
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Navigation and human-robot interaction
using reinforcement learning

Supervisor:

Prof. Daniel Remondini

Co-supervisors:

Prof. Benôıt Girard
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Abstract

Advances in artificial intelligence (AI) have revolutionized human-robot inter-

action and paved the way for increasingly sophisticated autonomous systems.

Reinforcement learning (RL), a subfield of machine learning, has emerged as

a powerful paradigm for training intelligent agents through trial and error. In

the field of human-robot interaction, RL offers an unprecedented opportunity

to give robots the ability to perceive and control social situations.

This thesis presents a simulation and an architecture designed to facilitate the

learning of social affordances by an autonomous agent, enabling seamless inter-

actions with humans. We propose a framework that combines RL algorithms

with a comprehensive understanding of social affordances, with the primary

goal to develop an agent capable of interacting with a human, grasping his

attention and carrying him around specifics goal areas.

To evaluate the efficacy of our architecture, simulation trials were conducted

using simulated humans with different characteristics, to assess the agent’s

ability to learn in different situations. In addition, an attempt was made to

initialise a real-world experiment using Turtlebot robot, which can serve as a

versatile platform for testing the agent acquired knowledge in a table scenario,

focusing only in a navigation problem.

The simulation results clearly demonstrated the success of the designed learning

architecture in integrating the knowledge acquired by the agent across different

tasks, resulting in a great performance in terms of accumulated reward. Fur-

thermore, in the experimental setup, the navigation problem tackled with the

Turtlebot yielded excellent results.

This thesis contributes to the burgeoning field of human-robot interactions by

leveraging RL techniques to enable robots to comprehend and engage with

social affordances.
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Introduction

The work proposed in this thesis project is the result of a six-month internship work-

ing on the ELSA Project, carried out at the research center Institut des Systèmes

Intelligents et de Robotique (ISIR) in the city of Paris, under the Architectures

and Models for Adaptation and Cognition team (AMAC), headed by the Research

Director Benôıt Girard.

The ISIR laboratory is under the dual supervision of Sorbonne Université, which

is a world-class multidisciplinary university, and the Centre National de la Recherche

Scientifique (CNRS).

Figure 1: Photo of the ISIR pyramid in Jussieu, the main campus of the Faculty of Science

of Sorbonne Université in Paris. Credit: (Universitè 2022)

More specifically, the AMAC team is interested in developing models of perceptual,

cognitive and motor functions, and in synthesizing control architectures from an

integrated perspective. These research lines have a dual purpose: firstly the under-

standing of living organisms through the integration of mathematical and computer

modeling approaches, and secondly the provision of robots with cognitive and motor

skills that integrate decision making and learning. In this context, biology is used as
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inspiration for robotics development, and engineering proposes tools for modelling,

experimenting and validating the considered hypotheses.

When providing robots with cognitive skills, reinforcement learning (RL) plays

an important role. This machine learning paradigm focuses on how agents can learn

continuous decision-making to maximize reward signals within an environment.

The history of reinforcement learning can be traced back to the 1950s, when re-

searchers began exploring the idea of creating intelligent systems that could learn

from interactions. One of the first contributors to RL was Arthur Samuel, who

developed a computer program for learning to play checkers in 1959: this program

used a process of trial and error to improve its performance, demonstrating the

potential of machines to learn through self-play (Samuel 1959). Another significant

milestone in RL came in the 1980s with the development of the Q-learning algorithm

by Christopher Watkins (Watkins 1989). Q-learning introduced the concept of value

functions, which assign the expected reward to each action in a given state; by it-

eratively updating these values based on the observed rewards, Q-learning enables

agents to learn optimal strategies. The 1990s witnessed the rise of neuroscientific

and psychological insights into RL: the work of Richard Sutton, and Andrew Barto

on temporal difference learning bridged the gap between RL and neuroscience, also

providing a framework for understanding how the brain processes reward signals

and learns from experience (Sutton 1988). In recent years, RL has experienced sig-

nificant advancements and breakthroughs, largely due to the development of deep

learning techniques. Deep Q-Networks (DQNs) combines deep neural networks with

Q-learning, enabling RL agents to achieve human-level performance in Atari games

(Mnih et al. 2013). One of the most notable milestones in RL history came in 2016

when the software AlphaGo, developed by the AI laboratory DeepMind, defeated

the world champion Go player, Lee Sedol. AlphaGo’s success demonstrated the

power of RL and deep learning in tackling complex, strategic games.

At the moment, RL has a wide range of applications across various fields:

• Robotics: allows robots to learn complex tasks that can be difficult to pro-

gram explicitly. Moreover, by continuously learning and updating their policies

based on feedback, robots can adjust their behavior and make decisions that

2



are suitable for the current situation, so that it is possible to adapt to dynamic

environments.

• Self-driving cars: by using RL algorithms, cars can learn optimal actions based

on environmental states to maximize rewards, such as reaching the destination

efficiently while adhering to traffic rules and ensuring passenger safety. This

application is typically exploited in conjunction with other techniques and AI

fields such as computer vision, deep learning, and classical control algorithms

to create comprehensive self-driving systems (Kiran et al. 2021).

• Finance: it is possible to develop automated trading systems. RL agents can

learn optimal trading strategies by analyzing historical market data and mak-

ing decisions based on rewards or profits obtained. This enables the discovery

of complex patterns and adaptive trading strategies that can also exploit mar-

ket inefficiencies (Charpentier, Elie, and Remlinger 2021).

• Healthcare: RL can be used to optimize treatment plans for individual pa-

tients. By learning from patient data and clinical outcomes, RL agents can

adaptively recommend personalized treatment options, dosage adjustments,

and therapy scheduling to maximize patient outcomes and minimize side ef-

fects. These algorithms can be also exploited for clinical decision support (Yu

et al. 2021).

However, it should be underlined that most of the works mentioned on the applica-

tions of RL in different fields are very recent, which means that this is still a very

young field of study that has yet to achieve its full potential.

Within this thesis project, we will use RL algorithms to make a robot learn how to

correctly interact with a human and guide it to a certain place within an environ-

ment. In particular, we will focus on the idea of social affordances - a concept that

will be fully explained within Chapter 2. One of the goals of ELSA Project is to

develop an agent able to construct both a general model of characteristics associated

with humans as a species (such as the distance of social interaction or the importance

of eye contact for proper interaction), and a specific model that characterizes indi-

viduals (such as variations in movement speed or differences in attention span and

3



distractibility). To get this project started, we developed a simulation using the pro-

gramming language Python exploiting the object-oriented programming paradigm

and coding the RL algorithms from scratch, without using dedicated external li-

braries. In the RL problem addressed, a module was implemented associated with

the navigation problem - reaching a certain location in space - and a module associ-

ated with the social interaction problem - interacting correctly with the human and

leading it in a certain direction. In this context, an architecture capable of arbitrat-

ing between these two modules composing the decision system was developed. We

proceeded to the experimental phase, utilizing a Turtlebot robot, where we focused

on addressing the navigation problem. Employing our RL algorithms, we trained

an agent to tackle a dynamic rewarded area problem, subsequently exploiting the

acquired knowledge in a tabletop scenario.

Chapter 1 delves into the technical underpinnings of reinforcement learning and

its practical applications. We will commence by exploring the foundational the-

ory of Markov Decision Processes, followed by an examination of the mathematical

optimization technique known as dynamic programming. Finally, we will provide

a comprehensive explanation of the reinforcement learning algorithms employed in

the project.

Chapter 2 centers on the ELSA Project, with a specific focus on the ”Visit the

lab” scenario. This section is dedicated to delving into the fundamental concept

behind the thesis, providing a theoretical rationale for the simulation choices made.

Chapter 3 is dedicated to materials and methods, encompassing both the con-

ducted simulations and the experimental procedures. Within this context, we delve

into the constructed learning architecture pertaining to the simulation and provide

comprehensive information regarding the experimental scenario, the robot used, and

the ROS (Robot Operating System) architecture.

Chapter 4 is dedicated to showcasing the results obtained in both the simulation

and experimental phases. Our primary focus is on presenting the learning curves of

the developed modules for various models of human behavior in the context of so-

cial interaction. We conduct a comparative analysis of Model-Free and Model-Based

performance and explore how the rewards vary with changes in episode settings. Ad-

ditionally, we demonstrate the feasibility of training an agent in our simulation using

a Markovian probability matrix extracted experimentally. Finally, we provide evi-
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dence that a physically mobile robot can effectively leverage the acquired knowledge,

yielding results close to optimal performance.

Chapter 5 centers on providing concluding remarks for this thesis project. It

serves as a comprehensive recapitulation of the project’s objectives, summarizing

the key highlights and emphasizing the central themes explored. Furthermore, it

places a strong focus on outlining future directions for the project and potential

extensions that can be pursued in the years to come.

Concluding the thesis are two small appendices concerning technical details that

may be of interest to the more curious enthusiasts of mathematical and sensor as-

pects, but which are not necessary for a full understanding of the concepts, and a

last appendice focusing on the poster exposed at IMOL conference 2023.
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Chapter 1

Reinforcement Learning

Machine learning is a branch of artificial intelligence that involves developing algo-

rithms and statistical models that enable computer systems to improve their perfor-

mance on a specific task based on data input. It encloses different techniques such

as supervised learning, unsupervised learning and reinforcement learning.

The supervised learning approach consists in predicting or estimating an output

based on one or more inputs (James et al. 2013). The typical supervised framework is

characterized by a quantitative or categorical outcome measurement that one wishes

to predict, a set of features that will be the basis of the prediction and a training set

of data, in which one observes the outcome and feature measurements for a set of

objects. Using this data it is possible to build a statistical model which will enable

one to predict the outcome for new unseen objects. Examples of such techniques are

neural networks, decision trees, or support vector machines extensively used in fields

including computer vision, natural language processing and speech recognition.

On the other side, in the unsupervised learning paradigm there is no outcome

measure, and the goal is to describe the associations and patterns among a set of

input measures. The most famous general techniques are clustering and dimension-

ality reduction: the first allows to group similar unlabelled data points together,

while the second one reduces the number of features in the data, while retaining

the relevant information. These techniques can be used before applying a super-

vised learning methods, or even in exploratory data analysis to gain insights into

the underlying structure of the data.

The reinforcement learning approach differs from supervised and unsupervised

learning due to its nature on focusing on goal-directed learning from interaction

6



1.1. MARKOV DECISION PROCESSES 7

(Sutton and Barto 2018). Generally, the learner is called agent and its primary

objective is to determine the most effective actions to take in order to maximize a

specific numerical signal that represents a form of reward. This learning process in-

volves the agent interacting with its surrounding environment and receiving feedback

in the form of rewards or penalties based on its chosen actions.

One of the most important aspects of this techniques relies on the exploration-

exploitation trade-off. In order to gain a great deal of reward, an agent must favour

actions that it has previously performed and determined to be successful in yielding

reward. However, in order to uncover such actions, it needs to try the ones that it

has not chosen before. The agent should take advantage of its existing knowledge

to acquire reward, but also has to explore to make more informed action selections

in the future.

Within this chapter, we will focus on the theoretical foundations of reinforcement

learning, so that it will be possible to explore and comprehend what it means to

learn from interactions.

1.1 Markov Decision Processes

Markov Decision Process (MDPs) are a traditional formalization of sequential decision-

making, where actions have an impact on future rewards through those stages or

situations as well as on immediate benefits. Indeed, MDPs provide a mathematical

framework that captures the essential components of RL, including states, actions,

rewards, and the dynamics of the environment.

Figure 1.1: The agent-environment interaction in a Markov Decision Process. Credit:

(Sutton and Barto 2018).

In Figure 1.1 is represented the general schema of a MDP in a RL problem, by

considering a sequence of discrete time steps. An agent takes a certain action a
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at time step t, described as at. The agent then receives a representation of the

of the environment’s state st+1, and a numerical reward rt+1. We thus obtain

an alternation of states, actions and rewards within our system. Usually these

states, action and rewards are formally described as elements belonging to specifics

mathematical sets, i.e., st ∈ S, at ∈ A(s) and rt ∈ R ⊂ R.

The MDP dynamics is formally described by a transition probability function:

p(s′|s, a) ≡ Pr{st = s′|st−1 = s, at−1 = a} (1.1)

This function defines the probability of transitioning to a next state s′, given the old

state s and the action a. Mathematically, the conditional probability notation states

that the current state depend only on the immediately preceding state and action,

not on the earlier history: this important feature takes the name of Markov property.

This type of mathematical framework boasts great generality and this guarantees

flexibility to be applied in different scenarios. For example, states can represent

the moods of a person, or the position of an object in a three-dimensional space.

Actions, similarly, can be, for example, grasping an object, or deciding to send an

application for an important company. Time steps are also a general concept: they

do not need to be associated with the concept of real time, but can be seen as

arbitrary successive stages of decision making.

When considering an MDP applied to an RL problem, it is usual to formally

introduce the concept of time through time steps. In the presentation of this thesis

project, the two key words to be used are step and trial, where a trial consists of a

large number of steps. A trial can end when for example a certain number of steps

have occurred, or trivially when our agent receives a positive reward. For example,

let us consider an RL navigation problem in which our agent must learn to reach

a certain destination in a well-defined scenario. Each time the agent performs an

action and ends up in another state, a step has been completed. When, let us say,

the first 50 steps have been performed, the first trial is over: when this happens, the

initial conditions of the system are restored and so our agent starts from the initial

position and can return to learning via trial and error. Clearly, the high number of

trials and errors is essential to guarantee the learning of our agent.

It is important to emphasise that the aim of an agent is to find a strategy that

allows it to maximise the total amount of reward it receives from the environment.

This reward signal therefore formalises what our agent’s goal is; it does not, however,
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define how our agent should behave in order to achieve it. For example, if we

face a navigation problem and we want our agent to reach a geometric position of

coordinates (x, y), we need only to define a reward of +1 in the state (x, y), and a

reward of zero for each time the agent is in a state which coordinates differ from our

goal.

Since one usually wants to maximise not the immediate reward, but the sum of

future rewards from a given time step, it is usual to define the return:

Gt ≡
T∑
i=1

rt+i (1.2)

where T = T − t is the final time step of the task, that can be a random variable

or a well-defined variable. Moreover, introducing the discount rate parameter γ it

is possible to define the discount return:

Gt ≡
∞∑
k=0

γkrt+k+1 (1.3)

where 0 ≤ γ ≤ 1. This coefficient determines how much our agent will focus on the

immediate rewards, or on those more distant in time. If γ = 0, the agent will focus

only on the immediate reward and will therefore choose the action at that maximises

only rt+1. At the other extreme, in the case γ = 1 there is no difference in worth

between immediate rewards and more future rewards. Moreover, the definition 1.3

benefits of a useful recursive property which will be exploited later:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·

= rt+1 + γGt+1

(1.4)

Another key concept in RL is the policy: a map which determines which action to

perform in a given state, usually defined as π(a|s). Clearly, the central idea is to find

a policy, i.e. a behaviour, which maps for each state s an action a that can guarantee

to collect the highest expected return value in a run. This particular policy is called

an optimal policy, and it is denoted by π∗. Fortunately, techniques exist to derive

optimal policies, which will be discussed in more detail in the section 1.2.

In learning algorithms, the so-called action-value function (or Q-value) for policy

π takes an important role:

Qπ(s, a) ≡ Eπ[Gt|st = s, at = a] = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣ st = s, at = a

]
(1.5)
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this formula quantifies the expected discounted return starting from state s, taking

action a, and thereafter following policy π. This expression can be estimated from

experience: if an agent is following a policy π and maintains an average of return

that have followed a certain state-action couple, then these average will converge

to Qπ(s, a) if the number of times that the state-action couple has been visited

approaches to infinity. In particular, in RL theory such methods are called Monte

Carlo Methods since they estimate quantities by considering the average of many

random samples of actual returns.

Action-value function can be useful to define which policies are better than oth-

ers:

Qπ(s, a) ≥ Q′
π(s, a) ∀ (s, a) ∈ (S,A)⇒ π ≥ π (1.6)

which means that a policy π is defined to be better than or equal another policy

π′ if the expected return is greater than or equal to that of π′ for each state-action

couple. Clearly, optimal policies π∗ have the same optimal action-values function

Q∗(s, a).

Having introduced the basic concepts underlying the formalisation of an RL problem,

we can now address the ways and algorithms by which MDPs can be solved.

1.2 Dynamic Programming

Dynamic programming (DP) refers to a set of executable algorithms which aim

is to compute optimal policies, starting from a perfect model of the environment

as a MDP. This last requirement refers to having complete and accurate knowl-

edge about the underlying system or process being modelled. Specifically, it means

having a complete understanding of the MDP that describes the dynamics of the

environment, with the knowledge of all the transition probabilities and rewards for

each state-action pair. Unfortunately the requirement to have a perfect model of the

environment makes classical DP use specific to only few situations; moreover, the

processes requiring this type of technique are computationally expensive because of

the curse of dimensionality, whereby the number of states often grows exponentially

with the number of state variables.

The Bellman equations are fundamental equations in DP that provide a recursive

definition of the action-value function, relating the value of a state-action pair to
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the values of its successor. In the case of the action-value function, it is derived by

combining equation (1.5) and the recursive property definition’s of the discounted

reward (1.3):

Qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ[rt+1 + γGt+1|st = s, at = a]

=
∑
a

π(a, s)
∑
s,r′

p(s′, r|s, a)
[
r + γ Eπ[Gt+1|st+1 = s′, at+1 = a′]

] (1.7)

where the last expression sums over all values of the variables a, s, r′ and for each

triple computes its probability π(a, s)
∑

s,r′ p(s
′, r|s, a) that weights the quantity in

squares brackets. Moreover, if one wants to relate the optimal state-action func-

tion with its time step successor the so-called Bellman optimality equation can be

exploited:

Q∗(s, a) = Eπ

[
rt+1 + γmax

a′
q∗(s

′, a′)
∣∣∣ st = s, at = a

]
=

∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
] (1.8)

where r is the immediate reward obtained in state s and maxa′ Q∗(s
′, a′) repre-

sents the maximum value of the action-value function over all possible actions a′

in the successor state s′. The summation is taken over all possible next states s′

and rewards r that can occur when taking action a in state s, accounting for the

probabilities p(s′, r|s, a) of transitioning to state s′ and receiving reward r given the

current state s and action a. The equation states that the optimal action-value

Q∗(s, a) is equal to the expected return that can be obtained by taking action a in

state s, considering both the immediate reward r and the maximum expected future

rewards γmaxa′ Q∗(s
′, a′) for the next state s′.

Solving the Bellman optimality equation iteratively allows us to find the opti-

mal action-value function Q∗(s, a), which provides the maximum expected return

for each state-action pair under the optimal policy.

In DP, two important concepts are policy evaluation and policy improvement. Policy

evaluation refers to the process of determining the expected action-value for state-

action pair under the given policy. This operation is typically done by iteratively

applying the Bellman equation, and its is to estimate the quality of the current policy

obtaining an accurate representation of the action-values. Once the policy has been
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evaluated and the action-value function has been obtained, policy improvement can

be exploited. It involves updating the policy by selecting actions that are expected to

yield higher action-values in each state, and this is done by greedily1 selecting actions

that maximize the value or action-value function. The policy improvement step

aims to enhance the policy based on the information gained from policy evaluation,

iteratively improving the decision-making process.

Policy iteration and value iteration are two common algorithms used to solve the

Bellman optimality equations and find the optimal policy.

1.2.1 Policy Iteration

Policy iteration is an iterative algorithm that alternates between the two processes

described above: policy evaluation and policy improvement. In the policy evaluation

step, the algorithm computes the action-value function for a fixed policy by solving

the Bellman equation. In the policy improvement step, the algorithm improves the

policy by greedily selecting actions that maximize the action-value function. These

steps are repeated until convergence to find the optimal policy.

Figure 1.2: Policy iteration process. Given a starting policy π, we can evaluate it performing

the policy evaluation, obtaining a certain action-value function Q(s, a). Then we can run a

policy improvement algorithm in order to obtain a better policy, e.g. π′; at this point it is

possible to run policy evaluation again, and so on. Credit: (Sutton and Barto 2018).

In Algorithm 1, one can see the pseudo-code of this DP method.

1The term ”greedily” refers to a decision-making strategy where an agent chooses the action

that maximizes the expected return in a given state, so that the agent selects the action with the

highest predicted action-value among all available actions.
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Algorithm 1 Policy Iteration

Ensure: Q(s, a) and π(s) arbitrarily initialized

Policy Evaluation

while ∆ < θ do

for s ∈ S, a ∈ A do

q(s, a)← Q(s, a)

Q(s, a)←∑
s′,r p(s

′, r|s, π(s))[r + γmaxa′ Q(s′, a′)]

∆← max(∆, |q(s, a)−Q(s, a)|)
Policy Improvement

PolicyStable← true

for s ∈ S, a ∈ A do

OldAction← π(s)

π(s)← argmaxa
∑

s′,r p(s
′, r|s, π(s))[r + γmaxa′ Q(s′, a′)]

if OldAction ̸= π(s) then PolicyStable← False

if PolicyStable then return Q(s, a)

else Run Policy Evaluation

1.2.2 Value Iteration

Value iteration is a DP algorithm that directly computes the optimal action-value

function by iteratively applying the Bellman optimality equation. In each itera-

tion, the algorithm updates the values of state-action pairs based on the maximum

expected return according to the Bellman equation. This process continues until

convergence to obtain the optimal action-value function.

Algorithm 2 Value Iteration

Ensure: small threshold θ > 0 and Q(s, a) arbitrarily initialized

while ∆ < θ do

for s ∈ S, a ∈ A do

q(s, a)← Q(s, a)

Q(s, a)←∑
s′,r p(s

′, r|s, a)[r + γmaxa′ Q(s′, a′)]

∆← max(∆, |q(s, a)−Q(s, a)|)
if ∆ ≤ θ then return argmaxa

∑
s′,r p(s

′, r|s, a)[r + γmaxa′ Q(s′, a′)]

In each state update, value iteration combines one states update of policy evaluation

and one states update of policy improvement: this algorithm is a special case of

policy iteration when the policy evaluation process is stopped after just one update

of each state, and this is useful since in some cases the full policy evaluation process

can be computationally expensive.

Both policy iteration and value iteration have been correctly implemented in the
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RL problem presented in this thesis work. However, it is relevant to underline that

DP algorithms do not involve learning from data. They rely on explicitly solving

subproblems and storing their results to build up to the optimal solution; in contrast,

RL algorithms learn from interaction with an environment. They utilize trial-and-

error learning, exploring different actions and observing the rewards obtained to

update their knowledge and improve decision-making over time.

1.3 Action Selection

In reinforcement learning theory, action selection is pivotal as it dictates how an

agent engages with its surroundings. It involves a delicate balance between explo-

ration, where the agent experiments with various actions to uncover optimal strate-

gies, and exploitation, where it utilizes existing knowledge to maximize immediate

rewards. The goal of action selection in RL is to find a balance between explor-

ing unknown states and exploiting the agent’s current knowledge to make the most

advantageous decisions. The agent needs to navigate the environment by choosing

actions that lead to favorable outcomes and avoid actions that result in penalties or

undesirable consequences.

The choice of action selection strategy greatly influences an agent’s learning

efficiency and its ability to converge towards optimal policies. There are various

techniques and algorithms designed to address the exploration-exploitation dilemma

and guide the agent towards maximizing its long-term rewards. In this context, ac-

tion selection strategies can be broadly classified into two categories: deterministic

and stochastic. Deterministic strategies involve selecting actions based on a fixed

deterministic policy that maps states to actions. In contrast, stochastic strategies

introduce randomness and probabilistic decision-making, allowing for a balance be-

tween exploration and exploitation.

Let us illustrate some simple and famous methods to select a specific action a

from a set of actionsA. One method that allows a good balance between exploitation

and exploration is the so-called ϵ-greedy method:

1. Initialize the parameter ϵ ∈ [0, 1], which represents the exploration rate. A

small epsilon value means less exploration, while a large epsilon value means

more exploration.
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2. At each decision-making step, generate a random number x ∈ [0, 1].

3. If x < ϵ, then our agent will select randomly an action a belonging to the set A.
Otherwise, if x > ϵ, select the action with the highest estimated action-value

based on the agent’s current knowledge. Thus, select argmaxaQ(s, a).

In the literature, it has been shown how this type of stochasticity introduced by the

variable ϵ helps to increase the cumulative reward collected by the agent (Sutton

1988). In fact, in the case where our agent always chooses the action associated with

the highest expected reward, the possibility exists that our agent has not explored

the system enough, and thus has not had the opportunity to explore other states

that would perhaps lead to a higher reward!

Another popular method of choosing an action takes the name of Softmax explo-

ration (or Boltzmann exploration), that assigns probabilities to each action based

on their estimated action-value:

1. We consider the Q-value associated with the current state s, i.e., we end up

with the estimated expected rewards for each action in the state. Then we

apply the softmax function to transform the Q-values into a probability dis-

tribution:

P (a|s) = e
Q(s,a)

τ∑
a′ e

Q(s,a′)
τ

(1.9)

In literature, he τ parameter is also referred as temperature, and controls

the level of exploration: higher temperature values increase exploration, while

lower values promote exploitation.

2. Then it is possible to select an action based on the computed probabilities: e.g,

we can can sample from the softmax distribution to select an action stochasti-

cally. Clearly, the higher the softmax probability of an action, the more likely

it is to be chosen.

Depending on the formalism used, in the literature one may also find the use of

variable β = 1/τ .

To distinguish between the two methods, it’s important to note that the softmax

method allows for action selection based on their Q-values, resulting in a smoother

exploration approach compared to ϵ-greedy. With softmax, the emphasis is on ex-

ploring actions with higher action-values, whereas epsilon-greedy involves random
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exploration when not being greedy and doesn’t take into account the information

available on Q-values other than the maximum one.

It is important to emphasise how these methods for selecting decisions in a

Markovian process are very useful in cases where we have to make our agent learn,

precisely because exploration must be encouraged in cases such as these. But in

the case our agent has already learnt, we would have already obtained an optimal

Q-table. In this specific case, our agent has no need to explore the system at all: he

only needs to exploit the knowledge, and therefore to be able to properly choose the

action that allows for the greatest expected reward value along the way we simply

select the action that maximises the Q-value in that state, i.e. argmaxa. So acting

greedily.

1.4 Temporal-Difference Learning

Temporal Difference (TD) learning is a key technique in RL that enables agents to

learn value functions through online, incremental updates based on the observed

rewards and state transitions. TD learning combines elements of DP with online

learning. As mentioned in the section before, DP methods requires a model of

the environment dynamics and performs iterative updates based on the Bellman

equation to estimate action-value functions. In contrast, TD learning allows agents

to learn directly from experience without requiring the complete knowledge of the

environment’s dynamics.

The core idea behind TD learning is to use bootstrapping2, where an agent up-

dates its action-value estimates based on the observed reward and the estimated

action-value of the next state. By iteratively updating the action-value estimates

based on the observed differences between predictions and actual rewards, TD meth-

ods gradually refine their action-value functions.

The simplest example of a TD algorithm involves updates of the state-action

value in the following manner:

Q(s, a)← Q(s, a) + α
[
r + γQ(s′, a′)−Q(s, a)

]
(1.10)

2In this context, bootstrapping refers to the process of estimating action-value functions or

making predictions about future outcomes based on limited available information. It involves using

existing estimates or predictions to update and improve those estimates incrementally.
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where it has been introduced the learning rate parameter α ∈ [0, 1) that determines

the weight given to the new information obtained from the update. In this update,

r represents the immediate reward obtained by performing action a in state s, while

Q(s′, a′) is the action-value estimate of the next state-action pair. The expression in

square brackets is often defined as TD error, since it represents the difference between

the observed reward and the estimated action-value of the next state-action pair:

δ ≡ r + γQ(s′, a′)−Q(s, a) (1.11)

and since this error depends on the state, action and reward associated with time

step t + 1, this quantity becomes accessible only at this time step. Which means

that at each time step it is only possible to compute the error associated with the

previous time step.

TD learning is a versatile and widely studied approach, leading to the develop-

ment of various algorithms with different characteristics and applications. Within

this thesis project, several such algorithms have been implemented; as an example,

we propose the algorithm named Q-learning (Watkins 1989), which update rule for

the action-value function is defined by:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(1.12)

where the indices concerning the time step have been introduced so that there is

no confusion with the maxaQ(st+1, a) value, which is simply the state-action value

referring to the next state of the system and the specific action that maximises that

value.

Algorithm 3 Q-learning

Ensure: step size α ∈ (0, 1] and Q(s, a) arbitrarily initialized

for steps in trials do

Choose an action A from state S with an arbitrary method

Take action A, observe reward R and state S’

Q(S,A)← Q(S,A) + α[R+ γmaxa Q(S′, a)−Q(S,A)]

S ← S′

It is important to make a distinction between so-called on-policy and off-policy

learning methods. The former learn and improve the action-value function on the

basis of data collected from the current policy, i.e. the data used for learning comes

from the same policy that is being updated. Off-policy methods, on the other hand,
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learn and improve the action-value function using data collected from a different

policy than the one being updated. In off-policy methods, there is a clear separation

between the behaviour policy, which is responsible for generating the data, and the

target policy, which is the policy being learned and improved. In this scenario, Q-

learning algorithm is an off-policy learning method because it can learn the optimal

policy Qπ regardless of the policy being followed during the learning process.

In a stationary environment, and in sufficient exploration conditions, the contin-

uously updated value Q(S,A) has been shown to converge with probability 1 to the

optimal action-value function Qπ (Sutton and Barto 2018): its simplicity and wide

applicability have solidified its status as a famous and influential algorithm in the

field of RL.

TD learning algorithms have several advantages. First, they enable online learn-

ing, where an agent can update its action-value estimates in real-time as it interacts

with the environment, and this makes TD methods particularly useful in domains

with continuous or infinite state spaces. Second, TD learning is Model-Free, mean-

ing it does not require knowledge of the underlying environment dynamics: agents

can learn directly from experience, making them adaptable to a wide range of RL

problems.

1.5 Model-Free and Model-Based methods

Up to now, we focused on Model-Free agents, i.e. agents that learn by directly

interacting with the environment, without having any explicit knowledge of their

dynamics: these agents rely on trial-and-error learning, where they repeatedly take

actions, observe the consequences, and update their policies based on the observed

rewards. Since these kind of agents do not require knowledge about the environ-

ment’s dynamics, they are more straightforward to implement and deploy. However,

Model-Free agents often require a large number of interactions with the environment

to learn an optimal policy effectively, making the learning process slower when the

environment is composed of a large number of states.

In RL theory, there is another important category of agents called Model-Based

algorithms, which approach the learning process differently. They focus on building

an explicit model of the environment’s dynamics: this model represents the agent’s
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understanding of how the environment transitions from one state to another based

on the actions taken, and the reward associated with that. With this model, the

agent can perform simulations or predictions to make informed decisions about which

actions to take. Usually, the computational cost associated with these algorithms is

larger with respect to the Model-Free ones, but for the same number of steps and

trials Model-Based agents tend to perform better in terms of rewards achieved.

Let us see an example of a Model-Based algorithm by considering the dynamic

programming method value iteration (Algorithm 2) combined with the Softmax

action selection method.

Algorithm 4 Model-Based Value Iteration Softmax

Ensure: Softmax parameter τ ∈ (0, 1), Q(s, a) and Model(s, a) arbitrarily initialized

for steps in trials do

S ← Current state

A← Softmax (S,Q; τ)

Take action A; observe resultant reward R, and state, S′

Model(S,A)← R,S′ (assuming deterministic environment)

Run Value Iteration algorithm to update Q(s, a)

S ← S′

In the algorithm exposed, Model(s, a) denotes the contents of the model (pre-

dicted next state and reward) for state–action pair (s, a). This is what characterises

a Model-Based algorithm: that is, the construction of a model of the system, which

is updated and on which planning can be carried out to make informed and strategic

decisions. Note that in this case, the model of the environment is trivial to construct

since we have silently incorporated the assumption of having a purely deterministic

environment. But in experimental scenarios, this assumption does not tend to hold

and in these cases, the construction of the model is slightly more complicated: let

us now look how to deal with this situation, which formalism will be applied later

in the Chapter 3. As for the transitions model of the system, this can be deduced

storing the number of times each (s, a, s′) triplet has been encountered by the agent,

then dividing by the number of times (s, a) experienced, as shown in the equation

below:

T (s, a, s′) =
n(s, a, s′)

n(s, a)
(1.13)

where n(s, a) stands for the number of visits of state s when action a is then chosen

and n(s, a, s′) is the number of transitions from state s to state s′, having performed
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action a. Clearly, the divisor in the equation is useful for normalising on the s′

arrival states of the system, so that the relation
∑

s′ T (s, a, s
′) = 1 is valid (Massi

et al. 2022).

Similarly, for the reward model of the system:

R(s, a) =

∑n
i=1 ri(s, a)

n(s, a)
(1.14)

where the reward function R(s, a) represents the average reward signal experienced

when effectively performing the (s, a) transition, while the numerator in the defi-

nition stands for the sum of the rewards obtained each time the agent made the

transition (s, a).

In Chapter 4, some results will be presented to help understand the performance

differences between Model-Free agents and Model-Based agents.

1.6 Tabular methods

The algorithms and methodologies that have been expounded so far belong to a

specific class of algorithms called tabular RL methods, i.e. methods that maintain

a table or matrix that explicitly stores the value estimates for each state-action pair

in the agent’s environment. Clearly, these values in the table based on the agent’s

experiences (rewards and observations) are updated during interactions with the

environment.

Tabular RL methods are most useful in scenarios where the state and action

spaces are small enough to allow efficient storage and computation. These methods

excel in simple environments with discrete states and actions, where the agent can

easily explore and update the value estimates for each state-action pair individually.

However, there are some systems in which these assumptions are not met. Here

tabular algorithms can encounter several problems, such as:

• Continuous State Space: tabular methods are not well-suited for continuous

state spaces because they require discrete states to store values in the lookup

table. In continuous spaces, the number of possible states becomes infinite,

making it impractical or impossible to store and update values for all possible

states.
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• Discretization: one approach to using tabular methods in continuous state

spaces is to discretize the state space, dividing it into a finite number of bins

or cells. However, this process often leads to a trade-off between accuracy and

the size of the discretized table. Fine-grained discretization improves accuracy

but increases the computational and memory requirements exponentially.

• Continuous Time Steps: Tabular methods typically assume discrete time steps

for updating the value estimates. Adapting tabular methods to continuous

time steps requires additional modifications, such as interpolation that can

help approximate the value function between the explicitly stored time steps.

These problems are solved by another class of algorithms: the so-called function

approximations methods, which have not been examined within this thesis project,

but will take importance in the continuation of the work associated with the ELSA

Project (Chapter 2).

These methods aim to approximate an unknown function that maps inputs (usu-

ally state-action pairs) to outputs (value estimates) based on observed data. The

key idea behind function approximation methods is to use a flexible model, such

as a neural network, decision trees, linear regression, or other supervised machine

learning models, to approximate the underlying function. These models have ad-

justable parameters that are learned from training data, typically obtained through

interactions with the environment. The training process involves updating the pa-

rameters of the function approximator to minimize the difference (error) between the

approximated values and the true values, which are obtained from observed rewards

or returns during the agent’s interaction with the environment. This optimization

process is often done using various learning algorithms, such as gradient descent or

stochastic gradient descent, which adjust the model’s parameters in the direction

that reduces the prediction error.

1.7 Hierarchical Reinforcement learning

This chapter of theoretical overviews concludes with a brief mention of the theory

of Hierarchical Reinforcement Learning (HRL), which general ideas were exploited

in the implementation of the learning architecture proposed in this thesis project.



22 CHAPTER 1. REINFORCEMENT LEARNING

In HRL, agents operate at multiple levels of abstraction (Barto and Mahadevan

2003). Instead of dealing solely with primitive actions, they can employ the so-

called options, namely temporally extended actions that allow agents to execute

sequences of actions as a single higher-level action (Sutton, Precup, and Singh 1999).

These options enable agents to learn reusable skills and strategies, simplifying the

acquisition of complex behaviors and offering a framework for handling intricate

tasks more efficiently.

Central to the effectiveness of options in HRL are Semi-Markov Decision Pro-

cesses (SMDPs). Unlike the traditional MDPs that assume fixed time steps, SMDPs

introduce a flexible temporal framework since the duration of actions or events can

vary, making them an ideal foundation for modeling options, which often have vari-

able lengths: this temporal flexibility enhances the capacity of agents to adapt to

diverse environments and tasks.

Without going into technical details, SMDPs are a generalisation of MDPs in

which the actions can take a variable amount of time to complete, i.e. time can be

formalized by adopting random variables denoting the number of time steps that

action a takes when it is executed in state s (Dietterich 2000).

Figure 1.3: Comparison between small discrete-time transitions of MDPs, larger

continuous-time transitions of SMDPs and options over MDPs. Credit: (Sutton, Precup,

and Singh 1999).

Within this thesis project, we employed this formalism as a convenient method for

encapsulating a sequence of actions into a single, multi-step action. This technique

will be fully explained in Subsection 2.1.3, in particular into the so-called Go to

human module.



Chapter 2

The ELSA Project

The ELSA project is a franco-austrian project in collaboration with the Institut

des Systèmes Intelligents et de Robotique (ISIR) located in Paris, the Laboratoire

d’Analyse et d’Architecture de Systèmes (LAAS) in Toulouse, Department of Com-

puter Science (IFI) and Digital Science Center (DiSC) both from the University of

Innsbruck. ELSA is an acronym that stands for Effective Learning of Social Affor-

dances which represents the main goal of this project. Every research center focus

on a specific task to study and the main coordinator of the project is the Professor

Mehdi Khamassi.

According to Cambridge’s dictionary (Cambridge 2008), the word affordance is

defined as ”a use or purpose that a thing can have, that people notice as part of the

way they see or experience it”. This concept was originally explored in psychology

(Gibson 1979) and has influenced research in neurorobotics and AI in recent years.

Essentially, affordances are internal representations of the expected effect of per-

forming a specific actions, and when and how their execution is relevant. When

considering the field of AI applied to robotics and specifically the human-robot

interaction, it is possible to distinguish between physical affordances and social af-

fordances.

To discern these two different types of affordances, let us consider a simple ex-

ample, with a robot (agent) interacting with a cube. The definition of physical

affordance here refers to the characteristics or properties of the cube that enable or

constrain certain actions or interactions by the robot, i.e. the perceivable features

of the cube that indicate in which way the robot can interact with it. If the cube

has a handle on one side, the physical affordance of the handle would indicate that

23
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the robot could physically grasp the cube, suggesting which actions it can perform.

However, throughout this thesis work, we will mainly focus on social affordances,

that can be divided in turn into human-general and human-specific social affor-

dances. Within our RL algorithms, we tried to make the agent learn that there are

certain characteristics that can be associated with humans as members of a group of

individuals, but there are also certain characteristics that distinguish each individ-

ual. For example, we talk about human-general social affordance when the agent in

question is able to understand that no human is capable of grasping a cube that is

too far from its field of action. This affordance falls under this definition because this

concept is extendable to all human beings, precisely because of our limited anatom-

ical structure. On the other hand, within our algorithms we also tried to make the

agent learn that there are humans with different characteristics than others, such as

the fact that certain humans may be much more capable of building a tower from

cubes than other humans; or that certain humans are more easily distracted than

others, having a much lower attention threshold. These affordances fall under the

definition of human-specific social affordances.

Affordances in human-robot interactions

Physical affordances Social affordances

Human-general Human-specific

Figure 2.1: Human-robot interactions affordances’ graphical schema.

This research field is very promising. While numerous scientific articles have ad-

dressed physical affordances, the same cannot be said for the social affordances that

the ELSA project is dedicated to. As previously mentioned, the primary objective

here is to equip robots with the capability to acquire social affordances. The two

assumptions underlying the project are as follows:

• Robots can learn social affordances as they can learn physical affordances.

• Robots that can autonomously recognize social affordances when the human

initiates an interactive action will more efficiently and appropriately respond

to the human, thus facilitating human-robot coordination and cooperation.



2.1. VISIT THE LAB SCENARIO 25

In Figure 2.2, it is possible to notice the table-top scenario provided by the the

LAAS laboratory. Human participants can cooperate with the robot to achieve

a particular goal, that can be for example building a tower with cubes. In this

scenario, the robot should learn to dissociate humans’ competency in specific tasks

from specific objects’ properties.

Figure 2.2: Photo of a human-robot interaction experiment at the LAAS laboratory in

Toulouse, featuring the table-top scenario. Credit: LAAS-CNRS

The project is funded for four years, and within this thesis the initial research

progress made in the first six months are discussed.

2.1 Visit the lab scenario

The Visit the lab scenario represents the Institut des Systèmes Intelligents et de

Robotique’s contribution to the ELSA Project, i.e. the realisation of a RL architec-

ture capable of relating a navigation system and a social human-robot interaction

system. In this task, our objective was to develop a simulation set within a lab-

oratory environment featuring corridors, doors, and walls. Within this simulated

laboratory, two central characters take center stage: a robot and a human par-

ticipant. Within this context, the robot serves as the primary agent, tasked with

acquiring the capability to provide guided tours to the human, who is unfamiliar

with the laboratory layout. This entails the robot’s ability to address navigation

challenges and extends further into social interaction as the robot must engage with

the human in a manner that captures their attention effectively.

In this context, the rooms that make up the laboratory are already labelled and

provided to the robot, without any specification as to how they are obtained, thus
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Figure 2.3: Graphical representation of the visit the lab scenario. The robot has learn how

to socially interact with the human, in order to guide him to the flagged rooms in which the

navigation reward is located.

avoiding dealing with the problem of symbol grounding1.

The scenario necessitates the incorporation of two distinct modules: one ded-

icated to navigation and the other to social interaction. The navigation module

enables the robot to traverse the predefined state transitions within the simulation

environment, encompassing corridors, doors, and walls. Conversely, the social inter-

action module empowers the robot to engage with the human participant. However,

a key challenge lies in the robot’s capacity to autonomously learn when and how to

employ these social interaction actions effectively to capture the human’s attention.

The specific sequence of execution for these social actions is pre-defined by us

and will be elaborated upon in the subsequent subsections, dedicated to formalizing

the problem. Once the robot adeptly executes this sequence of actions, the human

participant has been programmed to synchronize their movements with the robot’s

in the general case. Consequently, the robot’s objective is twofold: to guide the

human towards a designated goal area while simultaneously maintaining a degree of

social interaction. For instance, this entails maintaining a specific distance between

the robot and the human, ensuring that the social interaction remains intact. Should

the robot stray too far, the risk of losing the social connection arises, leading to a

potential loss of the human participant’s step-by-step guidance.

To distinguish between specific and general social affordances associated with

1The symbol grounding problem is a long-standing challenge in AI and cognitive science. It

refers to the difficulty of establishing a meaningful connection between symbols or representations

in a computational system and the real-world objects or concepts they are intended to represent.

An influential article inherent this theme is (Harnad 1990)
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humans, we have created a class to model human behavior. This class defines a

basic model of a human agent, incorporating characteristics such as speed, attention,

orientation, and randomness as influencing factors. The actions and state of the

human change in reaction to interactions with a robot and environmental conditions.

Many elements associated with social interactions, such as the field of vision,

were introduced within the simulation. The robot will therefore not only have to

maintain a certain distance from the human (neither too small because it would be

socially inappropriate, nor too large because it would not communicate properly),

but will also have to learn to interact with the human in front of it, face to face.

Before going into technical details, we can partition the Visit the lab scenario

into a series of subtasks that the robot needs to learn:

1. Go to human vision;

2. Presenting, persuading and attracting the attention of the human;

3. Bring the human to the goal area.

At the moment, the task is implemented focusing on a simulation with discrete space

and time, and with purely deterministic transitions between states. An extension of

the work is planned in the future in which continuous notions of space and time are

used: the problem will be technically solvable by means of function approximations

methods, e.g. using neural networks that will aim to estimate action-value functions

from on-policy data (Section 1.6).

In the next subsections we will clearly define the formalisation of the RL prob-

lem, i.e. we will describe states, actions, rewards and percepts concerning the two

different modules of the Visit the lab scenario.

2.1.1 Navigation module

When referring to the navigation module we are essentially describing the simulation

component responsible for modeling the dynamic behavior of the robot within its

environment. This module encompasses not only the dynamics of the robot’s states

but also the formulation of rewards assigned upon the robot’s successful achievement

of a specified goal. In simpler terms, this module serves as the formalized framework

for applying RL principles to teach an agent how to navigate to a particular room

within the environment.
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Figure 2.4: Visualization of the Visit the lab scenario. Cells are numbered and represent

markovian states. Walls cannot be crossed and serve as obstacles in the agent’s (robot’s)

dynamics. Rewarded room is on the top-right corner.

In Figure 2.4, one can observe a graphical representation of the simulation. The

origin of the reference system, denoted as (0, 0), is situated in the upper left-hand

corner of the room. This setup allows us to uniquely identify each cell using a pair of

coordinates. For computational convenience, we have also assigned integer numbers

to each cell, ranging from 0 to n, where n represents the total number of cells within

our environment. The counting commences from the upper-left corner.

Formally, the set of possible states related to the navigation system is defined as:

Sn = {s ∈ N : 0 ≤ s ≤ n− 1}

Where N is the set of integers numbers. In this description, an s value belonging to

this set would represent the location for the Robot in the environment: e.g., s = 74

tells us the Robot is simply localized on the cell number 74.

Furthermore, one can observe that the environment has been divided into differ-

ent areas. There is a central corridor and several labelled rooms: the layout of the

room (number of rooms, number of vertical and horizontal doors, size of rooms) is

randomly determined for sake of generality, but can be fixed setting a random seed.

Still looking at the Figure 2.4, one can see that in the top right-hand corner there is

a particular area marked by a light-blue shade. This is the goal area, in which each

cell is marked by a reward worth +1; all the other white cells on the contrary are

without any kind of reward. Since the reward area is enclosed in the environment,

we can define a subset Sr ⊂ Sn as the subset that contains all the states constituting
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the goal area, so that it is possible to formalise the reward r as a function of the

states of the system s:

r(s) =


1 if s ∈ Sr

0 otherwise
(2.1)

Another fundamental step in designing our problem RL is to define the actions of

our agent. In the navigation problem, a total of 25 dynamical actions were defined:

considering eight different directions and three different speed levels, we have 24

actions plus the STAY action that allows the robot to just remain in the cell it is.

Figure 2.5: Representations of the dynamical actions in the simulation. The directions

are spaced at an angle of 45◦, and the different size-steps constitute the speed of our agent.

Credit: [Benôıt Girard, ISIR]

In this case, the set of possible actions related to the navigation system is An, which

contains all of these dynamical actions, encoded with integer numbers:

An = {a ∈ N : 0 ≤ a ≤ 24}

0: UP 4: UP2 8: UP3 12: UP-LEFT 16: UP-LEFT2 20: UP-LEFT3 24: STAY
1: DOWN 5: DOWN2 9: DOWN3 13: UP-RIGHT 17: UP-RIGHT2 21: UP-RIGHT3
2: LEFT 6: LEFT2 10: LEFT3 14: DOWN-LEFT 18: DOWN-LEFT2 22: DOWN-LEFT3
3: RIGHT 7: RIGHT2 11: RIGHT3 15: DOWN-RIGHT 19: DOWN-RIGHT2 23: DOWN-RIGHT3

Table 2.1: Table of the actions related to the navigation module.

After formalizing the states and actions, the next step was to define the markovian

probability matrix, as discussed in Chapter 1. However, this had to be done while

taking into account the presence of walls affecting the system’s dynamics. Initially,

the elements p(s′|s, a) were defined in a deterministic manner, without introducing
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any stochastic noise. Furthermore, in situations where the executed action would

have resulted in the agent colliding with a wall, the action itself did not alter the

system’s state, i.e., s′ = s.

To give an example, let us consider the top-left corner s = 0 of the Figure 2.4.

Starting from this state, if we move to the right we arrive in state 1, which means

that p(1|0,RIGHT) = 1, and thus the probability of ending up in state 1 given the fact

that the agent is in state 0 and performs the action RIGHT is maximum. Similarly,

given that on our left (and also above) we have a wall, if we start from this state and

perform the action LEFT, we will still end up in state 0 due to the way the Markovian

matrix has been defined, i.e. p(0|0,LEFT) = 1.

Like any RL problem, it will be up to the agent to figure out the best actions

to take to achieve the goal. As input to the navigation system, we will provide two

elements:

• The state (location) of the robot;

• The label of the room it is in.

These elements are the navigation percepts, that clearly will be different from the

human-interaction percepts.

In the Visit the lab scenario, we developed also a Gridworld environment: the

only difference to the former being the total absence of walls.

Figure 2.6: Gridworld environment example. The reward zone is in the righter-down area

of the environment, and the agent just performed the down-left action with the second level

of speed, i.e., a = 18. This simple environment is convenient for testing algorithms.
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Considering the system just described, it is possible to run an RL algorithm to

make the robot learn to reach the goal area of our environment. We are still far

from our final goal, however, because we have not yet considered the human-robot

interaction, contained in the social module.

2.1.2 Social module

The social module is in charge of attracting the human attention as well as selecting

suitable actions to properly interact with them. This type of RL problem is more

complicated to deal with, and therefore requires the introduction of new variables

into our system. Let us start the description of this module by introducing the

percepts of the social module, that can be graphically seen in Figure 2.7.

Figure 2.7: Visual field, facing field and distance in the simulation, with robot in yellow

and human purple. These percepts help to quantify the degree of social interaction between

the human and the robot. [Benôıt Girard, ISIR]

Both characters in the scenario are characterised by a body direction, defined in

the same way as the directions of dynamic actions in Figure 2.5. The relationship

between the directions of the human and the robot and their positions define both

the field of vision and the facing field.

• Visible: a boolean variable that informs the robot whether it is currently in

the visual field of the human, as defined by the white area in the Figure 2.7 at

the left. Here the robot, in the gray area, is not visible; and clearly the human

does not see through walls.

• RLooksAtH: a boolean that informs the robot that the human is in his facing

field. In Figure 2.7 in the middle, the robot is facing the human (RLooksAtH =

True), but the human does not see the robot (Visible = False). If the human
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is in the facing field of the robot, hut hidden behind a wall, RLooksAtH will

return False.

• HLooksAtR: same as RLooksAtH but with opposite characters.

• Distance: the distance between the human and the robot is measured with the

Manhattan distance (see Appendix A), and then discretized in five categories.

Either too close for the human to accept to follow the robot’s movements

(d = 1), at a correct distance (d = 2, 3, 4), or too far (d = 5).

With this description we are able to describe the set of states Ss related to the social

module. Indeed, states can no longer be uniquely determined by the position of our

agent: a method must be found to be able to quantify the level of social interaction

between the robot and the human.

The states for the social system are originally based on a four-tuple as follows:

Ss = {s⃗ ∈ N4 : s⃗ = (interaction, distance, direction, angle)} (2.2)

before being mapped onto a 1D-array for computational reasons.

The four scalar components of the vector s⃗ can only take some predefined values:

• the parameter interaction ∈ [0, 7] refers to the degree of interaction between

the human and the robot. The larger this value is, the more the human is

engaged with the robot. The values from 0 to 4 only refer to visual fields,

and the human is engaged in the interaction process when the interaction

parameter is 5 or larger.

• The parameter distance ∈ [0, 4] is one of the percepts of the social module, and

it is important because within the simulation, it adjusts the range of successful

applicability of social actions.

• The parameter direction ∈ [0, 7] refers to the required input direction, neces-

sary to reach the goal destination. This value represents one of the possible

directions that can be seen in Figure 2.5. In the vanilla social module, this

direction is totally random.

• The parameter angle ∈ [0, 7] represents the orientation of the human with

respect to the robot. It is computed using trigonometric functions based on

the difference in the positions of the robot and the human in the (x, y) plane.
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For example, s⃗ = (2, 4, 5, 3) where s⃗ ∈ Ss would represents a social situation in

which the human is looking at the robot; the robot is too far from the human

because the distance is 4, the required direction is LEFT-DOWN, and the human is

located LEFT-RIGHT with respect to robot. The goal of the agent would be to socially

engage with the human and thereafter bringing him to the left-down direction of the

environment.

Note how within this representation of states there is no parameter associated

with the position of the robot or human, in contrast to the navigation module. But

this makes perfect sense: it is not the absolute position of one individual or the

other that matters, it is their relative position (both in terms of angle and in terms

of distance) that quantifies the level of social interaction.

With regard to the actions of the social module belonging to the set As, it was

decided to keep all the actions contained in the navigation module and to introduce

new ones, i.e. An ⊆ As, thus having both the dynamical and the social actions. One

action enables the robot to look at the human. Moreover, another action referring

to the greeting was introduced, exactly as one is used to start an interaction. After

that, an action associated with the invitation to be followed was introduced, and an

action also associated with pointing in a certain direction to suggest heading towards

a destination. We can therefore extend the Table 2.1 with the following actions:

25: LOOK H

26: HELLO

27: COME

28: POINTING

Table 2.2: New actions introduced in the social module: look at the human, hello, come

with me and pointing in the required direction.

Clearly, a precisely defined sequence of actions must be followed to effectively en-

hance the interaction parameter that characterizes the states of the system. The

following list illustrates the value of this parameter associated with the social situ-

ation:

◆ 0 → No interaction

◆ 1 → Human sees the robot
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◆ 2 → Human is looking at the robot

◆ 3 → Human sees the robot, and robot looks at the human

◆ 4 → Human looks at the robot, and robots looks the human

◆ 5 → After the HELLO action

◆ 6 → After the COME action

◆ 7 → After the POINTING action

where the last three circumstances require that all previous above conditions are

true.

In the formalization of reward-associated states, we made the decision to assign a

positive reward of +1 to all system states where the level of social interaction between

the human and robot reaches its maximum, and the robot is also progressing in the

required direction. This markov decision process empowers the agent to learn the

most effective strategy for engaging with the human, thereby persuading them to

move into the designated required direction.

To model this simulation, a class representing humans was introduced. As dis-

cussed earlier in Section 2.1, introducing a class for humans has the purpose of

formalizing various individual characteristics that distinguish humans. Within our

human class, the following adjustable characteristics have been defined:

• the parameter speed sH = (p1, p2, p3) is a ordered three-tuple which each

element refers to the probability at each time step to move according to the

1, 2 or 3 speed level. For example, if sH = (0.5, 0.5, 0) then the human has

a 50% chance to do a one-step movement and 50% chance to do a two-step

movement; it will never go for three-step movement. Clearly, the sum of the

probabilities must be equal one, i.e, the condition
∑

pi = 1 must hold.

• The failing rate FH ∈ [0, 1] parameter represents the probability related to

the failure of the action HELLO. This parameter activates only if the human is

seeing the robot and not actually looking at the human. In some cases, the

agent shall learn to repeat twice this action when interacting with the human.
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• Through the formalisation of the social module, we have decided to prevent

certain humans from also needing the action POINTING. This concept was for-

malised through the pointing need PH ∈ [0, 1] parameter which governs the

fact that in certain cases it will not be necessary for our agent to perform this

kind of action. In fact, in these cases, after the COME action, the maximum

level of social interaction is instantly reached.

• The parameter losing attention LH ∈ [0, 1] regulates the probability of needing

to restart the entire social interaction process. This parameter is designed to

model the real-life scenario in which humans can become distracted during

interactions, such as stopping in front of a poster instead of following the

robot. Its purpose is to simulate the human’s loss of attention, requiring the

agent to say HELLO again and restart the entire interaction process. However,

if the human and the agent are facing each other, the interaction level will

remain at 4. As will be demonstrated in Chapter 4, maintaining this value

at a low level, approximately around 0.05, proves to be crucial in promoting

successful social interactions.

• The orientation change rate OH ∈ [0, 1] parameter controls the probability

that at each time step the human changes orientation randomly, when not

engaged in human-robot interaction.

• The random movement rH ∈ [0, 1] parameter controls the probability that at

each time step the human moves randomly, when not engaged in human-robot

interaction.

These described features serve dual purposes. Firstly, they aim to characterize

the human class, allowing us to define categories such as fast or slow humans, highly

distracted or exceptionally attentive humans, and more. Secondly, they introduce

a level of complexity into the RL problem: including these stochastic parameters

increases the challenge for our agent, necessitating a greater number of iterations

for the algorithms. However, this complexity also offers the opportunity to train

agents on various human classes, and to quantitatively study the adaptability of

these agents to different human behavioral types.
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2.1.3 Go to human option

We have established the navigation module for reaching a goal area and the social

interaction module for engaging with the human. However, a crucial step remains:

how do we instruct the agent to approach and reach the human? It is important

to note that reaching a designated location and reaching a dynamic character like

a human are distinct tasks. Generally, a human can make random movements and

change their orientation stochastically in our environment.

To address this challenge, we introduced the Go to human module, whose pur-

pose is self-explanatory. In this module, the states of the system are defined by:

Sg = {s⃗ ∈ N3 : s⃗ = (orientationH , distance, angle)} (2.3)

where we introduce the new parameter orientationH ∈ [0, 7] which represents the

orientation of the human. Indeed, this new parameter plays a crucial role in enabling

the agent to learn how to navigate into the human’s visual field. Comparatively,

in contrast to the Social module, we remove two parameters: those dedicated to

modeling the interaction level and the direction for moving the human. Instead, we

introduce a single parameter: the human’s current orientation.

Given that the task primarily involves agent movements, the set of actions in

the Go to human module aligns with those in the navigation module, resulting in

Ag = An.

Our agent’s objective is to learn to position itself within the human’s field of

vision effectively. To achieve this goal, we assign a reward of +1 for each time step

in which two conditions are met concurrently: first, the robot must be within the

human’s facing field, and second, the distance between the two entities must be

within the range of 1 to 3.

29: GO TO HUMAN

Table 2.3: The multi-step action Go to human is thought firstly as task, and then it is en-

coded as an option, i.e., a multi-step action in the framework of Hierarchical Reinforcement

Learning.

What sets this module apart is our intention to encode the ultimate task accom-

plishment as an option in the framework oh HRL, as previously discussed in Section

1.7. The concept here is to train our agent to execute the task of reaching the
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human’s facing field, which involves numerous dynamic actions, and subsequently

encode this task into a single action.

More specifically, this option is implemented in the learning architecture that is

designed to combine the different tasks of navigation and social interaction. This

type of framework is particularly useful when the action one would like to perform is

actually made up of many, small actions. In fact, it is natural to think that the task

of reaching the human’s vision is actually made up of many small subtasks: turning

towards the human, walking dynamically towards his position, and adjusting the

orientation in case the human has meanwhile turned and/or changed position.

In Table 2.4 is represented a recap of the modules that have been developed:

Navigation Go to human Social interaction
States Sn Sg Ss
Actions An An As

Reward R reaches
goal

R goes H
visual field

Max interaction & H fol-
lowing required direction

Table 2.4: States, actions and reward designed for the Navigation, Go to hu-

man and Social interaction modules. Specifically, Sn = # cells, Ss =

{interaction, distance, direction, angle}, Sg = {orientationH , distance, angle}. An =

{0, ..., 25}. As = {0, ..., 28}.



Chapter 3

Materials and methods

This Chapter will outline the materials used and the methodology employed to

carry out the thesis project. It will focus mainly on two areas: one associated with

the simulation carried out, and that associated with the experimental apparatus

constructed.

With regard to the methodologies used for the development of the simulation,

part of this topic has already been addressed in the Chapter 2. However, the learning

architecture employed to make the different learning tasks communicate has not

been addressed: with classes implemented towards the learning of different tasks,

how can these classes be made to communicate? That is, if two RL problems have

been implemented in two parallel tracks, how can these two scenarios be merged

into a single, unified problem?

With regard to the experimental methodologies employed, it is necessary to

introduce the characteristics of the robot employed within the experiment. Beyond

this, attention will be paid to the Simultaneous Localization and Mapping (SLAM)

algorithm, employed to construct markovian states in a real-world scenario, and

attention will be paid to the distinction between a matrix of probability transitions

within the simulation, and a matrix of probability transitions experimentally derived.

All of this is accomplished through the renowned Robot Operating System (ROS)

framework, which serves as a valuable tool for implementing the learning algorithms

within our robot.

38
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3.1 Simulation

While we have methods to instruct an agent on reaching specific areas within an

environment, teaching it how to approach humans and engage in social interactions,

the challenge lies in integrating these distinct modules synergistically once they’ve

been formalized. When faced with scenarios where an agent needs to master mul-

tiple tasks, the field of Multi-Task Reinforcement Learning provides a theoretical

framework to address such complexities (Zhang and Yang 2021). In the context

of this thesis project, our aim was to unify these modules by developing a novel

architecture developed by us, that seamlessly integrates the navigation and social

interaction components.

3.1.1 Learning architecture

The learning architecture we developed requires three main ingredients: the Q-tables

associated with the three specific tasks that make up the human-robot interaction,

i.e., Navigation, Social and Go to human modules. It is therefore necessary to

train the three tasks individually through offline reinforcement learning, so that the

acquired knowledge from the agent is available.

Once we trained the agent, the following steps must be done:

1. Considering the learned Navigation Q-table, we focus on the value Q(s =

sH , a), i.e. the Q-values associated with the actual position of the Human.

2. We define a speed coefficient w = (p1, p2, p3) vector representing the weight

we want to assign to the three different velocities implemented in simulation.

Then we weighs each action’s Q-value based on the associated speed coefficient.

3. Aggregate the weighted Q-values for each direction: the direction with the

largest value compose the required_direction array. This array then will be

used as input into the social module. In this way, this module has information

regarding which is the direction associated with the rewarded area.

4. Repeat the process at each times step. Moreover, if the agent chooses the

action 29, i.e., GO TO HUMAN, then read up the Q-table associated with the Go

to human module in the state of the robot QG(s = sR) to select the proper

action.
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We implement the speed coefficient to allow for adaptation to the varying speeds of

humans. In practice, we set an arbitrary value (particularly high for p3), and this

approach proved to be effective, e.g. we set w = (0.1, 0.1, 0.8). A simple schema

illustrating this learning architecture can be seen in Figure 3.1

Figure 3.1: Developed learning architecture for combining navigation and interaction tasks.

Every module has been learnt trough offline RL. We consider the learned Navigation Q-table

in the position of the Human, then we weigh all the 24 dynamical actions with the speed

parameter in order to get a required direction that will be fed into the social module. If

the agent chooses the action 29, read the Q-table from Go to Human module and select the

optimal action according to a = argmaxa QG(sR, a).

It’s important to highlight that within the proposed architecture, the social mod-

ule exerts a significant influence as it governs the action selection process. Notably,

the chosen action, unless it’s a = 29, always comes from the social module.

In order to evaluate the performance of this architecture and the modules pre-

sented above, simulations were run in which the reward obtained by the agent as

the number of trials increased was observed. The details of these simulations are

discussed in Chapter 4.
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3.2 Experiment

Structuring an experiment involving a robot and RL algorithm requires careful plan-

ning and the integration of various essential components. From one hand, we have

to develop software capable of:

• enabling the robot to learn a specific task.

• Establishing the connection between the developed algorithm and the robot’s

motherboard.

• Providing the robot with an understanding of its physical environment, which

involves creating programs capable of reading sensor measurements.

On the other hand, we also need to reconsider the entire scenario in terms of map-

ping the environment. The Visit the lab scenario is a simulated environment that

differs from a real-life setting, such as a physical table. Therefore, we need to obtain

a map of this new environment, and to achieve this, we can leverage a combination

of the LIDAR sensor (see Appendix B) and the SLAM (Simultaneous Localization

and Mapping) algorithm. The latter algorithm initially enables us to map the space,

meaning it estimates a function F : (x, y, z)→ n that associates coordinates in the

space with a markovian state of the system, represented by an integer number n.

The LIDAR sensor measurements enable the robot to avoid collisions.

Figure 3.2: Experimental environment of the project, at the ISIR laboratory. A square table

with approximately a side of 1.5 m, with a Turtlebot3 Burger.
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In Figure 3.2 it is possible to see a photo of the table used as experimental en-

vironment. In our implementation, the Turtlebot3 Burger robot can move at two

different speed levels and in eight different directions, resulting in a total of 16

available actions.

3.2.1 TurtleBot 3 Burger

In our project, we utilized the TurtleBot3, a compact and programmable ROS-based

mobile robot, for experimental testing within a controlled environment. This versa-

tile robot, equipped with a LIDAR sensor, served as the ideal platform for evaluat-

ing our algorithms. Developed by ROBOTIS in collaboration with the Open Source

Robotics Foundation (OSRF), the TurtleBot3 Burger is a part of the TurtleBot se-

ries, renowned for its accessibility and adaptability in the field of robotics (Robotis

2023). It offers users the flexibility to incorporate additional sensors, cameras, and

computing hardware, allowing for precise customization to suit specific research or

educational needs.

Figure 3.3: Close look-up to the Turtlebot3 Burger equipped with a LIDAR sensor. One

can see wheels, motherboard, (hidden) battery and connecting cables.

The TurtleBot3 Burger exhibits stable maneuverability in various environments,

making it well-suited for a wide range of applications. Its mobility is further en-

hanced by its compact design, making it easy to navigate through confined spaces

and interact with objects in its surroundings. This capability opens up opportunities

for research and experimentation in fields such as autonomous navigation: in fact,

it is a proper tool on which it is possible to test RL algorithms.
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In the Table 3.1 it is possible to see some physical property of the Turtlebot3 Burger.

Physical property Expected quantity

vmax 0.22 m/s

ωmax 2.84 rad/s

l × w × h 138× 178× 192 (mm)
m 1 kg

∆top 2 h 30 m

Power connectors 5.0 V/4.0 A

Maximum payload 15 kg

Single Board Computers Raspberry Pi
Programmable LEDs User LED ×4

Battery 11.1 V 1800 mAh/19.98 Wh

Table 3.1: Turtlebot3 Burger hardware specifications, with physical property and expected

quantity. Maximum velocity, angular velocity, geometrical lengths and maximum operation

time. Credits: (Robotis 2023).

3.2.2 Mapping

When talking about autonomous systems, Simultaneous Localization and Mapping,

often abbreviated as SLAM, stands as a critical problem. It represents a com-

plex task that robots face when navigating through unknown environments; indeed

SLAM addresses the question of how a robot can simultaneously construct a map

of its surroundings while accurately determining its own position within that map

(Durrant-Whyte and Bailey 2006). This simultaneous process is inspired to the way

humans perceive and navigate the world around them: humans effortlessly under-

stand their environment, recognizing landmarks and orienting themselves within it,

and robots equipped with SLAM capabilities seek to achieve a similar level of spatial

awareness and self-localization (Aulinas et al. 2008).

The crux of the SLAM challenge arises from the fact that robots typically lack

prior knowledge of their environment, requiring them to explore and map it au-

tonomously. Furthermore, they must accomplish this task in real-time, often in

dynamic and unpredictable settings. To surmount these challenges, SLAM algo-

rithms combine sensor data, such as laser scans, camera images, or sonar readings,

with computational techniques to simultaneously estimate the robot’s pose (position
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and orientation) and construct a coherent map of the environment.

Even tough we will not address the details of this algorithm, the general idea is

to find an estimate of the following quantity:

P (mt+1, xt+1|o1:t+1, u1:t) (3.1)

wheremt represents the map of the environment at time t, xt is the state of the agent

at time t, ut represents a series of controls and ot a sensor observation. Thus, we

want to compute an estimate of the map of the environment and the agent’s state

at the next time step. Applying Bayes’ rule it is possible to update the location

posteriors:

P (xt|o1:t, u1:t,mt) =
∑
mt−1

P (ot|xt,mt, u1:t)
∑
xt−1

P (xt|xt−1)P (xt−1|mt, o1:t−1, u1:t)/Z

(3.2)

where P (xt|xt−1) is the transition function.

In this project, the Gmapping (Grid-based Mapping) algorithm was used to

map the experimental environment. It employs a grid-based representation of the

environment, where each grid cell can denote a state. Using sensor measurements

such as the ones coming from LIDAR, GMapping probabilistically updates these grid

cells, progressively constructing a map. Simultaneously, it refines the robot’s pose

estimate by iteratively minimizing the discrepancies between sensor measurements

and the expected map. GMapping excels in indoor environments with structured

layouts, and it is favored for its robustness and accuracy (Weigl et al. 1993).

Figure 3.4: A voronoi diagram of 11 points in the euclidian space represented by Γ. Credits:

(Aurenhammer and Klein 2000).
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More specifically, Voronoi centers play a pivotal role in GMapping, particularly

in the context of path planning and navigation within complex environments. The

Voronoi diagram is a geometric construct that partitions space into regions based on

proximity to points known as Voronoi centers (Aurenhammer and Klein 2000). In

Gmapping, these centers serve to extract meaningful features from the environment,

aiding in landmark recognition and map creation. By identifying Voronoi centers

within the map, robots gain a better understanding of the spatial layout of their

surroundings, enhancing their navigational capabilities. An intuitive example of

what is a Voronoi diagram can be seen in Figure 3.4.

Figure 3.5: States decomposition performed by the gmapping algorithm, with an exploration

time of ∆t = 73.1 min and a state radius of rV = 0.09 m. In total, we found N = 41

markovian states. In the lower part of the figure, a legend of the displayed-grid colors in the

state, computed by dividing the times the robot walked in the cell over the log10 N .

In summary, we exploited SLAM with the Gmapping algorithm in order to construct

a map of the environment, and to constantly encode the localized position of the

robot in a markovian state. The Gmapping algorithm gave us possibility to define

two parameters:

• the number of states N , representing the number of wanted markvoian states.

• the Voronoi radius rV , i.e., the physical value determining the size of the
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neighborhood around each laser scan point where GMapping considers other

points for calculating the likelihood of occupancy.

The basic framework we used to establish a communication between the RL al-

gorithms and the robot was the already mentioned ROS (Robot Operating System).

3.2.3 ROS

In the realm of robotics and automation, the Robot Operating System, commonly

referred to as ROS, is a pivotal tool and framework that has redefined the way we

design, develop, and deploy robotic systems (Koubâa et al. 2017). ROS is a flexible

and open-source middleware platform that plays a fundamental role in enabling the

creation of robotic applications. It provides a comprehensive suite of libraries, tools,

and capabilities that enable developers to build, simulate, and control robots with

versatility.

At its core, ROS is built on a distributed computing framework, allowing for

the seamless integration of various software components (Koubâa et al. 2017). It

operates on a modular architecture, where individual nodes, can be developed inde-

pendently and communicate with one another, forming a network of interdependent

entities. This decentralized approach empowers developers to create complex robotic

systems by composing smaller, specialized components.

Figure 3.6: ROS framework architecture. A full robotic system is comprised of many nodes

working in concert. Credit: (Macenski et al. 2022)
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Key concepts within ROS are nodes, messages, topics and services.

• Nodes are the fundamental building blocks of a ROS application: they consist

in software modules or processes that perform specific tasks or computations

within the robotic system. They can be written in various programming lan-

guages like C++ and Python. The most important aspect is that node can

communicate with each other by passing messages through topics, enabling

modular development and easy integration.

• Messages are structured data types that nodes use to communicate with each

other: they encapsulate information or instructions, allowing nodes to ex-

change data. ROS provides a rich library of predefined message types for

common robotic data, such as sensor readings and control commands; devel-

opers can also define custom message types tailored to the specific needs of

their robotic applications.

• Topics serve as the communication channels or conduits through which nodes

exchange messages. A topic is like a named pipe or a message bus where nodes

can publish messages for others to consume. Multiple nodes can subscribe to

the same topic to receive the messages they are interested in, enabling seamless

data flow within the robotic system.

• Services provide a request-response mechanism for performing specialized tasks

within ROS. Nodes can offer services, and other nodes can request these ser-

vices to perform specific actions or retrieve information.

Moreover, we employed RViz: a 3D visualization tool used in the ROS ecosystem,

designed to help developers visualize various aspects of their robot’s operations and

environment in real-time. RViz was used to visualise the trajectories the robot

executed in the real environment, and to visualise the accuracy of the localisation

algorithm. This phenomenon can be observed in Figure 3.7, located in the next

page.
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(a) (b)

Figure 3.7: Localization performances comparison. (a): full RViz scenario. Different

walls: black is referred to the physical reconstructed map coming, extracted from the gmap-

ping algorithm. Green line is given by the LIDAR sensor; in purple the tolerance precision

delimited by the cyan lines. Robot is still, and the localization is not precise. (b): zoom-in

of the robot moving in the environment. The localization algorithm is more precise, since

the green arrows identifying the position of the robot are less spread.

3.2.4 State machine

The developed architecture for the experimental part of this project consists of

several interconnected ROS nodes, plus a useful bash file to automate all processes.

The developed scripts are the following:

• agents.py: classes container of RL algorithms, useful both for the simulation

and the experimental part.

• qserver.py: server node useful to establish connections between the RL al-

gorithms contained in the agents.py and the experimental environment.

• reading_pos.py: node designed to read the position of a robot and publish

it in the map reference frame.

• detect_obstacles.py: by incorporating the information obtained from the

LIDAR sensor and setting a certain distance treshold, this node aims to return

a True boolean variable when an obstacle in front of the robot is detected.

• go_back_initial_pose.py: useful node to make the robot return to its initial

position when the episode (trial) ends.
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• state_machine.py node that utilizes learning algorithms and sensors to enable

the robot to navigate within its environment. It handles state transitions,

reward management, and communication with other ROS nodes to control the

robot’s behavior.

Figure 3.8: ROS schema of the experiment. In red the name of the scripts nodes, in navy

blue the services and in grey the topics. Credits: [Elisa Massi]

The sequence of steps to take in order to start an experiment was:

1. Initialize connection with the robot. This can be done e.g through SSH remote

protocol connection.

2. Run roscore: a collection of nodes and programs that are pre-requisites of a

ROS-based system (Macenski et al. 2022).

3. Load the preferred navigation map. This map contain informations about the

borders of the environment and the markovian states location.

4. Run detect_obstacles.py, useful to avoid collision of the robot with the

environment. In this context, the LIDAR sensor that scans the obstacles has

paramount importance.
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5. Run reading_pos.py, in order to that assign to each location of the robot

(x, y, z) a scalar integer number associated with the markovian state.

6. Run go_back_initial_pose.py.

7. Run qserver.py node.

8. Run state_machine.py node, the one in charge of orchestrating between all

the above mentioned nodes.

In Figure 3.8 is exposed a summary diagram of the architecture used to make

the robot face a navigation problem.

The Turtlebot starts in a certain initial position. Instantly, the main.py, commu-

nicate with the qserver.py that outputs the action the robot will take. With the

LIDAR, the detect_obstacles.py node checks if there is an obstacle in the direc-

tion of the next actions, and if not, the robot performs the action, ending up in the

next state and updating the Q-values. In the meanwhile, the position of the robot

and current state are constantly read, and if the Turtlebot finds a reward, it goes

back to the initial position and a new trial start.

This is the general of the conducted experiment: however, in our case, we sup-

pressed the go_back_initial_pose.py node so that when the Turtlebot got a new

rewarded area it did not go backs to the starting state.

It is important to emphasise that different types of experiments can be carried

out with this architecture. For example, it is possible to make the robot tackle

an online navigation problem, i.e. by making the robot actually learn by trial and

error. After a certain number of hours, the robot is expected to have learnt a good

policy, thus being able to reach the rewarded areas in a short time. This knowledge

can be saved via Q(s, a) values, and thus it is also possible to exploit the acquired

knowledge without any learning process. Another efficient method to tackle this

problem in real-life is to train an agent to solve the navigation problem through

simulation Visit the lab in the Gridworld environment, and then simply exploit the

acquired knowledge in real-life.

3.2.5 Experimental Transition Probability Matrix

In Chapter 2, probability transition matrices P (s, a, s′) were formalised for the dif-

ferent tasks implemented in the Visit the lab scenario. Thus, the dynamics were
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defined, i.e. it was clear in which state our agent ends up after performing an action

in a defined state of the system. This was done for all the three modules implemented

in the task.

When referring to this mathematical object, however, it is necessary to make a

clear distinction between simulation and real experiment. Within our simulation,

transitions between states have been defined in a purely deterministic manner: e.g.,

by performing the action RIGHT in state number 0 of the system, in 100% of the cases

our agent will end up in state 1 of the system. This is always true, and this type of

dynamics has been chosen by us on purpose. However, it is also possible to introduce

noise into this probability transition matrix: e.g. in this case, introducing an 80%

probability of ending up in state 1 of the system, and perhaps a 20% probability of

ending up in state 2, where in this case our agent would take a longer step to the

right.

Figure 3.9: Transitions in real scenario example. The SLAM algorithm decompose the

states with non-predefined geometrical structure, thus providing a stochastic transition ma-

trix. In orange, the action ”UP” executed from state 1 can bring towards different next

states: 2, 3, 4, 1.

This kind of stochasticity is obvious when dealing with a real experiment, where

transitions between states are associated with probabilities (see Figure 3.9), that

can be empirically estimated by letting the robot move within the environment. For

this reason, we let the robot walking for approximately 10 hours, saving a total of

8448 transitions with the aim to execute all the possible state-action couples (si, ai)

in the environment and see the resulting next states s′i.

More specifically, in order to obtain the experimental probability transitions

P (s, a, s′), we stored the number of times each (s, a, s′) triplet was encountered by
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the robot, then we divided by the number of times (s, a) experienced, as explained

in Equation 1.13. In order to be able to map all possible triplets (s, a, s′), the robot

was set in motion using the ϵ-greedy algorithm with a value of ϵ = 1 as the action

selection method, so that at each state of the system the action to be performed

would be completely random, so that to explore the system as much as possible.

This procedure was extremely useful because it allowed us to run a simulation

of the Visit the lab scenario, using the extracted probability transition matrix of the

experimental environment. Thus, it was possible to use RL algorithms to train an

agent to solve a navigation problem in a real map, obtaining a good policy π that

could be exploited by our Turtlebot. Indeed, after the training part, a Q-table has

been obtained containing the expected rewards for each action-state pair, for the

different reward areas that were arbitrarily and manually defined in Figure 3.10.

Figure 3.10: Experimental goal areas. We selected and labelled a total of 9 different goal

areas in the experimental environment.

With this process, we have brought simulation and reality closer together: the

Gridworld environment consists exclusively of states (cells), like the table environ-

ment after discretizing the states of the system. In the Gridworld environment,

different goal areas can be defined, exactly as can now also be done experimentally.

Thus, the only major difference between the two scenarios is the different transitions

between states that the agent can make; but these transitions can be saved and used
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within the simulation.

The next step therefore remains the presentation of the results associated with

the simulation Visit the lab in the Gridworld environment, those of the learning

architecture found and the experimental one perfromed by Turtlebot.



Chapter 4

Results

The results that will be shown are mainly scatter visualisations from simulated or

experimental data. When it comes to RL, the goal is to make an agent learn to

perform a certain task: to determine this quantitatively, one can resort to the sum

of the rewards an agent obtains at the end of each trial, or another visualisation can

be given a Q-table heat map, in which deeper colours are associated with states in

which the Q-value is higher.

With regard to simulation, data from the learning of the Navigation, Go to hu-

man, and Social interaction tasks will be presented, and the exploitation of the

knowledge of the three tasks learned by the agent will also be presented. The differ-

ence in training the social interaction with diverse classes of humans - easy, medium,

difficult - will also be shown, and the adaptability of the agent towards different kind

of humans will be exposed. For what concerns the experimental part, an interest-

ing fact will be shown concerning the entropy of the experimentally extrapolated

probability transition matrix. Furthermore, the agent’s training on the newly ex-

trapolated transitions will be presented, as well as the verification of our Turtlebot’s

cumulative reward performance in the experimental scenario.

54
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4.1 Navigation

As was anticipated in the Chapter 1, there is a relevant distinction between Model-

Based and Model-Free agents. Let us start by considering a comparison of the two

between the performances over the number of trials.

(a) (b)

Figure 4.1: Model-Based VS Mode-Free performance comparison on the Navigation task.

(a): learning curve of ϵ-greedy Model-Based in blue compared with the ϵ-greedy Model-Free

algorithm in green. (b): Value Iteration in blue and Q-learning in green, both with softmax

as action selection method. Parameters used: γ = 0.9, α = 0.7, ϵ = 0.05, τ = 0.1. For the

Value Iteration, the number of maximum iterations equals 50, and the update is done each

10000 steps.

In the Figure 4.1 it is possible to observe two simple plots in which the reference

values are on the x-axis the number of trials (episodes) performed by the agent taken

into consideration, while on the y-axis we have the value of the reward obtained by

our agent on each trial. Each trial consists of 50 steps: at each step, the agent is

in a certain state of the system and must perform an action. The code was written

in such a way as to obtain a series consisting of 100 reward values: thus if the total

number of trials as shown in the plot is 2000, this means that the moving average

was carried out over a window of 20 original values. In addition to the main lines,

one can also see shaded areas associated with the standard deviation of the selected

moving window: its purpose is to understand the variability of the rewards obtained.

In this precise context, the problem addressed is a simple navigation task: there

is a goal area in the system marked by reward +1 (see Picture 2.6). It is relevant

to underline that in this context we do not have any interaction with the human; it

is not even in the environment.
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These Figures underline the important difference between a Model-Free and a

Model-Based agent: the speed of learning. Looking at the blue lines, we can see that

after about 250 trials our agent seems that it has already figured out the strategy

needed to obtain the maximum reward value, i.e. choosing in sequence the actions

needed to go from the initial state of the system until the reward area is reached. The

average reward value seems to be about ≃ 45: this means that the agent takes about

5 steps to reach the goal zone, after which he either performs the action STAY many

times, or simply wanders around the goal zone. Similarly, the Model-Free algorithms

were also able to work out what the winning strategy is. The only difference is the

amount of episodes required: in fact, it seems that Model-Free agents learned this

after about 1250 trials, having no model of the environment and being forced to

update the Q-values Q(s, a) only by trials and errors.

These plots derive from the situation in which at each trial, the agent spawns

in a specific state of the system (which does not change) and likewise, the area in

which the reward is present is always the same. Thus, the conditions are extremely

”fixed”: and for this reason the standard deviation associated with the blue lines is

practically non-existent as far as Model-Based algorithms are concerned. In the next

plots we will see that changing the cited environment options will result in curves

with greater variance in the data.

Figure 4.2: Model-Based algorithms comparison. Compared to the ϵ-greedy, the Value

Iteration with softmax seems to be the algorithm which leads to the highest reward and the

lowest variance.
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Another way to evaluate the performance of an agent in a navigation task can be

heat-maps: maps that associate a colour with each state of the system based on the

maximum Q-value associated with the state. In Picture 4.3 one can see heat-maps

related to all the different goal areas.

Figure 4.3: Learned Q-values heat maps for the navigation task, related to the different 9

goal rooms. The bluer colours are associated with the states of the system in which the agent

has learnt to find an higher future expected reward. The agent employed is a Value-Iteration

softmax.

4.2 Go to Human

Similarly, the learning rate of the agent performing the Go to Human task was also

evaluated. Here, an attempt was made to qualitatively study how the variance of

the rewards changes according to small changes in the settings associated with new

episodes.

In Picture 4.4 it can be seen how the variance varies when the episodes settings

are changed. It is in fact obvious that, by spawning the agent in random locations

at each new trial, the agent may feel disoriented (and thus forced to explore the

environment). At the same time, by changing the agent’s initial state each time,

there will naturally be trials in which the agent will be closer to the goal area, and
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(a)

(b) (c)

Figure 4.4: Variance comparison of the reward in the Go to Human task, for different new

episode settings. (a): at the beginning of each episode, positions and orientations of robot

and human are completely random. (b): positions fixed, orientations are random. (c):

positions and orientations are fixed.

other times in which he will perhaps spawn directly in the goal area! That means,

we can naturally expect a great deal of variability in the data here. Nevertheless,

it is also possible to make the position of the goal area random as well: another

element that for the same reasons increases the variability of the rewards obtained

by the agent.

These data suggest that the initial conditions of each episode are correlated with

the variance of the reward. In fact, if these conditions are fixed (positions, orienta-

tion of the robot and the human), the variance associated with the distribution of

rewards is almost not visible. Clearly, once we introduce noise, established by the

stochasticity of the positions and/or orientations of the characters, we can see how

this variance increases for the above explained reasons.
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4.3 Social Interaction

Regarding the Social Interaction task, given the large number of state-action pairs,

we decided to increase the number of episodes (trials) of the algorithm up to 40000.

In this way, the exploited agent has a larger number of trials to learn the one that

approaches an optimal policy.

Figure 4.5: Learning performance of ϵ-greedy Model-Based in the Social Interaction task,

with easy difficulty human parameters: sH = (1, 0, 0), FH = 0, PH = 0, LH = 0, OH =

0, rH = 0. The algorithm parameter are exposed in Picture 4.1

Socially speaking, this model of human is stationary until the maximum level

of social interaction is reached, after which it moves slowly in one-step increments

and never loses focus. It never randomly changes neither orientation nor direc-

tion of movement, which is why in this context the social interaction task reaches

near-optimal policy after approximately 30000 trials, with about a 15-point average

reward per episode.

Although the reward on the scale may seem low, in reality an average of 15

rewards means that for as many as 15 timesteps contemporarily, the human was

moving in the required direction and the level of interaction was maximum. Indeed,

it should be remembered that the preceding timesteps are useful for the agent to

move in such a way as to go into the human’s field of view, and then subsequently

enact the social actions useful for raising the social interaction parameter. In this
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context, an average 15 reward, is an optimal score.

Next, we launched simulations with different classes of humans, which we named

Medium and Hard where respectively these difficulty levels indicate how difficult

it is to complete the social interaction. In the Hard human case for example, we

set the parameter LH = 0.5 and this indicates the fact that in 50% of the cases the

human will get distracted, and therefore it will be necessary to start the whole social

interaction process again. Clearly, it is extremely difficult to succeed in engaging

such a Human, and therefore we expect the learning curves to remain trending

toward 0 in this context. In any case, for a view of the parameters for the above

classes of humans, one can look at the Table 4.1.

sH FH PH LH OH rH

Easy (1, 0, 0) 0 0 0 0 0

Medium (0.5, 0.5, 0) 0.2 0.5 0.2 0.3 0.3

Hard (0, 0, 1) 0.5 0.7 0.5 0.5 0.5

Table 4.1: Easy, Medium and Hard human parameters. In order: speed, failing rate,

pointing need, losing attention, orientation change rate and random rate movement.

The next step is to compare the learning curves of our agent for the social interaction

task with different classes of humans. The result can be observed in Picture 4.6.

Figure 4.6: Learning performance of the Social Interaction module with different humans,

over a number of 100000 trials.
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As could be imagined, the best performance is achieved with the easy human,

mediocre with the medium human, and very bad with the hard human. In particular,

an average of 1 reward per trial is achieved in the latter: out of 40 time step, the agent

managed to go in the required direction with the highest level of social interaction

only once. However, if we consider the fact that this type of human moves randomly

and changes orientation once in two times, distracting himself completely, the result

is not even that bad. This type of outcome serves as a valuable tool for assessing

the efficacy of coding and modeling within the realm of human class representation.

In the event of disparate results, it would indicate potential errors in the code, the

architectural framework of the learning process, or the modeling of the human class.

4.4 Combined tasks

A proof for evaluating the learning architecture that combine tasks could be the

actual dynamics of the agent, i.e., the series of actions performed in different states

of the environment.
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In these visualizations we can see the results of our learning architecture, in

which we are combining the knowledge acquired after the agent has been trained

on the three tasks. The robot constantly tries to reach the human in order to go in

his facing field; when it succeeds, it start interacting socially with the action HELLO.

The agent then performs the social action COME, making the parameter Interaction

reaching the maximum value, thus meaning the model of the human considered

does not need the action POINTING. When this happens, the robot starts to walk in

the required direction, leading the human towards the goal area. Once the human

touches this area, the rewarded zone changes and moves from the right-top corner of

the environment to the bottom-center. The Interaction value is still the maximum,

and thus the human continues to follow the robot, which is going once again towards

the goal.

This example shows that our learning architecture that combines navigation and

interaction problems has demonstrated to work in the Visit the lab scenario, with

excellent results.
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4.4.1 Human adaptability

One interesting result we propose concerns the adaptability of the agent with respect

to different classes of humans. What happens, for example, if we train our agent to

interact socially with one class of human, and then test the acquired knowledge with

another class of human? To do this, we can simply save the Q(s, a) obtained after

a training phase with one human, and then go and exploit it with another class of

human.

Figure 4.7: Study of the human adaptability with our learning architecture. On the y-axis,

the average number of goal areas reached: in blue, exploiting the learned Q-values with the

same human, in yellow with two times slower human, and in red the same human but with

pointing need action, i.e., PH = 1.

In Figure 4.7 we can see the adaptability of our agent when it comes into contact

with a human with different parameters than those with which it was trained. In

particular, the plot shows that our agent succeeds in adapting well when it interfaces

with a human that needs the action POINTING, but this is not true in the case where

it faces a human twice as slow. This can be demonstrated by considering the average

number of times the human manages to reach the rewarded area: in the former case

we have an average of 8 rewards obtained, while in the latter case the average reaches

about 4. As to why the agent has more difficulty adapting to this type of human

than to the other is still unclear, but one idea might be as follows.

Let us put ourselves in the agent’s shoes: we have been trained to interact socially

with a model of a human who needs the actions LOOKING_H, HELLO, COME in order

to achieve the highest level of social interaction. We note, however, that by acting
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in this way, no reward is achieved with the new model of human. The agent thus

feels motivated to explore new actions, and can try experimenting with new actions

to see if he can gain any reward. As can be seen in the figure, around the 200th

trial the agent seems to have figured out the winning strategy for relating to the

new human model.

Much more complicated discussion for the twice-slowest human, where clearly

the agent has failed to adapt. Indeed, in this context, the agent must learn to move

slowly once the level of social interaction reaches the maximum! Otherwise, it will

lose engagement and have to start all over again. Among all 25 dynamic actions,

only 8 moves at one-step, and so a possible explanation for this phenomenon could

be related to the fact that the agent is struggling to understand that it should

only focus on these last actions. Furthermore, in this scenario, the agent needs to

unlearn actions it has previously acquired, which is more challenging than adding a

new action to the sequence.

4.5 Experiment

In order to run our algorithms in real-life, a map of the environment containing 41

Markovian states was extrapolated. To derive the transition probability matrix, the

robot was tasked with walking the table for approximately 10 hours. Focusing on the

probability transition matrix and evaluating its entropy, an interesting phenomenon

has been noted:

Figure 4.8: Average Shannon entropy of transition probabilities for the available set of

actions, over the encoded actions. The values have been computed by using the formula

H = −∑
(P (s′) log2 P (s′)).
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Shannon entropy is a measure of the uncertainty or information content in a

probability distribution, and it quantifies how disordered the outcomes of a random

process are. In this context, we computed the entropy associated with the distribu-

tion of successive states of the system s′i considering each state-action pair (si, ai);

we then plotted these values as a function of the actions ai. Recall that in this

context, there are 16 actions for the Turtlebot: the first 8 are slow, while the last

8 are fast. We can see that the entropy tends to increase for the fast actions, but

this makes perfect sense: a greater distance travelled is naturally associated with a

greater number of final states of the system once the pair (s, a) is fixed, which is

why obviously the calculated entropy tends to increase. Subsequently, we executed

the Visit the lab simulation using the experimentally derived probability transition

matrix.

Remarkably, within a matter of minutes, we successfully trained a Model-Based

agent to navigate the map we generated.

Figure 4.9: Performance of Model-Based agent on the experimental scenario. The structure

of the environment is the same, but now the probability transition matrix is completely

different since it has been extrapolated from the running Turtlebot3.

We employed the Value iteration softmax algorithm because of its good perfor-

mance in the tests that were and, after approximately 2000 episodes, we achieved a

good policy that allows for interesting reward results.

After training, we took care to save the Q-tables learnt by the agent so that the

knowledge needed to reach the rewarded zones would be available. We then employed
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the Turtlebot to leverage this acquired knowledge and assessed its performance in

terms of cumulative reward over the navigation time.

Figure 4.10: Cumulative reward over time of the Turtlebot exploiting knowledge. Displayed

datas are referred to the mean of cumulative rewards after three hours of exploitation. Each

time the Turtlebot finds a rewarded area, the goal changes and it must find the new rewarded

area. The cumulative reward linearly grows over time, since the agent seems it has learnt

the quasi-optimal policy.

Interestingly, in Figure 4.10 the dependency between cumulative reward and

navigation time is not perfectly linear, but this variation does not pose an issue. In

fact, the points where the first derivative of the function is greater, i.e. where the

curve grows faster, are simply associated with situations where once the Turtlebot

has found the reward area, the next extracted rewarded area is physically very close

to the robot. Consequently, having already been trained, Turtlebot immediately

finds the new rewarded area and the obtained curve ends with greater slope in that

instant of time.

Again, the steady increase in the cumulative reward shows that excellent results

were also achieved experimentally, with the Turtlebot solving the navigation problem

perfectly. Due to time constraints, it was not possible to also implement the social

interaction module, but in the continuation of the project this will certainly be done.

In addition, a dynamic image exposed via a projector was also developed, inher-

ent to the Markovian states of the system with an associated heat-map of Q-values.

This type of tool is useful for both debugging and various demonstrations to be

performed in the laboratory. A photo of the scenario can be seen in Figure 4.11.
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Figure 4.11: Photo of the Turtlebot over the designed heat-map. Each color of the state

is associated with the amount of reward it is possible to get arriving in the state. Arrows

are given by argmaxa Q(s, a), i.e., the action that brings to the maximum expected reward

in that state. Red state is given by the localization found with the SLAM algorithm. Yellow

line represent the trajectory of the robot.



Chapter 5

Conclusions

The first Chapter of this thesis focused on reinforcement learning theory, formalizing

MDPs and the most important algorithms that were used in this thesis project.

Model-Based and Model-Free algorithms were addressed, function approximations

method were rapidly discussed, and the theory of HRL was briefly mentioned.

Within the second Chapter we focused on the ELSA Project. The main research

rationale was discussed, with great attention given to the purpose of the project and

the methodologies that will be used. Nonetheless, we focused on ISIR’s contribution

to the ELSA Project, namely the Visit the lab framework: a scenario in which a

human has to take an informational tour inside a lab by seeing different rooms,

accompanied by a robot. This robot will obviously not be programmed; rather, it

will have to learn both how to navigate properly, and how to interact socially with

the human. MDPs associated with the three implemented modules were formalized:

Navigation, Social interaction, and Go to human, explaining the definition of the

states, actions, rewards attributed to the system. In this context, our aim was to

build and implement a useful architecture to bring these different modules together,

so as to naturally unify the knowledge gained after performing offline RL algorithms

on the modules.

In third Chapter, the materials and methods used were addressed: we focused

on the learning architecture, and the experimental architecture used to launch an

experiment with Turtlebot. It was explained how to derive an environment map, and

the general architecture of the experiment was explained, using ROS. Nonetheless,

it was explained how to derive the matrix of probability transitions using a robot.

Finally, the fourth Chapter showed the experimental results that were conducted
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both through simulations and on experimentally collected real-life data. The results

that were shown demonstrated great successes regarding the learning architecture

presented, and excellent results regarding the experiment with the Turtlebot. In

this last part, the focus was only on the navigation problem, but in the short future

it is thought feasible to address the social interaction problem as well.

In conclusion, this thesis has delved into the realm of human-robot interaction,

harnessing the power of reinforcement learning to empower autonomous agents with

the ability to navigate and manage social situations effectively. Through a designed

architecture, we aimed to create agents capable of seamless interactions with hu-

mans, capturing their attention and guiding them to specific goal areas.

Our evaluation encompassed simulation trials involving simulated humans with

varying characteristics, studying also the the agent’s adaptability in different scenar-

ios. Additionally, we ventured into a real-world experiment employing the Turtlebot

robot, emphasizing navigation in a table scenario.

The results achieved are promising, as they clearly validate the efficacy of our

learning architecture in seamlessly integrating knowledge across diverse tasks. The

successful navigation problem tackled with the Turtlebot further underscores the

potential of this approach in real-world applications.

In summary, this thesis represents a substantial contribution to the rapidly evolv-

ing domain of human-robot interactions. By harnessing RL techniques, we have

empowered agents with the capability to comprehend and actively participate in so-

cial scenarios, marking a substantial advancement towards more sophisticated and

intuitive human-robot collaborations.

Future directions

Because the project is only at the beginning of the journey, there is still plenty of

time to continue this work to the best of our ability. The next stages are already well

outlined: it is first important to have the Turtlebot deal with a social navigation

problem, possibly with a human drawn with the interactive screen, or interacting

with another Turtlebot. Then, it will necessary to introdue RL functions approxi-

mation methods, so that it will be possible to build more general models of agents

policies. The next step will regard the actual, real, human-robot interaction with
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a human-size robot such as PR2 or TIAGo; it will not be trivial but for sure it is

possible to make a robot learn how to communicate and interact with a human.

In essence, this project’s trajectory is marked by a series of well-defined stages,

each designed to propel us towards a more comprehensive understanding of social

affordances in human-robot interaction. With time on our side, we are poised to

explore the depths of robotics and reinforcement learning research and contribute

substantially to the field’s evolution.



Appendix A

Manhattan Distance

The Manhattan distance, also known as the taxicab distance, is a metric used to

measure the distance between two points in a grid-based space, such as the envi-

ronments that have been developed during this thesis work. It is named after the

layout of streets in Manhattan, where the shortest path between two points follows

a grid-like pattern, similar to how a taxi might navigate through city streets (Krause

1973).

Figure A.1: Example of two Manhattan distances with respect to the diagonal line provided

by Euclidean distance between the blue and the red point in the Gridworld environment.

More generally, known two n-dimensional vectors x⃗ and y⃗, the way to compute

the Manhattan distance is straightforward:

dM (x⃗, y⃗) = ∥x⃗− y⃗∥M =

n∑
i=1

|xi − yi| (A.1)

whereas if we apply this formula on the above picture, the taxicab distance between

the blue and the red point would be computed simply as dM = |x1− y1|+ |x2− y2|,
where the considered vectors represent the coordinate of the points in an arbitrary

coordinates system.

71



72 APPENDIX A. MANHATTAN DISTANCE

For its simplicity, the Manhattan distance has various applications in fields like

computer science and data analysis, such as:

• Grid-Based Navigation: In robotics and computer games, the Manhattan dis-

tance is used to determine the shortest path between two points on a grid,

where movement is restricted to horizontal and vertical steps.

• Clustering Algorithms: The Manhattan distance is used in clustering algo-

rithms, such as k-means, to measure dissimilarity between data points (Sinwar

and Kaushik 2014).



Appendix B

LIDAR sensor

LIDAR (Laser Imaging, Detection, and Ranging) is a remote sensing technology

that uses laser light to measure distances and create detailed three-dimensional

maps of objects and environments (Taylor 2019). It can provide accurate distance

measurements for creating maps and enabling navigation for robots and autonomous

systems: equipping a moving robot with such a sensor allows it to avoid obstacles

in the scenario by continuously scanning its surroundings at 360◦.

Figure B.1: Picture of the RPLIDAR A1M8 Laser Scanner Sensor that was equipped to

the TurtleBot.

Usually, the functioning of a LIDAR sensor starts with the pulses laser emission in

different directions. These pulses are typically in the infrared range with a wave-

length λ included between 700 nm and 1 mm, thus not not visible to the human

eye. If an obstacle has been encountered, the laser pulse will hits an object that will

reflects the light back towards the sensor.
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Figure B.2: The RPLIDAR A1 Working Schematic. Credit: [Shanghai Slamtec Co., Ltd.]

Considering the figure B.3, let (x1, y1) be the 2-D coordinates of the point from

which the laser has been emitted from the LIDAR, and (x2, y2) the coordinates in

which the light has been then received. The red point in the wall has coordinates

(x3, y3). We then have the formation of a triangle connecting these three coordinates

points, of which we can define two angles:

• θ1, the angle associated with the vertex of the triangle receiving the laser;

• considering the angle at the vertex emitting the laser, θ2 is its supplementary.

In this framework, the goal is to find the coordinate of (x3, y3), that using simple

trigonometry are given by:

x3 =
(y1 − y2) + x2 tan(θ2)− x1tan(θ1)

tan(θ2)− tan(θ1)

y3 =
(y1 tan(θ2)− y2 tan(θ1)) + (x2 − x1) tan(θ2) tan(θ1)

tan(θ2)− tan(θ1)

Given that, the sensor repeats this process for multiple angles as it rotates, gener-

ating a set of distance measurements. These measurements are typically organized

into a point cloud or another suitable format that represents the environment in

2D. Finally, the system’s software processes the LIDAR data to identify objects,

obstacles, and open spaces, enabling the robot or vehicle to make informed decisions

about its path. Running the Turtlebot in our Gridworld experimental environment

with the equipped LIDAR sensor, from the RViz tool the result is the following:
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Figure B.3: LIDAR measured distance on RViz during our experiments with the Turtlebot.

The distance measured from the scanning sensor is the light-blue line in the inner square in

which the Turtlebot is located.



Appendix C

IMOL 2023 Poster

Part of the work of this thesis project was exhibited at the 6th International Work-

shop on Intrinsically Motivated Open-ended Learning (IMOL) that took place on

the 13rd-15th of September 2023 in Paris, France (IMOL 2023).

Within this poster, we focused on a specific architecture that was not explored

in this thesis project: the passive Model-Free learner. The idea is that, while using

a Model-Based algorithm that learns by going to build a model of transitions and

rewards, we can go alongside it a Model-Free learner that learns in turn. To do this,

in the learning process, all we need to do is to update two different Q-tables: one

regarding the Model-Free, and one regarding the Model-Based. The whole process at

any rate is orchestrated by the Model-Based agent, since this one chooses the action

to be performed. Model-Free agents have the advantage of having a computational

inference cost that is practically zero, but it requires many more trials to learn the

optimal policy. In this framework, we show that a passive Model-Free observer

learning from a Model-Based agent can bootstrap the Model-Free performance.

A complete view of the exhibited poster can be seen on the next page.
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Visit the lab scenario: navigation and social
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Presentation of the task

Figure 1. The goal of the robot is to learn how to bring different humans to several rooms.

Research questions

How should the robot learn the effects of its actions both in terms of navigation

(moving from one room to another) and in terms of social interaction (attracting

and keeping the human’s attention)?

How can the robot adapt to intra and inter-human behavioral variability?

Our current approaches

We use model-based reinforcement learning with the agent learning separate models
of navigation and of social interaction tasks. The navigation model focuses on finding
the path to the goal room while the social system tries to get and keep the human’s
attention. Between the two systems, the agent learns an option to navigate to the
human’s visual field so as to get its attention.

Tabular simulations

Figure 2. Simulated tabular version of the task. (Top) Social inputs for the agent to take into account
during social interaction (visual field and facing field of the robot and of the human, human-robot

distance). (Bottom) The robot (in red) tries to bring the human (in blue) to the checked goal area. The

agent chooses between 24 actions to navigate (8 directions, 3 speeds) and a few actions for social

interactions such as hello, come and indicating a direction.

Real-world experiments

We started to run real-world experiments, with a TurtleBot3 navigating in a closed
arena and a simulated human, second step before full Human-Robot Interaction.

Figure 3. Navigation system tested on a real robot. (Left) Map of the environment, built by the
robot using SLAM (left). (Right) Robot finding the rewarded areas, with a gradient of colors from dark

blue (high) to white (low) representing the learned Q-values. This new environment brings more

uncertainty on the outcome of the robot actions.

Influence of MB exploration on a passive MF learner

The structure of the social task, with the robot having to make a sequence of actions to get human’s

attention makes it hard for a model-free agent to learn a good policy. In Dromnelle et al.’s [2] MF/MB

arbitration method, the MB agent often takes the lead in the beginning. Thus, we study a passive MF

observer learning from an MB agent and show that it can bootstrap the MF agent performance.
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Figure 4. Comparison of performance on 10 runs of three ε-greedy agents: MB, MF and MF which
passively observes the MB for half of the experiment. (Left) Navigation task. (Right) Social task.

Nevertheless, the exploration method of the MB agent can drastically modify what
the MF agent perceives and vice versa, which we illustrate in the navigation task.

Figure 5. (Top) Q-map learned by MF agents in the navigation task. From left to right, MF alone,
MF observing MB ε-greedy, MF observing R-max [2]. (Bottom) Learned Q-values of the same three

agents, on 10 runs and for all the goal locations, depending on possible values V ∗(s).

Adaptability to different human behaviors

The final task of the robot is to lead the human to several rooms in a row. After
learning a model of the environment with R-max and a model of one human with
ε-greedy, we compare how the agent adapts to the new human it interacts with.

Figure 6. The agent adapts well to the introduction of a new necessary action to engage the human,
but adapts poorly to a big change in the human speed. Future models could include intrinsically

motivated model-based agents biased towards the reduction of the uncertainty on their models.

Future directions

Further adapt the task to real-world environments and to continuous domains.

Explore how the robot should arbitrate between learning about the physical

environment it is exploring or about the model of the human it is interacting

with and how to react in the case of non-stationarity.

Explore the idea of a human-general model and human-specific models when

the robot faces unpredictable behaviors.
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