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Abstract

This thesis presents a first analysis of the correlation function for (anti)proton and
(anti)deuteron based on a sample of pp collisions data collected in 2022 at

√
s = 13.6 TeV

by the ALICE experiment at CERN. The study of momentum correlations among par-
ticles is employed in constraining light antinuclei formation mechanisms and validating
models of coalescence of antinucleons into light antinuclei. This is motivated by the fact
that a deeper understanding of the origin of cosmic light antinuclei opens the possibility
of searching for them as indirect dark matter signals, having the capability to predict
the expected signal and background rates.

In this work, the femtoscopy technique is applied to measure the correlation functions
for proton−proton (p−p) and proton−deuteron (p−d) pairs. The obtained p−p correla-
tion is fitted with the Argonne ν18 plus the Coulomb potentials to extract a preliminary
measurement of the proton source radius in minimum bias pp collisions, resulting equal
to r0 = 1.069 ± 0.014 fm. The obtained p−d correlation function is discussed in com-
parison with the measurement in pp collisions at

√
s = 13 TeV. The analysis is based

on a new framework developed to meet the goals of this thesis. The optimization of the
particle identification selection criteria and the pair-building procedure is achieved in
this work. The promising result motivates the extensions of the analysis to the complete
pp dataset available from the ongoing LHC Run 3.
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Introduction

For almost a century, astronomers have made compelling observations demonstrating
that the visible and baryonic matter that we can describe with the Standard Model of
particle physics is only the 5% of the Universe. The remaining significant portion of the
Universe is made of non-visible and non-baryonic matter, called dark matter, and a still
unknown energy component called dark energy. Among various theory hypotheses, a new
class of particles called Weakly Interacting Massive Particles has been proposed to match
the dark matter properties, which is expected to annihilate producing Standard Model
particles, as lepton-antilepton or hadron-antihadron pairs. These final states are the
subject of indirect searches with space-based particle detectors, like AMS-02, for which
a major challenge is the estimate of the astrophysical background due to the cosmic ray
flux. Cosmic light antinuclei, like antideuteron and antihelium-3, have been proposed
as dark matter smoking guns, because they can be produced from WIMPs annihilation,
and their signal is expected to be almost background-free at low energy. On the other
hand, hadronic collisions of primary cosmic rays with the interstellar medium, mainly
composed of protons and helium, could also produce light antinuclei that would consti-
tute the main background sources for antinuclei from dark matter.
To predict the expected signal and background rates for cosmic antinuclei, models of
coalescence are typically employed to describe the fusion of antinucleons into light antin-
uclei due to the binding strong interaction. Despite having been employed for many years
already, only recently it has been pointed out that colaescence models can be constrained
by studying momentum correlations among particle pairs with dedicated measurements
in controlled conditions at particle accelerators. At the Large Hadron Collider (LHC)
at CERN, protons collide at a centre-of-mass energy of 0.9 to 13.6 TeV, producing rare
light antinuclei, among other particles. The availability of large samples of proton-proton
collision data offers an important opportunity to investigate their production mechanism
also by measuring momentum correlations among particle pairs involving protons and
light nuclei.

This thesis presents an experimental study of proton−proton and proton−deuteron
momentum correlations, using data from proton-proton (pp) collisions collected by A
Large Ion Collider Experiment (ALICE) in 2022. Among the experiments at the LHC,
the ALICE detector is uniquely equipped to measure low momentum particles and light
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antinuclei due to its tracking and particle identification capabilities.
A technique called femtoscopy is used to measure the correlation function and access
spatial information about the nucleon emitting region, called the source. In particular,
the goal is to measure the source radius. This parameter enters directly in coalescence
models because the coalescence probability explicitly depends on it.

The analysis requires the identification of a pure sample of protons and deuterons
that are subsequently coupled in pairs to compute the experimental correlation function
from the pair distribution in relative momentum. To this end, I developed a new analy-
sis software inside the official analysis framework for ALICE that optimizes the particle
identification for protons and deuterons.

The thesis is organized into five chapters. In the first chapter, the physical motivations
for this study are discussed, and antinuclei are introduced as promising dark matter
signals. Coalescence models are explained in this context, also motivating the connection
with femtoscopy: the study of particle correlations gives access to information about the
interaction among the particles of interest and can be used to validate models of the
nucleon-nucleon strong potential. These latter as well as, the strong interaction and
quantum chromodynamics (QCD) are introduced in the second chapter.
After describing the femtoscopy technique and the ALICE experiment briefly in chapters
three and four, the last chapter is dedicated to the analysis of the proton−proton and
proton−deuteron correlations measured in pp collisions at

√
s = 13.6 TeV with ALICE,

and to the discussion of the results of this thesis, which set the bases for the analysis
with the full LHC Run 3 dataset.
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Chapter 1

Cosmic antinuclei

The study of cosmic radiation has always been challenging since its discovery, contin-
uously opening new fronts in high-energy physics. The first positron, observed in cosmic
rays by Anderson in 1932, was the first antimatter particle to ever been discovered and
the first experimental proof of Dirac’s theory. Since then, cosmic rays have been in-
vestigated as probes of new physical events. In 1955, the antiproton was observed at
Bevatron at the Lawrence Berkeley National Laboratory, and the antineutron was later
discovered. At that point is seemed natural to expect that antiprotons antineutrons
could bound into antinuclei, as protons and neutrons do in matter. The strong nuclear
interaction between nucleons and antinucleons is assumed to be the same by the CPT
invariance, which has been experimentally confirmed with high precision in the sector of
light nuclei [1]. The first observation of an antinucleus was in 1965, with the discovery of
the first antideuteron, a bound state of an antiproton and an antineutron. Light antinu-
clei are searched for in cosmic rays as rare events but are still not observed. Their origin
and their formation mechanisms are not yet fully understood but, according to cosmic
ray models of formation, light antinuclei can be produced in hadronic collisions between
primary cosmic rays, mainly composed of protons, with the interstellar medium, mainly
composed of hydrogen (thus protons) and helium. However, the possibility of having
primary light antinuclei is also explored, stemming from the hypothesis that they could
be signals of dark matter. In order to detect light antinuclei such as antideuteron and
antihelium and identify them as dark matter signals, it is necessary to know the expected
flux for the background produced by cosmic rays.

1.1 Dark matter

Dark matter is a yet unknown component of the universe. It constitutes almost the
80% of the whole matter, and is distinguished from the ordinary matter described by
the standard model of particle physics because it does not emit or couple with electro-
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magnetic radiation.
The existence of dark matter was postulated by Fritz Zwicky in 1933, to explain the
velocity dispersion of galaxies in the Coma cluster, also considering Doppler shifts in
galactic spectra [2, 3].
Nowadays, the existence of this invisible matter is supported by many strong proofs,
including astronomical observations and cosmological studies [4, 5].
Among many astronomical proofs of dark matter existence is the observation of anoma-
lies in the rotational velocity curve of spiral galaxies that, instead of decreasing as 1/r,
where r is the distance from the galactic center, is flat. This behavior can be explained
assuming that the galaxy is immersed in a dark matter halo [6].
Among all the astronomical observations, the so-called Bullet Cluster represents the
strongest one. The Bullet Cluster, in figure 1.1, results from a collision between a sub-
cluster and the larger galaxy cluster 1E 0657-56. A galaxy cluster is composed of galaxies
(for 2%) and mainly of hot gas (for 5-15%). During the collision, the galaxies pass by
each other without interacting, while the gas is compressed and shock-heated, emitting
a huge amount of X-ray radiation. The location of this radiation (pink regions in figure
1.1) indicates the majority of the radiating mass distribution in the cluster, while the
mapping of gravitational lensing [7] gives information about the location of the majority
of the cluster’s total mass (blue regions in figure 1.1). In the Bullet Cluster, we can see
that most of mass is weakly interacting and non-radiating, consistent with the presence
of dark matter [8].
The presence of dark matter is not just a hypothetical solution to the problem of

missing matter, but it is a necessary element for the Big Bang theory and to prove the
accuracy of the most solid cosmological model ΛCDM , where Λ is the cosmological con-
stant representing the dark energy, and CDM stays for Cold (i.e. non-relativistic) Dark
Matter.

If dark matter is composed of particle (or has a particle nature) the most probable
hypothesis is that it is composed of particles that do not belong to the standard model
of particle physics, electrical and color neutral, stable, and massive. Since none of the
known particles can satisfy all the requirements simultaneously, a new class of particles,
the Weakly Interacting Massive Particles (WIMPs), has been theorized to be a possible
dark matter candidates. Because of the peculiar proprieties of the WIMPs, one of the
most challenging problems in physics is their detection, to prove the microscopic origin
of dark matter and validate the WIMP hypothesis.

1.1.1 Indirect detection of dark matter

Dark matter detection is one of the main challenges in experimental physics and is
carried on following three main approaches, as represented in figure 1.2: production,
direct and indirect detection.
Dark matter production can take place in high-energy collisions between baryonic mat-
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Figure 1.1: Composite image of the Bullet Cluster. Hot gases detected by the Chandra X-
ray images are colored in pink, while Dark Matter distribution, inferred by gravitational
lensing is colored in blue. (Credits: X-ray: NASA/CXC/CfA/M. Markevitch, Optical
and lensing map: NASA/STScI, Magellan/U.Arizona/D. Clowe, Lensing map: ESO
WFI) [9].

Figure 1.2: Dark matter WIMPs detection channels, using possible interactions between
dark matter particles and baryonic matter particles [10].
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Figure 1.3: Possible annihilation channels of dark matter WIMPs into standard model
particles and gamma ray photons [11].

ter particles, like hadronic collisions at the LHC, while the direct detection channel aims
at observing the interaction of a WIMP with baryonic matter using huge-volume under-
ground experiments as target material.
The indirect detection channel looks for anomalies with respect to the expected back-
ground of cosmic rays. Indeed, dark matter WIMPs are predicted to annihilate or decay
into ordinary detectable particles, producing many different final states, like pairs of
photons or particle-antiparticle pairs, as shown in figure 1.3. Light antinuclei as an-
tideuterons and antihelium nuclei have been proposed as a promising indirect signal in
the search for dark matter since they can be produced by antinucleons formed in WIMPs’
annihilation or decay [12]. The dark matter indirect detection is focused on looking for
these annihilation products coming from the center of galaxies or clusters of galaxies,
where the density of dark matter particles should be higher.
One of the dedicated space-born experiments that look at cosmic radiation is the Al-
pha Magnetic Spectrometer-02 (AMS-02) experiment [13], located on the International
Space Station (ISS). AMS-02 has collected data since 2011 and has measured the ra-
tio of the electron-positron fluxes, which exhibits an increasing trend with the energy
above 10 GeV, giving an excess over the predicted flux in cosmic rays propagation mod-
els, as in figure 1.4: this result can be interpreted in terms of electrons and positrons
produced in WIMPs’ annihilation [13]. However, the dark matter hypothesis is not the
only possible to explain this observation. The excess in positron flux at energies greater
than 10 GeV can also be explained by the presence of pulsars or other still unknown
astrophysical sources. Pulsars, in particular, can produce positron-electron pairs from
high-energy photons emitted from charged particles that are accelerated by the strong
magnetic field of the pulsar. Astrophysical observations have recently shown that the
Geminga and B0656+14 pulsars produce noteworthy emissions of extremely high-energy
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Figure 1.4: Comparison of the AMS-02 data for positron flux (red data points) with
predictions of a dark matter model with mass equal to 1.2 TeV (brown curve) and
predictions of cosmic ray collisions [13].

electrons [14]. AMS-02 reported also the detection of possible signals of antihelium-3
and antihelium-4, that are however still to be confirmed [15].

1.2 Cosmic antinuclei

Light antinuclei (d, 3He) fromWIMPs are particularly promising signals because they
are predicted to be almost background-free at kinetic energy per nucleon between 0.1
and 1 GeV. The astrophysical background comes from light antinuclei produced in the
interaction between primary cosmic rays, mainly protons, and the interstellar medium,
composed mainly of hydrogen and helium. This background peaks at higher kinetic en-
ergies (at ∼ 10 GeV/n) than the signal from WIMPs’ annihilation or decay, expected at
kinetic energy E < O(1GeV) (see section 3.4 in [16], or [17]). The production of light
antinuclei in hadronic collisions induced by cosmic rays has a low probability since it can
happen only if the energy reached in the collision is greater than the energy threshold
for the nucleus-antinucleus pair production: for deuteron, for instance, the production
in hadronic collision the energy threshold is 17 GeV [18, 19]. The predicted flux for
antideuteron is shown in figure 1.5, where the very low background for deuteron sig-
nals from dark matter WIMPs annihilation at low energies is highlighted, and also the
high separation of almost seven orders of magnitude between the fluxes of antiprotons
(Φp̄ ∼ 10−2 [m2s·sr·GV]−1) and of antideuteron (Φd̄ ∼ 10−9 [m2s·sr·GV]−1) is shown.
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Figure 1.5: Expected signal in AMS-02 for antideuteron coming from dark matter anni-
hilation compared with astrophysical background from antideuteron produced in interac-
tions with interstellar medium. The error bands illustrate uncertainties in the coalescence
momentum, but also include propagation uncertainties [15].

In figure 1.6, the predicted flux for antihelium-3 compared with the astrophysical back-
ground is represented according to many different dark matter models. At low ener-
gies, the signal for antihelium-3 coming from dark matter is almost background-free:
the predicted flux from the secondaries antihelium nuclei forming the background is
Φbackground

¯3He
∼ 10−12 [m2s·sr·GV/n]−1, while for antihelium produced by dark matter is

greater by more than three orders of magnitude (ΦDM
¯3He

> 10−9 [m2s·sr·GV/n]−1). The
antihelium-3 is much rarer in cosmic radiation because of its higher production threshold
energy.

A key ingredient to predict the expected signal and background rates for dark matter
antinuclei searches is therefore a detailed understanding of the dynamical mechanism of
the formation of light antinuclei in hadronic collisions. High-energy hadronic collisions
produced at particle colliders can be used to study and validate formation models.

1.3 Light nuclei and antinuclei production models

In high-energy proton-proton (pp), proton-nucleus (pA), and nucleus-nucleus (AA)
collisions, the production of light nuclei and antinuclei, like deuteron (made of a proton
and a neutron), triton (made of a proton and two neutrons), and helium-3 (made of
two protons and a neutron) is observed. Properties of the mentioned light antinuclei are
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Figure 1.6: Expected flux for antihelium-3 coming from dark matter annihilation (each
curve uses a different hypothesis for dark matter source and decay) compared with as-
trophysical background from antihelium-3 nuclei produced in interactions of primary
cosmic rays with the interstellar medium. The error bands illustrate uncertainties in the
coalescence momentum, but also include propagation uncertainties [20].
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Nucleus Composition Mass (MeV/c2) BE (MeV) rms radius (fm) rA (fm)
Deuteron pn 1875.6 2.224575 (9) 2.1413 ± 0.0025 3.2
Triton pnn 2808.9 8.4817986 (20) 1.755 ± 0.086 2.15
Helium-3 ppn 2809.4 7.7180428 (23) 1.959 ± 0.030 2.48

Table 1.1: Properties of light nuclei: BE is the binding energy in MeV and the size of
the nucleus is given in terms of the (charge) rms radius. The parameter rA is the size
parameter of the wave-function of the harmonic oscillator potential [22].

summarized in table 1.1.
At the LHC, for instance, nuclei production models can be validated using data from
proton-proton and heavy-ions high-energy collisions at the ALICE experiment [21], which
is particularly well equipped to measure nuclei and identify them down to low momen-
tum (O(GeV)).
Nowadays, the production mechanism of (anti)nuclei in high energies interactions is
still not fully understood: this means to understand deeply how the strong interaction
binds (anti)nucleons into (anti)nuclei and also how the internal nuclear structure can be
characterized.
Two phenomenological models can be used to describe their production: the Statistical
Hadronization Model (SHM) and the coalescence model. The SHM [23] adopts a macro-
scopic approach, and according to it, the yield of light nuclei depends on temperature,
volume, and baryochemical potential 1, assuming a non-interacting quantum hadron and
resonance gas in chemical equilibrium. A slight variation in temperature leads to a sig-
nificant variation in production yields of light (anti)nuclei, and the greater the mass of
the final state, the lower the number of produced states. The system is modeled as a
grand-canonical ensemble to reproduce the light flavor hadron yields in central heavy ions
collisions (like Pb-Pb) [24]. Instead, for small collision systems like p-p and p-Pb, the
canonical ensemble is used, by imposing the conservation of the electric charge, baryon
number, strangeness, and heavy-flavor quantum numbers [23]. In both cases, the main
idea is that the (anti)nucleus is formed in a one-stage process from the interaction and
then the binding of quarks and anti-quarks in a cluster. In the hadronization process,
thermal droplets of quark matter are produced, such as compact and colorless objects
with the quantum numbers of the final state.
Predictions from SHM can correctly reproduce ALICE data, as in reference [25], however
the SHM does not provide a “microscopical” detailed mechanism of production.

1The baryochemical potential µB is the difference in number of baryons and antibaryons
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1.3.1 Coalescence model

The coalescence model [26] has a microscopic point of view to describe the formation
of composite objects, modeling the formation of final states in two steps: first, the for-
mation of (anti)nucleons (n, n̄, p, and p̄), and then the production of (anti)nuclei. The
final state is formed by the coalescence, i.e. the fusion, of two or more (anti)nucleons
that are close in phase space at the stage of the system evolution when all the collisions
stop, called the kinetic freeze-out. This means that to fuse, two nucleons must have low
relative momentum and must be close enough in space.
If these conditions are met, nucleons combine into nuclei that travel in a vacuum to
eventually reach the detector.
To estimate the particle yield according to coalescence, the coalescence probability, quan-
tified by the parameter BA, is defined as the probability of finding two or more nucleons
at small relative momenta.
According to the coalescence model, the momentum distribution for a nucleus with mass
number A, depends on the nucleon distributions and on BA:

EA
d3NA

dp3A
= BA

(
Ep
d3Np

dp3p

)Z (
En

d3Nn

dp3n

)N

(1.1)

where EA indicates the nucleus energy and pA is the momentum of the nuclei with the
mass number A = N + Z, while Ep (En) and pp (pn) are the energy and momentum for
the proton (neutron).
Assuming an equal distribution in energy for protons and neutrons (pn = pp = pA

A
),

equation 1.1 becomes:

EA · d
3NA

d3PA

= BA ·
(
Ep,n

d3Np,n

d3pp,n

)A

(1.2)

The assumption pn = pp = pA
A

is well motivated in high energy collisions, where the
number of produced protons and neutrons at midrapidity, as well as their momentum
distributions are expected to be equal. Equation 1.2 is used to determine experimentally
the coalescence parameter because in this case, it is not necessary to consider neutrons,
usually difficultly detectable.
Figure 1.7 shows the coalescence parameter B2 for deuteron and antideuteron as a func-
tion of the transverse momentum per nucleon pT/A

2, from ALICE data in proton-proton
collisions at the collision energies of 0.9 TeV, 2.76 TeV and 7 TeV. The dependence on
the collision energy is not very strong since the coalescence parameter (on the y-axis) is
compatible across the three different panels.

In figure 1.8, predictions from coalescence and statistical models are compared with
the ALICE collaboration data from different collision energies and systems [28]. More

2The traverse momentum pT =
√
p2x + p2y, where px and py are the components of the momentum p

respectively along the x and y axis.
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Figure 1.7: Coalescence parameter for deuteron (blue) and antideuteron (red) as a func-
tion of pT/A for different collision energies in pp collisions at the LHC measured by the
ALICE experiment [27]. The coalescence probability seems almost independent of the
transverse momentum and of energy.

specifically, the coalescence parameter is strongly dependent on the average charged-
particle multiplicity density at central rapidity (|y| <0.5) ⟨dN/dη⟩, for a given value
of pT/A. The multiplicity density ⟨dN/dη⟩ is proportional to the volume, and thus to
the cube of the source radius. The BA parameter exhibits a strong dependence on the
volume of the particle emitting region, called the source: the greater the volume of the
particle emitting region, the greater the distance between produced nucleons, and the
lower the coalescence probability. This effect is less visible in small collision systems,
like pp or pPb collisions, since the size of the produced nucleus is larger than that of the
emitting region (chapter 5.1 in [28]).

Some simplified coalescence models [29] do not care about the particle emitting re-
gion size. However, they are not predictive for heavy-ion collisions, and they are not
able to explain the observed elliptic flow of deuteron. More comprehensive coalescence
models take into account the source size R and an explicit dependence of the coalescence
probability on R can be derived, following computations in [22] and [26].
Considering coalescence as a quantum-mechanical process, the Wigner formalism must
be adopted to define the phase space. The coalescence probability corresponds to the
overlapping probability between the nucleon pair (initial state) and the nucleus (final
bound state) wave functions. For deuteron the simplest wave function used in calcula-
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Figure 1.8: Coalescence probability for deuteron (B2) and for helium-3 (B3) as a func-
tion of ⟨dN/dη⟩. The multiplicity dependence of B2,3 in different collision systems and
different center-of-mass energies (

√
s) of the collision is shown for fixed pA/A.
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tions is Gaussian and is expressed as

ϕd(r⃗) =
(
πr2d
)− 3

4 exp

(
− r2

2r2d

)
(1.3)

where rd is the the deuteron radius and r⃗ is the relative distance between the two nucle-
ons inside the deuteron.
In order to consider the quantum-mechanical nature of the process, an additional cor-
rection factor must be included [26]. For deuteron, it can be written as

⟨Cd⟩ ≈

[
1 +

(
rd

2R(mT )

)2
]− 3

2

(1.4)

but for a general nucleus of mass number A, it becomes:

⟨CA⟩ =
3∏

i=1

[
1 +

r2i
4R2

i

]− 1
2
(A−1)

(1.5)

where ⟨Ci⟩ is the correction factor for deuteron (if i = d) or for the nucleus with mass
number A (if i = A); rA is the radius of the nucleus and RA is the emitting source
size. In equation 1.4, mT is the transverse mass defined as mT =

√
k2T +m2 (kT is the

transverse momentum of the pair and m the average pair mass). Assuming that the
three dimensions of the emitting source are equal (R1 ≈ R2 ≈ R3 ≈ R), the coalescence
parameter for a nucleus A is expressed as a function of the total angular momentum JA,
rA, R and mT :

BA =
(2JA + 1)

2A
1√
A

1

mA−1
T

 2π

R2 +
(

r2A
2

)2


3/2(A−1)

. (1.6)

The BA parameter is dependent on the internal structure of the considered nucleus and
on the size of the produced nucleus rA, that, as in table 1.1, is generally defined as
the r.m.s. of the (charge) distribution, measured of about 2 fm for light (anti)nuclei in
electron-nucleus scattering experiments.
For deuteron the expression 1.6 is simplified in:

B2 =
3π

3
2 ⟨Cd⟩

2mTR3(mT )
. (1.7)

The expression 1.6 for BA is general, and exhibits an explicit inverse proportionality with
respect to R, because the coalescence probability decreases for distant nucleons. This
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Figure 1.9: Coalescence parameter in function of the source size R for different nuclei
(A= 2, 3 and 4) with different nuclear size rA. The coalescence probability is inversely
proportional to the source size, and the greater is A, the lower the coalescence probability
BA [30].

dependence on R is shown in figure 1.9 for different nuclei with A = 2, 3, and 4. For
nuclei with the same mass number A, like 3H and 3He, the coalescence parameter is
different because the nuclei size is different and the greater is rA, the lower is BA. The
dependence on rA is more evident in small collision systems like pp, because the source’s
(R ∼ 1 fm) becomes comparable with the nucleus size or smaller (rA ∼ 2 fm)

1.3.2 Nucleon coalescence from correlation functions

The coalescence model can be tested and supported by studies of the momentum-
space correlations of particles emitted in hadronic collisions with a technique called
femtoscopy. This is further discussed in chapter 3. Using the effective quantum mechan-
ical approach to describe the dynamics of non-relativistic particle-pairs that form the
final bound state in the pair rest frame, it is possible to derive the correlation formalism,
which offers the two-particle source size as a measurable quantity to test the model. The
approach is fully explained in [31] and [32] and it is only summarized here.

The equation 1.6 gives the coalescence probability for a cluster with mass number
A and a dimension rA > R, at pT ≈ 0. The homogeneous source is parameterized by
the correlation-source radius R, which is almost of 1 fm in pp collisions and of 5 fm in
Pb-Pb collisions. Thus, the coalescence probability in pp collisions is greater than in
Pb-Pb collisions (e.g. Bpp

3 /B
PbPb
3 ∼ 4 · 103). Even if the relation 1.6 is derived under

many approximations and no precise model for the source, it gives results consistent
with ALICE measurements [27](see figure 1.8), with an accuracy at O(1) over orders of
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magnitude in BA.
The BA can be defined from equation 1.2 as the ratio between Lorentz-invariant differ-
ential yields for the nucleus with mass number A and the for constituent nucleons (p
and n):

BA =
EA

dNA

d3PA(
Ep,n

dNp,n

d3Pp,n

)A , (1.8)

where numerator and denominator are calculable from quantum mechanics without any
assumption, and obtaining a model-independent relation to calculate the coalescence
probability.

The deuteron Lorentz-invariant yield in non-relativistic calculations is:

γd
dN

d3Pd

≈ Gd

(2π)6

∫
d3qDd(q⃗, r⃗)

∫
d3R

∫
d3reiq⃗r⃗fW

1 (
P⃗d

2
, R⃗ +

r⃗

2
)fW

1 (
P⃗d

2
, R⃗− r⃗

2
) (1.9)

where γd is the deuteron Lorentz factor, Pd is the deuteron momentum in the laboratory
frame, r is the distance, and q the relative momentum between the two nucleons forming
the deuteron, Gd is a dimensionless normalization factor, Dd is the Wigner density of
the deuteron, and fW

1 are the density function related in the Wigner formalism to the
single-particle density matrix ρ1, which describes the high excitation state produced in
hadronic collisions.
Considering two free nucleons, neglecting the final state interaction, the differential yield
of the pair with respect to single-particle momentum (p1 and p2) for spin-symmetric (s)
and spin anti-symmetric (a) configuration is:

dN s,a

d3p1d3p2
= G2

s,a (A2(p1, p2)∓ F2(P, q)) (1.10)

where Gs,a is a dimensionless normalization factor, and,

F2(P, q) =
1

(2π)6

∫
d3R

∫
d3r eiq⃗·r⃗ fW

1

(
P⃗ , R⃗ +

r⃗

2

)
fW
1

(
P⃗ , R⃗− r⃗

2

)
,

A2(p1, p2) =
1

(2π)6

∫
d3x fW

1 (p⃗1, x⃗)

∫
d3x fW

1 (p⃗2, x⃗).

(1.11)

being x⃗ the position vector of the nucleon.
The two-particle correlation function can be defined like:

C2(P, q) =
E01E02 · dN

d3p1d3p2(
E01

dN
d3p1

)
·
(
E02

dN
d3p2

) . (1.12)

where E01,2 are the energies for particles 1 and 2, and p1,2 their momenta. Equation
1.12 presents the correlation function as the ratio between the emission spectrum for two
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nucleons over the single-nucleon spectra. In the non-relativistic limit (|q⃗| ≪ m) in the
pair rest frame (PRF), the correlation function is equal to:

CPRF
2 (P, q) = 1− G2

s −G2
a

G2
s +G2

a

· CPRF
2 (1.13)

with the function CPRF
2 that comes from F2 and A2. The coalescence parameter in

equation 1.8, can be written as:

B2(p) ≈
3

2m

∫
d3q Dd(q⃗) CPRF

2 (p⃗, q⃗) (1.14)

assuming Gd = G2
s = 3 and G2

a = 1 for an unpolarised isospin-symmetric excited state.
Equation 1.14 is the integral relation between the coalescence parameter and the two-
particle correlation function, weighted by the deuteron density probability Dd. This
relation reproduces equation 1.7 assuming a Gaussian deuteron wave function, as in
equation 1.3 with rd = 3.2 fm (see table 1.1), and Gaussian particle density Dd. Using

CPRF
2 = λe−R2

⊥q2⊥−R2
∥q

2
∥ , where λ is the chaoticity parameter which takes into account

experimental effects, and the R (as well as the momentum q) is decomposed into the
perpendicular (R⊥) and parallel (R∥) components with respect the beam axis,

B2 =
(3π)3/2λ

2mT (R2
⊥ +

r2d
2
)
√

(R2
∥ +

r2d
2
)
. (1.15)

The derived expression of the coalescence parameter can be generalized to a nucleus with
mass number A, obtaining the expression for BA:

BA

m2(A−1)
= λA/22JA + 1

2A
√
A

 (2π)3/2

m3(R2
⊥ +

r2d
2
)
√
(R2

∥ +
r2d
2
)

A−1

. (1.16)

These theoretical calculations agree with the experimental data measured with the cor-
relation technique, and the comparison is in figure 1.10. The grey band is the theoretical
prediction calculated using equations 1.15 and 1.16, while the red (blue) bands are ex-
perimental results for B2 and B3 in Pb-Pb collisions respectively at 0-10% (20-40%) and
0-20% (20-80%) centrality classes. In green, the pp collision result.
The success of the correlation technique to describe the two-nucleon source using a Gaus-
sian profiile is the most successful evidence supporting the coalescence model.

Experimental data, in figure 1.11, show the source radius measured with correlation
technique, as dependent on the multiplicity ⟨dNch/dη⟩. The increase of the event multi-
plicity corresponds to an increasing radius.
In heavy-ion collisions, this behavior may be further affected by particle composition and
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Figure 1.10: Comparison between theoretical calculations (grey band) and experimental
results from correlation measurements in Pb-Pb collisions (red and blue) at different
centrality classes, and in pp collisions (green) [31].

Figure 1.11: One-dimensional Gaussian source radius in pp collisions at
√
s = 900 GeV

determined using pion pairs with kT = 0.1-0.55 GeV/c, as a function of the charged-
particle multiplicity at midrapidity. ALICE data (black dots) are compared with data
from ISR (open symbols), RICH (red stars), and Tevatron (green) [33].
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Figure 1.12: Source radii compared for different heavy-ion collision systems and energies.
The radius is shown as a function of the measured charged particle multiplicity. Dashed
lines show linear fits performed to heavy-ion data [34]

.

hadronic scattering in the final state system, while in high-energy pp collision systems
from hard parton and hadron scattering.

As a final remark, it is worth mentioning that experimental source radius measured
in different heavy-ion collisions systems, including also Pb-Pb collisions at the ALICE
detector, show a shape as dependent on the event multiplicity that is consistent with the
theoretical predictions.

Final note on the comparison between SHM and Coalescence

Despite being often opposed, the statistical hadronization and coalescence approaches
are not incompatible, and they agree for certain choices of the parameters [23]. Overall,
both models can provide quantitative predictions about particle yields calculated at
certain stages in hadronic collisions. For SHM, abundances are calculated at the chemical
freeze-out, i.e., when inelastic processes that change the species of hadrons cease, and the
hadron abundances remain constant, while in the coalescence model, the kinetic freeze-
out, i.e. where all types of momentum-changing collisions, elastic and inelastic cease, is
taken as a reference.
More precise measurements are needed to clarify the production mechanisms of light
(anti)nuclei in the light of experimental data and will allow one to test configurations
of these models. These studies are important also to test predictions and precision of
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Quantum Chromo Dynamics, as discussed in the following chapter 2.
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Chapter 2

Strong interaction

Nucleons are bound into nuclei by the strong interaction. In this relation, the study
of the strong potential is a crucial ingredient in coalescence models because it strongly
affects the shape of the momentum correlation among nucleon pairs. The theory of
the strong interaction is one of the main components of the Standard Model of particle
physics, which is a gauge theory able to quantitatively describe and predict phenomena
involving elementary particles interacting through strong and electroweak forces. The
strong interaction is described by Quantum ChromoDynamics (QCD) [35], and it in-
volves quarks and gluons, being the only elementary particles that are color charged, i.e.
strongly interacting. In this chapter, after a brief introduction on QCD, the nucleon-
nucleon interaction is discussed.

2.1 Strong interaction in the Standard Model

In the Standard Model, there are six different quark flavors (up, down, charm, strange,
top, bottom), and each flavor of quarks comes in three different strong charges, red,
green, or blue. Each quark is a fermion with spin equal to 1/2, and it is associated with
a spinorial field ψf

c , where f indicates the flavor and C the color. Instead, gluons are the
eight gauge fields with spin equal to 1 that mediate the strong interaction.
QCD is a gauge field theory based on the non-abelian SU(3)c symmetry group. Since the
group of symmetry is non-abelian, quarks are confined in hadrons, classified in mesons
or baryons, that are color neutral; thus, it is not possible to observe isolated colored
particles. This peculiar characteristic of the strong interaction comes from the QCD
Lagrangian. The free Lagrangian for quark fields is:

Lo =
6∑

f=1

∑
C=r,g,b

ψf
c (iγ

µδµ −mf
0)ψ

f
c (2.1)
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where ψf
c is the spinorial field with flavor f and color C, γµ are the Dirac matrices,

δµ is the derivative, and mf
0 is the rest mass of the quark with flavor f . Imposing the

invariance under SU(3)c transformations and extending the global gauge symmetry to
local symmetry, the resulting Lagrangian is:

Lo =
6∑

f=1

∑
C=r,g,b

ψf
c (iγ

µDµ −mf
0)ψ

f
c (2.2)

where the derivative δµ must be replaced with the covariant derivative Dµ = δµ + igsA
µ

to guarantee local invariance. The gs parameter is the coupling constant measuring
the effective strength of the quark–gluon interaction, and Aµ are the eight gauge field
correspondent to the eight gluonic fields. To conserve the required local invariance, the
gluonic fields must transform like:

Aµ −→ Aµ′
= U(x)AµU−1(x) +

i

gs
[δµU(x)]U−1(x) (2.3)

with U a unitary matrix representing the special unitary transformation (U ∈ SU(3)C).
In order to have propagating gluon fields, it is necessary to add dynamic terms in equation
2.2. In particular we can define the tensor Fµν as:

[Dµ;Dν ] = igsFµν , (2.4)

which is used to describe the propagation of the gauge fields. The final QCD Lagrangian
results in:

LQCD =
6∑

f=1

∑
C=r,g,b

ψf
c (iγ

µDµ −mf
0)ψ

f
c − 1

4

8∑
a=1

F aµνF a
µν (2.5)

where the index a represents the gluonic field. In the Lagrangian, terms corresponding
to quark-gluon and gluon-gluon vertices are included. That means that, in QCD, the
self-interaction of gluonic fields is allowed, as illustrated in figure 2.1.
The possibility of having gluonic loops can explain the quark confinement and the

variation of the strength of the strong coupling constant with the energy scale. In fact,
a free quark polarizes the vacuum around it, and the color charge appears surrounded
by quark loops, which create a screening effect, and gluonic loops, which create an anti-
screening effect. The result is that at large distances from the charge, the strong field
is increased due to the anti-screening effect; on the other hand, approaching the charge,
at even smaller distances, the strong field is reduced, becoming negligible, and thus,
quarks are free and do not interact strongly anymore. This feature is called “asymptotic
freedom” [36].
The behavior of the strong field, for the energy scale of the process, is described by the

running of the strong coupling constant αs =
g2s
4π
, as in figure 2.2. This does not have a

24



Figure 2.1: The basic QCD Feynman vertices.

constant value but depends on the transferred momentum Q or the distance from the
color charge.
At small Q, αs ≈ 1 making the contribution of the higher-order vertices stronger and
forbidding the use of perturbation theory to model the interaction. In such an energy
regime, lattice QCD is used: an approach based on the discretization of space-time
(modeled as a lattice), making possible analytical and numerical calculations in a non-
perturbative regime.
Instead, at higher Q, the QCD can be treated perturbatively (pQCD): this consists in a
possible expansion of a physical quantity to higher orders in αs, with only lower order
terms contributing significantly, to describe the effects of the strong interaction among
particles. In the high energy regime (E > 100 GeV), we expect a weaker coupling con-
stant that allows quarks and gluons to be almost free in a deconfined state of matter
[37].
The SU(3)c invariance results in the conservation of the color charge; moreover, the

invariance of the Lagrangian for the strong interaction with respect to U(1) (describing
phase transformations in the space of Dirac spinors) and SU(2) (describing transfor-
mations of wave fields between quarks up and down) symmetry groups are reflected
respectively into the conservation of the fermionic number and of the strong isospin
(limited to up and down states).

2.2 Nucleon−Nucleon interaction

Quarks are the elementary components of nucleons, i.e., protons (correspondent to
quark combination up-up-down) and neutrons (correspondent to quark combination up-
down-down). However, to derive the nuclear force in terms of quarks and gluons is a very
complex problem that can be only solved using computational power. The nuclear force,
which is the interactions among nucleons, is a residual of the color interaction among
quarks, thus it is studied by QCD at low energy, where the theory is non-perturbative
and it hence requires lattice QCD.
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Figure 2.2: The strong coupling αs as a function of the energy scale Q. The value is
calculated at the energy equivalent to the Z boson mass [38].

The understanding of Nucleon-Nucleon (N−N) interaction is described in nuclear physics
by the following proprieties:

• At short distances, the strong interaction is stronger than the Coulomb force: the
Coulomb repulsion between protons in the same nucleus is overcome by the strong
interaction between nucleons.

• The strong interaction is short-range: at a large distance (on the order of the
atomic size), the nuclear force is negligible, and only the Coulomb force is relevant.

• Some particles, like electrons, do not feel strong force because they are colorless
particles.

• The N−N force is independent of the type of nucleon (proton or neutron).

• The N−N force depends on the spin of nucleons involved (triplet or singlet state).

• A repulsive term in the strong potential must be included at very short distances to
keep the nucleons at a specific average separation. This term must be non-central
to ensure the non-conservation of the orbital angular momentum.

These proprieties must be included in the Hamiltonian and in the Schrödinger equation
when describing a nucleus.
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2.2.1 The deuteron

The simplest two-nucleon problem that is analytically solvable in quantum mechanics
is the one of the deuteron (d or 2H), formed by one proton and one neutron that interact
strongly but do not feel either the Coulomb interaction or the Pauli blocking. Comparing
model predictions with experimental results, the modeled characteristics of the nuclear
force can be verified.
In first approximation, the interacting potential can be described by a square-well poten-
tial with depth equal to V0 and range R, as in figure 2.3. To have a bound state of two
nucleons, the potential depth, V0, must be greater than the kinetic energy of the pair,
Ekin. Assuming R ≈ 2.1 fm for the charge radius measured for deuteron (table 1.1), and
µ for the reduced mass of neutron and proton, the condition becomes:

V0 > Ekin =
h̄2π2

8µc2R
= 23.1 MeV. (2.6)

The binding energy for the deuteron at the ground level has been calculated as:

EBE = Ekin − V0 = -2.2 MeV. (2.7)

This result is very close to the very precise measurement carried out in [39] using the
mass difference between neutron (n) plus proton (p), and deuteron (d):

EBE = [m(p) +m(n)−m(d)] ≈ 2.22463± 0.00004MeV (2.8)

The potential can be written as:{
V (r) = −V0 r < R

V (r) = 0 r > R
(2.9)

where r is the relative distance between the two interacting nucleons.
The Schrödinger equation can be written as:(

h̄2

2µ

1

r2
∂

∂r

(
r2
∂

∂r

)
+

L̂2

2µr2
+ Vnucl(r)

)
Ψn,l,m(r, θ, ϕ) = EnΨn,l,m(r, θ, ϕ) (2.10)

where h̄ = 1.05 x 10−34 J · s is the reduced Plank’s constant, µ = mpmn

mp+mn
is the p−n

reduced mass, L̂2 is the angular momentum operator, Vnucl(r) is the nuclear potential
as in equation 2.9 and En is the energy eigenvalue, while Ψn,l,m(r, θ, ϕ) is the two-body
wave function for the energy level defined by quantum numbers n, l and m as a function
of the spatial spherical coordinates (r, θ and ϕ).
The ground state for deuteron is for orbital angular momentum l = 0, and no deuteron
excited states have been observed because the bound state would split between a free
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Figure 2.3: The square-well potential, used to model the strong N−N interaction in first
approximation. For deuteron, the depth V0 ≈ 25 MeV and R ≈ 2.1 fm. The binding
energy E ≈ 2.2 MeV (chapter 4, [39]).

proton and a free neutron if excited.
A central problem can be split into a radial and an angular problem. The solutions for
the angular problem are the spherical harmonics Y m

l (θ, ϕ):

L̂2Y m
l (θ, ϕ) = h̄2l(l + 1)Y m

l (θ, ϕ) (2.11)

The radial problem for l = 0 can be written as:[
− h̄2

2µ

1

r

∂2

∂r2
+ Vnucl(r)

]
u0(r) = E0u0(r) (2.12)

and the solutions u0(r) are:

u0(r) = A sin(k1r) +B cos(k1r), 0 < r < R

u0(r) = Ce−k2r +Dek2r, r > R

where k1 =
√
2m(V0 + E)/h̄2 and k2 =

√
−2mE/h̄2. The A,B,C, and D parameters

could be found by applying the boundary conditions and imposing the continuity of u(r)

and its first spatial derivative ∂u(r)
∂r

.
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It is necessary to consider also the interaction between nucleon spins that can produce
an additional spin-dependent term in the potential. The total angular momentum is:

I⃗ = L⃗+ S⃗n + S⃗p + L⃗S (2.13)

where S⃗n,p is the spin of the neutron (proton) that is equal to 1/2, while L⃗ is equal to 0 if

l = 0 and L⃗S is the spin-orbit interaction term. In principle I = 0, 1 for singlet (S⃗n + S⃗p

= 0) and triplet state (S⃗n+ S⃗p = 1). The deuteron has been observed only in the triplet
state configuration, meaning it has lower energy than the singlet state.

2.2.2 Nucleon−Nucleon interaction from lattice QCD

The Nucleon−Nucleon (N−N) interaction potential can be extracted from lattice
QCD, which offers the possibility to derive the interaction potential among baryons and
study multi-hadron systems using a method called HAL QCD [40, 41, 42]. Scattering
states of hadrons with different energies are used to extract non-local hadron–hadron
potential without the necessity of splitting the energy eigenstates that have a very small
separation, since on the lattice scattering states at different energies are governed by the
same non-local (energy independent) potential.
The HAL QCD method aims at calculating the interaction potential starting from spatial
correlation from QCD on a lattice [41]. The main observed quantity is the so-called
4-point correlation function, which for two baryons (such as the nucleons) is defined as:

ϕ(r⃗, t) =
1√

ZBZB′

∑
x⃗

⟨0|B(x⃗+ r⃗, t)B′(x⃗, t)J(t0)|0⟩ (2.14)

where B and B′ are two baryon field operators, J(t0) is the source operator that creates
two baryons at time t0, x⃗ and t are the spatial and time coordinates, while r⃗ is the distance
between the two baryons on the lattice. The parameters ZB, ZB′ are renormalization
factors.
A 4-point function corresponds to a mixture of eigenstates that are written in terms of
the Nambu–Bethe–Salpeter wave functions ψk(r⃗) with energy Wk in eigenstate k:

ϕ(r⃗, t) =
∑
k

Akψk(r⃗)e
−Wk(t−t0) (2.15)

with amplitude normalization factor Ak. Equation 2.15 shows the relation between
the 4-point correlation function, calculable from lattice QCD, and the eigenstate wave
functions, containing scattering observable like the phase shift [42]. The ψk(r⃗) cannot
be calculated practically since eigenstates have very small energy differences, making
their separation results impossible. The 4-point function in equation 2.14 is calculated
using wall-type source operator J(t0) and point-type baryon field operators B and B′,
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Figure 2.4: Central potentials obtained by HAL QCD method using equation 2.17 at
t = 9 for three different source functions at the variation of a parameter α [42].

minimizing the non-locality of potential.
However, knowing ϕ(r⃗, t), the interaction potential is derived through the time-dependent
Schrödinger equation of the 4-point function, that for two nucleons (N) with mass MN

and reduced mass µ, is:

− ∂

∂t
ϕ(r⃗, t) =

[
2MN − ∇2

2µ

]
ϕ(r⃗, t) +

∫
d3r⃗′U(r⃗, r⃗′)ϕ(r⃗, t) (2.16)

where U(r⃗, r⃗′) = δ3(r⃗− r⃗′)[VC(r⃗)+O(∇)] is the energy independent potential used in its
first-order expansion. The potential component VC is the leading order central potential,
but the same study can be performed taking higher order terms in the expansion, thus
improving the precision of the final result.
Inverting equation 2.16, the leading order potential is calculated as

VC(r⃗) =
1

2µ

∇2ϕ(r⃗, t)

ϕ(r⃗, t)
−

∂
∂t
ϕ(r⃗, t)

ϕ(r⃗, t)
− 2MN (2.17)

obtaining a physical N−N potential based on QCD principles.
The central final N−N potential VC is calculated and shown in figure 2.4 for different
source functions at the variation of a parameter α. From VC , the expected scattering
phase shift for each partial wave is calculated and compared with experimental N−N
scattering data.
The HAL QCD method has been applied to many hadron systems, including nuclei,
hypernuclei, and hyperons.
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2.2.3 N−N potential from Chiral effective field theory

An efficient approach to build up the N−N potential from QCD is to use a chiral
Effective Field Theory (χEFT) [43, 44]. In EFT, all the relevant conserved and broken
symmetries of QCD at low energy are considered; then, the most general Lagrangian
consistent with those symmetries is built, and all relevant Feynman diagrams for each
dynamic process are drawn. Each dynamic process is written as expansion in terms of
the ratio Q

Λ
, i.e. between the soft energy scale, set at the pion mass Q = mπ ≈ 140

MeV, and the hard scale (also called chiral symmetry breaking scale) set as equal to the
nucleon mass Λ = mN ∼ 1 GeV.
The chiral symmetry SU(2)R×SU(2)L is conserved in the limit of mass-less up and down
quarks, with right and left-handed components non-mixed. However, the chiral symme-
try is explicitly and spontaneously broken by the quark mass term in the Lagrangian in
equation 2.5. This generates a Goldstone boson identified with a triplet of pseudoscalar
pions. At zero momentum transfer and in the chiral limit (mπ → 0), the interactions of
the Goldston bosons vanish, justifying the expansion in powers of Q

Λ
.

At low energy, the effective degrees of freedom in QCD are pions and nucleons, and the
effective Lagrangian is written as:

Leff = Lππ + LπN + LNN + ... (2.18)

where Lππ describes the dynamics among pions, LπN , the interaction between a pion
and a nucleon, LNN the two-nucleon interaction, and other non-explicit terms involve
three or more nucleons and two or more nucleons interacting with one or more pions.
Each term is written as an expansion of Q

Λ
, and the theory guarantees that, at a given

expansion order, only a finite number of Feynman diagrams exists, making the theory
calculable. In this approach, also known as Chiral Perturbation Theory (ChPT), the
two- (and three-) nucleon potential can be built.
The N−N interaction potential is composed of a long-range term and a contact term.
The long-range potential is built from pion exchanges between the two nucleons:

VLR = Vπ = V1π + V2π + V3π + ... (2.19)

where the subscripts indicate the number of exchanged pions. The long-range N−N
potential, order by order, in powers of Q

Λ
is:

VLO = V
(0)
1π (2.20)

VNLO = VLO + V
(2)
1π + V

(2)
2π (2.21)

VNNLO = VNLO + V
(3)
1π + V

(3)
2π (2.22)

VN3LO = VNNLO + V
(4)
1π + V

(4)
2π + V

(4)
3π (2.23)

VN4LO = VN3LO + V
(5)
1π + V

(5)
2π + V

(5)
3π (2.24)
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where the superscript denotes the order of the expansion, and the potential is built
through five orders of chiral effective field theory from the leading order (LO) to the
next-to-next-to-next-to-next-to-leading order (N4LO). Increasing the order of expan-
sion, more pions exchanges enter in the potential (two-pion exchange starts at NLO,
three-pion at NNLO, and so on).
The short range N−N potential is described by contact potential Vct, constrained by par-
ity and other invariaces but not by chiral symmetry. Also, the potential Vct is expanded,
and the total potential results as the sum of long and short-range potentials.

Among the proprieties of the nuclear interaction, the charge independence is indi-
cated as the independence on the type of involved nucleon, but experimental evidence
shows that this invariance is broken. Thus, it must be taken into account. At all orders,
the charge-dependence of the pion exchange due to pion-mass splitting, as well as the
nucleon mass splitting, is considered using correct mass values of pions and nucleons and
obtaining the various charge-dependent N−N potentials (nn, pp or pn).
The potential must be optimized to reproduce phase-shift data from N−N scattering.
Therefore, the potential is employed in the fit, trying to reproduce experimental data up
to ∼ 300 MeV and minimize the χ2. Starting from pp potential, the np (and then nn)
potential is inferred by applying charge dependence and making some adjustments to re-
produce scattering phase shifts data. In figure 2.5 the chiral expansion of neutron-proton
scattering is fitted to the n-p phase shift data in S, P, and D partial waves, through five
expansion orders (LO, NLO...).
N−N data are reproduced at various orders of chiral EFT, and this approach allows

to calculate or to improve the quality of measurement of light nuclei proprieties, like
deuteron or tritium, listed in table 1.1 [45]. Moreover, knowing the potential, the shape
of the deuteron wave function can be calculated with high accuracy, following the calcu-
lation discussed in section 2.2.1, giving a more realistic solution.

2.2.4 Argonne ν18

Many different nucleon-nucleon interaction potentials have been built to reproduce
correctly the measured scattering phase shifts. One of the most promising potentials is
the Argonne ν18 [46], a high-quality non-relativistic N−N potential which is explicitly
charge-dependent. Argonne ν18 is composed of a charge-independent part (the Argonne
ν14 potential) with the addition of charge-dependent and asymmetric operators and the
electromagnetic term, which is the long-range interaction part, containing Coulomb,
Darwin-Foldy, vacuum polarization, and magnetic moment terms. The resulting poten-
tial is a local potential obtained without the separation in partial waves.
The Argonne ν18 potential was directly fitted to the Nijmegen database for np scattering,
giving a χ2 ∼ 1 up to 350 MeV [46]. The result of the fit performed for np, pp, and nn,
compared to other potentials and phase-shift analysis, is shown in figure 2.6.

Moreover, the Argonne ν18 potential was used to calculate the deuteron internal wave
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Figure 2.5: Neutron–proton phase shift parameters in S, P, and D partial waves through
five orders of expansion from ChPT. The filled and open circles represent the results
from the Nijmegen multi-energy np phase-shift analysis [44].
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Figure 2.6: Phase shifts in 1S0 and 3P0 channels for np, pp and nn scattering data from
Nijmegen dataset, fitted with charge-dependent Argonne ν18 potential [46].
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Figure 2.7: The deuteron u(r)/r and w(r)/r wave functions for S and D components,
obtained with Argonne ν18 and compared to the result of charge-independent Argonne
ν14 [46].

function for S- and D- components, named respectively u(r)/r and w(r)/r, obtaining the
result in figure 2.7. The deuteron electromagnetic proprieties have been re-calculated,
giving great precision and confirming the power of the Argonne ν18 to model N−N
interaction successfully.
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Chapter 3

Femtoscopy

Femtoscopy is a technique used to access the space-time characteristics of the parti-
cle pair emitting region, called the source, by looking at the correlation in momentum
between the particles in the pair. The correlation technique is used to explore the propri-
eties of the source in relation to the final state interaction and the interaction potential
among the two particles in the final pair. Using femtoscopy, models for the interaction
potential among nucleons, and hadrons in general, can be validated and tested.

The correlation technique was born in astronomy to measure the size of a light-
emitting source. It was first used in the 1950s and was based on the “Hanbury-Brown
and Twiss” effect (HBT) [47]. The basic idea was to use the fluctuations in the intensity
of the detected light to find information about the light emitting source size, whether the
source was a single star or a star cluster. This technique was implemented by splitting
the light signal from the same source into two independent signals, then detected by
two different telescopes. Studying the correlation between two measured intensities, the
spatial distribution of the emitting source could be extracted [47]. During the 1960s and
1970s, with the development of particle physics and the realization of the first particle
accelerators, the HBT technique was also used to study physics at the subatomic level,
maintaining its mathematical formalism but changing its name in femtoscopy where the
distances that could be probed were of O(1 fm).
Figure 3.1 is a schematic representation of the femtoscopic principle. Multiple particles
are created when two particle beams collide at high energy. Supposing two (or more) of
the produced particles are close enough in momentum space, they have a small relative
distance r⃗∗ and small relative momentum k⃗∗. Also particles can interact, modifying the
relative momentum distribution.
In proton-proton or nucleus-nucleus collisions, the source has a spatial extension. Pro-
tons (and nuclei) accelerated at high energies collide at a fundamental level resulting in
parton-parton scattering. However, due to QCD effects, they hadronize, producing final
particles before the detection. The basic idea of femtoscopy1 is that by studying the
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Figure 3.1: In a collision between two particle beams (blue circles), many particles are
created and then emitted from the emission region described by the spatial distribution
S(r∗). Emitted particles with small relative momentum k∗ (green circles) interact with
each other in the final state at a distance r∗, resulting in the two-particle wave function
[48].

interference due to the final state interaction of the emitted particles, it is possible to
obtain information about the spatial distribution of final state particles and extract the
size r0 of the emission region. This technique is therefore of interest for the study in this
thesis because the source size is a fundamental parameter for the correlation function
and once extracted, it can be used to validate the coalescence model and thus to model
the production mechanism of (anti)nuclei, as discussed in section 1.3.
In this chapter details of the femtoscopic technique are presented, with particular refer-
ence to its applications to the study of hadron-hadron interactions at the LHC energies,
including to the characterization of the proton source in pp collisions.

3.1 The correlation function

The main observable in femtoscopy is the correlation function that quantifies the
particle correlation in momentum.
The correlation function C(k⃗∗) depends on the relative momentum of the particles form-

ing a pair, defined as k⃗∗ = 1
2
|p⃗2∗ − p⃗1

∗|, with p⃗∗1,2 that is the particle momenta measured
in the pair rest frame.
The two particle theoretical correlation function C(k⃗∗) is rigorously defined as:

C(k⃗∗) =

∫
S(r⃗∗, r0)

∣∣∣Ψ(r⃗∗, k⃗∗)
∣∣∣2 d3r⃗∗ (3.1)

1Another possible approach is the so-called non-traditional femtoscopy, which aims to study the
final state interaction and the interference wave function, assuming a given spatial distribution for the
emitting source.
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where:

• r⃗∗ and k⃗∗ are the relative distance and momentum of the particle pair measured in
the pair reference frame, respectively;

• S(r⃗∗, r0) is the so-called source function, representing the probability density func-
tion to find two particles at a relative distance r⃗∗;

• Ψ(r⃗∗, k⃗∗) is the final state wave function of the pair; the modulus square in equation
3.1 is the probability of finding two particles with a relative distance r⃗∗ at a relative
momentum k⃗∗.

The equation 3.1 is also called the “Koonin-Pratt” relation [49]. Being a probability
density function, S(r⃗∗, r0) must be normalized such as:∫

S(r⃗∗, r0) d
3r⃗∗ = 1. (3.2)

It is challenging to model S(r⃗∗, r0) exactly because of the limited knowledge of the

hadronization process and QCD effects at low k⃗∗. Assuming a source with a spherical
symmetry, the simplest model for the spatial distribution is the Gaussian profile:

S(r⃗∗, r0) =
1

(4πr20)
3
2

exp

(
− r⃗∗2

4r20

)
(3.3)

with the source size r0, being the standard deviation of the distribution.
The theoretical correlation function, defined in equation 3.1, and in particular the

pair wave function Ψ(r⃗∗, k⃗∗), depend on the interacting potential V (r∗), as illustrated in
figure 3.2. The correlation function can be greater than 1 if V (r∗) is attractive, lower
than 1 if V (r∗) is repulsive, or equal to 1 if there is no interaction among particles in
the pair, as shown in the left plot of figure 3.2. At a high relative distance r∗ between
the particles in the pair, the interaction does not occur, and V (r∗) is equal to 0 in any
case. The presence of a bound state makes the amplitude squared of the wave function
to increase at small distances leading to a correlation function above 1 for small r0. On
the other hand, for higher source size only the asymptotic part of the wave function is
included in the correlation function, bringing it below 1.
Particles decouple quickly at high k∗ without experiencing final state interaction, leading
to a correlation function tending to 1, as shown in the right plot of figure 3.2. This is
expressed by the condition:

lim
k⃗∗→∞

C(k⃗∗) =

∫
S(r⃗∗, r0)

∣∣∣Ψ(r⃗∗, k⃗∗)
∣∣∣2 d3r⃗∗ = 1 (3.4)

The behavior of the correlation function when k⃗∗ → ∞ is also due to the wave function
of the particle pair that, in this scenario, becomes a free wave, resulting in the correlation
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Figure 3.2: On the left up: potential V (r∗) as a function of the distance between particles
r∗ in case of repulsive (blue) or attractive (yellow) interaction, or of a bound state

(red). On the left down: squared amplitude for the final pair wave function
∣∣∣Ψ(r⃗∗, k⃗∗)

∣∣∣2
with respect to r∗, for the different potentials shown above and calculated solving the
Schrödinger equation. The profile of the emitting source for 1 fm (dashed black line) and
4 fm (dotted black line) is drawn in the same plot. On the right: correlation function
C(k∗) for each potential represented on the left, and measured for two different source
sizes, r0 = 1 fm (dashed lines) and 4 fm (dotted lines) [50].
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function approaching unity.

The correlation function has also a statistical definition:

Cstat(p⃗1, p⃗2) =
P (p⃗1, p⃗2)

P (p⃗1)P (p⃗2)
(3.5)

where P (p⃗1, p⃗2) at the numerator is the probability of detecting simultaneously particles 1
and 2 with momenta equal to p⃗1 and p⃗2 respectively; at the denominator, the probability
P (p⃗1) and P (p⃗2) of emitting single particles with momentum p⃗1 and p⃗2 respectively for
particle 1 and particle 2 are multiplied. The numerator and the denominator can be
expressed in terms of the particle momentum distributions and energies of particle 1 and
2, E1,2 [51] as

P (p⃗1, p⃗2) = E1E2
d6N

d3p⃗1d3p⃗2
(3.6)

P (p⃗1,2) = E1,2
d3N

d3p⃗1,2
(3.7)

Experimentally, the correlation function is measured as the relative momentum-
dependent ratio between the distribution of correlated pairs from the same event SE(k⃗∗)

and of uncorrelated pairs from different events ME(k⃗∗):

C(k⃗∗) = N(k⃗∗)
SE(k⃗∗)

ME(k⃗∗)
. (3.8)

Here, SE(k⃗∗) is obtained by pairing all identified particles of interest in each event,

while ME(k⃗∗) is obtained by pairing identified particles of interest produced in different

(mixed) events, and thus physically uncorrelated. The ME(k⃗∗) acts as a reference dis-
tribution to eliminate the contribution of uncorrelated pairs accidentally included in the
same event sample by the combinatorial procedure. The N(k⃗∗), acting as a normaliza-
tion factor for the ratio, considers the finite experimental resolution and corrections and
is used to normalize the ratio.

In order to extract the source size r0, the experimental correlation function, measured
according to equation 3.8, must be compared to the theoretical one in equation 3.1. To
compare means that the fit of the measured correlation with the theoretical function is
performed, and r0 is obtained as a fit parameter.
A key ingredient for the fit is the calculation of the pair wave function Ψ(k⃗∗, r⃗∗), solving
the Schrödinger equation. The solution can be obtained using numerical tools, like the
Correlation Analysis Tool using the Schrödinger equation (CATS, see sec. 3.3), or analyt-
ically, by applying the Lednicky-Lyuboshits formalism [52, 53]. The Lednicky-Lyuboshits
formalism provides an analytical and approximated solution to the Schrödinger equation
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Figure 3.3: Correlation function for p−p⊕p̄−p̄ pairs measured by ALICE in pp collisions
at

√
s = 13 TeV using Run 2 data. The band represents the fit of the correlation function

performed by CATS, using the Coulomb and the Argonne ν18 potentials to model the
interaction among (anti)proton pairs [54].

for a two-body system. The model is limited by the poor knowledge of the strong po-
tential and the capability to compute analytical solutions for second-order differential
equations. Knowing that the strong potential has short range, particles at large distances
can only experience Coulomb force if charged. In the asymptotic regime, namely outside
the strong potential range and far from the scattering center, a solution is analytically
computed approximating the effect of the strong interaction as a phase shift in the final
state wave function. Of course, this is not exact and valid only in a limited regime, as
discussed in sec. 2.2.3.
The proton−proton correlation analysis has been measured using high multiplicity pp
collisions at

√
s = 13 TeV by ALICE [54], and the source size for the proton pair ex-

tracted by CATS employing the Argonne ν18 and the Coulomb potentials. The source
radius r0 ∈ [0.85, 1.3] fm for mT ∈ [1.1, 2.2] GeV/c2, and the result is reported in figure
3.3.
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Figure 3.4: Representation of the femtoscopic technique in case of a resonance decay.
The correlation function is measured for daughter particles, and the femtoscopic signal
can be contaminated [48].

3.2 Residual correlation

In the experimental femtoscopic analysis, corrective factors must be included in the
model to produce the final and more accurate result.
Ideally, only genuine particle and antiparticle pairs, thus composed of correctly identified
particles and antiparticles produced in the primary collision, should be considered. Only
in this case the correlation function Cgenuine(k⃗

∗) corresponds to the final state interaction
under study.
In every practical case of experimental analysis, the selected sample includes:

• misidentified (anti)particles,

• feed-down (anti)particles from strong decays,

• feed-down (anti)particles from weak decays,

• secondary particles produced in the detector material.

The contribution of secondaries from material affects only the particle sample, because
antiparticles cannot be produced in the material, composed by matter.
In the case of feed-down from weak decays, i.e. particles decaying weakly into the species
of interest, these non-genuine contributions produce changes in the correlation functions
and in the predictive capabilities of the model because the decay point is displaced from
the primary vertex, and the relevant final state interaction for correlations involves pri-
mary (anti)particles before the decay. This effect is graphically explained in figure 3.4.
The decay of strong resonances with a very short lifetime (cτ ∼ 10 fm) distorts the
effective source function, leading to a non-Gaussian tail.
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Figure 3.5: Source radius r0 as a function of the average transverse mass ⟨mT ⟩ assuming
a purely Gaussian source. The blue points come from the fit of the p–p correlation
function with the strong Argonne ν18 potential. The green and red points are obtained
from p-Λ correlation function fitted with strong χEFT LO and potentials [54].

If the genuine correlation is assumed to be described by a Gaussian source as in equa-
tion 3.3, the source radius r0 is measured as a function of the average transverse mass
⟨mT ⟩ =

√
k2T +m2, wherem is the average mass of the particle pair and kT = |p⃗T 1 + p⃗T 2|/2,

as in figure 3.5 for p−p and p−Λ correlations measured by the ALICE Collaboration in
pp collisions at

√
s = 13 TeV.

The measurements indicate different effective sources for protons and Λ, however, the
presence of strong resonance must be accounted for. Figure 3.6 describes the modification
of r∗core into the effective source radius accounting for delayed emission from resonances:

r⃗∗ = ⃗r∗core − ⃗s∗res,1 + ⃗s∗res,2 (3.9)

where ⃗s∗res is the distance covered by the parent resonance before the decay.
The described effect of short-lifetime resonances is reflected in an increase of the source
size and in the addition of an exponential tail to the Gaussian core given by primary
emitted particles. Including the non-Gaussian halo, the effective source function profile
is shown in figure 3.7. This profile is fed to the software CATS used to perform the fit
of the C(k∗) and to extract r0 shown in figure 3.3.
The resulting r∗core is more compact, and this is reflected in a different dependence from
⟨mT ⟩, as shown in figure 3.8. This result should be compared with the plot in figure
3.5. Figure 3.8 exhibits a common ⟨mT ⟩ scaling of the source radius for different particle
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Figure 3.6: Graphical representation that shows how the presence of at least one reso-
nance (grey disks) in the primordial state affects and modifies the r∗core into the effective
source radius r∗, measured in the rest frame of the decay products (blue disks) [54].

Figure 3.7: Source function profile as depending on the effective source size r∗, consid-
ering different source sizes and including strongly-decaying resonances. The profile is
composed of a Gaussian core, plus a non-Gaussian halo due to resonances [54].
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Figure 3.8: Source radius r0 as a function of the average transverse mass ⟨mT ⟩ assuming
a Gaussian source and including the effect of resonance decay. The blue points come
from the fit of the p–p correlation function with the strong Argonne ν18 potential. The
green and red points are obtained from p-Λ correlation function fitted with strong χEFT
LO and potentials [54].

pairs. This feature demonstrates the existence of a common baryon source for p, p̄, Λ,
and Λ̄ [54].
In order to consider all the discussed effects, the model correlation function is composed
of genuine and non-genuine contributions, each weighted by a λ parameter as:

C(k∗) = 1 + λgenuine · (Cgenuine(k
∗)− 1) +

∑
ij

λij · (Cij(k
∗)− 1) (3.10)

where i and j denote all possible impurities and feed-down contributions. Correlation
functions Cij are relative to each contribution and are calculated separately. λij is
evaluated in equation 3.11 knowing single particle purity Pi,j and the fraction Fi,j of
feed-down particles as

λij = Pi ×Fi ⊗ Pj ×Fj. (3.11)

3.3 CATS

CATS [55] is the short name of a new standalone analysis framework called “Cor-
relation Analysis Tool using the Schrödinger equation”. CATS computes an exact and
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numerical solution of the full Schrödinger equation and evaluates the two-body corre-
lation function, corresponding to a given choice of the interaction potential. Then, the
analysis framework performs the fit of the obtained theoretical correlation function to
the measured data, extracting the source size as a fit parameter.
In order to evaluate the final state wave function and the theoretical correlation function,
CATS uses a local real potential for two strongly interacting charged hadrons.
The solved Schrödinger equation is the time-independent equation in the presence of a
central potential V (r), and the problem is reduced to solve the radial equation 2.12,
according to the calculations discussed in section 2.2.

For p−p correlations, Argonne ν18 (see sec. 2.2.4) is the most realistic potential to
model the strong interaction among two nucleons. The total p−p interaction is made of
the Argonne ν18 plus a repulsive Coulomb potential (the charge is the same in p−p and
p̄− p̄).
The source employed in CATS is parameterized using a Gaussian distribution.
The correlation function used in the fit is not the theoretical one, but it appears:

Cfit(k
∗) = Cmodel(k

∗) · Cnon−femto(k
∗) (3.12)

therefore as the product of Cmodel(k
∗), which involves the theoretical-genuine correlation

function for the particle pair, the contributions of feed-down particles, secondaries pro-
duced by the material, impurities, and non-Gaussian corrections, as defined in equation
3.10, and of Cnon−femto(k

∗), which incorporates non-femtoscopic effects at high k∗, such
as jets in the high momentum region able to modify the experimental correlation func-
tion profile. In CATS, the non-femtoscopic effects are described as the linear function
Cnon−femto(k

∗) = b · (1 + ak∗). The slope a and the normalization b are evaluated as free
fit parameters. The fit quality is measured through the χ2 parameter, divided by the
number of degrees of freedom (ndf). In CATS, the λgenuine, defined in equation 3.10 as
the fraction of genuine p−p pairs, is a fixed parameter that must be set before the fit. As
an example, in the analysis of p−p correlations using pp collision data at

√
s = 13 TeV

by the ALICE experiment [54], λppgenuine have been estimated at the ∼70% while in p-d

correlation λpdgenuine ∼83% [56] as the average of particle λxygenuine and antiparticle λx̄ȳgenuine
parameters. In the same analysis secondary feed-down protons are for the 70,7% pΛ and
for the 29.3% pΣ+ generated respectively in Λ or Σ+ baryons weak decays. In addition,
protons can also be produced in the interaction of a primary particle with the material
of a detector producing secondary particles (protons), or impurities can be misidentified
with true protons.

For this thesis work and prior to approaching the analysis of the proton−deuteron
correlation, CATS was used to fit the p−p correlation function in pp collisions at√
s = 13 TeV, and reproduce the measurement of the radius of the proton pair source,

to acquire familiarity with the framework. The result, obtained employing the Argonne
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Figure 3.9: Proton−proton correlation function calculated using ALICE data of pp col-
lisions in Run2. Experimental data are fitted with CATS, and the source radius is
calculated under the Gaussian source assumption and using Argonne ν18 plus Coulomb
potential.

ν18 plus the Coulomb potential to model the interaction among the particles, is shown
in figure 3.9. In the fit λgenuine is set at 82.5%. The differences between the analysis
presented here and in [54] are due to the different data sets used, the corrections on the
purity and on the momentum resolution, which are not fully included in my analysis.
The extracted source size measures r0 = 1.19± 0.04 fm, with a χ2/ndf = 32.04/41 = 0.78,
with 41 degrees of freedom. The fit gives the slope a = 1.431 · 10−4± 6.007 · 10−5 1/MeV
and the normalization b = 0.958 ± 0.014, and the range of the fit is 0 < k∗(MeV/c) < 350.
This result is consistent with the published one in figure 3.3, which is obtained using
CATS as well with the strong Argonne ν18 potential. In the published analysis the
λgenuine = 66.7%. This value is different from the one used to reproduce the analysis
because corrections in momentum resolutions are not applied, and contributions from
misidentified particles are not considered.

47



Chapter 4

ALICE

A Large Ion Collider Experiment, also known by the acronym ALICE, is the Large
Hadron Collider (LHC) experiment dedicated to heavy-ion collisions, located 56 m un-
derground at the collision point 2 of the LHC.
It has been proposed to study the properties of the strong interaction and characterize
the Quark-Gluon Plasma (QGP), a very hot and dense state of matter composed of de-
confined quarks and gluons. The QGP is produced in heavy-ion collisions at high energy,
and it has been suggested to exist in the first moments of the universe.
The ALICE physics program is not only devoted to studying heavy-ion collisions, like
between lead nuclei (Pb-Pb), but also includes proton-proton (p-p) collisions.
Due to its broad physics program and specific goal, ALICE is the unique experiment at
the LHC equipped with a complex particle identification system, an excellent tracking
system down to very low momenta, that can work in a high multiplicity environment.

ALICE has been operating since 2009 when the LHC Run 1 (2009-2013) started with
p-p collisions at the energy of the center of mass

√
s = 0.9 TeV. During Run 1, p-p

collisions at
√
s = 2.76 TeV, 7 TeV, and 8 TeV took place. ALICE collected data during

Run 2 (2015–2018) and Run 3 (2022-2025) with p-p collisions at
√
s = 5.02 TeV and 13

TeV in Run 2 and
√
s = 13.6 TeV in Run 3. Also Pb-Pb data was collected in 2010

and 2011 at the energy of the center of mass in Nucleus-Nucleus collisions
√
sNN = 2.76

TeV, and in 2015 and 2018 at
√
sNN = 5.02 TeV; during Run 3 Pb-Pb collisions at√

sNN = 5.36 TeV are scheduled by the end of 2023. Other collision systems, such as p-
Pb collisions, were studied in 2013 and 2016 at

√
sNN = 5.02 and 8.16 TeV, respectively.

The details of the ALICE detector, hereafter called ALICE1, are in ref. [57]. During
the Long Shutdown 2 (2019-2021), the detector was upgraded, and the new ALICE for
Run 3, hereafter called ALICE2, is shown in figure 4.1.
For Run 3 and Run 4, the ALICE collaboration aims to measure hadrons with heavy-
flavor quarks (as charm and bottom) and the thermal radiation emitted by QGP by
studying dielectron pairs. Moreover, the ALICE upgrade enables new high-precision
measurements in jet quenching phenomena, production of light (anti)nuclei, momentum
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correlation between hadrons, and the characterization of collective effects in high multi-
plicity p-p collisions.

The ALICE detector weighs 10 000 tonnes, is 26 m long, 16 m high, and 16 m wide.
It is built with a central symmetry around the beam pipes (red horizontal line in figure
4.1). The beam axis corresponds to the z-axis in the detector reference frame, and the
transverse plane is the xy-plane.
The detector is composed of many sub-detectors able to characterize the main properties
of an event.
A central barrel, a forward Muon Spectrometer, and other smaller detectors compose the
ALICE detector. The central barrel is inside a solenoidal magnet providing a uniform
field of B = 0.5 T along the beam direction; the magnet (in red in figure 4.1), inherited
from the former LEP experiment L3, surrounds the whole apparatus that includes:

• Inner Tracking System (ITS) (see section 4.1);

• Time Projection Chamber (TPC) (see section 4.2);

• Time of Flight (TOF) (see section 4.3);

• Transition Radiation Detector (TRD), used in track reconstruction and momentum
determination of charged particles in |η| < 0.9; it supports event trigger, and it is
also able to identify electrons and suppress pion background;

• Electromagnetic Calorimeter (EMCal), used to detect electrons and photons pro-
duced in heavy-flavor hadron decays or neutral mesons; it also provides some trigger
levels;

• Photon Spectrometer (PHOS), a precise electromagnetic calorimeter with high
energy and spatial resolution for photons;

• High Momentum Particle Identification Detector (HMPID), a ring-imaging
Čherenkov detector used to identify hadrons at large transverse momentum over a
limited acceptance.

In the forward region, there is the Muon Spectrometer: it includes an absorber to filter
the background, tracking chambers located before, inside, and after a dipole magnet
and trigger chambers. The system, within the acceptancy region, -3.6 < η < -2.45, can
identify muons produced in hadronic decays with high pointing resolution (∼ 100 µm)
using silicon pixel sensors.
Finally, the Zero Degree calorimeters (ZDC) are used to determine the centrality of the
collisions, and the Fast Interaction Trigger (FIT), a scintillator-based system, is used
as interaction trigger, online luminometer, initial indicator of the vertex position, and
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Figure 4.1: The ALICE detector during Run 3.
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Figure 4.2: Schematic view of the Inner Tracking System during Run 3.

forward multiplicity counter. The FIT detector consists of two Cherenkov radiators,
FT0-A and FT0-C, placed on opposite sides at almost 3.3 m from the collision point.
A complete overview of sub-detectors in ALICE and their upgrade can be found in the
upgrade letter of intent [58] and in [59], while in this thesis, I focus on the main detectors
relevant for my analysis work.

4.1 Inner Tracking System

The Inner Tracking System (ITS) [60] is the first detector crossed by a particle pro-
duced in the collision vertex. The ITS is located in the central barrel, covering the
pseudorapidity range of |η| < 1.3, and is the closest detector to the interaction point.
The main goal is to reconstruct the primary vertex of the collision, track and identify
low momentum particles, and reconstruct secondary vertices due to the weak decays of
primary particles (typically with a lifetime τ ∼ cm/c).
The upgraded ITS (ITS2), in figure 4.2, is thinner and lighter than the previous ITS1,
and a brief comparison between ITS1 and ITS2 is in table 4.1. ITS2 is composed of
seven concentric layers subdivided into the Inner Barrel, composed of the three inner-
most layers, and the Outer Barrel, composed of the four outermost layers.
All the layers are equipped with silicon ALPIDEMonolithic Active Pixel Sensors (MAPS)
(chapter 2.3 of ref. [59]). The total area instrumented with silicon pixels is extended for
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ITS1 ITS2
Technology Hybrid pixel, strip, drift MAPS ALPIDE
Readout Rate 1 kHz 50 kHz (Pb-Pb)

400 kHz (p-p)
No. of layers 6 7
Radius of innermost layer 39 mm 22.4 mm
Pointing resolution ∼240 µm (z) ∼50 µm (z)
(pT = 500 MeV/c) ∼120 µm (rϕ) ∼40 µm (rϕ)
Material budget 1.1% X0 0.36% X0 (Inner Barrel)

1.1% X0(Outer Barrel)

Table 4.1: Comparison between the main proprieties of ITS1 and ITS2 [60].

about 10 m2, making the ITS2 the largest MAPS silicon tracker ever built for a high-
energy physics experiment.
Using fast digital pixel sensors allows for an increase of the readout rate by about 100
times with respect to ITS1, reaching a readout rate greater than 50 kHz in Pb–Pb colli-
sions and 400 kHz in p-p collisions. Increasing the readout rate improves the statistical
precision of measurements, allowing for background reduction.
Almost 12.5 billion ALPIDE pixels with a size of 27 × 29 µm2 are used in the ITS2, and
the small dimensions result in an increased granularity and segmentation.
The material budget and the multiple scattering effects are reduced to 0.36% X0 and to
1.10% X0 in the innermost and outermost layer, respectively, by making use of pixels
instead of strip detectors.
The upgrade’s main goal for the ITS was to improve the resolution of the impact param-
eter and the collision vertex position. This goal was realized by reducing the distance
of the first layer of the Inner Barrel from the beam axis to only 22.4 mm (instead of 39
mm in ITS1). The resulting spatial resolution on the impact parameter was reduced to
5 µm × 5 µm (z × rϕ), as shown in figure 4.3, while the comparison between impact
parameter resolutions of ITS1 and ITS2 is in figure 4.4.

The ITS2 design improves the tracking efficiency from 60% to 90% and the transverse
momentum resolution for low momenta, reaching excellent tracking capabilities down to
pT ∼ 120 MeV/c (chapter 3.2 in ref. [59]).

4.2 Time Projection Chamber

The Time Projection Chamber (TPC) [61], in figure 4.5, is a gas detector used in
ALICE for tracking and particle identification. The main goal of the TPC is to measure
the energy lost by a charged particle in the detector; knowing the energy loss, the mo-
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Figure 4.3: Resolution on the impact parameter as a function of the transverse momen-
tum, in transverse rϕ (left panel) and longitudinal z (right panel) planes, measured in pp
collisions at

√
s=13.6 TeV. Data (in blue) are compared with Monte Carlo simulations

(in red).

Figure 4.4: Impact parameter resolution in rϕ vs. pT comparison between data from pp
collisions at

√
s=13.6 TeV in Run 3 data (blu) and

√
s=13 TeV from Run 2 data (red).
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Figure 4.5: The Time Projection Chamber in ALICE during Run 3 (chapter 3.4 in ref.
[59]).

mentum, and the charge of the particle can be inferred, contributing to charged particle
identification.
Indeed, the measured energy loss is parameterized by the Bethe-Bloch formula:

−⟨dE
dx

⟩ = Kz2
Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]
(4.1)

where the variables are:

• dE
dx

: Stopping power, rate of energy loss per unit path.

• K : Constant depending on the material.

• z : Charge of the incident particle.

• Z : Atomic number of the material.

• A : Atomic mass of the material.

• β : Velocity of the incident particle relative to the speed of light (β = v
c
).

• γ : Lorentz factor of the incident particle (γ = 1√
1−β2

).
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• me : Rest mass of the electron.

• c : Speed of light in vacuum.

• Tmax : Maximum kinetic energy that can be transferred to atomic electrons.

• I : Mean excitation energy of the material.

• δ(βγ) : Density effect correction, accounting for the polarization of the material
by the incident particle.

The particle identification in the TPC is possible because particles lose energy differently
depending on their charge and mass. At the same fixed velocity, the higher the charge of
the ionizing particle is, the higher the energy loss. For instance, it is possible to distin-
guish z = 1 particles (like protons p, deuterons d, tritons t, kaons K, pions π, electrons
e, and muons µ) from z = 2 (like helium-3 nuclei). Equally charged particles can be
identified since they have different masses, thus different velocities β, and at the same
fixed momentum, a more massive particle loses more energy than a lighter one: particle
spectra are shifted with respect to each other, and electrons, muons, pions, kaons, pro-
tons, and deuteron spectra are distinguishable as in figure 4.6.
Due to the Bethe-Bloch shape, at high momenta (pT/|z| ∼ 1 GeV/c), the signal is over-
lapped for all the particles and the identification is no longer possible.
The TPC is an 88 m3 cylindrical volume filled with a gas mixture of Ne-CO2-N2 (90-10-
5). The TPC covers the pseudorapidity region |η| <0.9 and full azimuth. The cathode
divides its volume into two halves, while the two end plates are kept at a positive poten-
tial. When a charged particle crosses the volume, it ionizes the gas, producing electrons
and positive ions that are quickly separated and drift in opposite directions inside the
gas. During the drift to the anode, constantly accelerated electrons produce secondary
ionization and electrons, then collected in the positive electrode. The end plates are
radially subdivided into 18 azimuthal sectors, and each of them is segmented into an
Inner ReadOut Chamber (IROC) and an Outer ReadOut Chamber (OROC), consisting
of a total amount of 159 pads in each radial direction.
The upgrade of the TPC for Run 3 allows for a triggerless and continuous readout of
all collision events. To reach this goal, the old readout system based on Multi Wire
Proportional Chambers (MWPCs) was substituted with a new one based on Gaseous
Electron Multipliers (GEMs).
Using MWPC, an active ion grid was necessary to collect ions, avoiding ion back-flow
and space charge effects in the drift region. However, this technology could sustain a
limited readout rate, leading to the use of GEMs.
GEMs [63] are gaseous detectors and allow for continuous readout at almost 100 times
higher rate than using MWPC, significantly reducing the intrinsic dead time and ion
back-flow imposed by an active ion-gating.
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Figure 4.6: ALICE TPC dE/dx measured in pp collisions at
√
s = 13.6 TeV during

Run 3. The energy loss of each particle species is fitted with ALEPH Bethe-Bloch
parameterization [62], making the particle identification possible.

The new readout chambers used in the ALICE TPC are based on stacks of four GEM
foils, as shown in figure 4.7. Each gap between foils is kept at a specific difference
in voltage-producing transfer electric fields of 3500 V/cm in GEM1-GEM2 (ET1) and
GEM2-GEM3 (ET2) gaps, while in GEM3-GEM4 it is of 100 V/cm (ET3); the induced
electric field between GEM4 and the pad plane is of 3500 V/cm. GEM foils have holes
with alternating diameter sizes (standard holes of 140 µm and large holes of 280 µm),
and the accidental alignment of holes in subsequent layers is avoided.
When the electron crosses the gas in the GEM, it produces ionization. The strong elec-
tric field accelerate secondary electrons to the anode producing an avalanche and the
multiplication of the signal. While the electrons are drifted to the anode and the pad
plane through the holes, positive ions are quickly collected by the near foil. In this way,
the drift region is detached from the avalanche and readout ones, and the effective gain
is increased.
With the new readout, the back-flow is intrinsically reduced to the 1%.
The new TPC has a resolution on the energy loss of 5-10%. It can also measure the mo-
mentum of the track by looking at the curvature in the magnetic field, with a resolution
of the ∼ 1%. The TPC momentum resolution is shown in figure 4.8, where GEM and
MWPC resolutions are compared.
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Figure 4.7: Four GEM foils used in TPC readout Chambers

Figure 4.8: Momentum resolution as a function of 1/pT measured in the ALICE TPC.
The resolution obtained with the GEM (right panel) detectors used in Run 3 is compared
to the resolution with MWPC (left panel) used in Run 2 [64].
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4.3 Time of Flight

The Time of Flight (TOF) detector measures the time a particle takes to travel from
the collision vertex to the detector layer, located at a distance of 3.7 m from the beam
axis.
ALICE TOF is a cylindrical array of ∼ 141 m2 active area of Multi-gap Resistive Plane
Chambers (MRPC) strip detectors with a 120 × 7.4 cm2 active area, placed perpendic-
ularly to the tracks and arranged to minimize the dead zone. The TOF, in figure 4.9, is
organized into 18 azimuthal sectors, each one with ∼ 90 MRPC, for a total amount of
1593 strips. To reduce the detector occupancy, each MRPC strip is segmented into 96
pads, with an area of 3.5 × 2.5 cm2 each.
The readout is performed through 152928 channels.

Figure 4.9: The Time of Flight detector in ALICE. It is divided into 18 azimuthal stacks
[65].

MRPC are gaseous detectors formed by two resistive plates kept at high voltage
difference, while the gap between them is filled with a gas and is subdivided into smaller
gaps by floating voltage resistive plates. When the charged particle crosses the gas gap,
it produces gas ionization, and the electron avalanche is created along the drift through
the higher electric field region. The separation of the volume into five gaps with a width
of 250 µm each produces five independent mini-avalanches, reducing the signal collection
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time. The MRPCs reach an intrinsic time resolution σMRPC = 50 ps.
With this technology, the TOF can measure the time of flight with a global resolution
σTOF resulting from:

σTOF =
√
σ2
MRPC + σ2

t0 + σ2
p + σ2

electronics (4.2)

being σt0 the resolution on the collision time determined by the FIT detector, σp the
resolution on the track momentum given by TPC, and σelectronics is due to read out
electronics. The resolution is σTOF = 60-80 ps measured during calibration, which is
shown in figure 4.10. For Run 3, the readout electronics of the TOF were upgraded to
have continuous readout (chapter 3.8 in ref. [59]).

Figure 4.10: ALICE TOF resolution extracted under the pion hypothesis for particles
with pT 1.5 GeV/c in pp collisions at

√
s = 13.6 TeV during Run 3.

The TOF signal is used for particle identification: by measuring the time of flight
∆t, it is possible to infer the mass m of the particle using the relation:

m = p

√(
∆t

l

)2

− 1 (4.3)

knowing the particle momentum p measured from the TPC and the track length l mea-
sured step by step along the track reconstruction procedure.
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The particle identification is carried out in TOF because particles with different masses
have different velocities β at the same momentum p; thus, the more massive the particle
is, the greater the measured time of flight ∆t is. Looking at the β measured by the TOF
with respect to the momentum, in figure 4.11, electrons e, pions π, kaons K, protons p,
and deuterons d are identified thanks to their mass difference. In figure 4.11, electrons e
seem to have a super-luminal velocity due to calibration and resolution effects.
The particle mass is then inferred through equation 4.3, and the result is shown in

Figure 4.11: ALICE TOF Beta vs Momentum performance for pp collisions at
√
s =

13.6 TeV during Run 3.

figure 4.12.
The ALICE TOF covers the full azimuth and the |η| < 0.9 region in pseudorapidity,

but being far from the interaction point, only tracks with momentum p ≥ 0.3 GeV/c
can reach the TOF and only ∼ 60% of protons produced in the primary collision vertex
is seen by the TOF.
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Figure 4.12: ALICE TOF mass measurement performance for pp collisions at
√
s = 13.6

TeV during Run 3.

Information from TPC and TOF are combined to carry out the particle identification
in a wide range of momenta, up to several GeV/c. The fraction of tracks that gives a
signal simultaneously in both the TPC and the TOF, over the total number of tracks
producing a signal in TPC only, is called matching efficiency.
The greater particle identification power for the TOF is reached in the momentum range
between 1 and 3 GeV/c. At very high momenta, all the particles are ultra-relativistic
and have β ∼1 becoming no longer distinguishable.

4.4 O2: the new ALICE analysis framework for Run 3

As part of the Long Shutdown 2, a data acquisition and processing system was de-
veloped to achieve the goals for Run 3 and Run 4. The proposed measurements for Run
3 and 4 have a low signal-to-background ratio, which makes the triggering technique
ineffective due to the large background. Instead, a trigger-less acquisition method and
significant statistics would be required. During Run 3, the integrated luminosity is ex-
pected to be 200 pb−1 in pp collision [66], with in an interaction rate equal to 50 kHz
in Pb-Pb collisions and 500 kHz in p-p collisions and producing a huge amount of data
collected in continuous readout by the detector (1 TB/s in Pb-Pb collisions).
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Figure 4.13: schematic view of the organization of the O2 facility, from the raw data
collected by the detector, the processing online and offline, until the storage [59].

Aside from hardware updates as explained in sections 4.3, 4.2 and 4.1, the continuous
readout needs to minimize the cost and the requirements of the data processing and
storage systems, implying the maximal reduction and compression of the data volume
as early as possible during the data flow.
The innovative designed computing facility [67, 66] is called Online-Offline (O2) (chapter
6 in [57]). It is a high throughput system organized in several reconstruction steps syn-
chronously with the data tacking (online) and asynchronously (offline), as it is schemat-
ically shown in figure 4.13.
The online steps are performed by the First Level Processors (FLPs) and Event Pro-

cessing Nodes (EPNs), respectively composed of 250 and 1500 computing nodes, each
one with two 32-core CPUs and 8 GPUs.
The data flow is organized in Time Frames that are transferred from the detectors to
the O2 system via optical readout links and then multiplexed into the FPLs I/O system.
FPL takes the raw data from optical links and partially compresses them by a factor of
2.5; data are merged and split into sub-Time Frames using an arbitrary reference clock.
FLPs carry out a preliminary clusterization, masking, and calibration of data, and then
the produced sub-Time Frames are buffered in memory and sent to EPN.
EPN performs the Time Frame aggregation, the event and track reconstruction for each
detector using an early calibration. Data volume is fully compressed by a further factor
8, producing a 90 GB/s throughput to data storage (60 MB/s each EPN). Particular
attention is given to TPC, which produces the greatest amount of data. For this rea-
son, an online cluster finding and a first full fast-tracking are essential for TPC data
compression. At the end of the synchronous stage, reconstructed data are stored in the
Compressed Time Frame (CTF). The CTF consists of processed data from all active
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detectors, temporarily stored to be ready for asynchronous reconstruction.
The calibration and matching are finalized in the asynchronous step, achieving the re-
quired data quality; then data are permanently stored locally using the finest global
calibration (asynchronous pass, apass). A second type of reconstructed data is gen-
erated: the Analysis Object Data (AOD), which includes essential information on the
reconstructed event, such as primary and secondary vertex reconstruction, track finding
and fitting, tracks kinematic parameters, along with clusters and signal amplitudes from
particle-counting detectors.
AOD files are available on the ALICE Grid and permanently stored on disks in the O2

facility or Tier 0/1 data centers. Tier 0 and 1 take part in the asynchronous reconstruc-
tion: data are systematically re-calibrated, reprocessed, and re-filtered; then, the final
AODs are sent to the Analysis Facility, where the analysis is run. Tiers can also perform
Monte Carlo and detector simulations
Before starting a new data-taking period, the asynchronous processing of the data col-
lected during the previous period - including calibration and re-reconstruction - must
be completed. All CTF data will be removed from O2 and Tier 1 disk buffers to make
space for new data. Any unprocessed data will remain stored on tape until the next long
shutdown, during which it can be reprocessed.
The storage facility acts as an interface between O2 and the Grid.
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Chapter 5

p−p and p−d correlation functions
in pp collisions

The goal of this work is the measurement of the correlation function for (anti)proton
and (anti)deuteron by using the femtoscopy technique discussed in chapter 3, with partic-
ular attention to the optimization of the particle identification technique for (anti)protons
and (anti)deuterons, in preparation for the measurement on the full dataset of pp col-
lisions in Run 3. The correlation function can be used to infer information about the
particle emitting region, the source, and the type of interaction among the particles of
interest.
The measurement of the correlation in momentum of proton-proton as well as proton-
deuteron pairs is instrumental to understanding the formation mechanism of deuteron
and helium-3 in hadronic collisions and in constraining the coalescence model (see chap-
ter 1.3). Protons and deuterons interact through the strong and the Coulomb forces, and
the interaction potential, built up from the fundamental QCD principles as discussed in
section 2.2, is employed and validated in the correlation analysis.

The analysis discussed in this thesis is based on data collected with the ALICE detec-
tor in 2022 during the LHC Run 3 (see section 5.1.1). A key aspect of this measurement
is the identification of protons and deuterons (and their corresponding antiparticles) with
a high purity, combining the information from the TPC and the TOF, as discussed in
section 5.1.3. The purity of the sample is crucial in femtoscopic analysis because the
presence of contamination would produce distortions in the particle source, being the
source size specific for each particle species, and in the correlation itself (see chapter
3). The tracks are selected according to criteria examined in section 5.1.2; the iden-
tified and selected tracks are coupled in pairs to compute the correlation functions for
proton−proton and proton−deuteron, following the procedure explained in section 5.2.
To perform the particle identification, the track selection and the pair production, a
new algorithm is written inside the O2 analysis framework (see section 4.4). The result,
namely the proton−proton and proton−deuteron correlation functions are presented in
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section 5.3. The proton−proton correlation is fitted with CATS to extract the source
size, and results are discussed in comparison to existing measurements in pp collisions at
13 TeV ([68], see section 3.3) and 13 TeV at high multiplicity [54]. The proton−deuteron
correlation function is instead discussed in relation to the recently published measure-
ment in high multiplicity pp collision at

√
s = 13 TeV by ALICE [56].

5.1 Analysis details

5.1.1 Datasets

For the study presented in this thesis, I analyzed data from pp collisions at the col-
lision energy

√
s = 13.6 TeV collected during Run 3 at LHC. I worked on a dataset

consisting of more than 1.15 billion events collected at low interaction rate. The used
sub-sample represents the 0.2% of the total collision sample collected in 2022, but the
low interaction rate ensures a better reconstruction quality and calibration of the TPC,
especially in relation to space charge distortions that mostly affect the tracking perfor-
mance.
As ALICE operates in a triggerless continuous readout mode in Run 3, minimum bias
pp collisions to be analysed are selected offline as discussed in section 4.
Because a deuteron is expected to be produced every 103 protons in pp collisions at the
LHC [69], the signal of p−d pairs is rare. In order to cope with the large number of
collisions to be inspected, the data are filtered in two steps to select the events of inter-
est at the analysis level, to fasten the analysis and to optimize data storage. The initial
data skimming is achieved by implementing pre-selection criteria on events and tracks.
Stricter selection criteria are then applied on stored tracks to optimize and finalize the
measurement of the correlation function.

5.1.2 Event and track pre-selection

To select events and tracks for this analysis I developed a new analysis algorithm,
accepted as a new part of the official ALICE O2 analysis framework. My algorithm
performs the first skimming step on events and tracks over the full dataset.
Events are selected by requiring the coincidence of FT0-A and FT0-C signals and the
coincidence of the measured collision time with the expected time of the bunch crossing.
In addition, events are rejected if the position of the reconstructed primary vertex vz
along the beam axis is more distant than 15 cm from the nominal interaction point.
In figure 5.1 the distribution of the primary vertex position vz for the selected events
is shown. After the first event selection, the sample employed in the analysis has 1153
million events.
Tracks are selected only if the traverse momentum is 0.4 < pT < 5 GeV/c.
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Figure 5.1: Position of the collision vertex vz along the beam axis for each selected
collision with respect to the interaction point. If vz is greater than 15 cm the event is
rejected.

The selection of tracks is based on the information of the ITS and the TPC. A clus-
ter is defined when a charged particle crosses a detecting pad producing a signal that
is associated to a track. Clusters are the starting point for the track reconstruction
and therefore, the selection of well-reconstructed tracks for the analysis is based on the
number of clusters associated with a track and the information on the goodness of that
association. In this respect, only tracks with a χ2 per number of clusters in the ITS
smaller than than 36 and a χ2 per number of clusters in the TPC smaller than than 4,
are kept after the pre-filtering.
Moreover, tracks are selected using a variable called Distance of the Closest Approach
(DCAxy) in the transverse (xy) plane, which represents the projection on the transverse
plane of the geometrical distance between the reconstructed track and the reconstructed
collision point, called primary vertex. For the pre-filtering I require |DCAxy| < 0.12 cm,
meaning that I selected mostly primary tracks that point the collision vertex while re-
ducing contamination from secondary particles.
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Figure 5.2: Energy loss in the TPC for selected tracks, identified as protons and deuterons
within 4σ from the signal expected in the TPC for the selected particle species.

5.1.3 Proton and deuteron identification

To perform the particle identification (PID), a variable called nσ, is used. It is defined
as:

nσ =
Xmeas −Xexp,i

σ
(5.1)

namely as the difference between the signal Xmeas measured by the detector and the
expected signal Xexp,i for a given mass hypothesis with i = p, d, e,K..., over the expected
resolution of the detector σ. This variable is defined for the TPC and the TOF, and,
depending on the detector, the numerator is the difference of time of flights in the case of
the TOF, and of energy losses in the case of the TPC. PID based on this variable considers
that tracks that fall outside a given nσ range are rejected because their probability to
belong to the selected species is too low. In the pre-selection step, only tracks with∣∣nTPC

σ,p

∣∣ or ∣∣nTPC
σ,d

∣∣ lower than 4 are stored. In the pre-selection no information from the
TOF is used.
After the first selection, the sample employed in the analysis has 3.5 billions tracks
associated to an (anti)proton or an (anti)deuteron. The energy loss in the TPC for
the stored tracks is reported in figure 5.2. Comparing this result with the TPC signal
in figure 4.6, the selected tracks are consistent with their identification as protons and
deuterons.

The PID selection criteria aim at obtaining a sample of (anti)protons or (anti)deuterons
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Figure 5.3: The nσ,p distribution as a function of momentum for the TOF and proton
hypothesis. Similar distribution can be obtained for antiprotons.

as pure as possible and at avoiding the contamination, mainly due to the presence of
kaons in the case of (anti)protons, or of (anti)protons in the case of (anti)deuterons,
that smear the pure signal. Particles and antiparticles, with opposite electric charge,
are distinguished depending on their bending inside the magnetic field. In the case of
protons, the nTOF

σ,p before any PID selection is reported in figure 5.3. The signal from
true protons is localized around the nσ,p = 0. Figure 5.3 justifies also the choice to select
tracks with momentum p < 2.6 GeV/c. Indeed, from high momentum tracks the con-
tamination from kaons is larger and this signal is not distinguishable from the pure one.
This behavior is due to the TOF detection principles and the distribution of the TOF
signals in momentum (see figure 4.11). Similar plot is obtained also for antiprotons. A
similar reasoning is also applied for the TPC and justifies the selection of tracks with∣∣nTPC

σ,p

∣∣ < 3.
Based on the plots in figure 5.3, the TPC is used standalone for p < 0.75 GeV/c, while
for higher momentum also the TOF is required. For protons, the track is selected only if∣∣nTPC

σ,p

∣∣ < 3 and simultaneously -2.5 < nTOF
σ,p < 4. For antiprotons, the track is selected

only if
∣∣nTPC

σ,p

∣∣ < 3 and simultaneously
∣∣nTOF

σ,p

∣∣ < 3. The distribution in nTPC
σ,p and nTOF

σ,p

and momentum p of selected tracks associated to protons or antiprotons is in figure 5.4.

To select the pure sample of (anti)deuterons the main issue is the contamination that
comes mostly from (anti)protons. The distributions of deuteron and antideuteron tracks
in nTOF

σ,d before any PID selection is reported in figure 5.5. To obtain an (anti)deuteron
sample that is as pure as possible, particles identified as (anti)deuterons are rejected if
also compatible with the (anti)proton hypothesis within 5σ in the TPC or in the TOF.
Based on plots in figure 5.5, the TPC is used standalone up to pT = 1.3 GeV/c, and only
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Figure 5.4: The nσ,p distribution for protons (left) and antiprotons (right) in the TPC
(up) and the TOF (down). For p <0.75 GeV/c only positive tracks with -2.5 < nTPC

σ,p < 4

or negative tracks with
∣∣nTPC

σ,p

∣∣ < 3 are selected; while for p >0.75 GeV/c only tracks

with also
∣∣nTOF

σ,p

∣∣ <3 are selected.
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Figure 5.6: The nσ,d distribution for deuterons (left) and antideuterons (right) in the
TPC (up) and the TOF (down). For p < 1.3 GeV/c only tracks with

∣∣nTPC
σ,d

∣∣ < 3 are

selected; while for p > 1.3 GeV/c only tracks with also
∣∣nTOF

σ,d

∣∣ < 5 are selected.

tracks with
∣∣nTPC

σ,d

∣∣ < 3 are selected as (anti)deuterons. For particles with p > 1.3 GeV/c,
the TPC and the TOF signals are combined and tracks are selected as (anti)deuterons
if
∣∣nTPC

σ,d

∣∣ < 3 and
∣∣nTOF

σ,d

∣∣ < 5 simultaneously. The distribution in nTPC
σ,d and nTOF

σ,d of
selected tracks associated to deuterons or antideuterons is in figure 5.6.

All the PID criteria applied for (anti)protons and (anti)deuterons are summarized in
table 5.1.
In the selected sample there are 78.2 million protons and 66.3 million antiprotons over
the total number of stored tracks. Instead, the deuteron sample is composed by 123446
deuterons, and 98597 antideuterons.
The lower abundance of antiparticles than particles is due to the presence of secondary
protons and deuterons (hereafter called ”secondaries”) that are produced by knock-
out reaction of primary particles hitting the detector material. Antiparticles cannot be
produced by these reactions since the detector is made of matter, thus the antiparticle
samples do not contain secondaries from material.
After applying these selection criteria, the resulting sample is pure enough to meet the
goals of the preliminary analysis in this work.
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p p̄ d d̄

nTPC
σ

∣∣nTPC
σ,p

∣∣ < 3
∣∣nTPC

σ,p

∣∣ < 3
∣∣nTPC

σ,d

∣∣ < 3
∣∣nTPC

σ,d

∣∣ < 3

pthreshold (GeV/c) 0.75 0.75 1.3 1.3

nTOF
σ -2.5 < nTOF

σ,p < 4
∣∣nTOF

σ,p

∣∣ < 3
∣∣nTOF

σ,d

∣∣ < 5
∣∣nTOF

σ,d

∣∣ < 5

Table 5.1: PID criteria for p, p̄, d, and d̄. For momentum p > pthreshold, the TPC and
the TOF information are required simultaneously. Instead, for p < pthreshold only the
TPC is used.

5.1.4 Refined track selection

Track selection and PID have been adjusted for each particle species in order to
maximise the number of selected tracks and minimize the contamination from different
species in the analysed sample.
After the preliminary filters, the track selection is further refined and strict criteria are
introduced. Tracks are selected inside the central pseudorapidity region |η| < 0.8 and
the momentum p range is restricted from 0.5 GeV/c to 2.6 GeV/c, to avoid misidentified
particles that smear the pure signal at high momentum.
The pseudorapidity range selected is below the acceptance range of the TPC, which ex-
tends up to |η| < 0.9. However, this specific range has been chosen to ensure a high
matching efficiency between the TPC and the TOF, while avoiding any edge effects that
may appear at the detector’s acceptance limit of |η| < 0.9.
The DCAxy and DCAz are used to select primary tracks by applying the selection re-
ported in table 5.2. For deuteron, the applied selection on DCAxy is stricter than in the
case of protons to exclude spurious signals that appeared only in the deuteron distribu-
tion at low momenta.
The TPC plays a crucial role in tracking, and the quality of the reconstruction procedure
is quantified by the number of crossed TPC pad rows ncrossed and the number of findable
TPC clusters nfindable. More precisely, a signal in a TPC pad row associated with a track
is referred to as a cluster. However, due to the limited efficiency, not all the pad rows
that are crossed by a track give a signal and, in general, the number of crossed pad rows
is greater than the number of clusters. To obtain the correct number of crossed rows, a
pad without a signal is added to the total number of cluster if its contiguous pad rows
on both sides have recorded a signal. In general, the higher is the number of findable
clusters and of crossed rows, the higher is the quality of track reconstruction. This is
why tracks with a value of ncrossed/nfindable lower than 0.83 are rejected.
A summary of all the track selection criteria is in table 5.2.
Figures 5.7 and 5.8 are the distributions in momentum p (left) and transverse mo-

mentum pT (right) for (anti)protons and (anti)deuterons, respectively. The momentum
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Selection criterion Value
Pseudorapidity |η| < 0.8
Momentum p (GeV/c) 0.5 < p < 2.6
Number of findable TPC clusters nfindable > 90
Number of crossed TPC pad rows ncrossed > 70 (out of 159)
Crossed TPC rows / Findable TPC clusters ncrossed/nfindable > 0.83
Distance of closest approach in the xy-plane |DCAxy| < 0.12 cm

|DCAxy| < 0.012 cm (for deuterons)
Distance of closest approach in the z-direction |DCAz| < 0.12 cm

|DCAz| < 0.012 cm (for deuterons)

Table 5.2: Track selection criteria used in the analysis.
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Figure 5.7: Momentum p (left) and transverse momentum pT (right) distributions for
selected tracks associated with protons (blue) and antiprotons (red).

of the track is measured in the ITS and the TPC, then the track is propagated to the
TOF. As seen in the distributions in figure 5.7 and 5.8, the number of charged particles
decreases as the momentum increases. This is because high energy particles are more
weakly produced during the collision. A drop is visible both for p and pT distributions at
p= 0.75 GeV/c for (anti)protons and at p= 1.3 GeV/c for (anti)deuterons, because for
higher p the combination of the TPC and the TOF signals is required in the selection.
In figure 5.9 and 5.10 the distributions of the particle pseudorapidity η (left) and of

the azimuthal angular coordinate ϕ (right) for selected tracks associated to (anti)protons
and (anti)deuterons, respectively, are shown. Both η and ϕ of the track are estimated at
the vertex, then the track is propagated to the TOF. These distributions are useful to
check dead zones in the TOF, correspondent to the dips in figure 5.9 or 5.10. Depending
on the bending of the magnetic field particles and antiparticles hit the TOF differently
and their distributions in ϕ are slightly shifted to each other. The η distribution exhibits
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Figure 5.8: Momentum p (left) and transverse momentum pT (right) distributions for
selected tracks associated with deuterons (blue) and antideuterons (red).
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Figure 5.9: Pseudorapidity η (left) and azimuthal angle ϕ (right) distributions for selected
tracks associated with protons and antiprotons.

a depression for η = 0, in correspondence to the cathode of the TPC. In principle, for an
ideal detector, the two distributions should be symmetric with respect to zero, but their
real behavior points out the asymmetry of the ALICE detector along the beam axis due
to the operational conditions (dead zones, inefficient channels, tracking calibration, etc).
Tracks with |DCAxy| < 0.12 cm are selected if associated with protons, antiprotons,

or antideuterons. A stricter criterion is applied only for deuterons, selecting tracks with
|DCAxy| < 0.012 cm, to exclude secondaries. Antideuterons have a larger selection
range in DCAxy than deuterons because they cannot have secondary origin neither from
primary particle decays, nor from material interactions. Similar criteria are applied to
select tracks in |DCAz|. The |DCAz| < 0.12 cm is required for protons, antiprotons,
and antideuterons, and |DCAz| < 0.012 cm for deuteron only.
The distributions of DCAxy and DCAz for (anti)protons and (anti)deuterons are shown
in figures 5.11 and 5.12, respectively. At low momentum, the presence of secondary par-
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Figure 5.10: Pseudorapidity η (left) and azimuthal angle ϕ (right) distributions for
selected tracks associated with deuterons and antideuterons.

ticles, with the production point distinguishable from the collision vertex and broader
DCAxy, is more abundant than at higher p, where the distribution of primary tracks is
narrow.

5.2 The correlation function

The candidate (anti)protons and (anti)deuterons are employed to calculate the corre-
lation function according to equation 3.8. Indeed, the distributions in relative momentum
measured in the PRF k∗ of track pairs obtained from the same event (SE(k∗)) and mixed
events (ME(k∗)) are calculated as discussed in the following. Then the correlation func-
tion C(k∗) is obtained as the normalized ratio of SE(k∗) over ME(k∗).
The track pairing is performed using a new algorithm developed inside the O2 analysis
framework for the purposes of this and other analyses within the ALICE Bologna group.
The algorithm works with pairs of identical particles, like p−p or p̄− p̄, as well as non-
identical particles, like p−d or p̄− d̄.
For each good track that has been identified according to track selection and parti-
cle identification (discussed in sections 5.1.3 and 5.1.4), the momentum p, the energy
E =

√
p2 +m2, the pseudorapidity η, and the azimuthal angle ϕ are stored along with

the collision index and the vertex position along the beam axis. Particles are then com-
bined in pairs: to obtain the SE(k∗) distribution, tracks are paired if they have the same
collision index, i.e., they belong to the same event, while for the ME(k∗) distribution,
each selected particle from one event is paired to each particle from any of the other
events with similar multiplicity (for at maximum multiplicity difference of 50 tracks)
and position of the vertex (for at maximum vertex position difference of 2 cm).

The correlation function is affected also by the track reconstruction performance: one
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Figure 5.11: DCAxy (up) and DCAz(down) distributions for selected tracks associated
with protons (left) and antiprotons (right).

track can be reconstructed as two — this effect is called “splitting”, or two tracks could
be reconstructed as one — this effect is called “merging”. If one track is reconstructed
as two, these two reconstructed tracks will be very close to each other in space with
almost the same kinematic characteristics. This effect will lead more pairs in the low k∗

region, and to an overestimation of the correlation function in that region. On the other
hand, two tracks can be reconstructed as one if they are very close to each other with
almost the same kinematic characteristics. In this case less pairs would be in the low k∗

region, which will lead to an underestimation of the correlation function in that region.
To avoid the splitting and the merging effects in the correlation function, close tracks
are not used to build pairs. Two tracks are considered as close if:

∆η = (η1 − η2) < 0.02

∆ϕ∗ = (ϕ∗
1 − ϕ∗

2) < 0.02.
(5.2)

The condition is expressed in terms of the difference in η (∆η) and in ϕ (∆ϕ∗) between
two tracks under consideration, labeled with indices 1 and 2. The star (*) in ϕ∗ indicates
that the azimuthal angle of the track is evaluated at the TPC radius fixed at 1.6 m. The
track distribution in ∆η and ∆ϕ∗ is examined at three different TPC radii: 1.2 m, 1.4 m,
1.6 m and 1.8 m. The TPC radius that results in the least loss of tracks and effectively
rejects splitting and merging effects is chosen.
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Figure 5.12: DCAxy (up) and DCAz(down) distributions for selected tracks associated
with deuterons (left) and antideuterons (right).

p−p p̄− p̄ p−d p̄− d̄
SE pairs 3871084 2914748 12187 7449
ME pairs 683.9 million 506.4 million 1149300 732796

Table 5.3: Same Event (SE) and Mixed Event (ME) number of pairs.

The relative momentum k∗ of the pair is calculated from the energy-momentum
four vectors of the tracks. Relativistic Lorentz transformations are applied on the four-
momentum of the track using the ROOT::TMath::Boost class in ROOT. Then, the
relativistic relative momentum k∗ in the pair rest frame is evaluated as the difference
between the two boosted four-momenta of the coupled tracks.
The SE(k∗) and ME(k∗) pairs distributions are shown in figure 5.13 for p−p and p̄− p̄.
Figure 5.14 shows the SE(k∗) and ME(k∗) pairs distributions for p−d and p̄− d̄.
The number of obtained pairs of p−p, p̄− p̄, p−d, p̄− d̄ for SE and ME is in table 5.3.
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Figure 5.13: Pair relative momentum k∗ distribution for pairs from the same event (right)
and mixed event (left). The proton−proton pair distribution (blue) is compared with
the antiproton−antiproton pair distribution (red).
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Figure 5.14: Pair relative momentum (k∗) distribution for pairs from the same event
(right) and mixed event (left). The proton−deuteron pairs distribution (blue) is com-
pared with the antiproton−antideuteron distribution (red).
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Figure 5.15: Correlation function for proton−proton pairs (blue) and
antiproton−antiproton pairs (red) obtained from the normalized ratio of the same event
and mixed event distributions (figure 5.13).

5.3 Results

5.3.1 p−p and p̄− p̄ correlation and source radius

The correlation function is obtained as the normalized ratio of SE(k∗) and ME(k∗),
separately for p−p (positive charge correlation) and p̄− p̄ (negative charge correlation),
and shown in figure 5.15. The correlation function is normalized by scaling it with
the ratio between the integrals of the SE(k∗) and the ME(k∗) calculated in the range
0.2 < k∗(GeV/c) < 0.6. This range falls outside the region where the femtoscopic signal
is, correspondent to k∗ < 0.2 GeV/c; therefore, the correlation function is expected to
be flat in 0.2 < k∗(GeV/c) < 0.6.
The obtained correlation functions for positive and negative charges are comparable,
meaning that the interaction among particles is the same as among antiparticles, as
expected from the strong interaction theory. This is also verified by comparing the ratio
of the positive and negative charge correlations, resulting consistent with unity within
the uncertainties up to very high momenta, as visible in figure 5.16.
The SE(k∗) for p−p and p̄ − p̄ are added, as well as the ME(k∗), obtaining the total

SE(k∗) and ME(k∗). The total correlation function is calculated by dividing the total
SE(k∗) over the total ME(k∗). After the division, the correlation function is normalized
by scaling it with the ratio between the integrals of the total SE(k∗) and ME(k∗) in the
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Figure 5.16: Ratio of proton−proton over antiproton−antiproton correlation functions
shown in figure 5.15.

k∗ range discussed above. The total correlation function is shown in figure 5.17 (black
points).
The experimental total correlation function is fitted in the range 0 < k∗(GeV/c) < 0.2
to the theoretical one, using the CATS framework (see section 3.3).
In the fit, the hypothesis of the one dimensional Gaussian source is assumed. The
theoretical correlation function is numerically computed by CATS using the Argonne ν18
potential plus the Coulomb potential to describe the strong nucleon-nucleon interaction
and the electromagnetic force.
In this fit, momentum resolution and purity corrections are not applied. These must be
performed using Monte Carlo simulations, as it will be discussed in section 5.3.3.
As discussed in section 3.3, the fraction of genuine proton-proton pairs λgenuine in the
experimental C(k∗) (equation 3.10) is a fixed parameter in CATS. To take into account
possible contamination due to feed-down particles, secondaries from the material, and
misidentified particles, in this analysis λgenuine is fixed to 60%. This value results from
the scanning over different values of λgenuine of the χ2/ndf of the fit, and the λgenuine
value that minimizes the χ2/ndf is chosen. This value differs from the one used in the
sample of pp collisions at

√
s = 13 TeV in Run 2 (figure 3.3), because here the corrections

are not yet applied, contrary to the case of the Run 2 analysis.
The source radius extracted from the fit as a free parameter is

r0 = 1.069± 0.014 fm (5.3)
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Figure 5.17: Correlation function for proton−proton and antiproton−antiproton ex-
tracted in pp collisions at

√
s = 13.6 TeV. The result is fitted using CATS (red line),

assuming a one dimensional Gaussian source and using the Argonne ν18 plus the Coulomb
potential to describe the proton−proton interaction. The source radius r0, extracted as
a fit parameter, is equal to 1.069 ± 0.014 fm.

with a χ2/ndf = 50.78/19 = 2.67. CATS uses a linear baseline to correct non-femtoscopic
effects, but to increase the precision of the fit, a second order polynomial correction is
applied, and then the corrected function is fitted with CATS using a flat baseline and
fixing the slope a at 0 and the normalisation b at 1, usually both free fit parameters in
CATS. It is to be noted that the choice of the baseline shape is arbitrary and thus is a
potential source of systematic uncertainty.
The extracted source size is very close to the previous result obtained from the data
sample of pp collisions at

√
s = 13 TeV, here shown in figure 3.3. However, the fraction

of impurities included in the
√
s = 13.6 TeV sample, as well as the missing momentum

resolution correction, strongly affects the final correlation function and the source size.
Including more contamination (equivalent to fix the λgenuine to a lower value) the ex-
tracted source radius is bigger, and the peak in the correlation function is higher, as in
the case of the correlation function in figure 5.17 with respect to that in figure 3.3.
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Figure 5.18: Correlation function for proton−deuteron pair (blue) and
antiproton−antideuteron pair (red) obtained from the normalized ratio of the
same event and mixed event distributions of pairs (figure 5.13). The uncertainties are
larger than in figure 5.15, because of the lower number of pairs (see also table 5.3).

5.3.2 p−d and p̄− d̄ correlation

The proton−deuteron correlation function is obtained following a similar strategy as
for the proton−proton case. Same event and mixed events distributions in figure 5.14 are
divided and normalized in 0.4 < k∗(GeV/c) < 0.8 to compute the p−d (positive charge
correlation) and p̄ − d̄ (negative charge correlation) correlation functions, compared in
figure 5.18.
The ratio of the positive (p−d) over the negative (p̄− d̄) charge correlations is in figure
5.19. Comparing this to the plot in figure 5.16, the uncertainties in this case are much
bigger, but the ratio of positive and negative charge correlations is still consistent with
unity within the uncertainties, even with large fluctuations.
The statistical uncertainties are essentially determined by the size of the deuteron sample,
as deuteron is rarer than proton. To increase the deuteron sample, the analysis will be
repeated in the future using the full sample of pp collisions at

√
s = 13.6 TeV. One could

attempt using looser track and PID selections, though at the risk of reducing the purity of
the sample. As the selections used in this preliminary analysis proved to be satisfactory,
the preferred solution will be to increase the number of pp collisions analysed rather
than modifying the selections.
This result, yet preliminary, represents the first attempt to measure the proton−deuteron
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Figure 5.19: Ratio of proton−deuteron over antiproton−antideuteron correlation func-
tions showed in figure 5.18.

correlation in minimum bias pp collisions at
√
s = 13.6 TeV. Summing the positive and

the negative charge correlations in figure 5.18, the total proton−deuteron correlation
function is obtained, as shown in figure 5.20.

The shape of the p−d correlation function measured in this analysis can be compared
with the measurement performed in high multiplicity pp collisions at

√
s = 13 TeV in

[56], reported in figure 5.21. It is worth also pointing out that whereas the genuine p−d
interaction is expected to be the same in different collision systems and energies, the
source is different. Measurements at different energies are required to extract informa-
tion about the source.
In figure 5.21, the measured and theoretical correlation functions are compared. Differ-
ences between the model and the measured correlation function are expressed in term of
number of standard deviations, in the lower panel of figure 5.21.
In [56], the proton−deuteron correlation is studied using different theoretical models
for the interaction among particles in the pair, considering the nuclear interaction at
work in the p-(np) system. This includes the Argonne ν18 two-nucleon potential plus
the Urbana IX three-nucleon (NNN) [70] contribution and the Coulomb potentials. The
most successful agreement of the theoretical correlation function with data is obtained
when the p−d system is modeled as a three-body system, considering the total pair
wave function (red curve). The correlation function is also calculated using a pion-
less EFT at NLO (pink curve). The blue curve, correspondent to the contribution of
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Figure 5.20: Total proton−deuteron experimental correlation function in pp collisions
data at

√
s = 13.6 TeV.

the s-wave only, does not describe properly the experimental correlation function for
50 < k∗ (MeV/c)< 150, while the pink curve is in good agreement with the experimen-
tal data only for k∗ < 100 (MeV/c).

The fit of the p−d correlation function in figure 5.20 is beyond the scope of this work,
as in order to extract the source radius for the p−d pair, a deeper investigation of the
three-body interaction is required. In addition, prior to the fit several correction will be
implemented as the next steps of the analysis.

5.3.3 Next steps: corrections

Comparing the experimental correlation measured with the
√
s = 13.6 TeV sample

(figure 5.17) and the published result for p−p correlation with the
√
s = 13 TeV sample

(figure 3.3), some corrections must be implemented in the final analysis to be consistent.
To proceed like this Monte Carlo (MC) simulation must be used in the corrections. As
Monte Carlo simulations that reproduce the realistic tracking and PID performance of
ALICE in the data sample employed for the analysis have become available recently, this
study will be performed as a next step for the analysis.

The measured correlation function is affected by detector effects smearing the real
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Figure 5.21: Proton deuteron correlation function measured by ALICE in high multi-
plicity pp collisions at

√
s = 13 TeV [56]. The experimental correlation is compared to

the theoretical correlation functions using different potentials to model the three-body
interaction. The lower panel shows the difference between the measured and calculated
correlation functions in number of standard deviations.
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particle momenta especially in the small k∗ region. The experimental result must be
re-scaled, correcting it in order to consider real detector effects and the limitation in
resolution. To this end the correlation function and the detector effects must be simu-
lated based on a simulated particle momenta distribution extracted from the MC. The
corrected experimental correlation function with momentum resolution correction would
have lower peak, and larger width with respect to the uncorrected one, so it should be
closer to the previously published result.

Through MC simulation, the purity of the sample can be estimated (true parti-
cles/ true particles + misidentified). In the case of (anti)protons pair correlation, the
(anti)particle of interest can be misidentified with kaons that smear the pure signal. The
proton can ha secondary origin in the decay of Λ or Σ baryons, or in the material of the
detector. The antiproton instead is produced by antibaryons decay (like Λ̄) but not from
the material. Even if the PID is accurate, the presence of misidentified smearing particle
in the sample in not avoidable. The correction for purity means that the experimental
uncorrected correlation function is related to the corrected one though the purity frac-
tion. Being this corrective factor always lower than one, this correction would lower the
correlation function points above the unity, and rise the points above the unity, thus the
peak. No changes are expected in the non femtoscopic region.

In the case of proton−deuteron correlation, correction for momentum resolution and
purity must be implemented following the same approach discussed for the proton−proton
correlation. The purity correction aims at avoiding contamination in the sample due to
the presence of secondaries produced in weak or strong decaying resonances, misiden-
tified particles and secondaries produced in the material. The following contributions
have to be included:

p−d = p−d+pΛ−d+pΣ+−d+p̃−d+p−d̃+pΛ−d̃+pΣ+−d̃+p̃−d̃+pM−d+px−dM (5.4)

where pΛ and pΣ+ are (anti)protons produced in Λ or Σ baryon decays, p̃ and d̃ are
misidentified (anti)particles and pM , dM are particles produced in the material. px can
represent any kind of proton previously introduced. The deuteron cannot have a sec-
ondary origin from weak or strong decays due to its mass, but it can be produced in the
detector material. The antideuteron cannot have secondary origin neither from primary
particle decays, nor from material interactions.

5.3.4 Final remarks

The proton−proton and the proton−deuteron correlation functions are rather dif-
ferent. Both exhibit a drop at very low k∗ due to the Coulomb repulsion among the
positively charged particles in the pairs. Protons are fermions and they feel the Pauli
blocking that imposes that two or more identical fermions can not be in the same quan-
tum state. Thus, the proton−proton pair correlation function is described by the quan-
tum statistical mechanics plus the Coulomb and strong interactions, resulting in a peak
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for k∗ < 50 MeV/c that drops to zero for k∗ →0.
On the other hand, deuterons are bosons, and being non-identical particles, protons and
deuterons can be in the same quantum state without any limitation from quantum sta-
tistical mechanics. The interaction among protons and deuterons is due to Coulomb and
strong interactions.
Notably, the most recent studies presented in [56] indicate that the study of the p−d cor-
relation can provide access to the genuine three-body interaction. The results obtained
with the work presented in this thesis are therefore promising and set the basis for the
measurement of the p−d correlation function using pp collision data from the ongoing
LHC Run 3.
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Conclusions

The work presented in this thesis is a preliminary analysis to measure proton−proton
and proton−deuteron pair correlations in pp collisions at

√
s = 13.6 TeV using the AL-

ICE detector at the LHC. To carry out the analysis, a new framework has been developed
within the official analysis framework of ALICE. The new algorithm optimizes the parti-
cle identification of (anti)protons and (anti)deuterons and produces the coupling of the
identified tracks into pairs.
As a result of the analysis, the experimental correlation functions of proton−proton and
proton−deuteron have been obtained. The measured proton−proton correlation func-
tion was fitted using CATS, a dedicated software that solves numerically the Schrödinger
equation for the particle pair starting from the choice of an appropriate interaction po-
tential, which in this case was the Argonne ν18 potential plus a Coulomb interaction
term. The fit of the theoretical correlation function to the measured one returned the
radius of the proton source. The measured radius is r0= 1.069 ± 0.014 fm, compatible
within the uncertainties with the ALICE measurament in pp collisions at

√
s = 13 TeV.

It is to be noted that the fit performed did not consider yet momentum resolution correc-
tions, systematic uncertainties, and purity correction, which are based on Monte Carlo
simulations and must be considered to improve the accuracy of the fit and the precision
of the radius measurement. The proton−deuteron correlation function was measured
with high uncertainties and statistical fluctuations because of the small deuteron sample
in the analysed collision sample. However, the shape of the correlation is consistent with
the very recently published proton−deuteron correlation obtained for

√
s = 13 TeV pp

collisions.
Given the present statistical uncertainties, a fit to the correlation function for p−d is
premature. In addition, such a fit would require a deeper theoretical understanding of
the three-body interaction that is beyond the purposes of the work presented in this
thesis.
The promising result of this work established the basis for extending this analysis to the
entire pp dataset available from the ongoing LHC Run 3. Based on its good performance,
the final analysis will employ the new framework developed in the scope of this thesis.
Nevertheless, this work offered the opportunity to begin the implementation of the new
analysis framework and to set the optimal selection criteria for the final analysis. All
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the corrections not considered in this thesis because of time limitations would be fully
included in the final analysis.
This work is part of the ERC-founded CosmicAntiNuclei project, which aims to validate
coalescence models and predict the expected signal and background rates for dark matter
light antinuclei by improving the current modeling of the formation mechanisms. To this
end, the source radius obtained from the correlation analysis carried out in this work
may be instrumental for modeling nucleosynthesis in high-energy interactions.
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[8] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones,
and D. Zaritsky, “A direct empirical proof of the existence of dark matter,” The
Astrophysical Journal, vol. 648, no. 2, p. L109, 2006.

[9] NASA, “NASA finds direct proof of Dark Matter,” retrieved on August 21, 2006.
[Online]. Available: https://www.nasa.gov/mission pages/chandra/multimedia/
photos06-096.html

[10] S. Giagu, “WIMP dark matter searches with the ATLAS detector at the LHC,”
Frontiers in Physics, vol. 7, 05 2019.

90

https://www.nasa.gov/mission_pages/chandra/multimedia/photos06-096.html
https://www.nasa.gov/mission_pages/chandra/multimedia/photos06-096.html


[11] N. Topchiev, A. Galper, V. Bonvicini, I. Arkhangelskaja, A. Arkhangelskiy,
A. Bakaldin, S. Bobkov, O. Dalkarov, A. Egorov, Y. V. Gusakov et al., “High-
energy gamma-ray studying with GAMMA-400,” arXiv preprint arXiv:1707.04882,
2017.

[12] N. Fornengo, L. Maccione, and A. Vittino, “Dark matter searches with cosmic
antideuterons: status and perspectives,” Journal of Cosmology and Astroparticle
Physics, vol. 2013, no. 09, p. 031, 2013.

[13] M. Aguilar, L. A. Cavasonza, G. Ambrosi, L. Arruda, N. Attig, F. Barao, L. Barrin,
A. Bartoloni, S. Başeğmez-du Pree, J. Bates et al., “The Alpha Magnetic Spectrom-
eter (AMS) on the international space station: Part II—Results from the first seven
years,” Physics reports, vol. 894, pp. 1–116, 2021.

[14] D. Hooper, I. Cholis, T. Linden, and K. Fang, “HAWC observations strongly favor
pulsar interpretations of the cosmic-ray positron excess,” Physical Review D, vol. 96,
no. 10, p. 103013, 2017.

[15] A. Oliva. (2023) Search for anti-nuclei with AMS-02. EMMI2023. Bologna.
[Online]. Available: https://indico.gsi.de/event/15762/contributions/69261/
attachments/42627/59510/EMMI2023%20-%20Search%20for%20anti-nuclei%
20with%20AMS-02%20-%20A.%20Oliva.pdf

[16] J. Cooley, T. Lin, W. H. Lippincott, T. R. Slatyer, T.-T. Yu, D. S. Akerib, T. Ara-
maki, D. Baxter, T. Bringmann, R. Bunker et al., “Report of the topical group on
particle dark matter for Snowmass 2021,” arXiv preprint arXiv:2209.07426, 2022.

[17] J. Beatty, A. Nelson, A. Olinto, G. Sinnis, A. Abeysekara, L. Anchordoqui, T. Ara-
maki, J. Belz, J. Buckley, K. Byrum et al., “Snowmass Cosmic Frontiers 6 (CF6)
working group summary–The Bright Side of the Cosmic Frontier: Cosmic probes of
fundamental physics,” arXiv preprint arXiv:1310.5662, 2013.
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