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Abstract

In this thesis, we provide a quantum description to the formation of primordial black
holes tackling the conventional methods of describing CMB anisotropies and formation
of black holes in a semi-classical way. These primordial black holes arrive in nature at
a very early stage of the universe soon after the end of inflation. We adopt a quan-
tum field perspective to make an assumption of the size of these primordial black holes.
Furthermore, we define the vacuum fluctuations of the Bunch-Davies type that arise
during the inflationary epoch as a scalar perturbation field in curved space. Using the
particle occupation of the vacuum state, we correlate the findings with a corpuscular
theory of gravity to quantify our claim. This thesis works as a toy model to quantize
primordial black holes from scalar perturbations left from inflation, therefore, this work
can be adopted by various inflationary scenarios and similar early universe mechanisms
that give rise to the same scale-invariant metric perturbations.

Keywords: Inflation, Cosmological Perturbation Theory, Quantum Field Theory in
Curved Space-Time, Primordial Black Holes
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Chapter 1

Introduction

1.1 Outline

Due to their non-baryonic nature and interaction signatures, primordial black holes stand
to be the most probable source of dark matter we observe today, hence, understanding
the nature of their creation would be helpful for modern cosmology. This thesis attempts
to derive an interpretation of deeming the formation of primordial black holes from a
quantum perspective.

Our work surrounds the idea that during the inflationary epoch, cosmological pertur-
bations that go through decoherence and re-enter the horizon at a later stage, collapse
to form primordial black holes. These primordial black holes form due to the horizon
structure during re-entry that relates to the wavelength of the entering perturbations.
This collapse is due to, mainly, scalar perturbations that arise as quantum fluctuations of
the metric field in the background coupled to the inflaton field related to the accelerated
expansion during inflation.

Primarily, we want to check if the same quasi-classical computations done for the CMB
anisotropies and astrophysical black hole formation will be justified in such an early era
of the universe. Given the size of the universe at the very beginning of these primor-
dial black hole (PBH) formations, it is an educated guess that they might be of such
sizes that should be interpreted as quantum. As the perturbation fields exit the horizon
during a later stage of inflation, they receive inadequate time to occupy their vacuum
states. This idea leads to the assumption that the fluctuations do not decoher outside
the Hubble horizon but collapse to form quantum primordial black holes.

We approach this problem in a two-fold way. We consider linear scalar perturbations
of the background metric field with a fluctuation term of the inflaton field in the longi-
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tudinal gauge. We quantize this perturbation field as a quantum field theory in curved
space-time. As the ambiguity in the vacuum states of this field will lead to generic parti-
cle creation around a gravitational background, we understand that these vacuum states
will occupy once outside the Hubble horizon. Moreover, the overdensities in this field
will, hence, collapse gravitationally to form primordial black holes upon horizon re-entry.
Depending on the occupation of the vacuum states, the primordial black holes that form
will vary in size. Therefore, if the vacuum states get minimal occupation, the size of the
primordial black holes will be small. Hence, we believe a quasi-classical framework will
not provide a complete description of these black holes.

Additionally, we approach this issue using the corpuscular picture in order to find the
constitutes for these PBHs using N , the occupation number of the Bose-Einstein Con-
densate corresponding object, which in our case are the black holes . We take a Gaussian
probability of the collapse function and derive a relationship with the power spectrum of
the quantum field. The power spectrum provides a description of the energy constitutes
that is related to the mass. The mass is related to the occupation number through the

form N ∼ M2

M2
P

.

We successfully find a relationship of the particle density in regards to the time of
black hole formation. We see that, indeed, at early times the particle occupation of the
perturbation fields are small enough to be considered to form quantum black holes. A
significance relationship with the formation of these black holes and decoherence time is
established in this thesis.

The results of this work is fundamental to understanding the nature of primordial black
holes. Through a bottom-up approach, we can further these assumptions to correlate
quasi-classical structures that evolve as the universe expands. As the quantization pro-
cedure is dependent on the scale-invariant metric perturbations left from inflation, this
research methodology can be adopted to several early universe cosmological models that
leave behind similar perturbations. We can look into what this methodology results in
different inflationary models, and even beyond inflationary cosmologies such as string
influenced early universe models that leave behind similar seeds of structure formation.

1.2 Guide to the Thesis

The first chapter shall discuss the fundamentals of early universe cosmology that drives
the concepts of the cosmological principle. We shall move on to the next chapter where
we will discuss the inflationary theory and its importance in explaining the flaws in the
homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker universe.
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Additionally, in the third chapter, we shall depict the basic foundations of our under-
standing of the formation of primordial black holes. The following chapters will pose
fundamental prerequisites that lay the infrastructure of the work that has been done in
the thesis. Furthermore, in the last chapters we present our original calculations that
plaster our claim. Finally, we verify our model through a corpuscular approach.
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Chapter 2

Early Universe Cosmology

In this chapter, we introduce the essential components necessary for understanding the
early universe, particularly when considering the formation of Primordial Black Holes
(PBHs). To begin, we provide a concise overview of the foundational concepts and
theoretical framework used to describe a universe that is both homogeneous (uniform
throughout) and isotropic (the same in all directions).

Next, we offer a brief account of the thermal history and the composition of the universe
during various cosmic epochs. This involves explaining how the universe evolved in terms
of temperature and the types of particles and matter present at different times.

Finally, we summarize the limitations of the Hot Big Bang theory, which led to the devel-
opment of inflation theory. Inflation is regarded as the ”standard theory” for describing
the very early moments of cosmic history. It also serves as the source of primordial
cosmological perturbations, which laid the groundwork for the large-scale structures we
observe today and the lingering relic cosmic microwave background radiation.

2.1 The Homogeneous and Isotropic universe

2.1.1 The Hubble Parameter and Redshift

It is widely accepted in cosmology that the universe is in a state of expansion. The rate
at which this expansion occurs is characterized by a universal scale factor denoted as
a(t), which essentially holds all the relevant details regarding the universe’s expansion
history. This scale factor depends on cosmic time, denoted as t, which represents the
time as measured by an observer who is at rest relative to the cosmic flow.

From the perspective of such a local observer, the distances they measure can be ex-
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pressed as follows:
R(t) = a(t)r (2.1)

where R(t) is the physical distance and r is the comoving distance. Similarly, one can
define a useful time variable, denoted as η, which is defined as:

dη ≡ dt

a(t)
(2.2)

known as the conformal time. Naturally, one can also define the rate of the expansion
of the universe, known as the Hubble parameter H, as

H =
1

a

da

dt
=
ȧ

a
(2.3)

The Hubble parameter, denoted as H, represents an essential concept in cosmology. It
possesses dimensions of inverse time and holds significant importance as it provides a
rough estimate of the age of the universe at the time it is measured. In contrast, the
Hubble radius, cH−1 (where c is the speed of light), plays a crucial role in determining
the size of the observable universe at the moment it is measured. Essentially, it defines
the scale of causal contact within our universe.

When it comes to observations, scientists often gauge the universe’s expansion using
the redshift variable, denoted as z. This variable quantifies the relative change in the
wavelength of a photon, symbolized as ∆λ

λ
, as it travels from its source to an observer.

This change in wavelength is a direct result of the universe’s expansion and can be
expressed as:

1 + z ≡ a(tobs)

a(tem)
(2.4)

where a(tobs) and a(tem) are the scale factors at the times of observation and emission
of the photons respectively. By measuring the redshifts z, e.g. in terms of luminosity
distance, one can then reconstruct the expansion rate of the universe, H.

2.1.2 The Friedmann-Lemaitre-Robertson-Walker Metric

The Standard Hot Big Bang paradigm, is founded upon a fundamental concept called
the cosmological principle. This principle asserts that, on large scales (approximately
100 million parsecs or more), the universe appears to be both spatially homogeneous
(uniform) and isotropic (the same in all directions). There is observational evidence
supporting this principle, with one remarkable piece of evidence being the nearly uni-
form temperature of the Cosmic Microwave Background (CMB) radiation observed from
various parts of the sky.
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When adopting the cosmological principle, it naturally constrains the mathematical de-
scription of the universe’s geometry, specifically the infinitesimal line element between
any two points in the universe. This description should accurately represent a universe
that is both homogeneous and isotropic. The general form of this metric, known as the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, is expressed as:

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(2.5)

In this equation, gµν represents the metric tensor, which is a mathematical construct
used to describe the geometry of spacetime. The scale factor, denoted as a(t), has units
of length and describes how the size of the universe changes over time. The coordinates
r, θ, and ϕ are comoving coordinates, which are dimensionless and used to specify points
in space relative to the observer’s frame.

The variable K represents the spatial curvature signature of the metric. When K = 0,
it indicates a flat universe, while K = ±1 corresponds to a closed (spherical) universe
and an open (hyperbolic) universe, respectively.

Expressed in terms of conformal time, the metric takes a particularly useful form. This
form simplifies subsequent calculations and is given as follows:

ds2 = −a2(η)
[
dη2 +

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(2.6)

Here, this metric equation describes the spacetime structure in a way that is advantageous
for further analysis, especially when dealing with cosmological calculations.

2.1.3 The Einstein Equations

Once we’ve determined the infinitesimal line element in an expanding, homogeneous,
and isotropic universe, we can establish a connection between the universe’s expansion,
which is a manifestation of spacetime curvature, and the energy-mass content of the uni-
verse. This connection is established through Einstein’s equations of General Relativity
(GR), which can be derived from the variation of an action, denoted as S, that describes
the entire universe. This action can be divided into two parts: Sgrav representing the
gravitational aspect of the universe and Smatter describing the matter content within the
universe. These two parts are expressed as follows:

Sgrav =
1

16πG

∫
d4x
√
−g(R− 2Λ) (2.7)

9



Smatter =

∫
d4x
√
−gLmatter (2.8)

Here, various symbols are defined as follows: G is the Newton constant, Λ is a cosmo-
logical constant, Lmatter represents the Lagrangian describing the matter content of the
universe, g is the determinant of the metric tensor gµν , R is the Ricci scalar, defined as
a contraction of the Ricci tensor Rµν , i.e., R ≡ gµνR

µν . The Ricci tensor Rµν is defined
as Rµν ≡ ∂ρΓ

ρ
µν − ∂νΓρ

µρ + Γρ
µνΓ

λ
ρλ − Γρ

µλΓ
λ
νρ, where the Christoffel symbols are given by

Γρ
µν = gρλ

2
(∂νgλµ + ∂µgλν − ∂λgµν).

By varying these two parts of the action, we obtain the following equations:

16πG√
−g

δSgrav
δgµν

= Rµν −
1

2
Rgµν + Λgµν (2.9)

− 2√
−g

δSmatter

δgµν
= gµνLmatter − 2

∂Lmatter

∂gµν
(2.10)

Now, if we demand that δS
δgµν

= δSgrav

δgµν
+ δSmatter

δgµν
= 0, we arrive at Einstein’s equations,

given by:

Gµν + Λgµν = 8πGTµν (2.11)

In this equation, the Einstein tensor Gµν is defined as Gµν ≡ Rµν − 1
2
Rgµν , and the

stress-energy tensor for matter is defined as:

Tµν ≡ −
2√
−g

∂Smatter

∂gµν
(2.12)

These equations represent the foundation of Einstein’s theory of General Relativity and
relate the curvature of spacetime (described by the metric tensor gµν) to the distribution
of matter and energy in the universe.

2.1.4 Dynamics of an Expanding universe

Taking into account the cosmological principle and treating the universe’s background
medium as a perfect fluid, we can express the energy-momentum tensor in a general
form:

T µν = −pgµν + (p+ ρ)uµuν (2.13)

Here, p and ρ represent the pressure and energy densities of the fluid, respectively, and
’uµ is the four-velocity of an observer at rest with respect to the homogeneous and
isotropic space. Specifically, in the reference frame of (2.5), uµ equals δµ0, where δ is the
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Krönecker delta.

Solving Einstein’s equations for a universe that is both homogeneous and isotropic, de-
scribed by the FRLW metric, and filled with a perfect fluid as defined in the stress-energy
tensor, we derive the following equations governing the evolution of the scale factor a(t)
in such a universe:

H2 =
(
ȧ
a

)2
= ρ

3M2
P1
− k

a2
+ Λ

3
Friedmann Equation

ä
a
= −4πG

3
(ρ+ 3p) + Λ

3
, Raychaudhuri Equation

(2.14)

In these equations, H represents the Hubble parameter, ρ is the energy density, p is the
pressure, k describes the spatial curvature, and Λ stands for the cosmological constant.
We will use the definition of the reduced Planck mass as M2

P ≡ 1
8πG

.

It’s noteworthy that combining the Friedmann and Raychaudhuri equations allows us to
derive the continuity equation:

ρ̇+ 3H(ρ+ p) = 0 Continuity Equation (2.15)

This equation can also be derived from the covariant conservation of the energy-momentum
tensor, i.e., ∇µT

µν = 0, and can be interpreted as the first law of thermodynamics,
dUth + p dV = 0, which describes an adiabatic expansion. Here, Uth represents the ther-
mal energy density, defined as Uth ≡ ρV , and V is the volume defined as V ≡ a3.

Furthermore, we can express the Friedmann equation more concisely by introducing
the dimensionless variable Ω = ρ

ρc
, where ρc =

3H2

8πG
represents the critical energy density

for a spatially flat universe. Consequently, we can reformulate the Friedmann equations
as:

Ω− 1 =
K

a2H2
(2.16)

and one can see that for K = −1 (hyperbolic geometry), Ω < 1 whereas for K = +1
(spherical geometric), Ω > 1. Regarding the case in which K = 0 (Euclidean geometry),
Ω = 1 and the universe is spatially flat.

2.1.5 Equation of State

In this section, we delve into understanding how the scale factor of the universe evolves
with respect to different components of its energy content, which can dominate during
various cosmic epochs. We approach this by considering the dominant component as a
perfect fluid, and we describe the thermal state of the universe using an equation of state
of the form:
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p = wρ (2.17)

Here, w serves as the equation-of-state parameter, determining the nature of this fluid.
The scenario where w remains constant, which is often the focus of study, provides a
good description of the universe’s thermal state during different cosmic eras.

Assuming this constant equation-of-state parameter w = p/ρ for the universe’s dom-
inant component, we can derive the dynamics of both the universe’s expansion and its
energy density from the continuity equation and the Friedmann equation:

ρ = ρini

(
a

aini

)−3(1+w)

a =

aini
[
1± 3

2

√
ρini
3

t−tini
MP

] 2
3(1+w)

for w ̸= −1

aini exp
{(
±
√

ρini
3

t−tini
MP

)}
for w = −1

(2.18)

Here, the ’ini’ subscript indicates an initial time, and the ’+’ sign corresponds to an
expanding universe with H (the Hubble parameter) greater than 0, while the ’-’ sign
corresponds to a contracting universe with H less than 0.

Now, let’s relate specific values of w to various thermal states of the universe at dif-
ferent cosmic epochs. When w = 0, it characterizes a fluid of non-relativistic particles,
representing the matter-dominated era, where the energy density scales as ρm ∼ a−3. On
the other hand, for w = 1/3, it describes a fluid of relativistic particles, representing the
radiation-dominated era, with energy density scaling as ρr ∼ a−4. Lastly, w = −1 char-
acterizes a thermal state with negative pressure, where vacuum energy dominates the
universe’s energy content. This corresponds to the era of Λ (Lambda) domination, where
the energy density of the cosmological constant Λ, denoted as ρΛ, remains constant. Sim-
ilarly, the spatial curvature contributes to an energy density denoted as ρK = −3K

a2
MP,

which can be treated as the energy density of a perfect fluid with w = −1/3.

Taking all of this into account, we can reformulate the Friedmann equation in the fol-
lowing manner:

H2 =
1

3M2
P

(ρmatter + ρK + ρΛ) =
ρt

3M2
P

, (2.19)

where ρmatter accounts for the sum of the energy densities of ordinary matter, dark
matter, radiation and any other constituent of the universe and ρt is the total energy
density in the universe.
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2.1.6 The Horizon Scale

In cosmology, the concept of the horizon is of fundamental importance. There are two
main types of horizons: the cosmological or Hubble horizon (Hubble radius) and the
particle horizon.

The Hubble horizon, denoted as RH, is defined as:

RH ≡ H−1 (2.20)

This horizon represents the distance at which the velocity of recession of galaxies is
equal to the speed of light. Galaxies beyond a sphere with a radius equal to the Hubble
radius are moving away from us at speeds greater than the speed of light. This might
seem to violate the principle of special relativity, which posits that the speed of light
is the maximum speed in the universe. However, this doesn’t contradict special rela-
tivity because it’s the very fabric of spacetime that’s expanding at a rate exceeding the
speed of light, not objects within spacetime. Essentially, it’s the stretching of space itself.

On the other hand, the particle horizon is defined as the region within which causal
contact has been established through interactions involving photons. More precisely, at
a given time, the particle horizon represents the extent of our past light cone at t = 0.
Using the FLRW metric with dθ = dϕ = 0, we can calculate the infinitesimal distance
traveled by photons as dr = dt/a(t). Therefore, the particle horizon, denoted as RP, is
defined as:

RP ≡ a(t)

∫ t

0

dt′

a (t′)
(2.21)

Assuming a polynomial behavior of the scale factor a(t) (i.e., a(t) ∝ tn with n < 1, which
is true for most cosmic epochs), it can be shown that RP is approximately equal to H−1.
This means that the Hubble horizon and the particle horizon are of the same order, and
they are often used interchangeably as the horizon scale, denoted as H−1. This horizon
scale provides a good estimate of the region where causal contact has been established
and is also the scale at which general relativistic effects become significant.

Another relevant quantity is the horizon mass, denoted as MH, which represents the
mass enclosed within the horizon:

MH ≡
4π

3
ρtR

3
H (2.22)

Combining the form of the horizon mass and the Friedmann equation, it can be deduced
that:
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RH = 2GMH (2.23)

In essence, these expressions link the horizon scale and horizon mass, providing valuable
insights into the dynamics and scale of the universe.

The equation linking the mass enclosed within the horizon to the horizon scale bears
a striking resemblance to the definition of the apparent horizon in black holes within
spherical symmetry. This similarity highlights the shared physical characteristics of the
cosmological horizon and the apparent horizon of black holes. Both can be considered
as trapped surfaces in the framework of general relativity, signifying regions from which
light cannot escape due to strong gravitational effects.

To emphasize, it’s crucial to differentiate between physical lengths inside and outside
the horizon, as this distinction leads to critical behaviours. Therefore, a length scale
denoted as λ is related to these considerations.

The relationship between the wave number k and its corresponding comoving scale λ
is such that the comoving scale associated with λ is equal to λ times the scale factor a.
In mathematical terms, this can be expressed as λ = 2πa/k.

With this understanding, the conditions we have mentioned can be expressed as fol-
lows:

1. When k/(aH) ≪ 1, it indicates that the scale λ is much larger than what is outside
the horizon. In other words, it implies that the characteristic scale λ corresponds to
physical phenomena that occur outside the horizon.

2. Conversely, when k/(aH) ≫ 1, it signifies that the scale λ is much smaller than
what is outside the horizon. In this case, the characteristic scale λ pertains to physical
phenomena that occur inside the horizon.

These conditions help us categorize the scale of events or phenomena relative to the
horizon scale and are crucial for understanding various cosmological processes.

2.2 The Composition of the Universe

In simpler terms, let’s now explore how the universe’s energy composition changes over
time. We can break down each component of the universe’s energy into what’s essen-
tially a perfect fluid. Assuming that there isn’t significant energy transfer between these
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components, we can calculate the total energy density of the universe by adding up the
energy densities of these different components,

ρt =
∑
i

ρini,i

(
a

aini

)−3(1+wi)

. (2.24)

Here, i represents the various components that dominate during different cosmic epochs.
By specifying the energy density of each component at a particular time, we can deter-
mine how ρt changes over time. To make this more concise, we introduce dimensionless
parameters called Ωi. These parameters quantify the contribution of each component to
the universe’s energy budget and are defined as:

Ωi ≡
ρi
ρc

(2.25)

where ρc is the critical energy density required for a flat universe. In a nutshell, following
the equations mentioned earlier, we can simplify in the following way:

Ωtot =
∑
i

Ωi = 1 (2.26)

Now, let’s consider the Ω parameters for the various constituents of the universe based
on the findings from the Planck satellite’s study of the Cosmic Microwave Background
(CMB) relic radiation. Using these parameters along with equations above, we can re-
construct how the universe’s composition has evolved over time.

1. Baryonic Matter: - This component represents ordinary matter in the form of
cold baryons, such as protons and neutrons. These particles are heavier than leptons
like electrons and neutrinos. According to the Planck 2018 results, their contribution is
approximately Ω

(0)
b ≈ 0.049.

2. Radiation: - In this category, we account for relativistic particles, specifically
CMB photons and neutrinos. Their overall contribution is exceedingly small, around
Ω

(0)
r ≈ 10−4.
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Figure 2.1: The composition of the universe today.[20]

3. Dark Matter: - Dark matter was postulated to explain various observations
related to galaxy rotation curves and the formation of large-scale structures. This non-
relativistic form of matter, described with w = 0, is non-baryonic in nature, and its exact
properties remain a subject of ongoing research. Currently, it contributes Ω

(0)
DM = 0.265,

which is more than five times greater than the contribution of ordinary baryonic matter.

4. Curvature: - Using the Friedman equation and considering the definitions of the Ω
parameters, we can identify an Ω parameter associated with spatial curvature. In cases
where the universe is not flat (i.e., when K = ±1), this curvature can be thought of as
a fluid with w = −1/3. However, current observations are consistent with a spatially

flat universe, with Ω
(0)
K ≈ 0. The current constraints on ΩK indicate that the universe is

indeed very close to flat.

5. Dark Energy: - Dark energy is another fundamental component of the universe. It
was hypothesized to exist, much like dark matter, to account for the missing large por-
tion of the total energy density of the universe. Its existence gained prominence in the
1990s when observations indicated that the expansion of the universe was accelerating.
This acceleration pointed to the presence of a mysterious energy component with a prop-
erty referred to as the equation-of-state parameter, denoted as w being approximately
equal to -1. This property is what led to the consideration of the cosmological constant,
represented by Λ, as a leading candidate for dark energy.

Much like dark matter, the nature of dark energy remains a subject of active research
in the field of cosmology. Currently, it is estimated that dark energy contributes signifi-
cantly to the universe’s total energy density, with a value of Ω

(0)
DE ≈ 0.685 according to

Planck 2018 findings.
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Below we present the timeline of energy density domination of the universe in differ-
ent epochs. Additionally, we also discuss the constituents of the universe in relation to
the scale factor today, a0.

By understanding the behavior of these non-interacting fluids representing different con-
stituents of the universe, we can successfully reconstruct the thermal history of the cos-
mos, encompassing phases of radiation dominance, matter dominance, and the influence
of dark energy. This is referred in Figure 2.2.

Figure 2.2: The dynamics of the energy density contribution of the different constituents
of the universe.[20]

1. Radiation Domination Era (a < aeq): - In the early universe, there was a phase
where radiation was the dominant energy component. During this phase, various
phase transitions occurred, and thermal processes led to the formation of light
elements and nuclei through primordial nucleosynthesis.

2. Matter Domination Era (aeq < a < aacc): - Following the radiation-dominated
phase, there was a transition to a period where matter, including dark matter,
became the dominant component of the universe. During this time, large-scale
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structures in the universe began to form due to the gravitational influence of matter.

3. Dark Energy Era (a > aacc): - In the later stages of the universe’s evolution,
dark energy started to play a significant role. This era is characterized by the
accelerated expansion of the universe.

2.3 Problems of Hot Big Bang Cosmology

Here, we demonstrate the basic shortcomings of the Hot Big Bang Model that motivated
inflation. We shall discuss primarily two of these problems; The Horizon Problem
and The Flatness Problem.

2.3.1 The Horizon Problem

The horizon problem, also known as the large-scale homogeneity problem, can be sum-
marized as follows: When we observe regions in the universe that are separated by
distances greater than the speed of light multiplied by the age of the universe (meaning
they are not causally connected), we find that these regions exhibit similar density and
temperature fluctuations, even up to the order of 10−5. This observation appears to
be contradictory because, according to the principles of special relativity, these regions
should not have had the opportunity to influence each other due to the finite speed of
light. Therefore, there seems to have been some form of information exchange between
these distant regions in the past.

To delve into the quantitative aspects of this problem, we can examine how the horizon
and physical lengths evolve during different cosmic epochs, particularly during the radi-
ation domination (RD) and matter domination (MD) eras. For both of these eras, we
can express the evolution of the Hubble horizon (RH) as follows:

During Radiation Domination (RD, where the equation of state parameter w = 1/3):

RH =
4

3
MPl

√
3

ρini

(
1 +

3

2

√
ρini
3

t− tini
MPl

)
(2.27)

During Matter Domination (MD, where w = 0):

RH =MPl

√
3

ρini

(
1 +

3

2

√
ρini
3

t− tini
MPl

)
(2.28)

In parallel, the evolution of physical distances (Rphys) is expressed as:
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For Radiation Domination (RD):

Rphys = aini

(
1 +

3

2

√
ρini
3

t− tini
MPl

)1/2

(2.29)

For Matter Domination (MD):

Rphys = aini

(
1 +

3

2

√
ρini
3

t− tini
MPl

)2/3

(2.30)

From these equations, it becomes evident that the Hubble horizon (RH) increases in
size at a faster rate than physical distances during both the RD and MD eras. Con-
sequently, in the early universe, there should have existed regions that were causally
disconnected from each other due to the expansion. This disconnection should have
resulted in variations in the observed properties of these regions, including density and
temperature fluctuations. However, the actual observations show that our universe is re-
markably homogeneous and isotropic, as evident from measurements such as the cosmic
microwave background’s temperature fluctuations ( δT

T
∼ 10−5) on angular scales larger

than 1 degree, which corresponds to the horizon scale at the time the cosmic microwave
background was emitted.

2.3.2 The Flatness Problem

In addressing the flatness problem, let’s examine how the Ω parameter, which is con-
nected to the spatial curvature of the universe, evolves over time. We know that if
the universe is perfectly flat today, then Ω remains equal to 1 at all points in time.
However, if there exists a small curvature, denoted as K and not equal to zero, then Ω
will vary with time. Let’s focus on the scenario where K = +1 (indicating positive spa-
tial curvature) during the radiation domination (RD) and matter domination (MD) eras.

Understanding that the energy density of radiation ρr scales with the inverse fourth
power of the scale factor (∝ a−4) during the RD era and that the energy density of
matter ρm scales with the inverse cube of the scale factor (∝ a−3) during the MD era,
we can utilize the relationship that H2 is proportional to the total energy density ρt. In
this context, Equation (1.19) can be expressed as follows:

For Radiation Domination (RD):
Ω− 1 ∝ a2 (2.31)

For Matter Domination (MD):
Ω− 1 ∝ a (2.32)
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These expressions highlight how the deviation of Ω from 1 (indicating the flatness of the
universe) evolves over time. In the RD era, this deviation scales with a2, while in the
MD era, it scales linearly with a.

2.3.3 Solution

To tackle the horizon problem, the universe must have undergone a primordial phase
where physical lengths, denoted as Rphys, expanded more rapidly than the horizon scale,
marked by H−1. Essentially, this condition ensures that photons, which might seem
causally disconnected when considering the time of the Cosmic Microwave Background
(CMB) emission, where λ > H−1 (with λ being the photon wavelength), had the op-
portunity to ”communicate” during an early cosmic era where λ < H−1. By meeting
this requirement, we can explain the homogeneity and isotropy observed in the CMB,
effectively addressing the horizon problem.

Mathematically, this condition can be expressed in terms of the scale factor’s evolu-
tion, denoted as a(t). Since λ ∝ a and H−1 = a/ȧ, we need to ensure that during this
early cosmic era, the following inequality holds:

d

dt

(
λ

H−1

)
= ä > 0. (2.33)

This equation can be rewritten, using the Raychaudhuri equation and considering that
this early cosmic era is dominated by a fluid X characterized by an equation-of-state
parameter wX = p/ρ, as follows:

wX < −1/3. (2.34)

To address the flatness/entropy problem, we must also require that in an initial cosmic
era preceding the radiation era, the parameter Ω − 1 decreases, allowing for very low
values, on the order of 10−16. To achieve this, we can assume that during this early era,
the universe was dominated by a fluid X with the equation of state wX. Combining the
energy density equations from the section prior to this one, we can derive that:

Ω− 1 ∝ a1+3wX . (2.35)

Consequently, to ensure that Ω− 1 decreases, we require:

wX < −1/3. (2.36)

Interestingly, this condition, wX < −1/3, to address the flatness/entropy problem is the
same condition that defines the inflationary period in cosmic expansion. During inflation,
the universe undergoes accelerated expansion (ä > 0), and the Ω parameter at the end
of inflation is driven very close to, but not exactly at, one, regardless of its initial value.
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Chapter 3

Inflation and Cosmological
Perturbations

In this chapter, we revisit the fundamentals of the theory of inflation, which, as mentioned
in Chapter 2, provides solutions to a variety of fundamental issues within the framework
of the Hot Big Bang theory. We begin by summarizing the standard single-field slow-
roll inflation paradigm. Subsequently, we provide a brief overview of the theory of
cosmological inflationary perturbations, which are responsible for seeding the Primordial
Black Holes (PBHs) studied within the context of this thesis.

3.1 Single-Field Inflation

This era characterized by negative pressure can naturally occur within the framework
of single-field inflation, where a scalar field called the inflaton field, denoted as ϕ, is
minimally coupled to gravity. The action that describes this scalar field is given by:

Sϕ =

∫
d4x
√
−g
[
1

2
∂µϕ∂

µϕ+ V (ϕ)

]
, (3.1)

In this action, the first term represents the kinetic energy of the scalar field, while the
second term represents its potential energy. The stress-energy tensor associated with
this action can be obtained by substituting Smatter with Sϕ and is defined as:

T (ϕ)
µν = ∂µϕ∂νϕ+ gµν

[
−1

2
gρσ∂ρϕ∂σϕ+ V (ϕ)

]
. (3.2)

Since we are working within the framework of a FLRW background, the inflaton field
ϕ is expected to be homogeneous, meaning it only depends on time. Consequently, the
energy and pressure densities of the inflaton field can be derived from T

(ϕ)
µν and are given

as follows:
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ρϕ = T00 =
ϕ̇2

2
+ V (ϕ),

pϕ = Tii =
ϕ̇2

2
− V (ϕ).

(3.3)

In order for a homogeneous scalar field to drive a period of accelerated expansion, which
characterizes inflation (3p+ ρ < 0), the potential V (ϕ) must satisfy the condition:

V (ϕ) > ϕ̇2. (3.4)

This condition ensures that for inflation to occur, the inflaton field must slowly roll down
its potential so that its potential energy dominates over its kinetic energy.

Now, let’s delve into the background dynamics of the inflaton field. We can derive
this by substituting the energy density and pressure equations above into the continuity
equation. This leads to the Klein-Gordon equation for ϕ:

ϕ̈+ 3Hϕ̇+ Vϕ(ϕ) = 0, (3.5)

where Vϕ(ϕ) is defined as the derivative of the potential V (ϕ) with respect to ϕ.

Additionally, considering the Friedmann equation, it can be expressed as:

3M2
PlH

2 = V (ϕ) +
ϕ̇2

2
, (3.6)

Here,MPl represents the reduced Planck mass. These equations describe the background
dynamics of the inflaton field during inflation, highlighting the relationship between the
field’s kinetic and potential energy, as well as its evolution over time.

3.1.1 The Slow-Roll Regime

The slow-roll regime is defined when V (ϕ)≫ ϕ̇2. In such a case, one gets from the energy
density and pressure equations that pϕ ≃ −ρϕ. According to the continuity equation,
the energy density ρ remains almost constant over time. Similarly, from the Friedmann
equation, the Hubble parameter H also exhibits minimal variation over time. This leads
the spacetime to resemble a de Sitter universe, which is essentially a universe dominated
by a cosmological constant.

The slow-roll regime represents a situation where the universe is perturbatively close
to a de Sitter universe. This particular limit is of great interest because it aligns with
observational evidence indicating an almost scale-invariant power spectrum on the scales
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of the Cosmic Microwave Background (CMB), consistent with predictions from the slow-
roll single-field inflation model.

To quantify how closely the universe deviates from a de Sitter universe during the
slow-roll regime, slow-roll parameters are introduced. These parameters allow for a per-
turbative expansion of the curvature power spectrum. Among various sets of slow-roll
parameters, the Hubble-flow parameters, denoted as ϵn, are widely used in the literature.
They are iteratively defined as follows:

ϵn+1 =
d ln |ϵn|
dN

, (3.7)

where N represents a time variable referred to as the e-fold number, defined as the nat-
ural logarithm of the scale factor, N ≡ ln a. In this parameterization, ϵ0 is defined as
ϵ0 = Hini/H, where ”ini” signifies an initial time. In the case of a de Sitter universe, ϵ0
is a constant with a value of 1. Therefore, in the slow-roll regime, which describes an
almost de Sitter universe, ϵ0 should remain nearly constant over time, close to 1, and its
time derivatives, calculated through the equation above, should be small. This character-
istic makes the slow-roll parameters invaluable for describing perturbations away from
de Sitter expansion. In the language of slow-roll parameters, one can define slow-roll
inflation as long as |ϵn| ≪ 1 for all n > 0.

3.2 Cosmological Perturbations in the Inflationary

Epoch

Inflation stands as the conventional theory for explaining the early stages of cosmic
history. This is primarily because the primordial cosmological perturbations generated
during inflation play a pivotal role in seeding the formation of the large-scale structures
we observe in the universe today, as well as contributing to the anisotropies observed
in the cosmic microwave background radiation, a relic from the early universe. Con-
sequently, in this section, we will provide an overview of the theory of cosmological
inflationary perturbations, which serves as a fundamental pillar of modern cosmology.

3.2.1 The Scalar-Vector-Tensor Decomposition

To introduce cosmological perturbations atop a homogeneous and isotropic background
universe, we need to move beyond perfect homogeneity and isotropy. The most general
perturbed metric capable of describing small deviations from a FLRW universe can be
expressed as follows:
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ds2 = a2(η)
[
− (1 + 2A)dη2

+ 2Bi dx
i dη + (γij + hij) dx

i dxj
]
,

(3.8)

Here, A, Bi, and hij are functions of both space and time, representing the deviations
from a perfectly homogeneous and isotropic universe. γij represents the spatial part of
the background metric. In the case of a flat FLRW background universe, as we are
considering, γij = δij.

To understand the dynamics of these cosmological perturbations, it’s convenient to de-
compose them into scalar, vector, and tensor components, which is why this decomposi-
tion is often referred to as Scalar-Vector-Tensor (SVT) decomposition. Specifically, any
vector field Bi can be decomposed into the divergence of a scalar field B and a vector
field B̄i with zero divergence:

Bi = ∂iB + B̄i, where ∂iB̄i = 0. (3.9)

Similarly, any tensor field hij can be decomposed into components as follows:

hij = −2ψγij + 2∂i∂jE + 2∂(iĒj) + 2Ēij, (3.10)

Here, ∂iĒ
ij = 0 and Ēi

i = 0.

Vector perturbations tend to be rapidly suppressed during the inflationary stage, so
they are often neglected. In contrast, scalar and tensor perturbations receive significant
attention. Concentrating on scalar perturbations at the linear order and using the SVT
decomposition described earlier, the metric with small perturbations can be expressed
as follows:

ds2 = a2(η)
[
− (1 + 2A)dη2

+ 2∂iB dxi dη

+ [(1− 2ψ)δij + 2∂i∂jE] dx
i dxj

]
,

(3.11)

Here, we have substituted γij = δij, considering the observed negligible spatial curvature,
which favors a flat FLRW background universe.

3.2.2 The Gauge Issue

The study of cosmological perturbations involves comparing physical quantities between
two different spacetimes: one that adheres to the cosmological principle of being ho-
mogeneous and isotropic (the FLRW metric) and another where this principle does not
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strictly apply. To compute perturbations in a physical quantity, we need to compare its
values in both the unperturbed background spacetime and the perturbed spacetime at
the same spacetime point. Since these values exist in different spacetime geometries, we
must establish a correspondence between them, known as a gauge choice. Fixing a gauge
is akin to selecting a specific threading into lines (representing fixed spatial coordinates)
and a slicing into hypersurfaces (representing fixed time).

Consider an infinitesimal coordinate or gauge transformation represented by:

xµ → x̃µ = xµ + ξµ, (3.12)

where ξµ = (ξ0, ξi) is a four-vector with components ξ0 and ξi that depend on both
space and time. As discussed previously, any vector field ξi can be decomposed into
the divergence of a scalar field, ξ, and a vector field, ξitr, with a vanishing divergence
(ξitr,i = 0). This decomposition allows us to write the transformation as:

x̃0 = x0 + ξ0(x0, xi), x̄i = xi + γijξ,j(x
0, xi), (3.13)

where the comma denotes the covariant derivative with respect to the background space
coordinates. Focusing on functions ξ0 and ξ that preserve the scalar nature of metric
perturbations, we can express this transformation as follows:

Ã = A− a′

a
ξ0 − ξ0′ ,

ψ̃ = ψ +
a′

a
ξ0,

B̃ = B + ξ0 − ξ′,
Ẽ = E − ξ,

(3.14)

where the prime denotes a derivative with respect to conformal time η.

The challenge that arises with gauge choice is that there isn’t a single preferred gauge.
This means there is no unique choice for the functions A,B, ψ, and E. To address this,
two general approaches are typically employed:

1. Use gauge-invariant quantities for all calculations.
2. Make a specific gauge choice and perform calculations within that gauge.

Both approaches have their advantages and disadvantages. Opting for a specific gauge
can simplify computations but may introduce gauge artifacts. Conversely, working with
gauge-invariant quantities avoids gauge-related issues but might lead to more complex
calculations in some cases. The choice depends on the specific problem and the trade-offs
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involved.

On the other hand, opting for gauge-invariant computations, although potentially more
complex, offers the benefit of working exclusively with physical quantities. Gauge-
invariant quantities can be constructed by combining the perturbation variables A,B, ψ,
and E in various ways.

Among the simplest and most important gauge-invariant quantities in the gravitational
sector are the Bardeen potentials, denoted as Φ and Ψ, and defined as follows:

- Φ is a combination of A, B, E, and their derivatives, designed to capture gravita-
tional perturbations.
- Ψ similarly accounts for gravitational perturbations but also depends on the scale factor
and its derivative.

In situations where there is no anisotropic stress, meaning no off-diagonal space-space
components in the stress-energy tensor, it can be shown that Φ is equal to Ψ.

For the matter sector, particularly in the context of scalar fields like ϕ, gauge-invariant
fluctuations can be constructed as well. These gauge-invariant scalar fluctuations are
denoted as δϕ(gi) and are formed by combining δϕ (the perturbation in the scalar field)
with derivatives of ϕ and the perturbation variables B and E.

Moreover, gauge-invariant scalar fluctuations for other scalar quantities, such as energy
density (ρ) and pressure (p), can also be defined using a similar approach. Specifically,
given a scalar quantity f , you can create a gauge-invariant fluctuation δf (gi) by combin-
ing δf with derivatives of f , B, and E.

It’s worth noting that while the construction of δf (gi) is commonly used in the literature,
there are numerous other possible ways to define gauge-invariant scalar fluctuations.

3.2.3 Perturbed Einstein Equations in Gauge-Invariant Form

The connection between matter and metric fluctuations emerges from Einstein’s equa-
tions. Utilizing gauge-invariant quantities and under the assumption of no anisotropic
stress (Φ = Ψ), the perturbed Einstein’s equations (δG

(gi)
µν = 8πδT

(gi)
µν ) can be derived

after some involved calculations as follows:
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For the temporal-temporal component:

∇2Φ− 3HΦ′ − 3H2Φ =
a2

2M2
Pl

δT
(gi)0
0 (3.15)

For the spatial-temporal component:

∂i(Φ
′ +HΦ) = a2

2M2
Pl

δT
(gi)0
i (3.16)

For the spatial-spatial component:

[Φ′′ + 3HΦ′ + (2H′ +H2)Φ]δij = −
a2

2M2
Pl

δT
(gi)i
j (3.17)

Considering the perturbed stress-energy tensor of the inflaton field, the components can
be written as expressions involving gauge-invariant perturbations δϕ(gi) and Φ. Substi-
tuting these into the equations above yields:

For the temporal-temporal component:

∇2Φ− 3HΦ′ − 3H2Φ =
1

2M2
Pl

(
−ϕ′2Φ + ϕ′δϕ(gi)′ + V,ϕ(ϕ)a

2δϕ(gi)
)

(3.18)

For the spatial-temporal component:

(Φ′ +HΦ) = 1

2M2
Pl

ϕ′δϕ(gi) (3.19)

For the spatial-spatial component:

Φ′′ + 3HΦ′ +
(
2H′ +H2

)
Φ = − 1

2M2
Pl

(
ϕ′2Φ− ϕ′δϕ(gi)′ + V,ϕ(ϕ)a

2δϕ(gi)
)

(3.20)

Using these equations and incorporating the Klein-Gordon equation, an equation de-
scribing the dynamics of Φ in the gravitational sector can be obtained:

Φ′′ + 2

(
H− ϕ′′

ϕ′

)
Φ′ −∇2Φ + 2

(
H′ −Hϕ

′′

ϕ′

)
Φ = 0 (3.21)

3.2.4 Curvature Perturbation

In the preceding discussion, we observed that matter perturbations, specifically the per-
turbations in the scalar field denoted as δϕ(gi), act as sources for metric perturbations
represented by Φ through the Einstein equations. These metric perturbations, when
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translated, result in perturbations in the curvature of spacetime. These spacetime cur-
vature perturbations are profoundly significant because they are instrumental in explain-
ing key phenomena such as the large-scale structure and the anisotropies observed in the
cosmic microwave background (CMB) radiation.

In this section, we will introduce the concept of curvature perturbations in two widely
studied gauges and then proceed to construct gauge-invariant curvature perturbations
based on these two gauges.

The Comoving Curvature Perturbation:
The function ψ, which appears in the spatial part of perturbed metrics, is associated
with the intrinsic curvature of hypersurfaces at constant time. Specifically, when dealing
with a flat FLRW background, we can establish a relationship between the spatial Ricci
scalar, denoted as (3)R and defined as (3)R ≡ γijRij, and the perturbation ψ as follows:

(3)R =
4

a2
∇2ψ (3.22)

The comoving curvature perturbation, denoted as R, is defined as the metric pertur-
bation ψ in the comoving slicing gauge. This gauge corresponds to the perspective of
freely falling comoving observers in which the expansion of the universe is isotropic. Im-
portantly, in this gauge, comoving observers do not measure any energy flux, which is
represented as T 0

i = 0. Consequently, R is formally defined as:

R ≡ ψ|T 0
i =0 (3.23)

The expression for R can be generalized to any gauge by considering a gauge transfor-
mation on constant time surfaces, where η is shifted by δη. Under this transformation,
the perturbation ψ changes, with ξ0 = δη, resulting in the following transformation:

ψ → ψ̃ = ψ +Hδη.

In the comoving gauge, where T 0
i = 0, and noting that at the background level (0)T 0

i = 0,

and that δT
(gi)0
i ∝ ∂iδϕϕ

′, we find that the fluctuation for the scalar field ϕ in the co-
moving gauge, δϕcom , becomes zero: δϕcom = 0.

To proceed further and derive the expression for R in a general gauge, we need to
understand how a scalar fluctuation, such as δϕ, transforms under a gauge transforma-
tion.

Let f be a scalar quantity, and consider the generic coordinate transformation given
above. Since f is scalar, its value at a physical point remains consistent across all coordi-
nate systems. Therefore, f̃(x̃µ) = f(xµ). Additionally, for the unperturbed background,
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f0(x
µ) = f̃0(x

µ), where the subscript 0 denotes background quantities. Consequently,
we can deduce how the scalar fluctuation δf(xµ) ≡ f(xµ) − f0(xµ) transforms under a
general coordinate transformation. Specifically:

δ̃f(x̃µ) = f̃(x̃µ)− f̃0(x̃µ)
= f(xµ)− f0(x̃µ)

= f(x̃µ)− δxµ ∂f
∂xµ

(x̃µ)− f0(x̃µ)

≃ δf(x̃µ)− δxµ ∂

∂xµ
(f0(x̃

µ) + δf(x̃µ)) ,

(3.24)

where the last equality involves a first-order expansion of the function f(x̃µ). Given that,
for a homogeneous and isotropic scalar field, the background function f0 depends only
on time, and considering first-order contributions, δ̃f(x̃µ) can be expressed as:

δ̃f(x̃µ) = δf(xµ)− f ′
0δη. (3.25)

Hence, based on the aforementioned derivation, the transformation of δϕ can be expressed
as δϕ → δϕ − ϕ′δη. Consequently, for a transformation occurring on constant time
hypersurfaces, we obtain:

δϕ→ δϕcom = δϕ− ϕ′δη = 0⇔ δη =
δϕ

ϕ′ . (3.26)

As a result, the comoving curvature perturbation, denoted as R, can be defined in any
gauge as:

R ≡ ψ +Hδϕ
ϕ′ . (3.27)

where H is the comoving Hubble parameter defined by

H =
a′

a

where the derivative on the scale factor is with respect to conformal time.

It’s crucial to emphasize that the quantity defined above is inherently gauge-invariant.
Therefore, R serves as the gravitational potential on hypersurfaces where δϕ = 0, which
can be expressed as:

R = ψ|δϕ=0 . (3.28)

Additionally, it’s worth highlighting the practicality of the comoving curvature pertur-
bation, particularly its constancy on large scales. This constancy enables it to be used
for propagating the inflationary power spectrum from the end of inflation to the post-
inflationary era.
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The uniform energy density curvature perturbation :
Similarly, we can introduce the uniform energy density curvature perturbation, denoted
as ζ, by adopting a slicing where δρ = 0. Thus, ζ is formally defined as:

ζ ≡ ψ|δρ=0 . (3.29)

When we perform a transformation on hypersurfaces of constant time, considering that
δρ is a scalar fluctuation, it transforms as δρ → δρ − ρ′δη. Following a similar line
of reasoning as in the case of the comoving slicing, we find that in the uniform energy
density slicing, δη can be expressed as δη = δρ

ρ′
. Consequently, in any arbitrary gauge,

we can define ζ as:

ζ ≡ ψ +Hδρ
ρ′
, (3.30)

and it retains its gauge-invariant nature by design. It’s worth noting that, on superhori-
zon scales (where k ≪ aH), the curvature perturbation in the uniform energy density
gauge, ζ, is equivalent to the comoving curvature perturbation, R.

3.2.5 Equation of Motion for Scalar Perturbations

In the preceding section, we introduced two key quantities: the Bardeen potentials,
denoted as Φ and Ψ, and the gauge-invariant inflaton perturbation, δϕ(gi). These gauge-
invariant variables describe the gravitational and matter sectors, respectively, and are
interconnected through the Einstein equations. This implies the possibility of construct-
ing a gauge-invariant quantity that uniquely represents both the scalar sectors, i.e., both
gravitational and matter components. To this end, we introduce the Mukhanov-Sasaki
variable, denoted as v(η,x), which is a combination of the Bardeen potential and the
gauge-invariant inflaton perturbation δϕ(gi), defined as follows:

v(η,x) = a

(
δϕ(gi) + ϕ′ Φ

H

)
. (3.31)

It’s noteworthy that the Mukhanov-Sasaki variable is connected to the comoving curva-
ture perturbation R through the relationship:

v =
aϕ′

H
R. (3.32)

This equation is gauge-invariant and is established by starting in the Newtonian gauge
(where E = B = 0 and Ψ = ψ) and considering that Φ = Ψ when there’s no anisotropic
stress.

To derive the equation of motion for u(η,x), we need to construct the total action
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for the system, which is the sum of the gravitational sector’s action (the Einstein-Hilbert
action) and the action for the matter sector (inflaton scalar field action). By expanding
this action up to second order in perturbations, a somewhat lengthy calculation yields:

(2)δS =
1

2

∫
d4x

[
v′2 − δij∂iv∂jv +

(
a
√
ϵ1
)′′

a
√
ϵ1

u2

]
, (3.33)

where ϵ1 is the first slow-roll parameter.

Next, to express the action in terms of the Fourier modes of v(η,x), we consider that, in
the context of linear theory, each mode evolves independently. Therefore, by expanding
v(η,x) into Fourier modes, we obtain:

v(η,x) =
1

(2π)3/2

∫
R
d3kvk(η)e

ik·x, (3.34)

where v−k = v∗k because v(η,x) is real. Substituting this, we find:

(2)δS =

∫
dη

∫
R+×R2

d3k

{
v′kv

∗′
k + vkv

∗
k

[(
a
√
ϵ1
)′′

a
√
ϵ1
− k2

]}
, (3.35)

where the integral is taken over the positive half of the Fourier space due to the redun-
dancy v−k = v∗k. Therefore, the Lagrangian density in Fourier space can be expressed
as:

L ≡
∫
R+×R2

d3k

{
v′kv

∗′
k + vkv

∗
k

[(
a
√
ϵ1
)′′

a
√
ϵ1
− k2

]}
. (3.36)

With the conjugate momentum pk defined as:

pk ≡
δL
δv∗′k

= v′k, (3.37)

the Laplace equation, derived from minimizing the action (2)δS, can be expressed as:

∂L
∂v∗k

=
∂η

∂L/∂p∗k
, (3.38)

which leads to the equation of motion for the Mukhanov-Sasaki variable:

v′′k +

(
k2 −

(
a
√
ϵ1
)′′

a
√
ϵ1

)
vk = 0. (3.39)

From the equation above, it’s evident that each mode k behaves like a parametric oscil-
lator with a time-varying frequency ω(η,k), given by:
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ω2(η, k) = k2 −
(
a
√
ϵ1
)′′

a
√
ϵ1

. (3.40)

It’s apparent that the frequency ω(η,k) is dependent on the scale factor and its deriva-
tives. Consequently, different inflationary potentials, which result in distinct behaviors
of the scale factor as per the Friedmann equation, lead to varying dynamics of ω(η,k)
and, consequently, diverse behaviors of vk(η).
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Chapter 4

Black Holes in the Early Universe

4.1 Misner’s Chaotic Cosmology

The Mixmaster universe is a solution to Einstein’s field equations in general relativity.
Charles Misner studied this solution to gain a better understanding of the early uni-
verse’s dynamics. His aim was to address the horizon problem by demonstrating that
the early universe underwent a turbulent and oscillatory phase.

This model bears similarities to the closed FLRW universe. In both cases, spatial sec-
tions are positively curved and have a three-sphere topology (S3). However, in the
FLRW universe, the S3 can only expand or contract, with the scale factor a(t) being the
sole dynamic parameter. In contrast, the Mixmaster universe allows the S3 to not only
expand or contract but also deform anisotropically. Its evolution is characterized by a
scale factor a(t) and two shape parameters, β+(t) and β−(t). These shape parameters
describe deformations of the S3 that maintain its volume and a constant Ricci curvature
scalar. Consequently, as the values of these three parameters, a, β+, and β−, change, the
universe retains homogeneity but not isotropy.

This model exhibits a complex dynamical structure. Misner demonstrated that the
shape parameters β+(t) and β−(t) can be likened to coordinates of a point mass moving
within a triangular potential with steep, rising walls and friction. By studying the mo-
tion of this point within the potential, Misner concluded that the physical universe would
undergo expansion in certain directions and contraction in others, with the directions of
expansion and contraction continually changing. Due to the roughly triangular nature
of the potential, Misner suggested that the universe’s evolution in this model is chaotic.
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4.2 Gravitationally Collapsed Objects of Very Low

Mass

The concept of primordial black holes (PBH) was first coined by Stephen Hawking in
his 1971 paper [1] bearing the same title as this section. He postulated his theory on the
basis of Misner’s cosmology model. In his paper he wrote his theory aims to circumvent
the need for assuming highly specialized initial conditions for the Universe to account for
its current observed characteristics, such as its remarkable isotropy and the presence of
galaxies. Instead, it posits that these features originally emerged from substantial ran-
dom fluctuations occurring across all length scales during the early phases of the Universe.

During the early Universe, consider a comoving volume V . This volume would possess a
gravitational binding energy approximately on the order of Gρ2V 5/3, with ρ representing
the density. Simultaneously, the kinetic energy associated with the matter’s expansion
within this volume would be roughly ρV 5/3(V̇ /V )2, and the potential energy stemming
from relativistic pressure would be of the order of ρc2V . If V > (c2/Gρ)3/2, the potential
energy can be safely disregarded when compared to the gravitational energy.

If the scenario involving substantial initial fluctuations is accurate, numerous such vol-
umes must have existed in which the gravitational energy significantly surpassed the
kinetic energy of expansion. These particular regions would not have continued ex-
panding in tandem with the rest of the Universe; instead, they would have undergone
gravitational collapse culminating to the formation of black holes. To prevent these
collapsed regions from becoming entirely isolated, disconnected universes of their own,
the mass within them must not be so immense as to separate them entirely from our
Universe.

4.3 Theoretical Framework of Primordial Black Holes

The theory suggests black holes could have formed very early in the universe, shortly
after the Big Bang, through various mechanisms. Here’s a brief overview of the key
theoretical ideas and mechanisms behind PBH formation:

1. Density Fluctuations during Inflation:

• Inflation is a theoretical period of rapid cosmic expansion in the early universe.
Tiny quantum fluctuations during inflation can lead to variations in the energy
density of the universe. Some regions with higher density fluctuations can
collapse to form PBHs when the density exceeds a critical threshold.

2. Phase Transitions:
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• During phase transitions in the early universe, such as those occurring in
particle physics, localized regions of high energy density can form. If the
conditions are right, these regions may lead to PBH formation.

3. Critical Collapse:

• In certain circumstances, if the matter density in a region exceeds a critical
value, gravitational collapse can occur, forming PBHs. The formation of PBHs
through critical collapse is sensitive to the initial conditions of the universe.

4. Collapse of Cosmic Strings:

• Cosmic strings are hypothetical one-dimensional topological defects that could
have formed in the early universe. The intersections of cosmic strings might
lead to the formation of PBHs.

5. Primordial Gravitational Waves:

• Gravitational waves generated during inflation can source density perturba-
tions. If the amplitude of these waves is large enough, they can lead to PBH
formation when they re-enter the horizon.

6. Extended Inflaton Field:

• Some models propose the existence of an extended inflaton field that can
produce regions with higher density fluctuations, potentially leading to PBH
formation.

7. Large Extra Dimensions:

• In models with large extra dimensions beyond the familiar three spatial dimen-
sions, the modified gravitational physics can allow for the creation of PBHs
at smaller scales.

8. Axion Miniclusters:

• The existence of axions, a type of hypothetical particle, could lead to the for-
mation of dense clumps called axion miniclusters. Some of these miniclusters
might undergo gravitational collapse to form PBHs.

9. Non-Gaussian Density Fluctuations:

• In addition to standard Gaussian density fluctuations, non-Gaussian fluc-
tuations in the early universe can also lead to PBH formation if the non-
Gaussianity is significant.

35



PBHs are intriguing because they provide a window into the early universe and can
have implications for various cosmological and astrophysical phenomena, including dark
matter, gravitational waves, and the structure of the early universe.

4.3.1 PBH Formation as a Causal Process

In an expanding spacetime, we often rely on the concept of the horizon scale, which plays
a crucial role in understanding the causal properties of perturbations responsible for Pri-
mordial Black Hole (PBH) formation. The Hubble rate, denoted as H(t) ≡ ȧ(t)/a(t),
represents the rate of expansion of our universe and has dimensions of inverse length
(or equivalently, time to the power of -1 in natural units). This naturally leads to the
quantity H−1, referred to as the Hubble horizon or the Hubble distance. It measures the
distance that light can travel within one Hubble time, making it a suitable candidate for
characterizing a time-dependent length scale governing the size of a causal patch in our
universe.

To relate physical measurements to comoving ones, we use the scale factor a(t). A
valuable quantity in this context is the comoving Hubble horizon, denoted as (aH)−1,
especially when examining its time evolution. When expressed in terms of the second
derivative of the scale factor, the time derivative of the comoving horizon can be repre-
sented as:

d

dt

(
1

aH

)
= − ä

a2H2
. (4.1)

As we know, during inflation, we have ä > 0, resulting in the comoving horizon scale
decreasing over time. Conversely, in a decelerating universe with ä < 0, which occurs in
the post-inflationary period before dark energy domination, this quantity increases with
time. The fact that the comoving horizon decreases during an accelerated expansion is
a key element in understanding inflation as a solution to the horizon problem in Hot
Big Bang cosmology. It also provides a framework for the quantum mechanical origin of
structures in our universe.

The time evolution of the comoving Hubble horizon is influenced by the background
equation of state, denoted as w. It follows the relationship:

(aH)−1 ∝ a(1+3w)/2. (4.2)

Therefore, during inflation w ≃ −1 and (aH)−1 ∝ a−1 while, during the subsequent
phases of radiation dominated (RDU) and matter dominated universe (MDU), the co-
moving horizon evolves as (aH)−1 ∝ a1 and (aH)−1 ∝ a1/2 respectively.
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Figure 4.1: A schematic representation of the temporal evolution of curvature fluctu-
ations R, each marked by a comoving scale denoted as k−1, concerning the comoving
Hubble horizon (represented by dotted lines) (aH)−1 in the early universe. In the post-
inflationary era, the symbol areh denotes the reheating time, aeq refers to the time of
matter-radiation equality, aMDE represents the time of matter-dark energy equality, and
a0 signifies the current value of the scale factor. The blue horizontal line in the diagram
represents the comoving size of a typical small-scale perturbation responsible for Primor-
dial Black Hole (PBH) formation. If the power spectrum associated with these modes
is amplified during inflation, these perturbations can transfer their energy to density
perturbations during the dominance of radiation. This energy transfer can lead to the
initiation of PBH formation upon re-entry into the horizon when a = aform ≡ af. [5]

The evolution of the comoving horizon concerning the natural logarithm of the scale
factor ln(a) is depicted in Figure 4.1 . When analyzing the statistical properties of
fluctuations in Fourier space, we often characterize a specific perturbation mode with a
comoving length scale denoted as k−1. This length scale is typically measured in units
of megaparsecs (Mpc), equivalent to approximately 3.26 × 106 light-years or roughly
3.1×1019 kilometers. Hence, a critical quantity for understanding perturbation behavior
in the inflationary universe is the ratio of the wavelength of a given mode to the size of the
comoving Hubble horizon, expressed as (aH)/k. Fluctuations with wavelengths larger
than the comoving horizon fall into the category of super-horizon modes (k < aH), while
sub-horizon perturbations satisfy k > aH. Each mode crosses the horizon at k = aH.

As illustrated in Figure 4.1, a typical fluctuation with a comoving size of k−1 (repre-
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sented by horizontal lines) initiates its existence well inside the horizon, often starting
as a quantum fluctuation. Subsequently, it exits the horizon to become a super-horizon
mode and eventually re-enters the comoving horizon during the post-inflationary era.
Large-scale modes with smaller values of k exit the horizon at earlier times than small-
scale modes, re-entering the horizon later during the post-inflationary period.

Indeed, aside from their role as the origin of the observed cosmic microwave background
(CMB) anisotropies on large scales, the dynamics of curvature fluctuations R might also
contribute to the formation of Primordial Black Holes (PBHs). However, this requires
specific ”initial conditions” for cosmological fluctuations at small scales. To illustrate
this, let’s denote k = kpbh ≫ kcmb as the comoving momentum associated with PBH
formation. We assume that the curvature power spectrum at these small scales under-
goes significant amplification, well above the level needed to match CMB observations:
PR (kpbh)≫ PR (kcmb) ∼ 10−9.

Shortly after the end of inflation, i.e., after reheating, the modes associated with this
amplification (e.g., modes with a comoving size of k−1

pbh) become the precursors of density
perturbations in the radiation-dominated universe (RDU):

PR (kpbh)
1/2 ∼ δρ

ρ
. (4.3)

As the comoving Hubble scale expands concerning comoving scales in the RDU, the char-
acteristic scale of these perturbations eventually becomes comparable to the comoving
horizon at a = af , where kpbh = (aH)f (here, the subscript f indicates the time of PBH
formation). At this juncture, gravitational interactions can trigger the collapse of over-
dense regions, provided these regions exhibit a sufficient overdensity exceeding a specific
collapse threshold (more details are provided in the subsequent discussion).

4.4 Thorne’s Hoop Conjecture

Kip Thorne introduced the hoop conjecture in 1972, suggesting that an object undergoing
gravitational collapse transforms into a black hole only when it meets a specific criterion:
a circular hoop with a precise critical circumference could be encompassed around the
object and rotated about its diameter. In simpler terms, for a black hole to form, the
object’s entire mass must be compressed to the extent that it resides within a perfect
sphere whose radius equals the Schwarzschild radius of that object. Failure to meet
this condition means a black hole will not emerge. The formula expressing the critical
circumference for this hypothetical hoop is as follows:

c = 2πrs (4.4)
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Here, c represents the critical circumference, and rs denotes the Schwarzschild radius of
the object.

Thorne’s investigations involved the gravitational effects on objects with various shapes,
including spheres and infinitely long cylinders. He concluded that an object must un-
dergo compression in all three dimensions before gravity induces the formation of a black
hole. For cylindrical objects, the event horizon came into existence when the object could
fit within the previously described hoop. While he couldn’t provide mathematical proof
for objects of all conceivable shapes at the time, he articulated this idea as the hoop
conjecture.

4.4.1 Threshold for Collapse

The first criterion regarding the collapse threshold for the formation of Primordial Black
Holes (PBHs), denoted as δc, hereafter, was established by B. Carr in 1975. Carr’s ap-
proach employed a Jeans-type instability argument within the framework of Newtonian
gravity. According to Carr’s estimation, an over-density in the radiation-dominated
universe (RDU) would undergo collapse upon re-entering the horizon if the fractional
over-density of the perturbation exceeds the square of the sound speed associated with
density perturbations, denoted as c2s. This sound speed represents the speed at which a
pressure wave, caused by the over-density, can propagate from the center to the edge of
a local fluctuation.

In the context of RDU, the speed of sound for perturbations satisfies c2s = w = 1/3,
where w is directly related to the Equation of State (EoS) during RDU. Essentially,
this implies that a perturbation can collapse to give rise to PBHs if its over-density
surpasses the pressure exerted by radiation pressure. When considering the effects of
general relativity, a second analytical estimate was derived, obtaining δc ≈ 0.4 during
RDU. However, subsequent investigations in this area have revealed that the threshold
depends on the initial profile of the curvature perturbation.

4.5 Mass and Collapse Function of PBH at Forma-

tion

The characteristic mass of Primordial Black Holes (PBHs) can be linked to the mass
contained within the Hubble horizon at the time of their formation (denoted as a = af )
through an efficiency factor γ = 0.2:
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M
(f)
pbh = γMH |a=af

= γM
(eq)
H

(
M

(f)
H

M
(eq)
H

)
=

(
af
aeq

)2

γM
(eq)
H . (4.5)

Here, MH(t) ≡ 4πρ(t)/ (3H(t)3) represents the time-dependent horizon mass [5]. The
subscripts f and eq signify quantities evaluated at the time of PBH formation and matter-
radiation equality, respectively. During radiation-dominated universe (RDU), we utilize
the standard relationships H2 ∝ ρ ∝ a−4. It’s important to note that the horizon mass
at the time of equality is approximatelyM

(eq)
H ≃ 2.8×1017M⊙. This equation informs us

that PBHs, unlike astrophysical black holes, can potentially span a wide range of masses
depending on their formation time relative to matter-radiation equality.

By using the time-dependent horizon mass as described above, we can establish a re-
lationship between the mass of PBHs at formation and the characteristic size of the
perturbations that exit the horizon during inflation, which are responsible for PBH for-
mation. To achieve this, we first rewrite the PBH mass at formation as:

M
(f)
pbh =

(
ρf
ρeq

)1/2(
Heq

Hf

)2

γM
(eq)
H . (4.6)

Utilizing the conservation of entropy gs(T )T
3a3 = constant and the scaling property of

energy density with respect to the temperature of the plasma during RDU ρ ∝ g∗(T )T
4,

the previous equation can be re-expressed as:

M
(f)
pbh (kpbh) =

(
g∗ (Tf)

g∗ (Teq)

)1/2(
gs (Teq)

gs (Tf)

)2/3(
keq
kpbh

)2

γM
(eq)
H . (4.7)

Expanding upon the above equation, we can also derive an approximate relationship
between the PBH mass at formation and the number of e-folds, denoted as Npbh, during
which the modes that give rise to PBHs exit the horizon during inflation. To do this, we
first note that kpbh/kcmb = (aH)pbh/(aH)cmb, where the values of the Hubble rate and
scale factor should be evaluated at the scales of horizon exit during inflation (as depicted
in Figure 4.1).

Assuming that the slow-roll parameter ϵ ≡ −Ḣ/H2 ≪ 1 remains roughly constant
between the horizon-exit time of modes associated with the Cosmic Microwave Back-
ground (CMB) and PBH formation, we can relate the Hubble rate and scale factor as

follows: Hpbh = Hcmbe
−ϵ(Npbh−Ncmb) and apbh = acmbe

Npbh−Ncmb . Here, Npbh > Ncmb so
that we count e-folds forward in time concerning the horizon exit of the CMB mode.

Using these two relations, we find kpbh/kcmb ≃ e(Npbh−Ncmb)(1−ϵ). When this is inserted
into mass equation, assuming kcmb = 0.002Mpc−1, we obtain:
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M
(f)
pbh (Npbh) ≈ 7.7× 1017M⊙e

−2(Npbh−Ncmb)(1−ϵ)
( γ

0.2

)(g∗ (Tf)
106.75

)−1/6

. (4.8)

It’s worth noting that modes exiting the horizon significantly later than CMB scales,
denoted as Npbh −Ncmb ≫ 1, will have a substantial reduction in the exponential term
in the equation above. Consequently, this reduction can lead to smaller PBH
masses.

The abundance of PBHs at their formation can also be seen as the fraction, denoted
as β, of local regions within the universe that possess a density exceeding a specific
threshold. The conventional approach for estimating β relies on the Press-Schechter
model of gravitational collapse, a widely employed concept in the field of large-scale
structure formation. This model is expressed as follows:

β ≡ ρpbh
ρ

∣∣∣∣
a=af

≡
∫ ∞

∆c

P (δ)dδ (4.9)

In this equation, β represents the fraction of regions in the universe where the density
exceeds a certain threshold, and it is evaluated at the time of PBH formation (a = af).
The integral encompasses values of the density contrast δ ranging from ∆c to infinity, with
P (δ) representing the probability distribution function associated with δ. In this context,
P (δ) corresponds to the probability distribution function (PDF), which characterizes the
likelihood of a given fluctuation possessing a density contrast δ. It is assumed that a
perturbation will collapse to form a black hole if its amplitude surpasses a critical value
denoted as ∆c. It’s important to note that ∆c represents the critical density contrast,
and generally, it should not be confused with the threshold, where ∆c ̸= δc. The latter,
δc, can be defined as the peak value of the compaction function and is related to an
averaged density contrast.
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Chapter 5

Quantum Fields in Curved
Space-Time

In our exploration of characterizing classical geometry from a quantum perspective, it
is essential for us to consider the background geometry in question. This prompts us
to expand our quantum field theory to include curved space-times, ensuring that we
encompass all the quantum characteristics of matter as sources. This approach involves
assuming that the expectation values of relevant quantities closely align with classical
dynamics, providing a systematic way to account for quantum effects within a curved
space-time framework.

5.1 The Background Field Method

In a fully quantum description of the Universe, it is expected that all measurable quan-
tities can be expressed as the expected values of specific operators, denoted as Ô, acting
on a quantum state |ψ⟩. However, because many of these observables currently appear
to satisfy classical equations quite accurately, the quantum state |ψ⟩ must be chosen in
a way that ensures:

⟨ψ|Ô|ψ⟩ ≃ Ocl, (5.1)

where Ocl complies with the classical equations that Ô adheres to as an operator.

This concept underlies the background field method. Since the state |ψ⟩ is not pre-
cisely known, it is assumed that all observables can be expressed as:

O = Ocl + o, (5.2)

where the ”perturbation” o is considered ”small,” and this is the only quantity treated
as an operator in the semi-classical quantum theory:
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O → Ocl + ô. (5.3)

Once we embrace this separation, the natural progression is to apply it to all fields,
including the metric:

gµν → gclµν + ϵĥµν , (5.4)

Additionally, the matter fields can be described as follows:

ϕ→ ψcl + ϵϕ̂ (5.5)

Here, we introduce the parameter ϵ to formally account for the expansion, and it is
worth noting that one might intuitively relate ϵ to ℏ.

Another assumption we can make is that the classical components of both the met-
ric and matter fields satisfy the Einstein field equations. This assumption leads to the
emergence of a classical space-time manifold denoted as (M, gcl) on which we can an-
alyze the quantum fields ĥµν and ϕ̂. It is important to emphasize that, within this
approximation, the gravitational perturbations represented by hµν behave simply as a
spin 2 field. Specifically, they do not directly influence the causal structure determined
by gclµν but instead interact with other matter fields through terms that can be derived
by expanding the matter action.

5.1.1 The Vacuum Ambiguity

Due to the background field method, since the background is chosen independent of the
quantum states, the vacuum becomes ambiguous.

The vacuum ambiguity in quantum field theory (QFT) in curved spacetime arises from
the fundamental tension between the principles of quantum mechanics and the geometry
of curved spacetime in the context of general relativity. Here’s why this ambiguity exists:

1. Local vs. Global Effects: In flat spacetime (Minkowski spacetime), the vacuum
state is well-defined and uniform throughout space. However, in curved spacetime, due
to the equivalence principle of general relativity, there are no globally inertial frames of
reference. This means that what is considered ”vacuum” can differ from one region of
spacetime to another, leading to local variations in the vacuum state.
2. Quantum Field Fluctuations: In quantum field theory, vacuum fluctuations are an
inherent part of the quantum description of fields. Even in the absence of external forces
or particles, quantum fields exhibit fluctuations at every point in spacetime. These fluc-
tuations can be thought of as particles and antiparticles spontaneously appearing and
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annihilating. In curved spacetime, these fluctuations are influenced by the curvature
itself.
3. Observer Dependence: Observers in different states of motion or located at different
positions in curved spacetime can make different observations regarding the number and
properties of particles in the vacuum state. This is a consequence of the principle of
locality in QFT, which states that measurements at one spacetime point should not in-
stantaneously affect measurements at a distant point. The observer’s motion or location
can affect their perception of particles due to the way spacetime curvature influences the
behavior of quantum fields.

5.1.2 Particle Creation in a Gravitational Background

In this section we review the fundamentals of particle creation that arises due to a back-
ground gravitational field and is one of the key elements to this thesis.

Let’s consider a spacetime that exhibits asymptotic flatness both in the past and in
the future, but deviates from flatness in the intermediate region. In the past, we have a
set of positive frequency solutions denoted as {fj} (referred to as the ”in-region”), and
in the future, we have another set of positive frequency solutions denoted as {Fj} (re-
ferred to as the ”out-region”). We can choose these sets of solutions to be orthonormal,
meaning [4]:

We define the inner product of a pair of these solutions of generally covariant Klein-
Gordon equations,

(f1, f2) = i

∫
Σ

(f ∗
2

←→
∂µ f1) dΣ

µ (5.6)

where dΣµ = dΣnµ with dΣ being the volume element in a given spacelike hypersurface,
and nµ being the timelike unit vector normal to this hypersurface.

- The inner product of fj and fj′ is equal to the inner product of Fj and Fj′ and both
are equal to δjj′ .

- The inner product of the complex conjugates of fj and fj′ is equal to the inner product
of the complex conjugates of Fj and Fj′ , both of which are equal to −δjj′ .

- The inner product between fj and f ∗
j′ , as well as between Fj and F ∗

j′ , is equal to
zero.

Even though these functions are primarily defined by their behavior in different regions,
they are solutions of the wave equation across the entire spacetime. We can express the
in-region modes using the out-region modes as follows:
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fj =
∑
k

(αjkFk + βjkF
∗
k ) (5.7)

When we insert this expansion into the orthogonality relations it leads to the following
conditions: ∑

k

(
αjkα

∗
j′k − βjkβ∗

j′k

)
= δjj′ (5.8)

This equation establishes the relationship between the coefficients αjk and βjk that relate
the in-modes and out-modes while preserving orthonormality. Furthermore,∑

k

(αjkαj′k − βjkβj′k) = 0 (5.9)

The inverse expansion takes the form of

Fk =
∑
j

(
α∗
jkfj − βjkf ∗

j

)
(5.10)

The field operator, denoted as φ, can be expressed using either the set {fj} or {Fj} as
follows:

φ =
∑
j

(
ajfj + a†jf

∗
j

)
=
∑
j

(
bjFj + b†jF

∗
j

)
(5.11)

Here, aj and a
†
j are the annihilation and creation operators, respectively, within the in-

region, while bj and b
†
j are their counterparts in the out-region. The in-vacuum state is

defined as aj|0⟩in = 0 for all j, representing the absence of particles initially. Similarly,
the out-vacuum state is defined as bj|0⟩out = 0 for all j, indicating the absence of particles
at later times. It’s worth noting that aj = (φ, fj) and bj = (φ, Fj), allowing us to express
the two sets of creation and annihilation operators in terms of each other as:

aj =
∑
k

(
α∗
jkbk − β∗

jkb
†
k

)
(5.12)

or
bk =

∑
j

(
αjkaj + β∗

jka
†
j

)
(5.13)

This represents a Bogolubov transformation, with the coefficients αjk and βjk known as
the Bogolubov coefficients.

Now, let’s explore the physical phenomenon of particle creation due to a time-dependent
gravitational field. We assume that no particles were present before the gravitational
field was activated. When using the Heisenberg picture to describe quantum dynamics,
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|0⟩in represents the system’s state at all times. However, the physical number operator
that counts particles in the out-region is Nk = b†kbk. Consequently, the average number
of particles created in mode k is given by:

⟨Nk⟩ = in

〈
0
∣∣∣b†kbk∣∣∣ 0〉

in
=
∑
j

|βjk|2 (5.14)

If any of the βjk coefficients are non-zero, indicating a mixing of positive and negative
frequency solutions, particles are indeed created by the gravitational field.

5.2 Bogolubov Transformation of Squeezed States

In this section, we will provide a concise overview of quantized fields on a flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) background [6]. Let’s start by considering a real
massless scalar field denoted as ϕ. The dynamics of this field are described by the
following action, denoted as S:

S =
1

2

∫
d4x
√
−g∂µϕ∂µϕ (5.15)

In this expression, µ takes values from 0 to 3, and we use natural units where c and ℏ
are set to 1. Additionally, we adhere to the Landau-Lifshitz sign conventions.

The spacetime metric for this scenario is given by:

ds2 = dt2 − a2(t)δijdxidxj (5.16)

Here, i and j run from 1 to 3.

Now, let’s briefly outline how the dynamics of this system lead to the emergence of
squeezed states. We start by expressing the classical Hamiltonian, denoted as H, in
terms of the field y defined as y ≡ aϕ and the conformal time η defined as η =

∫
dt
a(t)

.
The result can be written as follows:

H =

∫
d3xH(y, p, ∂iy, t) (5.17)

=
1

2

∫
d3k

[
p(k)p∗(k) + k2y(k)y∗(k) +

a′

a
(y(k)p∗(k) + p(k)y∗(k))

]
(5.18)

where

p ≡ ∂L(y, y′)
∂y′

= y′ − a′

a
y (5.19)
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and a prime denotes differentiation with respect to the conformal time. We use the
following Fourier transform convention: Φ(k) ≡ (2π)−3/2

∫
Φ(r)e−ikrd3r for both func-

tions and operators. To simplify notation, we sometimes write y(k), a(k), . . . instead of
y(k, η), a(k, η), . . ., even though the Fourier transforms depend on time in the Heisenberg
representation. Since the field y is real, we have y(k) = y∗(−k), or y†(−k) for operators.
This means that any classical field configuration is fully described by giving the Fourier
transforms in half Fourier space. However, in the quantum case, the entire Fourier space
must be used if a quantum state of the field is not invariant under the reflection k→ −k.
Fortunately, for the vacuum initial state we will use below, this complication does not
arise. The Fourier transforms satisfy the equation:

y′′(k) +

(
k2 − a′′

a

)
y(k) = 0 (5.20)

When the field y is quantized, the Hamiltonian becomes:

H =

∫
d3k

2

[
k
(
a(k)a†(k) + a†(k)a(k)

)
+ i

a′

a

(
a†(k)a†(−k)− a(k)a(−k)

)]
(5.21)

The time-dependent (in the Heisenberg representation) operator a(k) is defined as usual:

a(k) =
1√
2

(√
ky(k) + i

1√
k
p(k)

)
(5.22)

so that

y(k) =
a(k) + a†(−k)√

2k
, p(k) = −i

√
k

2

(
a(k)− a†(−k)

)
(5.23)

The canonical commutation relations are given by:

[y(x, η), p(x′, η)] = iδ(3) (x− x′) (5.24)

These relations imply the following commutation relations:

[
y(k, η), p†(k′, η)

]
= iδ(3)(k− k′),

[
a(k, η), a†(k′, η)

]
= δ(3)(k− k′). (5.25)

The final term in the integrand of the Hamiltonian is responsible for the phenomenon of
squeezing. First, let’s examine how it influences the time evolution of the system. We
have: (

a′(k)(
a†(−k)

)′) =

(
−ik a′

a
a′

a
ik

)(
a(k)
a†(−k)

)
(5.26)
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Clearly, the general solutions to these two coupled equations are:

a(k, η) = uk(η)a(k, η0) + vk(η)a
†(−k, η0),

a†(−k, η) = u∗k(η)a
†(−k, η0) + v∗k(η)a(k, η0).

(5.27)

This is essentially a Bogolubov transformation. The coupled equations can be inter-
preted as describing the time evolution of the creation and annihilation operators in the
Heisenberg representation, or as a definition of explicitly time-dependent operators in
the Schrödinger representation. The commutation relations remain unchanged under the
unitary time evolution, leading to the constraint:

|uk(η)|2 − |vk(η)|2 = 1, (5.28)

which permits the following standard parameterization of the functions uk and vk:

uk(η) = e−iθk(η) cosh rk(η),

vk(η) = ei(θk(η)+2φk(η)) sinh rk(η).
(5.29)

In this context, we have the squeezing parameter denoted as rk, the squeezing angle
referred to as φk, and the phase represented by θk.

The relationship between these quantities and those introduced in the α − β formal-
ism is as follows:

uk = αke
−ikη, v∗k = βke

ikη. (5.30)

5.2.1 The Unruh-DeWitt Particle Detector

As we have seen before , in many problems of interest, spacetime can be approximated
as asymptotically Minkowskian in both the distant past and future. In such scenarios,
selecting the ’natural’ Minkowskian vacuum holds a well-defined physical significance.
It represents the absence of particles according to all inertial observers in these remote
regions, aligning with the commonly accepted notion of a vacuum.

Whether a particular spacetime can be considered a suitable ”in” or ”out” region may
also depend on the specific quantum field under consideration. For instance, in the case
of massless, conformally coupled fields, even a conformally flat spacetime, even if not
static, can be a viable candidate for such regions. This allows for flexibility in choosing
the appropriate spacetime framework for quantum field analysis.

To illustrate these concepts, we will examine a particle detector model introduced by
Unruh (1976) and DeWitt (1979) [7]. This model features an idealized point particle
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with internal energy levels labeled by the energy parameter E. The particle is coupled
to a scalar field ϕ through a monopole interaction. Our analysis takes place within four-
dimensional Minkowski space.

Let’s consider the scenario in which the particle detector moves along a world line defined
by the functions xµ(τ), where τ represents the detector’s proper time. The interaction
between the detector and the field is governed by an interaction Lagrangian denoted as
cm(τ)ϕ[x(τ)]. Here, c serves as a small coupling constant, and m represents the detec-
tor’s monopole moment operator. We assume that the field ϕ is initially in the vacuum
state denoted as |0M⟩, where the subscript M indicates the ’Minkowski vacuum.’

For a general trajectory of the detector, it will not remain in its ground state E0. Instead,
it will undergo a transition to an excited state with energy E greater than E0. Simulta-
neously, the field will also transition to an excited state represented by |ψ⟩. When the
coupling constant c is sufficiently small, we can compute the amplitude for this transition
using first-order perturbation theory:

ic

〈
E,ψ

∣∣∣∣∫ ∞

−∞
m(τ)ϕ[x(τ)]dτ

∣∣∣∣ 0M, E0

〉
(5.31)

Utilizing the equation describing the time evolution of m(τ) as:

m(τ) = eiH0tm(0)e−iH0τ τ (5.32)

where H0|E⟩ = E|E⟩, the transition amplitude mentioned above can be factored, result-
ing in:

ic ⟨E|m(0)|E0⟩
∫ ∞

−∞
ei(E−E0)τ ⟨ψ|ϕ(x)|0M⟩ dτ (5.33)

When ϕ is expanded in terms of standard Minkowski plane wave modes, it becomes
evident that, at this order of perturbation theory, transitions can only occur to the state
|ψ⟩ = |1k⟩, which contains one quantum with frequency ω = (|k|2 +m2)

4
for some k.

Then, using the continuum normalization, we find:

⟨1k|ϕ(x)|0M⟩ =
∫

d3k′
(
16π3ω′)−1

〈
1k

∣∣∣a†k′

∣∣∣ 0M〉 e−ik′·x+iω′t

=
(
16π3ω

)−1
e−ik·x+iωt

(5.34)
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5.3 Semi-classicality and Decoherence of Momentum

Modes

Let’s proceed to define the field modes as fk(η), with Re fk denoted as fk1 and Im fk as
fk2. These modes satisfy the initial condition fk (η0) = 1/

√
2k. We will adopt a similar

notation for the quantities p and y. Specifically:

y(k) ≡ fk(η)a (k, η0) + f ∗
k (η)a

† (−k, η0)

=
√
2kfk1(η)y (k, η0)−

√
2

k
fk2(η)p (k, η0)

(5.35)

and for the momentum modes gk(η), where gk (η0) =
√

k
2
:

p(k) ≡ −i
[
gk(η)a (k, η0)− g∗k(η)a† (−k, η0)

]
=

√
2

k
gk1(η)p (k, η0) +

√
2kgk2(η)y (k, η0) .

(5.36)

It’s important to note that the modes fk satisfy the Euler-Lagrange equation. Addition-
ally, we have [6]:

fk =
uk + v∗k√

2k
, |fk|2 =

1

2k
(cosh 2rk + cos 2φk sinh 2rk) ,

gk =

√
k

2
(uk − v∗k) = i

(
f ′
k −

a′

a
fk

)
.

(5.37)

In the context of inflationary theories, the initial perturbations are generated by vacuum
quantum fluctuations of a real scalar field, and the power spectrum of these quantum
fluctuations is represented by |fk|2. Let’s focus on a crucial example involving a massless
real scalar field in (quasi) de Sitter space. In this scenario, the expressions are as follows
:

√
2kfk = e−ikη

(
1− i

kη

)
,

√
2

k
gk = e−ikη, where η ≡ − 1

aH
< 0. (5.38)

Here, the parameter η is defined as the negative reciprocal of the product of the scale
factor a and the Hubble parameter H.

5.3.1 Long-wave Mode Behaviour

The fundamental process behind the emergence of the Bogolubov transformation and
the extreme squeezing in the Universe is well-established and primarily stems from the
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expansion of the Universe, which does not necessarily require inflation, and the presence
of the Hubble radius denoted as RH ≡ H−1 = a2

a′
.

For modes with wavelengths much larger than the Hubble radius, which can be ex-
pressed as kRH ≪ a, the general solution of the Mukhanov-Sasaki equation takes the
following form in terms of the mode functions fk, with y(k) expressed through fk:

fk = C1(k)a+ C2(k)a

∫ η

∞

dη′

a2 (η′)
(5.39)

C1(k) can be made real by applying a phase rotation. Then, the normalization condition
leads to the relation:

C1 ImC2 = −
1

2
(5.40)

The first term in the general solution represents the quasi-isotropic mode, also referred
to as the growing mode. This mode corresponds to a field ϕ with a constant value.
A similar behavior is observed in the dominant component of scalar (adiabatic) metric
perturbations within the synchronous gauge for any arbitrary scale factor a(η), as well as
in the gravitational potential Φ during stages of power-law expansion. The term ”quasi-
isotropic” implies that this mode does not disrupt the isotropic expansion of the universe
in its early stages. The second term in the equation represents the decaying mode.

In the context of inflationary models, if we compare with the prior forms of the field
modes, we find the following relations [6]:

C1 =
Hk√
2k3

, C2 = −
ik3/2√
2Hk

(5.41)

These relations are consistent with the general solution and the normalization condition,
where Hk represents the value of the slowly varying Hubble parameter H at the moment
of the first Hubble radius crossing, denoted as η1 (with η1 < 0 and |η1(k)| = k−1).
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Chapter 6

Corpuscular Theory of Gravity

The corpuscular theory of gravity, also known as the particle theory of gravity, is an early
scientific hypothesis that attempted to explain the force of gravity in terms of particles
or corpuscles. This theory was developed in contrast to the more famous theory of
gravitation put forth by Sir Isaac Newton, which described gravity as an attractive force
between masses. The corpuscular theory sought to provide an alternative explanation
for the gravitational phenomenon.

6.1 Black Hole’s Quantum N-Portrait

It is essential to grasp the concept of classicality from a quantum perspective. Black
holes are typically described using classical solutions and geometry, but the underlying
nature of the universe is fundamentally quantum. In our framework, we interpret any
classical entity as a quantum bound state characterized by a high occupation number,
denoted as N ≫ 1 [8]. Such bound states can exhibit various characteristics, including
different relevant wavelengths and diverse oscillation patterns and frequencies.

As it is demonstrated in various literature, among the diverse range of macroscopic
objects, black holes and solitons emerge as the simplest ones. Their physics can be
effectively captured by a single quantum characteristic, which is the value of N . It is
noteworthy that all the distinctive properties of black holes can be comprehended in
terms of this solitary parameter, N . This numerical quantity serves as our primary met-
ric for quantifying classicality in the context of this framework.

The idea [3] is to form a graviton wave-packet made of as many gravitons as possible,
let us say N , with a typical wavelength λG ≫ ℓP. Clearly, since

αG =
ℏGN

λ2G
=
ℓ2P
λ2G
≪ 1, (6.1)
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where αG is the effective coupling of N gravitons.

In this scenario, a cluster of gravitons will exhibit very weak interactions among them-
selves. However, when multiple gravitons come together, each one begins to experience
a collective potential generated by the other N − 1 constituents of the system.

The collective binding potential perceived by each graviton, at a first-order approxi-
mation, can be estimated as U ≈ −αGNℏ/λG, assuming a distance of approximately
r ≈ λG. Additionally, each graviton possesses kinetic energy given by K ≈ |pG| ≈ ℏ/λG.
Thus, to create a bound state from these N gravitons, one simply needs to ensure that
the energy balance K+U ≈ 0 (the marginally bound condition) is met for each graviton.
This requirement implies

αGN ≈ 1,

which corresponds to a classicalization scaling.

6.2 Corpuscular Black Holes

In an asymptotically flat space, the Hamiltonian constraint takes the form given by
equations [9]:

H ≡ HB +HG =M, (6.2)

Here, HB and HG represent the (super)Hamiltonians of matter and gravity, respectively.
They are obtained by varying the action with respect to the lapse function, andM arises
from boundary terms. For instance, one can consider configurations with a constant
R = Rs to represent stable stars (where the Hamiltonian constraint leads to the Tolman-
Oppenheimer-Volkov equation). Alternatively, as R decreases to form a black hole with
a size equal to the Schwarzschild gravitational radius, given by:

RH = 2ℓp
M

mp

. (6.3)

If we idealize the system with NB baryons initially very far apart, the total energy is
simply the baryonic rest mass:

H = EB ≡ µNB ≃M. (6.4)

As the radius R shrinks, the baryon energy decreases due to the negative interaction
potential energy UBG between baryons mediated by gravitons and gains kinetic energy
KB, resulting in:

EB(R) =M +KB(R) + UBG(R) + UBB(R). (6.5)
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Here, UBB ≥ 0 represents an additional repulsive interaction among baryons, providing
the pressure required for a static configuration at a given finite value of R = Rs (where
KB (Rs) = 0). In a classical model, this equals the total energy of the system, the ADM
mass M , leading to the classical equation of motion:

KB(R) + UBG(R) + UBB(R) = 0. (6.6)

However, considering the quantum nature of baryons and the gravitational interaction,
we must also account for quantum effects. Starting with a simple estimate of the total
baryon gravitational potential energy for a static configuration obtained from Newtonian
physics:

UBG(R) ≃ NBµϕN(R) ≃ −
M2ℓp
mpR

, (6.7)

where ϕN satisfies the Poisson equation:

∆ϕN = ℓp
M

mp

j(r), (6.8)

with a static source profile ensuring
∫ R

0
r2drj(r) = 1. In the quantum theory, the field

can be described using a coherent state of virtual gravitons, akin to how a coherent state
of virtual photons reproduces the Coulomb field around a static charge. This is expressed
as:

k2ϕN(k) = −
M

mp

j(k), (6.9)

Where k is a dimensionless wave number, and ϕ̂k ≃
(
ĝk + ĝ†−k

)
/
√
k. The coherent state

is an eigenstate of the annihilation operators:

ĝk|g⟩ = g(k)|g⟩, (6.10)

And one can choose:

g(k) ≃ −Mj(k)

mpk3/2
, (6.11)

which reproduces the classical field. The expectation value of the graviton number can
be approximated as:

NG ≃
M2

m2
p

∫
dk
j2(k)

k
∼ R2

H

ℓ2p
. (6.12)

This result resembles Bekenstein’s area law and holds independently of the size R of the
matter source.
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6.3 Black Holes as Bose-Einstein Condensates

Consequently, when considering a black hole with an ADM mass ofM , we can conceptu-
alize it in this ”corpuscular framework” as a self-sustained bound state, or a Bose-Einstein
condensate [10], consisting of N gravitons with typical wavelengths around λG ≈ RH and
mutual interaction strength αG = 1/N . Since αG = ℓ2P/λ

2
G, this implies λG ≈

√
NℓP,

leading to M ≈
√
NmP. When these relationships are considered together, they give

rise to the so-called scaling laws for corpuscular black holes:

M =
√
NmP, λG ≈

√
NℓP, αG ≈

1

N
. (6.13)

It’s important to emphasize that the quantum criticality condition αGN ≈ 1 indicates
that we are dealing with a self-sustained bound state that is on the verge of a quantum
phase transition. Furthermore, due to this quantum criticality, the system is character-
ized by collective Bogolubov modes with small energy gaps, i.e., ∆ϵ ∼ 1/N , which play
a role in carrying the entropy of the black hole.
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Chapter 7

Quantum Nature of Primordial
Black Holes

In this section, we present the bulk of this thesis. We discuss the motivation of the
work done below and why we believe this may help us in understanding the formation
of PBHs when perturbations strained from inflation re-enter the horizon after areh. We

Figure 7.1: A plot depicting the re-entry of perturbation leaving from an inflationary
epoch into the radiation-domination universe (RDU). Here, comoving scales run as k−1.
The region before areh is the inflationary epoch. The scale factor a is a function of the
conformal time η.

know that the inflationary universe gives rise to extraordinary quantum effects, one of
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them is the production of quantum perturbations that ensure the causal mechanism be-
hind decoherence. Also, as the perturbation fields leave the horizon, their vacuum state
starts getting occupied due to the particle creation nature of states in a gravitational field.

Therefore, we can conjecture that when the perturbations leave the horzion at a later
stage, they don’t have enough time to occupy the states before they re-enter. As we
have known, these re-entered perturbations are the ones that collapse to form primordial
black holes. Hence, if the particle density of the states when they re-enter the horizon
is low, they could give rise to the formation of black holes that should be treated as
quantum objects due to their low occupation numbers.

To establish this approach, we first need to construct a perturbation field rising from
linear scalar perturbations as they evolve into late time structure formation and these
density perturbations are the ones that collapse into PBHs. We will deconstruct these
perturbation fields into a QFT in curved space to obtain the particle density of the vac-
uum state as the field re-enters the horizon. We define, primarily, two points of interest
on the horizon (with respect to a(η)) as the exit (”in region”) and entry (”out region”)
of the perturbation field, respectively (Figure 7.1).

7.1 Linear Scalar Perturbations

The perturbed Einstein equations give a set of expressions for the inflaton fluctuations
δϕ and the gauge-invariant metric perturbations Φ and Ψ (in the longitudinal gauge
where E = B = 0). At large scales, one can ignore the anisotropic stress and set Φ = Ψ
so that there are the only two dynamical equations for the inflaton fluctuations and one
of the scalar perturbation. Combining them together, we can formulate an equation for
a canonical variable as such,

u = zR = aδϕ+
ϕ′

H
Ψ (7.1)

where

z =
aϕ′

H
(7.2)

and R is curvature perturbation given by

R = Ψ+
H

ϕ′ δϕ (7.3)

Also, H is in its generic definition as aH. The definition of the curvature perturbation
is as (3.27).
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So, for this scalar perturbation, we can construct the Mukhanov-Sasaki equation as,

u′′ + (k2 − z′′

z
)u = 0 (7.4)

where
z′′

z
= H2(2 + 2ϵ− 3η − 4ηϵ+ 2ϵ2 − η2 + ξ2) (7.5)

given by the slow-roll parameters.

7.1.1 Quantization of the Pertubation Field

Following from the Polarski-Starobinsky paper [6], we introduce the perturbation field
computed above and decompose it in terms of a QFT in curved space. We shall follow
similar procedures to find the coefficient βk that will eventually give rise to the particle
occupation of the vacuum state in the ”out region”. Furthermore, we have to mention
that we have used the perturbations at linear order.

Quantizing the field above, the Hamiltonian takes the form,

H =

∫
d3k

2

[
k(aka

†
k + a†kak)− i

z′

z
(a†ka

†
−k − aka−k)

]
(7.6)

The time-dependent operator (this is being done in Heisenberg representation) is defined
to be the usual,

ak =
1√
2

(√
k u(k) + i

1√
k
p(k)

)
(7.7)

where u(k) and p(k) are Fourier transforms of u and p respectively. Also, p is defined to
be the conjugate momentum to u as,

p ≡ ∂L (u, u′)
∂u′

= u′ − a′

a
u (7.8)

The term in the Hamiltonian,

−iz
′

z
(a†ka

†
−k − aka−k) (7.9)

is responsible for the quantum squeezing of the perturbations. Therefore, this is the term
we are interested in.
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7.2 Bogolubov Coefficients and Particle Density

From (7.7), we can write,

u(k) =
ak + a†−k√

2k
, p(k) = −i

√
k

2

(
ak − a†−k

)
. (7.10)

Now, we want to see how the squeezing term affects the time evolution of the system,
we have, (

a′k(
a†−k

)′ ) =

(
−ik z′

z
z′

z
ik

)(
ak
a†−k

)
. (7.11)

Solutions to this set of equations is given by,

a′k = −ikak +
z′

z
a†−k , (a†−k)

′ = ika†−k +
z′

z
ak (7.12)

This is a Bogolubov transformation with the Bogolubov coefficients, −ik and z′

z
. We

have to note that z is real, therefore its complex conjugate is itself.We can relate these
coefficients to the ones presented in the α− β formalism,

−ik = αke
−ikη ,

z′

z
= βke

ikη (7.13)

From here, we can find the coefficient needed to find the particle density |βk|2.

|βk|2 = β∗
kβk =

(
z′

z

)2

(7.14)

Furthermore, we know the particle density can be calculated by running the integration
over this quantity with an inverse volume normalization factor to get rid of divergences.
Therefore, we use [4],

N =
1

(2πa)3

∫
d3k|βk|2 =

1

(2πa)3

∫
d3k

(
z′

z

)2

(7.15)

We have the expression for z as:

z =
aϕ′

H
. (7.16)

To find z′, we differentiate this expression with respect to η:

z′ =
d

dη

(
aϕ′

H

)
. (7.17)

We have a form for the z′

z
term,
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z′

z
=
a′ϕ′ + aϕ′′ − H′

H aϕ
′

aϕ′ . (7.18)

From here, we can decipher each of the terms separately to find the expression for z′

z
.

This will help us understand the dependence of the cosmological parameters on z′

z
:

z′

z
= H− H

′

H
+
ϕ′′

ϕ′ (7.19)

Due to the slow-roll conditions, ϕ′′ is typically small compared to other terms in the in-
flationary dynamics. The smallness of ϕ′′ in slow-roll inflation indicates that the inflaton
field experiences a gentle acceleration. This slow acceleration contributes to the pro-
longed period of inflation, allowing for the expansion of the universe and the generation
of the required density fluctuations.

Overall, in slow-roll inflation, ϕ′′ is expected to be small compared to other terms, re-
flecting the slow and gradual evolution of the inflaton field during the inflationary epoch.
Therefore, we can neglect this term from the expression of z′

z
.

z′

z
= H− H

′

H
(7.20)

Simplifying further, we get: (
H− H

′

H

)2

= H2 − 2H′ +
H′2

H2
(7.21)

However, we should note that the effects of the slow-roll condition may differ at the end
of inflation for which we are considering a = 1 and η = 0.

7.2.1 Exiting the Horizon

Let’s compartmentalize the model for better understanding: On the cyan horizon line in
Figure 7.2, we have (

z′

z

)2

=

(
H− H

′

H

)2

= H2 − 2H′ +
H′2

H2
(7.22)
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Figure 7.2: Perturbation fields exiting the horizon at an earlier and later stage of inflation,
respectively.

We make further assumed relationships such as,

ainf ∼
1

1− η
, H =

1

1− η
, H′ =

1

(1− η)2
(7.23)

This parametrization allows us to keep the reheating point (end of inflation) at a = 1
and therefore, helps avoid the singularity at η = 0.

Hence, we find the particle density on the horizon line,

dNout =
1

(2πainf )3
|βk|2 d3k = 0 (7.24)

which is good as it matches our assumption. The vacuum states only occupy when the
modes leave the horizon, therefore, we find the states to be empty on the horizon line.

7.3 Mukhanov-Sasaki Equation: Solution for Infla-

tionary Models

Now, we cannot define the modes outside the horizon with the same mathematical equa-
tion as it leads to uncertainties due to the different mechanisms. As introduced in
Chapter 5, the field modes were defined in the paper by Starobinsky-Polarski to have
the form:

fk =
uk + v∗k√

2k
(7.25)
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Now, as per our model, uk and v∗k are related to the Bogolubov coefficients, respectively
as

uk = αke
−ikη, v∗k = βke

ikη (7.26)

Considering the origin of these fields, at sub-Hubble scales kη ≫ 1, therefore we can
assume the αk term is negligible and express the field modes as,

fk =
βke

ikη

√
2k

For modes with wavelengths outside the Hubble radius, the general solution of the
Mukhanov-Sasaki equation has the following form in terms of the field modes.

fk = C1z + C2z

∫
dη

a2(η)
(7.27)

Now,

|fk|2 = f ∗
kfk =

βke
ikη

√
2k

β∗
ke

−ikη

√
2k

=
|βk|2

2k
(7.28)

Therefore, |βk|2 = 2k|fk|2.

For inflationary models,

C1 =
Hk√
2k3

, C2 =
−ik 3

2

√
2Hk

(7.29)

where Hk is the slowly varying Hubble radius.

Therefore,

|βk|2 = 2k


(
Hk√
2k
z

)2

−

(
ik

3
2 z√
2Hk

∫
dη

a2(η)

)2
 (7.30)

In the parametrization (7.23) we used before, we find

|βk|2 =
1

k2
+
k4(1− η)6

9
(7.31)

7.3.1 Quasi-isotropic Mode and Decaying Mode

The first term in (7.31) is the quasi-isotropic mode, also called the growing mode. It
comes as a consequence of the first term in (7.27). The second term is called the decay-
ing mode. During horizon exit, both of these modes are of equal order, however, when
the perturbation field spends time outside the horizon, it leads to decoherence and the
decaying mode quickly becomes negligible. Therefore, at larger scales, for perturbation
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modes that leave the horizon earlier, the growing modes are of precedence. This is be-
cause in that stage, kCMB ≪ kPBH , therefore we can see that the inverse square term
would contribute more. Hence, we can consider a classicalization limit, and find the
particle density accordingly.

We define the following parametrization for the radiation domination era,

arad ∼ η + 1, H =
1

η + 1
(7.32)

Hence, using this we find,

dNc =
1

(2πa)3

(
1

k2

)
d3k =

k3

C1

dk (7.33)

where C1 is a constant.

If we consider decoherence time, i.e. classicalization of the perturbation field, the parti-
cle density would decrease as more classicalization takes place. This is due to quantum
effects of the perturbation fields that gives rise to particle production in the vacuum
start to cease. For example, in the following plot we can see that dN1 will be greater
than dN2 in the classical limit.

Figure 7.3: The particle density in the classicalization limit seems to decrease with
decreasing k as dN2 < dN1.

However, in popular literature, the quasi-isotropic mode is only considered as these
perturbation fields are constructed from a decohering point of view. But as we move to
a more earlier patch where k is greater and decoherence time is short, we believe the
extra second term in the expression in (7.31) should be considered, so that
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|βk|2 ∼
k4(1− η)6

9
(7.34)

Therefore, for fields that leave the horizon very late in the inflationary era, we con-
sider the growing mode to take precedence due to its k4 dependence. Furthermore, we
can ignore the effect of η here as it is incomparable to the high k effective in this scenario.

We find,

dNq =
1

8π3a3

{
k4(1− η)6

9

}
d3k (7.35)

Recalling the parametrization in (7.23), we can implement the relationships as,

dNq =
1

8π3

(1− η)9k4

9
k2 dk =

C2

k3
dk (7.36)

where C2 is a constant.

For both of the measures, we used the relationship of k with the conformal time at
horizon crossing to obtain an estimate of the particle density evolution at collapse of the
perturbation field during horizon entry.

H ∼ k ∼ 1

1− η
(7.37)

Furthermore, we need to consider the fact that as decoherence time is short, the modes
do not classicalize upon horizon entry and therefore, we consider the evolution of the
scale factor for this patch to be similar to the one of inflationary models.

Now, for this patch of the model, we see that as we go further towards higher k, we
have smaller dN until at the critical point (point where inflation ends), we have null pro-
duction as, theoretically, the modes do not spend any time outside the horizon. This is
testament to our claim that in very early universe conditions, we have the production of
very small primordial black holes that should be treated as quantum objects. This is in
contrast of what is usually done, i.e. treating these black holes as semi-classical. There-
fore, we can start explaining these black holes in a fully quantum-mechanical framework.

7.4 Null Particle Production at Reheating

In this section, we verify our model in a two-fold way in order to make it more concrete.
We first calculate the particle production in the vacuum at reheating. Reheating is when
inflation ends (η = 0).

H ∼ k ∼ 1

1− η
∼ 1 (7.38)
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We find,

Nq = C3

(
1

k2
− 1

)
(7.39)

This is in relation to the fact that k is maximized at η = 0 and decreases as we move
into the radiation-domination era as can be seen from Figure 4.1.

We see in (7.39) that at η = 0, we do not have any particle production. This is in
coherence with (7.24) as well as intuitively, given that the perturbation fields do not
spend time outside of the horizon.

Furthermore, we can plot the relationship of the terms in (7.31) and track the switch
between the preceding terms. We represent the relationship of the particle number N at
differing k.

Figure 7.4: In this plot we see that the two terms do have a point of shift in regards
to how they contribute to the particle number. The scale on this plot has been taken
arbitrarily due to the lack of phenomenological data. Also k, in essence, cannot be
discrete. This plot shows that with decreasing k, we have the quantum regime (k4) that
contribute to N and eventually as k reaches the classicalization limit, the quasi-isotropic
mode takes over and the fields lose quantum coherence, hence, particle production in the
vacuum ceases. At k = 1, we have zero particle production.

7.5 The Corpuscular Perspective

We can also take into account the corpuscular picture to strengthen our claim regarding
these quantum primordial black holes. From (6.12), we can relate the particle density

65



number with the occupation number of the gravitons.

N ∼ M2

M2
P

(7.40)

We can consider,

M2 = (k2Nq)
2 =

{
C3

(
1− 1

k2

)}2

(7.41)

Here, k is very high at the time of primordial black hole formation, therefore, we clearly
see from the relation posed in Chapter 6.1 that these black holes that form in this setting
cannot be considered as classical objects. They do not produce an occupation number
which is N ≫ 1 and therefore should be treated from a quantum setup.
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Chapter 8

Conclusion

The work done in this thesis is attested to show that our treatment of primordial black
holes should change, theoretically, at least when they formed near the end of inflation.
We see that in the very early universe, these black holes that form from scalar pertur-
bations left from inflation are quantum in nature. Considering the energy scales, along
with the size of the universe in that era, we can assume that the mass of these primordial
black holes will be very small to consider them as exhibiting classical physics.

Furthermore, the particle density of the occupied vacuum states of these perturbation
fields amount to very low occupation. Hence, we can conclude that the density pertur-
bations that re-enter the horizon earliest will form quantum primordial black holes.

This model has been carried using several initial conditions. We start off with using
linear density perturbations in the longitudinal gauge. This work could be analysed
more critically by adjusting non-linear terms in our construction of the perturbation
fields. We should also note the slow-roll condition we considered with ϕ′′ being negligible
in comparison to the other terms in the construction of z′

z
; the possible effects of the end

of inflation to this term are going to be the topic of further investigations.

Moreover, including phenomenological data may help us quantify N at the point of
shift. This could serve interesting to see the maximum mass range of formed primor-
dial black holes and correspond the theoretical calculation with the observed assumption.

Interestingly, the bound on k due to the end of inflation shall provide a lower bound
to the mass of the primordial black holes formed. We could imply these restrictions to
analyze alongside phenomenological data to source an outcome of the validity of these
results. This could also be implied for maximum N .

Another exciting result from the plot in Figure 7.4 is that we can see that the quantum
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regime is short-lived in comparison to the classical regime. Therefore, it would make
sense why we have decoherence of the quantum fluctuations as they leave the horizon
during inflation. However, primordial black holes can still potentially be formed during
the quantum regime as quantum fluctuations re-enter the horizon at this stage.

Furthermore, this generalized model could potentially be extended to other inflation-
ary scenarios to see if indeed this framework is well-suited to describe primordial black
holes. This setup utilizes scale-invariant metric perturbations, therefore, it could be used
to describe other early universe models that consist of a similar structure.
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