0]C), where π : Rn+1−dim[0]C {0} →
Pn− dim[0]C is the natural quotient map.

The next proposition shows that if u and v are contained in a bounded cross-
section of the cone C, then MC(u/v) coincide with the argument in the logarithm of
the second addend on the right side of the equation (2.14).

Proposition 2.2.8. Let C be a convex open cone in Rn+1 and D be a relatively
compact cross-section of C. If u, v ∈ D are two distinct points then

MC(u/v) =
∥u− v∞∥
∥v − v∞∥

where v∞ is the point nearest to v in the intersection between ∂D and the line through
u and v.

Proof. We can work on the plane defined by u and v as in Figure 2.3. Since v ∈ C,
the value λ = MC(u/v) is finite and w = λv − u ∈ ∂C. The point v∞ is given
by v∞ = u + τ(v − u) with τ > 1. Moreover, the cross-section is defined as the
intersection of C with an affine hyperplane {z ∈ R | ϕ(z) = 1}, where ϕ is a linear

functional. Hence, v∞ = 1
ϕ(w)

w and λ =
τ

1− τ
=

∥u− v∞∥
∥v − v∞∥

.

Figure 2.3: Construction used in the proof of Proposition 2.2.8.
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Remark 2.2.9. In some cases, the proof of this proposition works also in the context
of non-proper cones. Indeed, we only used the existence of the point v∞ ∈ ∂C.
Therefore, every time this point is well-defined, the gauge can be computed in this
way.

Lemma 2.2.10. Given v ∈ ∂C [0]C and u ∈ C, we parametrize the points of the
open segment from v to u as vt = (1− t)v + tu, for every t ∈]0, 1[. Then,

lim
t→0

MC(v/vt) = 1.

Proof. For every t ∈]0, 1[, we have that

MC(v/vt) = inf{λ > 0 | v ≤C λ((1− t)v + tu)}

= inf{λ > 0 |
(1
λ
− 1
)
v ≤C t(u− v)}

=
1

sup{β > −1 | βv ≤C t(u− v)}+ 1

=
1

t sup{γ > −1

t
| γv ≤C u− v}+ 1

.

As t → 0 the supremum sup{γ > −1
t
| γv ≤C u − v} tends to sup{δ ∈ R | δv ≤C

u− v}, and this supremum is finite since v ̸≤C 0. Then, the denominator of the last
term of the equation above, tends to 1 as t→ 0.

Definition 2.2.11. Let C be a convex open cone in Rn+1. The Birkhoff’s version
of the Hilbert metric on C is the function HC : C × C → R defined as

HC(u, v) = logMC(u/v) + logMC(v/u) for all u, v ∈ C.

The original Birkhoff’s version of the Hilbert distance was defined on the closure
C by setting HC(u, v) = logMC(u/v) + logMC(v/u), if u ∼C v, and HC(u, v) = +∞,
otherwise.

Birkhoff’s version of Hilbert metric on a convex cone is a metric on the set of
rays of the cone. In fact, the following proposition holds.

Proposition 2.2.12. Let C be a convex cone in Rn+1, then for each u, v, w ∈ C,

1. HC(u, v) ≥ 0,

2. HC(u, v) = HC(v, u),
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3. HC(u,w) ≤ HC(u, v) +HC(v, w),

4. HC(u, v) = HC(λu, µv) for all λ, µ > 0.

Moreover, HC(u, v) = 0 if, and only if, u = λv for some λ ≥ 0.

Proof. To prove the first property, we notice that for each α ∈
]
0, 1

MC(v/u)

[
and

β ∈
]
MC(u/v),+∞

[
we have

αv ≤C u ≤C βv.

It follows that v ≤C
β
α
v, and hence β

α
≥ 1. Thus, MC(u/v)MC(v/u) ≥ 1 and hence

HC is non-negative. The second assertion is obvious true.
To show that HC satisfies the triangle inequality, we note that for each α ∈]

0, 1
MC(v/u)

[
and γ ∈

]
0, 1

MC(w/v)

[
we have αv ≤C u and γw ≤C v, hence αγw ≤C u.

This implies that MC(w/u) ≥ MC(v/u)MC(w/v). In the same way, it can be
shown that MC(u/w) ≥MC(u/v)MC(v/w). Thus,

MC(u/w)MC(w/u) ≥MC(u/v)MC(u/v)MC(w/v)MC(v/w).

The third assertion follows by taking the logarithm on both sides of this inequality.
To prove that the fourth property holds, take u, v ∈ C and λ, µ > 0. It follows

from the definition of the gauge that

MC(λu/µv) =
λ

µ
MC(u/v) and MC(λu/µv) =

µ

λ
MC(u/v).

Finally, given u, v ∈ C, we have that 1
MC(v/u)

v ≤C u ≤C MC(u/v)v.
If HC(u, v) = 0, then MC(u/v)MC(v/u) = 1. So, we get v ≤C MC(v/u)u ≤C v,

from which we deduce that u = 1
MC(v/u)

v.
On the other hand, if u = λv for some λ > 0, then HC(u, v) = 0 by the fourth

assertion.

Thanks to Proposition 2.2.8, we can recover the classical version of Hilbert metric
on a properly convex domain Ω from Birkhoff’s one by considering its restriction to
a bounded cross-section of the cone CΩ.

Lemma 2.2.13. Let C be a convex open cone in Rn+1. If u ∈ Rn+1 and v ∈ C, then

MC(u/v) = sup
φ∈C∗ {0}

φ(u)

φ(v)
. (2.16)

Proof. From the definition of the dual cone, we have that u ≤C λv if and only if
φ(λv − u) ≥ 0 for every φ ∈ C∗, then it follows the equality in (2.16).
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Proposition 2.2.14. Let C be a convex open cone in Rn+1. The function MC(·/ · ·)|Rn+1×C

is continuous in both its entries.

Proof. As we noticed in Remark 1.3.9 the dual cone C∗ is always proper. Thus, C∗

has a relatively compact cross-section D. From (2.16) we obtain that

MC(u/v) = sup
φ∈D

φ(u)

φ(v)
for all u ∈ Rn+1, v ∈ C.

The function φ(·)
φ(··) is continuous in both its entries for every φ ∈ D, hence MC(u/v)

is lower-semicontinuous.
To show thatMC(u/v) is upper-semicontinuous, let us consider a sequence (un)n∈N

in Rn+1 and a sequence (vn)n∈N in C, converging respectively to u ∈ Rn+1 and v ∈ C.
Since D is compact, for every n ∈ N there is a point φn ∈ D such that

MC(un/vn) =
φn(un)

φn(vn)
.

Up to subsequences, we can assume that the sequence (zn)n∈N converges to a point
φ ∈ D and the sequence

(
MC(un/vn)

)
converges to its limit supremum φ(u)

φ(v)
that is

less then or equal to MC(u/v).

To conclude this section we present a very simple proof of the fact that simplicial
Hilbert geometries are isometric to normed spaces. However, the converse is also
true, as shown by T. Foertsch and A. Karlsson in [15]. This paper contains also a
different proof of the following result.

Definition 2.2.15. Let (Ω, dΩ) be a Hilbert geometry. We say that it is a polyhedral
Hilbert geometry if the domain is a polyhedra when considered in any affine chart
where it is bounded. Moreover, we say that it is a simplicial Hilbert geometry if in
any affine chart where it is bounded it is a simplex.

Let us define V = Rn+1/x∼x+λ(1,...,1), where x ∈ Rn+1 and λ ∈ R. We endow V

with the structure of normed space defining the variation norm ∥·∥var : V → R by

∥[x]∼∥var = max
i
xi −min

i
xi for all x ∈ Rn+1.

Proposition 2.2.16. Let (Ω, dΩ) be the Hilbert geometry, with Ω given by a n-
simplex. Then, (Ω, dΩ) is isometric to (V, ∥·∥var).

Proof. We can perform a change of coordinates and suppose that the cone above Ω

is CΩ = Rn+1
+ . Let u, v ∈ CΩ be two distinct points. If α = sup{µ > 0 | αv ≤C u} and
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β = inf{λ > 0 | u ≤C λv}, then HCΩ(u, v) = log β
α

and αv ≤C u ≤C βv. Therefore,
for any i = 1, . . . , n+ 1 we have αvi ≤ ui ≤ βvi. It follows that

HCΩ(u, v) ≥ log
(
max
i

ui
vi

)
+ log

(
min
i

ui
vi

)
.

Figure 2.4: Gauge for simplicial cones.

On the other hand, as we can see in Figure 2.4 there is a closed face F of CΩ + u

such that βv ∈ F . Since CΩ = Rn+1
+ , there exists i ∈ {1, . . . , n + 1} such that

F = {z ∈ Rn+1 | zi = ui}. Hence, applying the sine rule, we get β = ui
vi

. Similarly,
there exists i ∈ {1, . . . , n+ 1} such that α = ui

vi
. Therefore, we have

HCΩ(u, v) = max
i

(log ui − log vi) + min
i
(log ui − log vi).

The map Rn+1
+ ∋ u = (u1, . . . , un+1) 7→ (log u1, . . . , log un+1) ∈ Rn+1 induces a

bijection from the cross-section D = {u ∈ Rn+1
+ |

∑
i ui = 1} into V that is an

isometry with respect to the Birkhoff’s version of the Hilbert metric restricted to D
and the variation norm on V . By Proposition 2.2.8, (Ω, dΩ) is isometric to D with
the restriction of the Birkhoff’s version of the Hilbert metric, and this concludes the
proof.

For completeness, we state the following result from [15].

Proposition 2.2.17 ([15, Theorem 2]). Let (Ω, dΩ) be a Hilbert geometry. Then,
(Ω, dΩ) is isometric to normed space if and only if it is a simplicial Hilbert geometry.
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2.2.2 Funk metric

It is useful in what follows to introduce some definitions and notations. In particular,
we will work with the Funk (weak) metric1 and the reverse-Funk (weak) metric on
a given open cone.

Definition 2.2.18. Let C ∈ Rn+1 be an open (non necessarly proper) convex cone.
The Funk metric on C is the function FC : C × C → R given by

FC(u, v) = logMC(u/v) for all u, v ∈ C.

The reverse-Funk metric on C is the function RFC : C × C → R given by

RFC(u, v) = logMC(v/u) for all u, v ∈ C.

The Birkhoff’s version of the Hilbert metric is the symmetrization of the Funk
metric, i.e.

HC(u, v) = FC(u, v) +RFC(u, v) for all u, v ∈ C.

An important fact to point out is that the Funk metric is not only non-symmetric,
but can assign a negative number to a pair of points on the cone. We use the term
metric as a convention. However, the restriction of FC to a bounded cross-section
of the cone is a semi-metric, by Proposition 2.2.8.

Remark 2.2.19. As we have seen in the proof of 2.2.12 the Funk metric satisfies
the following conditions

1. FC(λu, µv) = FC(u, v) + log λ+ log µ for all u, v ∈ C and λ, µ > 0,

2. FC(u,w) ≤ FC(u, v) + FC(v, w) for all u, v, w ∈ C.

Recall that, given a Hilbert geometry (Ω, dΩ) and a base point b ∈ Ω, we are
interested in the study of the limits in the topology of uniform convergence on
compact sets of sequences of functions of the type (Ψb,zn)n∈N, where Ψb,zn : Ω → R
is given by Ψb,zn(x) = dΩ(x, zn)−dΩ(b, zn) for every x ∈ Ω and (zn)n∈N is a sequence
in Ω.

The key to a complete interpretation of these limits is to work in the cone CΩ and
to use the Birkhoff’s version of the Hilbert metric. In fact, by Proposition 2.2.12,
HCΩ is a distance on the set of rays of the cone CΩ above Ω, and the rays of CΩ
correspond to the points of Ω. Moreover, the Hilbert distance between two points

1The Funk metric has been introduced by P. Funk in [16].
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of Ω can be computed in any affine chart where Ω is bounded, and the images of Ω
in these affine charts correspond to bounded cross-sections of the cone CΩ.

Let (zn)n∈N be a sequence in Ω and b ∈ Ω be a fixed base point. As we noticed in
Remark 2.1.10, the pointwise limit of (Ψb,zn)n∈N is a uniform limit on each compact
subset of Ω, up to a subsequence. It follows that the horofunction compactification
of a Hilbert geometry coincide with the set of pointwise limits of sequences in Ψb(Ω).

We want to show that the set of pointwise limits of sequences in Ψb(Ω) corre-
sponds to the set of pointwise limits of paricular sequences of functions defined on
the cone CΩ.

For this aim, let us consider a sequence (zn)n∈N in Ω. Once fixed x ∈ Ω we have
to study the limit of the (Ψb,zn(x))n∈N.

If x = b, then Ψb,zn(x) = 0. On the other hand, given u, v ∈ CΩ such that
[u] = x = b = [v], by Proposition 2.2.12 we have

HCΩ(u,wn)−HCΩ(v, wn) = 0 = Ψb,zn(x).

If x ̸= b, we can pick u and v in a bounded cross-section D of the properly convex
cone CΩ such that x = [u], b = [v]. By Proposition 2.2.8, if for every n ∈ N we pick
wn ∈ D such that [wn] = zn, then

Ψb,zn(x) = dΩ(x, zn)− dΩ(b, zn) = HCΩ(u,wn)−HCΩ(v, wn).

For the arbitrariness of x ∈ Ω, if ξ is the limit of (Ψb,zn)n∈N, then ξ ◦ π|C is the limit
of the sequence in C(CΩ,R) given by(

u 7→ HCΩ(u,wn)−HCΩ(u,wn)
)
n∈N

. (2.17)

Conversely, suppose that h ∈ C(CΩ,R) is the limit of a sequence(
u 7→ HCΩ(u,wn)−HCΩ(v, wn)

)
n∈N

,

with (wn)n∈N a sequence in CΩ. From Proposition 2.2.12, for every sequence (λn)n∈N

of positive real numbers, it holds that

HCΩ(u,wn)−HCΩ(v, wn) = HCΩ(u, λnwn)−HCΩ(v, λnwn).

Thus, we can suppose that (wn)n∈N lies in a bounded cross-section D of the cone. If
we denote ϕD : Ω → D the identification between Ω and D, we get that the function
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ξ : Ω → R given by
ξ(x) = h|D ◦ ϕD(x)

is the limit of (Ψb,[wn])n∈N, with b = [v].
What we obtain is that every horofunction of the Hilbert geometry (Ω, dΩ) cor-

responds to the limit of a sequence in C(CΩ,R) of the type in (2.17).
Even if the cone CΩ above a properly convex domain Ω is properly convex, as

anticipated, we will need to work also with non-proper convex cones.
For this reason, we will consider for a while a pair (C,HC), where C is a (possibly

non-proper) convex open cone in Rn+1 and HC the Birkhoff’s version of Hilbert
metric on C.

We endow the cone C with the Euclidean topology and the set of real valued
continuous functions C(C,R) with the topology of uniform convergence on compact
sets.

Since HC is the symmetrization of FC, given a sequence of points (wn)n∈N in CΩ
and a base point b ∈ CΩ, when we study the limit of the sequence of functions in
(2.17), we can split the problem into two sub-problems. We can study separately
the limit of (

u 7→ FC(u,wn)−FC(b, wn)
)
n∈N

. (2.18)

and the limit of (
u 7→ RFC(u,wn)−RFC(b, wn)

)
n∈N

. (2.19)

The next steps, in order to completely classify the set of Busemann points of a
Hilbert geometry (Ω, dΩ) will be to determine the set of pointwise limits of sequence
in C(CΩ,R) of the type in (2.18), to determine the set of pointwise limits of sequence
in C(CΩ,R) of the type in (2.19), and then combine these results to determine the
set of pointwise limits of sequences of the type in (2.17). During the discussion, we
will find some conditions in order to recognize Busemann points in BΩ among the
horofunctions corresponding to the limits of sequences of the type in (2.17).

Definition 2.2.20. Let C ⊆ Rn+1 be an open convex cone. Given a point v ∈ C,
we denote by fC,v the function from C to R defined by

fC,v(u) = FC(u, v)−FC(b, v) for all u ∈ C.

We define KF
C = {fC,v | v ∈ C}.

Definition 2.2.21. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper.
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Given a point v ∈ C, we denote by rC,v the function from C to R defined by

rC,v(u) = RFC(u, v)−RFC(b, v) for all u ∈ C.

We define KRF
C = {rC,v | v ∈ C}.

Proposition 2.2.22. Let C ⊆ Rn+1 be a convex open cone. Then, the closure
KF

C ⊆ C(C,R) of the set KF
C and the closure KRF

C ⊆ C(CR) of the set KRF
C are

compact.

Proof. We prove that the closure KF
C is compact. A similar reasoning shows that

the closure KRF
C is compact.

It follows from the triangular inequality that fC,v(u) ∈ [−|FC(u, b)|, |FC(u, b)|] for
all u, v ∈ Ω. Hence, (KF

C )u = {fC,v(u) | v ∈ Ω} is relatively compact for all u ∈ Ω.
If we prove that the family of functions KF

C is equicontinuous, then by Ascoli-
Arzelà Theorem [25, Theorem 47.1], we have that KF

C has compact closure with
respect to the topology of uniform convergence on compact sets.

For every v ∈ C and u1, u2 ∈ C we have

|fC,v(u1)− fC,v(u2)| = |FC(u1, v)−FC(u2, v)| ≤ |FC(u1, u2)|. (2.20)

Let u0 ∈ C. We have to show that for every ε > 0 there exists some δ > 0 such
that for any u ∈ Beucl(u0, δ)

|fC,v(u)− fC,v(u0)| < ε.

From (2.20) |fC,v(u)− fC,v(u0)| ≤ |FC(u, u0)|. Then, by Remark 2.2.6, it is not
restrictive to assume that C is proper.

We show that we can pick a sufficiently small δ > 0 such that Beucl(u0, δ) ⊆ C
and |FC(u0, u)| < ε for all u ∈ Beucl(u0, δ).

Fix an arbitrary δ > 0 such that Beucl(u0, δ) ⊆ C. Given u ∈ Beucl(u0, δ) ⊆ C, we
can work in the 2-dimensional cone obtained intersecting C with Spanu, v. Then,
we have to study three different cases. The first is when u = λu0, with λ ≥ 1, the
second is when it is well defined the point u∞0 in the intersection of the line through
u and u0, on the side of u0, and the third is the case when the previous conditions
does not holds.

In the first case, we have u = λu0, with λ ≥ 1. Then, we have MC(u/u0) = λ. On
the other hand, λ ≤ 1+δ, since u ∈ Beucl(u0, δ). Therefore, FC(u, u0) ≤ log(1+δ) <

δ.
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In the second case, from Proposition 2.2.8 we get FC(u, u0) = log
(
1+ δ

∥u0−u∞0 ∥

)
<

δ
∥u0−u∞0 ∥ .

In the third case, u0 ∈ C + u and u ∈ Beucl(u0, δ). Then, 1
1+δ

≤MC(u/u0) ≤ 1.
Therefore, choosing δ < min{ε, ε−dist(u0, ∂C)}, it holds |fC,v(u)− fC,v(u0)| < ε,

for all u ∈ Beucl(u0, δ).

We emulate the definition of horofunction given in Section 2.1. We fix a base
point b ∈ C. To simplify the notations, we will not specify the dependence on b in
the following definitions. These notations may appear redundant, but they will be
useful in the next sections.

Definition 2.2.23. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper. A
continuous function h ∈ C(C,R) is a Funk horofunction if h is the pointwise limit
of a sequence (fC,vn)n∈N with (vn)n∈N a sequence in C, and h ̸= fC,v for every v ∈ C.
We denote the set of Funk horofunctions by ∂F∞C.

Moreover, we say that a sequence (vn)n∈N in C converges in Funk sense to a
continuous function h ∈ C(C,R) if (fC,vn)n∈N converges to h.

Definition 2.2.24. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper. A
continuous function h ∈ C(C,R) is a reverse-Funk horofunction if h is the pointwise
limit of a sequence (rC,vn)n∈N with (vn)n∈N a sequence in C, and h ̸= rC,v for every
v ∈ C. We denote the set of reverse-Funk horofunctions by ∂RF

∞ C.
Moreover, we say that a sequence (vn)n∈N in C converges in reverse-Funk sense

to a continuous function h ∈ C(C,R) if (rC,vn)n∈N converges to h.

Definition 2.2.25. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper. A
continuous function h ∈ C(C,R) is a Hilbert horofunction if h is the pointwise limit
of a sequence (rC,vn + fC,vn)n∈N with (vn)n∈N a sequence in C, and h ̸= rC,v + fC,v for
every v ∈ C. We denote the set of reverse-Funk horofunctions by ∂H∞C.
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Moreover, we say that a sequence (vn)n∈N in C converges in Hilbert sense to a
continuous function h ∈ C(C,R) if (rC,vn + fC,vn)n∈N converges to h.

More care must be paid to the extension of the definition of almost-geodesic. In
fact, in Definition 2.1.7 we require that the domain of the almost-geodesic is R+.
But, in the case of the reverse-Funk metric, we have RFC(b, v) <∞ for every base
point b ∈ C and every point v ∈ ∂C of the boundary. Since we want a straight line
segment from an inner point to a point in the boundary to be an almost-geodesic,
we have to change the definition. In addition, it is more convenient to give a discrete
version of almost-geodesic.

Definition 2.2.26. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper,
and (vn)n∈N be a sequence in C. We say that (vn)n∈N is a Funk almost-geodesic if
there exists some ε > 0 such that

FC(x0, x1) + · · ·+ FC(xn−1, xn) < FC(x0, xn) + ε for all n ∈ N.

Definition 2.2.27. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper, and
(vn)n∈N be a sequence in C. We say that (vn)n∈N is a reverse-Funk almost-geodesic
if there exists some ε > 0 such that

RFC(x0, x1) + · · ·+RFC(xn−1, xn) < RFC(x0, xn) + ε for all n ∈ N.

Definition 2.2.28. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper,
and (vn)n∈N be a sequence in C. We say that (vn)n∈N is a Hilbert almost-geodesic if
there exists some ε > 0 such that

HC(x0, x1) + · · ·+HC(xn−1, xn) < HC(x0, xn) + ε for all n ∈ N.

Remark 2.2.29. Let us consider a line segment between two points u, v ∈ C.
For every increasing sequence (tn)n∈N⊆]0, 1[ the sequence (vn)n∈N given by vn =

(1− tn)u+ tnv, is both a Funk almost-geodesic and a reverse-Funk almost-geodesic.
Indeed we prove that, given l ≤ m ≤ n, the following hold

FC(vl, vn) = FC(vl, vm) + FC(vm, vn) (2.21)

RFC(vl, vn) = RFC(vl, vm) +RFC(vm, vn).

If the intersection between the cone and the plane spanned by u and v is a proper
cone, then the segment belongs to a bounded cross-section, and from Proposition
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2.2.8 we have

FC(vl, vn) = log
( ∥vl − v∞∥
∥vn − v∞∥

)
= log

( ∥vl − v∞∥
∥vm − v∞∥

∥vm − v∞∥
∥vn − v∞∥

)
= FC(vl, vm) + FC(vm, vn),

where v∞ is the intersection of the line passing through u and v on the side of v,
and we have

RFC(vl, vn) = log
( ∥vl − v∞∥
∥vn − v∞∥

)
= log

( ∥vl − v∞∥
∥vm − v∞∥

∥vm − v∞∥
∥vn − v∞∥

)
= RFC(vl, vm) +RFC(vm, vn),

where u∞ is the intersection of the line passing through u and v on the side of u.

Figure 2.5: Example of a Funk almost-geodesic and reverse-Funk almost-geodesic.

If the intersection between the cone and the plane spanned by u and v is not
proper, then it result to be a half-space. Define λ = MC(vl/vm), µ = MC(vm/vn)

and η =MC(vl/vn). As we can see on the left hand side of Figure 2.5, the sine rule
implies that

η

µ
=

∥ηvn∥
∥µvn∥

=
∥λvl∥
∥vl∥

= λ.

Hence, η = λµ. Similarly, as we can see on the right hand side of Figure 2.5, if we
define α =MC(vm/vl), β =MC(vn/vm) and γ =MC(vn/vl), we get γ = αβ.

Finally, we can give the definition of Busemann point also in the Funk, the
reverse Funk, and the Hilbert contest.

Definition 2.2.30. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper.
A Funk horofunction h ∈ ∂F∞C is a Funk Busemann point if it is the limit in Funk
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sense of a Funk almost-geodesic. The set of Funk Busemann points is denoted by
BF
C .

Definition 2.2.31. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper. A
reverse-Funk horofunction h ∈ ∂RF

∞ C is a reverse-Funk Busemann point if it is the
limit in reverse-Funk sense of a reverse-Funk almost-geodesic. The set of reverse-
Funk Busemann points is denoted by BRF

C .

Definition 2.2.32. Let C ⊆ Rn+1 be an open convex cone, possibly non-proper.
A Hilbert horofunction h ∈ ∂H∞C is a Hilbert Busemann point if it is the limit in
Hilbert sense of a Hilbert almost-geodesic. The set of Hilbert Busemann points is
denoted by BH

C .

Lemma 2.2.33. Let (vn)n∈N ⊆ C be a sequence in an open convex cone. Then
(vn)n∈N is a Hilbert almost-geodesic if and only if it is both a Funk almost-geodesic
and a reverse-Funk almost-geodesic.

Proof. The thesis follows directly from the fact that for every n ∈ N

n−1∑
k=0

HC(vk, vk+1) +HC(v0, vn) =
n−1∑
k=0

FC(vk, vk+1) + FC(v0, vn)+

+
n−1∑
k=0

RFC(vk, vk+1) +RFC(v0, vn).

The following lemma shows that the definition of Busemann point given for
the horofunction compactification and the one given for the Birkhoff’s version are
equivalent.

Lemma 2.2.34. Let C ⊆ Rn+1 be a properly convex open cone and D be a compact
cross-section of C. Denote Ω the natural projection of C. If γ : R+ → Ω is a Rieffel
almost-geodesic, then there exists a sequence of points (vn)n∈N⊂ D that is a Hilbert
almost-geodesic and such that

(
[vn]
)
n∈N belong to the image of γ. Conversely, if

(vn)n∈N∈ D is a Hilbert almost-geodesic, and n 7→ HC(v0, vn) is not bounded, there
exists a subsequence of (vn)n∈N such that

(
[vn]
)
n∈N belongs to the image of some

Rieffel almost-geodesic of Ω.

Proof. Since D is a compact cross-section, we can work in (Ω, dΩ), by Proposition
2.2.8.
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Let γ : R+ → Ω be a Rieffel almost-geodesic. For every ε > 0 we have, for all
sufficiently large s ≤ t

−ε ≤ dΩ(γ(0), γ(s)) + dΩ(γ(s), γ(t))− t ≤ ε and − ε ≤ dΩ(γ(0), γ(t))− t ≤ ε.

Thus, starting from t0 = 0, we can construct a strictly increasing sequence (tn)n∈N

in R+ that satifies

dΩ(γ(0), γ(tk)) + dΩ(γ(tk), γ(tk+1))− dΩ(γ(0), γ(tk+1)) ≤
1

2k+1
for all k ∈ N.

(2.22)
For n ∈ N, we can take the sum for k = 1, . . . , n− 1 of the left hand side of (2.22).
What we obtain is that

dΩ(γ(0), γ(t1)) + · · ·+ dΩ(γ(tn−1), γ(tn)) ≤
1

2
+ dΩ(γ(0), γ(tn)) for all n ∈ N.

By Proposition 2.2.8, taking vn = D∩π−1(γ(tn)) for every n ∈ N, we get the desired
Hilbert almost-geodesic.

Let (vn)n∈N be a Hilbert almost-geodesic in D. We define xn = [vn] ∈ Ω, for every
n ∈ N. Since the distance dΩ(x0, xn) is not bounded, up to a subsequence, we can
assume that n 7→ dΩ(x0, xn) is increasing. Therefore, exactly as done in the proof
of Proposition 2.1.14, we can prove that the path obtained from the concatenation
of the geodesic segments between the consecutive points of the sequence is a Rieffel
almost-geodesic.

In the next section we will explore the set of reverse-Funk Busemann points and
the set of Funk Busemann points. The study of the first ones is very simple. Indeed,
we can use the continuity of the gauge on Rn+1 × C, in order to study

lim
n→∞

RFC(u, vn) = lim
n→∞

MC(vn/u),

where u ∈ C and (vn)n∈N is a sequence in C.

Quite the opposite, in the Funk case, we cannot use this argument to study

lim
n→∞

FC(u, vn) = lim
n→∞

MC(u/vn),

when the sequence (vn)n∈N approaches the boundary.
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2.3 Busemann points of a Hilbert geometry

The aim of this section is to completely characterize the set of Busemann points of
a given Hilbert geometry. As we reveald, we study separately the Funk part and the
reverse-Funk part of the limit in (2.17).

Theorem 2.3.1. Let C ⊆ Rn+1 be a properly convex cone. Then the following
statements hold:

1. If a sequence (vn)n∈N⊆ C converges to v ∈ C {0}, then it converges in reverse-
Funk sense to rC,v.

2. ∂RF
∞ C = BRF

C = {rC,v | v ∈ ∂C {0}}.

3. If a sequence (vn)n∈N in a cross-section of C converges in reverse-Funk sense
to rC,v, then it converges to a scalar multiple of v.

Proof. The first point follows directly from the continuity of the gauge function
restricted to Rn+1 × C, see Lemma 2.2.14.

Let f ∈ ∂RF
∞ C be a horofunction. By definition, f is the reverse-Funk limit of a

sequence (vn)n∈N in C. Since RFC(u, λvn)−RFC(b, λvn) = RFC(u, vn)−RFC(b, vn)

for every u ∈ C, λ ∈ R and n ∈ N, we can assume that the sequence (vn)n∈N is
contained in a relatively compact cross-section D of C. Under this assumption, the
sequence (vn)n∈N converges v ∈ D, up to a subsequence. The first point implies that
the sequence (vn)n∈N converges in reverse-Funk sense to rC,v. Since C is endowed with
the Euclidean topology and the convergence is pointwise, it follows that f = rC,v.
Moreover, v ∈ ∂C because f is a horofunction.

On the other hand, for every point v ∈ ∂C we can consider the segment that joins
v to some point of the cone. By Remark 2.2.29, every ordered sequence lying on this
segment and converging to v is a reverse-Funk almost-geodesic. The reverse-Funk
limit of such a sequence is rC,v. So, every function of the type rC,v for some v ∈ ∂C
is a reverse-Funk Busemann point.

Now, let u, v ∈ C be two non-parallel points. We want to show that the functions
rC,u and rC,v are distinct. As before, we can assume that u, v and b lie in the
same relatively compact cross-section D of C. We define ut = (1 − t)u + tb and
vt = (1− t)v + tb, for every t ∈]0, 1[, as depicted in Figure . Then, we can consider
the limit

lim
t→0

(rC,v(ut)− rC,u(ut) + rC,u(vt)− rC,v(vt)). (2.23)
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If rC,u = rC,v the limit in (2.23) limit equals to 0. But, from Proposition 2.2.8, we
have that

RFC(ut, v) = log
∥v − u∞t ∥
∥ut − u∞t ∥

and RFC(vt, u) = log
∥u− v∞t ∥
∥vt − v∞t ∥

,

where u∞t is the point of intersection between ∂D and the line through v and ut

(different from v), and v∞t is the point of intersection between ∂D and the line
through u and vt (different from u). See Figure 2.6.

Figure 2.6: Configuration used in the proof of Theorem 2.3.1.

Hence, the limit in (2.23) equals

lim
t→0

(
log

∥v − u∞t ∥
∥ut − u∞t ∥

−RFC(b, v)−RFC(ut, u) +RFC(b, u)+

+ log
∥u− v∞t ∥
∥vt − v∞t ∥

−RFC(b, v)−RFC(vt, v) +RFC(b, v)

)
. (2.24)

From Lemma 2.2.10, we have

lim
t→0

RFC(ut, u) = lim
t→0

logMC(u/ut) = 0

and
lim
t→0

RFC(vt, v) = lim
t→0

logMC(v/vt) = 0.

Then the limit in (2.24) equals

lim
t→0

(
log

∥v − u∞t ∥
∥ut − u∞t ∥

+ log
∥u− v∞t ∥
∥vt − v∞t ∥

)
,

which equals

lim
t→0

log
∥v − u∥2

∥ut − u∞t ∥∥vt − v∞t ∥
,
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since u∞t → u and v∞t → v as t→ 0.

However, this limit equals +∞ since u ̸= v. Hence, rC,u and rC,v are distinct
functions.

To prove the third assertion it suffices to observe that non-parallel limit points in
∂C correspond to different horofunctions; this follows from what we proved above.
Therefore, a sequence in a relatively compact cross-section converges in reverse-
Funk sense if and only if it converges in the usual Euclidean sense. Moreover, the
usual limit of a sequence can be obtained from the reverse-Funk limit, up to the
multiplication by a scalar.

Theorem 2.3.1 implies that there is a correspondence between reverse-Funk Buse-
mann point and the points of the boundary of the properly convex domain ΩC as-
sociated with C.

The next step is to determine the set of Funk Busemann points.

As mentioned at the beginning of this chapter, in this section we will work with
non-properly convex cones. The way these cones arise is the following. Given an
n-dimensional properly convex domain, the set of supporting hyperplanes at a non-
C1-point corresponds to a convex subset of the boundary of the dual with projective
dimension at last 1. However, the dimension of this convex is at most n − 2. So,
as we showed in Section 1.3, it can be seen as the dual of an n-dimensional convex
domain which is not properly convex. Moreover, we will see that this non-properly
convex domain is the projectivization of the tangent cone in the non-C1-point defined
below.

It is instructive, and it will turn out to be useful as well, to study the case when
the cone is a half-space.

Exemple 2.3.2. In this example we study the Funk limit of sequences in a cone
given by a half-space. First of all, we study the function fC,v with v ∈ C.

Since C ∼= Rn×R+, all the hyperplanes that are parallel to the boundary ∂C are
cross-sections of C.

Since fC,v = fC,λv for all λ > 0, we can assume that v and b are contained in the
same cross-section parallel to ∂C as in the figure below.

Thus, the point v lies in ∂C + b and hence FC(b, v) = 0.

Let u be two points of the cone. Up to a change of coordinates, we can assume
that v = (v, λ) with v ∈ Rn and λ > 0, and u = (u, µ) with u ∈ Rn and µ > 0.
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The sine rule implies that MC(u/v) =
µ
λ

and hence

fC,v(u) = FC(u, v) = log
µ

λ
.

Therefore, for every v, v′ ∈ C the functions fC,v and fC,v′ coincide. It follows that
KF

C is a single point and ∂F∞C = ∅.

Definition 2.3.3. Let C ⊆ Rn+1 be an open convex cone. For every v ∈ ∂Ω [0]C,
we denote AC(v) as the set of all horofunctions that can be obtained as the limit in
Funk sense of a sequence in C converging to v.

Remark 2.3.4. Let C ⊆ Rn+1 be a non-proper cone. From Remark 2.2.6, we know
that the Funk limit of a sequence (vn)n∈N in C equals the Funk limit of the sequence
(v′n)n∈N, where v′n is the projection of vn on the maximal properly convex cone C ′

contained in C, which in turn equals the Funk limit of a sequence contained in a
compact cross-section D′ of C ′. By compactness, this sequence converges up to a
subsequence to a point in D′. It follows that⋃

v∈∂C

AC(v) =
⋃

v∈∂C [0]C

AC(v)

Now, we introduce the definition of tangent cone.

Definition 2.3.5. Let C be an open convex cone in Rn+1 and v ∈ C be a point. The
open tangent cone at v is defined by

τ(C, v) = {λ(u− v) ∈ Rn+1 | λ > 0 and u ∈ C}.

Remark 2.3.6. Let v be a point in C. Then, τ(C, v) is an open convex cone. If
v ∈ C, then τ(C, v) = Rn+1 and C ⊆ τ(C, v). Indeed, for every z ∈ C, by convexity
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and closure under positive homotheties, we get z+v ∈ C and z = (z+v)−v ∈ τ(C, v).

Remark 2.3.7. As we noticed in Remark 2.2.6, when we consider the equivalence
relation on C induced by ≤C, the equivalence class of 0 is the set

[0]C = {v ∈ C | −v ∈ C}.

Since C is convex, then [0]C ⊆ ∂C. Moreover, if v ∈ [0]C, then τ(C, v) = C. In fact,
by convexity and closure under positive homotheties, for every u ∈ C and λ > 0 we
have λ(u− v) ∈ C, since −v ∈ C.

The tangent cone at a point of the boundary is the intersection of all the half-
spaces containing the cone, defined by the supporting hyperplanes at the point. In
fact, it holds the following result.

Lemma 2.3.8. Given v ∈ ∂C, we have that

τ(C, v) = {u ∈ Rn+1 | φ(u) > 0 ∀φ ∈ C∗ \ {0} s.t. φ(v) = 0}.

Proof. For every u ∈ C and λ > 0, if φ ∈ C∗ and φ(v) = 0, then φ(λ(u − v)) =

λφ(u) > 0. Hence, the inclusion ⊆ is proved. To prove the opposite inclusion, let
us consider the compact set V = {φ ∈ C∗ {0} | φ(v) = 0 and ∥φ∥ = 1}. It suffices
to prove that given u ∈ Rn+1 such that φ(u) > 0 for all φ ∈ V , there exists µ > 0

such that µu+ v ∈ C.
We can define α = min

φ∈V
φ(u), then α > 0. Let us consider ε ∈

]
0, α

∥u∥
[

and

Wε = {ψ ∈ C∗ {0} | ∥ψ∥ = 1 and ∃φ ∈ V s.t. ∥ψ − φ∥ < ε}. For every ψ ∈ Wε, if
∥ψ − φ∥ < ε then

ψ(u) = φ(u) + ψ(u)− φ(u) ≥ φ(u)− ∥ψ − φ∥∥u∥ ≥ α− ε∥u∥ > 0.

Now, let us consider Zε = {ψ ∈ C∗ {0} | ∥ψ∥ = 1 and ∥ψ−φ∥ ≥ ε ∀φ ∈ V }. Define
β = min

ψ∈Zε

ψ(u) and γ = min
ψ∈Zε

ψ(v), then γ > 0.

Taking µ ∈
]
0,
∣∣∣γβ ∣∣∣[ and ψ ∈ Zε, we have that

ψ(µu+ v) = µψ(u) + ψ(v) ≥ µβ + γ > 0.

On the other hand, for all ψ ∈ Wε we have that ψ(µu + v) = µψ(u) > 0. Thus,
ψ(µu+ v) > 0 for every ψ ∈ C∗ {0} and the proof is complete.
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Given a collection C of open cones in Rn+1, we denote as

Γ(C) = {τ(C, v) | C ∈ C and v ∈ ∂C}

the set of all the cones that are tangent cones for some cone in C at a boundary
point.

Let C be an open convex cone in Rn+1. Starting from the family {C} given only
by C, define Γ0({C})) = Γ({C}) and for every k ∈ N define Γk+1({C}) = Γ(Γk({C})).
The union of the families of cones obtained in this way is denoted as

T (C) =
∞⋃
k=1

Γk({C}),

where Γk+1({C}) = Γ(Γk({C})) for all k.

Remark 2.3.9. From Lemma 2.3.8 the tangent cone at a point of the boundary
different from 0 is non-properly convex, indeed we have to intersect all the positive
half-spaces defined by the supporting hyperplanes. In other words, [0]τ(C,v) ⊊{0} for
every v ∈ ∂C {0}. Moreover, from Remark 2.3.7 we know that τ(τ(C, v), w) = τ(C, v)
for every w ∈ [0]τ(C,v). So, when we consider the tangent cone T ′ to a tangent cone T
for a cone C, the result is either the tangent cone T we started with or a cone such
that [0]T ′ ⊊[0]T . Hence, the dimension of the Hilbert geometry associated to the
tangent cone at a properly convex point is lower than the dimension of the Hilbert
geometry of the starting cone we started from.

This remark implies that the chain of families of cones Γ0({C}) ⊆ Γ1({C}) ⊆
Γ2({C}) ⊆ . . . is stationary, and

T (C) =
n⋃
k=1

Γk({C}).

Remark 2.3.10. From Remark 2.3.6 we know that C ⊆ τ(C, v) for every v ∈ ∂C.
Therefore, τ(C, v)∗ ⊆ C∗. Moreover, τ(C, v)∗ is the intersection of C∗ with the
supporting hyperplane {φ ∈ v∗ | φ(v) = 0}, since Span(v) ⊆ τ(C, v). Moreover, we
know from 1.3.9, that the dimension of τ(C, v)∗ equals the codimension of [0]τ(C,v).
Therefore, every tangent cone for C correspond to a boundary face of the dual cone
C∗, and the dimension of the equivalence class of the 0 correspond to the codimension
of the face.

Inductively every element of T (C) correspond to a relatively open face of C∗.
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Now, we can come back to the study of the horofunction boundary, examining
the set of Funk Buseamann points.

Lemma 2.3.11. Let C be a cone in Rn+1. If w ∈ [0]C, then for every u, v ∈ C and
for every α > 0 the followings hold

• FC((1− α)w + αu, v) = logα + FC(u, v).

• FC(u, (1− α)w + αv) = − logα + FC(u, v).

Proof. Since (1− α)w ≤C 0 and 0 ≤C (1− α)w, given λ > 0, (1− α)w + αu ≤C λv

if and only if u ≤C
λ
α
v. Hence, MC((1 − α)w + αu/v)v = αMC(u/v). Applying the

logarithm to both sides of these equations gives the first equation of the statement.
The second one can be proved in the same way.

Remark 2.3.12. Given a point v ∈ ∂C, for each point w ∈ τ(C, v), the line passing
through w and v intersect the cone C in a segment with v as endpoint. Indeed, if
this line is disjoint from C, by the Hahn-Banach Theorem, there exists a supporting
hyperplane at v containing the line. But this is a contradiction, since Lemma 2.3.8
implies that w ̸∈ τ(C, v).

Proposition 2.3.13. Let C be a convex open cone in Rn+1. Given v ∈ C and
w ∈ ∂C, denote the points on the line segment from w to v as vt = (1− t)w+ tv for
all t ∈]0, 1[. Then for every u ∈ C, the followins hold

1. FC(u, vt)−Fτ(C,w)(u, vt) −→ 0 as t→ 0,

2. (vt)t∈]0,1[ converges in Funk sense to fτ(C,w),v |C as t→ 0,

3. {g|C | g ∈ KF
τ(C,w)} ⊆ KF

C ∩ AC(w).

Proof. To prove the first assertion, we work in the plain containing u, v and w. Since
vt approaches the boundary of C as t → 0, for a sufficiently small t, we have from
Remark 2.2.9 that

FC(u, vt) = log
∥u− at∥
∥vt − at∥

and Fτ(C,w)(u, vt) = log
∥u− bt∥
∥vt − bt∥

where at is the intersection point on the side of vt of the line through u and vt with
∂C, and similarly, bt is the intersection point on the side of vt of the line through u
and vt with ∂τ(C, w).
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Figure 2.7: Configuration considered in the proof of Proposition 2.3.13.

Denote the angle between the segments btw and atw as αt, the angle between
the segments atw and vtw as βt, and the angle between the segments vtw and atvt

as γt, see Figure 2.7. Using the sine rule, we get

∥vt − at∥
∥vt − bt∥

=
sin βt sin(π − αt − βt − γt)

sin(αt + βt) sin(π − βt − γt)
.

As t → 0, αt → 0, ∥u − at∥ → ∥u − w∥, ∥u − at∥ → ∥u − w∥, and γt tends to the
angle between the segments uw and yw. Then it follows the first assertion.

For every u ∈ C, using the triangular inequality, we get∣∣fC,vt − fτ(C,w),v
∣∣ =∣∣FC(u, vt)−FC(b, vt)−Fτ(C,w)(u, v) + Fτ(C,w)(b, v)

∣∣
≤
∣∣FC(u, vt)−Fτ(C,w)(u, vt)

∣∣+ ∣∣Fτ(C,w)(u, vt)−Fτ(C,w)(u, v)
∣∣+

+
∣∣FC(b, vt)−Fτ(C,w)(b, vt)

∣∣+ ∣∣Fτ(C,w)(b, vt)−Fτ(C,w)(b, v)
∣∣.

The second point follows by applying the first one and Lemma 2.3.11.

Finally, the second assertion of this proposition implies that if v ∈ C, then
fτ(C,w),v |C ∈ KF

C ∩ AC(w). Moreover, for every z ∈ τ(C, w) C, from Remark 2.3.12,
we deduce that there exist v ∈ C and λ > 0, such that z = (1− λ)w + λv. Lemma
2.3.11 implies that fτ(C,w),z |C = fτ(C,w),v |C , hence fτ(C,w),z |C ∈ KF

C ∩ AC(w). The last
statement follows from the fact that AC(v) is closed. Indeed, if (gn)n∈N⊆ AC(v) is a
sequence converging to a Funk horofunction g ∈ ∂F∞C. We show that g ∈ AC(v).

For every n ∈ N, the horofunction gn is the limit in the Funk sense of a sequence
(vni )i∈N. Now, fix a decreasing basis Ujj∈N of open neighbourhoods of g, and a
decreasing basis Vjj∈N of open neighbourhoods of v. Therefore, for every j ∈ N,
we can choose nj ∈ N so that gnj

∈ Uj, and then ij ∈ N so that vnj

ij
∈ Vj and

FC(·, v
nj

ij
)−FC(b, v

nj

ij
) ∈ Uj.

So, we have found that the sequence (v
nj

ij
)j∈N converges in Funk sense to g and
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converges to v.

Inspired this proposition, we want to show that

BF
C = {fT ,u|C | T ∈ T (C) {C}, u ∈ T }.

The next lemma is useful to prove the inclusion of {fT ,u|C | T ∈ T (C) {C}, u ∈ T }
into BF

C . But, it will be the key in the next section to merge the study of the reverse-
Funk horofunction boundary with the study of the Funk horofunction boundary, in
order to obtain the Hilbert horofunction boundary.

Lemma 2.3.14. Let C be an open cone and let v ∈ ∂C [0]C. Given h ∈ KF
τ(C,v) ∪

BF
τ(C,v), there exists a sequence in C that is both a Funk almost-geodesic and a reverse-

Funk almost-geodesic, that converges in Funk sense to h|C and converges in reverse-
Funk sense to rC,v.

Proof. Let (wn)n∈N be a Funk almost-geodesic in τ(C, v) converging in Funk sense
to h. From this sequence we want to construct the desired one in C by taking
vn = (1 − tn)v + tnwn for an appropriate sequence (tn)n∈N in R, that we have to
determine.

First of all, for every n ∈ N, we need that vn ∈ C and ∥vn− v∥ < 1
n
. This is true

for every sufficiently small tn, thanks to Remark 2.3.12. Then, from Theorem 2.3.1
(vn)n∈N converges in reverse-Funk sense to rC,v.

To prove that (vn)n∈N is a Funk almost-geodesic in C we use the fact that (wn)n∈N
is a Funk almost-geodesic in τ(C, v). So, for some ε ≥ 0

Fτ(C,v)(w0, w1)+ · · ·+Fτ(C,v)(wn−1, wn) < Fτ(C,v)(w0, wn)+ε for all n ∈ N. (2.25)

Since v ∈ [0]τ(C,v), from Lemma 2.3.11, we get for all n ∈ N

Fτ(C,v)(vn, vn+1) = log
tn
tn+1

+ Fτ(C,v)(w,wn+1). (2.26)

Moreover, from Proposition 2.3.13, we can choose (tn)n∈N such that, once fixed tn,
tn+1 satisfies

FC(vn, vn+1)−Fτ(C,v)(vn, vn+1) <
1

2n
. (2.27)
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Combining (2.25), (2.26) and (2.27), we get for every l ∈ N

n∑
k=0

FC(vk, vk+1)−FC(v0, vn+1) ≤
l∑

k=0

FC(vk, vk+1)−Fτ(C,v)(v0, vn+1)

<
l∑

k=0

Fτ(C,v)(vk, vk+1) +
n∑
k=0

1

2k
−Fτ(C,v)(v0, vn+1)

=
n∑
k=0

Fτ(C,v)(wk, wk+1)−Fτ(C,v)(w0, wn+1) +
l∑

k=0

1

2k

<ε+ 2.

Hence, (vn)n∈N is a Funk almost-geodesic. The next step is to show that it converges
in Funk sense to h|C . It suffice to show that it is true for a dense subset S in C.
Since the topology on C is the Euclidean one, we can choose a countable dense set
S. Therefore, from Proposition 2.3.13, we can choose (tn)n∈N such that for every
n ∈ N

FC(s, vn)−Fτ(C,v)(s, vn) <
1

n
, for all s ∈ S,

and
FC(b, vn)−Fτ(C,v)(b, vn) <

1

n
.

Then, for every n ∈ N

∣∣FC(s, vn)−FC(b, vn)−Fτ(C,v)(s, vn) + Fτ(C,v)(b, vn)
∣∣ < 1

n
.

From Lemma 2.3.11, we have

Fτ(C,v)(s, vn)−Fτ(C,v)(b, vn) = Fτ(C,v)(s, w)−Fτ(C,v)(b, w),

and from the convergence in Funk sense of (wn)n∈N to h, we get the convergence of
(vn)n∈N to h|C .

Finally, we show that (vn)n∈N is a reverse-Funk almost-geodesic. From Lemma
2.2.10 lim

n→∞
rC,v(vn) = −RFC(b, v). Since (vn)n∈N converges in reverse-Funk sense to

rC,v, for every n ∈ N, once fixed tn, for every sufficiently small tn+1, we have

RFC(vn, vn+1) + rC,v(vn+1)− rC,v(vn) <
1

2n
.
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Hence, for every N ∈ N we have

N−1∑
n=0

RFC(vn, vn+1) + rC,v(vN+1)− rC,v(v0) <
N−1∑
n=0

1

2k
< 2. (2.28)

Since rC,v(vN+1) − rC,v(v0) = RFC(vN+1, v) − RFC(v0, v) ≤ RFC(v0, vN+1), from
(2.28) we get that (vn)n∈N is a reverse-Funk almost-geodesic.

Proposition 2.3.15. Let C be an open cone. Given a point v ∈ ∂C [0]C, a cone
T ∈ T (C) {C} and a point u ∈ T the function fT ,u|C belongs to the set of Funk
Busemann points BF

C .

Proof. Let T ∈ T (C). By definition, there exist N ∈ N and T1, T2, . . . , TN open
cones, such that T1 = C, TN = T and Tk+1 ∈ Γ(Tk) for k = 1, . . . , N − 1.

From Lemma 2.3.14, we have that fT ,u|TN−1
∈ KF

TN−1
∪ BF

TN−1
. Repeating the

argument, we get fT ,u|C ∈ KF
C ∪ BF

C . But, since T ≠ C, we have fT ,u|C ∈ BF
C .

To prove the opposite inclusion, and conclude the classification of Funk Buse-
mann points, we need to define the extension of a Funk horofunction to the tangent
cone at a point of the boundary. This extension is crucial in order to apply an
inductive argument. Indeed, Remark 2.3.9 implies that the dimension of the Hilbert
geometry associated with the tangent cone at a properly convex point, is lower then
the dimension of the geometry associated with the starting cone. Moreover, we
noticed in Remark 2.3.4 that the set of Funk Busemann points equals the set of
Busemann functions that are obtained by the Funk limit of Funk almost-geodesic
that converges to points of the boundary that are not in the equivalence class of 0.

The inductive argument will stop since, as we saw in Example 2.3.2, the set of
Funk Busemann points of the cone given by a half-space is empty.

Definition 2.3.16. Let C be an open convex cone, and v ∈ ∂C be a point in its
boundary. A function h : C → R satisfies the homogeneity condition at v, if

h((1− λ)v + λu) = log λ+ h(u) (2.29)

for every u ∈ C and λ > 0 such that (1− λ)v + λu ∈ C.

For a function that satisfies the condition (2.29) at a point, the following exten-
sion is well-defined.

Definition 2.3.17. Let C be an open convex cone. Given a point v ∈ ∂C and a
function h : C → R that satisfy the homogeneity condition at v, the extension of h
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to τ(C, v) is defined as

h|τ(C,v)(u) = − log(λ) + h((1− λ)v + λu),

where λ > 0 is chosen so that (1− λ)v + λu ∈ C.

Remark 2.3.18. Given a cone T ∈ T (C), the function fT ,u|C , with u ∈ T , satisfies
the homogeneity condition at every point in [0]T .

Now, we want to extend a Busemann point, obtained as the Funk limit of a Funk
almost-geodesic converging to a given point of the boundary, to the tangent cone at
that point. Moreover, we want to prove that this extension either is a Busemann
point or is not a horofunction.

We extend the definition of detour cost given on the set of horofunctions of a
Hilbert geometry, to the context of Funk horofunction. We also change the notation
since we extend the definition to pairs made of a horofunction and an arbitrary
function from the cone to R.

Let C ⊆ Rn+1 be a cone and h : C → R be a function. We define µh : KF
C →

R ∪ {+∞} as

µh(ξ) = inf
(un)n∈N∈S

lim inf
n→∞

(
FC(b, un) + h(un)

)
, for all ξ ∈ KF

C , (2.30)

where S is the set of all sequences converging in Funk sense to ξ.

Remark 2.3.19. If h : C → R is a Funk horofunction, we can follow the steps of
Remark 2.1.16, and get that for a point fC,v ∈ KF

C with v ∈ C, it holds

µh(fC,v) = FC(b, v) + h(v).

Lemma 2.3.20. Let C be a convex open cone and v ∈ ∂C [0]C be a point of its
boundary. For every h ∈ AC(v) it holds

h = inf
ξ∈KF

τ(C,v)

ξ|C + µh(ξ|C).

Moreover, given u ∈ C, the infimum for h(u) is achived by fτ(C,v),u(u).

Proof. Let us fix a point u ∈ C. We can consider the line segment from u to v and
parametrize it with a map γ : R≥0 → C such that FC(u, γ(t)) = t for all t ∈ R≥0.
We can do that since the Funk distance from u increase along this segment when
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approaching v. From Proposition 2.3.13 γ(t) converges in Funk sense to fτ(C,v),u|C
as t→ ∞.

We claim that h(u) − h(γ(t)) = t = FC(u, γ(t)). Now, if we consider the limit
for t→ ∞, we get

h(u) = lim
t→∞

FC(u, γ(t)) + h(γ(t))

= lim inf
t→∞

FC(u, γ(t))−FC(b, γ(t)) + FC(b, γ(t)) + h(γ(t))

≥ lim inf
t→∞

FC(u, γ(t))−FC(b, γ(t)) + lim inf
t→∞

FC(b, γ(t)) + h(γ(t))

≥ fτ(C,v),u|C(u) + µh(fτ(C,v),u|C).

To prove the claim, we consider a sequence (vn)n∈N converging to v, whose limit in
Funk sense gives h. For any n ∈ N sufficiently large, vn ̸∈ C + u, thus, the Funk
distance from u of a point increase along the segment from u to vn, when approaching
vn. As above, this segment can be parameterised by a map γn : [0,FC(u, vn)] → C
such that FC(u, γn(t)) = t for all t ∈ [0,FC(u, vn)]. Using the triangular inequality,
we have

−FC(γ(t), γ(t)) ≤ FC(γ(t), vn)−FC(γ(t), vn) ≤ FC(γ(t), γ(t)). (2.31)

For every t ∈ R≥0, the sequence (γn(t))n≥N converges to γ(t), where N = min{n ∈
N | FC(u, vn) ≥ t}. Hence, from the continuity of the gauge and the Funk conver-
gence of (vn)n∈N to h, we get from (2.31) that FC(γ(t), vn)− FC(b, vn) converges to
h(γ(t)) for every t ∈ R≥0, as n→ ∞.

Moreover, for every n ∈ N

FC(u, vn)−FC(b, vn)−FC(γ(t), vn) + FC(b, vn) = FC(u, γ(t)) = t,

since u, γn(t) and vn are aligned in this order. Therefore, by taking n→ ∞, we get
h(u)− h(γ(t)) = t = FC(u, γ(t)).

To conclude the proof, we prove that for every ξ ∈ KF
C it holds h ≤ ξ + µh(ξ).

Let us start by proving that for every w ∈ C we have

h(w) = inf
z∈C

(
FC(w, z)+ lim

n→∞

(
FC(z, vn)−FC(b, vn)

))
= inf

z∈C

(
FC(w, z)+h(z)

)
. (2.32)
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Given w ∈ C, since (vn)n∈N converges in Funk sense to h, we have

inf
z∈C

(
FC(w, z) + h(z)

)
= inf

z∈C

(
FC(w, z) + lim

n→∞

(
FC(z, vn)−FC(b, vn)

))
= inf

z∈C

(
lim
n→∞

(
FC(w, z) + FC(z, vn)−FC(b, vn)

))
≥ inf

z∈C

(
lim
n→∞

(
FC(w, vn)−FC(b, vn)

))
= h(w)

The inverse inequality follows by setting z = w.
Now, take (un)n∈N in S. From (2.32), applied with z = un for every n ∈ N, as

n→ ∞ we have

h(w) ≤ lim inf
n→∞

FC(w, un)−FC(b, un) + FC(b, un) + h(un)

≤ lim inf
n→∞

(
FC(w, un)−FC(b, un)

)
+ lim inf

n→∞

(
FC(b, un) + h(un)

)
= ξ(w) + lim inf

n→∞

(
FC(b, un) + h(un)

)
.

Taking the infimum over all (un)n∈N in S, we get h(w) ≤ ξ(w) + µh(ξ) for all
w ∈ C.

Proposition 2.3.21. Let h ∈ BF
C ∩ AC(v), with v ∈ ∂C [0]C, be a Funk Busemann

point. Then, h satisfies the homogeneity condition and h|τ(C,v) ∈ KF
τ(C,v) ∩ BF

τ(C,v).

Proof. From Lemma 2.3.20 and Remark 2.3.18 we conclude that h satisfy the ho-
mogeneity condition at v. Since h can be written as in the statement of Lemma
2.3.20, we get that

h|τ(C,v) = inf
ξ∈KF

τ(C,v)

ξ + µh(ξ|C). (2.33)

As we saw in proof of 2.3.13, every element of KF
τ(C,v) equals to fτ(C,v),p, with p ∈ C.

Moreover, the sequence ((1− 1/n)v+1/n p)n∈N converges in Funk sense to fτ(C,v),p,
by Proposition 2.3.13. Proposition 2.3.13, Lemma 2.3.11, and Remark 2.3.19 imply
that

µh(fτ(C,v),p|C) = lim
n→∞

FC(b, (1− 1/n)v + 1/n p) + h((1− 1/n)v + 1/n p)

= lim
n→∞

Fτ(C,v)(b, (1− 1/n)v + 1/n p) + h((1− 1/n)v + 1/n p)

= lim
n→∞

Fτ(C,v)(b, p)− log(1/n) + h|τ(C,v)(p) + log(1/n)

= Fτ(C,v)(b, p) + h|τ(C,v)(p)

= µh|τ(C,v)(fτ(C,v),p).
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Thus, from (2.33) we have

h|τ(C,v) = inf
ξ∈KF

τ(C,v)

ξ + µh|τ(C,v)(ξ) ≥ inf
ξ∈KF

τ(C,v)

ξ + µh|τ(C,v)(ξ).

On the other hand, for any ξ ∈ KF
τ(C,v) we have h|τ(C,v)(u) ≤ ξ(u) + µh|τ(C,v)(ξ) for all

u ∈ C. Taking the limit infimum we get

h|τ(C,v) = inf
ξ∈KF

τ(C,v)

ξ + µh|τ(C,v)(ξ). (2.34)

Now, we want to prove that there exists some ξ ∈ KF
τ(C,v) such that h|τ(C,v)(u) =

ξ(u) + µh|τ(C,v)(ξ) for all u ∈ C. This fact implies that µh|τ(C,v) = µξ + µh|τ(C,v) . In
particular we get that µξ(ξ) = 0. But, since ξ ∈ KF

τ(C,v) we can follow the proof of
2.1.14 to conclude that ξ ∈ KF

τ(C,v)∪BF
τ(C,v). Finally, since h|τ(C,v)(b) = ξ(b) = 0, then

it must be µh|τ(C,v)(ξ) = 0. Therefore, ξ = h|τ(C,v) and h|τ(C,v) ∈ KF
τ(C,v) ∪ BF

τ(C,v) as
desired.

In order to complete the proof, suppose that h|τ(C,v) ̸= ξ + µh|τ(C,v)(ξ) for all
ξ ∈ KF

τ(C,v). Under this assumption the family
{
Au,ε | u ∈ C, ε > 0

}
, given by

Au,ε = {ξ ∈ KF
τ(C,v) | h|τ(C,v)(u) + ε < ξ(u) + µh|τ(C,v)(ξ)}, is a covering of KF

τ(C,v).
Since we have endowed KF

τ(C,v) with the topology of uniform convergence on compact
sets and µh|τ(C,v) is lower semi-continuous, then Au,ε is open for all u ∈ C, ε > 0.
Since KF

τ(C,v) is compact, we get get from
{
Au,ε | u ∈ C, ε > 0

}
a finite covering

KF
τ(C,v) = Au1,ε1 ∪ · · · ∪ Auk,εk for some k ∈ N.

Therefore, if we define ξi = inf
ξ∈Aui,εi

for i = 1, . . . , k, then

h|τ(C,v) = min{ξ1, . . . , ξk}.

We claim that h|τ(C,v) = min{ξ1, ξ2} implies that h|τ(C,v) = ξ1 or h|τ(C,v) = ξ2. So,
from (2.35) we get that there exists i ∈ {1, . . . , k} such that h|τ(C,v) = ξi. But, from
the definition of Aui,εi , we have

ξi(ui) ≥ εi + h|τ(C,v)(ui) > h|τ(C,v)(ui),

leading to a contradiction.

To prove the claim suppose that h|τ(C,v) = min{ξ1, ξ2}, with ξ1 and ξ2 two func-
tions that con be written as in (2.34). This implies that h = min{ξ1|C, ξ2|C}.

Since h is a Busemann point, we can follow the proof of 2.1.13 to get that
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µh(h) = 0. Hence, for every m ∈ N, there exists a sequence (umn )n∈N in C that
converges in Funk sense to h and such that

0 ≤ lim inf
n→∞

FC(b, u
m
n ) + h(umn ) ≤

1

m
.

From Lemma 2.3.20, we know that h(u) = fτ(C,v),u(u) + µh
(
fτ(C,v),u|C

)
for every

u ∈ C. From Proposition 2.2.22, for every m ∈ N, the sequence (umn )n∈N converges
to a horofunction ξm, up to a subsequence. Thus for every u ∈ C

h(u) +
1

m
≥ lim inf

n→∞
FC(u, u

m
n )−FC(b, u

m
n ) + FC(b, u

m
n ) + h(umn )

= lim inf
n→∞

FC(u, u
m
n ) + fτ(C,v),umn (u

m
n ) + µh

(
fτ(C,v),umn |C

)
≥ lim inf

n→∞
fτ(C,v),umn (u) + µh

(
fτ(C,v),umn |C

)
=ξm(u) + µh(ξ

m). (2.35)

Applying again Proposition 2.2.22, (ξm)m∈N converges to a horofunction ξ, up to
a subsequence. Hence, taking the limit as m → ∞, we get h = ξ + µh(ξ). By
assumption,

ξ1|C = inf
ξ∈KF

τ(C,v)

ξ|C + µξ1|C(ξ|C) and ξ2|C = inf
ξ∈KF

τ(C,v)

ξ|C + µξ2|C(ξ|C).

Hence, we have
h = inf

ξ∈KF
τ(C,v)

ξ|C +min{µξ1|C , µξ2|C}(ξ|C).

As above, using the lower semi-continuous function min{µξ1 , µξ2} instead of µh,
we get that there exists ξ ∈ KF

τ(C,v) such that ξ|C + min{µξ1|C , µξ2|C}(ξ|C). Suppose
that min{µξ1 , µξ2}(ξ) = µξ1(ξ). Then, h = ξ|C +µξ1(ξ) ≥ ξ1|C and h ≤ ξ1|C, so we get
h = ξ1|C. Since h satisfies the homogeneity condition (2.29) we get h = ξ1. Similarly,
if min{µξ1 , µξ2}(ξ) = µξ2(ξ) we get h = ξ2.

Corollary 2.3.22. Let C ⊆ Rn+1 be a properly convex cone. Then,

BF
C = {fT ,w |C | T ∈ T (C) {C}, w ∈ T }.

Proof. Let h ∈ BF
C be a Funk Busemann point. By definition and Remark 2.3.4 h

is the Funk limit of a Funk almost-geodesic that converges to a point v ∈ ∂. From
Proposition 2.3.21 the extension of h to τ(C, v) satisfies h|τ(C,v) ∈ KF

τ(C,v) ∩BF
τ(C,v). If

h|τ(C,v) ∈ KF
τ(C,v), then we get that h ∈ {fT ,w |C | T ∈ T (C) {C}, w ∈ T }. Otherwise,
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there exists a point v′ ∈∈ ∂τ(C, v) [0]τ(C,v) such that h|τ(C,v) ∈ Aτ(C,v)(v
′). We can

apply to hτ(C,v) the same reasoning we applied to h. Thanks to Remark 2.3.9, after
a finite number of steps we obtain that h ∈ {fT ,w |C | T ∈ T (C), w ∈ T }.

Conversely, from Proposition 2.3.15 the set {fT ,w |C | T ∈ T (C) {C}, w ∈ T } is
contained in BF

C .

Finally, we merge the characterization of the set of Funk Busemann points and
the set of reverse-Funk Busemann point, in order to characterize the set of Hilbert
Busemann points.

Theorem 2.3.23. Let C ⊆ Rn+1 be a properly convex open cone. Then,

BΩ = {rC,v + fT ,w |C | v ∈ ∂C {0}, T ∈ T (τ(C, v)) and w ∈ T }.

Proof. Let h ∈ BH
C be a Hilbert Busemann point. Then there exists a Hilbert almost-

geodesic (vn)n∈N⊆ C that converges in Hilbert sense to ξ. By Lemma 2.2.33 (vn)n∈N

is both a Funk almost-geodesic and a reverse-Funk almost-geodesic. Moreover, we
can assume that (vn)n∈N lies in a compact cross-section D ⊆ C. Hence, the sequence
(vn)n∈N converges, up to a subsequence to a point v ∈ D. Since ξ is a horofunction
v ∈ ∂D. By Theorem 2.3.1 (vn)n∈N converges in reverse-Funk sense to rC,v.

On the other hand, (vn)n∈N converges in Funk sense to f = h−rC,v. By Corollary
2.3.22 f = fT ,w |C for some cone T ∈ T (τ(C, v)) and w ∈ T . Therefore, ξ =

rC,v + fT ,w |C.
Conversely, let h = rC,v + fT ,w |C with v ∈ ∂C {0}, T ∈ T (τ(C, v)) and w ∈ T .

From Proposition 2.3.15fT ,w |τ(C,v) ∈ KF
τ(C,v) ∪BF

τ(C,v), thus fT ,w |C is the Funk limit of
a sequence (vn)n∈N that is both a Funk almost-geodesic and a reverse-Funk almost-
geodesic and that converges in reverse-Funk sense to rC,v, and in usual sense to v,
by Lemma 2.3.14. Lemma 2.2.33 implies that (vn)n∈N is a Hilbert almost-geodesic.
Hence, h ∈ BH

C .

As we saw at the beginning of this section, the Hilbert metric on a properly
convex domain Ω coincide with the Birkhoff’s version of the Hilbert metric on the
cone CΩ above Ω, restricted to a bounded cross-section, and the set of Busemann
points of a Hilbert geometry corresponds to the set of the restrictions to a bounded
cross-section of Hilbert Busemann points of the cone above the domain.

Remark 2.3.24. From this theorem we get that the Busemann horospheres centered
on a geodesic ray that converges to a C1-point does not depend on the geodesic ray,
but only on the point of the boundary where they converge. We recall the definition
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of Busemann function. Let (Ω, dΩ) be a Hilbert geometry. Given a geodesic ray
γ : R+ → Ω the Busemann function centered at γ is the function βγ : Ω → R given
by

βγ(x) = lim
t→∞

dΩ(x, γ(t))− t for all x ∈ Ω. (2.36)

The Busemann horospheres centerd on the geodesic ray γ are the level sets of the
Busemann function βγ.

Since γ is a geodesic segment, then t = dΩ(γ(0), γ(t)) for all t ∈ R+. Thus, βγ
is a Busemann point for (Ω, dΩ) with respect to γ(0) as base point. Hence, we can
study the limit in 2.36 in a bounded cross-section D of CΩ.

Suppose that γ converges to a C1-point z ∈ ∂Ω. Define v ∈ ∂D such that z = [v]

and choose an arbitrary sequence (vn)n∈N∈ D that converges to v and such that [vn]
belongs to the image of γ for all n ∈ N.

Since z is a C1-point, then τ(C, v) ∼= Rn × R+. Hence, T (τ(C, v)) = τ(C, v).
By Theorem 2.3.23 the limit of (vn)n∈N in Hilbert sense is rC,v + fτ(C,v),w |C for some
w ∈ τ(C, v).

For every x ∈ Ω, let u ∈ D such that [u] = x, then

βγ(x) = rC,v(u) + fτ(C,v),w(u).

From Example 2.3.2 we know that given w,w′ ∈ τ(C, v) the difference between
fτ(C,v),w and fτ(C,v),w′ is a constant function.

Remark 2.3.25. This theorem shows also that that there exists a pair of distinct
geodesic rays converging to a non-C1-point such that the Busemann functions cen-
tered on them does not differs by an additive constant.

2.4 Parts of the horofunction boundary

In this section, we will compute the detour cost between two Busemann points of a
Hilbert geometry and characterize the parts of the horofunction boundary in terms
of faces of the domain and of its dual.

We extend in the obvious way the definition of detour cost to the set of Hilbert
horofunctions defining

H(ξ, η) = inf
(vn)n∈N∈S

(
lim inf
n→∞

HC(b, vn) + η(vn)
)

for all ξ, η ∈ ∂H∞C

where S is the set of all sequences (vn)n∈N ⊆ C that converges in Hilbert sense to ξ.



2.4 Parts of the horofunction boundary 97

It is clear that the detour cost between two horofunction equals the detour cost
between the corresponding Hilbert horofunctions.

Let ξ, η ∈ BΩ be two Hilbert Busemann points. From Theorem 2.0.4 we know
that there exist v ∈ ∂C {0}, S ∈ T (τ(C, v)) and p ∈ S such that ξ = rC,v + fS,p|C.
Similarly, there exists w ∈ ∂C {0}, T ∈ T (τ(C, w)) and q ∈ T such that η =

rC,w + fT ,q |C.
Reasoning as in the proof of Proposition 2.1.15, we get that if (vn)n∈N is a Hilbert

almost-geodesic converging to ξ in Hilbert sense, then

H(ξ, η) = lim
n→∞

HC(b, vn) + η(vn)

= lim
n→∞

RFC(b, vn) + rC,w(vn) + lim
n→∞

FC(b, vn) + fT ,q(vn). (2.37)

Moreover, from Lemma 2.2.33, we conclude that (vn)n∈N is both a reverse-Funk
almost-geodesic and a Funk almost-geodesic. As we did in the previous section, we
can study separately the Funk and the reverse-Funk part of this limit.

Recall that the face of a point v ∈ C is the set containing those points w ∈ C such
that the line through v and w meet C in a segment that contains v in its interior,
and we denote it as Fv.

Proposition 2.4.1. Let C ⊆ Rn+1 be a properly convex open cone. Given a reverse-
Funk almost-geodesic (vn)n∈N converging to a point v ∈ ∂C {0}, and a point w ∈
∂C {0}, we have

lim
n→∞

RFC(b, vn)+rC,w(vn) =

RFC(b, v) +RFFv(v, w)−RFC(b, w) if w ∈ Fv,

+∞ otherwise.

Proof. Theorem 2.3.1 implies that (vn)n∈N converges in reverse-Funk sense to rC,v.
In the proof of Proposition 2.1.15, we used only that the Hilbert metric satisfies the
triangular inequality, thus the same argument works also to prove that

lim
n→∞

RFC(b, vn) + rC,w(vn)

is independent of the choice of the reverse-Funk almost-geodesic (vn)n∈N converging
in usual sense to v and in reverse-Funk sense to rC,v.

It is convenient to work with a straight line segment, that is a reverse-Funk
almost-geodesic as we saw in Remark 2.2.29. To this aim, we consider the sequence
(v′n)n∈N given by v′n = (1 − tn)v + tnb for all n ∈ N, where (tn)n∈N is a decreasing
sequence in ]0, 1[ that converges to 0.
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If w = λv for some λ > 0, then w ∈ Fv, rC,w = rC,v, and Lemma 2.2.10 thus
implies that

lim
n→∞

RFC(b, vn) + rC,w(vn) = −RFC(b, v) = −RFC(b, v)− log λ. (2.38)

By the continuity of the gauge we get from (2.38) that

lim
n→∞

RFC(b, vn) + rC,w(vn) = RFC(b, v)−RFC(b, v)− log λ

= RFC(b, v) +RFC(v, w)−RFC(b, w).

If w ̸= λv for all λ > 0, and w ∈ Fv, we can find (λn)n∈N⊆ R+ and λ ∈ R+ such
that λv and (λnvn)n∈N lie in the same relatively compact cross-section that contains
w and b. Moreover, as we can see in the figure below, there exists z ∈ ∂Fv given by
the intersection of ∂Fv with the line passing through λv and w.

Thus, using the continuity of the gauge and Proposition 2.2.8, we get

lim
n→∞

RFC(b, vn) + rC,w(vn) = RFC(b, v) lim
n→∞

− log λn +RFC(λnvn, w)−RFC(b, w)

= − log λ+ log
∥w − z∥

∥λnvn − z∥
−RFC(b, w)

= − log λ+RFC(λv, w)−RFC(b, w)

= RFC(λv, w)−RFC(b, w).

If w ̸= λv for all λ > 0, and w ̸∈ Fv, then

lim
n→∞

RFC(b, vn) + rC,w(vn) = RFC(b, v) + lim
n→∞

RFC(vn, w)−RFC(b, v) = +∞,

since w ̸∈ Fv and thus, by Lemma 2.2.5, w ̸∼C v.

For the study of the Funk part of the limit in (2.37) we need some tools from
convex analysis. In particular, we introduce the topology of epi-convergence on the
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set of proper, lowe semi-continuous, convex functions. For the details of this theory
we refer to [2].

On the set of closed set of Rn×R+ is defined the Painlevé-Kuratowski topology.
In that topology a sequence of closed sets (An)n∈N converges to a closed set A if

Ls(An)n =
⋂
n∈N

(
∪k≥nAk

)
and Li(An)n =

⋂
{(nk)k|nk→∞})

(
∪k≥0Ank

)
coincide and A = Ls(An)n = Li(An)n.

Given a function f : Rn → R we define its epigraph as the set epi(f) = {(x, α) |
α ≥ f(x)}. A sequence of proper, lower semi-continuous, convex functions (fn)n∈N

is said to converge in the epi-graph topology to a proper, lower semi-continuous,
convex function f if (epi(fn))n∈N converges in the Painlevé-Kuratowski topology to
epi(f).

Moreover, on the set of proper, lower semi-continuous, convex functions is defined
an involution, called the Fenchel-Legendre tranform that maps a function f : Rn+1 →
R to the function f ∗ : (Rn+1)∗ → R defined by

f ∗(φ) = sup
x∈R∗

(
φ(x)− f(x)

)
for all φ ∈ Rn+1.

Let C ⊆ Rn+1 be a properly convex open cone. For every v ∈ C we define the
convex function jC,v : C → R given by jC,v(u) = exp ◦fC,v(u) for all u ∈ C.

Let us check that jC,v is convex. Given u, u′ ∈ C and t ∈ [0, 1], from Lemma
2.2.13, we get

jC,v((1− t)u+ tu′) =
1

MC(b/v)
sup

φ∈C∗ {0}

φ((1− t)u+ tu′)

φ(v)

=
1

MC(b/v)
sup

φ∈C∗ {0}

((1− t)φ(u)

φ(v)
+
tφ(u′)

φ(v)

)
≤ 1

MC(b/v)

(
(1− t) sup

φ∈C∗ {0}

φ(u)

φ(v)
+ t sup

φ∈C∗ {0}

φ(u′)

φ(v)

)
= (1− t)jC,v(u) + tjC,v(u

′).

Thus, we can compute the Fenchel-Legendre transorm of jC,v. The Fenchel-
Moreau Theorem [9, Theorem 4.2.1] says that on the set of convex, lower semi-
continuous functions, the Fenchel-Legendre transform is an involution.

We define on a set E the indicator function of a subset F ⊆ E as the function
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IF : E → {0,+∞} given by

IF (e) =

0 if e ∈ F

+∞ if e ̸∈ F

Lemma 2.4.2. Let C ⊆ Rn+1 be an open convex cone. For all v ∈ C, we have that
j∗C,v is the indicator function of the set

ZC,v = C∗ ∩ {φ ∈ (Rn+1)∗ |MC(b/v)φ(v) ≤ 1}.

Proof. We prove that I∗ZC,v
= jC,v. The thesis will follow from the Fenchel-Moreau

Theorem.

I∗ZC,v
(u) = sup

φ∈(Rn+1)∗

(
φ(u)− IZC,v(φ)

)
= sup

φ∈ZC,v

φ(u)

≤ 1

MC(b/v)
sup
φ∈ZC,v

φ(u)

φ(v)

≤ 1

MC(b/v)
sup
φ∈C∗

φ(u)

φ(v)

= jC,v(u),

where the last equality follows from Lemma 2.2.13. On the other hand, from the
proof of Lemma 2.2.13, we know that the infimum in (Lemma 2.16) can be computed

on any corss-section of C∗. So, we define Dv = {φ ∈ C∗ | φ(v) = 1

MC(b/v)
}. Thus,

we have

jC,v(u) =
1

MC(b/v)
sup
φ∈Dv

φ(u)

φ(v)

= sup
φ∈Dv

φ(u)

≤ sup
φ∈ZC,v

φ(u)

= I∗ZC,v
(u).
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Corollary 2.4.3. Let C ⊆ Rn+1 be an open convex cone. The, the set

{jT ,w | T ∈ T (C), w ∈ T }

is an equi-Lipshitzian family of convex functions.

Proof. Since T ∈ T (C), we have from Remark 2.3.6 that T ∗ ⊆ C∗. Moreover, for
every T ∈ T (C), w ∈ T , and ψ ∈ T ∗, from Lemma 2.2.13, we have

ψ(w)MT (b/w) ≥ ψ(b)

Therefore, ZT ,w ⊆ {φ ∈ C∗ | φ(b) ≤ 1} for every T ∈ T (C), w ∈ T . Let K = {φ ∈
C∗ | φ(b) ≤ 1}. Since b ∈ C, the set K is bounded. Let M = supφ∈K∥φ∥. Let us
consider u, u′ ∈ T . Then, using the Cauchy-Schwarz inequality, we have

|jT ,w(u)− jT ,w(u
′)| ≤

∣∣∣∣sup
φ∈K

φ(u)− sup
φ∈K

φ(u′)

∣∣∣∣
≤
∣∣∣∣sup
φ∈K

φ(u)− φ(u′)

∣∣∣∣
≤M∥u− u′∥.

Lemma 2.4.4. Let C ⊆ Rn+1 be an open convex cone. If a sequence (vn)n∈N in C
converges in Funk sense to fT ,w |C, for some T ∈ T (C) and w ∈ T , then the sequence
(j∗C,vn)n∈N converges in the epigraph topology to j∗T ,w.

Proof. We define for every n ∈ N the function gC,vn : Rn+1 → R ∪ {+∞} given

gC,vn(u) =

jC,vn(u) if u ∈ C,

+∞ otherwise,

and the function gT ,w : Rn+1 → R ∪ {+∞} given by

gT ,w(u) =

jT ,w(u) if u ∈ C

+∞ otherwise.

Since the family {jT ,w | T ∈ T (C), w ∈ T } is equi-Lipshitzian and (jC,vn |C)n∈N

pointwise converges to jT ,w |C, by [2, Theorem 7.1.5] (gC,vn)n∈N converges to gT ,w in
the epigraph topology.
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Now, we compute the Fenchel-Legendre transfor of gT ,w. For any φ ∈ (Rn+1)∗

we have

g∗T ,w(φ) = sup
u∈Rn+1

(
φ(u)− gT ,w(u)

)
= sup

u∈Rn+1

(
φ(u)−max{jT ,w, IC}(u)

)
= max

{
sup

u∈Rn+1, jT ,w(u)≤IC(u)
φ(u)− jT ,w(u) , sup

u∈Rn+1, jT ,w(u)>IC(u)

φ(u)− IC(u)
}

= IZC,w∪−C∗ ,

since j∗T ,w = IZC,w and I∗C = I−C∗ .
Therefore, j∗T ,w and g∗T ,w coincide on C∗. Since j∗T ,w equals +∞ outside C∗, we

have j∗T ,w = max{g∗T ,w, IC∗}. Since (g∗C,vn)n∈N converges in the epigraph topology,
then also (j∗C,vn)n∈N converges in the same topology. The limit is exactly j∗C,w since
the Fenchel-Legendre transform is an homeomorphism with respect to the epigraph
topology [2, Proposition 7.2.11].

Proposition 2.4.5. Let C ⊆ Rn+1 be a properly convex open cone. Let T ,S ∈
T (C) {C} be two cones and let p ∈ S and q ∈ T . Given a Funk almost-geodesic
(vn)n∈N in C converging in Funk sense to fS,p|C, we have

lim
n→∞

FC(b, vn) + fS,q(vn) =

FS(b, p) + FT (p, q)−FT (b, q) if S ⊆ T ,

+∞ otherwise.

Proof. Let A be the set of all sequences that converges in Funk sense to fS,p|C. We
prove that inf

(vn)n∈A
lim
n→∞

FC(b, vn) + fS,q(vn) = FS(b, p) + FT (p, q) − FT (b, q) when

S ⊆ T , and that this infimum equals +∞ otherwise.
The proof that the infimum is achived by every Funk almost-geodesic that con-

verges to fS,p|C goes exactly like the proof of Proposition 2.1.15.
So, let (vn)n∈N be a sequence in C converging in Funk sense to fS,p|C. Following

the computations in the proof of Lemma 2.4.2 we get

FC(b, vn) + fT ,q(vn) = log sup
φ∈T ∗∩UC,vn

1

φ(q)MT (b/q)
. (2.39)

From Lemma 2.4.4 the sequence (j∗C,vn)n∈N converges in the epigraph topology
to j∗S,p. So, if φ ∈ C∗ is such that j∗S,p(φ) = +∞, since the convergence in the
epigraph topology implies the pointwise convergence [2, Proposition 7.1.3], the se-
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quence (j∗C,vn(φ))n∈N converges to +∞. Hence, for n ∈ N sufficiently large, we have
φ ∈ C∗ ZC,vn . Let UC,vn = C∗ ZC,vn .

If S ̸⊆ T , we can consider φ ∈ T ∫ . For this choice we have j∗S,p(αφ) = +∞
for all α > 0, and so αφ ∈ UC,vn for every sufficiently large n ∈ N. Thus, by taking
α → 0 we get from (2.39) that

lim inf
n→∞

FC(b, vn) + fT ,q(vn) = +∞.

Now suppose that S ⊆ T . For any φ ∈ US,p from Lemma 2.4.2j∗S,p(φ) = +∞. As
we noticed above, for any sufficiently large n ∈ N, φ ∈ UC,vn . Thus, we have US,p ⊆
UC,vn . From (2.39), taking the limit infimum, and following again the computation
done in the proof of Lemma 2.4.2, we get

lim inf
n→∞

FC(b, vn) + fT ,q(vn) ≥ log sup
φ∈T ∗∩US,p

1

φ(q)MT (b/q)

= log
(
MS(b/p) sup

φ∈T ∗

φ(p)

φ(q)MT (b/q)

)
= FS(b, p) + FT (p, q)−FT (b, q).

To prove that it hols that inf(vn)n lim inf
n→∞

FC(b, vn)+fT ,q(vn) ≤ FS(b, p)+FT (p, q)−
FT (b, q), we look for a suitable sequence (vn)n∈N Funk converging to fS,p|C.

By definition of T (C), there exists S1, . . . ,SN , with N ∈ N, such that S1 = C and
SN = S. Let v ∈ ∂SN−1 such that SN = τ(SN−1, v). As in the proof of Proposition
2.3.13 there is a sequence (λn)n∈N of positive real numbers such that, if we define
v1n = (1− λn)v + λnp, we get for each n ∈ N

v1n ∈ SN−1,∣∣FSN−1
(u, vn)−FSN

(u, vn)
∣∣ < 1

n
for all u ∈ SN−1, and (2.40)

(v1n)n∈N converges in Funk sense to fSN ,p|C (with respect to FS(·, ·)).

Since v ∈ [0]S and hence v ∈ [0]T we have from Lemma 2.3.11

FSN
(u, v1n) = FSN

(u, p)− log λn for all n ∈ N and u ∈ SN , and

FT (v
1
n, q) = FT (p, q) + log λn for all n ∈ N.
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If we combine these two equalities with (2.40) we get

FSN−1
(b, v1n) + FT (v

1
n, q) < FSN

(b, p) + FT (p, q) +
1

n
for all n ∈ N.

Now, we can do the same construction to get a sequence (v2n)n∈N in SN−2 that
converges to fS,p|SN−1

in Funk sense (with respect to FSN−1
(·, ·)) and such that

FSN−2
(b, v2n) + FT (v

2
n, q) < FSN−1

(b, v1n) + FT (v
1
n, q) +

1

n
for all n ∈ N.

We can iterate the argument again and again to get a sequence (vNn )n∈N such
that

FC(b, v
N
n ) + FT (v

N
n , q) < FSN

(b, p) + FT (p, q) +
N

n
for all n ∈ N.

By subtracting FT (b, q) to both the sides of this inequality, and taking the limit
infimum, we get

lim inf
n→∞

FC(b, v
N
n ) + fT ,q(v

N
n ) ≤ FS(b, p) + FT (p, q)−FT (b, q).

The previous two propositions implies the next corollary.

Corollary 2.4.6. Let C ⊆ Rn+1 be a properly convex open cone. Let ξ = rC,v+fS,p|C
and η = rC,w + fT ,q |C be two Hilbert Busemann points, with v, w ∈ C, S ∈ T (τ(C, v))
and p ∈ S, T ∈ T (τ(C, w)) and q ∈ T . Then, we have

δ(ξ, η) =

HF (v, w) +HS(p, q) if F = Fv = Fw and [S] = [T ],

+∞ otherwise.

From this result we have that each part of the Hilbert horofunction boundary of
a cone C ⊆ Rn+1 corresponds to a pair (F, T ), where F is the relative interior of a
proper face of C and T ∈ T (τ(C, v)) for some v ∈ F .

As we saw in Remark 2.3.9 each cone T ∈ T (C) corresponds to a face of the
dual cone C∗ and the dimension of the Hilbert geometry associated to it equals the
dimension of the corresponding face of C∗.

Therefore, each part of the Hilbert horofunction boundary of the cone corre-
sponds to a pair (F,E∗), with F the relative interior a face of C and E∗ a face of
the dual cone F ∗ of F .
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Let us consider a part corresponding to the pair (F, T ), defined as above, and
denote T ′ = T /[0]T . Corollary 2.4.6 implies that this part endowed with its detour
metric is isometric to F × T ′ endowed with the metric HF×T ′ given by

HF×T ′((v, p), (w, q)) = HF (v, w) +HT ′(p, q) for all (v, p), (w, q) ∈ F × T ′.

Definition 2.4.7. Let C ⊆ Rn+1 be a properly convex open cone and let (F, T ) be
a pair associated with a part of the Hilbert horofunction boundary of C. We say
that this part is a pure Funk part if F gives rise to a Hilbert geometry of projective
dimension 0, and that it is a pure reverse-Funk part if T gives rise to a Hilbert
geometry of projective dimension 0.

Corollary 2.4.6 implies that a pure part endowed with its detour metric is iso-
metric to a Hilbert geometry.

Definition 2.4.8. Let C ⊆ Rn+1 be a properly convex cone. The closure of a part
of the horofunction boundary of C is the intersection of the closure of the part in
the set C(C,R) with the set of Busemann points.

Let us consider the pure reverse-Funk part {rC,v + f | v ∈ int(F )}, with F a
proper face of C and f the unique Funk horofunction associated with a cone in
T (F ∗) given by an half-space. It follows from Theorem 2.3.1 applyied to the cone F
that the closure of the part {rC,v+f | v ∈ int(F )} is {rC,v+f | v ∈ F}. Similarly, the
closure of the pure Funk part {rC,v+fT ,p | p ∈ T }, with v an extremal generator and
T ∈ T (τ(C, v)), is the set {rC,v + fS,q | S = τ(T , w) for some w ∈ ∂T and q ∈ S}.

Definition 2.4.9. A pure part is maximal if it is not contained in the closure of
any other part.

It is clear that maximal pure reverse-Funk parts of the Hilbert horofunction
boundary of C correspond to maximal proper faces and maximal pure Funk parts
correspond to the tangents cones τ(C, v) for some extremal generator v ∈ ∂C.

Definition 2.4.10. The dimension of a pure part of the horofunction boundary is
the dimension of the Hilbert geometry to which it is isomorphic. A part of dimension
0 is a singleton of the horofunction boundary of C.

Remark 2.4.11. The singleton Funk parts of the horofunction boundary of a cone
C ⊆ Rn+1 correspond to extremal generators of C∗. Indeed, every singleton can be
written as fT ,p|C, with T ∼= Rn×R+. As we saw in Example 2.3.2, the cross-section
parallel to the boundary of C that contains b define an element φ ∈ C∗ such that
φ(b) = 1 and fT ,p(u) = φ(u) for all u ∈ C.
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Lemma 2.4.12. Let C ⊆ Rn+1 be a properly convex cone, and let U and V be two
pure parts of the Hilbert horofunction boundary of C. Suppose that U is maximal,
the intersection of the closure of U with the closure of V is non-empty, and V is not
contained in the closure of U . Then, U and V are pure parts of opposite type.

Proof. Assume that U is a pure reverse-Funk part. Then its closure is UBΩ
=

{rC,v + f | v ∈ F}, with F a maximal proper face of C and f the unique Funk
horofunction associated with a cone in T (F ∗) given by an half-space. If V was a
pure reverse-Funk part, since by hypothesis its closure contains a point rC,v + f ,
with v ∈ F , then its elements would be of the form rC,w + f with w in a proper face
that contains v. Since V is not contained in the closure of U , this assumption would
contradict the maximality of U .

The case when U is a pure Funk part can be study in a similar way.

Recall that every Busemann point of a Hilbert geometry corresponds to a Hilbert
Busemann point of the associated cone. Thus, the partition of the set of Busemann
points of a Hilbert geometry corresponds to the partition of the set of Hilbert Buse-
mann points of the cone above the domain. Henceforth, we use the nomenclatures
of this section also for the parts of the horofunction boundary of a Hilbert geometry.
For example, we will use the term Funk part (resp. reverse-Funk part) for a part of
the horofunction boundary of a Hilbert geometry that corresponds to a pure Funk
part (resp. pure reverse-Funk part) on the cone.

In relation to what proved at the beginning of section 2.2.2, if (Ω, dΩ) is a Hilbert
geometry, a Busemann point is given by the composition of a Hilbert Busemann
point of CΩ with a map ϕD that identifies Ω with a bounded cross-section D of the
cone CΩ above Ω. We should then write an element of BΩ as rCΩ,v |D ◦ϕD+fT ,w |D ◦ϕD,
with v ∈ ∂CΩ, T ∈ T (τ(CΩ, v)), and w ∈ T . However, when the context is clear we
will write rCΩ,v + fT ,w |CΩ instead of the correct expression above.

2.5 Action of isometries on horofunctions

In this section, we will see that the study of the horofunction boundary is funda-
mental for a well understanding of the isometries of a Hilbert geometry.
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2.5.1 Extension of isometries on the horofunction boundary

Let us start by observing that any isometry Φ ∈ Isom(Ω, dΩ) can be extended to
the horofunction boundary ∂∞Ω by taking for ξ ∈ ∂∞Ω and x ∈ Ω

Φ(ξ)(x) = ξ(Φ−1(x))− ξ(Φ−1(b)), (2.41)

where b ∈ Ω is a fixed base point. Indeed, if (zn)n∈N⊆ Ω converges to ξ ∈ ∂∞Ω, we
have that

lim
n→∞

Ψb,Φ(zn)(x) = lim
n→∞

dΩ(x,Φ(zn))− dΩ(b,Φ(zn))

= lim
n→∞

dΩ(Φ
−1(x), zn)− dΩ(Φ

−1(b), zn)

= lim
n→∞

(
dΩ(Φ

−1(x), zn)− dΩ(b, zn)
)
−
(
dΩ(Φ

−1(b), zn)− dΩ(b, zn)
)

= ξ(Φ−1(x))− ξ(Φ−1(b)).

The next lemma shows that the extension in (2.41) of an isometry in Isom(Ω, dΩ)

to the horofunction boundary is an isometry if restricted to the set of Busemann
points endowed with the detour metric.

Lemma 2.5.1. Given ξ, η ∈ BΩ and Φ ∈ Isom(Ω, dΩ) it holds that

δ(Φ(ξ),Φ(η)) = δ(ξ, η).

Proof. Let ξ, η ∈ BΩ be two Busemann points. From Proposition 2.1.15 we know
that the detour metric is independent of the choice of the base point. Thus, we
can fix an arbitrary base point b ∈ Ω. From the definition in (2.41) we have that a
sequence (xn)n∈N in Ω converges to the horofunction Φ(ξ) if and only if (Φ−1(xn))n∈N

converges to ξ. Therefore, we have

H(Φ(ξ),Φ(η)) = inf
(xn)n∈N∈S

(
lim inf
n→∞

dΩ(b,Φ(xn)) + η(xn)− η(Φ−1(b)
)

= inf
(xn)n∈N∈S

(
lim inf
t→∞

dΩ(Φ
−1(b), xn)− dΩ(b, xn) + dΩ(b, xn) + η(xn)− η(Φ−1(b))

)
= H(ξ, η) + ξ(Φ−1(b))− η(Φ−1(b)),

where S is the set of sequences that converges to ξ. With the same reasoning, we have
H(Φ(η),Φ(ξ)) = H(η, ξ) + η(Φ−1(b))− ξ(Φ−1(b)). Hence, δ(Φ(ξ),Φ(η)) = δ(ξ, η).

Remark 2.5.2. Since the extension of an isometry to the horofunction compactifi-
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cation of Ω is an isometry on the set of Busemann points, this extension preserves
the partition of BΩ into parts.

Recall that two Busemann points belong to the same part if and only if the
detour distance between them is finite. Moreover, each part corresponds to a pair
(F,E∗), with F the relative interior of a proper face of Ω and E∗ a face of the dual
F ∗ of F .

The next lemma shows that the extension of any isometry maps pure parts into
pure parts.

Proposition 2.5.3. Let (Ω, dΩ) and (Ω′, dΩ′) be two Hilbert geometries. The metric
space (Ω × Ω′, dΩ×Ω′) is isometric to a Hilbert geometry if and only if either the
projective dimesion of Ω is 0 or projective dimension of Ω′ is 0.

Proof. Recall that dΩ×Ω′(x, x′) = dΩ(x)+dΩ(x). If either the projective dimesion of
Ω is 0 or projective dimension of Ω′ is 0, it is clear that (Ω×Ω′, dΩ×Ω′) is isometric to
a Hilbert geometry. Suppose that both the projective dimesion of Ω and projective
dimesion of Ω′ are positive. Let ℓΩ be a geodesic straight line connecting an extreme
point in ∂Ω to another point in ∂Ω, and ℓΩ′ be a geodesic straight line connecting
an extreme point in ∂Ω′ to another point in ∂Ω′. By definition every geodesic of
Ω × Ω′ is the product of a geodesic in Ω and a geodesic in Ω′. Since ℓΩ have an
end-point in an extreme point, for every pair of point in ℓΩ a. The same is true for
ℓΩ′ . Therefore, (ℓΩ × ℓΩ′ , dΩ×Ω′ |ℓΩ×ℓΩ′ ) is a uniquely geodesic metric space.

If (Ω×Ω′, dΩ×Ω′) is isometric to a Hilbert geometry (Ω′′, dΩ′′), then the image of
ℓΩ × ℓΩ′ via that isometry is a closed and uniquely geodesic subspace of Ω′′. Thus,
(ℓΩ×ℓΩ′ , dΩ×Ω′ |ℓΩ×ℓΩ′ ) is itself isometric to a Hilbert geometry. On the other hand, it
is isomorphic to R2 with the ℓ1-norm. By Proposition 2.2.17, (ℓΩ× ℓΩ′ , dΩ×Ω′ |ℓΩ×ℓΩ′ )

is isometric to the 2-simplex. We saw in Example 1.2.7 that the balls of the 2-simplex
are hexagonal, so we get a contradiction.

Corollary 2.5.4. Let (Ω, dΩ) be a Hilbert geometry and let Φ ∈ Isom(Ω, dΩ). The
extension of Φ maps the set of pure parts of the horofuncion boundary to the set of
pure parts. Moreover, it preserves the dimension and the maximality of each part.

Proof. By Proposition 2.5.3 and Corollary 2.4.6, a pure part with its detour metric
is isometric to a Hilbert geometry. Since the topology induced by the Hilbert metric
is the Euclidean one, the dimensions of two isometric parts have to be the same.
Moreover, the image of a maximal pure part has to be a maximal pure part.
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2.5.2 Gauge-preserving and gauge-reversing maps

It is clear that the action of the extension of an isometry on the set of parts is very
important. Therefore, it will be useful in what follows, the study of the behaviour
of the gauge under particular types of automorphisms of a cone.

Definition 2.5.5. Let C ⊆ Rn+1 be a convex cone and ϕ : C → C. We say that ϕ
is homogeneous if for every u ∈ C and λ > 0, it holds ϕ(λu) = λϕ(u). If for every
u ∈ C and λ > 0, it holds ϕ(λu) = 1

λ
ϕ(u), we say that ϕ is anti-homogeneous.

Definition 2.5.6. Let C ⊆ Rn+1 be a convex cone and ϕ : C → C. We say that ϕ
is isotone if for every u, v ∈ C such that u ≤C v, it holds ϕ(u) ≤C ϕ(v). If for every
u, v ∈ C such that u ≤C v, it holds ϕ(v) ≤C ϕ(u), we say that ϕ is antitone.

Definition 2.5.7. Let C ⊆ Rn+1 be a convex cone and ϕ : C → C. We say that
ϕ is gauge-preserving if for every u, v ∈ C it holds that MC(u/v) = MC(ϕ(u)/ϕ(v)).
If for every u, v ∈ Cit holds that MC(u/v) = MC(ϕ(v)/ϕ(u)), we say that ϕ is
gauge-reversing.

Remark 2.5.8. The action of a gauge-preserving automorphism ϕ : C → C, maps
pure reverse-Funk parts into pure reverse-Funkparts and pure Funk parts into pure
Funk parts. Quite the opposite, a gauge-reversing automorphism ϕ : C → C, maps
pure reverse-Funk parts into pure Funk parts and pure reverse-Funk parts into pure
Funk parts.

We show that the image of any reverse-Funk horofunction under the action of ϕ
is a reverse-Funk horofunction. The other cases can be studied in a similar way.

Assume that ϕ : C → C is gauge-preserving. Then, for each reverse-Funk horo-
function rC,v, with v ∈ CΩ, there is a sequence (vn)n∈N in C converging in reverse-Funk
sense to rC,v and in usual sense to v. We denote Φ the projective action of ϕ and
RC,v the projective action of rC,v. Given x ∈ Ω, we pick u ∈ CΩ such that x = [u] and
u belongs to the cross-section we use to identify the Hilbert horofunction boundary
of CΩ and the horofunction boundary of Ω, see the construction in Section 2.2.2.
Let b be the fixed base point and b̃ ∈ CΩ such that b = [b̃] and b̃ belongs to the
cross-section specified above. Thus, we have

Φ(RC,v)(x) = RC,v(Φ
−1(x))−RC,v(Φ

−1(b))

= rC,v(ϕ
−1(u))− rC,v(ϕ

−1(b̃))

= lim
n→∞

RFC(ϕ
−1(u), vn)−RFC(b, vn)−RFC(ϕ

−1(b̃), vn) +RFC(b, vn)

lim
n→∞

RFC(u, ϕ(vn))−RFC(b̃, ϕ(vn)).
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The following result is really the key for the proof of Theorem 2.0.4. We do not
include the proof of this result in the thesis since the approach used is algebraic and
need a certain amount of prerequisites about Jordan algebras. However, a proof can
be found in the article [22] of C. Kai.

Theorem 2.5.9 ([22, Theorem A]). Let C ⊆ Rn+1 be a properly convex homogeneous
open cone. The composition of the Vinberg’s canonical isomorphism (1.12) with the
identification of C with its dual C∗ is a gauge-reversing map if and only if C is
symmetric.

In order to prove Theorem 2.0.4, we want to show that each isometry of a Hilbert
geometry either is a projective isometry or arises as the projective action of a gauge
reversing automorphism. Then, we will see that symmetric cones are the only ones
that admit a gauge-reversing automorphism. Theorem 2.5.9 shows that each sym-
metric cone admits a gauge-reversing automorphism.

We saw that the extension of a isometry maps pure parts into pure parts and
maximal parts into maximal parts. Therefore, either it maps every maximal pure
Funk part into a maximal pure Funk part, or there exists a (non-singleton) maximal
pure Funk part that is mapped into a pure reverse-Funk part of the same dimen-
sion. We want to show that in the first case, the isometry is projective and that
in the second case, the isometry arises as the projective action of a gauge-reversing
automorphism.

Lemma 2.5.10. Let Φ : Ω → Ω be an isometry of the Hilbert geometry (Ω, dΩ).
Suppose that for every extreme point z ∈ ∂Ω there exists an extreme point z′ ∈ Ω

such that the image of any open segment ]z, x[, with x ∈ Ω is an open segment ]z′, y[
for some y ∈ Ω. Then, the isometry Φ extends continuously to the boundary ∂Ω.

Proof. Given an extreme point z ∈ ∂Ω we define the image of z under the extension
of Φ to the boundary to be the extreme point z′ ∈ ∂Ω in the hypothesis of the
propposition.

Let us define Ωm as the union of all the faces of Ω of projective dimension at
least m, so Ω = Ωn and Ω = Ω0, where n is the projective dimension of Ω. We prove
by induction that for every m ≤ n the followings hold

1) Φ extends continuously to Ωm,

2) for every extreme point z ∈ ∂Ω and every x ∈ Ωm the image of the open
segment ]z, x[ is an open segment ]z′, y[ for some extreme point z′ ∈ ∂Ω and
y ∈ Ωm.
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If m = n the two properties above hold by hypothesis.
Now, suppose that the two properties hold for every m ≤ k ≤ n. We prove that

they hold also for k = m− 1.
Let us consider a relatively open face F ⊆ ∂Ω of dimension m − 1. Since F is

a proper face, there exists an extreme point z ∈ ∂Ω such that z ̸∈ F . By inductive
hypothesis, for every x ∈ F the image of the open segment ]z, x[⊆ Ωm is an open
segment ]z′, y[ for some extreme point z′ ∈ ∂Ω and a point y ∈ Ωm. We define
Φ|F∪Ωm(x) = y.

Since the relatively open faces of projective dimension m − 1 are disjoint, to
prove that the property 1) holds, it suffices to show that Φ|F∪Ωm is continuous, for
an arbitrary face F . Let (xn)n∈N be a sequence converging to x. We claim that given
s ∈ ]u′, y[ it holds that s ∈ ]u′, y′[ for every limit point y′ of the sequence (Φ(xn))n∈N.
Thus, considering a sequence (sn)n∈N in ]u′, y′[ convergent to y, we conclude that
y′ = y.

To prove the claim, we consider some r ∈ ]u, x[ such that Φ(r) = s and a sequence
(rn)n∈N such that rn ∈ ]u, xn[. Since r ∈ Ωm, by inductive hypothesis the limit of
(Φ(rn))n∈N equals s and Φ(rn) ∈ ]u′,Φ(xn)[.

Now, we have to prove that the property 2) holds for Ωm−1. Let ]z, x[⊆ Ωm−1 be
an open segment with z∂Ω an extreme point and x ∈ Ωm−1. We have to prove that
there exist an extreme point z′ ∈ ∂Ω and a point y ∈ Ωm−1 such that Φ(]z, x[) =

]z′, y[. Let us consider two arbitrary points r, s ∈ ]z, x[ such that s ∈ ]z, r[ and
two sequences (sn)n∈N and (rn)n∈N in Ω that converge respectively to s and r, and
such that sn ∈]z, rn[. Since these sequences belong to Ω, by hypothesis the image of
]z, rn[ is an open segment ]z′,Φ(rn)[ and Φ(sn) ∈ ]z′,Φ(rn)[ for all n ∈ N. From the
continuity of Φ|Ωm−1 , we get that Φ(s) ∈ ]z′,Φ(r)[. By the arbitrariness of s and t,
we get that Φ(]z, x[) ⊆ ]z′, y[ for some y ∈ Ω. From the continuity of Φ, the image
of ]z, x[ has to be connected, so Φ(]z, x[) = ]z′, y[ for some y ∈ Ω.

Theorem 2.5.11. Let Φ ∈ Isom(Ω, dΩ) be an isometry of an Hilbert geometry
(Ω, dΩ). If Φ maps each maximal pure Funk part is mapped by the extension of Φ to
a maximal pure Funk part, then Φ is a projective isometry.

Proof. First, we show that if Φ maps each maximal pure Funk part is mapped by the
extension of Φ to a maximal pure Funk part, then Φ and Φ−1 estends continuously
to the boundary. Let x ∈ ∂Ω be an extreme point, and v ∈ ∂CΩ such that x = [v].
The part associated with (Fv, τ(CΩ, v)) is a maximal pure Funk part. By hypothesis,
there is a maximal pure Funk part (Fw, τ(CΩ, w)), with [w] ∈ ∂Ω an extreme point
such that Φ maps the part associated with (Fv, τ(CΩ, v)) to the part associated with
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(Fw, τ(CΩ, w)).
Proposition 1.2.9 implies that the straight line through x and y is a unique-

geodesic. Therefore, the image under Φ of this straight line is a unique-geodesic,
and hence a strainght line, too.

Since a sequence (xn)n∈N in Ω converging to x converges to a horofunction in the
part associated with (Fv, τ(CΩ, v)), the sequence (Φ(xn))n∈N converges to a Buse-
mann point in (Fw, τ(CΩ, w)). Theorem 2.3.23 and Theorem 2.3.1 implies that
(Φ(xn))n∈N converges in the Euclidean topology to [w]. Therefore, the isometry
Φ satisfies the hypotesis of Lemma 2.5.10, and hence extends continuously to the
boundary ∂Ω. Using a similar argument we get that Φ−1 extends continuously to
the boundary.

The rest of the proof goes by induction on the projective dimension n of Ω. If
n = 1, then Ω is a segment in P1, denote its endpoints a and b. For each point
x ∈ Ω, there exists a unique projective trasfomation f that coincide with Φ on a, b

and x. Let y ∈ Ω {x} be any other point of Ω. Since both Φ and f preserves
the cross-ratio of four aligned points, the cross-ratio of Φ(a),Φ(x),Φ(b) and Φ(y),
considered in the correct order, coincide with the cross-ratio of f(a), f(x), f(b) and
f(y), considered in the correct order, and both coincide with the cross-ratio of a, x, b
and y, considered in the correct order. From Theorem 1.2.2, there exists a unique
projective transformation that maps a, x, b and y in f(a), f(x), f(b) and f(y), and
this transformation has to coincide with Φ.

Now, suppose that the thesis holds for any Hilbert geometry of dimension k ∈
{1, . . . , n−1}. Since the projective dimension of Ω is n, then there exist n+1 extreme
points x0, . . . , xn ∈ ∂Ω whose convex hull forms a n-simplex S in Ω. We extend the
idea of the first case. Let y ∈ int(S). Since {x0, . . . , xn, y} is a projective basis of Pn

and Φ−1 extends continuously to the boundary, then also {Φ(x0), . . . ,Φ(xn),Φ(y)} is
a projective basis of Pn. Therefore, there exists a unique projective transformation
f of Pn such that f(xi) = Φ(xi), i = 0, . . . , n and f(y) = Φ(y).

We want to prove first that Φ|S ≡ f|S and then that Φ and f agrees on each
n-simplex given by the convex hull of n+ 1 extreme points of Ω.

For all i ∈ {0, . . . , n}, let ℓi be the intersection of the projective line pass-
ing through xi and y with Ω and Hi be the intersection of the hyperplane con-
taining x0, . . . , xi−1, xi+1, . . . , xn. Denote yi the intersection point of ℓi with Hi.
Similarly, let ℓ′i be the intersection of the projective line passing through Φ(xi)

and Φ(y) with Ω and H ′
i be the intersection with Ω of the hyperplane contain-

ing Φ(x0), . . . ,Φ(xi−1),Φ(xi+1), . . . ,Φ(xn). Denote y′i the intersection point of ℓi
with Hi. From Proposition 1.2.9, for each i, the line ℓi is the unique geodesic
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that has xi as an endpoint. Since f is a projective transformation f(ℓi) = ℓ′i and
f(Hi) = H ′

i. Since Φ−1(ℓ′i) is a geodesic then it must be the unique-geodesic ℓi.
Therefore, Φ(ℓi) = h(ℓi) = ℓ′i. Moreover, Φ(Hi) = h(Hi) = H ′

i, since continuous
extension of Φ and Φ−1 has to preserve the affine hull of a set of points.

Figure 2.8: Configuration of points considered in the proof of Theorem 2.5.11.

It follows that Φ(yi) = f(yi). Thus, by inductive hypothesis, Φ|int(Hi)
is a pro-

jective transformation for all i. Since f and Φ coincide on the projective bases
x0, . . . , xi−1, yi, xi+1, . . . , xn, then Φ| int(Hi) = f| int(Hi), for all i = 0, . . . , n.

Now, given p ∈ int(S), we define p0 as the intersection of the line through p and
x0 with h0, and p1 as the intersection of the line through p and x1 with h1. As
above, the line through p and x0 and the line through p and x1 are unique-geodesic.
Thus, both Φ and f map p to the intersection of the images of these two lines. It
follows that Φ(p) = f(p). Hence, Φ|S = f|S.

If z0, . . . , zn is another set of extreme points whose convex hull is a n-simplex
S ′ in Ω, then there exists some i ∈ {0, . . . , n} such that, up to permutations of the
indexes of z0, . . . , zn, the convex hull of x0, . . . , xi−1, zi, xi+1, . . . , xn is a n-simplex
S ′′ in Ω.

Figure 2.9: Configuration of simplexes considered in the proof of Theorem 2.5.11.

Given q ∈ int(S ′′), by the first case, Φ coincide with a projective transformation
h on the the line through q and zi. Since the line through q and zi intersect int(S) in
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an open segment, h coincide with f on this line. Thus, we have Φ(q) = h(q) = f(q).
From the arbitrariness of q, we conclude that Φ|S′′ = f|S′′ . In particular

We can apply this procedure to each point in {z0, . . . , zn}, to get that Φ|S′ = f|S′ .
We have proved that f and Φ coincide on every n-simplex contained in Ω. The

conclusion of the proof follows from Carathéodory Theorem [6, Theorem 11.1.8.6],
that asserts that each point of a properly convex domain belongs to the convex hull
of n+ 1 extreme points.

Corollary 2.5.12. Let (Ω, dΩ) be a Hilbert geometry and CΩ be the cone above Ω. If
ϕ : CΩ → CΩ is gauge-preserving, then the projective action of ϕ on Ω is a projective
isometry.

Proof. Let Φ : Ω → Ω be the map induced by ϕ. Remark 2.5.8 implies that the
extension of Φ maps each reverse-Funk horofunction to a reverse-Funk horofunction
and each Funk horofunction to a Funk horofunction. Therefore, from Theorem
2.5.11 we get that Φ is a projective isometry.

Corollary 2.5.13. Let Ln+1 ⊆ Rn+1 be the Lorentzian cone. Then, the group of
projective isometries of the Hilbert geometry associated with Ln+1 coincide with its
group of isometries.

Proof. The boundary ∂Ln+1 of Ln+1 has regularity C1 and is strictly convex. It
follows that every cone tangent to Ln+1 is a half-space, and every face of Ln+1 is a
ray. Therefore, every part of the horofunction boundary is a singleton. By Theorem
2.5.11 every isometry is projective.

Now, we study the remaining case, when there is an isometry that maps a non-
singleton maximal pure Funk part to a pure reverse-Funk part.

Lemma 2.5.14. Let (Ω, dΩ) be a Hilbert geometry and Φ ∈ Isom(Ω, dΩ). Suppose
that x ∈ ∂Ω is an extreme point and that maximal pure Funk part X associated
with x is not a singleton. If Φ(X) is a reverse-Funk part, then the line segment
connecting x with any other extreme point y ∈ ∂Ω is contained in the boundary ∂Ω.

Proof. Let x ∈ ∂Ω be an extreme point satisfying the conditions of the statement.
Suppose that there exists an extreme point y ∈ ∂Ω such that the segment ]x, y[ is
contained in Ω. We parametrize ]x, y[ as γ : R → Ω. Proposition 1.2.9 implies that
the segment γ is a unique-geodesic.

Let X be the maximal pure Funk part associated with x. Then, each Busemann
point in x is obtained as the limit of a sequence that converges in usual sense to
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X. Let Y be the maximal pure Funk part associated with y. Then, each Busemann
point in Y is obtained as the limit of a sequence that converges in usual sense to y.

Since both X and Y are maximal pure parts, they do not belong to the boundary
of the any other part. So, the geodesic connecting a point in X to a point in Y must
be contained in Ω (if it exists). It follows that the image of γ is the only unique-
geodesic connecting a Busemann point in X to a Busemann point in Y . Indeed, if
it was an other one, its pre-image in Ω would be a geodesic from x to y different
from γ. Since the extension of Φ is an isometry, the geodesic Γ = Φ ◦ γ is the
only unique geodesic connecting a Busemann point in Φ(X) to a Busemann point in
Φ(Y ). We want to show that the fact that Φ(X) is a pure reverse-Funk part implies
the existence of an other unique geodesic connecting a point in Φ(X) to a point in
Φ(Y ).

Let z ∈ ∂Ω be the endpoint of Γ in the interior of face F of Ω associated with the
pure reverse-Funk part Φ(X). Denote w ∈ ∂Ω the other endpoint of Γ. Since Φ(X)

is a non-singleton part, there is another point z′ ∈ ∂ in the interior of F . Then we
can consider the segment ]w, z′[, and parametrize it as Γ′ : R → Ω. We want to
prove that Γ′ is a unique-geodesic. Proposition 1.2.9 tells us that this is true if there
are no pair of coplanar segment in ∂Ω that contains respectively w and z′. If such
segments existed then there would exist a segment parallel to the one containing z
and which contains z′, since z and z′ belong to the interior of same face. So, we
have obtained a contradiction the fact that gamma is a unique-geodesic, again by
Proposition 1.2.9. So, the image of Γ′ is a unique-geodesic connecting a point in
Φ(Y ) to a point in Φ(X). Therefore, Φ(X) can not be a pure reverse-Funk part.

Proposition 2.5.15. Let (Ω, dΩ) be a Hilbert geometry and Φ ∈ Isom(Ω, dΩ) be an
isometry. Suppose that there is a non-singleton maximal Funk part that is mapped
by Φ into a pure reverse-Funk part. Then, the isometry Φ is the projective action of
a gauge-reversing automorphism of the cone CΩ associated with Ω.

Proof. Let b ∈ Ω be a fixed base point. In the domain of Φ we work with the
horofunction compactification of Ω associated with the base point b. In the image
of Φ we work with the horofunction compactification of Ω associated with the base
point b′ = Φ(b). Formally, we have to compose Φ with the homeomorphism from
the compactification of Ω associated with b to the compactification of Ω associated
with b′. From Proposition 2.1.18 the detour metric is independent of the choice of
the base point. Hence, this composition maps the non-singleton maximal Funk part
in the statement into a pure reverse-Funk part.

Let (Fv, τ(CΩ, v)) be the pair associated with the non-singleton maximal pure
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Funk part of the statement, where [v] ∈ ∂Ω is an extreme point and the dimension
of the Hilbert geometry associated with τ(CΩ, v) is positive. We denote this part
V . By hypothesis, the image of this part is a pure reverse-Funk part. Let (F, T ) be
the pair associated with the pure reverse-Funk part Φ(V ). Thus, F is a face of CΩ
and the dimension of the Hilbert geometry associated with F equals the dimension
of the Hilbert geometry associated with τ(CΩ, v), and the dimension of the Hilbert
geometry associated with T is 0. Let fT ∈ KF

T be the unique Funk horofunction
associated with (F, T ).

We define ϕ : CΩ → CΩ imposing that [ϕ(z)] = Φ([z]) and fT (ϕ(z)) = rCΩ,v(z)

for each z ∈ CΩ. The function ϕ is well defined since fT is the restriction on CΩ of a
linear function. By definition Φ is the projective action of ϕ. We want to show that
ϕ is gauge-reversing. To this aim we start by proving that every Funk Busemann
point obtained as the Funk limit of an almost geodesic converging to an extremal
generator is mapped by ϕ to a reverse-Funk Busemann point.

Let u ∈ ∂CΩ be another extremal generator such that τ(C, u) is not an half-space.
We denote U the part associated with (Fu, τ(C, u)). Then, we show that also Φ(U)

is a pure reverse-Funk part.

By Lemma 2.5.14 the segment connecting u and v belongs to ∂CΩ. Thus, there
is a non-empty set of hyperplanes that supports CΩ at both u and v. This set
correspond to a proper face of C∗

Ω. We choose an extremal generator S∗ ∈ ∂C∗
Ω in

the boundary of this face. Let E be the face of CΩ whose point are supported by S∗.
We denote S the open cone (that is an half-space) whose dual cone is S∗. Then,
we consider the maximal pure reverse-Funk part associated with (E,S). Denote W
this part. Let fS be the unique Funk horofunction associated with S.

The Busemann point rCΩ,v + fS belongs to both the closure of V and the closure
of W , where the closure is in C(CΩ,R). Therefore, the closure of Φ(V ) and the
closure of Φ(W ) intersect in a point. By Lemma 2.4.12 Φ(W ) is a pure Funk part.
Using the same reasoning, since rCΩ,u + fS belongs to both the closure of U and the
closure of W , and Φ(W ) is a pure reverse-Funk part, then Φ(U) has to be a pure
reverse-Funk part, by Lemma 2.4.12.

Let R be the half-space open cone associated with Φ(U).

Let w ∈ ∂CΩ be the extremal generator associated with the pure Funk partΦ(W ).
Since Φ(rCΩ,v + fS) ∈ Φ(W )

BΩ ∩ Φ(V )
BΩ then we have

Φ(rCΩ,v + fS) = rCΩ,w + fT . (2.42)
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Similarly, since Φ(rCΩ,u + fS) ∈ Φ(W )
BΩ ∩ Φ(U)

BΩ then we have

Φ(rCΩ,u + fS) = rCΩ,w + fR. (2.43)

Therefore, we get from (2.42) and the definition of ϕ that

ϕ(fS) = ϕ(rCΩ,v + fS)− ϕ(rCΩ,v) = rCΩ,w + fT − fT . (2.44)

Now, from (2.43) and (2.44) we get

ϕ(rCΩ,u) = fR. (2.45)

Let f be a Funk Busemann point obtained as the Funk limit of an almost geodesic
converging to u. Then, the horofunction rCΩ,u + f is contained in the closure of U .
As we proved above, Φ(U) is a pure reverse-Funk part, then ϕ(rCΩ,u+f) = rCΩ,p+fR

for some p ∈ ∂CΩ. Therefore, we get from (2.45) that

ϕ(f) = ϕ(rCΩ,u + f)− ϕ(rCΩ,u) = rCΩ,p + fR − fR = rCΩ,p. (2.46)

Hence, we have proved that ϕ maps each Funk Busemann point, obtained as the
Funk limit of a Funk almost-geodesic converging to an extremal generator, to a
reverse-Funk Busemann point.

Now, let v1, v2 ∈ CΩ be two non-parallel points of the cone above Ω. Then,
there exists a bounded cross-section D of CΩ that contains both v1 and v2. From
Proposition 1.2.9, there exists a geodesic ray γ : R≥0 → D from v1 that passes
through v2 and converges to an extreme point of the boundary of the cross-section.
Then, following the argument in Remark 2.2.29 we have

FC(v1, v2) = FC(v1, γ(t))−FC(b, γ(t))−FC(v2, γ(t)) + FC(b, γ(t)) for all t ∈ R≥0.

(2.47)
Hence, if f is the Funk limit of γ(t), we get from (2.47) that FC(v1, v2) = f(v1) −
f(v2). Let r = ϕ(f), we know from the previous part of the proof that r is a
reverse-Funk Busemann point. Moreover, from the definition of the push-forward
of an isometry, and for the first assumption on the base points of the horofunction
boundary, we have r = f ◦ ϕ−1. Then, we have

FC(v1, v2) = f(v1)− f(v2) = r(ϕ(v1))− r(ϕ(v2)) ≤ RFC(ϕ(v1), ϕ(v2)).

On the other hand, since ϕ preserves the Hilbert distance, applying this last inequal-
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ity, we get

FC(v1, v2) = HC(v1, v2)−FC(v2, v1) ≥ HC(v1, v2)−RFC(v2, v1) = RFC(v1, v2).

Applying the exponential we get that if v1, v2 ∈ CΩ are not parallel, thenMC(v1/v2) =

MC(ϕ(v2)/ϕv1).
If v1 = λv2 for some λ > 0, we get form the linearity of fT and the definition of

ϕ, that MC(v1/v2) =MC(ϕ(v2)/ϕv1). Hence, the map ϕ is gauge-reversing.

Theorem 2.5.16. Let (Ω, dΩ) be a Hilbert geometry. Every element of Isom(Ω, dΩ)

is either a projective isometry or arises from the projective action of a gauge-
reversing automorphism of the cone CΩ above Ω. Moreover, the subgroup of pro-
jective isometries PGL(Ω) is a normal subgroup of Isom(Ω, dΩ) and has index at
most 2.

Proof. Let us consider an isometry Φ : Ω → Ω. Then, either every maximal pure
Funk part is mapped to a maximal pure Funk part, or there is a non-singleton
maximal pure Funk part that is mapped to a pure reverse-Funk part of the same
dimension. In the former case, we get from Theorem 2.5.11 that Φ is a projective
isometry. In the latter case we get from Proposition 2.5.15 that Φ is the projective
action of a gauge-reversing automorphism of CΩ. Since every linear automorphism
is gauge-preserving and the composition of a gauge-reversing map with a gauge-
preserving map is a gauge-reversing map, and vice versa, the subgroup is normal.
Moreover, the composition of two gauge-reversing maps is a gauge-preserving map,
and hence its projective action is a projective isometry, by Corollary 2.5.12. There-
fore, the index of PGL(Ω) into Isom(Ω, dΩ) is at most 2.

2.6 The group of isometries

In order to prove Theorem 2.0.4, we have to show that if the cone above the domain
of a Hilbert geometry admits a gauge-reversing map, then it is homogeoneous and
self- dual. We start by proving the first condition.

The function that maps a pair of points of a properly convex cone C ⊆ Rn+1,
(u, v) ∈ C × C to the real number dTC (u, v) := logmax{MC(u/v),MC(v/u)} is a
metric2. Since u and v belong to C, both MC(u/v) and MC(v/u) are finite numbers.
Then, given u, v ∈ C, if MC(u/v) ≥ 1 we have dTC (u, v) ≥ 0, if instead MC(u/v) < 1,
then v ∈ C + u and hence MC(v/u) ≥ 1. In both cases, we have dTC (u, v) ≥ 0. In

2This metric is known as Thompson metric. We refer to [28] for further information.
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the same way, we get that dTC (u, v) = 0 implies u = v. The symmetry of dTC is clear.
Finally, given u, v and w in C, we have

MC(u/v) ≤MC(u/z)MC(z/v) and MC(v/u) ≤MC(v/z)MC(z/u).

It follows that MC(u/v) ≤ max{MC(u/z),MC(z/u)}max{MC(z/v),MC(v/z)} and
MC(v/u) ≤ max{MC(u/z),MC(z/u)}max{MC(z/v),MC(v/z)}. Therefore, dTC satis-
fies the triangular inequality.

Moreover, from Proposition 2.2.8 we get

dTC (u, v) =


logmax

{
1 +

∥u− v∥
∥v − v∞∥

, 1 +
∥u− v∥
∥u− u∞∥

}
if u ̸= λv for all λ > 0,

log∥u− v∥ if ∃λ > 0 such that u = λv,

where u∞ and v∞ the intersection points of the line through u and v with ∂C, defined
such that u belong to the segment between u∞ and v and v belong to the segment
between u and v∞. Therefore, the metric dTC is Lipschitz equivalent to the Euclidean
metric on any ball of finite radius contained in C and the topology induced by dTC is
the Euclidean one. These facts give rise to the following proposition.

Proposition 2.6.1. Let ϕ : C → C be a gauge-reversing map. Then, ϕ is a bijection.
Moreover, ϕ is differentiable almost-everywhere on C, with respect to the Lebesgue
measure.

Proof. By definition, ϕ is an isometry of (C, dTC ). Therefore, it is injective and
continuous. From the invariance of domain theorem, we get that ϕ(C) is an open.
Since C is connected, it suffice to show that ϕ(C) is closed.

Let (vn)n∈N be a sequence in ϕ(C) converging to v ∈ C. Then the sequence
(ϕ−1(vn))n∈N in C satisfies the Cauchy criterion. Since (C, dTC ) is complete, (ϕ−1(vn))n∈N

converges to some point u ∈ C. From continuity, we get that ϕ(u) = v.
Since ϕ is 1-Lipschitz with respect to dTC , and dTC is Lipschitz equivalent to the

Euclidean metric on any ball of finite radius, from Rademacher’s Theorem [17,
Theorem 3.2], we deduce that ϕ is differentiable almost everywhere within every ball
of finite radius. Since C endowed with the Euclidean topology is second countable,
ϕ is differentiable in the whole C.

Corollary 2.6.2. Assume there exists a gauge-reversing map ϕ : C → C. Then, for
almost all v in C, there exists a gauge-reversing map ϕv : C → C that fixes v, has
derivative Dvϕv = − Id at v, and is an involution.
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Proof. By Proposition 2.6.1, the map ϕ is bijective and ϕ is differentiable almost
everywhere in C. So, it is well-defined ϕ−1, which is also gauge-reversing.

Let v be a point of C where ϕ is differentiable. The map (−Dvϕ)
−1 is linear, and

hence gauge-preserving. Indeed, for any linear map f and any u, u′ ∈ C, we have
that u ≤C u

′ implies u′ − u ∈ C that implies f(u′ − u) ∈ C that implies, by linearity
that f(u) ≤C f(u

′).
So the map ϕv : C → C defined by ϕv := (−Dvϕ)

−1 ◦ ϕ is gauge-reversing. By
the chain rule Dvϕv = − Id.

On the other hand, since ϕv is gauge-reversing, ϕv is anti-homogeneous. Indeed,
for each u ∈ C and λ > 0, we have

MC(
1

λ
ϕv(u)/ϕv(λu)) =

1

λ
MC(ϕv(u)/ϕv(λu))

=
1

λ
MC(λu/u)

=MC(u/u) = 1.

Then, 1
λ
ϕv(u) ≤C ϕv(λu). In a similar way one can prove that MC(ϕv(λu)/

1
λ
ϕv(u)) =

1 and hence that 1
λ
ϕv(u) = ϕv(λu).

Therefore, we have ϕv(v+λv) = ϕv(v)
1+λ

for all λ > 0. This implies that Dvϕv(v) =

−ϕv(v). Therefore, ϕv(v) = v.
The map ϕv ◦ ϕv is gauge-preserving, and hence linear. Moreover, its derivative

at v is Id. It follows that ϕv ◦ ϕv = Id.

Lemma 2.6.3. Let C ⊆ Rn+1 be a properly convex open cone and Ω be the projection
of C. Assume that there exists a gauge-reversing map ϕ : C → C. Then, PGL(Ω)

acts transitively on pairs of points that are collinear with an extreme point of ∂Ω.

Proof. Let x, y ∈ Ω be two points collinear with an extreme point a ∈ ∂Ω. Let z
be the mid-point, in the Hilbert metric on Ω, between x and y on the straight line
joining them. By Corollary 2.6.2, we can find a sequence (zn)n∈N in Ω converging to
z and such that, for all n ∈ N, there exists a gauge-reversing map ϕzn : C → C that
fixes some representative z̃n ∈ C of zn, and has derivative − Id at z̃n.

Assume that x lies between a and y. For each n ∈ N, define Ln the line in Ω

passing through a and zn, and xn and yn within Ln be such that zn is the mid-point,
in the Hilbert metric on Ω, between xn and yn on the straight line joining them. By
definition, (xn)n∈N converges to x and (yn)n∈N converges to y.

Since a is an extreme point, by Proposition 1.2.9, for all n ∈ N, Ln is the unique
geodesic passing through xn and yn. Therefore, ϕzn(Ln) is the unique geodesic
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passing through ϕ(xn) and ϕ(yn). Hence, ϕzn(Ln) is a straight line. Since ϕzn(zn) =
zn and Dznϕ = − Id, we have that ϕzn(xn) = yn for all n ∈ N.

From Corollary 2.6.2, there exists a sequence wn in Ω converging to y such that,
for all n ∈ N, there is a gauge-reversing map ϕwn : C → C that fixes a representative
w̃n ∈ C of wn. For each n ∈ N, the map fn : C → C defined by

fn := ϕwn ◦ ϕzn

is gauge-preserving. By Corollary 2.5.12, the action of fn on Ω is a projective
transformation, for all n ∈ N.

Observe that the sequences (yn)n∈N and (yn)n∈N have the same limit, and that
ϕwn(wn) = wn converges to y. Since {ϕwn} is 1-Lipschitz, for all n ∈ N, we get
that ϕwn(yn) converges to y. But ϕwn(yn) = fn(xn) for all n ∈ N, and (xn)n∈N

converges to x. We conclude that (fn(x))n∈N converges to y. This implies that
the sequence (fn)n∈N lie in some bounded subset of PGL(Ω). Therefore, up to a
subsequence, there is a projective isometry f ∈ PGL(Ω) that is the limit of (fn)n∈N.
Since (fn(x))n∈N converges to y, we have f(x) = y.

If instead y lies between x and a, we can aplly a similar reasoning to show that
there is a projective isometry that maps x to y.

Proposition 2.6.4. Let C ⊆ Rn+1 be a properly convex open cone. Suppose that
there exists a gauge-reversing map ϕ : C → C. Then, C is homogeneous.

Proof. Let x and y be points in the domain Ω under C. Suppose that there is an
extremal point z ∈ ∂C such that x and y are aligned in Ω with the extreme point z.
It follows from Lemma 2.6.3 that there is a projective isometry that maps x to y.

Given two generic points x and y in Ω, we notice that since Ω is the convex hull
of its extremal generator, by Carathéodory Theorem [6, Theorem 11.1.8.6], we can
pass from x to y with a finite number of projective isometries.

Now, we want to prove that if a cone admits a gauge-reversing map onto itself,
then the cone has to be self-dual. The idea is to find a symmetric, positive definite
bilinear form on Rn+1 for which the cone is a domain of positivity. We refer to [23]
for further readings.

Definition 2.6.5. Let C ⊆ Rn+1 be an open cone and β : Rn+1 × Rn+1 → R be a
symmetric, non-degenerate bilinear form. Then, C is a domain of positivity for β if
β(u, v) > 0 for all u, v ∈ C and if every time that u ∈ Rn+1 satisfies β(u, v) > 0 for
all v ∈ C {0}, we have that u ∈ C.
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A domain of positivity of a positive definite symmetric bilinear form is self-dual
with respect to the induced inner product. Indeed, the first condition tells us that C
is contained in the image of C∗ under the identification of (Rn+1)∗ with Rn+1 induced
by β. The second condition gives the opposite inclusion.

Now, given C ⊆ Rn+1, assume that there exists a gauge-reversing map ϕ : C → C.
Let Ω be the projection of C. As we mentioned at the beginning of this chapter,
the behaviour of an isometry of Ω is strictly linked to its action on the parts of the
horofunction boundary of Ω.

Therefore, we fix a base point b ∈ Ω. From Corollary 2.6.2 and Proposition
2.1.18, we can choose b̃ ∈ [b] such that there exists a gauge-reversing map ϕb on C
so that ϕb(b̃) = b̃, Db̃ϕ = − Id, and ϕ2

b = Id.
Henceforth, we assume that the gauge-reversing function ϕ : C → R is an invo-

lution that fixes b̃ and that the differential of ϕ at b̃ is − Id.
We are looking for a symmetric, positive definite bilinear form β : Rn+1×Rn+1 →

R such that C is a domain of positivity for β.

We saw in Remark 2.4.11, that the singleton Funk parts of the horofunction
boundary are the restriction to the cone of linear functionals. Moreover, from 2.5.4
we know that the extension of an isometry to the horofunction boundary maps
pure parts to pure parts, and preserves the dimension of each part. In Remark
2.5.8 we saw that if ϕ is a gauge-reversing map, then its extension maps each Funk
horofuntion to a reverse-Funk horofunction, and each reverse−Funk horofunction
to a Funk horofunction.

Recall that rC,u(·) = RFC(·, u)−RFC(b̃, u) is defined on C and is a reverse-Funk
Busemann point. It follows that given an extremal generator u ∈ C, the extension
of ϕ maps rC,u to a Funk horofunction, and each pure Funk part associated with
rC,u to a pure part of the same dimension. Since each Funk horofunction is mapped
by ϕ to a reverse-Funk horofunction, each pure Funk part associated with rC,u is
mapped by ϕ to a pure reverse-Funk part of the same dimension. It follows that
the image of rC,u under ϕ is a Funk singleton. Therefore, by Remark 2.4.11 we have
that exp(rC,u ◦ ϕ) is the restriction to C of a linear function.

Hence, for each extremal generator u ∈ ∂C it is well-defined the linear function
hu : Rn+1 → R given by the extension of exp(rC,u ◦ ϕ) to the whole Rn+1.

The candidate to become the desired bilinear form is the function β defined on
the set of pairs made of an extremal generators of C and a point of Rn+1 and given
by

β(u, v) = hu(v)MC(u/b̃),



2.6 The group of isometries 123

for v ∈ Rn+1 and u ∈ ∂C an extremal generators.

The next steps are to extend β to the whole Rn+1 × Rn+1, to prove that β is a
positive definite symmetric bilinear form, and that C is a domain of positivity for β.

Since C is open, there is a basis (u0, . . . , un) of Rn+1 made of extremal gener-
ator of C. Thus, we can define β to the whole Rn+1 × Rn+1 by taking β(w, v) =∑n

i=0wiβ(ui, v) for all w =
∑n

i=0wiui in Rn+1, with wi ∈ R for i = 0, . . . , n.

Lemma 2.6.6. This definition of β to the whole Rn+1 × Rn+1 does not depend of
the chosen basis of extremal generator. Moreover, β is a symmetric bilinear form.

Proof. Let (u0, . . . , un) and (u′0, . . . , u
′
n) be two bases of extremal generators. Given

v, w ∈ Rn+1 we can write v =
∑

i viui and w =
∑n

i=0wiui =
∑n

i=0w
′
iu

′
i, with

vi, wi, w
′
i ∈ R for i = 0, . . . , n. Then, we have∑

i

wiβ(v, ui) =
∑
i,j

wivjβ(uj, ui), (2.48)

∑
i

w′
iβ(v, u

′
i) =

∑
i,j

wivjβ(uj, u
′
i). (2.49)

Now, we notice that β(uj, ui) = β(ui, uj) and β(uj, u
′
i) = β(u′i, uj). In particular,

it holds that given two extremal generators u, u′ ∈ ∂C, then β(u, u′) = β(u′, u).
Indeed, if we pick a sequence (un)n∈N in C that converges to u, for each n ∈ N we
get hun = jC,ϕ(un), since ϕ is a gauge-reversing involution that fixes b. Recall that

jC,ϕ(un)(·) =
MC(·/ϕ(un))
MC(b̃/ϕ(un))

. Thus, the sequence (jC,ϕ(un))n∈N pointwise converges to

hu. Moreover, since {jC,z | z ∈ C} is an equi-Lipschitzian family, see Lemma 2.4.3,
we have that (jC,ϕ(un)(u

′
n))n∈N converges to hu(u

′) for any sequence (u′n)n∈N in C
converging to u. From the continuity of the gauge, we get

β(u′, u) = hu(u
′)MC(u/b̃)

= lim
n→∞

jC,ϕ(un)(u
′
n)MC(un/b̃)

= lim
n→∞

jC,ϕ(un)(u
′
n)MC(b̃/ϕ(un))

= lim
n→∞

MC(u
′
n/ϕ(un)). (2.50)

Since ϕ is gauge-reversing, then limn→∞MC(u
′
n/ϕ(un)) = limn→∞MC(un/ϕ(u

′
n)) and

a similar reasoning gives limn→∞MC(un/ϕ(u
′
n)) = β(u, u′).

Therefore, from (2.48) and (2.49), and the linearity of β with respect to its first
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entry, we get ∑
i

wiβ(v, ui) =
∑
i,j

wivjβ(ui, uj) =
∑
j

vjβ(w, uj), (2.51)∑
i

w′
iβ(v, u

′
i) =

∑
i,j

wivjβ(u
′
i, uj) =

∑
j

vjβ(w, uj). (2.52)

Hence, β is well defined and it is clearly bilinear. The reasoning above that shows
that β(u, u′) = β(u′, u) for each pair of extremal generator u, u′ ∈ ∂C, gives the
symmetry of β.

Now, suppose that β is degenerate. Then there exists a point v ∈ Rn+1 such
that β(u, v) = 0 for every extremal generator u ∈ ∂C. Since MC(u/b̃) > 0 for every
u ∈ ∂C, it follows that hu(v) = 0. Since C is proper, also C∗ is a proper cone, then
there is a basis (h0, . . . , hn) of (Rn+1)∗ made of extremal generator of C∗. Remark
2.4.11 implies that each extremal generator of C∗ gives a Funk horofunction. The
reasoning above applied to ϕ−1, gives that for each i = 0, . . . , n there exists an
extremal generator ui of C such that hui = hi, because ϕ is gauge-reversing. It
follows that v = 0.

Lemma 2.6.7. C is a domain of positivity for the non-degenerate symmetric bilinear
form β.

Proof. We first shows that C is a domain of positivity for β. Let v ∈ C and u ∈ ∂C
be an extremal generator of C. Then, we have

β(u, v) = hu(v)MC(u/b̃) =
MC(u/ϕ(v))

MC(u/b̃)
MC(u/b̃) =MC(u/ϕ(v)) > 0. (2.53)

Moreover, the coordinates of every point of C with respect to a basis of Rn+1 made
of extremal generators are positive, since C is proper. Thus, β(u, v) > 0 for all
u, v ∈ C.

Now, if v ∈ Rn+1 is such that β(u, v) > 0 for all u ∈ C {0}, then for every
extremal generator u ∈ ∂C we have hu(v) > 0. As we saw in the proof of Lemma
2.6.6 there exists a basis of (Rn+1)∗ made of linear functionals of the type hu, with
u ∈ ∂C an extremal generator. Then, φ(v) > 0 for all φ ∈ C∗ and hence v ∈ C.

It remains to prove that β is positive definite. Since C is a non-empty domain
of positivity for β, then β is positive definite or indefinite. The next lemma will be
used to show that β cannot be indefinite.
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Lemma 2.6.8. Let C ⊆ Rn+1 be a domain of positivity for a symmetric indefinite
non-degenerate bilinear form. Then, there exists a point v ∈ ∂C {0} such that
β(v, v) = 0.

Proof. Since β is a simmetric non-degenerate bilinear form, by the Spectral Theo-
rem, there exists a basis (ui)i=0,...,n of Rn+1 made of eigenvectors that diagonalize
the matrix associated with β and orthogonal with respect to β. Then, if we denote
σ : Rn+1 → Rn+1 the function that maps for each i ∈ {0, . . . , n} the element ui to
−ui if β(ui, ui) = −1 and maps ui to ui otherwise. We denote α : Rn+1×Rn+1 → R
the bilinear form given by α = β◦(σ×Id). Thus, the basis (ui)i=0,...,n is orthonormal
with respect to α and α(v, v) > 0 for each v ∈ Rn+1 {0}.

Now, define the function f : Rn+1 {0} → R given by

f(v) =
β(v, v)

α(v, v)
for all v ∈ Rn+1 {0}.

Since f is homogeneous, we have that

inf
v∈C {0}

f(v) = inf
v∈D

f(v),

where D is a bounded cross-section of the properly convex cone C. Then, there exists
a point z ∈ C {0} that minimizes f on C {0}. Since C is a domain of positivity of
β we have that β(z, z) ≥ 0. We wish to prove that β(z, z) = 0.

Each v ∈ Rn+1 {0} can be written as
∑

i yivi, and

∂

∂ui
β(v, v) =

∂

∂ui

∑
i

vi
2β(ui, ui) = 2vi sgn(β(ui, ui)).

Therefore, ∇β(v, v) = 2σ(v) and similarly ∇α(v, v) = 2v, with respect to the inner
product given by α. It follows that for each v ∈ Rn+1 {0} it holds

∇f(v) = ∇β(v, v)
α(v, v)

+
β(v, v)∇α(v, v)

α(v, v)2

=
2α(v, v)σ(v)− 2β(v, v)v

α(v, v)2
. (2.54)

Moreover, Dzf(v) = α(∇f(z), v) and Dzf(v) ≥ 0 for all v ∈ C since z is a
minumum over the convex C. By definition β(σ(∇f(z)), v) = α(∇f(z), v), then
β(σ(∇f(z)), v) ≥ 0 for all v ∈ C. Since C is a domain of positivity, we have
that σ(∇f(z)) ∈ C, by [23, Theorem 1]. Therefore, we have β(∇f(z),∇f(z)) =
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β(σ(∇f(z)), σ(∇f(z))) ≥ 0, because C is a domain of positivity for β.
Since we have assumed β indefinite, there exists a point v in the open cone C

such that α(v, v) > β(v, v). Then, f(v) < 1, and for the minimality of f(z) we have
that α(z, z) > β(z, z).

If we denote with z+ and z− the components of z in Span {ui | β(ui, ui) = 1} and
Span {ui | β(ui, ui) = −1} respectively, we get that

β(z, z) = α(z+, z+)− α(z−, z−), and

α(z, z) = α(z+, z+) + α(z−, z−).

Since α(z, z) > β(z, z), we get α(z−, z−) > 0, and since β(z, z) ≥ 0, we get
α(z+, z+) ≥ α(z−, z−).

Now, from (2.54), since σ(z) = z+ − z− and z = z+ + z−, we get

β(∇f(z),∇f(z)) = 4

α(v, v)4
β
(
α(z, z)σ(z)− β(z, z)z, α(z, z)σ(z)− β(z, z)z

)
=

16

α(v, v)4
β
(
− α(z+, z+)z− + α(z−, z−)z+,−α(z+, z+)z− + α(z−, z−)z+

)
=

16

α(v, v)4

(
α(z+, z+)

2β(z−, z−) + α(z−, z−)
2β(z+, z+)

)
=

16

α(v, v)4
α(z+, z+)α(z−, z−)

(
α(z−, z−)− α(z+, z+)

)
.

Since we have proved that β(∇f(z),∇f(z)) ≥ 0 and alpha(z−, z−)− α(z+, z+) ≤ 0,
we get −β(z, z) = alpha(z−, z−) − α(z+, z+) = 0. Hence, we have β(z, z) = 0 as
desired.

In order to prove that β is positive definite, we need also the following lemma.

Lemma 2.6.9. The projective action of ϕ has b as unique fixed point.

Proof. Since the derivative of ϕ at b̃ is − Id, then b̃ is an isolated fixed point. We
show that also b is an isolated fixed point for the projective action of ϕ. If there exists
a sequence (xn)n∈N in Ω coverging to b of points fixed by the projective action of ϕ,
then there exists a sequence (un)n∈N in C of points fixed by ϕ such that [un] = xn

for all n ∈ N. Indeed, for n ∈ N, for all u ∈ π−1(xn), there is λu > 0 such that
ϕ(u) = λuu. The map ϕ is gauge-reversing, then by Proposition ?? it is anti-
homogeneous, then ϕ(

√
|λu|u) = 1√

|λu|
λuu =

√
|λu|u. Since ϕ is gauge-reversing

if un ≤C b̃ then b̃ ≤C un, and if b̃ ≤C un then un ≤C b̃. It follows that, for all
n ∈ N either un = b̃ or un ̸≤C b̃ and un ̸≤C b̃. If the latter condition holds for some
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subsequence (ukn)n∈N, then for each n ∈ N there exists a bounded cross-section of C
that contains both the ukn and b̃. So, (ukn)n∈N converges to b̃, since (xn)n∈N converges
to b. But, this contradicts the fact that b̃ is an isolated fixed point. Therefore, b is
an isolated fixed point for the projective action of ϕ. We have to show that b is the
unique fixed point.

Assume that there is another fixed point b′ ∈ Ω. For α ∈]0, 1[ consider the set

Zα = {x ∈ Ω | dΩ(b, x) = α dΩ(b, b
′) and dΩ(b

′, x) = (1− α) dΩ(b, b
′)},

which is invariant under the projective action of ϕ, compact, convex and non-empty,
since αb′ + (1 − α)b ∈ Zα. By Brouwer theorem, for each α ∈]0, 1[ there is a point
in Zα that is fixed by the projective action of ϕ. Since α can be chosen as small as
we want, we can find a sequence in Ω, made of points fixed by the projective action
of ϕ that converges to b. But this contradicts the fact that b is an isolated fixed
point.

Proposition 2.6.10. The symmetric non-degenerate bilinear form β is positive def-
inite.

Proof. We want to show that β(v, ) > 0 for all v ∈ C {0}. Then, the conclusion
will follows from Lemma 2.6.8, since β cannot be negative definite, because C ≠ ∅.
So, we write v =

∑
i viui, where (ui)i=0,...,n is a basis made of extremal generators

of C and vi > 0. Since C is a domain of positivity for β we have β(ui, uj) ≥ 0

for all i, j = 0, . . . , n. We show that β(ui, ui) > 0 for all i = 0, . . . , n. Fix for all
i = 0, . . . , n. From (2.50) we get that β(ui, ui) = limn→∞MC(un/ϕ(un)) for any
(un)n∈N in C converging to u.

From the triangular inequality and the assumptions that ϕ(b) = b and ϕ2 = Id,
we get

β(ui, ui) = lim
n→∞

MC(un/ϕ(un))

≤ lim
n→∞

MC(un/b)MC(b/ϕ(un))

= lim
n→∞

MC(un/b)
2

=MC(u/b)
2. (2.55)

We wish to get the inverse inequality in (2.55) to obtain β(ui, ui) =MC(u/b)
2.

Therefore, we prove that MC(un/ϕ(un)) ≥MC(un/b)MC(b/ϕ(un)).
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Notice that, once fixed n ∈ N, the set

S = {v ∈ C |MC(un/ϕ(un)) ≥MC(un/b)MC(b/ϕ(un))}

is non-empty, since it contains u, closed, since the gauge is a continuous function,
invariant under ϕ and closed by the action of positive homotheties. Thus, the
projective action of ϕ on S has a fixed point in π(S) by Brouwer Theorem. Lemma
2.6.9 implies that the fixed point must be b.

Proposition 2.6.11. Let C ⊆ Rn+1 be a properly convex open cone. If there exists
a gauge-reversing map ϕ : C → C, then C is self-dual

Proof. Proposition 2.6.10 implies that β is a positive definite symmetric non-degenerate
bilinear form, and Lemma 2.6.7 implies that C is a domain of positivity of β. As we
noticed, the definition of domain of positivity implies that C is self-dual with respect
to β.

Now, we are ready to prove Theorem 2.0.4. Recall that the statement says that
if (Ω, dΩ) is a Hilbert geometry, then the group of projective isometries PGL(Ω)

coincides with the group of isometries Isom(Ω, dΩ) if the cone CΩ above Ω is non-
symmetric or Lorentzian, and has index 2 in Isom(Ω, dΩ) otherwise.

Theorem 2.5.9 implies that if CΩ is symmetric, there exists a gauge-reversing
automorphism ϕ : CΩ → CΩ. From Remark 2.5.8, we know that if there is a non-
singleton maximal pure Funk part in the Hilbert horofunction boundary of the cone
CΩ, then ϕ maps this part to a pure reverse-Funk part. Therefore, its projective ac-
tion is not a projective transformation, by Remark 2.5.8. We want to show that there
always exists a non-singleton maximal pure Funk part in the Hilbert horofunction
boundary of a non-Lotentzian symmetric cone. This is equivalent to showing that
the domain under a non-Lotentzian symmetric cone is never both strictly convex
and with a boundary of regularity C1.

First of all we state some important results about symmetric cones. In particular,
symmetric convex cones where classified, up to change of coordinates, by M. Koecher
in [23, Chapter V] using the classification of Jordan algebras. From this classification
arises that, in any dimension, the only symmetric cone whose projection is strictly
convex is the Lorentzian cone.

On the other hand, from the results of A. Borel in [8], we get that if the cone CΩ
above a properly convex domain Ω is symmetric, then the domain Ω is divisible, i.e.
there exists a discrete subgroup of PGL(Ω) that acts cocompactly on Ω.



2.6 The group of isometries 129

Finally, a theorem of Y. Benoist [4, Theorem 1.1], says that if a properly convex
domain is divisible and its boundary has regularity C1, then the domain is strictly
convex. Benoist actually proved that also the converse is true and furthermore,
every divisible strictly convex domain is Gromov-hyperbolic.

From all this results we get the following fact.

Fact 1. In any dimension, the only symmetric properly convex cone whose projec-
tion is strictly convex and has boundary of regularity C1 is the Lorentzian cone.

Proof of Theorem 2.0.4. Theorem 2.5.16 implies that every element of Isom(Ω, dΩ)

is either a projective isometry or arises from the projective action of a gauge-
reversing automorphism of the cone CΩ above Ω. Moreover, the subgroup of projec-
tive isometries PGL(Ω) has index at most 2 into the group of isometries Isom(Ω, dΩ).

Proposition 2.6.4 and Proposition 2.6.11 implies that if a cone admits a gauge-
reversing automorphism, then it is symmetric. It follows that if CΩ is not symmetric,
then PGL(Ω) = Isom(Ω, dΩ).

If the cone CΩ is Lorentzian, from Corollary 2.5.13 we get that every isometry has
to be projective. Thus, also in this case the group of projective isometries coincide
with the group of isometries.

Now, suppose that CΩ is symmetric and non-Lorentzian. Then, the Vinberg’s
isomorphism between CΩ and C∗

Ω induces a gauge-reversing automorphism ϕ : CΩ →
CΩ, by Theorem 2.5.9. From Fact 1, we know that in the Hilbert horofunction
boundary of CΩ there is a non-singleton pure Funk part. The gauge-reversing map
ϕ maps this part to a pure reverse-Funk part, by Remark 2.5.8. Therefore, the
projective action of ϕ is not a projective isometry. It follows from Theorem 2.5.16
that the group of projective isometries has index 2 in the group of isometries.
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