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Abstract

This Master’s Thesis aims to investigate the regularity properties of
quantum vacuum states across the horizon in various spacetime geome-
tries. One of the most captivating phenomena in theoretical physics
is the Hawking effect, the emission of thermal radiation by a black
hole. A straightforward approach to derive this phenomenon involves
examining the interplay between distinct quantum states defined in a
curved spacetime.
To ensure an accurate description of the field, the quantum state

should exhibit regularity throughout the entire spacetime. A valuable
method for studying state behavior involves analyzing the expectation
value of the energy-momentum tensor. Following a detailed exposition
of this analytical procedure within the familiar Schwarzschild space-
time, attention turns to the Reissner-Nordström spacetime, where the
construction of a regular quantum state is found to be not possible.
Concluding the investigation, we introduce the concept of regular

black holes, characterized by spacetimes without physical singularities
while still retaining essential black hole attributes. Our analysis centers
on the Simpson-Visser spacetime, where the construction of a vacuum
state exhibiting regularity across the entire spacetime is achievable.
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Introduction

When we think about a black hole we picture a body so extremely dense that
nothing can escape from its gravitational field. This concept of black hole was
first introduced in the 18th century by John Michell and Pierre-Simon Laplace.
However, substantial developments have occurred since then. In 1915, Einstein
formulated the theory of General Relativity, and just after a couple of month the
first solution was discovered. This solution describes the Schwarzschild black hole.
The associated metric has two singularities, the physical one at the origin, while the
other at the event horizon rS = 2M , where M is the mass of the source generating
the gravitational field. Examining the causal structure of this spacetime we find
that light within the region enclosed by the event horizon cannot escape. There is
no way to know what happens inside the horizon. The region inside the horizon
is causally disconnected from the rest of the spacetime, and such behavior is a
common feature among various black hole solutions, such as the Reissner-Nord-
ström or Kerr black hole.

The theory of Einstein is a classical theory, and in our pursuit of a unified theory
of all physical phenomena, we should obtain a quantum theory of gravity. Such
goal has not been achieved yet.
Nevertheless, we can still introduce some quantum aspects in Einstein’s theory.
This can be done in the framework of quantum field theory in curved spacetime, in
which we quantize the matter fields in a fixed curved backgroud. This is ofcourse
just an approximation, but still allows us to obtain some extremely interesting re-
sults, such as the Hawking radiation, the emission of thermal radiation by a black
hole.
A simple but effective way to derive this result involves studying how different
quantum states are related between themselves, which can be done using the Bo-
goljubov transformations.
In order to correcly describe the state of a physical system, such states should be
regular. The aim of this thesis is study this regularity.

This work is structured as follows:

• Chapter 1: We provide an overview of the key elements of quantum field
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theory in flat spacetime and its generalization in curved spacetime. We
discuss the absence of a unique vacuum state and introduce the need for the
Bogoljubov transformations;

• Chapter 2: We use the framework developed previous chapter to derive the
Hawking radiation. For mathematical simplicity, we assume a Schwarzschild
backgroud and introduce two vacuum states, Boulware and Unruh. After
the computation of the Bogoljubov coefficients, we look into the physical
meaning of the Hawking radiation, such as black hole thermodynamics;

• Chapter 3: We establish the framework for studying the regularity of the
quantum states. This is done by studying the behavior of the expectation
value of the energy-momentum tensor. We derive the components of the
energie-momentum tensor for a conformally flat two-dimensional spacetime
and assuming a non-vanishing trace anomaly;

• Chapter 4: We apply the formalism of Chapter 3 to the simple and well-
known Schwarzschild spacetime. The physical meaning of the Boulware and
Unruh is discussed, and we also introduce a new vacuum state, the Israel-
Hartle-Hawking vacuum, as a vacuum state regular everywhere;

• Chapter 5: The same analysis is done, but in a Reissner-Nordström space-
time. The presence of two horizons with different values of surface gravity
will not allow the creation of a regular vacuum state;

• Chapter 6: We introduce a new metric, the Simpson-Visser metric, which
is shown to be a black hole metric without geometrical singularities. Some
of the key properties are exposed;

• Chapter 7: We study the regularity of the three vacuum states in the new
Simpson-Visser metric and show that it is possible to build a vacuum state
regualar everywhere.
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Notation and Conventions

Here are some notations and conventions used in this work.

The metric is taken with signature (+,−,−,−), so for example the Minkowski
metric ηµν will take values 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1)

Greek indices take values 0, 1, 2, 3, while Roman indices 1, 2, 3.
We will assume a natural set of units in which c = ℏ = 1, which might be reinstated
if necessary.
Usual differentiation is denoted by

∂

∂xµ
= ∂µ = ,µ (2)

while covariant differentiation by

∇µ = ;µ. (3)
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Quantum Field Theory in Curved
Spacetime
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1 Quantization in Curved
Spacetime

1.1 Why Quantum Field Theory in Curved

Spacetime?

Before attacking this problem it is important to point out why we are interested
in this topic and what we mean by quantization in curved spacetime.
As widely known, we identify in nature four elemental interactions. Three of
them, electro-magnetism and strong and weak interactions have a consistent quan-
tum description, in particular are Quantum Field Theories (QFT), a theoretical
framework that combines special relativity, classical field theory and quantum me-
chanics.

The fourth interaction, gravity, is often neglected in the context of particle
physics, since the characteristic energies of the problem are much smaller than the
Planck mass (MP ∼ 1019GeV ).
At the classical level, our best understanding of gravity is given by the theory
of general relativity, and extending the quantum framework to this theory is an
extremely difficult problem.
By QFT in curved spacetime we mean a theory in which matter and gauge field are
quantized, but the metric field is still treated as a classical field. We are studying
quantum fields propagating on a fixed classical field describing a curved spacetime.

It is important to remind that in this way we will not obtain a full theoretical
picture.
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1.2 Quantization in Minkowski Spacetime

Before dealing with the more interesting and involved case of quantization on
a curved spacetime, it is useful to review how we can quantize a field in a flat
spacetime.
To this purpose consider a massive scalar field φ in Minkowski spacetime, with the
line element given by

ds2 = ηµνdx
µdxν (1.1)

The classical equation of motion is given by the Klein-Gordon equation

(□+m2)φ(x) = 0 (1.2)

where □ denotes as usual the d’Alembert operator. The Klein-Gordon equation
can be derived by varying the Klein-Gordon action

S =

∫
d4x

1

2

(
ηµν∂µφ∂νφ−m2φ2

)
(1.3)

which is invariant under Poincaré transformations

xα → Λα
βx

β + aβ. (1.4)

The solutions to the Klein-Gordon equation can be written in terms of plane
waves

uk(t, x⃗) ∝ e−ikαxα

(1.5)

where kα = (ω, k⃗) and we have the dispersion relation relating wave number to its
frequency

ω =
√
k2 +m2 > 0. (1.6)

Solutions of this form are called positive frequency solutions with respect to t.
It is easy to see that the solution is the eigenfunction of the operator ξα∂α, where
ξα is the Killing vector associated with time translation. In particular, we have

ξα∂αuk(t, x⃗) = −iωuk(t, x⃗). (1.7)

But we also know that the momentum operator is defined as p̂µ = −i∂µ, so we
immediately realize

p0 = ω > 0. (1.8)
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Another important concept, which we will use also in the quantization in curved
spacetime, is the scalar product. Considering two solutions to the Klein-Gordon
equation f1,2 we can define1

(f1, f2) = −i

∫
t=const

d3x
[
f1∂tf

∗
2 − (∂tf1)f

∗
2

]
. (1.9)

Scalar product between two solutions is conserved and can be used to normalize
solutions, for example

(up, uq) = δ3(p⃗− q⃗) (1.10)

(u∗
p, u

∗
q) = −δ3(p⃗− q⃗) (1.11)

(up, u
∗
q) = 0. (1.12)

Positive (negative) frequency solutions have positive (negative) norm2, and these
solutions form an orthonormal base.

1.2.1 Quantization

Quantization is performed by promoting fields to operators, φ → φ̂, imposing
the field to satisfy the classical Klein-Gordon equation and imposing equal-time
bosonic commutation relations

[φ̂(t, x⃗), φ̂(t, y⃗)] = [π̂(t, x⃗), π̂(t, y⃗)] = 0 (1.13)

and
[φ̂(t, x⃗), π̂(t, y⃗)] = iδ3(x⃗− y⃗) (1.14)

where as usual we have the conjugate field to φ̂

φ̂ =
∂L

∂(∂tφ)
= ∂tφ̂. (1.15)

The field can be expanded using the orthonormal base of positive and negative
frequency solutions and ladder operators

φ̂ =
∑
k

[
âkuk + â†ku

∗
k

]
. (1.16)

Using Eq. 1.13 and Eq. 1.14 we can derive the commutation relations for the ladder
operators.

1Recall, in Minkowski spacetime, the surface t = const is a Cauchy surface.
2This will not be true in general in curved spacetime.
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The operators âk, â
†
k allow us to construct the Fock space and give a particle

interpretation. We define the vacuum state as the state annihilated by âk, ie

âk|0⟩ = 0 (1.17)

while applying â†k on the vacuum we get excitations of the field.
Particles are associated to unitary irreducible representations of the Poincaré
group, so we can identify excitations as particles.

This already shows one of the main problems we have in quantizing a field in
curved spacetime. In such a case we do not have anymore invariance under the
Poincaré group, so we cannot properly give a particle interpretation of the Fock
space.

1.3 Quantization in Curved Spacetime

We are now ready to move to curved spacetime. Many concepts defined before
for quantization in flat spacetime will also be present here, such as positive and
negative frequency solutions and scalar product.

1.3.1 Classical Field Theory in Curved Spacetime

Given the Klein-Gordon action Eq. 1.3, it is easy to move to a curved spacetime
using the general covariance principle. According to this we just need to replace
the flat Minkowski metric with a general metric gµν and replace usual derivatives
with covariant derivatives, which, for scalar fields, are just the usual derivative.
The Lagrangian density3 for a massive scalar in curved spacetime reads

L =
1

2

√
g
(
gµν∂µφ∂νφ−m2φ2 − [m2 + ξR]φ2

)
. (1.18)

In this Lagrangian we also included the coupling between the gravitational field
and the scalar with the term ξRφ2, where R is the Ricci scalar curvature and ξ is
a numerical factor. We distinguish:

1. ξ = 0 is called minimal coupling;

3We will often denote this quantity as Lagrangian. To be properly correct, the Lagrangian is
the quantity which integrated over time gives the action, while the Lagrangian density has
to be integrated over space and time to yield the action.
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2. ξ ̸= 0 is called non-minimal coupling;

3. ξ = 1/6 is the so-called conformal coupling. In this case for m = 0 the theory
is invariant under conformal transformations

gµν(x) → ḡµν(x) = Ω2(x)gµν(x) (1.19)

where Ω(x) is a real, non-vanishing, finite function.
Note: in a Schwarzschild spacetime, we have R = 0, so the Lagrangian for
conformal and non-minimally coupling are the same, but we will get terms
depending on ξ in the energy-momentum tensor.

Solving the Euler-Lagrange equation for this Lagrangian yields the generalization
to the Klein-Gordon equation in a curved spacetime(

□̂+m2 + ξR
)
φ = 0, □̂ =

1√
g
∂µ (

√
ggµν∂ν) (1.20)

which is invariant under general coordinate transformations.
For the scalar product we have instead

(φ1, φ2) = −i

∫
Σ

dΣµ√gΣ

(
φ1∂µφ

∗
2 − (∂µφ1)φ

∗
2

)
(1.21)

where Σ is a Cauchy surface,
√
gΣ the determinant of the induce metric on the

surface and dΣµ = dΣnµ, nµ the normal to the surface. The scalar product does
not depend on the Cauchy surface on which we evaluate the integral.

In short, a Cauchy surface is a surface for which for every point in the past
and future of the surface, the lightcone of that point intersects the surface. A
manifold with at least one Cauchy surface is called globally hyperbolic. An example
is Schwarzschild spacetime, see Fig. 1.1 for a pictorial description. On the contrary,
Reissner-Nordström does not have any Cauchy surface, see Fig. 1.2.
Since we will need to normalize solutions, we will assume to be in a globally
hyperbolic manifold.

1.3.2 Quantization

The quantization procedure is similar to the case of flat spacetime: promote fields
to operators, impose the fields to satisfy the classical Klein-Gordon equation in
curved spacetime and impose commutation relation on a Cauchy surface

[φ̂(x), φ̂(y)]Σ = [nµ∂µφ̂(x), n
µ∂µφ̂(y)]Σ = 0 (1.22)

[φ̂(x), nµ∂µφ̂(y)]Σ =
i√
gΣ

δ3(x⃗− y⃗). (1.23)
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r = 0

H−

H+ I+

i0

I−

Figure 1.1: The blue line represents a good Cauchy surface for the Schwarzschild
spacetime. For every point in the spacetime, its past or future lightcone
intersects the Cauchy surface.

r−

r+

r−

r+

Figure 1.2: The blue line represents a similar surface to the Cauchy surface of
Schwarzschild. For the points in the yellow region, the lightcones in-
tersects the singularity. We cannot completely predict what happen in
this region by giving initial data on the blue surface.
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In full analogy to the previous case, we can expand the field in terms of ladder
operator and positive and negative frequency solutions, which are normalized as
in the flat spacetime case

φ̂ =
∑
i

(âiui + â†iu
∗
i ) (1.24)

(ui, uj) = −(u∗
i , u

∗
j) = δij, (ui, u

∗
j) = 0. (1.25)

One of the big differences with respect to the quantization in flat spacetime con-
cerns particle interpretation. As already mentioned, in Minkowski spacetime, the
association between Fock states and particle states is possible thanks to the sym-
metry group of the theory, the Poincaré group.
In a generic curved spacetime the symmetry group is no longer Poincaré, the the-
ory is now symmetric under general coordinate transformations, and so we cannot
give to the Fock states an interpretation in terms of particles. Nonetheless, we will
still call the state |0⟩ such that â|0⟩ = 0 as vacuum, and similar for the excitations,
but it is important to remember that this state cannot be considered as the state
with no particle.

Another big difference between quantum field theory in flat and curved space-
time is the absence of a unique notion of the vacuum state. In general, there is
no privileged coordinate system, no natural set of modes to expand the field and
no natural way to define a vacuum state. This is indeed the spirit of general rel-
ativity and the principle of general covariance: coordinate systems are physically
irrelevant.

A way to overcome this problem is to consider a stationary spacetime. In such
spacetime we have a timelike Killing vector ξα and the infinitesimal transformation
associated with such vector leaves the metric invariant

δξαgµν = 0. (1.26)

So we can define a Killing time t such that ξα∇αt = 1, and in this case we can
define modes which are positive frequency with respect to this Killing time.

In a more physical situation, such as gravitational collapse, the spacetime is
not stationary. What we can do is to consider a so-called sandwich spacetime, a
spacetime which is stationary before and after some time t1 and t2, see Fig. 1.3.
Asymptotically in the past and in the future we will recover a flat spacetime, and
therefore have a particle interpretation.
Having two stationary regions we also have two Killing vectors, which might be
different. Since Killing vectors are used to define positive and negative frequency
solutions, a positive frequency solution in the past might not be positive in the
future.
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t

stationary

stationary

t2

t1

Figure 1.3: Sandwich spacetime.

1.3.3 Bogoljubov Transformations

Let us consider for a moment the sandwich spacetime we talked about before.
In each of the two stationary regions we can construct a set of modes, let us call
them ui and ūi. These modes are both solutions to the Klein-Gordon equation, so
they form an orthonormal basis, and they can both be used to expand the field.
There is no a-priori criteria to pick a set over the others. So we might ask are the
two sets of modes related?
To answer this question, we note that, being both u and ū a full set of modes, we
can expand one in terms of the other

ūi =
∑
j

(αjiui + βjiu
∗
i ) . (1.27)

Since the basis is complete only if we consider both positive and negative frequency
solutions, we find that a positive frequency solution (the “barred” one) is a com-
bination of both positive and negative frequency solutions (“unbarred”).
The transformation Eq. 1.27 relates two set of modes, and it is called Bogoljubov
transformation (Bogoljubov, 1958).
It is easy to see that if βij = 0, the Bogoljubov transformation is just a rotation.
In this case the transformation is called trivial.

A similar transformation can be obtained to write the “barred” modes in terms
of the “unbarred” modes

ui =
∑
i

(
Aijūj +Bijū

∗
j

)
. (1.28)

Using the scalar product and its properties we find a relation between the Bo-
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goljubov coefficients

(ui, ūj) = Aij = (ūj, ui)
∗ = α∗

ji → Aij = α∗
ji (1.29)

(ui, ū
∗
j) = −Bij = (ū∗

j , ui)
∗ = βji → Bij = −βji. (1.30)

Similarly, we can also find a transformation between ladder operators (in the
following, the hat symbol to denote an operator will be understood)

ai =
∑
j

(
αjiāj + β∗

jiā
†
j

)
(1.31)

āj =
∑
i

(
α∗
jiāi − βjiā

†
i

)
. (1.32)

In analogy to the modes, we find that the creation, or annihilation, operator, is a
linear combination of both ladder operators4.

We finish this subsection on Bogoljubov transformations with two observations:

1. The Bogoljubov coefficients are related. This can be easily seen by writing
the “barred” modes in terms of the “unbarred” modes, using the normaliza-
tion of modes and the property of the scalar product (af, bg) = ab∗(f, g),
where f, g are solutions to the Klein-Gordon equation and a, b are C numbers.
We have

(ūi, ūj) = δij =
∑
r

(
αirα

∗
jr − βirβ

∗
jr

)
(1.33)

(ūi, ū
∗
j) = 0 =

∑
r

(αirβjr − βirαjr) (1.34)

or in matrix form

αα† − ββ† = 1 (1.35)

αβ† − β†α = 0. (1.36)

2. The vacuum with respect to a set of modes might not be a vacuum with
respect to another set of modes. The basic reason for this is that, as we
have already seen, creation, or annihilation, operators can be written as a
combination of both ladder operators.

4Creation and annihilation operators are ambiguous terms since we do not have a particle
interpretation.
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This is clear if we evaluate the number operator built with “unbarred” op-
erators between “barred” states, i.e.

⟨0̄|Ni|0̄⟩ (1.37)

where Ni = a†iai. Using Bogoljubov transformations it is easy to see how the
operator ai acts on |0̄⟩

ai|0̄⟩ =
∑
j

(
αjiāi + β∗

jiā
†
j

)
|0̄⟩ =

∑
j

β∗
ji|1̄j⟩ (1.38)

and so
⟨0̄|Ni|0̄⟩ =

∑
j

|βji|2 ̸= 0. (1.39)

An observer performing measurements with respect to the “unbarred” modes
will not see |0̄⟩ as the vacuum.

From these two observations is clear why a Bogoljubov transformation with β = 0
is called trivial: the transformation becomes just a unitary transformation, the
creation (annihilation) operator is written only in terms of the creation (annihi-
lation) operator, and |0⟩ and |0̄⟩ are vacuum states with respect to both sets of
modes.

Bogoljubov transformations offer a way to derive one of the most fascinating
results of theoretical physics: Hawking radiation.
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2 Hawking Radiation

In this chapter, we will derive the Hawking radiation and Hawking temperature
in the maximally analytical extension of the Schwarzschild spacetime.

2.1 Maximally Analytical Extension of

Schwarzschild Spacetime

The Schwarzschild metric, that describes the gravitational field outside a spherical
charge-less mass, can be expressed as

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (2.1)

The metric is singular at r = 0 and r = 2M . While the first singularity is a true
geometrical singularity, the one at r = 2M it a coordinate singularity, due to the
choice of a set of coordinates not regular.
For this reason we can remove this singularity by using a different set of coordi-
nates, built to be regular everywhere except on the physical singularity at r = 0.
These coordinates are the Kruskal-Szekeres coordinates (U, V ). To construct these
coordinates we first define the Eddington-Finkelstein coordinates (u, v)

u = t− r∗, v = t+ r∗ (2.2)

with the Regge-Wheeler coordinate r∗ given by

dr∗ =

∫
dr C(r)−1 (2.3)

= r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ . (2.4)

Now we can define the Kruskal coordinates as

U = ∓1

κ
e−uκ, V = ±1

κ
evκ (2.5)
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where κ = 1/4M is the surface gravity. The actual sign depends on the portion of
spacetime we are interested in

Region R : U < 0, V > 0 Region BH : U > 0, V > 0
Region L : U > 0, V < 0 Region WH : U < 0, V < 0

(2.6)

The line element in these coordinates read

ds2 =
2M

r
e−r/2MdUdV − r2dΩ2. (2.7)

It is important to mention that now r is not a coordinate, but a function of the
Kruskal coordinates r = r(U, V ), defined implicitly by

er/2M
( r

2M
− 1
)
= − UV

16M2
. (2.8)

The Penrose diagram associated with this spacetime is shown in Fig. 2.1.

WH

BH

L R

i+L r = 0 i+R

i−L r = 0 i−R

H− H+I+

i0L

I−

I+

i0R

I−

Figure 2.1: Penrose diagram of the maximally analytical extension of the Schwarz-
schild spacetime.
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2.2 Boulware Modes

Consider a massless scalar field f , with the equation of motion given by the “co-
variantized” Klein-Gordon equation

□̂f = 0. (2.9)

Since Schwarzschild spacetime is spherically symmetric, we can write an ansatz of
the solution using spherical harmonics

f =
∑
ℓ,m

fℓ(r, t)

r
Y m
ℓ (θ, φ). (2.10)

Substituting this in the Klein-Gordon equation we find(
∂2
t − ∂2

r∗ + Vℓ(r)
)
fℓ(r, t) = 0 (2.11)

Vℓ(r) = C(r)

(
2M

r3
+

ℓ(ℓ+ 1)

r2

)
(2.12)

where

r∗ =

∫
drC(r)−1 (2.13)

= r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ (2.14)

and C(r) = 1−2M/r. The presence of the effective potential makes it very hard to
solve this equation: we should write the potential in terms of the Regge-Wheeler
coordinate r∗ or conversely, write the derivative with respect to r∗ in terms of r.
To solve this problem we make two approximations:

• s-wave: we consider only the component ℓ = 0. This is justified by the fact
that this component is the one less affected by the potential, and also we find,
from numerical simulations, to be the one giving the biggest contribution to
the radiation, see Fig. 2.2;

• Neglect the effective potential. This is a very crude approximation. The
effect of the potential is to produce scattering, so neglecting it we basically
imply that modes do not mix between themselves.
This can be motivated by the fact that the potential vanish at the horizon,
where the relevant physics is happening, so we neglect it everywhere. As
we will see later, this produces a divergent emitted flux, so we will need to
reintroduce it.



16 Hawking Radiation

2M

ℓ = 0
ℓ = 1

ℓ = 2

r

Vℓ(r)

Figure 2.2: The effective potential felt by a massless scalar in Schwarzschild space-
time.
The potential for ℓ = 0 is very weak, while increases with ℓ. This
justify the s - wave approximation.

With these two approximations and using Eddington-Finkelstein coordinates,
the wave equation reduces to a simple free wave equation

∂u∂vf(u, v) = 0. (2.15)

A general solution can be written as

f(u, v) = F (u) +G(v) (2.16)

where F,G are arbitrary functions. We can choose them in such a way that at past
and future null infinity I− and I+, which are asymptotically flat regions, modes
approach usual Minkowski modes

fω
r→∞−−−→

{
exp {−iω(t− r)} /r outgoing
exp {−iω(t+ r)} /r ingoing

(2.17)

This choice gives the Boulware modes (Boulware, 1975), which, upon normaliza-
tion, are expressed as

fω =

{
A exp {−iωu} /r outgoing

B exp {−iωv} /r ingoing
(2.18)

Associated with these modes we have a vacuum state, the Boulware vacuum, which
at I± approaches the usual Minkowski vacuum.

2.2.1 Normalization

The normalization factors can be derived using the scalar product and imposing

(f1, f2) = δ(ω1 − ω2). (2.19)
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r = 0

I−

I+

HL

R

nµ

nµ

Figure 2.3: Cauchy surface of Boulware modes.

To do so we need Cauchy surfaces, which will be different depending on the sector
we are considering of the Schwarzschild spacetime. To our purpose, the relevant
sectors are the L and R sectors, which describe respectively the black hole and the
asymptotically flat regions.

Asymptotically Flat Region

In this region, the surface Σ : t = const is a good Cauchy surface. Pictorially, this
surface is the horizontal line in the R region of Fig. 2.3.
Is a spacelike surface, so the norm, which is proportional to the derivative of the
surface, is a timelike vector

nµ ∝ ∂µΣ = α(x)(1, 0, 0, 0) (2.20)

and can be normalized to 1

1 = gµνnµnν → α = ±
√

C(r). (2.21)

Motion is forward in time, so we take the + sign. The normal derivative becomes

nµ∂
µ =

1√
C(r)

∂t. (2.22)

The induced metric is
ds2|Σ = C(r)−1dr2 − r2dΩ2 (2.23)

which yields a determinant
√
gΣ =

r2 sin θ√
C(r)

. (2.24)
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Thanks to spherical symmetry, nothing depends on the angles, so the integration
on θ, φ yields the usual factor 4π.
Putting everything together

(f1, f2) = −4πi

∫
dr

r2

C(r)

(
f1∂tf

∗
2 − (∂tf1)f

∗
2

)
(2.25)

we immediately recognize the differential of the Regge-Wheeler coordinate

dr∗ =
dr

C(r)
(2.26)

so

(f1, f2) = −4πi

∫
dr∗r2

(
f1∂tf

∗
2 − (∂tf1)f

∗
2

)
. (2.27)

We now need to choose an explicit form for the modes, let us first consider both
f1, f2 to be outgoing modes, so differentiating with respect to Schwarzschild time
t yields

∂tf1 = −iω1A

r
e−iω1u. (2.28)

The 1/r factor from the modes cancels out with the r2 factor from the determinant
of the metric.
In this region, the surface t = const covers the portion r ∈ [2M,+∞[, so r∗ ∈
]−∞,+∞[.
It is now trivial to perform the integration

(f1, f2) = 4π

∫ +∞

−∞
dr∗|A|2(ω1 + ω2)

× exp
{
−i(ω1 − ω2)t

}
exp
{
i(ω1 − ω2)r

∗
} (2.29)

= 4π|A|2(ω1 + ω2) exp
{
−i(ω1 − ω2)t

}
×
∫ +∞

−∞
dr∗ exp

{
i(ω1 − ω2)r

∗
}
.

(2.30)

The integral is a Dirac delta which imposes ω1 = ω2, and so we get

A =
1

4π
√
ω
. (2.31)

For the ingoing modes, we find in the same way the same normalization. We
conclude that the Boulware modes in the asymptotically flat region are{

1

4π
√
ω

e−iωu

r
,

1

4π
√
ω

e−iωv

r
; c.c.

}
. (2.32)

Note, as for Minkowski modes, both ingoing and outgoing modes are positive norm
and positive frequency.



Boulware Modes 19

Black Hole Region

In this region we need to distinguish between ingoing and outgoing modes.
For the ingoing modes, the surface t = const is still a good Cauchy surface, and
so ingoing modes are already normalized.
For outgoing modes we take instead the surface r = const. Pictorially, this surface
is the curved horizontal line in the L region of Fig. 2.3.

It is important to remind that inside the horizon, the role of the coordinates t
and r are interchanged. In this region, r play the role of a time coordinate.
The surface r = const is again a spacelike surface, and its norm is timelike. The
normalized normal vector is derived in the same way as for the R region, and reads

nµ = (0,−
√

|C(r)|, 0, 0). (2.33)

When we contract the norm with the derivative, we will get derivation with respect
to r. This reflects the fact that, as mentioned above, inside the horizon, t and r
exchange their role.
As before we evaluate the determinant of the induced metric to

√
gΣ =

√
|C(r)|r2 sin θ (2.34)

and when we multiply this by the normal derivative we obtain the derivation with
respect to r∗

√
gΣn

µ∂µ = −|C(r)|r2 sin θ∂r = C(r)r2 sin θ∂r (2.35)

= r2 sin θ∂r∗ (2.36)

where we omitted the minus sign in front of the Schwarzschild factor C(r), as well
the absolute value, because inside the horizon C(r) is negative.

The integration can now be performed similarly to the normalization in the
asymptotically flat region: the integration over the angles is trivial, so we are left
to integrate over t from −∞ to +∞.
The big difference with respect to the previous case is that, when we differentiate
the modes with respect to r∗, we do not get anymore the minus sign. Previously,
the minus sign from the differentiation canceled out with a minus sign coming from
the i factors. In the black hole region this is not the case, so we get an overall
minus sign.
Performing the integration we find the same normalization factor

A =
1

4π
√
ω

(2.37)
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but now modes are normalized as

(f1, f2) = −δ(ω1 − ω2) (2.38)

so the outgoing modes in the black hole region are negative norm.
We can make these modes positive norm by inverting the sign in the exponential

fω =
1

4π
√
ω

e+iωu

r
(2.39)

but in this way the mode is no longer positive frequency.

So, the normalized modes in the black hole region are{
1

4π
√
ω

e+iωu

r
,

1

4π
√
ω

e−iωv

r
; c.c.

}
. (2.40)

We stress out that inside the horizon, the Killing energy can be both positive and
negative, since these modes are trapped inside.

2.2.2 Quantization

We now have a complete orthonormal base to expand fields. We can define a set
of modes in both regions as

uR =

{
A exp{−iωu}/r r > 2M

0 r < 2M
(2.41)

uL =

{
0 r > 2M

A exp{iωu}/r r < 2M
(2.42)

uI = A exp{−iωv}/r (2.43)

A =
1

4π
√
ω

(2.44)

where:

• uR: outgoing mode for the asymptotically flat region;

• uL: outgoing mode for black hole region;

• uI : ingoing mode for both regions.

The Boulware base is then

B :
{
uR, uL, uI ; c.c.

}
(2.45)
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and a field can be expanded as

φ =
∑
ω

(
aRωuR + aLωuL + aIωuI + h.c.

)
. (2.46)

The Boulware vacuum is defined as the state |B⟩ such that
aR|B⟩ = 0

aL|B⟩ = 0

aI |B⟩ = 0

(2.47)

As already mentioned, Boulware modes reduce to Minkowski modes at infinity,
so Boulware vacuum can be interpreted as a state which reproduce Minkowski
vacuum at I±.

By applying instead the a† operator on the vacuum we build particle states

aI†ω |B⟩ : 1 particle state on I− (2.48)

aR†
ω |B⟩ : 1 particle state on I+ (2.49)

aL†ω |B⟩ : 1 partner state with < 0 Killing energy (2.50)

2.3 Unruh Modes

As we will see later, Boulware modes yield an expectation value for the energy-
momentum tensor which diverges on the horizon, and the ultimate reason for
that is a choice of coordinates, the Eddington-Finkelstein coordinates, which are
singular on the horizon.
So, to solve this problem, Unruh (Unruh, 1976) proposed a set of modes built
using the Kruskal and Eddington-Finkelstein coordinates. In particular, the Unruh
modes are built using the ingoing Eddington-Finkelstein coordinate v and the
outgoing Kruskal coordinate U . States built with respect to these modes will still
approach the Minkowski vacuum at I−, but not on I+.

The Unruh outgoing mode is

uk(ωk) = A
1

r
e−iωkU (2.51)

where A is a normalization factor and

U = ±1

κ
e−κu. (2.52)
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The ingoing mode is the ingoing mode of Boulware modes.
We can immediately make a few observations:

• In the definition of the mode we have a term 1/r. We are using Kruskal
coordinates, so r is not a coordinate but rather a function r = r(U, V );

• Kruskal’s coordinate U is regular on the future horizon H+, so these modes
will be regular there;

• The modes uk are positive frequency with respect to the Kruskal time T =
(V + U)/2. This means that we have a Killing vector associated to it.

2.3.1 Normalization and Quantization

The procedure to find a normalization for the modes is the same as for the Boulware
modes: imposing the scalar product to be a Dirac delta distribution.
The difference is that the Cauchy surfaces we used for the scalar product in the
previous case were expressed in terms of cartesian coordinates r, t, but now we
use the Kruskal coordinates, so we should express the equation for the surfaces in
terms of these coordinates.
This procedure is algebraically lengthy, but we can use the fact that the scalar
product is independent on the Cauchy surface, so we can take one which simplify
the math, such as the past horizon. The drawback to this choice is that the horizon
is a null surface, and scalar product on a null surface requires some more delicacy.
The evaluation of the scalar product is not of our interest, so we skip the calculation
and find that the normalization factor is the same as the Boulware modes.

So, the Unruh modes are given by

U :
{
uk, u

I
ω; c.c.

}
(2.53)

where

uk(ωk) =
1

4π
√
ωk

1

r
e−iωkU (2.54)

uI
ω(ω) =

1

4π
√
ω

1

r
e−iωv (2.55)

which are both positive norm.

Having a complete normalized set of modes, we can now expand our field

φ =
∑
ωk

(
aωk

uk + h.c.
)
+
∑
ω

(
aIωu

I
ω + h.c.

)
(2.56)
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and define the Unruh vacuum |U⟩ by{
aωk

|U⟩ = 0

aIω|U⟩ = 0.
(2.57)

Similarly, by applying a†ωk
and aI†ω on the Unruh vacuum we build the Fock space.

Since the ingoing Unruh mode approaches the ingoing Minkowski mode, we have
that |U⟩ can be interpreted as a vacuum state at I−.
On the other hand, the outgoing mode do not approaches the Minkowski outgoing
mode, therefore the meaning of the state a†ωk

|U⟩ is more involved, and will be
discussed later.

2.4 Hawking Radiation

We have now all the essential ingredients to derive the thermal spectrum at the
Hawking temperature emitted by a black hole. Before doing so we need to find
the physical meaning of the Unruh vacuum, and to do so we need a brief review
of the simplest model of gravitational collapse: the Vaidya spacetime.

2.4.1 The Vaidya Spacetime

The purpose of this subsection is to present the very basic element of a simple
model of gravitational collapse. This is by no means a full and rigorous treatment
of the subject.
The Vaidya spacetime is a simplified model of gravitational collapse. It describes
a null shell of radiation free-falling at the speed of light toward the origin, see
Fig. 2.4. This allows us to split the physically relevant part of the spacetime into
two regions. If can consider the null shell to be located at v = v0, we have (see
Fig. 2.5):

• For v < v0 we do not have any radiation, the spacetime is flat, which can
be described by a Minkowski spacetime. In this region we can define the
usual Minkowski vacuum |in⟩ which can be, thanks to Poincaré invariance,
interpreted as a state of no particles. This portion of spacetime is called
the “in” region, and we cover it with the null coordinates (uin, v), defined as
uin = tin − r, v = tin + r;

• For v > v0 we are instead in a portion of Schwarzschild spacetime, which de-
scribes the final black hole configuration. This portion is covered by another



24 Hawking Radiation

r = 0

v0

Figure 2.4: Dynamics of the Vaidya collapse. The null shell, located at v = v0,
collapse toward the origin.

set of Eddington-Finkelstein coordinates, which we call (u, v), and call this
region the “out” region.

While the ingoing coordinate is the same, the outgoing coordinates are different in
the two regions, but we can find a relation between them by matching the metrics
across the shell

u = uin − 4M ln

(
v0 − uin

4M
− 1

)
(2.58)

= uin − 4M ln
(
− uin

4M

)
(2.59)

where we have taken, without loss of generality, the null shell to be located at
v0 = 4M .
For uin → 0− (which also mean at late time u → +∞) we find that u and uin are
related by a Kruskal-like relation

uin ∼ −4Me−u/4M (2.60)

so near the horizon, the outgoing coordinate for the “in” region behaves like a
Kruskal coordinate.
This final result does not depend on the specific collapse model.

2.4.2 Physical Meaning of Unruh Modes

Now let’s go back to the maximally analytical extension of Schwarzschild spacetime
and Unruh modes.
We have seen that, in a gravitational collapse, at late time the outgoing coordinate
behaves like a Kruskal coordinate.
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r = 0

I+

I−

v0

H

vH

v > vH

v < vH

Figure 2.5: Vaidya spacetime. The green region is the Schwarzschild portion of
spacetime, ie v > v0, while the yellow region is the Minkowski portion,
ie v < v0.

This means that at late time, the maximal analytical extension of Schwarzschild
spacetime with Unruh modes mimic the gravitational collapse, and so the effects
produced by the collapse on the modes can be replaced by appropriate boundary
condition on an empty Schwarzschild spacetime. Unruh modes can be used to
describe gravitational collapse at late time u → +∞

lim
u→∞

⟨in|N̂ω|in⟩ = ⟨U|N̂ω|U⟩. (2.61)

Besides that, Unruh modes, and in particular how they are related to the Boul-
ware modes, can be used to derive the Hawking spectrum in the full Schwarzschild
spacetime.
Indeed, suppose our system is in the initial state at I−. Here the Unruh modes
approach Minkowski modes, and the associated vacuum state |U⟩ approach the
Minkowski vacuum |0⟩, which describes an absence of particles.
If we work in the Heisenberg picture we have that the states do not change over
time, but the operators evolve. So if our system is in |U⟩ at the initial time, it will
be in |U⟩ also at a late time on I+, but the operators have evolved, so the vacuum
at the early time might not be vacuum at late time. An interpretation in terms of
particles can be obtained by studying how the Unruh vacuum is perceived by an
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observer performing measurements with Boulware operators, i.e.

⟨U|Nω|U⟩ = ⟨U|aR†
ω aRω |U⟩. (2.62)

This can be evaluated using Eq. 1.39

⟨U|aR†
ω aRω |U⟩ =

∑
ωk

∣∣βR
ωk,ω

∣∣2 (2.63)

so we need an explicit expression for the Bogoljubov coefficients β between Unruh
and Boulware modes.

2.4.3 Evaluation of Bogoljubov Coefficients

Formally, an expression for the Bogoljubov coefficients can be obtained using the
scalar product and the commutation relation of the ladder operators. In particular,
in the asymptotically flat region, we have

αR
ωk,ω

=
(
uk(ωk), u

R
ω

)
(2.64)

βR
ωk,ω

= −
(
uk(ωk), u

R∗
ω

)
(2.65)

and similar relations in the black hole region. In the following we will write the
Unruh modes simply as uk, omitting the dependence on the frequency ωk.

1

We are not particularly interested in the Bogoljubov coefficient, but rather its
absolute value squared and summed over one index, and to do this it will be useful
the relations between Bogoljubov coefficients, Eq. 1.33 and Eq. 1.34.

So, let us start with the α coefficient. To compute the scalar product we need
a Cauchy surface, in particular we use the past horizon H−

αR
ωk,ω

= −i

∫
dUdθdφ

[
uk∂Uu

R∗
ω − (∂Uuk)u

R∗
ω

]
r2 sin θ. (2.66)

We need to pay attention to the differentiation with respect to U .
For the Unruh mode, the dependence on U is in the exponential and in the term
1/r, since r is defined implicitly by Kruskal coordinates. Differentiating this term
we will eventually get a factor which cancels out in the double product, so in a
symbolic way we can write

∂Uuk = −iωkuk + ”
1

r
factor”. (2.67)

1uk: Unruh mode, uω: Boulware mode
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For the Boulware mode it is even more involved. Since they are defined using
Eddington-Finkelstein coordinates, we need to express them in terms of Kruskal
coordinates. To do so we need to invert the relation between U and u

U = −1

κ
e−κu ↔ u = −1

κ
ln(−κU). (2.68)

Substituting we get

uR∗
ω =

1

4π
√
ω

1

r
(−κU)−iω/κ (2.69)

and differentiating

∂Uu
R∗
ω =

1

4π
√
ω r

−iω

−κU
(−κU)iω/κ (2.70)

where we omitted the contribution coming from the derivative of the 1/r term.

Now we can put everything together

αR
ωk,ω

=
−i

4π
√
ω
√
ωk

∫ 0

−∞
dU exp{−iωkU}(−κU)iω/κ

[ −iω

−κU
+ iωk

]
. (2.71)

This integral can be solved by changing to the variable x = −κU and recognizing
the Euler Γ function ∫ +∞

0

dxxae−bx = b−1−aΓ(1 + a)

= b−1−aaΓ(a). (2.72)

Performing the change of variable we get

αR
ωk,ω

=
−i

4π
√
ωωk κ

[∫ +∞

0

dx exp

{
iωkx

κ

}
×x−iω/κ−1(iω)

∫ +∞

0

dx exp

{
iωkx

κ

}
x−iω/κ(iωk)

] (2.73)

= I1 + I2 (2.74)

where I1, I2 just denotes the two integrals.
In our case, we can recognize the Euler function in both I1 and I2, with different
values for the parameters a, b, in particular

I1 : a = −iω

κ
− 1, b = −iωk

κ
(2.75)

I2 : a = −iω

κ
, b = −iωk

κ
(2.76)
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and we get

I1 =
1

4πκ

√
ω

ωk

(
−iωk

κ

)iω/κ

Γ

(
−iω

κ

)
(2.77)

I2 =
1

4πκ

√
ωk

ω

(
−iωk

κ

)iω/κ−1(
−iω

κ

)
Γ

(
−iω

κ

)
. (2.78)

Combining we eventually get

αR
ωk,ω

=
1

2πκ

√
ω

ωk

(
−iωk

κ

)iω/κ

Γ

(
−iω

κ

)
(2.79)

and similar expressions for the other coefficients

βR
ωk,ω

=
1

2πκ

√
ω

ωk

(
−iωk

κ

)iω/κ

Γ

(
iω

κ

)
(2.80)

αL
ωk,ω

=
1

2πκ

√
ω

ωk

(
iωk

κ

)iω/κ

Γ

(
iω

κ

)
(2.81)

βL
ωk,ω

=
1

2πκ

√
ω

ωk

(
iωk

κ

)iω/κ

Γ

(
−iω

κ

)
. (2.82)

For the moment let us focus only on the R coefficients. The factor (−i)iω/κ can be
written as an exponential, and we get

αR
ωk,ω

=
1

2πκ

√
ω

ωk

(
−ωk

κ

)iω/κ
Γ

(
−iω

κ

)
exp

{πω
2κ

}
(2.83)

βR
ωk,ω

=
1

2πκ

√
ω

ωk

(
−ωk

κ

)iω/κ
Γ

(
iω

κ

)
exp

{
−πω

2κ

}
. (2.84)

If we take the modulo square we find∣∣αR
ωk,ω

∣∣2 = exp

{
2πω

κ

} ∣∣βR
ωk,ω

∣∣2 . (2.85)

Now we can use the “pseudo-unitarity” of the Bogoljubov transformation∑
ωk

(∣∣αR
ωk,ω

∣∣2 − ∣∣βR
ωk,ω

∣∣2) = 1. (2.86)

Using this relation and the expressions Eq. 2.83, Eq. 2.84, after some simple algebra
we get the desired result ∑

ωk

∣∣βR
ωk,ω

∣∣2 = 1

e8πmω − 1
(2.87)
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and so, according to Eq. 2.63

⟨U|aR†
ω aRω |U⟩ = 1

eℏω/kBTH − 1
(2.88)

where kB is the Boltzman constant and

TH =
ℏκ

2πkB
(2.89)

is called Hawking temperature.

2.4.4 Physical Considerations

What we just showed is one of the most fascinating results of theoretical physics:
a black hole is not actually black, but it emits particles, and these particles are
emitted with a thermal distribution. This temperature, the Hawking temperature,
depends on the surface gravity, which in turn can depend only on mass, electric
and magnetic charge and angular momentum.

Hawking derived this result by studying a generic gravitational collapse. As we
have seen, in that model the |in⟩ state approach |U⟩ only at late time, so in a
physical scenario we measure the thermal flux of particles only on I+.
In the maximally analytical extension instead, modes are always the Unruh modes,
so we measure the flux at any time.

From what we have seen we have the creation of particles, so it makes sense to
ask where these particles come from. According to general relativity, they cannot
come from inside the black hole. Moreover, it seems we are violating energy
conservation by creating particles of energy ω. We can answer both questions by
writing the relation between Unruh and Boulware vacuum.
Since we are neglecting the effective potential, the ingoing and outgoing modes
do not mix, and so we can split these vacuum states into an “in” and “out”
component. For our analysis, we are interested in the “out” component. Using
the Bogoljubov transformation we can write

|U⟩out ∼ exp

{∑
ω

e−4πMωaL†ω aR†
ω

}
|B⟩out. (2.90)

This relation tells us that Hawking radiation is the creation of a pair particle-
partner. The particle is created outside the horizon and it will propagate toward
I+, where is detected as Hawking radiation. The partner instead is created inside
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the horizon, and it is trapped inside. Since particle and partner have opposite
frequencies, globally we have conservation of energy.

Hawking radiation is one of the cornerstones of black hole thermodynamics
(Davies, 1977b). From general relativity we can derive the four laws of black
hole dynamics:

0th The surface gravity κ of a static black hole at equilibrium is constant on the
horizon;

1st The variation of mass, angular momentum and area of the horizon due to a
small perturbation is δm = (κ/8π)δA + ΩHδJ , where A is the area of the
horizon, ΩH is the angular velocity of the black hole and δJ the variation of
angular momentum;

2nd The area of the horizon never decreases: δA ≥ 0;

3rd Surface gravity cannot vanish in a finite advanced time (we cannot destroy
a black hole horizon): κ ̸→ 0.

Hawking showed a relation between temperature and surface gravity. Bekenstein
(Bekenstein, 1972) derived, a few years before, a relation between entropy and the
area of the black hole

S =
kBA

4Gℏ
. (2.91)

Moreover, we have the equality between mass and energy, therefore we have a
correspondence between the laws of black holes and laws of thermodynamics

T ↔ κ S ↔ A E ↔ M. (2.92)

We finish this section by just mentioning a technical detail regarding black
hole radiation in gravitational collapse. We have found that black holes emit
particles of frequency ω, or to be more specific, at I+ we measure a flux of particles.
These particles have a definite frequency ω. Definite frequency implies absolute
uncertainty in time, so the expectation value of the number operator will represent
the number of particles of definite frequency ω emitted at any time, but we are
interested in those emitted at late time, once the black hole has settled down to a
stationary configuration.
This is related to the fact that the modes we used are all built using plane waves,
which are completely delocalized.
This can be solved by replacing these plane waves with wave packets of discrete
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Re{ujn}

Figure 2.6: Wave packet built from a plane wave, with quantum numbers ε =
0.5, j = 10, n = 0.

quantum numbers

ujn =
1√
ε

∫ (j+1)ε

jε

dωe2πiωn/εuω (2.93)

where uω is the usual mode built with plain waves and j, n are the quantum
numbers. We can take ε small to have a wave packet narrowly centered around ω =
jε, see Fig. 2.6. The expectation value of the number operator built with operators
defined with respect to these modes have now a clear physical interpretation.

2.4.5 Backscattering

It is interesting to notice from the number operator

⟨U|aR†
ω aRω |U⟩ = 1

eℏω/kBTH − 1
(2.94)

that for ω → 0 we have an infinite number of particles emitted. This is clearly
wrong.
The reason for this is that we neglected the effective potential

Vℓ =

(
1− 2M

r

)[
2M

r
+

ℓ(ℓ+ 1)

r2

]
. (2.95)

The potential mixes modes between themselves, some will be reflected, and others
will be transmitted, with probability T and R such that |T |2 + |R|2 = 1. We
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are interested in studying how the modes which reach I+ are affected by this
scattering, so we need to find an explicit form for the probability T . To do so we
will still assume ℓ = 0.

We have seen that the spectrum diverges for small ω, which corresponds to
small values of the potential. This happens in two regions: on the horizon and at
infinity.
Since complete analytical solution is not possible, so we work with a technique
called asymptotically matching. The main idea is to get a solution for 2M < r < ∞,
and then match the solution at 2M and ∞.

So, let us consider the wave equation for a scalar field in Schwarzschild spacetime.
Thanks to spherical symmetry we can expand the field in spherical harmonics and
a function of time and radius

f ∼
∑
ℓ,m

Fℓ(r, t)

r
Y m
ℓ (θ, φ). (2.96)

We can also write Fℓ as a radial function and a time phase

Fℓ ∼ e−iωtχℓ(r). (2.97)

We are interested in the radial part. The wave equation for χ reduces to

(∂2
r∗ + ω2 + Vℓ)χ(r) = 0. (2.98)

For small frequency we can neglect the factor ω2 coming from the differentiation
with respect to time, so the covariant wave equation reduces to

∂r

[
r2
(
1− 2M

r

)
∂r

(χ
r

)]
= 0 (2.99)

which can be integrated up to two constants

χ = ar + br

∫
dr∗

r2
. (2.100)

To fix these constants we impose how the solution should behave at 2M and
infinity:

• For r → ∞ we have that r∗ ∼ r, so

χ = ar − b. (2.101)

But at infinity, modes will be of the form

χ ∼ Teiωr
∗ ω→0−−→ T + ωTr∗ (2.102)
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ω

Nω

Figure 2.7: Hawking spectrum without grey factor (blue function) and with the
grey factor (red function).

from which we get {
a = iωT
b = −T

(2.103)

• For r = 2M

χ = 2Ma+
b

2M
r∗. (2.104)

Here we need to consider both the contributions coming from the past and
future horizon

χ = eiωr
∗
+Reiωr

∗ ω→0−−→ 1 +R + iω(1−R)r∗ (2.105)

so {
2Ma = 1 +R

b = 2Mω(1−R)
(2.106)

Solving Eq. 2.105 and Eq. 2.106 we find

R = −1− 4M2ω2

1 + 4M2ω2
(2.107)

and using |T |2 + |R|2 = 1 we obtain

|T |2 = 16M2ω2. (2.108)

Redefining the modes uR
ω → TuR

ω affects the Bogoljubov transformation. For the
β coefficient we find

|β|2 → |T 2||β|2 (2.109)
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and so

⟨U|Nω|U⟩ = 16M2ω2

eℏω/kBTH − 1
(2.110)

which now converge for ω → 0. In Fig. 2.7 we can see how the spectrum changes
with the energy ω, with and without grey factor.
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Energy-Momentum Tensor and
Regularity of States
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3 Energy-Momentum Tensor and
Trace Anomaly

In the previous chapter we have seen how, in the presence of curved spacetime,
the concept of vacuum and particles do not match with the usual concept in flat
spacetime. We can quantize the same spacetime with different sets of modes, which
leads to the conclusion that there is no natural, privileged definition of particles.
No matter how we define them, the concept of particle is connected to a particular
choice of modes, which are defined globally, and therefore are sensitive to the large
structure of spacetime. However, it is worthwhile to study the behavior of physical
quantities defined locally.
An example is the energy-momentum tensor, which in this context is extremely im-
portant for two main reasons. First, it allows us to describe the physical structure
of the quantum field at a specific spacetime point. Second, it acts as a source of
gravity for the Einstein field equation. For this reason, having an explicit expres-
sion of the energy-momentum tensor allows us to study the back-reaction problem,
determining how Hawking radiation affects spacetime.

We are interested in finding the energy-momentum tensor in order to study the
regularity of the different states we introduced before. In the following chapters, we
will derive an explicit expression of the energy-momentum tensor starting from the
trace anomaly, and then study the regularity of the states in both Schwarzschild
and Reissner-Nordström spacetime.

3.1 Trace Anomaly

As mentioned before, our derivation of the Hawking radiation relied on the approx-
imation that the matter field we quantize does not affect the background. But this
field carries energy and momentum, so it will affect the energy-momentum tensor,
which in turn affects the geometry of the spacetime.
The Einstein field equation should be modified accordingly. For this reason, we
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introduce the so-called semi-classical Einstein equations

Gµν(gµν) = 8π⟨in|Tµν(gµν)|in⟩ (3.1)

in which the right-hand side represents the expectation value of the energy-mo-
mentum tensor for the matter field and also depends on the metric tensor, and
the state |in⟩ is built for a generic spherical symmetric metric. No one managed
to solve this problem in full generality, but with some approximations, we can
compute the components of the energy-momentum tensor.

From Eq. 3.1 we can infer some properties of Tµν . From the Bianchi identity for
the Riemann tensor, we find that the Einstein tensor is covariantly conserved

∇µG
µν = 0. (3.2)

Consistency requires also the energy-momentum tensor to be conserved

∇µ⟨T µν⟩ = 0 (3.3)

so quantization of the matter field should be compatible with general covariance.

As mentioned before, an explicit expression of the energy-momentum tensor can
be found only when we have enough symmetries on matter fields and spacetime
to constrain the system. An example is conformally invariant spacetime with a
classical action invariant under conformal transformations

gµν → Ω2(x)gµν . (3.4)

Except for ξ = 1/6 and m = 0, this transformation is not a symmetry.

In a two-dimensional theory of a conformally invariant matter field, we can
give an expression of ⟨Tµν⟩ for an arbitrary metric. This is because every two-
dimensional spacetime is locally conformally flat, meaning we can relate any metric
to the flat metric by a conformal transformation

gµν(x) = Ω2(x)ηµν (3.5)

where ηµν is the flat metric. Such invariance imposes a big constraint on the form
of the energy-momentum tensor.
To see this, consider an infinitesimal conformal transformation Ω(x) ≃ 1 + ω(x).
The variation of the metric reads

δgµν = 2ω(x)gµν (3.6)
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and for the classical action, we find

δS =

∫
dnx

√−gTµνg
µνω(x) (3.7)

where n is the dimension of the spacetime. It is now clear that invariance under
this transformation requires the energy-momentum tensor to be traceless

T ≡ gµνTµν = 0. (3.8)

At the quantum level, this is not the case. The quantization procedure produces
an energy-momentum tensor with a non-vanishing trace. This is the so-called trace
anomaly1 (Capper et al., 1974).
The numerical value of the anomaly is independent of the states on which we
compute the expectation value, and depends only on geometrical quantities, such
as contractions of Weyl or Ricci tensor, the Ricci scalar or its derivatives. For
example, in two dimensions and for massless scalar fields we find

⟨T ⟩ = ℏ
24π

R. (3.9)

3.2 Components of Energy-Momentum Tensor

An explicit expression of the energy-momentum tensor is not only needed in order
to try to solve the semi-classical Einstein equations Eq. 3.1, but also to study the
regularity of the different vacuum states we built before. We are interested in this
second point.
Straightforward calculation of the expectation value of the energy-momentum ten-
sor yields a divergent quantity, but we can recover a finite result by using the
techniques of regularization. This is done, for example, in (Birrell et al., 1982).
However, the same result can be obtained without regularization, but assuming a
non-vanishing trace anomaly. This has been done in (Davies, 1977a) and (Fulling,
1986).
In the following, we will omit the ⟨ ⟩ for the expectation value of the energy-
momentum tensor, and just denote by Tµν .
Moreover, the expectation value is computed with respect to some state. For the
moment we will not specify the state, but just assume to be a well-defined vacuum
state.

1By anomaly we mean any transformation which is a symmetry of the classical theory but not
of the quantum one.
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So, let us consider a two-dimensional spacetime, covered by a couple of null
coordinates x±. Moreover, since in two dimensions any spacetime is conformally
flat, we can take it of the form

ds2 = C(x+, x−)dx+dx−. (3.10)

The only non-vanishing component of the Christoffel symbols are

Γ+
++ = C−1∂+C, Γ−

−− = C−1∂−C (3.11)

while the scalar (Ricci) curvature for this metric reads

R = 4C−1∂µ∂
µ lnC

= 4C−1
(
C−1∂+∂−C − C−2∂+C∂−C

)
= 4C−2

(
∂+∂−C − C−1∂+C∂−C

)
.

(3.12)

The Bianchi identity for the Riemann tensor implies the covariant conservation of
the energy-momentum tensor

∇µT
µν = 0 (3.13)

which for our metric reads

∂−T++ − 1

4
C∂+T

µ
µ = 0 (3.14)

∂+T−− − 1

4
C∂−T

µ
µ = 0. (3.15)

For a general Lagrangian in flat spacetime, the energy-momentum tensor is defined
as

Tµν =
∂L

∂(∂µφα)
∂νφα − ηµνL. (3.16)

Taking the usual Lagrangian for a scalar field, and by “covariantize” the last
expression, we find

Tµν(x) = ∇µφ∇νφ− 1

2
gµνg

αβ∇αφ∇βφ. (3.17)

Since the covariant differentiation is a local process, the energy-momentum tensor
must be a local function of x, so it depends only on C and its derivative evaluated
at x.

As said before, classically we expect the trace T µ
µ to vanish, but this is not the

case. The trace anomaly, also called “conformal anomaly”, is expected in quantum
field theory.
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Here we do not need to assume a particular form for this anomaly, but just that
is a non-vanishing local quantity.
In natural units, the trace is a scalar with the dimension of [lenght]−2, so it must
contain quadratic derivatives of C. Moreover, since in flat spacetime we do not
have a conformal anomaly, T µ

µ should vanish for certain choices of C. These as-
sumptions and requirements are enough to determine the trace and, using Eq. 3.14,
Eq. 3.15 the whole tensor.

The first thing we note is that C cannot be a function of only x+ or x−, otherwise
the spacetime is flat. Indeed, suppose C to be a function of only x+, then we could
introduce a new coordinate x′− in such a way that C(x+)dx+dx− → dx+dx′−. So
C must be a function of both null coordinates.
Since the trace should contain second derivatives of C, the only possible terms are
∂+∂−C and ∂+C∂−C. Moreover, the trace should be a homogeneous function of
degree −1. This fixes T µ

µ to be

T µ
µ = aC−2∂+∂−C + bC−3∂+C∂−C. (3.18)

We can fix one of the two coefficients by noticing that the conformal factor of the
form C ∼ ex

++x−
is related to the Milne spacetime, an unconventional parametriza-

tion of the usual flat spacetime2. A few details about the Milne spacetime are given
in Appendix A.
Being the Milne spacetime flat, and since in flat spacetime we do not have any
trace anomaly, we can set T µ

µ to vanish when C ∼ ex
++x−

, which implies a+b = 0.
So the trace of the energy-momentum tensor becomes

T µ
µ = aC−2

(
∂+∂−C − C−1∂+C∂−C

)
(3.19)

and, using Eq. 3.12 we immediately recognize

T µ
µ =

1

4
aR. (3.20)

We can now solve Eq. 3.14, Eq. 3.15. We will focus only on T++, but the procedure
is the same for T−−.

We can rewrite Eq. 3.14 as

∂−T++ = −1

2
a∂−

[√
C∂2

+

√
C−1

]
(3.21)

which can be integrated up to an arbitrary function of x+

T++ = −1

2
a
√
C∂2

+

√
C−1 + g(x+). (3.22)

2Just like the Rindler spacetime.
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We now need to fix g(x+). As already mentioned, T++ is a local quantity, so g can
depend on the geometry of the spacetime only through the conformal factor C and
its derivatives. Moreover, we also saw that in order to have a curved spacetime,
C must be a function of both null coordinates (x+, x−), but g is a function only
of x+, so it can only be a constant.
To fix this constant we can study the limiting case C → 1. In this limit the
spacetime is empty flat Minkowski spacetime, so T++ = 0, and hence we need
g = 0.

Now all that is left to do is compute the constant a, which can be again fixed
by looking at a special case, the Minkowski spacetime with moving boundary con-
ditions.
The emission of thermal particles in curved spacetime can be reproduced in a flat
spacetime by introducing a time-dependent boundary condition, also called mir-
ror, for the field. In curved spacetime, the emission of particles emerges studying
the relation between two different set of modes, let us call them (ui, vi) and (ũi, ṽi).
In this “moving mirror” model, the particular choice of boundary conditions can
make the modes (ui, vi) evolve as (ũi, ṽi).
It is not of our interest to study this model, but some more details are give in
(Fulling et al., 1976), (Davies and Fulling, 1977b).
The basic idea is consider a conformal factor of the form

C =
dp(x+)

dx+
(3.23)

where
p(x+) = 2τ+ − x+, τ+ = x+ + z(τ+) (3.24)

and z(t) is the mirror trajectory.
A particular trajectory, namely

z(t) = − ln cosh t (3.25)

has the property that the radiation emitted from this mirror is a thermal incoherent
radiation of temperature 1/2π.
This means that the energy flux can be computed not only from the energy-
momentum tensor, but also by integrating over the incoherent thermal spectrum

T++ =
1

2π

∫ ∞

0

dω
ω

e2πω − 1
=

1

48π
. (3.26)

But we can also compute T++ by substituting in Eq. 3.22 the conformal factor
computed from the trajectory z(t), from which we get

T++ =
1

8
a. (3.27)
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A direct comparison shows that

a =
1

6π
. (3.28)

So, starting from the basic assumption of a non-vanishing trace anomaly we
managed to recover the full explicit form of the energy-momentum tensor and its
trace

Tµν = θµν −
1

48π
Rgµν (3.29)

θ++ = − 1

12π

√
C∂2

+

√
C−1 (3.30)

θ−− = − 1

12π

√
C∂2

−

√
C−1 (3.31)

θ+− = θ−+ = 0 (3.32)

T µ
µ =

R

24π
. (3.33)

These results have been derived without any regularization procedure, but are in
complete agreement with those results.

3.3 Transformation of the Energy-Momentum

Tensor

In the previous section, we derived the expectation value of the energy-momentum
tensor, neglecting the state we use to evaluate the quantity.
These states, which could be for example, the Boulware, the Unruh, or the Israel-
Hartle-Hawking vacuums, are not unique, and are built with respect to some
modes. Alternatively, we could have chosen a different set of modes, with dif-
ferent coordinates. For this reason, it is interesting to study how the expectation
values for different states are related.

So, suppose to cover a two-dimensional spacetime with a metric of the form

ds2 = C(x+, x−)dx+dx−. (3.34)

Quantization in this spacetime is achieved with a set of normalized modes which
reads

1√
4πω

e−iωx+

,
1√
4πω

e−iωx−
. (3.35)
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This set of modes allows us, together with the associated ladder operators, to
expand a massless scalar field and to identify a vacuum state, which we denote by
|x±⟩.
The expectation value of the energy-momentum tensor for the scalar field in the
|x±⟩ state is (see Eq. 3.29 - Eq. 3.33)

⟨x±|T±±|x±⟩ = − 1

12π

√
C∂2

±

√
C−1 (3.36)

⟨x±|T+−|x±⟩ = − 1

48π
Rg+− = − 1

96π
RC. (3.37)

The coordinates x± and the states built with these coordinates are not special.
Indeed we could also use a different set of coordinates, let us call them x̃±, related
to x± by

x̃± = x̃±(x±). (3.38)

With these coordinates, we can build a new set of modes

1√
4πω̃

e−iω̃x̃+

,
1√
4πω̃

e−iω̃x̃−
. (3.39)

and an associated vacuum state |x̃±⟩.

Knowing the transformation rule between the two sets of coordinates we can
recover a relation between the expectation value of the energy-momentum tensor
in the two different vacuum states (Balbinot and Bergamini, 1989)

⟨x̃±|T±±|x̃±⟩ = ⟨x±|T±±|x±⟩+ 1

24π
Fx̃±(x±)

⟨x̃±|T+−|x̃±⟩ = ⟨x±|T+−|x±⟩
(3.40)

where the functional Fx̃±(x±), proportional to the Schwarzian derivative, relates
the two reference frames

Fx̃±(x±) =

(
dx±

dx̃±

)−2
[
d3x±

dx̃±3
/
dx±

dx̃± − 3

2

(
d2x±

dx̃±2
/
dx±

dx̃±

)2
]
. (3.41)

We now see that the only difference in the expectation value of the Tµν with
respect to two different sets of coordinates is given by the Schwarzian derivative.
Moreover, this difference is non-local, in the sense that does not depend on geo-
metrical quantities, but on the global relation between the coordinates.
We also note that in Eq. 3.40, the components of the energy-momentum tensor
are still expressed with respect to the coordinates x±, but evaluated for the state
built with the coordinates x̃±. Expressing the components in terms of a specific
set of coordinates will be relevant later in discussing the regularity of the states.
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4 Energy-Momentum Tensor in
Schwarzschild Spacetime

Having obtained an explicit expression for the expectation value of the energy-
momentum tensor we can now compute explicitly this value in different vacuum
states.

Thanks to the spherical symmetry of the Schwarzschild spacetime we can neglect
the angular terms in the metric and focus only on the t− r sector.
We will compute explicitly the expectation value for three states: Boulware, Unruh
and Israel-Hartle-Hawking vacuum.

4.1 Boulware Vacuum

Boulware vacuum is defined with respect to modes built with the Eddington-
Finkelstein null coordinates. The metric in these coordinates reads

ds2 =

(
1− 2M

r

)
dudv (4.1)

and the normalized modes are

1

4π
√
ω
e−iωu,

1

4π
√
ω
e−iωv. (4.2)

The key equations are Eq. 3.36, Eq. 3.37, which can be rewritten as

⟨B|Tuu|B⟩ = ⟨B|Tvv|B⟩ =
1

192π

(
2CC ′′ − C ′2) (4.3)

⟨B|Tuv|B⟩ =
1

96π
CC ′′ (4.4)

and a prime denotes differentiation with respect to r.
Now we just need to compute the derivatives. Introducing the conformal factor
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for the Schwarzschild spacetime we find

⟨B|Tuu|B⟩ = ⟨B|Tvv|B⟩ =
1

24π

[
3

2

M2

r4
− M

r3

]
⟨B|Tuv|B⟩ = − 1

24π

M

r3

(
1− 2M

r

)
.

(4.5)

As discussed previously in Section 2.2, Boulware modes reduce to usual Minkowski
modes at infinity, therefore we expect the Boulware vacuum to reduce to the
Minkowski vacuum. This is precisely the case. As r → ∞, all components of Tµν

vanish, reproducing the familiar concept of vacuum state as a state of no particles.

4.1.1 Regularity and Physical Meaning of Boulware Modes

We can study the behavior of Eq. 4.5 also on the horizon. We know that the
Schwarzschild metric is singular at r = 2M when expressed with both null coor-
dinates. But this singularity is not a physical singularity, so the region belongs
to the physical spacetime and we expect a finite result for the expectation value.
To better investigate this region it is more appropriate to use a coordinate system
regular on the horizon, for example, the Kruskal coordinates

U = −4Me−u/4M , V = 4Mev/4M . (4.6)

The expectation value of Tµν is regular if its components, in Kruskal coordinates,
are finite approaching the horizon

⟨B|TUU |B⟩ < ∞ (4.7)

⟨B|TUV |B⟩ < ∞ (4.8)

⟨B|TV V |B⟩ < ∞. (4.9)

The components of Tµν transform as

⟨B|TUU |B⟩ =
(
du

dU

)2

⟨B|Tuu|B⟩ (4.10)

⟨B|TUV |B⟩ =
(
du

dU

)(
dv

dV

)
⟨B|Tuv|B⟩ (4.11)

⟨B|TV V |B⟩ =
(
dv

dV

)2

⟨B|Tvv|B⟩. (4.12)
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The transformation factor can be easily computed by inverting the defining relation
of the Kruskal coordinates from Eq. 4.6 and using

UV = −8Mer/2M(r − 2M) (4.13)

from which we immediately get

⟨B|TUU |B⟩ ∼ V 2(r − 2M)−2⟨B|Tuu|B⟩ (4.14)

⟨B|TUV |B⟩ ∼ (r − 2M)−1⟨B|Tuv|B⟩ (4.15)

⟨B|TV V |B⟩ ∼ U2(r − 2M)−2⟨B|Tvv|B⟩. (4.16)

The future horizon is described by U = 0, so the regularity conditions take the
form

(r − 2M)−2|⟨B|Tuu|B⟩| <∞ (4.17)

(r − 2M)−1|⟨B|Tuv|B⟩| <∞ (4.18)

|⟨B|Tvv|B⟩| <∞ (4.19)

while for the past horizon, we just exchange u and v.
This shows that the expectation value for Tµν is regular approaching the horizon,
but not on the horizon, since the conditions are not satisfied when r = 2M . The
reason for that is, as mentioned above, the Schwarzschild metric in double-null
form is singular. This is the reason for the introduction of the Unruh modes.

Lastly, we just mention the physical interpretation of these states. Since they
reduce to Minkowski modes at infinity and are regular everywhere except on the
horizon, Boulware modes can be used to describe the vacuum polarization of space-
time outside a static massive body with a radius bigger than 2M , a star. In this
case, the portion of spacetime that holds physical significance does not include
horizons, and so the modes are regular everywhere on the physical spacetime.
A vacuum state with such properties can be built also with other modes, but only
the Boulware modes lead to a time-independent energy-momentum tensor.

4.2 Unruh Vacuum

We have seen that the Boulware modes are not regular on the horizon. To solve this
issue we could use a set of modes built using coordinates regular on the horizon.
An example are the Unruh modes, built with the ingoing Eddington-Finkelstein
coordinate v and the outgoing Kruskal U

1√
4πω

e−iωU ,
1√
4πω

e−iωv. (4.20)
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To compute the expectation value of Tµν we can use the relation between the
energy-momentum tensor in two different conformally-related frames, Eq. 3.40.
We already know the expectation value with respect to the Boulware modes, we
just need to compute the functional Eq. 3.41 relating the two sets of coordinates.
Before directly computing the value of the functional, we note that this factor
will not vanish only for the (uu) component of the energy-momentum tensor.
Indeed, Unruh and Boulware states are defined with respect to the same ingoing v
coordinate, therefore we do not have an additional term for the (vv) component,
Fv(v) = 0. The mixed term (uv) instead does not pick up an additional term, no
matter the relationship between the coordinates.
Therefore we need to compute only for the (uu) component

FU(u) =

[
d3u

dU3
/
du

dU
− 3

2

(
d2u

dU2
/
du

dU

)2
](

du

dU

)−2

. (4.21)

We can invert the relations Eq. 4.6 to write Eddington-Finkelstein u in terms of
Kruskal U , and computing the derivative we eventually get

FU(u) =
1

32πM2
. (4.22)

Putting everything together using Eq. 3.40 we find

⟨U|Tuu|U⟩ = ⟨B|Tuu|B⟩+
1

24π
FU(u) = ⟨B|Tuu|B⟩+

1

768πM2

=
(1− 2M/r)2

768πM2

[
1 +

4M

r
+

12M2

r2

] (4.23)

⟨U|Tuv|U⟩ = ⟨B|Tuv|B⟩ = − 1

24π

M

r3

(
1− 2M

r

)
(4.24)

⟨U|Tvv|U⟩ = ⟨B|Tvv|B⟩ =
1

24π

[
3

2

M2

r4
− M

r3

]
. (4.25)

Let us look at the regularity on the future horizon. Checking Eq. 4.14 we imme-
diately find that the expectation value of the energy-momentum tensor on Unruh
vacuum is regular. This is possible since, recalling what we have seen in Subsec-
tion 4.1.1, the condition not satisfied was the one concerning the (uu) component,
that is the one which gets the additional term 1/(768πM2), introduced by the
relation between the two sets of coordinates.
For the (vv) component instead, regularity was assured by the presence of the
factor U2/(r − 2M)−2, which is regular on the horizon (r = 2M or U = 0).
Conversely, on the past horizon V = 0, the (uu) component is still regular, but
the condition on the (vv) component is now

(r − 2M)−2|⟨B|Tvv|B⟩| < ∞ (4.26)
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2M r

Figure 4.1: ⟨TUU⟩ for Boulware and Unruh vacuum in Schwarzschild spacetime.
The blue function shows ⟨B|TUU |B⟩ and its divergence at r = 2M . The
red function instead shows ⟨U|TUU |U⟩, with a small vertical offset in
order to not overlap with the blue function. As we can see, ⟨U|TUU |U⟩
is now regular at the horizon.

which is not satisfied.
Therefore we conclude that the Unruh vacuum is regular on the future horizon,
but not on the past one. A graphical representation of ⟨TUU⟩ is given in Fig. 4.1.

r = 0 i+R

r = 0 i−R

H−

H+

I+

I−

Figure 4.2: Relevant part of Schwarzschild spacetime during gravitational collapse.
The red line represents the trajectory of a collapsing surface. The past
horizon is “inside” the collapsing body, and therefore physics there
should be described according to the interior metric.

As we discussed in Subsection 2.4.2, the Unruh state is the state that correctly
describes at late times the quantum state of a field in the spacetime of gravitational
collapse (such as the Vaidya model). In this scenario, the past singularity and the
past horizon are “covered” by the interior region(see Fig. 4.2), so the divergence
of Tµν is not particularly a problem. This is not the case for an eternal black
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hole, a black hole whose physical spacetime is the complete maximally analytical
extension of the Schwarzschild spacetime. To describe correctly quantum field in
this scenario we need different states that do not diverge on the past horizon.

Lastly, we can discuss the behavior at past and future null infinity. The ingoing
Unruh mode is the same as the ingoing Boulware mode, which we know approaches
the ingoing Minkowski mode at infinity. Therefore the Unruh vacuum describes
the familiar Minkowski vacuum at past null infinity.
The scenario is completely different at future null infinity.
Indeed, the outgoing Unruh mode does not approach the outgoing Minkowski
mode. The Unruh state describes the state of a field in the spacetime of gravita-
tional collapse, therefore comparing the expectation value for the Unruh vacuum
with the expectation value for the Boulware vacuum we find the effects of the
gravitational collapse.
The collapse produced an additional term to the “outgoing” (uu) component. This
term is relevant at large r and represents a constant flux of energy of magnitude
(768πM2)−1.

In general, looking at Eq. 4.23, the energy flux is given by two components:

1. At r → ∞ we have a constant outgoing flux of energy given by Tuu. The
contribution from the Boulware vacuum vanishes and we are left with

⟨U|Tuu|U⟩ ∼ 1

768πM2
(4.27)

which represents a constant thermal flux of the Hawking radiation of tem-
perature

TH =
1

8πkBM
; (4.28)

2. Near the horizon we find a negative ingoing flux of energy given by Tvv. This
negative flux of energy could cause the area of the horizon of the black hole to
shrink consistently with the emission measured at infinity (Davies, Fulling,
and Unruh, 1976).

It is interesting to notice that this energy flux was obtained without recurring
to the backward ray tracing, the argument used by Hawking in (Hawking, 1975)
to show the particle creation near a collapsing black hole, or to the Bogoljubov
transformations, as we did in the maximally analytical extension of Schwarzschild
spacetime in Chapter 2.
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4.3 Israel-Hartle-Hawking Vacuum

To solve the problem of having a divergent expectation value energy-momentum
tensor on the past horizon we can introduce another vacuum state: the Israel-
Hartle-Hawking state (Israel, 1976) (Hartle et al., 1976).
The introduction of the outgoing Kruskal coordinate allowed us to solve the diver-
gence on the future horizon of the Boulware state. To remove the divergence on
the past horizon we can introduce also the ingoing Kruskal coordinate.
In this way we get ingoing and outgoing modes both built with Kruskal coordinates

1√
4πω

e−iωU ,
1√
4πω

e−iωV . (4.29)

By the same analysis we performed previously for the Unruh vacuum, we can
compute the expectation value of ⟨H|Tµν |H⟩ summing the vacuum polarization
term, coming from the Boulware vacuum, and the term coming the functional
FU(u) relating the two sets of coordinates.
The difference this time is that we get a non-vanishing contribution also to the
(vv) component.

Up to a sign (that depends on which sector of the Kruskal sector we are consid-
ering), the relation between U and u is of the same form as the relation between
V and v, therefore we immediately find that

FU(u) = FV (v) =
1

32πM2
(4.30)

and

⟨H|Tuu|H⟩ = ⟨B|Tuu|B⟩+
1

24π
FU(u)

=
(1− 2M/r)2

768πM2

[
1 +

4M

r
+

12M2

r2

] (4.31)

⟨H|Tuv|H⟩ = ⟨B|Tuv|B⟩ = − 1

24π

M

r3

(
1− 2M

r

)
(4.32)

⟨H|Tvv|H⟩ = ⟨B|Tvv|B⟩+
1

24π
FV (v)

=
(1− 2M/r)2

768πM2

[
1 +

4M

r
+

12M2

r2

]
.

(4.33)

Checking the usual regularity conditions Eq. 4.14 we find that the Israel-Hartle-
Hawking vacuum is now regular on both future and past horizons.



52 Energy-Momentum Tensor in Schwarzschild Spacetime

However, the Israel-Hartle-Hawking modes do not reduce to
Minkowski modes at past and future null infinity. Indeed at infinity

⟨H|Tuu|H⟩ = ⟨H|Tvv|H⟩ ∼ 1

768πM2
(4.34)

⟨H|Tuv|H⟩ ∼ 0. (4.35)

This means that at I± we do not recover the usual Minkowski vacuum. Indeed,
|H⟩ is a finite-temperature state representing an ingoing and outgoing thermal flux
at the temperature

TH =
1

8πkBM
. (4.36)

The Israel-Hartle-Hawking state describes the so-called black hole in a box, a black
hole enclosed in a box, in thermal equilibrium with its own radiation.
It is important to note that this state is not the only state which can reproduce
these properties. Indeed, we could define another set of coordinates that behave
like Kruskal at infinity and on the horizons, and we still would find a non-vanishing
contribution to the expectation value of Tµν at infinity. However, only with the
Israel-Hartle-Hawking state ⟨H|Tuu|H⟩ and ⟨H|Tvv|H⟩ are time-independent, and
therefore correctly describe the thermal equilibrium.
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5 Energy-Momentum Tensor in
Reissner-Nordström Spacetime

The analysis on the regularity of vacuum states can also be performed on different
spacetimes, such as the Reissner-Nordström spacetime, which describes a massive
charged black hole. Before studying the regularity we can make a brief review of
the key elements of this metric.

5.1 Charged Black Holes

The Reissner-Nordström spacetime is the solution to the Einstein-Maxwell prob-
lem, meaning a solution of the Einstein field equation for an energy-momentum
tensor solution of the Maxwell equations. The source is supposed to be point-like,
of mass M and electric (or magnetic) charge Q. The line element takes the form

ds2 = C(r)dt2 − C(r)−1dr2 − r2dΩ2 (5.1)

where the conformal factor is

C(r) =

(
1− 2M

r
+

Q2

r2

)
. (5.2)

The metric is spherically symmetric, therefore from now on we will neglect the
angular terms.
We have a physical singularity at r = 0, and geometrical singularities given by the
condition

C(r) = 0 → r± = M ±
√

M2 −Q2 (5.3)

which, if the argument of the square root is positive, corresponds to horizons.
Looking at the numerical values of M and Q we can identify three different sce-
narios, see also Fig. 5.1:

1. M < |Q|: the argument of the square root is negative, therefore we do
not have any horizon. The singularity at r = 0 is a time-like singularity,
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r− rH r+

r

IIIIII

Figure 5.1: Conformal factor for the Reissner-Nordström spacetime.
The red, blue and green functions corresponds respectively toM < |Q|,
M = |Q| and M > |Q|.
For M = |Q| we have a single horizon at rH .
For M > |Q| we have two horizons located at r+ and r−.

not hidden by any horizon. This means that any lightcone in the whole
spacetime intersects the singularity and therefore we lose the predictability
of the theory. According to the Penrose cosmic censorship hypothesis, such
singularities are not realized in nature;

2. M = |Q|: in this case we have one horizon at rH = M . Such a black hole is
called extremal, and it has vanishing surface gravity, and therefore vanishing
Hawking temperature;

3. M > |Q|: in this case we have two different horizons. The outer horizon at
r+ behaves like the horizon of Schwarzschild spacetime. The inner horizon at
r− instead shows an odd behavior. If we consider a free-falling null observer:

• In the region III, which is for r > r+, we can have ingoing and outgoing
trajectories ;

• In the region II, which is for r− < r < r+, the only possible trajectories
are those of decreasing r, so photons are attracted towards r−;

• In the region I, which is for 0 < r < r−, we can have both ingoing and
outgoing trajectories, but without crossing the inner horizon.

In the following we will focus only on Reissner-Nordström black hole with two
horizons, M > |Q|.

To remove the geometrical singularities we can adopt a different set of coordi-
nates. In full analogy to the Schwarzschild spacetime, we can introduce the null
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Eddington-Finkelstein coordinates

u = t− r∗, v = t+ r∗ (5.4)

where the Regge-Wheeler coordinate is

r∗ =

∫
dr C(r)−1 (5.5)

= r +
1

2κ+

ln

∣∣∣∣r − r+
r+

∣∣∣∣+ 1

2κ−
ln

∣∣∣∣r − r−
r−

∣∣∣∣ (5.6)

and the surface gravity

κ± =
r± − r∓
2r2±

. (5.7)

Both extensions built with u and v are not complete, therefore we need to introduce
another extension able to cover the whole spacetime: the Kruskal extension. The
main difference with respect to the Kruskal extension of Schwarzschild spacetime
is that now we have two different values of the surface gravity, and so we have
ambiguities in the definition of Kruskal coordinates1

U± = ± 1

κ±
e−κ±u, V± = ± 1

κ±
e−κ±v. (5.8)

We will face the same ambiguities later when studying the regularity of the states.
The Kruskal extension with κ+ is regular on r+ but not on r−, and covers only
r > r−. Conversely, the extension with k− is regular only on r− and covers
0 < r < r−. We can compactify both extensions by a conformal transformation
and obtain the Penrose diagrams of the two extensions, which can be combined
to obtain the Penrose diagram of the whole Reissner-Nordström spacetime, see
Fig. 5.2. It consists of an infinite sequence of asymptotically flat regions connected
by wormholes.
The “right-side” horizon at r−, corresponding to V− = 0, is also called Cauchy
horizon, since we have predictability only for r < r−. The “left-side” instead is
called inner horizon, and it is described by U− = 0.
At r+ instead we have the “right-side” described by U+ = 0 and denoted by event
horizon, while the “left-side” is called past horizon, and it is described by V+ = 0.

Studying what happens to an observer crossing r−, we can see that the inner
horizon is a surface unstable against small perturbations coming from outside.
These perturbations affect the spacetime and lead to the formation of a space-like
curvature singularity2 called mass inflation. With the presence of this singularity
the infinite sequence stops, and the trajectories of free falling observer end on this
new curvature singularity.

1The overall sign depends on the region we choose to cover.
2A singularity similar to r = 0 in Schwarzschild spacetime.
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Figure 5.2: Penrose diagram of the whole Reissner-Nordström spacetime. The red
surface is the mass inflation singularity.
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5.2 Boulware Vacuum

In order to build the Boulware modes we start with the line element in the double
null form

ds2 =
(r − r+)(r − r−)

r2
dudv. (5.9)

Boulware modes for a Reissner-Nordström metric can be built as for the Schwarz-
schild metric

1√
4πω

e−iωu,
1√
4πω

e−iωv. (5.10)

The only difference is that the Regge-Wheeler coordinate, used to build the null
coordinates, is defined with respect to the conformal factor of the Reissner-Nord-
ström spacetime.

To compute the expectation value of the energy-momentum tensor we use again
Eq. 3.36 and Eq. 3.37 with the conformal factor from the metric in the double null
form Eq. 5.9. After computing the derivatives and some algebra we eventually find

⟨B|Tuu|B⟩ = ⟨B|Tvv|B⟩

=
1

24π

[
−M

r3
+

3

2

M2

r4
+

3

2

Q2

r4
− 3MQ2

r5
+

Q4

r6

]
(5.11)

⟨B|Tuv|B⟩ =
1

24π

[
−M

r3
+

2M2

r4
+

3

2

Q2

r4
− 4MQ2

r5
+

3

2

Q4

r6

]
. (5.12)

We immediately see that, as expected, all the contributions vanish at r → ∞, so
again the Boulware modes correctly reproduce the usual Minkowski vacuum.

The double null form of the metric is singular on the horizons, so in order to
study the regularity of the vacuum, we need a set of coordinates regular in these
regions, such as Kruskal coordinates. As for Schwarzschild, we will use again the
relations from Eq. 4.10, but now we need to check both horizons.

5.2.1 Regularity of Boulware Vacuum

To check the regularity of the Boulware vacuum on the horizons, we need to study
the behavior of the expectation value of the energy-momentum tensor in Kruskal
coordinates evaluated on the horizons. As mentioned earlier, the presence of two
horizons, and therefore of two different values for the surface gravity, offers two
ways to build the Kruskal coordinates.
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So, suppose we want to study the regularity at the event horizon, which is
located at r = r+, or equivalently, at U+ = 0.
As for the Schwarzschild spacetime, the regularity of the energy-momentum tensor
on a point means that the component of the tensor should be regular with respect
to a set of coordinates regular on that point. The coordinates regular on the event
horizon are (U+, V+), so the conditions of regularity can be written as

⟨B|TUU |B⟩ =
(

du

dU+

)2

⟨B|Tuu|B⟩ < ∞ (5.13)

⟨B|TUV |B⟩ =
(

du

dU+

)(
dv

dV+

)
⟨B|Tuv|B⟩ < ∞ (5.14)

⟨B|TV V |B⟩ =
(

dv

dV+

)2

⟨B|Tvv|B⟩ < ∞. (5.15)

Inverting the relation between Kruskal U+ and Eddington-Finkelstein u, and using
the relation

U+V+ = −e2κ+r

(
r − r+
r+

)(
r − r−
r−

)κ+/κ− 1

κ2
+

(5.16)

we find

⟨B|TUU |B⟩ ∼
(

r+
r − r+

)2

V 2
+⟨B|Tuu|B⟩ (5.17)

⟨B|TUV |B⟩ ∼
(

r+
r − r+

)
⟨B|Tuv|B⟩ (5.18)

⟨B|TV V |B⟩ ∼
(

r+
r − r+

)2

U2
+⟨B|Tvv|B⟩. (5.19)

On the event horizon U+ = 0 these conditions translate to(
r+

r − r+

)2

|⟨B|Tuu|B⟩| < ∞ (5.20)(
r+

r − r+

)
|⟨B|Tuv|B⟩| < ∞ (5.21)

|⟨B|Tvv|B⟩| < ∞. (5.22)

At r = r+, the expectation values are evaluated to

⟨B|Tuu|B⟩
∣∣∣
r+

= ⟨B|Tvv|B⟩
∣∣∣
r+

= − 1

48
κ2
+ (5.23)

⟨B|Tuv|B⟩
∣∣∣
r+

= 0. (5.24)
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By looking at the conditions above, we see that at the event horizon only the
conditions for the (uv) and (vv) components are satisfied, while the one for the
(uu) is not.
Therefore, the Boulware vacuum is not regular on the event horizon.
The same arguments holds for the past horizon V+ = 0. In this case the condition
not satisfied is the one for the (vv) component.

We can also study the regularity at the inner horizon r−. The conditions Eq. 5.13
- Eq. 5.15 can be expressed with respect to the coordinates (U−, V−). Then we can
use

U−V − = −e2κ−r

(
r− − r

r−

)(
r+ − r

r+

)κ−/κ+ 1

κ2
−

(5.25)

to find the conditions at r−. The same analysis done before shows that the (uu)
and (vv) components evaluated at r = r− are finite, and in particular proportional
to κ2

−, while again the (uv) component vanishes.
The regularity conditions are similar. At the Cauchy horizon V− = 0 the condition
on the (vv) component is not satisfied, while at the inner horizon U− = 0 the
problematic condition is the one for the (uu) component.

5.3 Unruh Vacuum

Similarly to the Boulware vacuum for the Schwarzschild spacetime, also in the
Reissner-Nordström spacetime the Boulware vacuum is not a regular state.
In full analogy to Schwarzschild spacetime, the ultimate reason for the non-regu-
larity is the choice of a set of coordinates not regular on the horizons. We can try
to remove the divergencies by introducing a vacuum state defined with respect to
a set of coordinates regular on the horizons: the Kruskal coordinates.
The Unruh vacuum can be built in the same way as we did in the Schwarzschild
spacetime. The normalized modes will take the form

1√
4πω

e−iωU± ,
1√
4πω

e−iωv. (5.26)

The expectation value of the energy-momentum tensor for the Unruh vacuum
can be computed using again Eq. 3.40, which relates the expectation value of the
energy-momentum tensor in two conformally-related frames. We already know
the “vacuum polarization” term, coming from the Boulware vacuum Eq. 5.11 and
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Eq. 5.12. We just need to compute the functional

FU±(u) =

(
du

dU±

)−2
[
d3u

dU3
±
/
du

dU±
− 3

2

(
d2u

dU2
±
/
du

dU±

)2
]
. (5.27)

Computing the derivatives we find

FU±(u) =
1

2
κ2
± (5.28)

and finally

⟨U±|Tuu|U±⟩ = ⟨B|Tuu|B⟩+
1

48π
κ2
± (5.29)

⟨U±|Tuv|U±⟩ = ⟨B|Tuv|B⟩ (5.30)

⟨U±|Tvv|U±⟩ = ⟨B|Tvv|B⟩ (5.31)

where the subscript on the state refer to which values of surface gravity is used to
build the associated modes.

5.3.1 Regularity of Unruh Vacuum

Since the (uu) component is the only one that gets an additional term, we will
focus only on that one. In order to study the regularity we need to choose one of
the two surface gravity.

Suppose we take FU+(u) = κ2
+/2, which means that the Unruh vacuum is built

with respect to U+.
As for the Schwarzschild case, the introduction of this new term makes the energy-
momentum tensor regular on the outer horizon. Indeed, at r+

⟨U+|TUU |U+⟩
∣∣∣
r+

= ⟨U+|Tuu|U+⟩
∣∣∣
r+

(
r+

r − r+

)2

=

(
− 1

48π
κ2
+ +

1

48π
κ2
+

)(
r+

r − r+

)2

(5.32)

< ∞. (5.33)

The condition on the (uu) component is satisfied thanks to the introduction of the
correction term which cancelled the vacuum polarization term. The condition on
the (vv) component is also satisfied since at the event horizon we have U+ = 0.
We also see that the Unruh vacuum is not regular on the past horizon V+ = 0.
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Indeed, looking at Eq. 5.17 - Eq. 5.19 we see that the regularity condition on (vv)
component is not satisfied, since it does not get a correction term.
So, we have found that, just like in the Schwarzschild spacetime, the Unruh vacuum
is regular on the event horizon but not on the past horizon.

But what about on r−?
To answer this question we need to study the regularity of

⟨U+|TUU |U+⟩
∣∣∣
r−

= ⟨U+|Tuu|U+⟩
∣∣∣
r−

(
r−

r− − r

)2

=

(
− 1

48π
κ2
− +

1

48π
κ2
+

)(
r−

r− − r

)2

. (5.34)

At r = r−, the first factor, which is the expectation value for the Unruh vacuum
using the Eddington-Finkelstein coordinates, does not vanish and is finite, while
the second factor, coming from the transformation between u and U−, diverges.
The Unruh vacuum is not regular on the inner horizon. Moreover, since only the
(uu) component received an additional term, we have that the Unruh vacuum is
not regular also on the Cauchy horizon, as for the Boulware vacuum.
We conclude that the Unruh vacuum built with the coordinates (U+, v) is regular
on the event horizon, but not on the past, Cauchy and inner horizon.

The same analysis can be performed using the Unruh vacuum built with the
coordinates (U−, v). The expectation value will be

⟨U−|Tuu|U−⟩ = ⟨B|Tuu|B⟩+
1

48π
κ2
−. (5.35)

The additional term will remove the divergence at U− = 0, but not at U+ = 0.
Performing the same analysis as before, we see that now the Unruh vacuum will
be regular on the inner horizon, but not on the event, past and Cauchy horizon.

Summarizing, the analysis of the regularity of the Unruh vacuum showed that
if we construct the vacuum with (U+, v), the state will be regular on U+ = 0 but
not on V+ = 0. Conversely, building the vacuum with the coordinates (U−, v), we
will get a state regular on U− = 0 but not on V− = 0.
It is not possible to define the Unruh vacuum in such a way that it is regular on
both horizons. A plot of the different expectation values is given in Fig. 5.3.
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r− r+ r

Figure 5.3: ⟨TUU⟩ for Boulware and Unruh vacuum in Reissner-Nordström space-
time. The red function shows ⟨B|TUU |B⟩ and its divergence at r = r+.
The blue function instead shows ⟨U+|TUU |U+⟩, with a small vertical
offset in order to not overlap with the blue function.
As we can see, ⟨U+|TUU |U+⟩ is now regular at the outer horizon.
Finally, the green function shows ⟨U−|TUU |U−⟩.It diverges at the outer
horizon.
Note, for r large enough also the green function approaches zero.
We find the opposite scenario at the inner horizon.

5.4 Israel-Hartle-Hawking Vacuum

The last vacuum state we will study is the Israel-Hartle-Hawking vacuum. It
is built with respect to the Kruskal coordinates U, V , therefore, starting from
the “vacuum polarization” contribution given by the Boulware vacuum, we will
have an additional term for both the (uu) and (vv) components, while the (uv)
components remain unchanged as usual.

To derive the explicit expression we just need to follow the same steps as in
Section 5.3. Since the relation between V and v is the same as U and u, we
immediately find

⟨H|Tuu|H⟩ = ⟨B|Tuu|B⟩+
1

48π
κ2
± (5.36)

⟨H|Tuv|H⟩ = ⟨B|Tuv|B⟩ (5.37)

⟨H|Tvv|H⟩ = ⟨B|Tvv|B⟩+
1

48π
κ2
±. (5.38)

Before studying the regularity at the horizons, we recall that the Israel-Hartle-
Hawking state can be interpreted as the state describing a black hole enclosed in
a box, in thermal equilibrium with its own radiation.
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Indeed, as r → ∞, the contribution coming from ⟨B|Tuu|B⟩ and ⟨B|Tvv|B⟩ vanish,
leaving only the constant term κ2

±/48π, which again can be interpreted as the
Hawking flux.

Now let us study the regularity at the horizons. As usual, we need to express the
energy-momentum tensor in terms of a set of coordinates regular on the horizons.
Since the outgoing Israel-Hartle-Hawking mode is the same as the outgoing Unruh
mode, by just looking at the Tuu component, we can already say that the also
the Israel-Hartle-Hawking vacuum will not be regular on the horizon, or more
properly:

• If the state |H⟩ is built using U+, the state will be regular on U+ = 0 and
V+ = 0;

• If the state |H⟩ is built using U−, the state will be regular on U− = 0 and
V− = 0.

The same analysis can be performed for the Tvv, which also gets an additional
term.
In the Schwarzschild spacetime, the additional term coming from the relation
between the two different sets of coordinates was enough to remove both the di-
vergences, making the Israel-Hartle-Hawking vacuum a regular state everywhere.
In the Reissner-Nordström spacetime instead, this is not the case. We have a
similar situation as discussed above for the Unruh vacuum: we can make the state
regular on the outer or inner horizon, but not on both at the same time.

So, we have seen that, unlike in the Schwarzschild spacetime, in the Reissner-
Nordström spacetime is not possible to construct a vacuum state that is regular
everywhere. The reason for that is the presence of two different horizons.
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Simpon-Visser Black Hole
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6 Classical Simpson-Visser Black
Hole

In this chapter, we present the basic feature of a class of the so-called regular black
hole, the Simpson-Visser Black Hole (Simpson et al., 2019).
We are interested in this metric since, as we will see in detail later, it presents two
horizons but with the surface gravity equal up to a sign. This peculiar property
will be then used in Chapter 7, to show the existence of a vacuum state regular
everywhere.

6.1 Simpson-Visser Metric

A simple regular metric can be obtained, starting from the usual Schwarzschild
metric, by replacing r →

√
r2 + a2, with a some real constant parameter. With

this substitution we find

ds2 =

(
1− 2M√

r2 + a2

)
dt2 −

(
1− 2M√

r2 + a2

)−1

dr2

− (r2 + a2)(dθ2 + sin2 θdφ2). (6.1)

Usual Schwarzschild metric presents two singularities, linked to the diverges in
the gtt and grr components of the metric. The divergence in the gtt component
corresponds to the real physical singularity at r = 0, while the one in the grr
component, located at r = 2M , is due the choice of a bad set of coordinates and
it describes the event horizon.
In the Simpson-Visser metric we have a different scenario. While the divergence
in grr might be present, depending on the values of a, the component gtt never
diverges, therefore we do not have any physical singularity.

Depending on the value of the parameter a, the metric Eq. 6.1 describes different
physical configurations.
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Since with the choice a = 0 we get the usual Schwarzschild metric, it makes sense
to require a ̸= 0.
Moreover, since this metric is a minimal modification of ordinary Schwarzschild
metric, they share a lot of properties. Indeed, just like the Schwarzschild metric,
the Simpson-Visser spacetime is static and spherically symmetric, or equivalently,
it admits a non-vanishing timelike Killing vector and there are no off-diagonal
components in the matrix representation of the metric.
This allows us to conclude that, like for the Schwarzschild spacetime, fixed r
surfaces correspond to spherical surfaces.

A very interesting feature of this spacetime, not shared with Schwarzschild space-
time, is the natural domain of the coordinates, also for the radial one

r ∈ (−∞,+∞), t ∈ (−∞,+∞), θ ∈ [0, π], φ ∈ (−π, π]. (6.2)

As mentioned before, different values of a yield different physical configurations.
It is interesting to study the behavior of the radial null curves (ds2 = 0, dθ =
dφ = 0)

dr

dt
= ±

(
1− 2M√

r2 + a2

)
. (6.3)

For a > 2M , we have that

dr

dt
̸= 0 ∀ r ∈ (−∞,+∞). (6.4)

It is the geometry of a two-way traversable wormhole. Looking at the behavior of
the curvature tensor components and curvature invariants, we find a maximum for
both at r = 0. This allows us to conclude that the wormhole’s throat is located
at r = 0, and the region of negative r can be interpreted as the universe on the
other side of the throat seen by an observer in our own universe. Penrose diagram
is showed in Fig. 6.1c.

For a = 2M , we have
dr

dt

r→0−−→ 0. (6.5)

Despite the presence of an horizon at r = 0, this geometry does not represent a
black hole, but rather a one-way traversable wormhole. Also in this case the throat
is located at r = 0. The associated Penrose diagram is given in Fig. 6.1a.

For a < 2M we can find values of r such that

∃ r± ∈ R s.t.
dr

dt
= 0. (6.6)
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This happens for

r± = ±
√
4M2 − a2. (6.7)

These two locations correspond to a pair of symmetrically placed horizons. Note:
one of the horizons is located in the region with r < 0.
For regular black holes we are interested in this interval, a ∈ (0, 2M). We can
have different physical interpretations. This spacetime looks like Schwarzschild,
but now the hypersurface r = 0 does not act as a singularity, but rather as the
boundary between our universe and a separate copy of it. The negative values of
r describe the copy of the universe once we go through the “bounce” at r = 0.
The corresponding Penrose diagram is given in Fig. 6.1d. This construction can
be repeated ad infinitum, moving from universe to universe. In this case, the time
coordinate is not constrained and runs from the bottom to the top.

Alternatively, we could set periodic boundary conditions for the time coordinate.
Doing so, we identify the “future bounce” with the “past bounce”, as we can see
in Fig. 6.1b. Crossing the future surface r = 0 we get bounced back to the past
surface r = 0. In this configuration, the time coordinate still runs from the bottom
to the top, but it is now cyclical.

6.2 Curvature Tensor and Invariants

In order to correctly describe a regular geometry, the curvature tensor, scalar and
invariant, computed for the Simpson-Visser metric, should be regular everywhere.

We start with the Weyl tensor. The Weyl tensor is a measure of the curvature
of spacetime. Enjoys the same symmetries as the Riemann tensor and can be
shown to be the “trace-less part” of the Riemann tensor. Thanks to this property,
the Weyl tensor can be used, together with the Ricci tensor, to express the full
Riemann tensor. In conformally flat spacetimes1, the Weyl tensor always vanishes,
allowing to compute the Riemann tensor directly from the Ricci tensor. Moreover,
the Weyl tensor is invariant under conformal transformations.
Assuming a ̸= 0, the non-vanishing components are

Ctθ
tθ = Ctφ

tφ = Crθ
rθ = Crφ

rφ = −1

2
Ctr

tr = −1

2
Cθφ

θφ

=
6r2M + a2

(
2
√
r2 + a2 − 3M

)
6(r2 + a2)5/2

. (6.8)

1Recall that any 2D spacetime is conformally flat
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which behaves as

Ctθ
tθ = Ctφ

tφ = Crθ
rθ = Crφ

rφ = −1

2
Ctr

tr = −1

2
Cθφ

θφ

r→0−−→ 2a− 3M

6a3
(6.9)

so not vanishing and regular.

A similar analysis can be done on the Riemann tensor. The non-vanishing
components are more complicated, here we just mention the behavior near the
origin

Rtr
tr → −M

a3
(6.10)

Rtθ
tθ = Rtφ

tφ → 0 (6.11)

Rrθ
rθ = Rrφ

rφ → 2M − a

a3
(6.12)

Rθφ
θφ → 1

a2
. (6.13)

Instead, at infinity |r| → +∞, all the components approach 0, meaning that at
large distances, this geometry models general relativity in the weak-field approxi-
mation.
We can conclude that in the full domain r ∈ (−∞,+∞), the Riemann tensor is
always finite. Moreover, in the interval a ∈ (0, 2M ] there is an horizon, but not a
singularity, and the metric describes the geometry of a regular black hole. For the
case a > 2M there are also no singularities.

For the Ricci tensor instead, we have

−2Rt
t = Rθ

θ = Rφ
φ =

2a2M

(r2 + a2)5/2
(6.14)

Rr
r =

a2
(
3M − 2

√
r2 + a2

)
(r2 + a2)5/2

. (6.15)

At the origin, these components approach a finite limit

−2Rt
t = Rθ

θ = Rφ
φ → 2M

a3
(6.16)

Rr
r →

3M − 2a

a3
(6.17)

while all the components vanish at infinity.



72 Classical Simpson-Visser Black Hole

Lastly, we can consider the Ricci, or curvature, scalar

R =
2a2(3M −

√
r2 + a2)

(r2 + a2)5/2
(6.18)

which again vanishes at infinity, while is finite at the origin

R → 2(3M − a)

a3
. (6.19)

Having an explicit expression for the curvature tensor we can also compute their
contractions

RµνR
µν =

a4
[
4
(√

r2 + a2 − 3M/2
)2

+ (3M)2
]

(r2 + a2)5/2
(6.20)

CαβµνC
αβµν =

4

3(r2 + a2)5/2

[
3M(2r2 − a2) + 2a2

√
r2 + a2

]2
(6.21)

RαβµνR
αβµν = CαβµνC

αβµν + 2RµνR
µν − 1

3
R2 (6.22)

which are all finite, well-behaved and vanish at infinity.

6.3 Source of Simpson-Visser Geometry

For a = 0, the Simpson-Visser Eq. 6.1 metric is just the Schwarzschild metric and
therefore satisfy the vacuum Einstein equations

Rµν = 0. (6.23)

For a ̸= 0, the Simpson-Visser metric does not solve the equation above, but rather
of the full Einstein equations

Rµν −
1

2
Rgµν = 8πGTµν . (6.24)

This means that, starting from the Ricci tensor and scalar, given in Section 6.2,
we can solve the Einstein equations and find the hypothetical source of the gravi-
tational field.

Outside the horizon we can identify

ρ = −T t
t , p∥ = T r

r , p⊥ = T θ
θ = T φ

φ . (6.25)
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Solving the Einstein equations we find

ρ = −a2
(√

r2 + a2 − 4M
)

8πGN (r2 + a2)5/2
(6.26)

p∥ = − a2

8πGN (r2 + a2)2
(6.27)

p⊥ =
a2
(√

r2 + a2 −M
)

8πGN (r2 + a2)5/2
. (6.28)

Within the framework of classical general relativity, it is reasonable to expect
some conditions on the energy-momentum tensor, such as positivity of the energy
density and dominance of the energy density over the pressure (see (Poisson, 2004)
for more details).
We are interested in the null energy condition, which states that the energy density,
measured by any null observer, must be non-negative2. In mathematical terms,
this correspond to the requirment

Tµνp
µpν ≥ 0 (6.29)

where pµ is an arbitrary future-directed null vector.
This condition can be written in a more useful form by decomposing the energy-
momentum tensor in its usual diagonal form Tµν = diag(ρ, p1, p2, p3).
Then, the null energy condition can be expressed as

ρ+ pi ≥ 0, i = 1, 2, 3. (6.30)

Therefore, for the Simpson-Visser metric we need to check ρ+p∥ ≥ 0 and ρ+p⊥ ≥ 0,
which should hold for any r, a, M . From the first condition we find

ρ+ p∥ =
−a2

(√
r2 + a2 − 2M

)
4πG(r2 + a2)5/2

. (6.31)

Outside the horizon we have
√
r2 + a2 > 2M , and we immediately see that ρ+p∥ <

0, therefore we conclude that the null energy condition is not satisfied.

Inside the horizon we need to remember that the role of the t and r coordinates
are interchanged, therefore we have ρ = −T r

r and p∥ = T t
t , while nothing changes

2We can formulate also other energy condtions, but the violatetion of the null condition imply
the violatetion of also the others.
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for the p⊥ component. So, inside the horizon we have

ρ =
a2

8πGN (r2 + a2)2
(6.32)

p∥ =
a2
(√

r2 + a2 − 4M
)

8πGN (r2 + a2)5/2
. (6.33)

For the energy condition we find

ρ+ p∥ =
a2
(√

r2 + a2 − 2M
)

4πG(r2 + a2)5/2
, (6.34)

but, inside the horizon
√
r2 + a2 < 2M , and so again the null energy condition is

not satisfied.
The two results can be combined

ρ+ p∥ = −a2
∣∣√r2 + a2 − 2M

∣∣
4πG(r2 + a2)5/2

(6.35)

from which we see that the null energy condition is violated everywhere, except on
the horizon(s), when present.

So we have seen that the Simpson-Visser metric describes the geometry of a
regular black hole3, but violates all the energy conditions.

6.4 Radial Null Directions

Studying the curvature tensors and invariants we have seen that indeed the Simpson-
Visser geometry does not shows spacetime singularities, for all vales of M and
a ̸= 0.
As already mentioned, the Simpson-Visser metric for a ∈ (0, 2M) describes a reg-
ular black hole. We can see this by studying the causal structure, by looking at
the lightcones and the radial null directions, in order to see if it act as black hole.
This is done by taking the line element of the metric given by Eq. 6.1, setting
dφ = dθ = 0 since we are interested in radial directions, and ds2 = 0 since we are
considering light, which travels on null directions.
The metric as presented in Eq. 6.1 is singular at the horizons. Since it is, like
in Schwarzschild, a coordinate singularity and not a physical one, we can build

3Or a wormhole, since a can take any non-vanishing value.
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a set of coordinates regular in that region. We can define the advanced(ingoing)
Eddington-Finkelstein coordinate

v ≡ t+ r∗, r∗ ≡
∫

dr
1

C(r)
, C(r) = 1− 2M√

r2 + a2
(6.36)

and write the metric in the advanced Eddington-Finkelstein form (we neglect the
angular part)

ds2 = C(r)dv2 − 2dvdr. (6.37)

Next, we define a timelike coordinate t′ as

t′ = v − r (6.38)

and find

ds2 =

(
1− 2M√

r2 + a2

)
dt′2 −

(
1 +

2M√
r2 + a2

)
dr2 − 4M√

r2 + a2
dt′dr. (6.39)

To understand the meaning of this new coordinate, we can study surfaces with
t′ = const. It is easy to see that these surfaces are spacelike, and therefore have a
timelike norm. This means that t′ is a good “time coordinate”, meaning that can
be used to foliate spacetime.

Now we can set ds2 = 0, and dividing everything by dr2 we obtain(
1− 2M√

r2 + a2

)
dt′2

dr2
− 4M√

r2 + a2
dt′

dr
−
(
1 +

2M√
r2 + a2

)
= 0. (6.40)

This can be easily solved for dt′/dr, and we find

dt′

dr
=

2M/
√
r2 + a2 ± 1

1− 2M/
√
r2 + a2

=


−1

1 + 2M/
√
r2 + a2

1− 2M/
√
r2 + a2

(6.41)

Integrating the first solution is immediate, and we get

t′ = −r + const ↔ v = const (6.42)

which corresponds to the radial ingoing null directions.
The radial outgoing null directions are obtained by integrating the second solution.
The actual analytical solution is rather involved and not of our interest, but can
be plotted and we obtain Fig. 6.2.
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r
t′

r = r− r = 0 r = r+

Figure 6.2: Radial null directions for Simpson-Visser spacetime. The red lines are
the outgoing directions, while the blue ones are the ingoing. Intersec-
tions between the two directions give the lightcones.

As we can see, outside the horizon r+ =
√
4M2 − a2, light trajectories can be

both ingoing and outgoing. But once inside the horizon, all trajectories are towards
the origin and, since the conformal factor is negative in the region 0 < r < r+, they
are all characterized by decreasing values of r. There are no physical trajectories
with r = const.
At negative r we have the mirrored configuration. For −r− < r < 0 all the
trajectories are towards the origin.

So, we can conclude that the Simpson-Visser metric, with a ∈ (0, 2M), cor-
rectly describes a spacetime containing a region, enclosed by the horizon, causally
disconnected from the rest of the spacetime.

6.5 Surface Gravity

As we mentioned before, the Simpson-Visser metric features a Killing vector as-
sociated with invariance under time translation. To this Killing vector, we can
associate a quantity called surface gravity, which measures the rapidity in r with
which vanish the norm of the Killing vector.
Let us consider the Killing vector associated with the time-translation invariance,
ξµ = (1, 0, 0, 0). Looking at the metric Eq. 6.1 we can find the norm of this vector
to be

ξµξµ = gµνξ
µξν = C(r) =

(
1− 2M√

r2 + a2

)
. (6.43)

Then we can define the vector

ℓµ ≡ ∂µ

√
|ξµξµ| (6.44)
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and finally

κ ≡
√

|ℓµℓµ|
∣∣∣∣
H

. (6.45)

For the Simpson-Visser metric we have

ℓµ =

(
0,

Mr

(r2 + a2)3/2
√

C(r)
, 0, 0

)
. (6.46)

In order to compute the contraction we need the radial component of the inverse
metric, which simply is grr = C(r), and so we find

ℓµℓ
µ = ℓrℓrg

rr =
M2r2

(r2 + a2)3
. (6.47)

Now we can take the square root and evaluate everything on the horizon

κ± =
Mr

(r2 + a2)3/2

∣∣∣∣
H±

=
±
√
4M2 − a2

8M2
. (6.48)

The two values of surface gravity correspond to the two different horizons. An
interesting feature of the Simpson-Visser spacetime, not shared with other space-
times with more than one horizon(such as Reissner-Nordström ), is that the two
values are equal up to a sign

|κ+| = |κ−|, (6.49)

and therefore also when squared

κ2
+ = κ2

−. (6.50)

This will be extremely important in the discussion about the regularity of states
in the next chapter.
For consistency, we can easily see that taking a = 0 we get the known result for
the Schwarzschild metric, κ = 1/4M .
Knowing the surface gravity we can compute the Hawking temperature

TH =
ℏκ

2πkB
. (6.51)

In the next chapter, we will discuss the regularity and physical meaning of states
in a spacetime curved by the presence of a Simpson-Visser regular black hole.
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7 Quantization in Simpson-Visser
Spacetime

We now have the basic ingredients to study quantum states in a spacetime curved
by the presence of a regular black hole.
Both the construction of the states and the analysis of their regularity will be
performed in close analogy to the one carried on for Schwarzschild and Reissner-
Nordström spacetime in Chapter 4 and Chapter 5.

7.1 Boulware Vacuum

We start with the simplest vacuum state: the Boulware vacuum. As already dis-
cussed, the Boulware vacuum is constructed in order to reproduce the Minkowski
vacuum at infinity. In order to do so, the associated modes are built using the Ed-
dington-Finkelstein coordinates, which approach the Minkowski null coordinates.
The Eddington-Finkelstein coordinates are built using the tortoise radial coordi-
nate r∗, defined as

r∗ =

∫
dr

C(r)

= r + 2M ln

(
r

a
+

√(r
a

)2
+ 1

)
+

4M2

√
4M2 − a2

×

× ln

∣∣∣√4M2 − a2 tanh
(

sinh−1( r
a
)

2

)
− 2M + a

∣∣∣∣∣∣√4M2 − a2 tanh
(

sinh−1( r
a
)

2

)
+ 2M − a

∣∣∣ . (7.1)

Then the Eddington-Finkelstein coordinates are built as usual

u = t− r∗, v = t+ r∗, (7.2)

and the Boulware modes as

exp {−iωu}√
4πω

,
exp {−iωv}√

4πω
. (7.3)
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The general procedure to build a vacuum state is to start with a matter field, in
our case for simplicity a massless scalar, and to expand the field using the modes
written above and a set of ladder operators. Then we can define the vacuum state1

|B⟩ as the state annihilated by the destruction operator.
Now we can compute the expectation value for the energy-momentum tensor in
the Boulware vacuum. We simply use Eq. 4.3 and Eq. 4.4 with the conformal
factor of the Simpson-Visser metric. Expressions are slightly more involved, but
evaluating the derivatives and after some algebra we find

⟨B|Tuu|B⟩ = ⟨B|Tvv|B⟩ =
1

192π

[
− 4M2r2

(r2 + a2)3/2
+

+
4M

(√
r2 + a2 − 2M

)
(a2 − 2r2)

(r2 + a2)5

] (7.4)

⟨B|Tuv|B⟩ =
1

96π

(
1− 2M√

r2 + a2

)
2M(a2 − 2r2)

(r2 + a2)5/2
. (7.5)

We are interested in regularity at the horizons, so in order to study how the ex-
pectation values behave, we need to express them in a set of coordinates regular
there, the Kruskal coordinates. Following the same steps as in Subsection 5.2.1,
regularity means regular when expressed in regular coordinates, then we use the
relation between Eddington-Finkelstein and Kruskal coordinates to find some reg-
ularity conditions. For example, on the outer horizon, corresponding to U+ = 0,
we find

C(r)−2|⟨B|Tuu|B⟩| < ∞ (7.6)

C(r)−1|⟨B|Tuv|B⟩| < ∞ (7.7)

|⟨B|Tvv|B⟩| < ∞. (7.8)

For the (vv) component we do not have any problem. At r+ it evaluates to

⟨B|Tvv|B⟩ = − κ2
+

48π
= − κ2

48π
, (7.9)

which is perfectly finite.
It is interesting to notice that, as already mentioned, in this spacetime κ2

+ = κ2
− ≡

κ2. For this reason, we will no longer distinguish between the κ2
+ and κ2

−.
Also the (uv) component shows no divergences. Indeed, since it is proportional to
the conformal factor, it identically vanishes on the horizons.
Just like the Schwarzschild and Reissner-Nordström spacetime, the problematic

1We stress again that this state cannot be interpreted as the state with no particles due to the
lack of Poincaré invariance.
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condition is the one concerning the (uu) component. At the outer horizon, the term
⟨B|Tuu|B⟩ alone is finite, but not the conformal factor C(r)2, leaving a divergence
in the expectation value for the energy-momentum tensor.

We conclude that the Boulware vacuum is not a regular state. Again, since it
is not regular on the horizon it can be used to describe vacuum polarization of
objects bigger than their Schwarzschild radius.

7.2 Unruh Vacuum

To solve the problem with the (uu) component at the outer horizon we can intro-
duce the Unruh vacuum. It is the state associated with the modes

exp {−iωU±}√
4πω

,
exp {−iωv}√

4πω
. (7.10)

It shares the same ingoing mode with the Boulware state, but the outgoing mode
is built using the Kruskal coordinate

U± = ∓ 1

κ+

e−κ±u. (7.11)

For the moment let us consider the state built with the Kruskal coordinate for r+.
Since the ingoing mode is the same as the Boulware ingoing mode, the “ingoing”
sector of the Unruh vacuum behaves as the Boulware vacuum. Therefore, they
have the same expectation value

⟨U+|Tvv|U+⟩ = ⟨B|Tvv|B⟩

=
1

192π

[
− 4M2r2

(r2 + a2)3/2
+

+
4M

(√
r2 + a2 − 2M

)
(a2 − 2r2)

(r2 + a2)5

]
.

(7.12)

Using Eq. 3.40 we find also the other components. The (uv) component does not
get an additional term, while for the (uu) component we only need to compute,
as we did before, the functional which relates the two sets of coordinates, in this
case, the Eddington-Finkelstein u and Kruskal U+

⟨U+|Tuu|U+⟩ = ⟨B|Tuu|B⟩+
1

24π
FU+(u). (7.13)



82 Quantization in Simpson-Visser Spacetime

From the previous chapters, we already know that the additional term is propor-
tional to the surface gravity squared

FU+(u) =
1

2
κ2
+ =

1

2
κ2 (7.14)

and we finally have

⟨U+|Tuu|U+⟩ =
κ2

48π
+

1

192π

[
− 4M2r2

(r2 + a2)3/2
+

+
4M

(√
r2 + a2 − 2M

)
(a2 − 2r2)

(r2 + a2)5

] (7.15)

⟨U|Tuv|U⟩ = 1

96π

(
1− 2M√

r2 + a2

)
2M(a2 − 2r2)

(r2 + a2)5/2
(7.16)

⟨U+|Tvv|U+⟩ =
1

192π

[
− 4M2r2

(r2 + a2)3/2
+

+
4M

(√
r2 + a2 − 2M

)
(a2 − 2r2)

(r2 + a2)5

]
.

(7.17)

To check the regularity of the Unruh vacuum we need the check the usual con-
ditions, namely require the regularity of the components when expressed in terms
of regular coordinates. Since the (uv) and (vv) components are the same as the
Boulware vacuum, and for these components the regularity conditions are satis-
fied, we can already assert that also for the Unruh vacuum those components are
regular. We only need to check the (uu) component.
In particular, when evaluated at the outer horizon we have

⟨U+|Tuu|U+⟩
∣∣∣∣
r+

=
κ2
+

48π
− κ2

+

48π
= 0. (7.18)

So we have found that, on the outer horizon, the expectation value of the (uu)
component of the energy-momentum tensor in Eddington-Finkelstein coordinates
vanishes, making the regularity condition satisfied.
The first term comes from the relation between the coordinates, while the second
is the vacuum polarization term (expectation value for the Boulware vacuum).

Since we have also a past horizon, we can check regularity there. When evaluated
at the past horizon, we find

⟨U+|Tuu|U+⟩
∣∣∣∣
r−

=
κ2
+

48π
− κ2

−

48π
= 0. (7.19)
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In the last expression, the first term comes from the relation between Edding-
ton-Finkelstein and Kruskal coordinates, proportional to κ2

+, while the second one
comes from the vacuum polarization evaluated at r−.
Since the surface gravities for the Simpson-Visser spacetime are equal up to a
sign, ⟨U|Tuu|U⟩ identically vanishes, and so the condition on the (uu) component
is satisfied.
However, the Unruh vacuum still shows singularities. Indeed, when we consider
the past horizon, the regularity conditions are different.
The past horizon is described, in Kruskal coordinates by V = 0, so looking at
Eq. 4.14, we need

⟨U+|Tvv|U+⟩
C2(r)

< +∞. (7.20)

At r−, ⟨U+|Tvv|U+⟩ is finite, but the conformal factor diverge.

Therefore we conclude that, also in the Simpson-Visser spacetime, the Unruh
vacuum is not regular.

7.3 Israel-Hartle-Hawking Vacuum

From the previous analysis is clear that, in order to build a state regular every-
where, we should add a correction term also to the (vv) component. This is what
happens when the state used to compute the expectation value is the Israel-Hartle-
Hawking state.

The Israel-Hartle-Hawking vacuum state is the state associated with a set of
modes built with both Kruskal coordinates

exp {−iωU±}√
4πω

,
exp {−iωV±}√

4πω
(7.21)

where as usual

V± = ± 1

κ+

eκ±v. (7.22)

Let us assume to build the vacuum with κ+.
Since we already know the vacuum polarization terms corresponding to the ex-
pectation values for the Boulware vacuum, the expectation values for the Israel-
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Hartle-Hawking vacuum can be computed using Eq. 3.40

⟨H+|Tuu|H+⟩ = ⟨B|Tuu|B⟩+
1

24π
FU+(u) (7.23)

⟨H+|Tuv|H+⟩ = ⟨B|Tuv|B⟩ (7.24)

⟨H+|Tvv|H+⟩ = ⟨B|Tuu|B⟩+
1

24π
FV+(v). (7.25)

Computing the additional terms for the (uu) and (vv) components is immediate.
We already know the one for the (uu) component, since it is the same as for the
Unruh vacuum

FU+(u) =
1

2
κ2
+ =

1

2
κ2. (7.26)

Given that the relation between U and u is the same as between V and v, we also
have

FV+(v) =
1

2
κ2
+ =

1

2
κ2. (7.27)

Therefore, the expectation value of the energy-momentum tensor in the Israel-
Hartle-Hawking state is

⟨H+|Tuu|H+⟩ =
κ2

48π
+

1

192π

[
− 4M2r2

(r2 + a2)3/2
+

+
4M

(√
r2 + a2 − 2M

)
(a2 − 2r2)

(r2 + a2)5

] (7.28)

⟨H+|Tuv|H+⟩ =
1

96π

(
1− 2M√

r2 + a2

)
2M(a2 − 2r2)

(r2 + a2)5/2
(7.29)

⟨H+|Tvv|H+⟩ =
κ2

48π
+

1

192π

[
− 4M2r2

(r2 + a2)3/2
+

+
4M

(√
r2 + a2 − 2M

)
(a2 − 2r2)

(r2 + a2)5

]
.

(7.30)

Let us start the regularity analysis on the outer horizon U+ = 0. Regularity
conditions can be expressed as

⟨H+|Tuu|H+⟩
C(r)2

< +∞ (7.31)

⟨H+|Tuv|H+⟩
C(r)

< +∞ (7.32)

⟨H+|Tvv|H+⟩ < +∞. (7.33)
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At the horizon, the components evaluates to

⟨H+|Tuu|H+⟩
∣∣∣∣
r+

=
κ2
+

48π
− κ2

+

48π
= 0 (7.34)

⟨H+|Tuv|H+⟩
∣∣∣∣
r+

= 0 (7.35)

⟨H+|Tvv|H+⟩
∣∣∣∣
r+

=
κ2
+

48π
− κ2

+

48π
= 0. (7.36)

At the outer horizon, all the components of the expectation value of the energy-
momentum vanish and therefore satisfy the regularity conditions.

On the past horizon, we have a similar result. The regularity conditions in this
case are

⟨H+|Tuu|H+⟩ < +∞ (7.37)

⟨H+|Tuv|H+⟩
C(r)

< +∞ (7.38)

⟨H+|Tvv|H+⟩
C2(r)

< +∞ (7.39)

while the components evaluated at r− are

⟨H+|Tuu|H+⟩
∣∣∣∣
r−

=
κ2
+

48π
− κ2

−

48π
= 0 (7.40)

⟨H+|Tuv|H+⟩
∣∣∣∣
r−

= 0 (7.41)

⟨H+|Tvv|H+⟩
∣∣∣∣
r−

=
κ2
+

48π
− κ2

−

48π
= 0 (7.42)

For the same reasons as above, the regularity conditions are now satisfied, making
the Israel-Hartle-Hawking state regular everywhere in the Simpson-Visser space-
time.
This is a different scenario than the Reissner-Nordström spacetime. In the Reiss-
ner-Nordström spacetime we also have two horizons, but the values of the surface
gravities are different, so we do not have any cancellation between κ2

+ and κ2
−.

This is not true in the Simpson-Visser spacetime, and this particular property is
the one responsible for the regularity of the Israel-Hartle-Hawking state .

A similar analysis can also performed by constructing the vacuum state with
κ−, obtaining the state |H−⟩, and again we find regularity everywhere, thanks to
κ2
+ = κ2

−.
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A Milne Spacetime

The Milne spacetime is a particular case of the much more general Robertson-
Walker spacetimes.
The general Robertson-Walker line element can be written as

ds2 = dt2 − a2(t)
3∑

i,j=1

hijdx
idxj (A.1)

where

hijdx
idxj = (1−Kr2)−1dr2 + r2(dθ2 + sin2 θdφ2) (A.2)

= dχ2 + f 2(χ)(dθ2 + sin2 θdφ2) (A.3)

and

f(χ) = r =


sinχ, 0 ≤ χ ≤ 2π, K = +1
χ, 0 ≤ χ ≤ ∞, K = 0

sinhχ, 0 ≤ χ ≤ ∞, K = −1.
(A.4)

The spacetime is called hyperbolic, flat or closed depending on the value of K,
respectively K = −1, 0,+1.

The Milne spacetime is the Robertson-Walker spacetime with the choice a(t) = t.
The resulting four-dimensional spacetime, as well as its two-dimensional counter-
part, are unconventional coordinatizations of flat spacetime, in a similar way to
the Rindler spacetime.
The line element for the Milne spacetime reads1

ds2 = dt2 − b2t2dx2

= e2bη(dη2 − dx2) (A.5)

where |t| = b−1ebη, b is a constant and η is defined by

η =

∫ t

dt′a−1(t′). (A.6)

1The line element for the Rindler spacetime is very similar, but in the Rindler case the expo-
nential contains the space-like coordinate x instead of the time-like η.
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We can introduce a new set of coordinates x± defined as

x+ = b−1ebη cosh bη, x− = b−1ebη sinh bη (A.7)

and the line element Eq. A.5 reduces to

ds2 = (dx+)2 − (dx−)2 (A.8)

which is the line element of flat Minkowski spacetime.
Moreover, if we introduce a set of null coordinates

u = η − x, v = η + x (A.9)

we immediately find
ds2 = eb(u+v)dudv. (A.10)

The conformal factor for the metric in double-null form is the same we used to fix
a+ b = 0 in Section 3.22.

2Previously we used x± as null coordinates, but the form of the conformal factor is the same.
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Conclusion

We now have all the ingredients to draw some conclusions.
We started with the simple Schwarzschild spacetime. The analysis showed us
that to build a regular quantum state, the modes should be built using regular
coordinates. Indeed, the Boulware vacuum, built with both Eddington-Finkel-
stein null coordinates, is found to be divergent on both past and future horizons.
Nonetheless, since this state approaches the Minkowski vacuum, we were able to
understand the physical meaning of this state, i.e. the vacuum state which de-
scribes the vacuum polarization of a static star.
Introducing one of the Kruskal coordinates we find regularity on one horizon. In
particular, the Unruh vacuum is defined with respect to the Kruskal U . This state
is found to be regular on the future horizon U = 0, but not on the past V = 0.
This is because the introduction of the Kruskal coordinates adds a “correction”
terms only to the (uu) component of the energy-momentum tensor, while the (vv)
component, which is the same as for the Boulware vacuum, still diverge.
This suggests that, in order to build a state regular everywhere we should intro-
duce correctional terms also to the (vv) component. This is precisely what happens
with the Israel-Hartle-Hawking vacuum. It is built with respect to both Kruskal
coordinates, which are regular everywhere, and therefore the state is regular ev-
erywhere.

The same cannot be said for the Reissner-Nordström spacetime. While the
Boulware vacuum is still singular, the first difference emerges when studying the
Unruh vacuum.
Indeed, in this spacetime we have two horizons. For each horizon, we can define a
set of Kruskal coordinates that are regular on that horizon but not on the other.
And we find the same thing regarding the regularity of the Unruh vacuum.
We can build the Unruh vacuum, for example, with coordinates regular on the
event horizon. We will find the state to be regular on the event horizon but not
on the other horizons. The opposite happens when we build the state with coor-
dinates regular on the inner horizon.
From a mathematical point of view, the singularity is due to the non-cancellation
between the vacuum polarization term and the term coming from the transfor-
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mation between the two coordinate systems, and this is because of the different
values of the surface gravity.
For this reason, also the Israel-Hartle-Hawking state will not be regular every-
where. We can make the state regular on both U+ = 0 and V+ = 0, but not on
U− = 0 and V− = 0, and viceversa.

With this in mind, it is interesting to study the Simpson-Visser spacetime. This
regular metric presents some elements of the Reissner-Nordström spacetime, such
as two horizons and a somehow similar causal structure, but also of the Schwarz-
schild spacetime, like the unique value for the surface gravity. In particular, this
last property will ensure the existence of a regular state.
Performing the regularity analysis we find that the Boulware vacuum is not regular.
The Unruh vacuum can be built to be regular on the outer horizon, but will diverge
on the inner horizon. This is because the Unruih vacuum is built with only one
Kruskal coordinate. The term coming from the transformation will cancel out the
vacuum polarization term.
To solve this we introduced the Israel-Hartle-Hawking vacuum, which is built with
both Kruskal coordinates. The transformation to these coordinates will introduce
correctional terms to both the (uu) and (vv) components, ensuring regularity
everywhere. The regularity is achieved thanks to the same value of the squared
surface gravity.
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