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Abstract

Gravitational collapses are natural laboratories where observable signatures of a quantum theory
of gravity may be produced and may be hidden in detectable astrophysical phenomena. A rooted
theoretical description of a spherically symmetric gravitational collapse in General Relativity
is given by the Oppenheimer-Snyder model. However, General Relativity is expected to break
down at the very late stages of the collapse, and the classical dynamics to be affected by
quantum gravitational effects. An effective quantum description of the Oppenheimer-Snyder
model is provided by means of a bound-state quantisation procedure, where the areal radius
of a single layer of dust is quantised in analogy to the position of the electron in the hydrogen
atom [1]. In this work, the same procedure has been extended to an isotropic distribution of
dust, which is discretised into an arbitrary number N of nested layers, each containing νi dust
particles. The final state of the collapsed matter is represented by the global ground state of a
core of quantum dust of average areal radius Rs ≈ 3/2GNM , where M is the total ADM mass,
which naturally reproduces the area quantisation of a black hole. Then, macroscopic properties
of the core have been investigated assuming that a fraction of dust particles is in an arbitrary
excited state. Furthermore, a more accurate description of the ground state dust distribution
has been explicitly determined. Near the centre, the mass function is shown to grow linearly
with the areal radius, and the central singularity is replaced by an integrable singularity. The
core surface is instead described by a non-linear fifth-order polynomial in the transitional shell
16/9RH ≲ r ≲ 3/4RH and matches smoothly the outer Schwarzschild solution and the inner
bulk matter. Finally, observational signatures of quantum gravitational effects provided by this
model has been addressed.
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Introduction

Today, there are strong evidences that our universe is populated by a copious number of black
holes [2]. In General Relativity, black holes are described by asymptotically flat, stationary,
vacuum solutions to Einstein’s field equations, and identified as regions in spacetime causally
disconnected from the rest. Their boundaries are called event horizons1. Because of the very
few parameters through which they are identified, namely their mass, charge and angular mo-
mentum, black holes are said to have almost "no-hair". Astronomers have discovered two
populations of astrophysical black holes: stellar-mass black holes, with masses in the range
5M⊙ ≲ M ≲ 102M⊙, and supermassive black holes, with masses 105M⊙ ≲ M ≲ 1010M⊙. In
particular, the formers are thought to be created during the gravitational collapse of heavy stars
[4]. When a star exhausts its nuclear fuel, thermonuclear reactions sustaining the inner pressure
of the body stop and no forces can any more balance its own gravitational attraction. The inner
heaviest core starts contracting, while an enormous fraction of energy and matter is expelled
in few seconds, and if the collapsing core has approximately mass M ≳ 5M⊙, nothing will be
able to end the collapse and to prevent the creation of a black hole. In General Relativity, an
unbounded compression of matter would curve spacetime to the point that the theory itself is
expected to break down, and to be replaced by a more fundamental description. Therefore,
the compression of matter into "ultra-high" density regions opens up to new scenarios, where
quantum effects could significantly modify the classical dynamics of a gravitational collapse.

Most semiclassical models of the collapse of a spherically symmetric distribution of dust
predict that a non-singular spacetime is left behind a re-expanding matter core [5, 6, 7]. These
are minisuperspace model, where the system is usually reduced to describe only few degrees
of freedom. With a canonical analysis of an effective action constructed from the Einstein-
Hilbert action adapted to the symmetries of the system, usually it is possible to construct a
quantum theory of gravitational systems using a Dirac’s quantisation prescription, an approach
which is usually called quantum geometrodynamics or canonical quantisation of gravity. The
same qualitative picture emerges from another not totally independent approach to quantum
collapse models, which is Loop Quantum Cosmology (LGC), an application of Loop Quantum
Gravity (LQG) techniques to cosmology and big bang models [8, 9, 10].

Particularly interesting for our discussion is the scale at which matter stops contracting.
From a Quantum Field Theory (QFT) perspective, gravity can be consistently described by an
effective field theory of spin-2 vacuum fluctuations over a background vacuum solution. The

1There exist more general definitions in terms of dynamical horizons, which does not even require spacetime
to be asymptotically flat [3].
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length scale at which the theory is expected to lose a connection with experimental observations
is commonly set to be the Planck length

ℓp =
√
ℏGN . (0.0.1)

Working in units of ℏ = 1, the Planck length corresponds to the inverse of the Planck mass

mp =

√
ℏ
GN

, (0.0.2)

through which the energy cut-off of the effective theory of gravity is equivalently set to mp.
In agreement with this picture are many collapse models, in which quantum dynamics deviate
significantly from classical trajectories at energy E ≈ mp [11, 5, 6]. However, in LQG models
a quantum-gravitational repulsion may appear well before the Planck scale, in that the bounce
could occur when the matter density ρ reaches a critical density ρc estimated to be,

ρc ∼
mp

ℓ3p
. (0.0.3)

For a spherically symmetric and homogeneous source, the linear dimension ℓ of the quantum
region is simply given by

ℓ ≈
(M
ρc

)1/3
∼
(M
mp

)1/3
ℓp, (0.0.4)

where M is the Arnowitt-Deser-Misner (ADM) mass of the system. For solar-mass black holes,
ℓ is larger than ℓp of tens of orders of magnitude, which open up the possibility of detecting
quantum gravitational effects at scales far from the Planck scale. Furthermore, if quantum
gravitational effects are not confined to some experimentally inaccessible scale, features of a
quantum theory of gravity could influence the spacetime geometry up to the horizon and beyond.
Disagreement with classical solutions to Einstein’s equation would suggest that actually black
holes have quantum hair.

A serious limitation of a canonical analysis is that technical complications make it imprac-
tical for any model with many degrees of freedom. All previous quantum mechanical models
have as only dynamical degree of freedom the areal radius of a collapsing shell, whose dynamics
will hardly reproduce a realistic collapse of a massive star.

Recently, an alternative quantisation procedure [1] to the canonical approach was shown
to reproduce the picture of a spherically symmetric black holes as a final end state of the
Oppenheimer-Snyder collapse. The Hamiltonian constraint of General Relativity is ensured
by the radially free-falling dust, which here is described by a single shell whose areal radius
satisfy the constraint equation, name the geodesic equation for radially in-falling matter. Then,
the quantisation of the areal radius of a single shell provided an effective quantum mechanical
description in analogy to the hydrogen atom, where the position of the electron is quantised.
As a result, a highly degenerate spectrum of bound states is produced, where the ground state
is characterised by a large surface area quantised accordingly to Bekenstein’s area law [12].
The problem of the hairy geometry is naturally addressed in this model, since the presence
of a macroscopic quantum core with width Rs ≈ RH = 2GNM should be reflected into the
quantum state of the outer geometry, by producing deviations from the classical Schwarzschild
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solution. The avoidance of the classical singularity is realised by showing that quantum states
with wavelengths arbitrarily smaller than the gravitational radius are not physical states.

If self-consistency of new theoretical models is the only way to ensure the reliability of a
model in absence of any possible experimental test, it is common practise to leave the last
word only to their agreement with real experiments. To make contact with observations, one
must find testable predictions within a theory which reasonably describes a realistic physical
system. One main advantage from more traditional semiclassical models based on quantum
geometrodynamics is that, the present approach can be easily extended to describe more realistic
systems where matter degrees of freedom are included. As the mathematical complexity of the
problem forbid even in this case to represent matter particles from the fundamental point of
view of the Standard Model, their existence should be encoded in some entropies, which in
principle could be computed from the effective quantum description. For these reasons, this
work is aimed to extend this fruitful quantisation procedure to a more refined system. The
content of this master thesis is organised in three Chapters:

Chapter 1
The framework of General Relativity is set up to investigate gravitational collapse sce-
narios. In particular, spherically symmetric collapses are analysed in the most general
setting, to understand all possible dynamical behaviours predicted by Einstein’s theory.
After that, the Tolman-Bondi-Lemaître and Oppenheimer-Snyder collapse models has
been solved analytically and all solutions determined. In particular, the OS model is
shown to produce a singular solution of Einstein’s field equations describing a black hole.

Chapter 2
The Hamiltonian theory of gravity is reviewed to understand, and it is addressed the
problem of the quantisation of gravitational systems. After introducing the main tools
for quantisation, three semiclassical models of a gravitational collapse in the canonical
approach will be reviewed. In particular, the collapse of a null shell of dust and the
quantum LTB and OS models. The scale at which the contraction stops is showed to
be approximately at the Planck scale for the null and LTB collapses, while the canonical
quantum theory of the OS model does not reproduce the expected picture of the classical
model.

Chapter 3
a bound-state quantisation procedure has been extended to an isotropic distribution of
dust, which is discretised into an arbitrary number N of nested layers, each containing a
number νi of dust particles. This corresponds to the Oppenheimer-Snyder model, where
dust particles fall along radial time-like geodesics in the Schwarzschild spacetime manifold.
The areal radius of each shell has been quantised with a standard canonical prescription,
and solutions to the Schrödinger equations has been proved to describe a discrete spectrum
of bound states. The quantisation has been extended to dust particles as in [13], and the
full Hilbert space of the theory has been determined. The global ground state of the
collapsed ball describes a macroscopic quantum core with width Rs ≲ RH , and naturally
reproduces the area quantisation of a black hole [14, 12]. After that, the properties of
macroscopic core have been investigated assuming that a fraction 1 − x of particles is
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excited, addressing the possibility to provide an effective framework to the production of
gravitational waves. At the end, a more accurate description of the surface core has been
proposed. In the innermost region, a linear approximation of the Misner-Sharp-Hernandez
mass function replaces the central singularity with an integrable singularity. However, this
approximation is shown to break down at the surface and must be replaced by a non-linear
function interpolating the dust density distribution |ψNs |2 in the outermost layer.
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Chapter 1

Classical dynamics of a spherically
symmetric gravitational collapse

J. Robert Opphenheimer and his student Hartland Snyder pioneered in 1939 the theoretical
understanding of a gravitational collapse, publishing a seminal work [15] which described the
creation of a black hole in a collapse scenario. In this chapter, a general theoretical framework
will be developed to describe the collapse of a spherically symmetric body. Then, the inhomoge-
neous dust model, called Lemǎitre-Tolman-Bondi model, and the special case of homogeneous
dust, namely the Oppenheimer-Snyder model, will be discussed.

1.1 General model

The most general spherically symmetric metric is given by the line element,

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 +R(t, r)2dΩ2, (1.1.1)

where dΩ2 = dθ2 + sin2θdϕ2 is the line element of a two-sphere. Let us consider the collapse of
an anisotropic distribution of matter described by energy-momentum tensor1

T tt = ρ(t, r), T rr = pr(t, r), T θθ = T ϕϕ = pθ(t, r). (1.1.2)

The function ρ(t, r) represents the energy density as measured by a local observer instanta-
neously moving with matter, while pr(t, r) and pθ(t, r) are principal pressures measured from
the same observer, whose velocity field is

u⃗ = (e−ν , 0, 0, 0). (1.1.3)

In general, all possible final states of a collapsing ball are determined by classes of solutions to
the Einstein’s equations given the initial matter profiles

ρ0(r) = ρ(t0, r), pr,0(r) = pr(t0, r), pθ,0(r) = pθ(t0, r), (1.1.4)
1In literature, {t, r, θ, ϕ} are called synchronous-comoving coordinates for obvious reasons.
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at the initial Cauchy hypersurface Σ0 = Σ(t0) [16]. From (1.1.1), any hypersurface Σt is foliated
by two-spheres of areal radius R(t, r) labelled by the comoving coordinate r. To ensure that
the collapse will start from a physically well-defined initial state, we have to require regularity
conditions on ρ, pr and pθ at Σ0. Moreover, in order to have a well-posed Cauchy problem,
spacetime (M,g) is assumed to be globally hyperbolic, and the metric functions

ν(t0, r), ψ(t0, r), R(t0, r), (1.1.5)

to be at least C2 at the initial time, ∀r ∈ [0, rb].
By solving Einstein’s field equations 2 [17],

Gµν = 8πGNTµν

for the metric field (1.1.1), we explicitly get from G00, G01, G11 and G22 = G33 a system of
four second-order partial differential equations,

4πρ =
m′

R2R′ (1.1.6)

4πpr = − ṁ

R2Ṙ
(1.1.7)

ν ′ = 2
pθ − pr
ρ+ pr

R′

R
− p′r
ρ+ pr

(1.1.8)

Ṙ′ =
1

2

(
R′ Ġ

G
+ Ṙ

H ′

H

)
, (1.1.9)

where
m(t, r) :=

R

2GN

(
1−G+H

)
, (1.1.10)

and G(t, r) and H(t, r) are expressed by

H(t, r) := Ṙ2e−2ν(t,r), G(t, r) := R
′ 2e−2ψ(t,r). (1.1.11)

The shorthand notations ḟ = ∂tf and f ′ = ∂rf will be adopted in the rest of this chapter. At
the late stages of the collapse, the divergence of matter density ρ(t, r) will signal the presence of
a singularity in spacetime (a curvature singularity), as follows from (1.1.6) if either R(ts, r) =
0 or R(ts, r)′ = 0. The vanishing of R′ = 0 with R ̸= 0 corresponds to a shell-crossing
singularity, which occurs when two nearby matter shells cross each other at a finite comoving
radius r. However, since they don’t correspond to the divergence of curvature scalars, they will
be disregarded assuming R′ > 0 everywhere, Moreover, even the first condition R(ts, r) = 0
fails to uniquely identify the singularity, in that for any t0 ≤ t < ts, the areal radius R(t, r = 0)
vanishes "at the centre" (degenerate two-sphere of zero areal radius labelled by r = 0) of the

2In units c = 1.
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collapsing ball. This issue can be solved by fixing the radial coordinate gauge; since r is still
only a label, introducing a scale function a(t, r) defined by

R(t, r) = a(t, r)r, with a(t0, r) = 1, a(ts, r) = 0, ∀r ∈ [0, rb] (1.1.12)

ts will be uniquely identified by a(ts, r) = 0, since a(t, r) is everywhere non-vanishing on Σt
for t0 ≤ t < ts. The system of five differential equations (1.1.6), (1.1.7), (1.1.8), (1.1.9) and
(1.1.10) do not fix uniquely the evolution of the seven unknown functions ρ, pr, pθ, ν, R, m
and ψ, and that give us the freedom to choose two free functions. If an accurate description of
matter inside the collapsing ball is known, the equations of state

pr = pr(ρ, α), pθ = pθ(ρ, α),

will fix the two degrees of freedom and determine a unique solution to the Einstein’s equa-
tion, provided more equations 3 for the additional variables α. More in general, the two free
functions can be constraint if we require regularity conditions on initial data and during the
dynamical evolution, and if we assume broad energy conditions on matter. In both cases, to
solve analytically the Einstein’s equations is almost impossible, and relevant information about
the dynamics and the final state of the collapse can be extracted easily if we follow the second
more general analysis. Finally, equation (1.1.10) provides the equation of motion for each shell
labelled by r, which can be written more explicitly as

Ṙ2 = e2ν
(2GNm

R
+G− 1

)
, (1.1.13)

or for the scale function a(t, r),

ȧ = e2ν
(2GNm

r3a
+
G− 1

r2

)
. (1.1.14)

Before discussing the regularity and energy conditions, (1.1.9) can be solved in G, and the
family of solutions expressed as

G(a, r) = b(r)e2rA(a,r), (1.1.15)

where A(a, r) is a solution to the first order partial differential equation

∂aA(a, r) =
ν ′

R′ . (1.1.16)

1.1.1 Regularity and energy conditions

Einstein’s equations by themselves do not provide any information about the physical properties
of the collapsing matter. In classical models, restrictions on matter distribution are usually
introduced to rule out "exotic" systems, which cannot be as yet reproduced in a laboratory
with well-know repeatable procedures. These restrictions are typically expressed in the form

3For a barotropic fluid there is no additional variable α, and equations of state reduce to pr = pr(ρ) and
pθ = pθ(ρ).
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of energy conditions for the components of the energy-momentum tensor, and the three most
common conditions which a classical distribution is required to satisfy are:

Weak energy condition (WEC):

TµνY
µY ν ≥ 0 for any time-like vector Y µ,

or
ρ ≥ 0, ρ+ pr ≥ 0, ρ+ pθ ≥ 0.

Dominant energy condition (DEC):

Jµ = Tµν Y
ν ,

is time-like and future directed for any time-like and future directed vector Y µ, or

ρ ≥ 0, ρ ≥ |pr|, ρ ≥ |pθ|.

Strong energy condition (SEC):

TµνY
µY ν +

1

2
T ≥ 0 for any time-like vector Y µ,

or
ρ+ pr + 2pθ ≥ 0, ρ+ pr ≥ 0, ρ+ pθ ≥ 0.

Regular centre

The energy density, which is assumed to be ρ ≥ 0 as part of the energy conditions4, must be
regular at the core of the ball, and (1.1.6) requires that M must behave as r3 near the regular
centre, before that the singularity is formed. Therefore, the function m(t, r) must have the
general form

m(t, r) = r3M(t, r), (1.1.17)

where M(t, r) is a positive regular function for t0 ≤ t < ts and r ≥ 0. From equation (1.1.6),
m(t, r) as defined in (1.1.10) represents the total mass within a shell of comoving radius r at
time t, and it is usually called Misner-Sharp-Hernandez mass function. At the regular centre,
the net gravitational pull exerted on spherically distributed matter vanishes, thus also every
pressure gradient will vanish in the same region. This implies that,

p′r(t, 0) = 0, p′θ(t, 0) = 0, ∀t ∈ [t0, ts[. (1.1.18)

Moreover, from (1.1.8), at r = 0 the derivative ν ′ could diverge, unless we require that

pr(t, r)− pθ(t, r) = 0 (1.1.19)
4As will be showed, for dust this requirement is satisfied by all energy conditions.
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Clearly, this condition forces the core of the star to behave as a perfect fluid during the late
stages of the collapse, and allow us to express ν near r = 0 as

ν(t, r) = r2g(t, r), (1.1.20)

since under condition (1.1.18) p′r ∼ r for r << 1. Furthermore, by looking at (1.1.14), the scale
factor will be regular at r = 0 only if G− 1 ∼ r for r << 1, which allows us to write b(r) as

b(r) = 1 + r2f(r), (1.1.21)

where f(r) is a regular function at r = 0.

Initial conditions

Regularity conditions at the initial data Cauchy surface Σ0 ensure that the collapse does not
start in a singular state and that the initial configuration is not trapped. Once all of them
are specified and the free functions fixed, the dynamical evolution of the system is completely
determined. The set of initial data to be specified is

ρ(t0, r) = r0(r), pr(t0, r) = pr,0(r), pθ(t0, r) = pθ,0(r), (1.1.22)
R(t0, r) = R0(r), ν(t0, r) = ν0(r), ψ(t0, r) = ψ0(r), (1.1.23)

and
m(t0, r) = m0(r). (1.1.24)

Since the initial values must be solution of the Einstein’s equations, they will not be all inde-
pendent and some of them cannot be chosen arbitrary. As later some of this initial conditions
will be used, it is useful to observe that for ν and A the initial values can be expressed in terms
of the only function g(t0, r),

ν0(r) = r2g(t0, r) = r2g0(r) (1.1.25)

∂aA(r, a(t0, r)) = ∂aA
∣∣
0
= 2g0r

2 + g′0r
3. (1.1.26)

Trapped configuration

In general, theoretical models describing gravitational collapses are useful to understand how
and when each shell could be trapped during the collapse. A trapped surface can be defined
from a two-dimensional submanifold S embedded in M. There exist two future-directed null
vectors orthogonal to S, l⃗ usually called outgoing null normal, and k⃗ called ingoing null normal.
To be more precise, they are properly outgoing and ingoing if S is orientable, i.e. we can define
the interior and exterior of S. For a trapped surface it is not necessary to require S being
orientable, but indeed it is if we would characterise locally the boundary of a black hole. We
denote hµν the components of the pulled-back metric in S from M, where

√
h =

√
det(hµν).

The metric tensor h is usually called induced metric in S.
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Def. 1.1.1: Trapped surface

A closed, (i.e. compact without boundary) two-dimensional spacelike submanifold S is
a future trapped surface if, for both families of outgoing and ingoing future-directed null
geodesics, the expansion is negative on S,

θ(x⃗)|S < 0 for x⃗ ∈ {⃗l, k⃗}, where θ(x⃗) =
1√
h
£x⃗

√
h

If θ(⃗l) = 0 and θ(k⃗) < 0, then S is called marginally trapped surface.

In a spherically symmetric spacetime, natural candidates for S are two-spheres parametrised
by coordinates {θ, ϕ}, whose area is

A(t, r) =

∫ π

0
dθsinθ

∫ 2π

0
dϕ

√
h = 4πR(t, r)2. (1.1.27)

Therefore, ∇µR are the components of a one-form normal to two-spheres of constant area A,
and can be used to describe null geodesics [18]. Then, a shell labelled by r becomes trapped at
time tah when

θ(⃗l)θ(k⃗) ∝ gµν∇µR∇νR = 0, (1.1.28)

which using (1.1.1) simplifies to

gµν∇µR∇νR = − e−2νṘ2 + e−2ψR′2 = 1− 2GNm(tah, r)

R(tah, r)
= 0.

The condition that every regular initial configuration must be not trapped is readily

2GNm0(r)

R0(r)
< 1, (1.1.29)

and it clearly shows that the initial matter configuration m0(r) must be related to the initial
boundary of the collapsing ball.

Boundary conditions

The metric tensor field (1.1.1) describes the spacetime manifold M only inside the collapsing
ball. To have a globally defined metric g on M, we have to identify the outer metric tensor and
match it with the interior metric on the surface of the ball. If there is no outward flux of energy,
as in dust collapse or in the presence of only transverse pressures, the field equation (1.1.7)
ensures that the Misner-Sharp-Hernandez mass function is conserved during the contraction,
i.e. ṁ = 0. In this case, if outside the collapsing configuration there is only empty space,
Birkhoff’s theorem [19] dictates that the exterior solution is locally equivalent to part of the
maximally extended Schwarzschild solution, which for a collapse is uniquely identified. More
care is needed if the mass function is not conserved during collapse, i.e. ṁ ̸= 0, in which case
a spherically symmetric solution to the field equations for a radiating source can be described
by the Vaydia solution [20, 21].
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1.1.2 Dynamical Evolutions

Now, it is clear that in the even in General Relativity, for a set of regular initial data at Σ0,
there are more possible dynamical evolutions for each shell of a collapsing ball:

• If ȧ(t, r) < 0, ∀t ∈ [t0, ts[ and r ∈ [0, rb]. Each shell procede towards a singularity.

• If ȧ(t, r) = 0 at t = tbounce, while at the same time ä ̸= 0. The collapse of the shell r halts
at a finite comoving time and bounce back.

• If ȧ(t, r) = ä(t, r) = 0 at t = teq. The collapse halts and the shell reaches an equilibrium
configuration.

In the most general scenario, shells corresponding to an inner core 0 ≤ r < r̄ will collapse and
form a singularity, while the outer shells r̄ ≤ r ≤ rb may halt and bounce back, or eventually end
in static configurations. Pressure-less collapsing matter like dust can never bounce or reach the
equilibrium from a continuos collapse; in fact, it is possible to show that in this case, choosing
suitable initial conditions at Σ0, (1.1.14) reduces to

ȧ2 =
M(r)

a
+ f(r), (1.1.30)

and if ȧ(t, r) < 0 at any time, it will be negative at any later time [22]. On the opposite, any kind
of realistic matter distribution with non-vanishing pressures can stop collapsing and bouncing
back or reaching an asymptotic equilibrium configuration, in that the gravitational attraction
could be balanced by those pressures. Of great astrophysical interest are static configurations,
since they could represent stable and compact remnants (with a regular core).

1.2 LTB and OS collapse models

At this point, the toolbox required to study the simplest collapse scenarios is filled up with
all the essential theoretical instruments needed. Of great interests are models of spherically
symmetric collapses, where any interaction other than gravity is neglected. Even if they do not
accurately represent any realistic situation, since every star is known to be composed of rotating
distributions of elementary interacting particles, it is generally accepted that they would encode
all the relevant features to describe the mechanism through which black holes form. In fact,
in these situations, the Einstein’s field equations can be analytically solved, and the global
structure of spacetime is explicitly revealed. Furthermore, their simple mathematical structure
make them appealing to investigate deviations from classical predictions produced by a more
fundamental quantum theory of gravity.

For these reasons, the models presented are the Lemaître-Tolman-Bondi (LTB) model [23,
24, 25], where the collapsing mass distribution is assumed to be inhomogeneous dust, and the
simpler particular case of the Oppenheimer-Snyder (OS) homogeneous collapse [15].
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1.2.1 Dust

Generically, the name dust denotes any kind of matter which interacts only through gravity.
More precisely, for this system it is assumed that energy can only be transferred through a mass
inviscid flow, while neither heat or electric current conduction is possible, nor particles have
random motion. The energy momentum tensor for a dust volume element with velocity u⃗ can
be written in any coordinate system {x0, xi} as

Tµν = ρ uµuν , g(u⃗, u⃗) = −1, (1.2.1)

where ρ is the mass distribution as measured by an observer which instantaneously moves with
dust. In the limit in which the proper mass of dust particles vanishes, this system gives a
good description of radiation in the geometric-optics (high frequency) limit. In this case, the
energy-momentum tensor for null dust with energy density ϵ will be

Tµν = ϵ lµlν , g(⃗l, l⃗) = 0, (1.2.2)

where l⃗ is a null vector tangent to null trajectories followed by massless dust. A remarkable
property of dust is that it always falls along geodesics [17].

1.2.2 LTB model - Inhomogeneous dust

For dust, the absence of random motion provides the equations of state,

pr = 0, pθ = 0, (1.2.3)

which fix the evolution of the remaining five unknown functions by means of the field equations.
In fact, now (1.1.8) becomes

ν ′ = 0, (1.2.4)

and requiring the initial condition ν(t0) = 0, from the continuity of the metric field we get ν = 0
identically5. Then, (1.1.15) simplifies to

G(r) = R
′ 2e−2ψ = 1 + r2f(r) (1.2.5)

while from (1.1.7) the mass function m = m(r) is now independent on time. The equation of
motion (1.1.13) for the areal radius R becomes,

Ṙ2 =
2GNm

R
+ 2E(r), (1.2.6)

where we have re-defined the arbitrary function 2E(r) = r2f(r). This equation is formally
identical to the equation of conservation of energy for the motion of a unit mass particle in a
Newtonian potential, where m(r) corresponds to the Newtonian mass within a shell labelled by

5Otherwise, it is possible to do a change of coordinates t → t′ =
∫
eνdt which leads to ν = 0 in the new

coordinates
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r, and E(r) play the role of the total energy within the same shell. Then, the solutions to the
field equations are

ds2 = −dt2 +
R′ 2

1 + 2E(r)
dr2 +R2dΩ2, (1.2.7)

where R is determined by (1.2.6), and E(r) > −1/2 for all r ∈ [0, rb]. The integration of (1.2.6)
gives three family of solutions which depends on the sign ε = sgn(E) of E: for ε ̸= 0 the
solutions are parametrised by η ≥ 0,

R(t, r) = K∂ηhε

t− ts(r) = ± K√
|2E|

hε
(1.2.8)

where the function hε is defined as

hϵ(η) :=

{
η − sinη, ε = −1

sinhη − η, ε = +1
(1.2.9)

and the functions K(r) and K̃(r) as

K(r) :=
GNm(r)

|2E(r)| , (1.2.10)

while for ε = 0 the integration is trivial,

t− ts = ±
√
2

3

R3/2

√
GNm

(1.2.11)

The same solutions for the scale factor can be written using the regularity of m(r) = r3M(r)
around r = 0 in (1.1.17), with whom the previous equations (1.2.8), (1.2.11) for ε ̸= 0 become

a(t, r) = K̃∂ηhε,

t− ts(r) = ± K̃√
|f |
hε

(1.2.12)

whereas for ε = 0,

t(a, r)− ts(r) = ±
√
2

3

a3/2√
GNM

, (1.2.13)

where the function K̃(r) is defined as

K̃(r) =
GNM(r)

|f(r)| . (1.2.14)

These solutions are expressed in parametric form in the time variable defined by

η(t, r) =
√
|f(r)|

∫ t r

R
dt′, (1.2.15)

17



whose physical interpretation will be clear in the homogeneous model. The arbitrary function
ts(r) coming out of the integration defines the time at which the shell r reaches the singularity
during a collapse, which is given by t(a = 0, r) = ts(r) by imposing the initial condition (1.1.12)
a(t0, r) = 1,

ts(r) = t0 ±
√
2

3

1√
GNM(r)

. (1.2.16)

1.2.3 OS model - Homogeneous dust

Up to this point, each solution depends on three arbitrary function m(r), E(r) and ts(r),
while the energy density ρ is determined by (1.1.6). The special case of homogeneous dust is
determined requiring the mass density being a constant function of time

∂rρ = 0. (1.2.17)

This condition is equivalent to require that in (1.1.17) and (1.2.5),

M =M0 > 0, f =
2E

r2
= −k, (1.2.18)

where M0 ∈ R+ and k ∈ R are constants6 [17]. Since the collapsing configuration is homo-
geneous, each shell at the same comoving time will be equally pulled by gravity towards the
centre of symmetry of the matter distribution; thus, the scale factor a will now depend only on
time and R factorises as

R(t, r) = a(t)r, (1.2.19)

while the solutions to the field equations simplifies to

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2dΩ2

]
, (1.2.20)

where a(t) is determined by the same solutions (1.2.12), (1.2.13), if R is expressed as (1.2.19)
and ε = −sgn(k). Therefore, the region of spacetime filled with homogeneous dust has the
topological structure determined by the Friedmann-Robertson-Walker-Lemaître (FRWL) solu-
tions. The dynamical evolutions of a(t) governed by (1.2.12) and (1.2.13) for homogeneous dust
are the well-known solutions to the Friedmann’s equations, which are represented in Figure 1.1.
In a gravitational collapse, only the trajectories where ȧ < 0 represent a real contraction of an
initial distribution of matter. For all solutions labelled by k ∈ R, the final configuration will be
singular, in that from (1.1.6),

ρ =
M0

4π

3
a3

→ +∞ for a→ 0+. (1.2.21)

The time at which each shell reaches the singular region is now constant and does not depend
on r, since ts as determined by (1.2.16) depends only on the arbitrary constants t0 and M0.

6For dust, M0 > 0 follows from any energy conditions.
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k=+1

k=-1

k=0

t = ts
t

a(t)

Figure 1.1: Time evolution of the scale factor a(t) for values k = 0,+1,−1.

1.2.4 Matching with the Schwarzschild solution

What is still missing is the time,
tah = t(a(tah), r), (1.2.22)

as measured by an observer radially infalling with dust, at which each shell becomes trapped,
and which is implicitly determined by (1.1.29). At an intermediate stage of the collapse, it may
be possible to neglect gravitational effects of the emitted radiation or matter, and to consider
the outer space as empty. In this case, the global solution to the field equations will be given
by the FRWL manifold for r ≤ rb, and by the Schwarzschild manifold for r ≥ rb, where both
solutions match smoothly at time t = t(a(t, rb), rb) representing the external shell. This requires
that each shell moves along geodesics of both spacetimes [17, 26], and specifically, if ρ is the
Schwarzschild radial coordinate,

ρ = R(t, rb), m(rb) =Ms, (1.2.23)
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where Ms is the mass parameter of the Schwarzschild solution. The first shell to become trapped
will be the outermost one, and that at time tah at which (1.1.29) holds,

2GNm(rb) = R(rb, tH), tH = t(a(tah, rb), rb). (1.2.24)

Therefore, from time t ≥ tH , the whole dust distribution will be hidden behind an event horizon,
whose equation is expressed in the Schwarzschild radial coordinate by

ρH = R(rb, tH) = 2GNMs, (1.2.25)

which is the so called Schwarzschild radius of the collapsing ball [15]. Therefore, the Oppenheimer-
Snyder model describes the creation of a black hole as a final end state of the collapse of an
isotropic distribution of homogeneous dust.

1.2.5 Singularity

The conclusion that a collapse of homogeneous dust, and more in general every pressureless
body, will always end in a singular final state is a simple consequence of the singularity theorems.

The singularity theorems7 provide a set of sufficient conditions under which a spacetime
manifold M must be geodesically null or/and timelike incomplete [19]. Rather than giving the
general statements, they can be presented in a threefold structure.

Th. 1.2.1: Singularity theorem(s)

A spacetime (M, g) cannot be timelike or/and null geodesically complete if:

1. Timelike or/and null convergence conditions are satisfied,

RµνY
µY ν ≥ 0 for all timelike or/and null vectors Y µ;

2. Causality violations are ruled out by some assumptions about the causal structure
of spacetime;

3. A region of "no escape" S exist in spacetime.

The idea behind these theorems is that, if Einstein’s field equations hold and matter sat-
isfies some energy condition, then the focusing theorem ensures that null geodesics emanating
from these "no escape" regions will focus on a finite interval of the affine parameter. If M is
assumed to be complete in the future (past), then the future (past) light-cone of S will have
a topology which turns out to be inconsistent with the imposed causal structure of spacetime.
In a gravitational collapse, the "no escape" region is a trapped surface [27]. In the OS model,
conditions (1.2.18) ensures the timelike converge condition, global hyperbolicity is assumed to
have a well-defined Cauchy problem and trapped surfaces forms at the time which each shell
crosses the event horizon, whose equation for the outermost shell is given by (1.2.25). This result
makes clear that, to prevent this class of spherically symmetric dust configurations from ending

7Historically, more than one singularity theorem were developed.
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into a singularity in space-time, we have to, or violate energy conditions, or reject assumptions
about the causal structure, or modify General Relativity. In any of these possibilities we do
not need to introduce necessarily quantum effects, and if we rule out the most dramatic choice
of rejecting General Relativity (or even the mathematical framework of differential geometry),
non-singular final configurations could be in principle realised and are usually called regular
black holes (if hidden behind an event horizon).
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Chapter 2

Quantum dynamics of a spherically
symmetric gravitational collapse

The dynamics of a spherically symmetric system, which undergoes a gravitational collapse,
is considerably modified by quantum effects. A well-established framework which allows a
quantum description of space-time is quantum geometrodynamics, which can be employed to
quantise a Schwarzschild black hole. In this chapter, a review of the Hamiltonian formulation
of General Relativity, also called geometrodynamics, will be given. Then, the problem of the
quantisation of General Relativity will be addressed, in particular by inspecting some mini-
superspace models of spherical collapses.

2.1 Canonical quantisation of black holes

2.1.1 Globally hyperbolic spacetime

In a hyperbolic spacetime (M, g), there exist a global ’time’ function t : M → R such that each
level set t = constant is a Cauchy surface. Therefore, M can be foliated in Cauchy hypersurfaces
Σt, where Σt are all homeomorphic, thus identified only by Σ, and its topology is M ∼= Σ×R.

2.1.2 Arnowitt-Deser-Misner 3+1 decomposition

The dynamics of a general relativistic system can be reduced to an initial-value problem, in
particular to the time-evolution of the metric field and additional matter fields on an initial-
data Cauchy surface Σ. In the Arnowitt, Deser and Misner (ADM) construction, the dynamics
is generated by the Hamiltonian constraints, and the Hamilton equations of motion for the
spatial metric hij are determined by the action principle given by the functional action S,

S =

∫
dt

∫
Σ
d3x (P ij(x)ḣij(x)−N(x)H0(x)−N i(x)Hi(x)), (2.1.1)

where H0(x;hij , P
ij ] and Hi(x;hij , P

ij ] are the Hamiltonian constraints, N(x) and N i(x) are
Lagrange multipliers, and P ij are the momenta conjugated to hij . The odd notation (x;hij , P

ij ]
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is only used there to highlight the functional dependence of the constraints on the metric field
and momenta.

The configuration space of the system is a manifold S called superspace, and the constraints
define the submanifold Γ ⊂ S of the physical states. Actually, the set Γ of physical field
configurations fail to have a manifold structure at those points corresponding to isometric
metric fields, in that they are singular points for Γ. The fundamental striking consequences is
that General Relativity is not equivalent to a parameterised theory, thus there can never be a
completely successful deparameterisation of Einstein’s theory of gravity, with the only exception
for a theory without any symmetry [28]. However, in very special cases, it has been proved that a
(non-global and non-unique) identification of a gravitational model with a parameterised theory
is possible, as prescribed by the Kuchař decomposition [29].

2.2 Kuchař decomposition

A parameterised theory can be formally constructed from any field theory by promoting to
dynamical variables the spacelike embeddings. The real advantages of putting a theory in this
form is to have a clear separation between kinematical (or pure gauge) variables with truly
dynamical variables. To identify GR (or any system described by GR) with a parameterised
theory, we could attempt a canonical transformation from the ADM phase space

(hij(x), P
ij(x)) → (Xµ(x), Pµ(x), q

α(x), pα(x)), (2.2.1)

such that the action (2.1.1) transforms into

S =

∫
dt

∫
Σ
d3x (pα(x)q̇

α(x) + Pµ(x)Ẋ
µ(x)−Nµ(x)Hµ(x)). (2.2.2)

Variables Xµ(x) are the parametric equations of any embedding X : Σ → M of the three-
dimensional Cauchy surface Σ into the four-dimensional manifold M, where {Xµ} are coordi-
nates on M and {xk} are coordinates on Σ. These are purely kinematic variables, unlike the
’true’ physical degrees of freedom, which we group in the canonical variables qα and momenta
pα. Now we can eliminate 4 of the 8 kinematical degrees of freedom Xµ(x) and Pµ(x) if we do
a second canonical transformation, which cast the Hamiltonian constraints in the form

Hµ = Pµ + hµ(x;X
µ, qα, pα] ≈ 0, (2.2.3)

and the remaining 4 by replacing (2.2.3) into (2.2.2),

S =

∫
dt

∫
Σ
d3x (pα(x)q̇

α(x)− hµ(x)Ẋ
µ
t (x)), (2.2.4)

where we imposed the constraint equations Hµ ≈ 0, and Ẋµ
t (x) corresponds to a choice of an

embedding, i.e. they are fixed functions of (t, xi) and must not be varied. The final action
describes a physical system with an unconstrained Hamiltonian

H(t) =

∫
Σ
d3xhµ(x)Ẋ

µ
t (x), (2.2.5)
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from which we can derive the equation of motions for qα and pα

q̇α = {qα, H}, ṗα = {pα, H}. (2.2.6)

Then the construction of a quantum theory is straightforward, as the constraint equation (2.2.3)
can be now transformed into a functional Schrödinger equation for a wave functional Ψ[qα],

iℏ
δΨ[qα(x)]

δXµ(x)
= hµ[q̂

α, p̂β]Ψ[qα(x)]. (2.2.7)

Moreover, every observable in the quantum theory now would be function of the operators q̂α

and p̂α, which represents dynamical degrees of freedom, while Xµ are not turned into operators.
However, this decomposition faces many serious problems. The most important issues have

been reported at the end of Section 2.1.2: transformation (2.2.1) may be non-global, which
means that it could fail in some region of the ADM phase-space, may be non-unique, and can
be implemented only in few lucky cases. In the quantisation of a null shell a different method
from the standard canonical quantisation will be employed, because of the non-trivial boundary
of the phase-space of the system.

2.2.1 Covariant gauge fixing

In this model, we would like to construct the dynamical theory of a null shell over a fixed
manifold M. However, since points of M are not by itself distinguishable, active displace-
ment of points, hence a proper time evolution, cannot be disentangled from passive coordinate
transformations. A possible way out for this problem is loosely to "choose a gauge", which
is implemented by a covariant gauge fixing. A covariant gauge fixing is a purely geometric
way to identify uniquely points on a background manifold M, and can be formally described
defining Riem(M) as the space of all four-dimensional Lorentian metrics on M and Diff(M)
as the group of all spacetime diffeomorphism of M. In general, the gauge group of a general-
relativistic theory is a subgroup of Diff(M); for example, this is always the case for a system
with asymptotically flat solutions, where the asymptotic structures I+ and I− are common to
all solutions and can be used to define asymptotical reference of frames at ∂∞M1. An element
of the quotient space Riem(M)/Diff(M) 2 will be called a geometry on M. A covariant gauge
fixing is a choice of a representative metric for each geometry, that is a section

σ : U ⊂ Riem(M)/Diff(M) → Riem(M), (2.2.8)

such that π ◦ σ = id, where π : Riem(M) → Riem(M)/Diff(M) is the natural projection for
the quotient space. It is called covariant, since each representative metric and section can be
explicitly written in any coordinate system (a section will be represented by coordinates on
Riem(M)).
The separation between pure gauge degrees of freedom and physical variable, which will be

1This asymptotical reference of frame will be associated to physical observers.
2The quotient space Riem(M)/Diff(M) should not be confused with the superspace S, which instead is

composed of all Euclidean three-dimensional geometries. For convenience, we consider the space of configuration
for only gravity.
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implemented in the shell model, now can be made more precise. In fact, a Kuchař decomposition
is possible if the canonical transformation (2.2.1) can be realised. This transformation can be
constructed starting from a map

Γ̃ → Riem(M)/Diff(M)× Emb(Σ,M), (2.2.9)

where Γ̃ is the constraint surface in the ADM phase-space and Emb(Σ,M) denotes the space
of embeddings of the initial data surface Σ into M. A general result is that, given a covariant
gauge fixing σ on U , it can be used to construct the inverse map

Riem(M)/Diff(M)× Emb(Σ,M) → Γ̃, (2.2.10)

and that map is well-defined only if singular points are removed from Γ̃ (metric field with
isometries). This construction is possible since, fixed a geometry γ ∈ U and a representative
metric σ(γ) in M, there exist a unique embedding X : Σ → M of a Cauchy surface Σ in
(M, σ(γ)) determined by the gauge fixing. Then, this map has been shown to be invertible and
can be extended outside the constraint surface in a neighbourhood of Γ̃ and Riem(M)/Diff(M)×
Emb(Σ,M), where the constraint surface is given by the vanishing of the momenta conjugated
to Xµ, namely Pµ ≈ 0, which implements the full Kuchař decomposition.

2.3 Null dust shell quantum model

For convenience, the full Hamiltonian theory and its quantisation is presented only for the
gravitational collapse of a shell of massless, or null, dust [30]. In fact, for this system, while a
mathematically consistent quantum theory with respect to asymptotic observers can be explic-
itly constructed, the formalism will not be burden with too technical details, which are daily
bread in the canonical approach.

2.3.1 Vaidya Spacetime

The solution to Einstein’s equation which describe a spherically symmetric collapse of null dust
is called Vaidya spacetime [31], which can be explicitly written as

ds2 = −
(
1− 2M

r
Θ(w − w0)

)
dw2 − 2η dwdr + r2dΩ2, (2.3.1)

where Θ(z) is the Heaviside step function, w = w0 identifies an expanding or contracting shell,
with

w =

{
u, η = +1

v, η = −1
(2.3.2)

The coordinates u and v are the advanced and retarded Eddington-Finkelstein coordinates,
while M is the energy of the shell3. As in the case of massive homogeneous dust, a MOTS
forms as the shell crosses the hypersurface r = 2GNM before clashing with the singularity at
r = 0. For this model, it is possible to construct an exact quantum theory starting from the
canonical description of a null shell, and show that no spacetime singularity will appear at the
end of the collapse.

3In this section, we will explicitly write GN only where needed and set c = ℏ = 1.
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2.3.2 Classical dynamics

Any spherically symmetric solution with a null shell of dust is composed of a flat spacetime
inside the shell and of a Scharzschild spacetime outside, as showed in (2.3.2). Moreover, the
two geometries must match on a null hypersurface corresponding to the shell. We can describe
all physical solutions with three parameters (η,M,w±): η ∈ {−1,+1} identify a collapsing
shell (η = −1) and an expanding shell (η = +1); w+ = u and w− = v are the asymptotic
retarded and advanced times for an expanding and collapsing shell respectively at ∂+M and
∂−M; 0 < M < ∞ identify the metric field. As will be later more clear, (M,w±) define two
coordinate charts, one for each of the two disconnected regions Γ̃+ and Γ̃− of the phase space
of the system corresponding to all two possible dynamics of the shell.

From spherical symmetry, the manifold M = Σ × R reduces to M = R+ × R, since given
that Σ = R3 and fixed adapted coordinates (ρ, θ, ϕ) on Σ, we can integrate over θ and ϕ in the
action and effectively reduce the dimension of the manifold.

At this point, we have to fix a gauge, that is a unique representative metric field for any
physical solution given by (η,M,w±). In double null coordinates (U, V ), the metric field can
be expressed as

ds2 = −A(U, V )dUdV +R2(U, V )(dθ2 + sinθ2dϕ2), (2.3.3)

where the functions
A(η,M,w±;U, V ), R(η,M,w±;U, V ), (2.3.4)

are uniquely defined for each solution requiring regularity conditions at the centre ∂0M, which is
given by U = V with coordinate T0 := (U+V )/2, and continuity at the null surface representing
the collapsing shell. The trajectory for the outgoing shell is fixed by U = w+ = u, while for the
ingoing shell by V = w− = v, being u and v measurable parameters from asymptotic observers
at ∂+M = I+ and ∂−M = I−. These two one-dimensional asymptotic regions are shared by
all solutions and defined by equation

I+ ={(U, V )|V → +∞, with U = U∞}, (2.3.5)

I− ={(U, V )|U → −∞, with V = V∞}. (2.3.6)

The group of four-dimensional diffeomorphisms is restricted by requiring that they must com-
mute with rotations, which is denoted as usual Diff(M), where M is now two-dimensional.
From the restricted group of diffeomorphism, we will only consider transformations which pre-
serve the central boundary ∂0M and infinity ∂∞M = ∂+M∪ ∂−M, which together define the
gauge group Diff0,∞(M). Those transformations which change the asymptotic boundaries of
the space-time manifold M are excluded from the gauge group, because they have physical
significance and turn to be useful to define the most important observables of the system. As
an example, the diffeomorphism

φt : (U, V ) → (U + t, V + t) (2.3.7)

sends the expanding and contracting shells U = u and V = v to U = u+ t and V = v+ t, which
acts clearly on the boundary ∂0M and ∂∞M. Its action on the space of solutions is

φt : (M,w) → (M,w + t), (2.3.8)
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independently on η ∈ {−1,+1}, and since the double null coordinates appears in

A(U, V ), R2(U, V ), (2.3.9)

only in the form
V − U, U − ω, V − ω, (2.3.10)

each pair of solution (M,ω) and (M,ω+ t) will represents the same geometry (isometric space-
times). However, this is a transformation which sends a solution to another different physical
solution, since it can be distinguished by observers which are able to measure the shell arrival
(departure) retard (advanced) time w = u (w = v). Therefore, we will not regard this transfor-
mation as a gauge one, but as a physical symmetry, and later use this group in the quantum
theory to generate time evolution.

To construct the canonical theory, we need to derive the dynamics of a collapsing (or ex-
panding) shell from an Hamiltonian action principle, which is given by the following action
functional:

S =

∫
dτ
[
psṙs +

∫
dρ(PΛΛ̇ + PRṘ−NH0 −NρHρ −N∞E∞)

]
, (2.3.11)

where the spherically symmetric metric in the ADM decomposition is written as

ds2 = −N2dτ2 + Λ2(dρ+Nρdτ)2 +R2dΩ2, (2.3.12)

where ρ = rs(τ) is the areal radius of the collapsing shell, N∞ = limρ→∞N
ρ(ρ) and E∞ is the

ADM mass4. As usual, N and Nρ are the lapse and shift functions, while H0 and Hρ identify
the super-Hamiltonian and super-momentum constraints, whose analytical expression is known.
The action (2.3.11) can now be transformed in new variables through a Kuchař decomposition.
We will not show in detail how to compute the new variables, but essentially it is a two-step
procedure as described before: the first part is a transformation on the constraint surface Γ̃
from the ADM phase space

(rs, ps,Λ, PΛ, R, PR) → (u, pu, v, pv, U(ρ), V (ρ)) (2.3.13)

where U = U(ρ) and V = V (ρ) are embedding variables satisfying some regularity and boundary
conditions, and pu = −M for η = 1 and pv = −M for η = −1 on Γ̃; in the second part this
transformation is extended out of the constraint surface to include the conjugate momenta
PU and PV , which are defined to vanish on the constraint surface, i.e. PU , PV ≈ 0 are the
new constraints. As we pointed out before, since the phase space is actually composed of two
disconnected regions Γ̃+ and Γ̃−, we should more precisely define a transformation, and also an
action S±, for each region. However, it is possible to prove that both dynamics can be derived
from a single action functional S,

S =

∫ +∞

−∞
dτ(puu̇+pvv̇−npupv)+

∫ +∞

−∞
dτ
∫ +∞

0
dρ(PU U̇ +PV V̇ −NUPU −NV PV ), (2.3.14)

4A dot denotes a derivative with respect to the shell proper time τ .
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where both outgoing and ingoing solutions are given by equation pupv = 0, while n is a new
Lagrange multiplier, which is satisfied by pv = 0 if η = +1 and pu = 0 if η = −1, and now
−M = pu + pv (on-shell, i.e. on the constraint surface). This last relation is well-defined since
pu and pv can never be simultaneously different from zero on the two solutions. Moreover,
the separations between embedding variables U, V, PU , PV and physical degrees of freedom is
now obvious. It is possible to understand how to merge the two solutions if we consider an
expanding shell whose trajectory is u(τ) = const. In this case, v(τ) will be an arbitrary
parameter depending only on τ ; it is not different from an embedding variable, being not
dynamical, and the conjugated momentum pv can be set to vanish introducing an appropriate
Lagrange multiplier (the same apply for a collapsing shell, exchanging u → v). In the new
coordinates, the phase space has non-trivial boundaries, given by expressions

pu ≤ 0, pv ≤ 0
v − u

2
> 0. (2.3.15)

2.3.3 Quantisation

Any function Õ : Γ̃ → R defined on the constraint surface Γ̃ which commutes with the Hamil-
tonian constraints,

{Õ,H[N ]} ≈ 0, {Õ,H[N i]} ≈ 0, (2.3.16)

is called Dirac observable. Actually, a Dirac observable is what usually in any Hamiltonian
theory is simply called an observable, since it has the property to be independent of the action
of the Hamiltonian constraints. However, since the Hamiltonian is also expected to generate
the time evolution of the system, from (2.3.16) we may conclude that the dynamics of any
observable is trivial. This apparent problem is historically called the problem of frozen time
or frozen dynamics, whose wrong conclusion follows from assuming that weak commutativity
with the Hamiltonian constraints necessarily leads to constants of motion. Starting point for
the quantisation is the action (2.3.14), whose physical degrees of freedom u, pu, v, pv can be
quantised using the group quantisation method. This method is based on the construction of
a Lie algebra of Dirac observables, which generates a transformation that preserves the non-
trivial boundaries of (2.3.15) of the phase space. The main advantage of this method is that it
leads automatically to self-adjoint operators representing observables. Defining Du := upu and
Dv := vpv, indeed they are Dirac observables

{Du, pupv} = 0, {Dv, pupv} = 0 (2.3.17)

which define the Lie algebra

{Du, pu} = pu, {Dv, pv} = pv, {Du, Dv} = {pu, pv} = 0, (2.3.18)

as follows from the canonical commutation relations

{u, pu} = 1, {v, pv} = 1. (2.3.19)

As required, the algebra (2.3.18) generates a group of transformations of the phase space which
leaves the boundaries pu = 0 and pv = 0 unchanged. Now, as in the canonical quantisation, we
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promote pu, Du, pv, Dv to self-adjoint operators, acting on smooth functions ψu, ψv ∈ H as

(p̂wψw)(p) = −pψw(p), (D̂wψw)(p) = −ipdψw(p)
dp

, with w ∈ {u, v}, (2.3.20)

where H is the Hilbert space of the physical states. The last boundary conditions (2.3.15) can
be made explicit by means of another canonical transformation

t =
v + u

2
, r =

v − u

2
, (2.3.21)

pt = pu + pv, pr = pv − pu, (2.3.22)

which now becomes r > 0, a relation which is expected if we look at the variable r as the areal
radius of the shell. However, this variable is not a Dirac observable,

{r, pupv} =
1

2
{v − u, pupv} ≠ 0, (2.3.23)

reason why the construction of an operator which serves as position operator is actually more
involved and not without serious shortcomings, since the procedure is not unique and exclusively
formal5. Besides that, the operator

r̂2 := −√
p
d2

dp2
1√
p

(2.3.24)

can be extended to a self-adjoint operator whose eigenfunctions are

ψ(r, p) =

√
2p

π
sin(rp), r ≥ 0. (2.3.25)

As we observed before, time can be introduced in the quantum theory since −(p̂u + p̂v) =
−p̂t acts as the generator of time evolution, with t being the same parameter which generate
transformations (2.3.8), and it results to be a self-adjoint operator with a positive spectrum.
6 Since in the canonical theory −pu − pv = M , the operator −p̂t represents the energy of the
system.

The last observable we need in order to understand the implications of the model is the
direction of motion of the shell at time t = 0, which is represented by the operator η̂0, whose
action on ψ ∈ H 7 is

(η̂0ψ)(p) =

∫ ∞

0
dp′ [P+(p, p

′)− P−(p, p
′)]ψ(p′), (2.3.26)

where P±(p, p
′) denotes the kernels of the projectors P̂± on outgoing and ingoing states, which

are defined as eigenfunctions of η̂0 with eigenvalues η0 = +1 and η0 = −1 respectively.
5Every observable in principle should be measurable. As well as we measure the position of particles with

scattering experiments, where particle couple with an external radiation, we could try to couple an external field
to the collapsing shell. At this point, asymptotic observers could detect quanta emitted through the interactions,
which may provide information about the dynamics of the system.

6The time introduced is a classical variable, therefore corresponds to a time before quantisation.
7Technically, ψw and ψ belong to different representations of the Lie group which preserves the phase space

boundaries. While ψu and ψv describes two independent degrees of freedom, in the ψ representation the system
has only one degree of freedom (in- and out- going motions have been coupled).
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2.3.4 Motion of wave packets

Having developed the full quantum mechanical theory for a null shell, we can apply it to study
the dynamics of a family of normalised wave packets defined by

ψkλ(p) =
(2λ)k+1/2√

(2k)!
pk+1/2e−λp, (2.3.27)

where k = 1, 2, ... and λ > 0 defines the expected energy and energy width of each packet, with
[λ] = L. Wave-packets are normalised with respect to the scalar product defined on H,

< ϕ,ψ >=

∫ +∞

0

dp

p
ϕ∗(p)ψ(p). (2.3.28)

The time evolution of the packet is generated by the action of the unitary operator Û(t) = e−ip̂tt,

ψkλ(t, p) = ψkλ(p)e
−ipt. (2.3.29)

In the Schrödinger r-representation, i.e. basis of eigenfunctions ψ(r, p) of the position operator
r̂2, the corresponding wave function for the (kλ)-wave packet Ψkλ(t, r) can be defined through
the integral transform

Ψkλ(t, r) :=

∫ ∞

0

dp

p
ψkλ(t, p)ψ(r, p), (2.3.30)

which can be explicitly computed using properties of Euler’s gamma function. As a result, we
get

Ψkλ(t, r) =
1√
2π

k!(2λ)k+1/2√
(2k)!

[ i

(λ+ it+ ir)k+1
− i

(λ+ it− ir)k+1

]
. (2.3.31)

This analytic formula for the wave function allows us to investigate what happen at the boundary
r = 0. Suppose that the wave packet starts in the asymptotic region I− far away from the
(regular) centre r = 0, so that Ψkλ(t, 0) = 0 for t→ −∞. Then, since from (2.3.31) follows that

lim
r→0

Ψkλ(t, r) = 0 ∀ −∞ < t < +∞, (2.3.32)

and if we look at P = |Ψkλ(t, r)|2 dr as the probability to localise the wave-packet representing
the shell between r and r+ dr at time t, then the wave packet is practically never squeezed up
to a point, which we can interpret as the absence of a singularity. The question whether the
dynamics of the shell describe a bounce can be addressed if we look at the portion of the packet
which moves towards r = 0 at different times. The only ingoing part is given by the projection
P̂−ψkλ, and with a not-trivial calculation we can prove that

||P̂−ψkλ||2t=0 = 1/2, ||P̂−ψkλ||2t→−∞ = 1, ||P̂−ψkλ||2t→+∞ = 0. (2.3.33)

At the time t = 0, the packet is equally divided into a collapsing and expanding shell, while
there is only an ingoing shell at t = −∞ and an outgoing one at t = +∞. In the standard
picture of a black hole, the event horizon acts as a one directional membrane in spacetime.
However, a priori nothing prevent the wave packet to be confined within its Schwarzschild
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radius, a situation which would be hardly conceivable in the classical picture, and in answer
to this question we could compare the minimum expected radius ⟨r0⟩kλ with the expected
gravitational radius ⟨rH⟩kλ, where

⟨rH⟩kλ = 2GN ⟨M⟩kλ = 2GN

∫ +∞

0

dp

p
pψkλ(p)

2, (2.3.34)

and ⟨M⟩kλ is the expected energy of the wave-packet. Requiring that

⟨r0⟩kλ + ⟨∆r0⟩kλ < ⟨rH⟩kλ − ⟨∆rH⟩kλ, (2.3.35)

the inequality holds approximatively for all energies ⟨M⟩kλ ≳ mp
8, independently on k and λ.

2.3.5 Grey horizons

Outside the Planck regime, the shell will bounce before it reaches its expected Schwarzschild
radius ⟨rH⟩, while for energies starting from the Planck mass it could cross it. However, this
quantum mechanical model is only a semiclassical approximation, since the dynamics of a null
shell is constructed over a fixed background manifold M, and it could be hardly trust in this
regime. On the other side, since it is a self consistent mathematical model, it should be able at
least to provide a mechanism to overcome the previous contradiction.

If we consider a spherical distribution of matter inside its Schwarzschild radius, the outside
geometry is not unique and may correspond to that of a black hole or a white hole9, each one
characterised by a different horizon which will be called black horizon and white horizon. In our
model, the metric field is determined by the physical degrees of freedom through the constraints,
and it identifies the colour c and position of the Schwarzschild radius RH(ρ) outside the shell.
In particular, if M is the energy of the shell, the position of the horizon is RH(ρ) = 2GNM ,
while the colour is determined by the direction of motion of the expanding (collapsing) shell
c = η. At this point, if we move to the quantum theory, it is possible to express these quantities
in terms of the operators which describes the shell, and to determine the expected position of
the horizon 2GN ⟨M⟩ with the expected colour ⟨η⟩. Since η̂ is determined by the difference of
the projectors P̂+ − P̂−, from (2.3.33) the horizon will be almost black (⟨η⟩ ≈ −1) when the
shell crosses the horizon inwards, grey (⟨η⟩ = 0) at the time of the bounce and white (⟨η⟩ ≈ 1)
at the time of the outwards crossing.

2.4 LTB and OS quantum collapse models

2.4.1 Quantum Lemǎitre-Tolman-Bondi model

The same approach towards quantisation can be extended to the LTB and OS model. Starting
from the solutions to the Einstein’s equations for inhomogeneous dust (1.2.7), if each shell is

8In units c = ℏ = 1, we can set GN = ℓ2p = m−2
p .

9This statement is a consequence of Birkhoff’s theorem [19].
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considered individually10, the classical dynamics of the outermost shell can be generated with
the action functional,

S = −1

2

∫
dτ RṘ2, (2.4.1)

where τ represents dust proper time and R is the areal radius as usual [6]. Thus, the momentum
conjugate to R and the canonical Hamiltonian are,

P =
∂L

∂Ṙ
= −RṘ, (2.4.2)

H = ṘP − L = −P
2

2R
, (2.4.3)

and they set the starting point to construct the corresponding quantum theory. Differently for
the null shell, in this problem it is possible to apply the standard Dirac’s canonical quantisation
procedure,

P → P̂ = −iℏ d
dR

. (2.4.4)

Then, taking care of possible ordering ambiguities, the Hamiltonian operator reads

Ĥ =
ℏ2

2
R−1+a+b d

dR
R−a d

dR
R−b, (2.4.5)

which is chosen to act on the Hilbert space endowed with the scalar product

⟨ψ1, ψ2⟩ =
∫ +∞

0
dRR1−a−2bψ1(R)ψ2(R). (2.4.6)

With an oculate choice of a and b, the Hamiltonian operator Ĥ can be made self-adjoint [6]. As
a consequence, wave-functions will evolve unitary according to Ĥ, which means that probability
will be conserved with respect to dust proper time.

Energy wave packets

As in the null dust collapse, it is possible to describe the dynamics of energy wave-packets,
which are constructed by superposing stationary modes ϕE of different energies, defined by

ĤϕE = −EϕE , (2.4.7)

and properly normalised in the scalar product (2.4.6). In analogy to (2.3.30), a wave-packet is
defined by

Ψ(R, τ) =

∫ +∞

0
d
√
E ϕE(R)e

iEτA(
√
E), (2.4.8)

where the function A(
√
E) is chosen to be a Poisson-like distribution, exactly as (2.3.27),

A(
√
E) =

√
2λ

1
2
(k+1)√

Γ(k + 1)

√
E
k+ 1

2 e−
λ
2

√
E

2
, (2.4.9)
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Figure 2.1: Probability to localise the shell of areal radius R at comoving time τ given by
ρ = R1−a−2b|Ψ(τ,R)|2. In full green line is represented the classical trajectory and in dotted
red line the apparent horizon R = 2Ē, with a = 2, b = 1 and λ = 2, 2, k = 9.8 (from [6]).

where k ≥ 0 and λ > 0, with [λ] = L. Actually, the wave-packet (2.4.8) can be written
in a closed form in terms of Kummer’s hypergeometric function (see Appendix A for their
definition). Even in this case, by looking at the probability density ρ = R1−a−2b|Ψ(R, τ)|2,
for which the packet representing the outermost shell bounces before reaching the singularity.
In particular, for some values of λ and k the dust shell bounces inside the apparent horizon,
as shown in Figure 2.1. Here, the probability distribution for R oscillates near τ = 0, since
the two packets corresponding to collapse and re-expansion are superimposed, which agrees
with the grey horizon interpretation. In fact, as in the previous case, the singularity avoidance
can be described as a destructive interference between two packets representing a black hole
and a white hole. Unfortunately, the wave packet is too complex to compute the expectation
value ⟨R⟩ = R̄ of the areal radius to get an estimate of the energy at which the collapsing
configuration will start the re-expansion. An approximate expression for R̄ can be found if we
fix k, which is equal to fix the relative width of the packet,

∆
√
E

√
E

≲ 0.53, (2.4.10)

which still depends on the factor ordering parameter a. As a result, R̄(τ) is symmetric in τ and
reaches a global minimum at τ = 0, which scales with Ē as

R̄(τ = 0) ∝ Ē− 1
3 . (2.4.11)

10In the full general settlement, the functional form of the Hamiltonian constraints would make it impossible
to investigate whether the singularity is avoided or not at the end of the collapse.
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In particular, for a solar-mass collapsing cloud, Ē ≈ 1038mp and the expected width R̄ at the
bouncing time, results

R̄(0) ≈ 10−13ℓp. (2.4.12)

At first sight, this result shows that the outermost shell will re-expand at sub-Planckian scales.
However, in this case our attention in only in the outermost shell, and nothing prevents that
during the bounce the order of the shells might be reversed.11. In this perspective, the window
for a re-expanding phase at higher scale than the sub-Planckian 10−13ℓp is still open.

2.4.2 Quantum Oppenheimer-Snyder model

As for the LTB model, it is also possible the construction of a quantum theory for the collapse
of spherically symmetric homogeneous dust [32]. In particular, the quantisation is extended
to an OS model with a flat interior, corresponding to k = 0 in (1.2.20), where it is possible
to construct two unitary quantum theories: one for a comoving observer, the other one for a
stationary observer12. The detail of the quantisation, which is based on the construction of
proper coherent states [32], will be omitted, since the interest of this work is to investigate
if these systems could describe physical black holes, and the mechanism through which the
central singularity is avoided. From the point of view of the comoving observer, the dynamics
is described by the Hamiltonian,

H = − P

2R2
, (2.4.13)

which not surprisingly is exactly the Hamiltonian of the LTB model (2.4.3), with P being the
momentum conjugate to the areal radius R. After quantising the system, the modified equation
of motion for a shell of areal radius R is

R(τ) =
(ℏ2δ
M

+
9M

2
(τ − τ0)

2
) 1

3
. (2.4.14)

Remarkably, the second term reproduces the classical solution (1.2.13) for k = 013, while at
τ = τ0 the Ē− 1

3 dependence on the energy of a wave packet is reproduced, modulo quantisation
ambiguities which are encoded in the parameter δ > 0. The dynamics for a static observer is
instead generated by the multivalued Hamiltonian,

H = −
√
A

2

{
tanh2PA

coth2PA
, (2.4.15)

where A and PA are defined through the canonical transformations,

A =
R2

2
, PA =

P

R
. (2.4.16)

11A scrambling of the shell would be signalled by a change of sign in R′.
12Each observer provides a different clock through which the unitary evolution of the quantum system can be

ensured.
13In this chapter GN is set to one.
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In the Hamiltonian (2.4.15), the two branching points are localised at PA → ±∞, since

lim
PA→±∞

(
tanh2PA

)
= lim

PA→±∞

(
coth2PA

)
= ±1. (2.4.17)

A quantisation of a multivalued hamiltonian would require multivalued quantum states, each
evolving with respect to the corresponding branch of the Hamiltonian operator. Even if this
construction can be formally achieved, for the present model it is not really necessary, since the
two branches of the Hamiltonian will be proved to describe two completely different quantum
systems. Besides that, the Hamiltonian operators in the stationary observer system make
impossible finding explicitly the energy eigenfunctions. Hopefully, it is still possible to construct
a quantum corrected dynamics for each branch, which is described by the "approximated"
Hamiltonian operators Ĥ±(PA, A) defined as

M = − Γ(2β − 1)Γ(2β)

Γ(2β + 1/2)Γ(2β − 3/2)
Ĥ±(PA, A), (2.4.18)

where M is the mass of the quantum corrected dust cloud, while the branch described by Ĥ+ is
called outside branch and the one by Ĥ+ inside branch14. Again, β is a positive real parameter
which encodes quantisation ambiguities. In Figure 2.2 the dust cloud is shown to bounce when
collapsing from infinity, and to re-collapse when expanding from the horizon, where the latter
is a slower process than the bounce. Actually, the quantum dynamics describe also collapsing
trajectories from infinity which approach the horizon from inside (outside) for the inner (outer)
branches [7]. Moreover, as pointed out before, it is now evident that the two branching points
at PA → ±∞ can never be reached in a finite time. Therefore, it is not necessary to explicitly
construct multivalued quantum states. To see how transitions between these behaviours depend
on M and β, it is possible to look at Figure 2.3 and 2.4. Here is represented the phase portrait at
PA = 0 as a function of M for different values of β. There could happen that, for fixed M and β,
there exist two values of the areal radius A for which the conjugated momentum PA = 0. These
points correspond to classical inversion points, where the "velocity" of the system vanishes.
Clearly, in this case, a stop can occur only in correspondence to a bounce or a re-collapse.
On the opposite, when there exist no value of A for which PA, the corresponding solution will
describe an asymptotic approach to the horizon. Then, whatever branch is considered, for every
β all configurations with M ≲ Mcrit will bounce and re-collapse, while all above it not. More
seriously, the bounce of the dust always happens outside the photon sphere M = (2A)

1
2 /3, while

the re-collapse between the photon sphere and the horizon M = (A/2)
1
2 . Since everything which

occur outside the photon sphere is visible from external observers, this quantum model does
not reproduce anything like a black hole. Quantisation ambiguities introduce even less pleasing
features. In fact, there is not a fixed value of β for which dust bounces for all M , and the two
quantum theories of the comoving and static observers are not unitarily equivalent.

14Actually, these approximated Hamiltonian operators are lower symbols of the multivalued Hamiltonian
(2.4.15). See [7] for details.
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Figure 2.2: Bouncing and re-collapsing quantum corrected trajectories compared to classical
expansion away and collapse towards the horizon. Green lines represent the outside branch,
yellow dotted lines represent the inside branch, while the dotted red lines represent classical
trajectories. The horizon M = (A/2)

1
2 is represented by dashed blue lines. M = 0.4 and β = 5,

in Planck units (from [7]).

Figure 2.3: Quantum corrected phase space portraits at PA = 0 for the outside branch of the
Hamiltonian, for different β (green lines). The horizon M = (A/2)

1
2 is represented in dashed

blue line, while the photon sphere M = (2A)
1
2 /3 is represented in red full line, in Planck units

(from [7]).
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Figure 2.4: Quantum corrected phase space portraits at PA = 0 for the inside branch of the
Hamiltonian, for different β (green lines). The horizon M = (A/2)

1
2 is represented in dashed

blue line, while the photon sphere M = (2A)
1
2 /3 is represented in red full line, in Planck units

(from [7]).
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Chapter 3

Quantum ball of dust

In this chapter, an alternative quantisation procedure to the canonical approach of the Oppenheimer-
Snyder collapse is presented [1]. In particular, the main objective is to extend it to an isotropic
distribution of dust particles discretised into N arbitrary layers.

3.1 Gravitational collapse of N-layers of dust

As a starting point, let us consider the gravitational collapse of a spherically symmetric distri-
bution of dust with ADM mass M. Since dust interacts only gravitationally, the shell of areal
radius R = R(τ) will follow a radial time-like geodesic in the Schwarzschild spacetime

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1
dr2 + r2dΩ2, (3.1.1)

where τ is time as measured by a clock comoving with dust, and dΩ = dθ2+sin2θdϕ2 is the line
element for a 2-sphere of areal radius r. Instead of proceeding with the quantisation of a single
layer of dust, as in [1], we can generalise this model to an isotropic distribution of dust (a ball)
discretized in N nested shells with areal radii Ri, i = 1, 2, ..., N + 1, surrounding a central core
of ADM mass M1 = µ0 and areal radius r = R1(τ). We can assume these layers to be ordered,
i.e. Ri+1 > Ri, ∀ i = 1, ..., N , and to carry only a fraction µi = ϵiM of the total ADM mass M .
The fraction contained inside a shell of radius r < Ri is thus

Mi =
i−1∑
k=0

µk, (3.1.2)

with the total mass being

MN+1 =
N∑
i=0

µi ≡M. (3.1.3)

Each layer will fall freely along radial geodesics of the metric

ds2 = −
(
1− 2GNm

r

)
dt2 +

(
1− 2GNm

r

)−1
dr2 + r2dΩ2 , (3.1.4)
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where m = m(r) is the fraction of total ADM mass inside each sphere of radius r = Ri(τ). The
radial geodesic equation for Ri(τ) is (see Appendix C)(dRi

dτ

)2
− 2GNMi

Ri
=

E2
i

M2
i

− 1, i = 1, ..., N (3.1.5)

where Ei is the conserved momentum conjugate to t = ti(τ); this equation can be cast in the
form of the Newtonian equation of conservation of energy by defining Pi = µidRi/dτ ,

H ≡ P 2
i

2µi
− GNµiMi

Ri
=
µi
2

(E2
i

µ2i
− 1
)
, i = 1, ..., N , (3.1.6)

where Pi is the momentum conjugated to r = Ri(τ). As a consequence of isotropy the momenta
Li conjugated to ϕ = ϕi(τ) are also conserved, but since we are now interested only in the
quantisation of non-rotating infalling dust, we have set Li = 0, ∀i = 1, ..., N .

3.1.1 Quantisation

In the framework of canonical quantisation, the observable areal radius Ri and its conjugated
momentum Pi are represented by non-commuting hermitian operators R̂i and P̂i, where the
commutation relation [

R̂i, P̂j
]
= iℏδi,j1̂ (3.1.7)

encodes the uncertainty relation between Ri and Pi separately for each dust layer. With the
canonical quantisation prescription P̂i = −iℏ∂Ri , equations (3.1.6) become time-independent
Schrödinger equations, one for each shell:

Ĥiψni =
[
− ℏ2

2µi

( d2

dR2
i

+
2

Ri

d
dRi

)
− GNµiMi

Ri

]
ψni = Eniψni . (3.1.8)

By solving these Schrödinger equations (see Appendix A), and expressing the Newton constant
GN = ℓp/mp and the reduced Planck constant ℏ = ℓpmp, the eigenvalues of the Hamiltonian
can be computed, and they are given by the expression

Eni = −G
2
Nµi

3M2
i

2ℏ2
1

ni2
= −µ

3
iM

2
i

2m4
p

1

n2i
. (3.1.9)

The eigenfunctions ψni(r) associated to the eigenvalues Eni are

ψni(Ri) =
( µ6iM

3
i

π ℓ3pm
9
p n

5
i

) 1
2 exp

{
− µ2i MiRi
ℓpm3

p ni

}
L
(1)
ni−1

(2µ2i MiRi
ℓpm3

p ni

)
, (3.1.10)

where ni = 1, 2..., and they define a complete set of eigenfunctions in the Hilbert space HL
i of

a single dust layer, with the scalar product defined as

< ψni , ψni
′ >= 4π

∫ +∞

0
dRi ψ∗

ni
(Ri)ψni

′ (Ri) = δni,ni
′ (3.1.11)
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and i = 1, ..., N . The eigenvalues of the Hamiltonian are not independent of the conserved
quantities Ei; therefore, the only allowed states are those with a well-defined energy, and they
must satisfy the condition

0 ≤ E2
i

µ2i
=

2Eni

µi
+ 1 (3.1.12)

which introduce a lower bound on the quantum number ni

µiMi

m2
p

≤ ni. (3.1.13)

Since the left-hand side of (3.1.13) depends on Mi, the lower bound on ni depend on how the
dust is distributed among the inner layers, thus the ground state of a single layer, which is
defined by the lowest allowed value of ni

ni ≡ n0,i =
µiMi

m2
p

, (3.1.14)

will depend on the inner distribution of dust among the N layers and the core. The same is
true for energy eigenvalues Eni and eigenfunctions ψni , which are not completely specified until
a criterion to determine the mass fractions µi is found.
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Figure 3.1: Ground state probability density |ψi|2 for a black hole of total ADM mass M ≈
150mp, µ = mp/10 and RH = 300 ℓp. The number of layer is N = 4.
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3.1.2 Fuzzy quantum layers

The expectation value and uncertainty for the areal radius of the i-th shell are (see Appendix
A)

R̄ni = ⟨ψni , R̂niψni⟩ =
3ℓpm

3
p

2µ2iMi
n2i , (3.1.15)

∆Rni

R̄ni

=

√
2 + n2i

3ni
. (3.1.16)

The collapse of a pressureless distribution of matter can only collapse towards the central
singularity, since there is no force that can withstand the gravitational attraction, as in the
classical Oppenheimer-Snyder model. However, if the areal radii are subjected to the quantisa-
tion prescription (3.1.7), which prescribes that conjugated variables must obey the Heisenberg
uncertainty relation, the expected areal radius (3.1.15) of each shell becomes finite. With a
careful look, the width and energy of the lowest state nN = 1 for the outermost shell i = N
will be approximately

R̄1 ∼
(mp

M

)3
ℓp, E1 ∼ −M

(M
mp

)4
, (3.1.17)

where µi is assumed to be an arbitrary fraction of M , approximately of the same order of
magnitude. For a black hole with ADM mass M = M⊙, M/mp ≈ 1038, and this state is
not much different from a classical singularity. However, since not all energy eigenstates can
represent physical states, the average radius for a shell is minimum when it is in the ground
state (3.1.14),

R̄ni ≥ R̄n0,i =
3

2
ℓp
Mi

mp
=

3

2
GNMi. (3.1.18)

If instead a singular configuration is identified by means of its areal radius, and not the quantum
number ni, by looking at Figure 3.1 the probability to localise a shell in the ground near the
centre of symmetry is shown to vanish. In this perspective, the bound (3.1.13) select these states
for which each shell almost surely will not be found near the centre. This is the bound found
in [1], which would not emerge in the Newtonian theory, since in this case Ei = Ei and the full
spectrum would be physically allowed. In the quantum theory, each areal radius can a priori
assume every possible value in the range 0 < Ri < +∞ and nothing can prevent the assumption
Ri+1 > Ri from being respected during the collapse. Therefore, to guarantee that the nesting
of dust shells is conserved, we have to impose that for each pair of layers, the mean radius of
the outermost must be greater or equal to the mean innermost radius; this requirement would
result in the same former assumption in terms of averages, but since each radius Rni fluctuate
around R̄ni , well-defined nested layers must satisfy

R̄ni+1 − R̄ni ≳ ∆Rni , (3.1.19)

∀i = 1, . . . , N . In other words, in each pair, the outermost radius must be outside a thick shell
with average radius R̄ni and thickness ∆Rni . This requirement allows us to constraint the dust
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distribution among each layer, and in fact, as we will see later, this inequality determines a
criterion to fix Mi+1 in terms of Mi for a dust layer in the ground state. Using the equations
(3.1.15) and (3.1.16), (3.1.19) can be written as

R̄ni+1 ≳ R̄ni

(
1 +

∆Rni

R̄ni

)
, (3.1.20)

R̄ni+1 ≳ R̄ni

(
1 +

√
2 + n2i

3ni

)
. (3.1.21)

If we assume ni ≫ 1, this bound becomes

R̄ni+1 ≳
4

3
R̄ni , (3.1.22)

and using the value R̄ni in (3.1.15) yields

µ2iMi

µ2i+1Mi+1

n2i+1

n2i
≳

4

3
. (3.1.23)

For layers in the ground state ni = n0,i = µiMi/m
2
p, we obtain

Mi+1 ≳
4

3
Mi, (3.1.24)

which is the relation previously mentioned, and it implies µi ≳Mi/3 from the defining relation
(3.1.2), ∀i = 1, . . . , N . The hyphotesis on quantum numbers n0,i ≫ 1 is then equivalent to
require that Mi ≫ mp, which can be met by macroscopic black holes.
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3.2 Global ground state

Each set of energy eigenfunctions {ψni}+∞
ni=0 is a complete orthonormal set in the Hilbert space

HL
i of a single layer, as is the case of the hydrogen atom energy states. Moreover, each layer

carries a different fraction of total mass µi, and since a priori they are all different, each layer
is distinguishable from the others and the total Hilbert space H is

H = HL
1 ⊗HL

2 · · · ⊗ HL
N . (3.2.1)

Any quantum state representing the collapsing ball will be described by a linear superposition
of basis element of H naturally given by the tensor product of the energy eigenstates of Hi,
namely each state |Ψ⟩ can be written as

|Ψ⟩ =
+∞∑
n1=0

+∞∑
n2=0

· · ·
+∞∑
nN=0

Cn1,n2,...,nN |n1, n2, . . . , nN ⟩, (3.2.2)

where |n1, n2, . . . , nN ⟩ is the tensor product

N⊗
i=1

|ni⟩ = |n1, n2, . . . , nN ⟩ (3.2.3)

and Cn1,n2,...,nN = ⟨n1, n2, . . . , nN |Ψ⟩ ∈ C. Furthermore, to represent properly a quantum state
|Ψ⟩ must be normalized, i.e ⟨Ψ|Ψ⟩ = 1. The ground state of the quantum ball is represented
by the tensor product of single layer ground states

|n0⟩ = |n0,1, n0,2, . . . , n0,N ⟩, (3.2.4)

with |n0⟩ solution of the Schrödinger equation

Ĥ|n0⟩ = E0|n0⟩ (3.2.5)

with eigenvalue E0 =
∑N

i=1 En0,i . The operator Ĥ is defined as the hermitian operator acting
on the Hilbert space H given by the tensor product of hamiltonians Ĥi, i.e. Ĥ = Ĥ1⊗ Ĥ2 · · · ⊗
ĤN . In the ground state, the average areal radius of the ball R corresponds, up to quantum
fluctuations, to the outer radius of the outermost shell R̄n0,N , which from (3.1.18) reads

Rs := R̄n0,N +∆Rn0,N ≈ 3

2
GNM, (3.2.6)

and clearly results that Rs ≲ RH = 2GNM , where r = RH is the gravitational radius of the
spherical distribution of dust. The quantum numbers labelling the ground state of the ball |n0⟩
depend only on N and M , in fact if we set µi ≈Mi/3 in (3.1.14) we get

n0,i ≈
1

3

M2
i

m2
p

≈ 1

3

(3
4

)2N−2i+2M2

m2
p

, (3.2.7)
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where we expressed Mi in terms of M =MN+1, namely

Mi ≈
(3
4

)N+1−i
M, ∀i = 1, . . . , N + 1. (3.2.8)

Moreover, for the outer layer of the outermost shell corresponding to i = N +1, both quantum
number n0,N+1 and radius RN+1 ≈ R are totally independent on the number of layers, which
determines only the inner structure of the ball, and the only parameter left free is M . Equation
(3.2.8) holds also for radiuses R̄i, upon replacing M with R, and since nothing has yet been
said abou the mass M1 and mean radius R̄1 of the inner core, we can now write them as

R̄1 ≈
(3
4

)N
Rs (3.2.9)

M1 ≈
(3
4

)N
M, (3.2.10)

which confirm that N determines how we describe the inner structure of the ball, and thus the
inner core.

3.2.1 Multi-particle quantum states

Up to now, we have completely neglected the dust particles of which the collapsing ball is
composed of. We can extend our model by requiring that each layer contain νi = µi/µ dust
particles falling freely along the radial geodesics r = Ri(τ), each one with equal proper mass
µ. Formally, everything said hold with the only substitution µi → µ. In particular, the wave
functions (3.1.10) will describe the ground state of the νi particles in each layer, which is now
defined by n0,i = µM/m2

p, under the requirement R̄ni+1 ≳ R̄ni +∆Rni , which means that dust
particles of the same layer will be in the same quantum state. The single layer Hilbert space
HL
i is given by the tensor product of copies of the single-particle Hilbert space Hi

HL
i =

νi⊗
k=1

Hi (3.2.11)

where the total number of dust particles
∑N

i=0 νi =M/µ is fixed, as required by any well-defined
quantum mechanical system. Dust particles are not distinguishable, but since in our analysis
we are not interested in their statistical properties, we will assume them to be distinguishable.
Therefore, the multi-particles state |{n1, ν1}, . . . , {nN , νN}⟩ is now defined as

N⊗
i=1

(
νi⊗
k=1

|nk⟩
)

:= |{n1, ν1}, . . . , {nN , νN}⟩, (3.2.12)

while the global ground state of the ball is identified with the ket

|{n1,0, ν1}, . . . , {nN,0, νN}⟩ (3.2.13)
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and |nk⟩ ∈ Hk, with k = 1, 2, . . . labelling layers. Remarkably, by looking at the expression
for the ground state quantum number n0,N := Ns for the inner layer of the outermost shell
(i = N),

Ns =
µMN

m2
p

=
3

4

µM

m2
p

, (3.2.14)

the black hole area quantisation [12, 14] is recovered by multiplying the corresponding quantum
number with the total number of dust particles M/µ

M

µ
Ns ≈

R2
H

ℓ2p
≈ M

m2
p

. (3.2.15)

The same law can be also recovered from the quantisation of the radius of each layer; in fact,
by using (3.2.7), the area law becomes

Ns ≈
R2
H

ℓ2p
≈ M2

m2
p

, (3.2.16)

where the matter degrees of freedom are not explicitly counted, exactly as in the one-body model
[1]. The formula (3.2.15) is reproduced by the corpuscolar description of black holes [33]. From
the perspective of corpuscolar gravity, a black hole is composed of NG soft-gravitons marginally
bound on their own gravitational potential UGG, which form a condensate with Compton-de
Broglie wavelength λG ≈ RH . The above scaling relation can be recovered assuming that the
gravitational interaction can be approximated by the Newtonian potential

VN (r) = −GNM
r

. (3.2.17)

From the quantum field theory point of view, in the Newtonian approximation the confined
gravitons could superimpose within a finite volume of width λG ≈ RH . Assuming that the
total mass of a black hole M ≈ NGεG, that is interactions among low energy gravitons are still
negligible, where εG ∼ ℏ/λG is the energy scale of graviton, relation (3.2.15) is readily

NG ∼ M

εG
∼ M2

m2
p

∼ R2
H

ℓ2p
, (3.2.18)

provided that NG ≈ NsM/µ. However, in the original formulation of the corpuscolar descrip-
tion, matter degrees of freedom were considered to be subdominant to the gravitational ones,
and their role essentially neglected. This conclusion is not supported by this model, since the
existence of a macroscopic core (3.2.6) hidden behind the gravitational radius RH is a con-
sequence of the quantum description of the collapsed dust. On the contrary, it is supported
the idea that the matter core inside the black hole defines its interior structure, since the ball
average radius Rs is determined through the expectation value of the position operator R̂N on
the quantum state (3.2.14).

Besides that, a spherically symmetric compact core in the ground state is expected to
produce deviations, or quantum hair, from the Schwarzschild solution in the exterior of the
black hole [34, 35], a fact which would disprove the traditional No-hair conjecture. This last
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point is clarified by considering the gravitational energy of a spherical matter distribution of
mass M enclosed in a ball of radius Rs,

UN (Rs) ≈MVN (Rs) ≈ −GNM
2

Rs
. (3.2.19)

Now, the gravitational potential can be represented by the expectation value of a scalar field Φ̂
on the coherent state |g⟩ [34],

⟨g|Φ̂|g⟩ ≈ VN , (3.2.20)

where the normalisation of |g⟩ gives the number of soft-gravitons (3.2.18) generated by matter
inside the sphere of radius Rs. If is assumed that gravitons has the same wave-length λG, the
energy of each graviton will be

εG ≈ UN
NG

∼ − ℏ
λG

, (3.2.21)

and gravitons self-interactions reproduce the post-Newtonian energy

UGG(Rs) ≈ NGεGVN (Rs) ∼
G2
NM

3

R2
s

. (3.2.22)

This simple argument shows how non-linearities, encoded in the self-interacting gravitons, can
be employed to determine quantum corrections to the Newtonian potential of a spherical source
of mass M , and allow us to identify NG with the number of soft gravitons in the coherent state
|g⟩ representing the gravitational potential generated by the source.

For this Oppenheimer-Snyder based model, quantum corrections could be computed for the
metric potential VN which appears in the Schwarzschild metric1,

ds2 = −(1 + 2VN )
2dt2 + (1 + 2VN )

−1dr2 + r2dΩ2, (3.2.23)

and which plays the role of a potential in the geodesic equations (3.1.5). In order to make contact
with observations, a long-lasting successful working hypothesis is based on the assumption that
there exist a classical background solution (Mcl,gcl) to the Einstein’s equation [36, 37]. From
the point of view that the quantum theory should provide the most fundamental description of
every physical observable, which is supported all along this work, the classical geometry should
be reproduced by the expectation value of a quantum operator on suitable quantum states |ϕ⟩,

⟨ϕ| ĝ |ϕ⟩ ≈ gcl. (3.2.24)

The criteria to select these quantum states is provided by the same assumption, in that the
Schwarzschild background geometry, which is determined by the only function VN (3.2.23),
should be reproduced as close as possible by these states. For a static and spherically symmet-
ric compact source, a choice of coherent state |ϕ⟩ = |g⟩ has been proved to effectively reproduce
the black hole outer classical geometry and to explicitly give quantum corrections VQN to the
potential VN [38]. These corrections are called quantum hair, since they depend on macroscopic

1In general, VN is a Newtonian potential only for observers very far from the source.
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properties of the source, namely the radius Rs, which in our model is determined by the expec-
tation value of the quantum operator R̂i. Moreover, the explicit form of VQN is determined by
a choice of a UV cut-off for the momenta of the modes which generate the effective geometry,
and for each choice different hair are predicted. For example, a hard cut-off k < 1/Rs gives,

VQN ≈ VN

(
1−

[
1− 2

π
Si
( r

Rs

)])
. (3.2.25)

Therefore, since the mode population is expected to be related to the mass distribution, it could
be interesting to find which hair are associated to this refined quantum model.
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3.3 Excited states

The last two sections gave insights into the properties of the ground state of the collapsed
quantum ball. This state is expected to be stable, and thus to reproduce the final end-state of
the collapse. In the previous work [39], a measure of the stability of a simpler quantum core
was provided by Shannon’s information entropy, and it was showed that isotropic exited states
shared a higher information entropy, and thus instability, when compared to the ground state.
Moreover, the value predicted for the width of the ball Rs ≈ 3/2GNM holds only for the global
ground state, and by no means it is expected to represent the dimension of the core when dust
get excited. To have a more precise description of the core, even when that some dust degrees
of freedom are not in the ground state, let us consider a ball of dust where in the outermost
shell a fraction 0 ≤ x ≤ 1 of dust particles are in the ground state |Ns, 0, 0⟩ and the remaining
1−x in any excited state |n, l,ml⟩, where Ns := n0,N . We may distinguish between two classes
of excited states: a first one with n = Ns + k > Ns and l = 0, with k = 1, 2, . . ., in which
the spherical symmetry is preserved, and a second one identified by n = Ns and l > 0. States
with l ̸= 0 and/or ml ̸= 0 are no more spherically symmetric, and the probability to localise a
particle will depend in general on the spherical angles θ and ϕ. The physical information about
the ensemble of dust particles we described is encoded in the density operator

ρ̂ = x |Ns, 0, 0⟩⟨Ns, 0, 0|+ (1− x) |n, l,ml⟩⟨n, l,ml|. (3.3.1)

The conservation of the number of particles is expressed by the property

Tr[ρ̂] = x

∫
R+×S2

d3x |ψNs,0,0(r)|2 + (1− x)

∫
R+×S2

d3x |ψn,l,ml
(r, θ, ϕ)|2

= 1, (3.3.2)

which results from the orthonormality of the eigenfunctions

<ψn,l,ml
, ψn′,l′,m′

l
> =

∫
R+×S2

d3xψ∗
n,l,ml

ψn′,l′,m′
l
= δn,n′δl,l′δml,m

′
l
, (3.3.3)

where in the coordinate representation ⟨r, θ, ϕ|n, l,ml⟩ = ψn,l,ml
(r, θ, ϕ), and the full wave func-

tion ψn,l,ml
(r, θ, ϕ) is obtained including the angular momentum operator in the Schrödinger

equation (see Appendix A). The probability to localise a particle of the outermost N-layer within
a shell of areal radius r ∈ [r′, r′+dr′] and within a solid angle (θ, ϕ) ∈ [θ′, θ′+dθ′]× [ϕ′, ϕ′+dϕ′]
is thus

dPN = (x |ψNs,0,0|2 + (1− x) |ψn,l,ml
|2)r′ 2sin(θ′)dϕ′dθ′dr′, (3.3.4)

and from this expression we can define the density function

ρN (r, θ, ϕ) = µN (x |ψNs,0,0|2 + (1− x) |ψn,l,ml
|2), (3.3.5)

which describes the distribution of dust particle in the outermost shell, and it yields the total
ADM mass M if now integrated in [0, Rs]×S2. The Einstein’s equations and the continuity
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equations of the energy-momentum tensor provide the expressions for the effective radial and
transverse pressures determined by the dust density distribution (see Appendix C):

pr(r, θ, ϕ) = −ρN (r, θ, ϕ), (3.3.6)

p⊥(r, θ, ϕ) = −
(r
2
∂rρN (r, θ, ϕ) + ρN (r, θ, ϕ)

)
. (3.3.7)

For a mixed ensemble described by (3.3.1), since the azimuthal angle ϕ enters the full energy
eigenfunctions ψn,l,ml

only as a phase, the density distribution ρN and pressures pr and p⊥ will
depend only on r and θ (cylindrical symmetry).

Let us now first focus on states with n = Ns and l > 0. As noted before, for these states
the matter distribution is not isotropic, and consequently the pressures will not be any more
constant over hypersurfaces r > 0, as in (3.3.6) and (3.3.7). The average radius of the N-layer
for a mixture of dust particle described by (3.3.1) is

R̄l,N = xR̄Ns + (1− x)R̄i

= R̄Ns + (1− x) δR̄l,N , (3.3.8)

where the average radius for excited states is given by the equation (see Appendix A)

R̄i = R̄n0,i −
m3
pℓp

2µ2Mi
l(l + 1)

:= R̄n0,i + δR̄l,i, (3.3.9)

The thickness ∆Rl,N of the N-layer of inner average radius RN can be written as (see Appendix
A)

∆R2
l,N = ∆R2

Ns
+ (1− x)δ(∆R2

l,N )

= ∆R2
Ns

− (1− x)
m2
pℓ

2
p

µ2

[3
2
x+

4

9

m4
p

µ2M2

]
l(l + 1) (3.3.10)

and together with (3.3.8) it yields the global ball radius

Rs = R̄l,N +∆Rl,N

= R̄Ns + (1− x) δR̄l,N +∆RNs

√
1 + (1− x)

δ(∆R2
l,N )

∆R2
Ns

. (3.3.11)

As we should expect, if all dust particles are in the ground state |Ns, 0, 0⟩, the fraction x would
be exactly one and we would recover the core radius Rs ≈ 3/2GNM . Now, the term in the
square root is of order

δ(∆R2
l,N )

∆R2
Ns

= O
( m4

p

µ2M2

)
, (3.3.12)
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and we should ask whether there exist physical systems in which it could be neglected. For an
astrophysical black hole, M ≫ mp it is safely negligible if µ ≲ mp, which is for sure the case of
every observed particle. Therefore, the ball radius can be written in the simpler form

Rs ≈ R̄Ns +∆RNs + (1− x) δR̄l,N (3.3.13)

≈ 3

2
GNM − 2

3
(1− x)

m3
pℓ

2
p

µ2M
l(l + 1), (3.3.14)

which shows that even if all particles are in the excited state |Ns, l,ml⟩, the ball will never
cross the event horizon, since the correction δR̄l,N to the radius from the excited states is
always non-positive for every 0 ≤ x ≤ 1 and ∀l = 0, 1, . . . , Ns − 1. The following analysis
will provide only an effective description of non-isotropic states, since the collapse of rotating
dust particles are properly described by the motion along geodesics in a Kerr-like spacetime.
However, while the global ground state corresponds to an isotropic state, those with angular
quantum number l = 2 effectively describe a quadrupole deformation of the collapsed matter
distribution, and a transition between some states (which have to satisfy new hydrogen-like
selection rules) could trigger the emission of gravitational waves. The only restriction in this
analysis is that only states corresponding to the same value of the ADM mass M has been
considered, which means that a transition between any two of those states happen with no
emission of energy, as guaranteed by (3.1.6). To describe a real production of energy, a very
intriguing idea would be to use the standard perturbation theory in quantum mechanics, an
issue which is left for further investigation. The same analysis can now be extended to a mixed
ensemble of dust particles where n = Ns + k, with k = 1, 2, . . . and l = 0. The ball radius Rs
can be cast in the same form as we did previously, namely

Rs = R̄Ns + (1− x)δR̄k,N +∆RNs

√
1 + (1− x)

δ(∆R2
k,N )

∆R2
Ns

, (3.3.15)

where

δR̄k,N =
2m3

pℓp

µ2M

[3
2

µM

m2
p

k + k2
]
, (3.3.16)

δ(∆R2
k,N )

∆R2
Ns

= O
( m4

p

µ2M2

)
. (3.3.17)

The correction to the average radius (3.3.16) from the excited states is now always positive,
thus we should expect now that only a finite number of energy states (3.1.10) with n = Ns + k
and k = 1, 2, . . . will exist inside the event horizon. In fact, from (3.3.15) we have

Rs ≈ R̄Ns +∆RNs + (1− x)δR̄k,N

≈ 3

2
GNM + (1− x)δR̄k,N , (3.3.18)

50



and if we use (3.3.16), and require Rs ≲ 2GNM , we get

(1− x)
(
3k
mp

µ
+ 2k2

m3
p

µ2M

)
≲

1

2

M

mp
. (3.3.19)

For M >> mp and µ ≲ mp, which we already assumed, finally we have

k(1− x) ≲
1

6

µM

m2
p

=
2

9
Ns, (3.3.20)

where we used
Ns = n0,N =

3

4

(µM
m2
p

)
(3.3.21)

from (3.1.14). For x = 1 it is always satisfied, while for x ̸= 1 there are non-zero values of k
for which the core could be found outside the horizon, namely those for k equal to a fraction
of Ns. In this case, the black hole picture would break down. Both cases can be summarized
in the most general situation where a fraction of particles is the excited state n = Ns + k, with
k = 0, 1, 2, . . . and l > 0, and if we repeat the same analysis we made for the other two cases,
the equation for the core radius is shown to preserve the same form

Rs = R̄Ns + (1− x)δR̄l,k +∆RNs

√
1 + (1− x)

δ(∆R2
l,k)

∆R2
Ns

, (3.3.22)

where the term under square root can be neglected, as previously assuming that M ≫ mp and
µ ≲ mp, and the correction to the average radius is now expressed as the sum

δR̄l,k = δR̄l,N + δR̄k,N . (3.3.23)

Now, since R̄l,N ≤ 0 for each l = 0, 1, . . . , n − 1, and on the contrary R̄k,N ≥ 0 for each
k = 0, 1, 2, . . ., non-isotropic states are pushed towards the centre of the core and some of the
states which does not satisfy the bound (3.3.20) in general could be found in the interior of
the horizon. In formulas, for a mixture of dust particles as described by the density operator
(3.3.1), Rs ≲ 2GNM for those value of 0 ≤ x ≤ 1, k and l such that

(1− x)
[
3k
mp

µ
+
(
2k2 − 2

3
l(l + 1)

) m3
p

µ2M

]
≲

1

2

M

mp
. (3.3.24)

However, corrections to (3.3.20) are of order O(m4
p/µ

2M2), and since in most realistic scenarios
can be discarded, non-isotropic states do not give any significant contribution to the radius Rs.

3.3.1 Entropy

The density operator (3.3.1) is a positive semidefinite and hermitian operator on a single particle
Hilbert space. It encodes the incomplete knowledge of the state of each particle in the N th layer,
where a fraction x is characterised by the state |Ns, 0, 0⟩ and a fraction 1−x by |n, l,ml⟩. Being
an operator, ρ̂ can be represented in different basis, and by looking at its realisations to measure
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our uncertainty about the system could be misleading. In fact, our ignorance of the system is
better quantified by the Von-Neumann’s entropy, which is defined as

S(ρ̂) := −Tr(ρ̂ log ρ̂).2 (3.3.25)

Since ρ̂ is hermitian, it can be always diagonalised, and if {λi} are the eigenvalues of ρ̂ with
respect to any complete orthonormal basis {|ϕi⟩}i∈I , (3.3.25) becomes

S(ρ̂) = −
∑
i∈I

λilogλi, (3.3.26)

where we set 0 · log 0 = 0. In this form, (3.3.26) can be immediately recognised as the Shannon’s
entropy SSh for an information source whose realisations xi ∈ χ can occur with probability
λi = p(xi) = pi,

SSh = −
∑
xi∈χ

pilog pi. (3.3.27)

where χ defines an alphabet of symbols. In our definition, the logarithm is not expressed in base
two, which means that entropy is not measured in bit but in nat, where 1nat = (1/log 2)bit. It
is worth noting that the Von Neumann’s entropy (3.3.25) could be interpreted as information
entropy only for the ensemble |ϕi⟩ of orthonormal eigenstates of ρ̂. Even if formally Shannon’s
and Von-Neumann’s entropies look the same, them do not share the same properties in general.
In fact, the classical Shannon’s entropy departs from the quantum Von-Neumann entropy when
we consider the interaction of more subsystems (or information sources).

Now, the entropy S(ρ̂) quantifies our ignorance about the state of the system in the sense
that, if ρ̂ is a pure state, i.e. all members of the ensemble are in the same state |ψ⟩, then

ρ̂ = |ψ⟩⟨ψ| := P̂ψ =⇒ S(ρ̂) = 0. (3.3.28)

This is what we would expect, since after we measure the state of the system, we would found
it in |ψ⟩ without any uncertainty. On the opposite, if the ensemble is completely random, i.e.
each member has equal probability xψ = x to be found in every (accessible) quantum state
|ψ⟩ ∈ Hψ, the entropy will be maximum

ρ̂ =
∑
ψ

xψP̂ψ =⇒ S(ρ̂) = log (d), (3.3.29)

where d is the number of accessible states from the system, and
∑

ψ xψ = 1 with xψ ≥ 0 since
they represent fractional populations. In our case, the density operator would represent a pure
state if all dust particles in the N th layer were in the ground state |Ns, 0, 0⟩, i.e. x = 1, or in
the same excited state |n, l,ml⟩, i.e. x = 0, while the entropy would reach the maximum for
x = 1/2, and since each particle has only two states at its disposal, then Smax = log 2. For any
two-state system, the entropy is equal to,

S(ρ̂) =

{
0, if x = 0, 1,

x logx+ (1− x) log(1− x), if 0 < x < 1,
(3.3.30)

2The Boltzmann’s constant kb gives entropy its natural units, which here is ignored to recover the Shannon’s
information entropy definition.

52



which we can prove to be the right entropy with a direct computation using the orthonormal
basis {|n, l,ml⟩}. In fact, diagonalising ρ̂,

ρ̂|n′, l′,m′
l⟩ = (x δNs,n′δ0,l′δ0,m′

l
+ (1− x) δn,n′δl,l′δml,m

′
l
)|n′, l′,m′

l⟩ (3.3.31)

:= λn′,l′,m′
l
|n′, l′,m′

l⟩, (3.3.32)

we can use directly (3.3.26),

S(ρ̂) = −
∞∑

n′=Ns

n′−1∑
l′=0

l′∑
m′

l=−l′
λn′,l′,m′

l
logλn′,l′,m′

l
(3.3.33)

which gives the entropy in (3.3.30). In this simple case, the equivalence between Shannon’s and
Von-Neumann’s entropy provides a different interpretation of the entropy from exp(S) estimat-
ing the number of accessible quantum states for the system. In fact, according to Shannon’s
source coding theorem [40], SSh is the minimum number of bits (per source symbol) required to
store information being produced by the source and which can be at later time reconstructed
without information loss. Therefore, to store the information of the state ρ̂,without any suc-
cessive loss, we only need at maximum one bit, and this would the entropy for the N th layer if
we were to neglect all the fundamental matter degrees of freedom. In fact, the quantum state
of the N th layer is described by the composite density matrix

ρ̂N =

νN⊗
i=1

ρ̂, (3.3.34)

and the total entropy for the whole composite system (N th layer populated by νN dust particles)
is

S(ρ̂N ) = − Tr(ρ̂N logρ̂N )

= −
νN∑
i=1

Tr(ρ̂ logρ̂)

= νNS(ρ̂), (3.3.35)

where the trace on the first line is computed on HL
N as defined in (3.2.11). The maximum

ignorance of the system is quantified by the total entropy Smax = νN log 2, or as we said
the maximum number of accessible quantum states is exp(Smax) = 2νN ≈ 2M/4µ, where νN
correspond to the number of bit needed to successfully encode the state of the N th layer, as
described by (3.3.34). The number of accessible quantum state is exponential in the ADM mass
M , and hence in the volume of the collapsed ball, a property which is shared by any system
whose independent degrees of freedom are additive in the volume, and which is expected for
matter. Gravitational degrees of freedom are instead expected to grow with the horizon area,
which instead is proportional to M2, as prescribed by the Bekenstein’s area law.
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3.4 Core surface

Remarkably, in the ground state the discretized mass function Mi grows linearly with the mean
areal radius R̄n0,i ; in fact using equation (3.2.8) for both masses and radiuses we get

Mi =
2mp

3ℓp
R̄n0,i . (3.4.1)

Since this relation is independent on N , we can extend it to a continuos mass function

m(r) ≈ 2mp

3ℓp
r, (3.4.2)

which is consistently the Misner-Sharp-Hernandez mass function

m(r) = 4π

∫ r

0
dr′ r′ 2ρ(r′) (3.4.3)

determined by the energy density

ρ(r) =
M

4πRr2
≈ mp

6πℓpr2
, (3.4.4)

required that m(Rs) = M , where M is the total ADM mass. Anyway, even if the function
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Figure 3.2: Discrete and approximated continuos mass distribution for a black hole of total
ADM mass M ≈ 150mp, µ = mp/10 and RH = 300 ℓp. The number of layer is N = 200.

matches the outer Schwarzschild geometry, its first order derivative seems to be discontinuos
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at the surface and non-vanishing from the enterior of the ball, namely for r → R−
s , a picture

which makes hard to conceive the quantum core in equilibrium, as it should be in the ground
state. The fuzzyness of quantum layers, which is effectively described by the thickness ∆Rn0,i ,
is responsible for this issue; in fact, the outermost shell with thickness ∆RNs ≈ Rs/4 contains
one fourth of the total mass M ,

µN =MN+1 −MN ≈ M

4
. (3.4.5)

Therefore the mass function is expected to vanish on the surface of this "halo" of dust particles,
and not on the ball of average radius Rs. What we have just said should not sound mysterious,
since in the classical picture Mi described the mass contribution of the only dust inside r = Ri,
but after the quantisation each particle can access every layer and contribute to the mass of
every one of them. A better description of the mass distribution inside each layer should be
given by ρi(r) = µi|ψn0,i(r)|2, because |ψn0,i(r)|2 gives the probability density to localize a
particle of the i-layer, which is also expected to show a non-zero probability to find a particle in
a different j ̸= i layer. In particular, the mass distribution in the outermost shell is determined
by ρN (r), which does not depend on the number of layers N , and it is expected to match
smoothly the outer Schwarzschild geometry with total ADM mass M , which is only possible if
the behaviour of ρN deviates from being linear in r as in (3.4.3), as expected from the analytical
expression of the wave functions (3.1.10). In summary, we seek a mass function m(r), which
is linear for r ≲ r0 and non-linear for r ≳ r0, where r0 = R̄Ns , matching smoothly the outer
geometry m(r1) = M on the surface of the outermost shell r1 = R̄Ns +∆RNs . Clearly, r0 and
r1 parametrize the boundaries of this outer transitional shell. We can write it as

m(r) =


α r r ≤ r0

B(r) r0 ≤ r ≤ r1

M r ≥ r1

(3.4.6)

with α a constant to be fixed and B(r) a non-linear function. Since almost all the information
we need to properly describe the outermost shell is encoded in ρN (r), B(r) could be chosen to
interpolate the profile of that density distribution. In addition, B(r), B′(r) and B′′(r) must be
continuos at the boundary r = r0 and r = r1 to ensure the continuity of all components of the
energy-momentum tensor at both ends, namely

α r0 = B(r0). B(r1) =M. (3.4.7)
α = B′(r0). B′(r1) = 0. (3.4.8)
0 = B′′(r0). B′′(r1) = 0. (3.4.9)

Even if B(r) is expected to be non-linear, we can still try to find an interpolating function
which approximates m(r) without introducing any more constraints. Requiring B,B′,B′′ to be
continuos we have introduced 6 conditions to be fulfilled, which can be done using an M =
5 order polynomial which has clearly M + 1 coefficients that can be used to satisfy them.
A polynomial B(r) of degree M such that (3.4.7), (3.4.8) and (3.4.9) hold exists and it is
called osculating polynomial (see Appendix B for details and the analytic expression). Using
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Figure 3.3: Misner-Sharp-Hernandez function m for a black hole of total ADM mass M ≈
150mp, µ = mp/10 andRH = 300 ℓp. In dashed line is represented the mass function determined
by ρN (r), while in solid line is represented the interpolated mass function.

adimensional units x = r/RH , in Fig.(3.2) is represented the mass function (3.4.6) with respect
to the Misner-Sharp-Hernandez mass given by ρN (r). Boundaries of the transitional layer are
explicitly

r0 =
16

9
RH , (3.4.10)

r1 =
3

4
RH , (3.4.11)

while the value of α is fixed by the condition

α =
4πM

r0

∫ r0

0
dr r2ρN (r), (3.4.12)

which ensures the matching between the linear and non-linear regime. For a spacetime de-
scribed by the metric (3.1.1), radial and transverse pressure functions can be computed [41]
(see Appendix C) and they are given by the equations

pr(r) = −m
′(r)

4πr2
, (3.4.13)

p⊥(r) = −m
′′(r)

8πr
, (3.4.14)

and represented in Fig.(3.4) and Fig.(3.5). In this model m(r) matches as required the outer
Schwarzschild geometry, with continuos first and second order derivatives. The radial pressure
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Figure 3.4: Radial pressure pr corresponding to a black hole of total ADM mass M ≈ 150mp,
µ = mp/10 and RH = 300 ℓp. In dashed line is represented the radial pressure determined by
ρN .

is approximately zero near the external boundary of the outermost shell, while the tangential
pressure (tension) is non-vanishing across this outer transitional layer and oscillating. Although
high degree polynomials could introduce spurious oscillations, in this case the only side effect
introduced in the interpolation could be the increasing of the height of peaks, while the oscil-
lating behaviour is clearly still present in the mass function determined by |ψNs |2. In Fig.(3.5)
clearly p⊥ is everywhere continuos but not its first derivative, as we imposed continuity of B(r)
at most at second order. Three more conditions can be introduced to ensure the continuity of
the energy-momentum tensor up to first derivatives of the components, but at the price of a
more complex osculating polynomial B(r). Moreover, this model is independent on the number
of layer N we use to describe the inner core, so it can be used in the full general setting of
the problem. However, limitations are still present since it improves only the description of
the outermost core surface while still using the linear approximation in the interior region, and
furthermore it cannot be used with arbitrary value of M and µ, in particular it is impossible to
compute |ψNs(r)|2 for astrophysical sources.
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Figure 3.5: Tangential pressure p⊥ corresponding to a black hole of total ADM mass M ≈
150mp, µ = mp/10 and RH = 300 ℓp. In dashed line is represented the tangential pressure
determined by ρN .

3.4.1 Integrable singularity

Since in Einstein’s theory every matter distribution sourcing gravity will curve spacetime, the
trajectories of an observer falling freely will be determined by matter itself. A measure of the
spacetime curvature is given by scalar polynomials constructed of out the Riemann tensor, like
the Kretschmann scalar and the Ricci scalar,

K = RαβγδR
αβγδ, R = gµνRµν , (3.4.15)

where Rµν are the components of the Ricci tensor in the coordinate chart {xµ}. In particular,
for the quantum core, near the centre of symmetry matter distribution is well approximate by a
linear law (3.4.3) (Appendix C). Then, if we look at the Kretschamnn scalar for this distribution,
which is

K ∼ 64

3
r−4, R ∼ 8

3
r−2, for r → 0, (3.4.16)

clearly the K ∼ r−6 behaviour near the singularity of a Schwarzschild black hole is smoothed
by the quantum matter. In particular, by looking at the geodesic deviation of two test particles
which fall radially along two nearby geodesic, if ξ⃗ = (δr, 0, 0) is the spatial vector field joining
the two points, from (Appendix C) results that

1

δr

d2δr

dτ2
= −R1

010 ≈ 0 for r → 0, (3.4.17)

where τ is the time measures by a clock attached to one of the test particles. Therefore, even
if the scalar polynomials are still divergent near the singularity, there exist preferred directions
along which an observer falling freely will not experience any infinite stretching or compression,
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but could even reach the singularity and pass through it [42]. This is just a direct proof of a
more general result (Appendix C). In fact, it is a consequence of the vanishing of the Misner-
Sharp-Hernandez mass function at the centre m(0) = 0 and of m ∼ r, which is enforced by the
L2-integrability of the wave-function,∫ r

0
dr′ r′ 2|ψ(r′)|2 <∞. (3.4.18)

again a feature of the quantum description of matter. Therefore, a singularity of this time
is called integrable singularity, since while the scalar polynomials and the effective energy-
momentum tensor still diverge near this region, their volume integrals remain finite.

3.4.2 Angular perturbations of the core surface

Dust distribution is assumed from the very beginning to be isotropic and particles radially
infalling, therefore we could look at the radial distribution determined by ψ(r) to properly
describe the collapsed matter. We can therefore marginalize the probability density in equation
(3.3.5) with respect to angles to obtain the radial probability distribution, namely

ρl,N (r) =

∫ π

0
dθ sinθ

∫ 2π

0
dϕ r2|ψ(r, θ, ϕ)|2

= 4πr2|ψ̃l(r)|2, (3.4.19)

where now we denote the radial wave function ψ̃l(r) since it still depends on l (but not on ml),
and the symbol ∼ remind us the different convenction used for the normalisation, in particular
ψ̃ = ψ/

√
4π. From this equality, we recover the probability density for the ground state used

in Section 3.4 from ρ0,N (r) = ρN (r).
The main result that introduced the first section was the linear relation between R̄i and Mi in
the ground state, which is reasonably expected if during the collapse dust layers preserve their
nested structure, i.e. R̄i+1 ≈ R̄i +∆Ri. If we now suppose that a fraction of dust particles are
in a different excited state, the nested structure could be partially lost, since the average areal
radius R̄i will depend also on those excited states. In fact, the average radius for the N-layer
when dust is in the quantum state (3.3.1), the areal radius is the weighted average expressed by
(3.3.8). Moreover, as in the hydrogen atom, we should expect a lower probability to find excited
particles in the innermost core for l > 0. Therefore, the linear approximation is not expected to
hold for all possible fractions 0 ≤ x ≤ 1 and excited states l > 0. However, the non-vanishing
tangential pressure p⊥(r) in the outermost shell could be responsible for resistance against
"angular perturbation" with respect to the isotropic dust configuration. In Figures (3.6a) and
(3.6b) is represented the Misner-Sharp-Hernandez function m(r) for l = 5 and l = 8 with
different compositions of excited states, which as we already noted should describe accurately
the outermost layer. The mass distribution is almost unperturbed from the rest configuration
ρ0,N for, l ≲ 5 and "small" significant deviations start to occur for l ≳ 5.
We can repeat the same analysis made for a collapsing ball in the ground state, using the
interpolating function (3.4.6) to reconstruct the mass density ρl,N in the outermost layer. As
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(a) m(r) determined by ρ5,N (r).
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(b) m(r) determined by ρ8,N (r).

Figure 3.6: Mass function determined by distributions ρl,N (r) for different fraction x of particles
in the ground state, for a black hole of total ADM mass M ≈ 150mp, µ = mp/10 and RH =
300 lp.

noted before, the main difficulty now is to determine what are the boundaries of this non-
linearity region and how much we can trust our results, since the relation Mi+1 ≈ 4/3Mi

strictly holds only for a nested collapse of dust in its ground state. For l ≲ 5 we can fix r1 and
r0 to be

r0 = R̄n0,N + δR̄l,N

= (
9

16
− 1

3

m4
p

µ2M2
l(l + 1))RH

(3.4.20)

r1 = R̄n0,N+1 + δR̄l,N+1

= (
3

4
− 1

4

m4
p

µ2M2
l(l + 1))RH

(3.4.21)

and choose the same α as in (3.4.12) with the appropriate density distribution ρl,N (r) and
point r0. In Figure (3.8) is represented the interpolated mass function, which again seems to
correctly represents the expected dust distribution, and it is not significantly different from the
unperturbed mass function. The same conclusions hold for the pressure functions represented
in Figures (3.7a) and (3.7b). Those configurations for l ≲ 5, for every fraction x of particles
in the ground states does not show significant deviations from the unperturbed configuration,
therefore everything we already said is still true. Differently, as we can see in Figures (3.9a),
(3.9b) and (3.10), the interpolated mass function and pressures deviates from the outermost
core behaviour determined by ρ8,N (r), in this case for l = 8.
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(a) Radial pressure pr(r).
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(b) Tangential pressure p⊥(r).

Figure 3.7: Radial and tangential pressure functions for a black hole of total ADM mass M ≈
150mp, µ = mp/10 and RH = 300 lp. In dashed line, pressures are determined by ρ5,N , while
in solid line dust particles are in the state ψ with x = 0.5 and l = 5.
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Figure 3.8: Misner-Sharp-Hernandez functionm for a black hole of total ADM massM ≈ 150 ℓp,
µ = mp/10 and RH = 300 ℓp. In dashed line is represented the mass function determined by
ρ5,N (r), while in solid line is represented the interpolated mass function for dust particles in
the state ψ with x = 0.5 and l = 5.
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(a) Radial pressure pr(r).

0.2 0.4 0.6 0.8 1.0

r

RH

-1000

-500

0

500

1000
P⟂

(b) Tangential pressure p⊥(r).

Figure 3.9: Radial and tangential pressure functions for a black hole of total ADM mass M ≈
150mp, µ = mp/10 and RH = 300 lp. In dashed line, pressures are determined by ρ8,N , while
in solid line dust particles are in the state ψ with x = 0.5 and l = 8.
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Figure 3.10: Misner-Sharp-Hernandez function m for a black hole of total ADM mass M ≈
150 ℓp, µ = mp/10 and RH = 300 ℓp. In dashed line is represented the mass function determined
by ρ8,N (r), while in solid line is represented the interpolated mass function for dust particles in
the state ψ with x = 0.5 and l = 8.
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Chapter 4

Conclusions

In the classical Oppenheimer-Snyder model, for every initial regular configuration, the surface
of the collapsing dust becomes trapped at the same time at which it crosses the Schwarzschild
radius of the ball. Consequently, the singularity theorems dictate that the shrinking matter
must end in a region of spacetime with infinite curvature: a curvature singularity. However,
Einstein’s theory of gravity is not believed to accurately describe a gravitational collapse up
to the very final stages. In fact, the dynamics of a gravitational system is expected to be
modified by quantum-gravitational effects, even if a unique quantum theory of gravity is still
missing. Many collapse scenarios, where quantum effects modify the classical dynamics, have
been depicted within the Hamiltonian theory of gravity. In the canonical approach, this issue
is addressed by introducing an effective description of quantum-gravitational systems based
on the quantisation of classical equation of motions over a fixed background manifold. In all
mini-superspace models described, the quantum modified dynamics prevents the appearance
of a singular final state by producing a bounce. Inspecting the behaviour of energy wave
packets, in the canonical analysis the re-expanding phase starts when the packet compresses
approximately to E ≈ mp, in agreement with the common assumption that General Relativity
should break down at the Planck scale. A serious limitation of canonical quantisation is that in
all descriptions of already idealised spherically symmetric model, only few dynamical quantum
degrees of freedom could be included to be able to at least make some prediction, namely just
only the areal radius of a collapsing shell. Moreover, the OS model [7] in the canonical picture,
does not even seem to describe a black hole.

Employing the quantisation prescription (3.1.7), we have been able to provide a quantum
description of the gravitational collapse of a spherically symmetric distribution of dust (OS
model), which produces a black hole with a macroscopic matter core as the final end-state
of the collapse. In fact, provided that the areal radiuses satisfy the Heisenberg uncertainty
principle, the infalling matter does not collapse to a singular final state as in the classical
model. In this work, this prescription has been extended to an N-body model of the OS
collapse, where dust particles are distributed among N arbitrary layers of areal radius Ri. The
ground state radius Rs ≈ 3/2GNM and the quantum number for the outermost layer Ns were
shown to be independent of the number of layer N . A macroscopic quantum core Rs ≲ RH
conflicts with Planck size remnants [9], while still agreeing with the idea that quantum theory
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may play a role even at larger distances in gravitational system, and the possibility to detect
quantum-gravitational effects at experimentally accessible macroscopic scale is left open.

From (3.2.15) the surface area of the core has been proved to be quantised according to
Bekenstein’s area law. Consequently, it was possible to identify NsM/µ ≈ NG, where NG in
the corpuscolar description of black holes represents the number of soft-gravitons generated by
a source of mass M . From a simple analogy with the corpuscolar picture, the finite size of the
core has been shown to be able to produce deviations from the classical Schwarzschild geometry,
and to open up the possibility to compute these corrections for this refined model.

In this extended model, for astrophysical black holes M ≫ mp, the width of the core when
a fraction 1 − x of dust in the outermost layer get excited was shown to consistently describe
a compact core hidden behind an event horizon, thus a black hole, only for a finite number
of isotropic excited states. When the excited fraction is in a state which is not spherically
symmetric, the core radius was found to be approximately equal to the ground state radius Rs.
In particular, it was addressed that a de-excitation from states corresponding to a quadrupole
deformation l = 2 could be associated to the production of gravitational waves. Since in the
Oppenheimer-Snyder model, the Hamiltonian constraint (3.1.5) ensures that all states have
the same energy, the emission could be described deploying the time-dependent perturbation
theory of quantum mechanics, by introducing a time-dependent perturbation Ĥint(t) which
could induce a transition between states corresponding to different ADM masses.

In the innermost region of the quantum core, a linear approximation for the Misner-Sharp-
Hernandez mass function has replaced the central singularity with an integrable singularity,
where the Kretschmann’s scalar is shown to behave as K ∼ r−4 as r → 0. However, in the
outermost region of the core, the fuzzy layers overlap and the linear approximation is shown to
break down. A more accurate description of the surface has been given by interpolating the mass
distribution ρNs = |ψNs |2 in the non-linear region 16/9RH < r < 3/4RH . The solution provided
is described by a 5-th order polynomial with continuos first and second order derivatives, whose
construction does not depend on the number of layer N . An accurate description of the core
surface is required when the evaporation and accretion of the quantum core are introduced in
this picture, which has been neglected through this work but should be included in a complete
description of the collapse.

The effective quantum description of a gravitational collapse depicted in this model is only
an approximation of a realistic collapse. Since all stars are rotating, a more precise description
would require the quantisation of the geodesic equation in a Kerr spacetime. Moreover, particles
should be more fundamentally described by excitations of quantum fields, and all Standard
Model interactions should be included. Anyway, from the potential observational signatures
provided by this model, it looks very promising to develop more refined quantum pictures
of black holes, since they provide physical cosmological signatures that in principle could be
detected, and which makes those models appealing to grasp the essential features of a quantum
theory of gravity.
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Appendix A

Schrödinger equation for a Newtonian
potential

It is convenient to formally solve the full Schrödinger equation for a point-like particle with
mass µ moving in the Newtonian potential generated by a spherical distribution of total mass
M

U(r) = −GNµM
r

. (A.0.1)

The radial Schrödinger equation for a spherically symmetric potential reads[
− ℏ2

2µ

( d2

dr2
+

2

r

d
dr

)
+
l(l + 1)ℏ2

2µr2
− GNµM

r

]
f(r) = Ef(r), (A.0.2)

where we already solved the angular part of the equation, whose eigenfunctions are known to
be spherical harmonics Y m

l (θ, ϕ), depending on two integer numbers l = 0, 1, 2, ... and m =
−l,−l + 1, ..., l − 1, l. At the end we will set l = m = 0 to select only those eigenfunctions
representing isotropic states. Furthermore, we expect the energy spectrum to be discrete for
E < 0 with normalizable eigenfunctions. The change of function

f(r) =
χ(r)

r
(A.0.3)

simplifies (A.0.2) to [
− ℏ2

2µ

d2

dr2
+
l(l + 1)ℏ2

2µr2
− GNµM

r

]
χ = Eχ. (A.0.4)

This equation must be solved provided the regularity condition

χ(0) = 0, (A.0.5)

and requiring each solution χ(r) to be bounded by a constant in the limit r → +∞, to guarantee
that χ(r) can be properly normalised. Defining the constant

k2 = −2µE
ℏ2

> 0, (A.0.6)
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we can rewrite (A.0.4) as

d2χ

dr2
+
[
−k2 − l(l + 1)

r2
+

2GNµ
2M

ℏ2r

]
χ = 0. (A.0.7)

We can tidy up this equation introducing the adimensional radius

x =
2 r

a n
, (A.0.8)

where we have redefined k = kn using a new parameter n > 0

k =
GNµ

2M

n ℏ2a
, (A.0.9)

and a is the ’Bohr’ radius

a =
ℏ2

GNµ2M
. (A.0.10)

By using the chain rule

dg
dr

=
x

r

dg
dx

=
2

an

dg
dx
, (A.0.11)

d2g

dr2
=

2

an

dx
dr

d2g

dx2
=
( 2

an

)2 d2g

dx2
, (A.0.12)

with g(r) any differentiable function, the equation (A.0.7) simplifies to( 2

an

)2d2χ

dx2
+
[
−
( 1

an

)2
−
( 2

an

)2 l(l + 1)

x2
+

2

a

2

an

1

x

]
χ = 0,

( 2

an

)2 [d2χ

dx2
+
[
−1

4
− l(l + 1)

x2
+
n

x

]
χ
]
= 0,

d2χ

dx2
+
[
−1

4
− l(l + 1)

x2
+
n

x

]
χ = 0. (A.0.13)

From the study of the asymptotic form of the solution to this equation in the limit x→ 0 and
x→ ∞, we can try to solve the radial equation using the ansatz

χ(x) = xl+1e−x/2L(x), (A.0.14)

and replacing χ(x) in the equation (A.0.13), we obtain a differential equation for L(x)

x
d2L

dx2
+ (2l + 2− x)

dL
dx

− (l + 1− n)L = 0. (A.0.15)

The regularity and boundary condition for χ require that L(x) must be non vanishing for x→ 0
and that grows slower than ex/2 for x→ +∞. Then, the Kummer differential equation (A.0.15)
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has solution provided that the non-negative parameter n is integer with n ≥ 1, and l ≤ n− 1,
and it can be written as

L(x) = c M(l + 1− n; 2l + 2;x), (A.0.16)

where M is a confluent hypergeometric function of the first kind, called also Kummer’s function
[43]. This function can be written in terms of generalised Laguerre’s polynomials

L(α)
p =

(p+ α)!

α!p!
M(−p;α+ 1;x) (A.0.17)

where p and α are non negative integer. The functions L(α)
p are polynomials of degree p as can

be explicitely seen from the Rodrigues’ formula

L(α)
p =

x−αex

p!

dp

dxp
(
xp+αe−x

)
, (A.0.18)

and they are orthogonal with the scalar product defined as∫ ∞

0
dxxα+1e−xL(α)

p1 L
(α)
p2 =

(α+ p1)!

p1!
(α+ 2p1 + 1)δp1,p2 . (A.0.19)

Therefore, we can normalize them to define a set of orthonormal polynomials, and express the
solution to the Kummer’s equation (A.0.15) as

L(x) ≡ Lnl(x) =
[(n− l − 1)!

2n(n+ l)!

]1/2
L
(2l+1)
n−l−1(x), (A.0.20)

where the orthonormality follow from (A.0.19) with p = n−1−l and α = 2l+1. The eigenvalues
of the radial Schrödinger equation are given by (A.0.6) and (A.0.9),

En = −ℏk2n
2µ

= −G
2
Nµ

3M2

2ℏ2
1

n2
, (A.0.21)

with n non-negative integer, and the energy spectrum is degenerate since they solely depend
on n. The spherically symmetric eigenfunctions associated to the eigenvalues En are identified
by the quantum numbers n = 0, 1, 2, ..., l = m = 0, and their expression is given by (A.0.3),
(A.0.8) and (A.0.14),

fn(r) =
[(n− 1)!

2nn!

] 1
2
( 2

an

)
exp
{
− r

an

}
L
(1)
n−1

( 2r
an

)
, (A.0.22)

where a is the ’Bohr’radius defined in (A.0.10). Each eigenfunction must be normalizable, since
we assume the particle to be localizable somewhere in the space of configurations, and the
probability density to find it given by |f(r)|2. Computing the norm∫

R+xS2

d3x|f(r)|2 = 4π

∫ +∞

0
drr2|f(r)|2 = 1 (A.0.23)
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we can properly normalise the eigenfunctions expressed in (A.0.22),

ψn(r) =
fn(r)√
4π

, (A.0.24)

and from the orthogonality relation (A.0.19), the ψn will satisfy the condition

< ψn, ψn′ >:= 4π

∫ +∞

0
dr r2ψ∗

n(r)ψn′ (r) = δn,n′ . (A.0.25)

If we define the uncertainty on the observable r as

∆r :=
√
<(r −<r>)2> =

√
<r2>−<r>2, (A.0.26)

where the expectation of r is given by the weighted average

<r> = r̄ =

∫ +∞

0
drr2ψ∗

n(r) r ψn(r), (A.0.27)

then they are expressed by the following formulas [44];

r̄ =
a

2
[3n2 − l(l + 1)], (A.0.28)

∆r2 =
(a2n2

2

)[
5n2 + 1− 3l(l + 1)

]
−
(a2
4

)[
9n4 + l2(l + 1)2 − 6n2l(l + 1)

]
(A.0.29)

=
a2

4

(
n4 + 2n2 − l2(1 + l)2

)
, (A.0.30)

in particular for l=0 we get

r̄ =
a

2
3n2, (A.0.31)

∆r =
an

2

√
2 + n2, (A.0.32)

∆r

r̄
=

√
2 + n2

3n
=

1

3
+O

( 1

n2

)
, n→ +∞. (A.0.33)
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Appendix B

Hermite interpolation

Osculating polynomials are interpolating polynomials which pass through a set of points with
specified derivatives. For the construction of osculating polynomials in full generality we refer to
[45, 46]. Given a set of n+1 points {xi}ni=0, non-negative numbers {mi}ni=0, with mi ∈ N∪{0},
and values to interpolate {f (k)j }, with j = 0, . . . , n and k = 0, . . . ,mj , the osculating polynomial
approximating the function f ∈ Cm([a, b]) is the polynomial of least degree such that

f (k)(xj) = f
(k)
j ∀j = 0, . . . , n, ∀k = 0, . . . ,mj . (B.0.1)

From these requirements we have n+ 1 conditions for f (0) ≡ f , and
∑n

j=0mj more conditions
to be satisfied for the derivatives; a polynomial of degree

M =
N∑
j=0

mj + n (B.0.2)

has M + 1 coefficients that can be used to fulfill these requirements. A general theorem [45]
states that a polynomial of degree M such that conditions (B.0.1) are satisfied exist and is given
by

f(x) =

n∑
j=0

mj∑
k=0

Ajk(x)f
(k)
j , (B.0.3)

where

Ajk(x) = pj(x)
(x− xj)

k

k!

mj−k∑
l=0

1

l!
g
(l)
j (xj)(x− xj)

l, (B.0.4)

with pj(x) and gj(x) defined by

pj(x) =

n∏
l=0
l ̸=j

(x− xl)
ml+1, (B.0.5)

gj(x) =
1

pj(x)
. (B.0.6)
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In the special case mj = 1 for each j = 0, . . . , n polynomials f(x) are usually called Hermite
polynomials and (B.0.3) is called Hermite formula. In our analysis in Section 3.4, we sought the
interpolating polynomial B(x) given only two points x0 and x1 and which agree up to second
derivatives, namely m0 = m1 = 2. The general formula (B.0.3) simplifies to

B(x) =

1∑
j=0

2∑
k=0

Ajk(x)B
(k)
j , (B.0.7)

and f(x) is determined by only six conditions, since it reduces to a polynomial of order M = 5
(B.0.2). From now, x refers to x = r/RH , with x0 = r0/RH , x1 = r1/RH . Taking advantage of
the vanishing of

B(1)(x1) = B(2)(x0) = B(2)(x1) = 0, (B.0.8)

enforced by conditions (3.4.7), (3.4.8) and (3.4.9), where for convenience we use the notation

Bj = B(0)(xj) B′
j = B(1)(xj) B′′

j = B(2)(xj), (B.0.9)

we can set

A02(x) = A11(x) = A12(x) = 0. (B.0.10)

Therefore the full problem simplifies to determine only three functions A00(x), A01(x) and
A10(x). From what we have already said r0 = R̄n0,N and r1 = R̄n0,N +∆Rn0,N , and if we define

∆x =
∆Rn0,N

RH
, (B.0.11)

we can express functions (B.0.10) in short form

A00(x) = − 1

∆x3
(x− x1)

3 − 3

∆x4
(x− x1)

3(x− x0)

− 6

∆x5
(x− x1)

3(x− x0)
2, (B.0.12)

A01(x) = − 1

∆x3
(x− x1)

3(x− x0)−
3

∆x4
(x− x1)

3(x− x0)
2, (B.0.13)

A10(x) = +
1

∆x3
(x− x0)

3 − 3

∆x4
(x− x0)

3(x− x1)

+
6

∆x5
(x− x1)

2(x− x0)
3. (B.0.14)
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Finally, the full interpolating function B(x) is completely determined and its expression is

B(x) = − α′

∆x3
(x− x1)

3 +
M

∆x3
(x− x0)

3

−
( 3α′

∆x4
+

α

∆x3

)
(x− x1)

3(x− x0)

− 3M

∆x4
(x− x0)

3(x− x1)

−
( 6α′

∆x5
+

3α

∆x4

)
(x− x1)

3(x− x0)
2

+
6M

∆x5
(x− x1)

2(x− x0)
3, (B.0.15)

with

α′ = αx0 =
4πM

RH

∫ r0

0
dr r′ 2ρN (r). (B.0.16)
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Appendix C

Schwarzschild spacetime in the tetrad
formalism

C.1 Einstein’s equations

We considered through this work a spacetime (M,g) sourced by an isotropic distribution of
dust particles, where the line element can be cast in the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2, (C.1.1)

if we define
f(r) = 1− 2GNm(r)

r
. (C.1.2)

The components of the corresponding energy-momentum tensor Tµν are given by the Einstein’s
equations

Gµν = 8πGNTµν , (C.1.3)

where Gµν are the components of the Einstein computed from the metric in (C.1.1). Let us
introduce a non-coordinate orthonormal basis (tetrad) {e⃗a}, whose components in coordinate
basis {∂µ} are defined as

eµ0 = (f−
1
2 , 0, 0, 0), eµ1 = (0, f

1
2 , 0, 0),

eµ2 = (0, 0, r−1, 0), eµ3 = (0, 0, 0, (rsinθ)−1), (C.1.4)

where

e⃗a = e µ
a ∂µ and g(e⃗a, e⃗b) = ηab, (C.1.5)

and use this tetrad as the proper reference frame of a fluid element with velocity u⃗ = e⃗0, which
means that we assume the energy-momentum tensor to be diagonal in this basis,

Tµν = ρeµ0e
µ
0 + pre

µ
1e
µ
1 + pθe

µ
2e
µ
2 + pϕe

µ
3e
µ
3, (C.1.6)
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where the proper density ρ and the principal pressure pr,pθ,pϕ are eigenvalues of T associated
respectively with the eigenvectors e⃗0 and e⃗i, i = 1, 2, 3. The most convenient way to compute
the Einstein tensor g and then the energy-momentum tensor T is to solve the Cartan structure
equations, which allow us to determine the Riemann tensor without using any coordinate basis
of vector fields {∂µ}. That this choice is indeed convenient is a consequence of the Levi-Civita
connection being symmetric, or equivalently torsion-free. To pursue our objective, we introduce
the basis of one-forms {ϵ̃a} dual to {e⃗a},

ϵ̃a(e⃗b) = δab , (C.1.7)

whose components in the coordinate basis of one-forms {d̃xµ} are

ϵ̃a = eaµd̃x
µ. (C.1.8)

Note that we use greek letters µ = 0, . . . , 3 to label coordinates xµ and latin letters a = 0, . . . , 3
to label elements (vector or one-form) in the tetrad, while ∼ is used to identify one-forms (in
general denoted by a greek letter). The connection coefficients describe how a generic basis
element e⃗a fails to be parallely transported along curves tangent to another basis vector field
e⃗b, and clearly they depend on the basis we choose. In the usual way, they are defined by

∇e⃗c e⃗b = γ a
c b e⃗a = γacbe⃗a, (C.1.9)

where the odd notation γ a
c b = γ(e⃗c)

a
b is here used to remark that, if we fix c, we get a 4x4

matrix, while if we fix a and b we obtain locally a map TpM → C∞(M) (we consider smooth
vector fields and one-form), i.e. a (differential) one-form. Therefore, we can define the matrix
valued connection one-form as

ω̃ab = γ a
c b ϵ̃

c, (C.1.10)

while γacb are usually called Ricci rotation coefficients. The definition (C.1.9) differs from the
usual one for the Christoffel symbols Γµνσ only for using a non-coordinate basis, but we can
express pointwise the tetrad in the basis {∂µ}, and consequently find how they are related.
That said, we can easily find that

∇e⃗a e⃗b = e µ
a ∇µ(e

ν
b ∂ν)

= e µ
a (∂µe

σ
b + e ν

b Γ γ
µ ν)∂σ

= γ c
a be

σ
c ∂σ, (C.1.11)

and using (C.1.7), which in component is readily eaµe
µ
b = δab , we obtain the relation

γ a
c b = eaσe

µ
c ∇µe

σ
b . (C.1.12)

Another useful relation which we will use later to derive the components of the energy-momentum
tensor in the tetrad is

∇µe
µ
a = γ b

b a . (C.1.13)
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The proof follow immediately from (C.1.12), in fact

∇µe
σ
a = γ b

c ae
σ
b e

c
µ,

and contracting with g, since the connection is compatible with the metric tensor, i.e. we can
move gµν inside the covariant derivative, we get

∇µe
µ
a = γ b

c ae
µ
b e

c
µ = γ b

b a .

Now, the connection one-form is solution of the Cartan’s first structure equation, which for a
symmetric connection is

dϵ̃a + ω̃ab ∧ ϵ̃b = 0. (C.1.14)

Here dϵ̃a is a two-form, which corresponds to the exterior derivative of the dual basis element
ϵ̃a, while ∧ is the wedge product. While for a general k-form the exterior derivative may be
hard to compute, and equally for the wedge product between, let us say, a k-form and a p-form,
it is remarkably easy to compute both for one-forms, and in this peculiar case to solve the first
Cartan’s equation. Things are made even easier by the property of the connection matrix to be
antisymmetric,

ω̃ab = −ω̃ba. (C.1.15)

This property follows from the expression of the Ricci coefficients (C.1.12), and with some care
in rising and lowering the tetrad indeces with the Minkowski metric tensor η, as follow from
(C.1.5) and (C.1.7). The components of the Riemann tensor in the non-coordinate basis {e⃗a}
and {ϵ̃a} are defined as usual by

Rabcd = R(ϵ̃a, e⃗b, e⃗c, e⃗d), (C.1.16)

and once again it is worth noting that Rabcd = (R(e⃗c, e⃗d))
a
b can be seen, and they are, a matrix

valued two-form, which can be expressen in the two-form basis {ϵ̃a ∧ ϵ̃b}a,b as

Ω̃ab =
1

2
Rabcdϵ̃

c ∧ ϵ̃d, (C.1.17)

where Ω̃ab are called curvature two-forms. To be clearer, if we denoted Ωk(M) the set of
differential k-forms on M, indeed locally R(e⃗c, e⃗d) ∈ Ω2(M, End(TpM)). What is still missing
is a "connection" between the curvature one-forms ω̃ab and the curvature two-forms Ω̃ab, which
is given by the Cartan’s second structure equation:

Ω̃ab = dω̃ab + ω̃ac ∧ ω̃cb (C.1.18)

Now we have all the essential tools to compute the Einstein tensor. To solve the first Cartan’s
equation, we first write explicitely the one-forms basis element

ϵ̃0 = f
1
2 dt, ϵ̃2 = r dθ,

ϵ̃1 = f−
1
2 dr, ϵ̃3 = rsinθ dϕ. (C.1.19)
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The exterior derivative of a k-forms α̃ =
∑
αI d̃x

I ∈ Ωk(M), where αI ∈ C∞(M,R), is defined
as

dα̃ =
∑′

I
dαI ∧ d̃xI =

∑′

I

(
∂ααI d̃x

α
)
∧ d̃xI , (C.1.20)

where I = (i1, . . . , ik) is a multi-index and a primed sum
∑′ is only over 1 ≤ i1 < . . . < ik ≤ n,

and for a one-form ϵ̃a it can be simply expressed in coordinates as

dϵ̃a =
1

2!
(∂µe

a
ν − ∂νe

a
µ) d̃x

µ ∧ d̃xν . (C.1.21)

Doing the computation we get

dϵ̃0 =
1

2
f−

1
2 f ′ dr ∧ dt, dϵ̃2 = dr ∧ dθ,

dϵ̃1 = 0, dϵ̃3 = sinθ dr ∧ dϕ (C.1.22)

+ rcosθ dθ ∧ dϕ,

where from now we use the lighter notation d̃xµ = dxµ since it is clear that they are all one-
forms. Note that dϵ̃1 = 0 by the anticommunativity of the wedge product dr ∧ dr = 0, and we
use the notation f ′ = ∂rf . Our goal now is to find a solution to (C.1.14), where we will show
how to solve for ω̃0

1, and then the same procedure can be extended to find the other solutions.
For a = 0, (C.1.14) reads

dϵ̃0 = −ω̃0
b ∧ ϵ̃b =

1

2
f−

1
2 f ′ dr ∧ dt, (C.1.23)

from the antisymmetry property (C.1.15) ω̃0
0 = 0, and then there is only one term which could

be proportional to dr ∧ dt on the left hand side, which is ω̃0
1 ∧ ϵ̃1 = f

1
2 ω̃0

1 ∧ dr. Therefore,
the one-forms ω̃0

1 = 1
2f

′dt and ω̃0
2 = ω̃0

3 = 0 solve (C.1.23). Iterating this procedure, the only
non vanishing one-forms are

ω̃0
1 = ω̃1

0 =
1

2
f ′f−

1
2 ϵ̃0 =

1

2
f ′ dt ω̃3

1 = − ω̃1
3 = f

1
2
1

r
ϵ̃3 = f

1
2 sinθ dϕ

ω̃2
1 = − ω̃1

2 = f
1
2
1

r
ϵ̃2 = f

1
2 dθ ω̃3

2 = − ω̃2
3 =

1

r

cosθ

sinθ
ϵ̃3 (C.1.24)

To solve the Cartan’s second structure equations we need first to compute the exterior derivative
dω̃ab, and using the definition (C.1.20) we readily get

dω̃0
1 =

1

2
f ′′ ϵ̃1 ∧ ϵ̃0, dω̃3

1 =
1

2

f ′

r
ϵ̃1 ∧ ϵ̃3 + f

1
2
cosθ

r2sinθ
ϵ̃2 ∧ ϵ̃3, (C.1.25)

dω̃2
1 =

1

2

f ′

r
ϵ̃1 ∧ ϵ̃2, dω̃3

2 =
1

r2
ϵ̃3 ∧ ϵ̃2. (C.1.26)

Let us now replace the expression for the exterior derivative of ω̃ab inside (C.1.18), from which
we can extract the components of the Riemann tensor from (C.1.17) using extensively the
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anti-commutative property of ω̃ab. At the end, the components in the tetrad are

R0101 =
1

2
f ′′ R0202 =

1

2

f ′

r
R0303 =

1

2

f ′

r
,

R1212 = − 1

2

f ′

r
R1313 = − 1

2

f ′

r
R2323 =

1− f

r2
(C.1.27)

which can now be used to compute the diagonal components of the Ricci tensor Rab = ηcdRcadb:

R00 =
1

2
f ′′ +

f ′

r
R11 = −R00

R22 =
1

r2
d

dr

[
r
(
1− f

)]
R33 = R22. (C.1.28)

We are only one step from the Einstein’s equations, as we only miss the scalar curvature

R = ηabRab = −2R00 + 2R22 = 2R11 + 2R22, (C.1.29)

whose explicit expression is

R = 2
m′′r + 2m′

r2
, (C.1.30)

and finally, from (C.1.3), (C.1.6), (C.1.28) and (C.1.29), we obtain a system of four differential
equations in the unknown functions f , ρ, pr, pθ, pϕ, namely

G00 =
1

r2
d

dr

[
r
(
1− f

)]
= 8πGNρ, (C.1.31)

G11 = −G00, (C.1.32)

G22 =
1

2
f ′′ +

f ′

r
= 8πGNpθ, (C.1.33)

G33 = G22. (C.1.34)

The components G11 and G33 provide the equation of state for the collapsing matter

ρ(r) = − pr(r), pθ(r) = pϕ(r) := p⊥(r), (C.1.35)

while G00 fixes the expression of m(r) to be

m(r) = 4π

∫ r

0
dr′ r′ 2ρ(r′). (C.1.36)

Therefore, the metric components and the principal pressures are fixed by the model of dust
density distribution ρ(r) we use, and in particular the component G22 gives the transverse
pressure as a function of the density distribution ρ(r). It is worth noting that for positive
energy density ρ > 0, the radial pressure will be everywhere negative inside the collapsing ball.
Whit this quite lengthy analysis we managed to compute the Einstein’s equation for spherically
distributed dust working directly in the tetrad frame (C.1.4). However, if we are interested
only in deriving the pressure functions given the density distribution ρ, it is indeed quicker and
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easier to impose the continuity equation for the energy-momentum tensor. In the tetrad frame
{e⃗a}, it gives four differential equations,

∇aT
ab = 0, (C.1.37)

which we can explicitly compute with some extra work. The energy-momentum tensor is ex-
pressed in the two basis as

T = Tµν ∂µ ⊗ ∂ν = T ab e⃗a ⊗ e⃗b, (C.1.38)

where the change of coordinates is given by

Tµν = T abe µ
a e

ν
b . (C.1.39)

In the coordinate basis {∂µ} (C.1.37) becomes

∇µT
µν = ∇µ(T

abe µ
a e

ν
b )

= T ab∇µ(e
µ
a e

ν
b )

+ e µ
a ∇µ(T

abe ν
b )

+ e ν
b ∇µ(T

abe µ
a ).

(C.1.40)

If we apply now the Leibniz rule we get six terms symmetric in (ab) and (C.1.40) simplify in

∇µT
µν = 2

(
T abe µ

a ∇µe
ν
b + T abe ν

a ∇µe
µ
b + e µ

a e
ν
b ∂µT

ab
)
= 0. (C.1.41)

At this point we can project the (1,0) tensor ∇µT
µν on the tetrad, and then if we use the

relations between the Ricci coefficients and the Christoffel symbols (C.1.12) and (C.1.13), we
get the final form of the continuity equations

ecν∇µT
µν = 2

(
T abecνe

µ
a ∇µe

ν
b + T abecνe

ν
a ∇µe

µ
b + ecνe

µ
a e

ν
b ∂µT

µν
)

= 2
(
T ab(γa)

c
b + T cb(γb)

b
a + e µ

a ∂µT
ac
)
= 0. (C.1.42)

Since we are interested in how the density distribution fixes the pressure functions, whose
relation is given by the components G11 and G22, it is possible to prove [36] that the Einstein’s
equation G22 = 8πGNT

22 is equivalent to the projected component (C.1.42) corresponding to
c = 1, from which we have

e1ν∇µT
µν =

1

2
(ρ+ pr) +

2

r
(pr − p⊥)f + fp′r = 0 (C.1.43)

Now, as ρ = −pr and f ̸= 0, the equations of state are explicitly

pr = − ρ = − m′

4πr2
, (C.1.44)

p⊥ =
(r
2
p′r + pr

)
= −m′′

8πr
. (C.1.45)

77



C.2 Scalar polynomials

From the components of the Riemann tensor (C.1.27) it is possible to compute the Kretschmann
scalar, which is a quadratic scalar invariant defined by

K = RabcdR
abcd (C.2.1)

= 4
(
R0101R

0101 +R0202R
0202 +R0303R

0303 (C.2.2)

+R1212R
1212 +R1313R

1313 +R2323R
2323

)
. (C.2.3)

Since,

R0101R
0101 =

(m′′)2r4 − 4m′m′′r3 + 4(m′ 2 +mm′′)R2

r6

+
−8mm′r + 4m2

r6
,

(C.2.4)

R0202R
0202 = R0303R

0303 = R1212R
1212 = R1313R

1313

=
m′ 2r2 − 2mm′r +m2

r6
,

(C.2.5)

R2323R
2323 = 4

m2

r6
, (C.2.6)

replacing in the definition (C.2.1) gives the final expression

K = 4
(m′′)2r4 − 4m′m′′r3 + 4(2m′ 2 +mm′′)r2

r6

+ 4
−16mm′r + 12m2

r6

(C.2.7)

C.3 Geodesic in Schwarzschild spacetime

The parametric equation of a geodesic γ in the Schwarzschild spacetime is determined by solving
the geodesic equations for a vector field Y⃗ in a chart (U, ϕ = xi) on M ,

∇Y⃗ Y⃗ = αY⃗ , (C.3.1)

where α : M → R. Since (C.3.1) are a four second-order partial differential equations, they
always admit at least locally a solution. In coordinates, the parametric equations of γ are given
by

xµ = xµ(λ), (C.3.2)

and expressing

Y⃗ =
dxµ

dλ
∂µ, ∂µ|P =

∂

∂xµ

∣∣∣
P
∈ TPM, (C.3.3)
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the geodesic equations become,(
∇Y⃗ Y⃗

)µ
=

d2xµ

dλ2
+ Γµνρ

dxν

dλ
dxρ

dλ
= α

dxµ

dλ
, (C.3.4)

which is a set of four second-order differential equations for xµ(λ). If α = 0, then λ is said to
be an affine parameter1. Given any affine parameter λ, the geodesic equation (C.3.4) simplifies
to

d2xµ

dλ2
+ Γµνρ

dxν

dλ
dxρ

dλ
= 0, (C.3.5)

and it is possible to define any new affine parameter by

λ→ µ = aλ+ b, (C.3.6)

with a, b ∈ R.
Geodesics are also known to be curves of local extremal length. The length of a time-like

geodesic2 γ connecting two points P and Q is defined by

L(γ) =

∫ λP

λQ

dλ
√
−gµν ẋµẋν , γ(λP ) = P, γ(λQ) = Q (C.3.7)

where ḟ = df/dλ. Since it is possible to think of the argument of the integral as the velocity of
a point-like particle with unit mass moving along γ, this definition can also be written as

L(γ) =

∫ λP

λQ

dλ
√
2T (x, ẋ), T (x, ẋ) = −1

2
gµν ẋ

µẋν . (C.3.8)

In general, λ is an arbitrary affine parameter different from the time τ of a clock which moves
instantaneously with the particle. It is useful to define the arc-length function of γ : [λ0, λ1] →
M,

s(λ) =

∫ λ

λ0

dλ′
√
−gµν ẋµẋν , (C.3.9)

whose derivative with respect to λ is equal to the velocity of the particle,

ṡ(λ) =
√

−gµν(x(λ))ẋµ(λ)ẋν(λ). (C.3.10)

If the proper time is used as parameter λ = τ , the length of the curve will correspond to the time
needed to move from γ(τ0) to γ(τ) < γ(τ1), and since this distance is exactly the corresponding
arc-length, it implies that

s(τ) = τ − τ0 =⇒ ṡ(τ) = 1. (C.3.11)

By assuming that τ > 0 = τ0, it follows that using the proper time as parameter is equivalent
to using the arc-parameter s = τ , which implies that the velocity of the particle for this
parametrisation will be equal to one,

2T (x(s), ẋ(s)) = −gµν(x(s))ẋµ(s)ẋν(s) = 1. (C.3.12)
1It is understood that a curve is identified by its parametrisation.
2For a space-like geodesic gµν ẋµẋν > 0.
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From (C.3.9), the arch-length of γ coincide with the action of a test particle with mass µ,

S[xµ(τ)] = −µ
∫ τ

dτ
√

−gµν ẋµẋν , (C.3.13)

in which the affine parameter is naturally provided by the proper time τ of the particle. There-
fore, extremising the length of geodesic will be equivalent to find extremal curves xµ(τ) for the
action (C.3.13), which are given by solutions to the Euler-Lagrange equations

d

dτ

( ∂T
∂ẋµ

)
− ∂T

∂xµ
= 0. (C.3.14)

For the metric (C.1.1), the kinetic energy function T (x, ẋ) reads

2T = f(r)2ṫ2 − f(r)−2ṙ2 − r2(θ̇2 + sin2θϕ̇2) = 1, (C.3.15)

since for a massive particle parametrised with the proper time (−gµν ẋµẋν)
1
2 = 1, as shown in

(C.3.12). Moreover, T (x, ẋ) is independent on t and ϕ, and the two corresponding integral of
motions can be defined as

E = µ
∂L

∂ṫ
= µf(r)ṫ, (C.3.16)

L = −µ∂L
∂ϕ̇

= µr2sin2θϕ̇. (C.3.17)

The first integral of motion E corresponds to the proper mass of the particle as measured by
an asymptotic observer, for which a weak-field approximation hold, in that

E → µ, if r → +∞, t = τ. (C.3.18)

Instead L corresponds to the conserved angular momentum around the axis which defines ϕ, as
can be seen if we set θ = π/2, which it is always possible from the arbitrariness in the definition
of the axis directions in an isotropic spacetime. With this condition, since ṫ is determined by
integrating (C.3.17), the only two unknown functions are r = r(τ) and ϕ = ϕ(τ). In particular,
the equations for radially in-falling geodesics are determined by setting ϕ = 0 identically, from
which (C.3.15) reduces to

f−1
(E2

µ2
− ṙ2

)
= 1. (C.3.19)

Therefore, the parametric equations {t(τ), r(τ), θ(τ) = π/2, ϕ(τ) = 0} for a radially in-falling
geodesic are given by solutions of the two differential equations

ṙ2 =
2GNm

r
+
(E2

µ2
− 1
)
,

ṫ =
(
1− 2GNm

r

)−1E

µ
.

(C.3.20)
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C.4 Integrable singularity

As a final result, we are going to state a theorem which shows how some choices of the Misner-
Sharp-Hernandez mass function can modify the motion of radially in-falling observers in a
Schwarzschild spacetime. First, let us redefine the function f(r) as,

Φ(r) =
1− f(r)

2
. (C.4.1)

Th. C.4.1: Integrable singularity

If,

1. Φ(0) ∈ R,

2. Φ′ ∼ rα, r → 0 with α ≥ 1,

3. Φ′′(0) ∈ R ,

then tidal forces remain finite on world lines of the matter flow,

1

δr

d2δr

dτ2
= −R1

010 <∞, (C.4.2)

where δr is the radial component of a space-like three-vector ξ⃗ = (δr, 0, 0) connecting to
nearby radial geodesics [42].

81



Bibliography

[1] Roberto Casadio. “A quantum bound on the compactness”. In: The European Physical
Journal C 82.1 (Jan. 2022). doi: 10.1140/epjc/s10052-021-09980-2. url:
https://doi.org/10.1140%2Fepjc%2Fs10052-021-09980-2.

[2] Ramesh Narayan and Jeffrey E. McClintock. Observational Evidence for Black Holes.
2014. arXiv: 1312.6698 [astro-ph.HE].

[3] Sean A. Hayward. “General laws of black-hole dynamics”. In: Physical Review D 49.12
(June 1994), pp. 6467–6474. doi: 10.1103/physrevd.49.6467.

[4] Cosimo Bambi. “Astrophysical Black Holes: A Review”. In: Proceedings of
Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).
Sissa Medialab, Nov. 2020. doi: 10.22323/1.362.0028. url:
https://doi.org/10.22323%2F1.362.0028.

[5] P. Hájíček and C. Kiefer. “Singularity Avoidance By Collapsing Shells in Quantum
Gravity”. In: International Journal of Modern Physics D 10.06 (Dec. 2001), pp. 775–779.
doi: 10.1142/s0218271801001578.

[6] Claus Kiefer and Tim Schmitz. “Singularity avoidance for collapsing quantum dust in
the Lemaître-Tolman-Bondi model”. In: Phys. Rev. D 99 (12 June 2019), p. 126010. doi:
10.1103/PhysRevD.99.126010.

[7] Włodzimierz Piechocki and Tim Schmitz. “Quantum Oppenheimer-Snyder model”. In:
Phys. Rev. D 102.4 (2020), p. 046004. doi: 10.1103/PhysRevD.102.046004. arXiv:
2004.02939 [gr-qc].

[8] Abhay Ashtekar. “Loop quantum cosmology: an overview”. In: General Relativity and
Gravitation 41.4 (Feb. 2009), pp. 707–741. doi: 10.1007/s10714-009-0763-4.

[9] Carlo Rovelli and Francesca Vidotto. “Planck stars”. In: International Journal of
Modern Physics D 23.12 (Oct. 2014), p. 1442026. doi: 10.1142/s0218271814420267.

[10] Hal M. Haggard and Carlo Rovelli. “Quantum-gravity effects outside the horizon spark
black to white hole tunneling”. In: Physical Review D 92.10 (Nov. 2015). doi:
10.1103/physrevd.92.104020.

[11] Valeri P. Frolov and G. A. Vilkovisky. “Quantum Gravity Removes Classical
Singularities and Shortens The Life of Black Holes”. In: The Second Marcel Grossmann
Meeting on the Recent Developments of General Relativity (In Honor of Albert
Einstein). July 1979.

82

https://doi.org/10.1140/epjc/s10052-021-09980-2
https://doi.org/10.1140%2Fepjc%2Fs10052-021-09980-2
https://arxiv.org/abs/1312.6698
https://doi.org/10.1103/physrevd.49.6467
https://doi.org/10.22323/1.362.0028
https://doi.org/10.22323%2F1.362.0028
https://doi.org/10.1142/s0218271801001578
https://doi.org/10.1103/PhysRevD.99.126010
https://doi.org/10.1103/PhysRevD.102.046004
https://arxiv.org/abs/2004.02939
https://doi.org/10.1007/s10714-009-0763-4
https://doi.org/10.1142/s0218271814420267
https://doi.org/10.1103/physrevd.92.104020


[12] Jacob D. Bekenstein. “Black Holes and Entropy”. In: Phys. Rev. D 7 (8 Apr. 1973),
pp. 2333–2346. doi: 10.1103/PhysRevD.7.2333.

[13] Roberto Casadio. “Quantum dust cores of black holes”. In: Physics Letters B 843 (Aug.
2023), p. 138055. doi: 10.1016/j.physletb.2023.138055. url:
https://doi.org/10.1016%2Fj.physletb.2023.138055.

[14] V. F. Mukhanov. “Are black holes quantized?” In: ZhETF Pisma Redaktsiiu 44 (July
1986), pp. 50–53.

[15] J. R. Oppenheimer and H. Snyder. “On Continued Gravitational Contraction”. In: Phys.
Rev. 56 (5 Sept. 1939), pp. 455–459. doi: 10.1103/PhysRev.56.455.

[16] Pankaj S. Joshi and Daniele Malafarina. “Recent Developments in Gravitational
Collapse and Spacetime Singularities”. In: International Journal of Modern Physics D
20.14 (Dec. 2011), pp. 2641–2729. doi: 10.1142/s0218271811020792.

[17] J. Plebanski and Andrzej Krasinski. An introduction to general relativity and cosmology.
2006.

[18] Jos M M Senovilla. “Trapped surfaces, horizons and exact solutions in higher
dimensions”. In: Classical and Quantum Gravity 19.12 (May 2002), pp. L113–L119. doi:
10.1088/0264-9381/19/12/101. url:
https://doi.org/10.1088%2F0264-9381%2F19%2F12%2F101.

[19] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 1973. doi:
10.1017/CBO9780511524646.

[20] Pankaj S. Joshi and Daniele Malafarina. “Recent Developments in Gravitational
Collapse and Spacetime Singularities”. In: International Journal of Modern Physics D
20.14 (Dec. 2011), pp. 2641–2729. doi: 10.1142/s0218271811020792.

[21] P. Vaidya. “The Gravitational Field of a Radiating Star”. In: Proc. Natl. Inst. Sci. India
A 33 (1951), p. 264.

[22] Pankaj S Joshi, Daniele Malafarina, and Ramesh Narayan. “Equilibrium configurations
from gravitational collapse”. In: Classical and Quantum Gravity 28.23 (Nov. 2011),
p. 235018. doi: 10.1088/0264-9381/28/23/235018.

[23] Lemaître, G. “L’Univers en expansion”. In: Annales de la Société scientifique de
Bruxelles A53 (1993), pp. 51–85.

[24] Richard C. Tolman. “Effect of Inhomogeneity on Cosmological Models”. In: Proceedings
of the National Academy of Sciences of the United States of America 20.3 (1934),
pp. 169–176.

[25] H. Bondi. “Spherically symmetrical models in general relativity”. In: 107 (Jan. 1947),
p. 410. doi: 10.1093/mnras/107.5-6.410.

[26] Eric Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics.
Cambridge University Press, 2004. doi: 10.1017/CBO9780511606601.

83

https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1016/j.physletb.2023.138055
https://doi.org/10.1016%2Fj.physletb.2023.138055
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1142/s0218271811020792
https://doi.org/10.1088/0264-9381/19/12/101
https://doi.org/10.1088%2F0264-9381%2F19%2F12%2F101
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1142/s0218271811020792
https://doi.org/10.1088/0264-9381/28/23/235018
https://doi.org/10.1093/mnras/107.5-6.410
https://doi.org/10.1017/CBO9780511606601


[27] Roger Penrose. “Gravitational Collapse and Space-Time Singularities”. In: Phys. Rev.
Lett. 14 (3 Jan. 1965), pp. 57–59. doi: 10.1103/PhysRevLett.14.57.

[28] Charles Torre. “Is general relativity an "already parametrized" theory?” In: Physical
review. D, Particles and fields 46 8 (1992), R3231–R3234.

[29] Petr Hajicek. “Choice of Gauge in Quantum Gravity”. In: Nuclear Physics B Proceedings
Supplements (Jan. 2000), pp. 1213–.

[30] Petr Hajicek. “Quantum Theory of Gravitational Collapse (Lecture Notes on Quantum
Conchology)”. In: Quantum Gravity. Springer Berlin Heidelberg, 2003, pp. 255–299. doi:
10.1007/978-3-540-45230-0_6.

[31] P. Vaidya. “The Gravitational Field of a Radiating Star”. In: Proc. Natl. Inst. Sci. India
A 33 (1951), p. 264.

[32] Włodzimierz Piechocki and Tim Schmitz. “Quantum Oppenheimer-Snyder model”. In:
Physical Review D 102.4 (Aug. 2020). doi: 10.1103/physrevd.102.046004. url:
https://doi.org/10.1103%2Fphysrevd.102.046004.

[33] Gia Dvali and Cesar Gomez. “Black Hole’s Quantum N-Portrait”. In: Fortschritte der
Physik 61 (July 2013). doi: 10.1002/prop.201300001.

[34] Roberto Casadio et al. “Quantum corpuscular corrections to the Newtonian potential”.
In: Physical Review D 96.4 (Aug. 2017). doi: 10.1103/physrevd.96.044010. url:
https://doi.org/10.1103%2Fphysrevd.96.044010.

[35] Roberto Casadio. Geometry and thermodynamics of coherent quantum black holes. 2022.
arXiv: 2103.00183 [gr-qc].

[36] Robert M Wald. General relativity. Chicago, IL: Chicago Univ. Press, 1984.

[37] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 1982. doi:
10.1017/CBO9780511622632.

[38] Roberto Casadio. “Quantum Black Holes and (Re)Solution of the Singularity”. In:
Universe 7.12 (2021). issn: 2218-1997. doi: 10.3390/universe7120478.

[39] R Casadio et al. “Configurational entropy of black hole quantum cores”. In: Classical
and Quantum Gravity 40.7 (Mar. 2023), p. 075014. doi: 10.1088/1361-6382/acbe89.
url: https://doi.org/10.1088%2F1361-6382%2Facbe89.

[40] C. E. Shannon. “A mathematical theory of communication”. In: The Bell System
Technical Journal 27.3 (1948), pp. 379–423. doi:
10.1002/j.1538-7305.1948.tb01338.x.

[41] Roberto Casadio, Andrea Giusti, and Jorge Ovalle. “Quantum rotating black holes”. In:
Journal of High Energy Physics 2023.5 (May 2023). doi: 10.1007/jhep05(2023)118.

[42] Vladimir N. Lukash and Vladimir N. Strokov. “Space-Times with Integrable
Singularity”. In: Int. J. Mod. Phys. A 28 (2013), p. 1350007. doi:
10.1142/S0217751X13500073. arXiv: 1301.5544 [gr-qc].

84

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1007/978-3-540-45230-0_6
https://doi.org/10.1103/physrevd.102.046004
https://doi.org/10.1103%2Fphysrevd.102.046004
https://doi.org/10.1002/prop.201300001
https://doi.org/10.1103/physrevd.96.044010
https://doi.org/10.1103%2Fphysrevd.96.044010
https://arxiv.org/abs/2103.00183
https://doi.org/10.1017/CBO9780511622632
https://doi.org/10.3390/universe7120478
https://doi.org/10.1088/1361-6382/acbe89
https://doi.org/10.1088%2F1361-6382%2Facbe89
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/jhep05(2023)118
https://doi.org/10.1142/S0217751X13500073
https://arxiv.org/abs/1301.5544


[43] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release
1.1.9 of 2023-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A.
McClain, eds.

[44] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. 2nd ed. Cambridge
University Press, 2017. doi: 10.1017/9781108499996.

[45] R.L. Burden, J.D. Faires, and A.M. Burden. Numerical Analysis. Cengage Learning,
2015. isbn: 9781305465350.

[46] A. Spitzbart. “A Generalization of Hermite’s Interpolation Formula”. In: The American
Mathematical Monthly 67.1 (1960), pp. 42–46. issn: 00029890, 19300972.

85

https://dlmf.nist.gov/
https://doi.org/10.1017/9781108499996

	Introduction
	Classical dynamics of a spherically symmetric gravitational collapse
	General model
	Regularity and energy conditions
	Dynamical Evolutions

	LTB and OS collapse models
	Dust
	LTB model - Inhomogeneous dust
	OS model - Homogeneous dust
	Matching with the Schwarzschild solution
	Singularity


	Quantum dynamics of a spherically symmetric gravitational collapse
	Canonical quantisation of black holes
	Globally hyperbolic spacetime
	Arnowitt-Deser-Misner 3+1 decomposition

	Kuchař decomposition
	Covariant gauge fixing

	Null dust shell quantum model
	Vaidya Spacetime
	Classical dynamics
	Quantisation
	Motion of wave packets
	Grey horizons

	LTB and OS quantum collapse models
	Quantum Lemaǐtre-Tolman-Bondi model
	Quantum Oppenheimer-Snyder model


	Quantum ball of dust
	Gravitational collapse of N-layers of dust
	Quantisation
	Fuzzy quantum layers

	Global ground state
	Multi-particle quantum states

	Excited states
	Entropy

	Core surface
	Integrable singularity
	Angular perturbations of the core surface


	Conclusions
	Schrödinger equation for a Newtonian potential
	Hermite interpolation
	Schwarzschild spacetime in the tetrad formalism
	Einstein's equations
	Scalar polynomials
	Geodesic in Schwarzschild spacetime
	Integrable singularity

	Bibliography

