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Introduction

The last two decades have been characterized by the massive spread of new cutting-edge
technologies related to the world of quantum computation and quantum information.
Their common feature is the exploitation of the new paradigm provided by quantum
mechanics and its, nowadays well-known, principles both from a software and a hardware
points of view [27]. Even without exploring the enormous complexity of the hardware
facilities of a quantum processor, known as QPU (Quantum Processing Unit), in detail,
what can be said is that plenty of processors have been developed according to the most
disparate technological benchmarks, from Josephson junctions [37] to atomic platforms
[17].
From a theoretical point of view, since the second half of the twentieth century the
scientific literature counts a limitless number of papers which helpfully paved the way to
the development of quantum algorithms or the improvement of the ones already existing.
Among the endless number of algorithms, a special class of them has become rather
important due to the parallel development of machine learning [28] [29]: the optimization
algorithms [12]. They are not, in principle, quantum algorithms, because they are not
based on quantum mechanical principles. However, they acquired a fundamental role
in modern hybrid quantum-classical algorithms since they are the crux which allows a
sort of fusion and connection between current powerful classical computers and the noisy
quantum computers, known as NISQ (Noisy Intermediate-Scale Quantum) devices. One
of the hybrid algorithm which gained a lot of attention and attracted the curiosity and the
efforts of several researchers during the last decade, is the QAOA (Quantum Approximate
Optimization Algorithm) [10]. It is basically an optimization algorithm aimed at finding
the minimum of a given cost function by means of a gate-based parameterized quantum
circuit, whose role is to prepare the quantum state of a complex system, and a classical
optimization schedule whose role is, instead, to locate the optimal parameters on the cost
function, also called energy, landscape, exploiting its power to solve variational problems
on that system. The main application, for which QAOA has been exploited the most, is
the ground state preparation of quantum many body systems, such as the very famous
Ising model [13]. The QAOA has shown a lot of potentialities in this sense, and we
expect that QAOA and other possible hybrid algorithms would play a crucial role in the
transition phase from a fully classical computation to a powerful fault tolerant quantum
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computation. Nobody knows how long this transition will be, but for sure it won’t be
short and the development of ideal quantum processors is far to be completed. As a
consequence, before we get endowed with a massive computational power in our hands,
we must settle with the employment of hybrid algorithms, which, however, are deemed
very performative for some specific tasks.
The idea behind this thesis project is to test and evaluate several optimization schedules
which have been developed and tailored for the QAOA with the purpose of improving and
speeding-up the algorithm. As announced earlier, quantum many body theory and its
models represents a good arena within which to test different routines for the QAOA since
the latter has been devised with the intention of facilitating the preparation of quantum
many body states. We then focused our attention to the Ising model with transverse field
which we deem a very good candidate model for this scope. More specifically, we wish to
clarify which optimization routines are better than others from a time management and
solution quality points of view and how can they be possibly combined together in further
analysis. It is worth to underline that we did not make use of a quantum processor,
but we simulated the QAOA algorithm on a classical device. It is too early to have
the possibility to physically apply the QAOA on a real quantum device, because of the
issues given by the noisy behavior of the latter and that’s why an overwhelming majority
of the studies present in the literature have been performed with classical simulations.
Nevertheless, simulations are still fundamental to understand how the algorithm works
and how will it be possible to eventually apply it, one day, on a quantum computer.
The thesis is organized and structured as follows:
Chapter 1 provides an introduction to digital quantum computation and presents the
basic elements to fully understand quantum algorithms;
Chapter 2 reports a state-of-the-art-based explanation of the QAOA and the relevant
optimization routines already devised and tailored with the scope of constructing the
ground state of many body models. Many of them have been tested on a classical
problem, namely the MaxCut [41], which is also described in detail, slightly different
from the Ising one. That’s another reason which led us to apply these techniques on a
more relevant model from a physical point of view;
Chapter 3 provides a mathematical and physical explanation of the various peculiarities
of the XY chain [13], of which the Ising with transverse field is a special case, highlighting
all the elements needed to understand how the QAOA can be actually applied on it. A
deepening on the Ising with transverse field itself is provided in addition at the end of
the chapter;
Chapter 4 is finally dedicated to show the outcomes of our simulations and discuss them
exhaustively and coherently.

11



Chapter 1

Digital Quantum Computation

Quantum computation and information can be arguably defined as the study of the infor-
mation processing tasks which can be achieved exploiting quantum mechanical systems
[27]. The origins of this outstanding computational framework date back to the early
twentieth century with the invention of quantum mechanics. This fascinating theory
drastically changed the way we describe the world around us and this led to a succession
of scientific discoveries. One of the most important of them, for the purposes of building
up a quantum processor, was the development of an atom trapping technique capable to
isolate a single atom and allow us to probe its quantum behavior.
Nowadays, several quantum processors (called QPUs) are available for quantum simu-
lation purposes. Nevertheless, current QPUs are not still completely reliable, they are
noisy and cannot be used to perform complicated computational tasks.
This chapter is structured as follows: in the first section we present a brief review of
the main postulates of quantum mechanics; in section 2 we introduce the qubit, i.e. the
basic unit of quantum computation, and its features; in section 3 we start talking about
quantum circuit, listing all the quantum logic gates and how they work; in section 4 we
introduce the concept of measurement applied to quantum bits; in section 5 we provide a
complete proof of the universality of single qubit gates and CNOTs and the possibility to
approximate every unitary transformation with a small set of gates; finally, in section 6,
we delve into the quantum simulation algorithm from a theoretical point of view together
with an illustrative example.

1.1 Postulates of quantum mechanics

In order to fully understand the basic concepts of quantum computing and for the sake
of clarity, it is reasonable to briefly recap the postulates of quantum mechanics on which
the whole mathematical and physical framework of quantum computation relies.
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State space

The first postulate fixes the mathematical space we use to describe quantum mechanical
systems, known as the Hilbert space. It is a complex vector space associated to any
physical system whose dimension, which depends on the system we’re dealing with, may
vary, in principle, within two and infinity.

Postulate. The state of the system is a described by a unit vector |ψ⟩ belonging to the
Hilbert space.

The state |ψ⟩ has to be intended as an equivalence class of vectors since the underlying
physical state is the same regardless possible overall phases like eiα|ψ⟩, which can be
always neglected.
Since the Hilbert space H is a vector space, one can always identify a basis of vectors
which allows to write any possible other state as a linear combination of them. For a
finite dimensional Hilbert space, a generic state can be written as:

|ψ⟩ =
dim(H)∑
i=1

αi|i⟩, (1.1)

where the coefficients αi are complex numbers. If at least two coefficients αi in the
previous equation are different from zero, the system is said to be in a superposition of
the basis states.

Observables

In quantum mechanics, an observable is defined as a quantity about which we can get
information from the system. Examples of typical observables are the position, the mo-
mentum or the energy.
In this mathematical framework, observables are associated with self-adjoint (or hermi-
tian) operators, which can be represented by matrices of dimension dim(H) × dim(H)
and act linearly on vector states.
Each operator A can be decomposed as a sum of the form:

A =

dim(H)∑
i=1

ai|ai⟩⟨ai| (1.2)

where the vectors |ai⟩ are called eigenvectors and the scalars ai are said, instead, eigen-
values. Applying an operator to one of its eigenvectors results in the same eigenvector
multiplied by a numerical factor which is, indeed, the corresponding eigenvalue:

A|ai⟩ = ai|ai⟩. (1.3)

Moreover, the eigenvalues are real numbers since the operator is hermitian and the set
of eigenvectors is, in turn, a basis of the Hilbert space.
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Dynamics

Now we may ask ourselves how the state of a system |ψ⟩ changes with time. Quantum
mechanics postulates that:

Postulate. the evolution of an isolated physical system is described by a unitary trans-
formation such that the state of the system at the final time, say, t2 is related to the state
at the initial time t1 by a unitary operator which depends on t1 and t2:

|ψ(t2)⟩ = U(t1, t2)|ψ(t1)⟩. (1.4)

Furthermore, the inverse evolution is described by the hermitian conjugate of the
unitary:

|ψ(t1)⟩ = U †(t1, t2)|ψ(t2)⟩. (1.5)

We’ll refer to U(t1, t2) as the evolution operator. The mathematical form of the unitary
U can be recovered leveraging the equation of motion of quantum mechanical systems,
that is to say, the Schrödinger’s equation

iℏ
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ (1.6)

where H is the hamiltonian of the system and, since it is an hermitian operator, can be
written as

H =
∑
E

E|E⟩⟨E|. (1.7)

We’ll henceforth set ℏ = 1. The states labeled with |E⟩ are the energy eigenvectors and
the scalars E are their corresponding eigenvalues.
Solving the Schrödinger’s equation one gets

U(t1, t2) = e−iH(t2−t1) (1.8)

such that
|ψ(t2)⟩ = e−iH(t2−t1)|ψ(t1)⟩. (1.9)

A remarkable point to stress is that any unitary operator one may think of can be always
written an as imaginary exponential of a given hamiltonian.

Measurements

A fundamental milestone of quantum mechanics is the concept of measurement, which
is based on two main cornerstones: the probabilistic nature of the measurement action
on physical systems, and its destructive effect on the quantum state of the system. The
former says that, when we measure a given observable on our system, we can only predict
the probabilities of each possible outcome since a clear information about which outcome
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is going to occur is not directly accessible. The latter is pointing out that the action
of measurement itself disturbs the system and causes a variation of its quantum state
(unless the very particular case where the state of the system just before the measurement
was already an eigenvector of the operator associated to the observable).
What has been said so far can be mathematically summarized in the following statement:

Postulate. Quantum measurements are described by a collection of operators Mm called
measurement operators. The subscript m indexes the possible outcomes that may emerge
in the experiment.
If the initial state of the system is |ψ⟩, the probability of recovering the outcome m is
given by:

p(m) = ⟨ψ|M †
mMm|ψ⟩ (1.10)

and the post-measurement state will be then

Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩
. (1.11)

The change of the quantum state of the system after the measurement procedure is
also known as collapse. The measurement operators must obey the completeness relation
which states that ∑

m

M †
mMm = I (1.12)

and can be eventually rephrased by saying that the probabilities must sum to one. In
fact, by plugging eq. (1.10) into eq. (1.12) one gets∑

m

⟨ψ|M †
mMm|ψ⟩ =

∑
m

p(m) = 1. (1.13)

The evaluation of the outcomes probabilities is somewhat easy to compute. For the
sake of clarity, consider an observable A we wish to measure on a state |ψ⟩. Since A
is hermitian, the set of its eigenvectors form a complete basis of the Hilbert space, as
remarked in the previous paragraph, and the state |ψ⟩ can be therefore expressed as a
linear combination of them:

|ψ⟩ =
∑
m

cm|ψm⟩. (1.14)

From eq. (1.2), called the spectral decomposition formula, the operator A can be rewritten
as

A =
∑
m

λm|ψm⟩⟨ψm| (1.15)

where λm is the set of A’s eigenvalues and |ψm⟩ is its set of eigenstates. The probability
of the outcome λm is then

p(λm) = ⟨ψ|P†
mPm|ψ⟩, (1.16)
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where we defined Pm as the projector onto the state |ψm⟩,

Pm = |ψm⟩⟨ψm|. (1.17)

It is straightforward to compute the expression in eq. (1.16) by replacing |ψ⟩ with its
decomposition in eq. (1.14) and conclude that

p(λm) = c2m (1.18)

which is simply the coefficient of the decomposition of |ψ⟩ associated to the eigenvector
|ψm⟩. The state of the system is said to be collapsed into the eigenvector |ψm⟩.

Composite systems

Once providing a complete description of the postulates of quantum mechanics regarding
single systems, it is natural to move a step forward and ask ourselves what is the proper
way to describe quantum systems which are made out of two or more subsystems. In
particular, we would like to focus on how the state space of the composite system is built
up starting from the state spaces of its components. The very last postulate presented
in this overview states the following:

Postulate. the state space of a composite system is the tensor product of the state spaces
of the component physical systems. Furthermore, if the components are labeled by i =
1...n and the i-th subsystem is placed in the state |ψi⟩, the overall state can be written as

|ψtot⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩. (1.19)

It is worth to highlight two crucial inferences emerging from this description:

• The dimension of the Hilbert space of a composite system is given by the product of
the dimensions of the Hilbert spaces of the components. As a consequence, dimH
scales exponentially in the number of subsystems. For instance, having N physical
systems whose state space dimensionality is M each, results in the total dimension
of the whole Hilbert space to be MN ;

• The expression in eq. (1.19) represent a general way to write the state of a compos-
ite system. This equation holds if and only if for each subsystem one can identify a
”sub-state”, previously called |ψi⟩. In this case the state of the whole system is said
to be a product state. Whether the aforementioned condition cannot be satisfied, it
is impossible to express the overall state as a product state. The composite system
is, hence, in an entangled state. Entanglement plays a crucial role for what the
design of quantum algorithms is concerned as we’ll see later on in this chapter.
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1.2 The Qubit

The basic unit of classical computation and information is the bit, which can assume two
possible values, namely 0 and 1. Analogously, quantum computation theory is built upon
the quantum counterpart of the classical bit, called the qubit (quantum bit). There is
an enormous difference between the bit and the qubit since the latter is a mathematical
object which obeys the laws of quantum mechanics.

1.2.1 Single qubit states

We can identify a state space of the qubit, consisting in a two-dimensional Hilbert space,
and define an orthonormal basis on it, formed by the states denoted as |0⟩ and |1⟩.
Hence, the state of a qubit can actually be any linear superposition of the basis states
and be written as:

|ψ⟩ = α|0⟩+ β|1⟩ (1.20)

where the coefficients α and β are, in principle, complex numbers. The set {|0⟩, |1⟩} is
often referred to as the computational basis. In addition, since the vector state should
be normalized to length 1, the coefficients must satisfy the following constraint:

|α|2 + |β|2 = 1. (1.21)

Another useful way to denote the computational basis states is their vector expression

|0⟩ =
(
1
0

)
(1.22)

|1⟩ =
(
0
1

)
(1.23)

Quantum processors are capable to measure a single observable on a qubit, specifically
the Pauli operator σz whose matrix form is

σz =

(
1 0
0 −1

)
(1.24)

and its eigenvectors are exactly the states |0⟩ and |1⟩. As a consequence, the qubit state
collapses onto one of the computational basis state after a measurement and the proba-
bility of collapse on either |0⟩ or |1⟩ is given by the squared modulus of the coefficients
α and β, respectively.
Because |α|2 + |β|2 = 1, we may rewrite eq. (1.20) in the following form:

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

(1.25)
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Figure 1.1: Bloch sphere representing the state of a qubit. The pole states are the ones
belonging to the computational basis, namely |0⟩ and |1⟩. The state |ψ⟩ (called v here)
is a vector of unit length on this sphere. The angles θ and φ in eq. (1.26) are also
displayed. Moreover, the states |+⟩, |−⟩, |i+⟩ and |i−⟩ are highlighted as they are of
massive interest being the eigenvectors of the Pauli matrices σx and σy

and, since eiγ is an overall phase, for what we have said in the previous section, we can
drop it and the effective state of the qubit results in

|ψ⟩ =
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)
. (1.26)

The last expression suggest a very neat way to show the quantum state of a qubit by
displaying it on the so called Bloch sphere (fig. 1.1). The angles θ and φ define a point
on the unit radius sphere which represents the state of the qubit. The poles of the sphere
are the computational basis states. Furthermore, fig. 1.1 emphasizes the four pole states
on the x and y dimensions, namely |+⟩, |−⟩, |i+⟩ and |i−⟩. As we’ll show in the next
section, they turn out to be the eigenvectors of the Pauli operators σx and σy, whose
matrix expression is, for the sake of completeness, given by:

σx =

(
0 1
1 0

)
(1.27)

σy =

(
0 −i
i 0

)
. (1.28)

Unfortunately, despite the Bloch sphere representation is very simple and clean for a sin-
gle qubit state, it does not exist a generalization to multiple qubit states which preserves
this level of clarity.
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1.2.2 Multiple qubit states

As mentioned in the previous section, while discussing about the exponential scaling of
the dimension of the Hilbert space of a composite system, the basis states of the whole
Hilbert space are built up as the tensor product between any possible n-tuple of the basis
elements of the subsystems’ Hilbert spaces. For an instance system of two qubits, we
denote the basis states as {|00⟩, |01⟩, |10⟩, |11⟩}, and the dimension of the Hilbert space
is indeed 22 = 4. Generalizing to an N qubits system, the Hilbert space dimensionality
is 2N and the computational basis is then {|00...0⟩ = |0⟩⊗N , ..., |11...1⟩ = |1⟩⊗N}. It
is straightforward to notice that if the qubits were approximately a few hundreds, the
number of basis states would be surprisingly larger than the estimated number of atoms in
the observable universe. This should be taken as a sort of intimation of the computational
power we would be endowed if we potentially could have access to an ideal quantum
processor.
Now let’s come back to our two qubit system. The general form of its state is the
following:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ (1.29)

where the usual normalization condition on the coefficients is applied.
For what measurements is concerned, because this is a multi-qubit system, we may decide
to measure either all the qubits or just a subset of them. In the former case, the system
is going to collapse on a computational basis state, in analogy with the single qubit case
discussed previously. On the contrary, if we decide to measure only one of the qubits,
say the first, we may get 0 with probability |α00|2 + |α01|2 and the post-measurement
state would be

|ψ⟩PM =
α00|00⟩+ α01|01⟩√
|α00|2 + |α01|

, (1.30)

or we may get 1 with probability |α10|2 + |α11|2 leaving the post-measurement state

|ψ⟩PM =
α10|10⟩+ α11|11⟩√
|α10|2 + |α11|

. (1.31)

Separable states vs entangled states

As discussed at the very end of section 1.1, quantum states can be divided into separable
(or product) states and entangled state. Let’s apply this distinction to the case of qubits.
Separable states can be always written as a tensor product between single qubit states.
For instance the balanced superposition of the basis states, i.e. the state

1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) (1.32)
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is separable since it can be rewritten as(
|0⟩+ |1⟩√

2

)
1

⊗
(
|0⟩+ |1⟩√

2

)
2

= |+⟩1 ⊗ |+⟩2. (1.33)

The subscript indicates the qubit the state refers to. In contrast, the following state is
entangled since there is no way to write it as a tensor product:

|ψ+⟩ = |00⟩+ |11⟩√
2

. (1.34)

This is one of the four Bell states. The other three are shown below:

|ψ−⟩ = |00⟩ − |11⟩√
2

|ϕ+⟩ = |01⟩+ |10⟩√
2

|ϕ−⟩ = |01⟩ − |10⟩√
2

. (1.35)

Other examples of entangled states are the |GHZ⟩, whose expression is:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) , (1.36)

and the |W ⟩ state which is:

|W ⟩ = 1√
3
(|100⟩+ |010⟩+ |001⟩) . (1.37)

The two states above apparently look similar since it is not hard to recognize that they’re
both entangled state. Nonetheless, they carry a different amount of entanglement. In
fact, by measuring only one of the qubit of the |GHZ⟩ state, the entanglement content of
the state is immediately lost since the system collapses to either |000⟩, with probability
of 1/2, or |111⟩, again with probability 1/2. In the latter state, instead, the measure-
ment of one of the qubits, say the first for instance, does not eliminate entanglement
with probability of 2/3. The possible post-measurement states are, in fact, |100⟩ with
probability of 1/3 and |0⟩ ⊗

(
|01⟩+|10⟩√

2

)
with probability of 2/3. In the first case, entan-

glement is lost completely while, in the second case, the state of the second and third
qubits is still entangled.
The main feature for which entangled states can be distinguished from separable ones
is that measurement outcomes are correlated. Roughly speaking, if we measure the first
qubit in computational basis and we get a certain outcome, we’ll also know the outcome
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we would get if we measured the second one even without performing such a measure-
ment. As an example, consider the Bell state |ψ+⟩. If we measure qubit number 1 and
we get 0, which by the way occurs with a probability of a half, the post-measurement
state will be |00⟩ (which is, instead, separable), and the second qubit will also be in the
state |0⟩. On the contrary, if we got 1 the system would collapse to the state |11⟩ and the
second qubit will also be in |1⟩. This fascinating characteristic of entangled states gave
rise to the famous EPR paradox and it is the foundation of many quantum information
protocols such as the superdense coding and the quantum teleportation [27].

1.3 Quantum gates

Once defined the basic unit of quantum computation, i.e. the qubit, it’s time to delve
into the construction of real quantum circuits and analyze the main elements which
characterize them. As a classical circuit is based on bits, wires and logic gates acting
on the bits themselves, a quantum circuit is based on qubits, wires and quantum logic
gates.

1.3.1 Single qubit gates

Let’s start our journey by listing the simplest gates a quantum circuit may be made out
of, i.e. those gates which act on a single qubit.

X gate

The X gate is the quantum equivalent of a classical NOT and it is, in fact, also known
as quantum NOT or bit-flip. It acts on a qubit by swapping the state |0⟩ with the state
|1⟩ and viceversa. Its matrix form is:

X =

(
0 1
1 0

)
X|0⟩ = |1⟩
X|1⟩ = |0⟩ (1.38)

The eigenstates of the X gate are the states |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

with eigenvalues
+1 and −1, respectively.
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Z gate

The Z gate, also known as phase-flip, adds a phase of θ = π only in front of the state |1⟩
and its matrix form is shown below:

Z =

(
1 0
0 −1

)
Z|0⟩ = |0⟩

Z|1⟩ = −|1⟩ (1.39)

Its eigenvectors are the computational basis states |0⟩ and |1⟩ with eigenvalues +1 and
−1, respectively, as one can straightforwardly notice from eq. (1.39).

Y gate

The Y gate is known as bit-phase-flip and can be seen as a sort of combination of the X
and Z gates. This gate not only swaps the computational basis states but it also adds
an imaginary phase. The matrix form of the Y gate is, in fact:

Y =

(
0 −i
i 0

)
Y |0⟩ = i|1⟩

Y |1⟩ = −i|0⟩ (1.40)

The eigenstates of the Y gate are the states called |i±⟩ in fig. 1.1 hence |i+⟩ = |0⟩+i|1⟩√
2

and |i−⟩ = |0⟩−i|1⟩√
2

.

It is notable to remark that the X,Y and Z gates correspond to the Pauli matrices σx, σy

and σz. As a consequence, they satisfy the well-known relations involving Pauli matrices,
i.e.

σ2
x = σ2

y = σ2
z = −iσxσyσz = I
[σi, σj] = 2iϵijkσk{

σi, σj
}
= 2δijI (1.41)

Hadamard gate

The Hadamard gate, called H, plays a fundamental role in quantum algorithms since it
allows to put a set of qubits in the balanced superposition state displayed in eq. (1.32)
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for two qubits. Before check how this is possible, let’s look at the matrix form of this
gate:

H =
1√
2

(
1 1
1 −1

)
H|0⟩ = |+⟩ = |0⟩+ |1⟩√

2

H|1⟩ = |−⟩ = |0⟩ − |1⟩√
2

(1.42)

The Hadamard transforms the state |0⟩ into a superposition of |0⟩ and |1⟩ and the state
|1⟩ into an equivalent phase-flipped superposition. Viceversa,

H|+⟩ = |0⟩ = |+⟩+ |−⟩√
2

H|−⟩ = |1⟩ = |+⟩ − |−⟩√
2

. (1.43)

This gate, which is therefore a change-of-basis operator, can also be written as H = X+Z√
2
,

squares to identity and its eigenvectors are

|H+⟩ = cos
(π
8

)
|0⟩+ sin

(π
8

)
|1⟩

|H−⟩ = − sin
(π
8

)
|0⟩+ cos

(π
8

)
|1⟩ (1.44)

with eigenvalues ±1 for |H+⟩ and |H−⟩, respectively.
As mentioned above, only the Hadamard gate is needed to create a balanced superpo-
sition state. In fact, starting with N qubits in the product state |0⟩⊗N = |0...0⟩, and
applying the Hadamard gate on each of them, we get

H⊗N |0⟩⊗N =
1√
2N

2N−1∑
x=0

|x⟩ (1.45)

where, in the summation, the state |0⟩ = |00...00⟩ and the state |2N − 1⟩ = |11...11⟩,
which is another useful way to label the computational basis states in which the bit string
is replaced by the corresponding value in basis 10. As one can notice, the right-hand
side of eq. (1.45) is the aforementioned superposition state.
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S gate

The S gate adds an imaginary phase on the state |1⟩. Its matrix form is:

S =

(
1 0
0 i

)
S|0⟩ = |0⟩
S|1⟩ = i|1⟩. (1.46)

T gate

The T gate, instead, adds a phase of π
4
on the state |1⟩. Its matrix form is:

T =

(
1 0
0 eiπ/4

)
T |0⟩ = |0⟩

T |1⟩ = ei
π
4 |1⟩. (1.47)

The T gate is also known as the π/8 gate since, besides an overall phase, can be rewritten

as

(
e−iπ/8 0
0 eiπ/8

)
. In addition, notice that S = T 2.

The phase angles π/4 for the T gate, π/2 for the S gate and π for Z, can be possibly
replaced by a generic value φ.

Rotation gates

Starting from Pauli matrices, one can build up generalized single qubit rotations by
exponentiating them therefore getting the following matrix expressions:

Rx(θ) = e−iXθ/2 =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
Ry(θ) = e−iY θ/2 =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
Rz(θ) = e−iZθ/2 =

(
e−i

θ
2 0

0 ei
θ
2

)
. (1.48)

This operators correspond to rotations about the x̂, ŷ and ẑ axis of the Bloch sphere,
respectively.
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A generalization of rotation gates, which consists in a rotation about any given axis n̂,
has the following form:

Rn̂(θ) = e−in̂·σ⃗/2 = cos

(
θ

2

)
I− i sin

(
θ

2

)
(nxX + nyY + nzZ) (1.49)

where n̂ = (nx, ny, nz) denotes the vector of unit norm along the rotation axis and
σ⃗ = (σx, σy, σz) is the vector whose components are the Pauli matrices.

Z-Y decomposition for a single qubit

In the very last section before the summary, we show how a general unitary 2×2 matrix,
i.e. an operator acting on a single qubit, can be decomposed as a series of rotations.
Given a unitary U , there exist four angles, say, (α, β, γ, δ) such that

U = eiαRz(β)Ry(γ)Rz(δ). (1.50)

Because of its unitarity, the row and column vectors of U are orthonormal. Hence, there
exist real numbers so that

U =

(
ei(α−β/2−δ/2) cos γ

2
−ei(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2

ei(α+β/2+δ/2) cos γ
2

)
. (1.51)

From the usual matrix multiplication rules and the definition of rotation matrices, eq.
(1.50) follows from the equation above. An analogous decomposition can be recovered
involving X − Y or Z − X rotations as well as using two general non-parallel rotation
axis.

Summary of single qubit gates

In fig. 1.2 a summary of the main single qubit gates mentioned in the previous paragraphs
is presented together with their corresponding symbol and matrix expressions.

1.3.2 Two qubits gates

Let’s walk a step forward and pay our attention to more complex gates acting on two
input qubits. The typical two qubits gate is a controlled operation, which is defined as
the application of a single qubit unitary on the so called target qubit, say the second one,
if and only if the first qubit, known as control qubit, is in the state |1⟩. Otherwise, if the
control qubit is in the state |0⟩, the target is left invariant. Controlled operations are
fundamental in quantum computation since they can be exploited to create entangled
states. The general operatorial form of two qubits gates consists in a 4× 4 matrix since
the two qubits Hilbert space has dimension 4.
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Figure 1.2: Symbols of the main single qubit gates and their associated matrix expression
[27]. From top to bottom: Hadamard, X, Y, Z, S and T gates

Controlled-NOT

The controlled-NOT, or CNOT for brevity, is arguably the most important controlled
operation in quantum computation. Given the control qubit in the state |c⟩ and the
target one in the state |t⟩, it performs the following operation: |c⟩|t⟩ → |c⟩|t ⊕ c⟩. In
other words, the CNOT flips the target, i.e. applies an X gate on it, provided that the
control is in the state |1⟩.
The matrix form of the CNOT in computational basis is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT |00⟩ = |00⟩
CNOT |01⟩ = |01⟩
CNOT |10⟩ = |11⟩
CNOT |11⟩ = |10⟩. (1.52)

The symbol of the CNOT gate is displayed in fig. 1.3.

Controlled-U

In principle, the X gate in the CNOT can be replaced by any unitary at will. A general-
ized controlled-unitary works as following: |c⟩|t⟩ → |c⟩U c|t⟩, where U0 = I and U1 = U .
The symbol of the controlled-unitary, or CU for brevity, is shown in fig. 1.4.
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Figure 1.3: Symbol of the CNOT gate [27]. The upper line corresponds to the control
qubit while the lower line represents the target

Figure 1.4: Symbol of the general controlled-unitary gate [27]. Similarly for the CNOT,
the upper line corresponds to the control qubit whereas the lower one represents the
target

Swap gate

Unlike the gates discussed above, the swap gate is not a controlled unitary. It is, instead,
a two qubits gate which swaps the states of the qubits. It can be built up by applying
three consecutive CNOTs as shown in fig. 1.5, where the control and the target qubits
are alternated.
Given two qubits in the product state |ψ1⟩|ψ2⟩, the swap gate acts like that: SWAP |ψ1⟩|ψ2⟩ =
|ψ2⟩|ψ1⟩.

Two qubits entangling circuit

In this final paragraph related to two qubits gates we would like to show how is it possible
to create an entangled state by means of the CNOT gate, as announced previously. For
the sake of simplicity, we’ll consider a two qubits register. The procedure to entangle
two qubits is the following:

Figure 1.5: Swap gate symbol (right-hand side) [27]. On the left, three consecutive
CNOTs, in which the target and control are alternated, are used to construct a swap
gate
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Figure 1.6: Entangling circuit for two qubits. The qubits, called q0 and q1, should be
initialized in a product state such as |00⟩, |01⟩, |10⟩, |11⟩. After applying an Hadamard on
the first qubit and a CNOT, the final state will be one of the four Bell states depending
on which initialization has been chosen

Figure 1.7: Symbol of the Toffoli gate [27]. The first two lines represent the controls
while the latter is the target

• Initialize the two qubits in the product state |00⟩ = |0⟩ ⊗ |0⟩;

• Apply the Hadamard gate on the first one;

• Apply the CNOT gate where the first qubit is the control and the second is the
target;

• The state of the system at the end of this trivial algorithm is the first Bell state
|ψ+⟩ = |00⟩+|11⟩√

2
;

• If the qubits are initialized in |01⟩, |10⟩ or |11⟩, the final state will be |ψ−⟩, |ϕ+⟩ or
|ϕ−⟩, respectively.

A picture of the entangling circuit is shown in fig. 1.6.

1.3.3 Notable multiple qubits gates

Toffoli gate

The Toffoli gate is a doubly controlled NOT, acting on three qubits where two of them
are the controls and one is the target. The X gate (NOT) is performed on the target if
and only if both the controls are in the state |1⟩, otherwise the target is left alone. Its
symbol is displayed in fig. 1.7.
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Figure 1.8: Symbol of the Fredkin (controlled swap) gate. The first line is the control
qubits while the two lower lines represent the targets on which the swap operates

Figure 1.9: Example of a unitary gate acting on k = 3 qubits, controlled by n = 4
additional qubits. The unitary transformation is performed only if all the controls are
in the state |1⟩ [27]

Fredkin gate

The Fredkin gate is a controlled swap. It acts on three qubits where the first is the
control while the second and the third are the targets. Fig. 1.8 shows its symbol.

Multi-qubit unitary with multiple controls

The major possible generalization of a quantum gate is a unitary acting on a subset
of the quantum register formed by k qubits controlled by n additional qubits. The
transformation encoded in the unitary U is performed on the targets if and only if all
the controls are in the state |1⟩. An illustrative exmaple of such a general controlled gate
is shown in fig. 1.9.

1.4 Measurements

On typical quantum circuit instances, a measurement of at least one of the qubits in
performed in order to get information about some quantum states. The only basis in
which a real quantum processor can actually perform a measurement is the computa-
tional basis i.e. the set {|0⟩, |1⟩}, also known as the Z-basis, since those states are the
eigenvectors of the Z operator. Nevertheless, in principle, a measurement on any basis
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Figure 1.10: Symbol of the measurement process on a qubit [27]

of the Hilbert space whatsoever can be performed. The symbol which the measurement
procedure is depicted with, is shown in fig. 1.10. Moreover, the outcome of the measure-
ment is usually depicted, instead, with a double line since after the state collapse, the
qubit resembles a classical bit.
Two very important principles regarding measurements in quantum circuits are worth
to be emphasized. They are the principle of deferred measurements and the principle of
implicit measurements.

Principle of deferred measurements

Measurements at an intermediate stage of a quantum circuit can always be moved to the
end of the circuit. The classical controlled operations which exploit the outcomes of in-
termediate quantum measurements can be, in this case, replaced by conditional quantum
operations.
Roughly speaking, taking CNOTs as an example since they are the most widely used
controlled gates, we can swap them with measurements without losing any information
about quantum states or affecting the final result of the circuit. An illustrative example
of how the principle of deferred measurement works is depicted in fig. 1.11. Here, the
equivalence between two circuits is proven. The circuit on the left-hand side shows the
creation of a Bell pair followed by a measurement. From what has been said hitherto con-
cerning the evaluation of the outcomes probabilities, we may get the post-measurement
state |00⟩ or |11⟩ with probability 1/2 each provided that the qubits have been initialized
in |00⟩. In the circuit on the right-hand side, instead, the qubits are measured before
applying the CNOT gate. Let’s compute how the state changes at each step of the
circuit.

• Suppose qubits are initialized in |00⟩. After applying the Hadamard gate on the
first one we get the state |+⟩ ⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩);

• The two qubits are measured: the second one will be obviously found in the state
|0⟩ while the first one may collapse into either |0⟩ or |1⟩, each with probability 1/2.
Therefore, the post-measurement state will be |00⟩ with a half probability or |10⟩
with the same probability;

• The CNOT is then performed. If the input state is |00⟩ nothing changes. On the
contrary, if the input is |10⟩ we get the state |11⟩. Both these scenarios may occur
with probability of 1/2.
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Figure 1.11: Simple exemplifying case of the meaning of the principle of deferred mea-
surements. The two circuits are exactly equivalent. The one on the left builds up a Bell
state, say the first, and measure both the qubits at the very end. We know that the
possible outcome are |00⟩ and |11⟩ both with probability of a half. The circuit on the
right, in contrast, performs the measurement before applying the CNOT gate but that
does not influence what we are going to find at the end of the circuit. Again the states
|00⟩ and |11⟩ are possible, with 1/2 probability each

The possible quantum states at the end of the circuits and their associated occurrence
probabilities are, hence, equal.

Principle of implicit measurements

Without loss of generality, any qubit which is not measured in a quantum circuit may be
assumed to be measured.
This principle is stating that the statistics of the measurement outcomes of a qubit is
not affected by the action of measurement on the other qubits. In other words, the
distribution of the outcomes is completely determined by what is called the density
matrix of that qubit itself.

1.4.1 Measurements in a basis different from the computational
basis

As mentioned at the beginning of this section, it may be remarkable, for pure theoretical
reasons, to illustrate how to provide the possible outcomes of a measurement which is
performed in a basis different from the computational basis:

• First of all we must select an hermitian operator whose eigenvectors represent
the basis in which we wish to perform our measurement. Call these two states
{|ψ1⟩, |ψ2⟩};

• Call |ψ⟩ the qubit state. Rewrite |ψ⟩ as a linear combination of the basis elements,
i.e. |ψ⟩ = α|ψ1⟩+ β|ψ2⟩;

• The post-measurement state will be one of the two basis elements, with associated
probability of |α|2 for the state |ψ1⟩ and |β|2 for the state |ψ2⟩.
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It is fundamental to point out that any measurement in a given orthonormal basis can
be reduced to a measurement in the computational basis by properly applying a unitary
change-of-basis operator U on the qubits just before the measurement. Let’s prove it in
a generalized form:

• Given two orthonormal basis, say B1 = {|ψ1⟩, |ψ2⟩} and B2 = {|ϕ1⟩, |ϕ2⟩}, there
always exists a unitary transformation which acts on the basis elements in the
following way:

U |ψ1⟩ = |ϕ1⟩
U |ψ2⟩ = |ϕ2⟩
U †|ϕ1⟩ = |ψ1⟩
U †|ϕ2⟩ = |ψ2⟩; (1.53)

• Call |ψ⟩ the state to be measured in the basis B1 but, unfortunately, our device can
only perform measurements in the basis B2, and suppose we know the expression
of |ψ⟩ in terms of the basis elements of B1, say |ψ⟩ = α|ψ1⟩+ β|ψ2⟩;

• The outcomes of a measurement in the basis B1 may give (|ψ1⟩, |ψ2⟩) with proba-
bility (|α|2, |β|2). Apply the unitary U to the state |ψ⟩:

U |ψ⟩ = αU |ψ1⟩+ βU |ψ2⟩ =
= α|ϕ1⟩+ β|ϕ2⟩; (1.54)

• Now perform the measurement in the basis B2. The state will collapse to (|ϕ1⟩, |ϕ2⟩)
with probabilities (|α|2, |β|2);

• Apply the inverse unitary U † to bring the post-measurement state back to the B1

basis.

This is the exact procedure we must perform on current quantum devices when we’re
interested in measuring qubits in different basis.

1.4.2 Reconstruction of quantum states

We have hitherto highlighted dozens of times the intrinsic probabilistic nature of quantum
measurements. In a typical situation, at the end of a quantum circuit, we need to get
information about the quantum state of the system. The only way we can have access
to it is via measurements. Since normally the final state of the qubits is a superposition
of the basis elements including entangled states, we need to reproduce the quantum
circuit many times, in each performing a measurement until we get enough data to do
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statistics and reconstruct the whole quantum state. The number of measurement needed
to recover the final state depends on two factors: the tolerance on the amplitudes, i.e.
the maximum difference between the real value of the coefficients in front of the basis
elements in the superposition and the same value recovered through the measurements,
and the complexity of the quantum state, i.e. the number of basis elements with non-zero
amplitude. A standard instance of problem where the final reconstruction of the quantum
state may be quite difficult are quantum simulations. A brief definition of quantum
simulations is that of algorithms devised to reproduce the behavior of a quantum system
and possibly find the ground state of that system which evolve according to a given
hamiltonian. We’ll look at quantum simulations in detail later on. The point which is
worth to remark is that quantum systems might have very complex ground states and
the amount of measurements required to recover them may easily increase to the order
of 104 or even more. As a consequence, the total computational time is considerably
affected by this, let’s say, ”inconvenient”. The repetition of the quantum circuit has a
significant cost in terms of computational resources and this represent the price to pay,
the drawback, of quantum computing.

1.5 Universality of quantum gates

A set of gate is said to be universal if any unitary can be approximated with arbitrary
accuracy by a quantum circuit involving only those gates. What we’ll prove in this
section is the universality of the set containing all single qubit gates and the CNOT.
The final statement is therefore that any unitary operation can be exactly decomposed
as a series of single qubit rotations and CNOTs [27]. Furthermore, an approximation of
a general unitary gate can be obtained with only the Hadamard, the CNOT and the T
gate.

1.5.1 Two-level gates are universal

The first step toward the proof of universality of single qubit gates and CNOTs consists
in proving that two-level gates are universal. Two-level matrices are defined as operators
which act non-trivially only on two or fewer vector components.
Consider a unitary U which acts on a d-dimensional Hilbert space. This matrix U can
be decomposed into a product of two-level matrices. To prove this, let’s start from the
simple case where U is 3× 3:

U =

a d g
b e h
c f j

 (1.55)

We’ll find two-level operators U1, U2, U3 such that

U3U2U1U = I (1.56)
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from which
U = U †

1U
†
2U

†
3 . (1.57)

Now, let’s see how to construct the three two-level unitaries such that the product of
their hermitian conjugated, which are still two-level matrices, gives U :

1. If b = 0 set U1 as:

U1 =

1 0 0
0 1 0
0 0 1

 ; (1.58)

Otherwise, if b ̸= 0, set U1 to:

U1 =

 a∗√
a2+b2

b∗√
a2+b2

0
b√

a2+b2
−a√
a2+b2

0

0 0 1

 . (1.59)

Note that this two matrices satisfy the definition of two-level matrices given at
the beginning of the section since they act non-trivially at most on two vector
components. When we multiply U1U we get:

U1U =

a′ d′ g′

0 e′ h′

c′ f ′ j′

 . (1.60)

2. If c′ = 0 set U2 as:

U2 =

a′∗ 0 0
0 1 0
0 0 1

 ; (1.61)

If, conversely, c′ ̸= 0 set U2 as:

U2 =

 a′∗√
a′2+c′2

0 c′∗√
a′2+c′2

0 1 0
c′√

a′2+c′2
0 −a′√

a′2+c′2

 . (1.62)

From matrix multiplication we get:

U2U1U =

1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′

 . (1.63)

Since U2, U1 and U are unitary, it follows that d′′ = g′′ = 0 cause the first row
vector must have unit norm.
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3. Set then U3 as:

U3 =

1 0 0
0 e′′∗ h′′∗

0 f ′′∗ j′′∗

 . (1.64)

It is straightforward to check the validity of eq. (1.56).

Generalizing to a unitary matrix acting on a d-dimensional Hilbert space, this procedure
allows one to find d−1 unitary matrices U1, ..., Ud−1 such that the matrix Ud−1...U1U has
a one in the top left hand corner and zeros elsewhere in the first row and column. The
procedure is repeated for the d− 1× d− 1 unitary submatrix in the bottom right corner
of Ud−1...U1U until 2× 2 matrices are reached. This leads to a d× d unitary which can
be written as:

U = V1...Vk (1.65)

where the Vi matrices are two-level unitaries and k = d(d− 1)/2.

1.5.2 Single qubit and CNOT gates are universal

The next step is to show that single qubit gates together with CNOTs can be used to
implement any arbitrary two-level operation and therefore, for what we have seen in the
previous section, they constitute a set of universal gates for quantum computation.
Suppose U is a n × n two-level matrix acting non-trivially on the subspace spanned
by the vectors |s⟩ = |s1...sn⟩ and |t⟩ = |t1...tn⟩ where s1...sn and t1...tn are the binary
expansions of s and t, resepctively. Call Ũ the 2 × 2 non-trivial submatrix of U which
can be considered as a single qubit gate. We wish to build up a circuit which implements
U made out of only CNOTs and Ũ operations. To achieve our goal we need to invoke
the Gray code. The Gray code connecting s and t is defined as a sequence of binary
numbers starting from s and ending with t such that two adjacent members of the list
differ in exactly one bit. For the sake of clarity, suppose s = 101001 and t = 110011. A
Gray code from s to t is given by:

1 0 1 0 0 1
1 0 1 0 1 1
1 0 0 0 1 1
1 1 0 0 1 1

. (1.66)

Let g1, ..., gm be the elements of a Gray code connecting g1 = s and gm = t. Notice that
m ≤ n+ 1 since s and t, being bit strings of length n, can differ at most in n locations.
In order to implement U we should devise a quantum circuit which basically changes the
states |g1⟩ → |g2⟩ → ... → |gm⟩ and performs a controlled-Ũ operation with the target
qubit located at the single bit where |gm−1⟩ and |gm⟩ differ. A detailed description of
the algorithm is provided below:
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1. First of all, we need to swap |g1⟩ and |g2⟩. Since the corresponding bit strings differ
in one single digit, we can apply a X gate on the qubit where the discrepancy is
located. Then a controlled operation is used to swap |g2⟩ with |g3⟩. Keep on going
this way until the state |gm−1⟩ is reached;

2. Suppose |gm−1⟩ and |gm⟩ differ in the j-th qubit. We hence apply a controlled-Ũ
with the j-th qubit as target conditional on the other qubits having the same value
as appear in both |gm−1⟩ and |gm⟩;

3. Undo the swap operations, bringing back the state |gm−1⟩ to |g1⟩.

To see how the circuit is built in practice, consider a simple example with three qubits.
Suppose we wish to decompose the following two-level unitary:

U =



a 0 0 0 0 0 0 b
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 d


(1.67)

where Ũ is then the 2× 2 matrix Ũ =

[
a b
c d

]
. The unitary U acts non-trivially on the

basis states |000⟩ and |111⟩. The Gray code conecting 000 with 111 is the following:

0 0 0
0 0 1
0 1 1
1 1 1

. (1.68)

The required circuit to perform U is depicted in fig. 1.12. As first step, it brings the
string 000 to the string 011, i.e. the second to last string of the Gray code above. Then
a controlled-Ũ is performed on the first bit, which is the one where the second to last
and the last bit strings of the Gray code differ, and finally the states are swapped back
from 011 to 000.

1.5.3 Approximating unitaries with a discrete set of operators

The result we’ve got hitherto may look completely satisfactory, since we have proved
that any unitary can be reduced to a sequence of CNOTs and single qubit rotations.
Nevertheless, the set of single qubit gates is continuous and, for practical purposes, we
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Figure 1.12: Quantum circuit performing U in eq. (1.67) [27]. Controlled NOTs are
perfomed where the control qubits are the one which do not undergo any change in each
step. The white circles indicate that the control qubit should be in the state |0⟩ (not |1⟩)
to enable the X gate on the target. When the states have been swapped, a controlled-Ũ
is performed on the qubit where the string 011 and 111 differ, i.e. the first one, and the
states are then swapped back

need to find a way to approximate any single qubit rotations with a discrete set of gates
in such a way that we can effectively build exploitable quantum circuits.
The very last step of this discussion regards proving that any single qubit rotation can
be actually approximated within an arbitrarily small tolerance by a set of gates including
only the Hadamard, the CNOT and the T gates.

Approximating unitary operators

Consider two unitaries U and V . The former is the target transformation we wish to
implement while the latter is the unitary supposed to approximate the unitary U we can
implement in practice. We define the error when V is implemented instead of U as:

E(U, V ) = max
|ψ⟩
||(U − V )|ψ⟩|| (1.69)

where |ψ⟩ is a generic state of the Hilbert space. If the error E(U, V ) is small, the
measurement statistics got by implementing V rather than U is approximately the same.
In fact, call M an operator belonging to a measurement set and call PU and PV the
probability of obtaining the associated measurement outcomes if the operator U or V is
applied, respectively. Therefore,

|PU − PV | = |⟨ψ|U †MU |ψ⟩ − ⟨ψ|V †MV |ψ⟩|. (1.70)

Using the Cauchy-Schwarz inequality it is straightforward to conclude that

|PU − PV | ≤ 2E(U, V ). (1.71)

In the general case we may apply a set {V1, V2, ..., Vm} of gates intended to approximate
the ideal set {U1, U2, ..., Um}. In this case, the error does not increase faster than linearly
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in the number of gates m, i.e.

E(Um...U1, Vm...V1) ≤
m∑
j=1

E(Uj, Vj). (1.72)

To prove this let’s start from the simple case where m = 2.

E(U2U1, V2V1) = ||(U2U1 − V2V1)|ψ⟩|| =
= ||(U2U1 − V2U1)|ψ⟩+ (V2U1 − V2V1)|ψ⟩||. (1.73)

From the triangle relation,

E(U2U1, V2V1) ≤ E(U2, V2) + E(U1, V1). (1.74)

The general proof is obtained by induction.
This results are extremely useful. In fact, suppose we wish to get the same measurement
outcomes probabilities within a tolerance ∆ by approximating a sequence of operators
U1, ..., Um with V1, ..., Vm. It suffices that E(Uj, Vj) ≤ ∆

2m
to get the desired result.

Universality of Hadamard, CNOT and T gates

The Hadamard and the T gates can be used to approximate any single qubit operation.
The T gate is, up to an overall phase, a rotation about π/4 over the ẑ axis. The composite
gate HTH is, instead, a rotation of the same angle around the x̂ axis on the Bloch sphere.
Composing the T alone with the HTH operator gives the general transformation

e−i
π
8
Ze−i

π
8
X =

= cos2
π

8
I− i

(
cos

π

8
(X + Z) + sin

π

8
Y
)
sin

π

8
, (1.75)

which represent a rotation about the axis with unit vector n̂ = 1
N

(
cos π

8
, sin π

8
, cos π

8

)
,

where N is just the vector normalization, of an angle θ such that cos θ
2
= cos2 π

8
.

Repeated iterations of Rn̂(θ) rotations can be used to approximate a generic rotation
Rn̂(α). Let δ > 0 be the accuracy we desire to reach and let N be an integer larger than
2π/δ. Now define θk = (kθ) mod 2π where each θk ∈ [0, 2π). There are two distinct
j, k ∈ [1, N ] such that |θk − θj| < δ. Assume for the sake of simplicity, without loss of
generality, that k > j. Therefore the sequence θl(k−j) fills up the interval [0, 2π) as l is
varied in such a way that each term within the sequence is no more than δ apart from
its neighbor terms. It follows that for any ϵ there exists an n so that

E(Rn̂(α), Rn̂(θ)
n) <

ϵ

3
. (1.76)
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As already discussed so far in this chapter, every single qubit unitary transformation can
be always written as a sequence of rotations in the following way:

U = Rn̂(β)Rm̂(γ)Rn̂(δ). (1.77)

As a consequence of that and eq. (1.72), there exist three positive integers such that

E(U,Rn̂(θ)
n1Rn̂(θ)

n2Rn̂(θ)
n3) < ϵ. (1.78)

This implies that, as we wished to prove, given a single qubit unitary U , it is always
possible to approximate U with an arbitrary small accuracy called ϵ with a quantum
circuit made out only of Hadamard and T gates.

Solovay-Kitaev theorem

One may wonder how efficiently the approximation of a single qubit unitary can be done
in terms of the number of Hadamard and T gates. The Solovay-Kitaev theorem [6] pro-
vides us an answer to this non-trivial question. It states that:
Any single qubit unitary can be approximated within an accuracy ϵ using O(logc(1/ϵ))
gates from our discrete set, where c ≃ 2.
This theorem therefore implies that in order to approximate a circuit containing m
CNOTs and single qubit unitaries we need a number of gates of the order ofO(m logc(m/ϵ)),
which is a polylogarithmic slope and it can be considered acceptable for any typical prac-
tical application.

This simple proof brings a very important result in quantum computation. The possi-
bility to reduce any matrix, including evolution operators, to sequences of single qubit
rotations and CNOTs drastically simplifies the construction of every quantum circuit,
including quantum simulation circuits.

1.6 Quantum simulation algorithm

In this section we analyze how is it possible to construct a quantum circuit to simulate
the evolution of a given system under a certain hamiltonian [27].
For what classical simulations is concerned, the typical problem asks to solve a differential
equation e.g.

dy

dt
= f(y) (1.79)

to first order, where it’s known that

y(t+∆t) ≈ y(t) + f(y)∆t. (1.80)
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The quantum counterpart of this scenario consists in solving the Schrödinger’s equation
(1.6). The solution, for a time-independent hamiltonian H, is:

|ψ(t)⟩ = e−iHt|ψ(0)⟩. (1.81)

Nevertheless, hamiltonians regarding typical many body systems are difficult to expo-
nentiate entirely because of the exponential growth of its size in the number of qubits.
As a consequence, one may settle for the first order approximation of the solution which
is:

|ψ(t+∆t)⟩ = (I− iH∆t)|ψ(t)⟩. (1.82)

The computation of first order solution is typically straightforward since it’s not com-
plicated to construct a quantum circuit to simulate I − iH∆t. Nonetheless, the first
order solution appears, in many cases, very unsatisfactory from a physical point of view.
However, for many physical systems, the hamiltonian can be written as a sum over local
interaction, i.e. two-body terms, or one-body terms. This represents a very typical sce-
nario in quantum many body theory e.g. the Ising model [13]. Specifically, for a system
of n particles,

H =
L∑
k=1

Hk (1.83)

where each term Hk involves at most a constant number of qubits, say c, and L is
a polynomial function of n. Now, since Hk gathers a smaller number of qubits it is
much easier to approximate it with a quantum circuit. Nevertheless, we shall take
into consideration that the terms Hk of the hamiltonian do often not commute, i.e.
[Hj, Hk] ̸= 0. The obvious consequence is that e−iHt ̸=

∏L
k=1 e

−iHkt. However, though
it might seem an unpleasant inconvenient, there is still a way to accomplish a good
approximation of e−iHt. We must exploit the Trotter’s formula [34].

1.6.1 The Trotter’s formula

Let A and B be hermitian operators. Then for any real time t,

lim
n→∞

(
eiAt/neiBt/n

)n
= ei(A+B)t. (1.84)

Roughly speaking, the Trotter’s formula is basically saying that the evolution under
an hamiltonian H formed by two noncommuting terms A and B can be obtained by
alternately evolving the system with A and B for a small time ϵ = t/N N times, until
the total evolution time is reached. If N is finite but large enough, the discretization of
the evolution will produce an approximation of the state we would get under the exact
evolution of the original state under H.
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Proof

The Taylor’s approximation at first order of eiAt/n is

eiAt/n = I+
1

n
iAt+O

(
1

n2

)
. (1.85)

Hence,

eiAt/neiBt/n = I+
1

n
(A+B)t+O

(
1

n2

)
. (1.86)

Exponentiating the above equation we get

(
eiAt/neiBt/n

)n
= I+

n∑
k=1

(n
k

) 1

nk
[i(A+B)t]k +O

(
1

n

)
. (1.87)

Now, since (n
k

) 1

nk
=

(
1 +O

(
1

n

))
/k!, (1.88)

the original limit becomes

lim
n→∞

(
eiAt/neiBt/n

)n
= lim

n→∞

n∑
k=0

(i(A+B)t)k

k!

(
1 +O

(
1

n

))
+O

(
1

n

)
= ei(A+B)t. (1.89)

Further modifications of the Trotter’s formula provide a way to compute the approxi-
mation at higher order by means of quantum simulations. Some instances are displayed
below:

ei(A+B)∆t = eiA∆teiB∆t +O(∆t2); (1.90)

ei(A+B)∆t = ei
A
2
∆teiB∆tei

A
2
∆t +O(∆t3); (1.91)

ei(A+B)∆t = eiA∆teiB∆te−
1
2
i[A,B]∆t2 +O(∆t3). (1.92)

The last one is called the Baker-Campbell-Hausdorf formula [16].

1.6.2 The Algorithm

Inputs:

• An hamiltonian H =
∑

kHk acting on N qubits where each term Hk acts on a
finite subsystem whose size is independent on N ;

• An initial state |ψ0⟩ = |ψ(t0)⟩ in which to place the system at the beginning of the
simulation;
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• A non-zero accuracy δ;

• A final time tf at which the evolved state is desired.

Outputs:

• A state |ψ̃f⟩ = |ψ(tf )⟩ satisfying |⟨ψ̃f |eiH(tf−t0)|ψ0⟩|2 ≥ 1− δ
Procedure:

1. Initialize the system in the state |ψ0⟩, j = 0;

2. Evolve the state |ψj⟩ by applying U∆t, |ψj+1⟩ = U∆t|ψj⟩. U∆t is the operator which
approximates ei

∑
kHk∆t. The complexity of U∆t depends on both the accuracy δ

and the approximation method, e.g. the Baker-Hausdorf formula;

3. Increase j ← j + 1 and repeat step 2 until the final value j is reached, i.e. when
j∆t = tf ;

4. The final result is the desired state |ψ̃f⟩. In order to recover it one should repeat the
simulation performing a measurement at the end and do statistics on the outcomes
as explained in sec. 1.4.2.

1.6.3 Illustrative example

Here we provide a simple illustrative example of the quantum simulation algorithm ap-
plied to the hamiltonian H = Z1 ⊗ Z2 ⊗ Z3 acting on a three qubits system [27]. The
simulation circuit is depicted in fig. 1.13. Let’s see how the circuit works and how can
it effectively reproduce the evolution of a system under the hamiltonian H:

1. Let’s start with the system in the initial state |q1q2q3⟩ where each qi can be either
0 or 1;

2. Add an ancilla qubit to the system and place it in the state |0⟩ (in fig. 1.13 the
ancilla is the last qubit). The four qubits state is now |q1q2q30⟩

3. Apply three CNOTs, each of them acting on a different control and the ancilla as
target. The state now becomes |q1q2q3p⟩ where p = 0 if the parity of the first three
qubits in computational basis is even and p = 1 otherwise;

4. Apply a phase shift e−iZ∆t on the ancilla where ∆t is the evolution time. The state
becomes e±i∆t|q1q2q3p⟩ where if p = 0 the exponent has negative sign and if p = 1
it has, instead, positive sign;

5. Bring back the ancilla to |0⟩ by applying again the same CNOTs as in 2;

6. The final state is e±i∆t|q1q2q3⟩⊗ |0⟩. The ancilla can therefore be excluded and the
state of the three initial qubits has been then evolved under the hamiltonian H.

42



Figure 1.13: Simulation of the evolution of a three qubits system under the hamiltonian
H = Z1⊗Z2⊗Z3 [27]. The idea is to utilize an ancilla qubit, initialized in the state |0⟩
on which a phase shift is applied. The phase shift depends on the parity of the qubits
state in computational basis and it can be either e−i∆t (even parity) or ei∆t (odd parity).
The ancilla is then brought back to |0⟩ and the final state of the three qubits is then
e−iH∆t|q1q2q3⟩ (see the main text for more details)
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Chapter 2

The Quantum Approximate
Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is a cutting edge hybrid
quantum-classical algorithm in the field of quantum computing and represent a powerful
tool for the solution of optimization problems. It allows to solve typical optimization
problems, such as MaxCut, MIS and Ising model-based problems [41], by finding the
ground state of an associated variational hamiltonian exploiting the principles of quan-
tum mechanics, specifically the entanglement and the superposition of quantum states
[27].
This chapter, which consists in a collection of the main outcomes of previous researches,
is structured as follows: in the first section we provide the definition of the QAOA and
how it works; in section 2 we summarize concrete state-of-the-art results regarding the
application of the QAOA to the MaxCut problem on graphs, with a specific focus on the
peculiar features one may leverage to successfully expand the application of QAOA to
other types of problems; in section 3 we reveal the close connection between the QAOA
and the Quantum Adiabatic Algorithm (QAA), while in section 4 we list the main char-
acteristics of classical optimizers and initialization strategies, where the latter have been
devised specifically for the QAOA to reduce the probability of failure of optimization
procedures.

2.1 The algorithm

The QAOA has been introduced by Fahri et al. [10], at the dawn of quantum computing.
Combinatorial optimization problems are specified by n bits and m clauses. The goal of
the algorithm is to maximize an objective function of the form:

C(z) =
m∑
α=1

Cα(z) (2.1)
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which represent the number of satisfied clauses. Cα(z) = 1 if the clause α is satisfied by
the string z = z1z2...zn or Cα(z) = 0 if it is not. Approximate optimization asks for a bit-
string which makes C(z) close to its maximum (or minimum, depending on the specific
problem). To solve such a problem by means of a quantum computer, which works in
a 2n-dimensional Hilbert space of basis |z⟩ where z = 00..00, 00..01, ..., 11..11 and n is
the number of qubits, we think the objective function (2.1) as a diagonal operator in the
computational basis.
Define:

U(C, γ) = e−iγĈ =
m∏
α=1

e−iγCα (2.2)

which represent the γ-dependent evolution operator under the objective hamiltonian Ĉ.
The range of γ can be restricted to [0, 2π] as Cα is an integer value. Now define:

B̂ =
n∑
j=1

σxj (2.3)

and the β-dependent product of single qubit operators:

U(B, β) = e−iβB̂ =
n∏
j=1

e−iβσ
x
j (2.4)

where β lays in the interval [0, π]. In addition, notice that [Ĉ, B̂] ̸= 0.
The initial state of the n qubits is the uniform superposition of the basis states:

|s⟩ = |+⟩⊗n =
1√
2n

∑
z

|z⟩ (2.5)

Given 2p parameters γ1...γp and β1...βp where the integer p ≥ 1 is called depth of the
algorithm, define the parameterized state:

|γ,β⟩ = U(B, βp)U(C, γp)...U(B, β1)U(C, γ1)|s⟩. (2.6)

The operators U(C, γi) form the so called cost layers of the algorithm while the operators
U(B, βi) form the mixer layers.
Call Fp(γ,β) the expectation value of the objective function C on the above angle-
dependent state (2.6):

Fp(γ,β) = ⟨γ,β|C|γ,β⟩ (2.7)

and let Mp be the maximum of (2.7) over the angles (γ,β):

Mp = max
(γ,β)

Fp(γ,β). (2.8)
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The maximization at depth p− 1 can be viewed as a constrained maximization at depth
p:

Mp ≥Mp−1. (2.9)

In the large p limit, it is expected, though Farhi et al. [10] do not provide a mathematical
theorem to prove it, that the maximum Mp approaches the real maximum of the cost
function C:

lim
p→∞

Mp = max
z
C(z). (2.10)

At a finite depth one gets an approximate solution for the bitstring which maximizes the
cost function.
In order to get such a bitstring one must choose an initial set of angles, create the state
in eq. (2.6) using a quantum computer and evaluate the expectation of the cost function
(2.1) on that state. To compute Fp(γ,β) a measurement on the final state is required
to get the bitstring corresponding to that choice of angles. Our goal is to find a set of
angles that makes Fp(γ,β) as close as possible to Mp which, in principle, is the best
expectation value of the cost function one can get at depth p. It is straightforward to
notice that it is impossible to know in advance how to pick good angles. This is why the
algorithm needs support from a classical optimizer whose job is to provide new angles
such that the expectation value of the objective function on the corresponding state is
greater than the previous one and repeat these steps until convergence to the optimal
parameters is reached. There are plenty of classical algorithms which can perform the
optimization of the angles [12]. Each algorithm has its own features, which are presented
in section 2.4, and the choice of the algorithm has a fundamental influence on the success
of the optimization procedure.
In the following sections an analysis of the QAOA algorithm applied to the MaxCut
problem on graphs is provided.
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Figure 2.1: Schematic representation of the Quantum Approximate Optimization Algo-
rithm. The qubits are initially placed in the state |+⟩⊗N and alternately evolved under
the cost and the mixer parameterized hamiltonians p times, where p is the depth of the
circuit. Finally, the quantum state is reconstructed by taking several measurements and
the expectation value of the cost function is computed. This value is sent to the local
optimizer which updates the values of the parameters until the best one are found and
the optimal state is recovered

2.2 QAOA applied to the MaxCut problem on graphs

In this section we define the MaxCut problem [25] and present a state-of-the-art review
which analyzes some interesting features of this problem on regular graphs and how the
QAOA can be successfully applied to solve it.

2.2.1 Description of the MaxCut problem

Given a graph G=(V,E) [2] where V is the set of vertices/nodes and E is the set of edges,
the MaxCut asks to split the graph G into two subsets such that the number of edges
connecting two nodes belonging to different subsets is the largest possible. From now
on, we’ll consider graphs with bounded degree, where the degree of a node is defined as
the number of nearest neighbors of that node. If all the nodes of a graph have the same
degree, the graph is said regular [40].
Mapping the problem to the QAOA framework, solving the MaxCut on a graph G is
equivalent to find the the bitstring |z⟩ = |z1z2..zn⟩ such that the corresponding eigenvalue

47



of the cost hamiltonian

C =
∑
⟨jk⟩

C⟨jk⟩ (2.11)

C⟨jk⟩ =
1

2
(1− σzjσzk) (2.12)

is as large as possible, where j, k ∈ V and ⟨jk⟩ ∈ E. At the level of quantum computa-
tion, each node of the graph is mapped into one qubit.
Recall the expectation value of the cost hamiltonian defined in equation (2.7) and con-
sider the operator associated with the edge ⟨jk⟩:

U †(C, γ1)...U
†(B, βp)C⟨jk⟩U(B, βp)...U(C, γ1) (2.13)

This operator involves only qubits j, k and all the qubits whose distance in the graph
from qubits j and k is at most equal to p. This can be empirically seen at p = 1. The
operator in eq. (2.13) now becomes:

U †(C, γ1)U
†(B, β1)C⟨jk⟩U(B, β1)U(C, γ1). (2.14)

The terms which do not involve qubits j or k in the factor U †(B, β1) commute with
C⟨jk⟩ and cancel out with the corresponding terms in U(B, β1). As a consequence the
single-edge operator reduces to:

U †(C, γ1)e
iβ1(σx

j +σ
x
k )C⟨jk⟩e

−iβ1(σx
j +σ

x
k )U(C, γ1). (2.15)

As the mixer layer now depend only on the vertices j and k, the terms which do not
involve qubits j and k in the cost layer operator U(C, γ1) commute through and cancel
out. Therefore, the single-edge operator depends only on qubits j,k and their nearest
neighbors. This proof can be generalized to any p. In other words, each term in the
cost hamiltonian (2.12) depends on the qubits forming the central edge ⟨jk⟩ and on the
edges which are at most p steps away from the central one and the qubits on them. The
group formed by the central edge and the nearest neighbor is called a subgraph of G.
As an example, fig. 2.2 shows all the possible subgraphs at p = 1 of a 3-regular graph,
namely the tree, the single triangle and the double triangle. The number of qubits in
each subgraph is independent of n and this allows to compute the expectation value
Fp(γ,β) as a sum of contributions coming from subsystems whose size does not depend
on n which is the size of the whole graph.
Given a subgraph g, define:

Cg =
∑
⟨jk⟩∈g

C⟨jk⟩ (2.16)

Bg =
∑
j∈g

σxj (2.17)

|s, g⟩ =
∏
j∈g

|+⟩j (2.18)
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Figure 2.2: The three different subgraphs of a 3-regular graph at p = 1 [41]. From left
to right: the tree subgraph, the single triangle and the double triangle. The edge in red
in each subgraph is the central one

which are the usual QAOA operators and initial state restricted to g. Each edge in
the graph G, ⟨jk⟩, is associated with a subgraph g(j, k) whose expectation value is a
contribution to Fp. If two edges ⟨jk⟩ and ⟨j′k′⟩ give rise to isomorphic subgraphs then
the corresponding function of (γ,β) is the same. Fp can be then written as [10]:

Fp(γ,β) =
∑
g

wgfg(γ,β) (2.19)

where

fg(γ,β) = ⟨s, g|U †(Cg, γ1)...U
†(Bg, βp)C⟨jk⟩U(Bg, βp)...U(Cg, γ1)|s, g⟩ (2.20)

and wg are the weights of each subgraph type g which count the number of occurrences
of the g in the global edge sum. Notice that the terms fg do not depend on the number of
bits n and the number of clauses m. The maximum number of qubits which can appear
in each term fg is the number of qubits of the tree subgraph at depth p which is:

qtree = 2

[
(d− 1)p+1 − 1

d− 2

]
(2.21)

or 2p+2 if d = 2 where d is the maximum degree of the graph. The resource requirement
does not grow with n. However, if p is very large, they may be beyond our current classical
computational power and that’s why the development of quantum computers is expected
to bring a great advantage in this sense.
If p and d are fixed, the distribution of C(z) is concentrated near its mean. To see this,
consider

⟨γ,β|C2|γ,β⟩ − ⟨γ,β|C|γ,β⟩2 = (2.22)
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=
∑

⟨jk⟩,⟨j′k′⟩

⟨s|U †(C, γ1)...U
†(B, βp)C⟨jk⟩C⟨j′k′⟩U(B, βp)...U(C, γ1)|s⟩

− ⟨s|U †(C, γ1)...U
†(B, βp)C⟨jk⟩U(B, βp)...U(C, γ1)|s⟩

∗ ⟨s|U †(C, γ1)...U
†(B, βp)C⟨j′k′⟩U(B, βp)...U(C, γ1)|s⟩. (2.23)

If the subgraphs g(j, k) and g(j′, k′) have no common qubits, the term in eq. (2.23) is 0.
Going deeper, it means that there is no path which connects the two central edges ⟨jk⟩
and ⟨j′k′⟩ shorter than 2p+2. The maximum number of edges which may contribute to
the sum in eq. (2.23) is

2

[
(d− 1)2p+2 − 1

d− 2

]
(2.24)

where we have used eq. (2.21) substituting 2p+ 1 instead of p. As a consequence,

⟨γ,β|C2|γ,β⟩ − ⟨γ,β|C|γ,β⟩2 ≤ 2

[
(d− 1)2p+2 − 1

d− 2

]
m (2.25)

since each summand has at most unit norm. The standard deviation of C(z) is therefore
proportional to

√
m so that the mean of a sample of order m2 of C(z) would be at most 1

far from Fp with probability 1− 1
m
. If the number of clauses of the problem is sufficiently

large, the probability that the algorithm produces a bitstring with C(z) much larger
than Fp is negligible.

2.2.2 MaxCut on 2-regular graphs

Before addressing the MaxCut problem applied to 2-regular graphs, let’s define two
important quantities:

• The cut value [10] is the number of edges connecting nodes belonging to the two
different subsets divided by the total number of edges of the instance graph G.
The goal of the MaxCut, in fact, is to find the maximum cut value for that graph,
clarifying the meaning of the name;

• The approximation ratio [10] is the ratio between the cut value found by the
algorithm and the maximum cut value of the instance graph. Roughly speaking,
the approximation ratio is an indicator of the ”quality” of the solution found by
the algorithm. If it finds the best solution, the approximation ratio is identically
1.

As a simple example of application of the QAOA algorithm to the MaxCut problem let’s
consider connected 2-regular graphs with n vertices which are rings. The real MaxCut
value depends on the parity of n: if n is even, the maximum cut is 1 and the solution
bitstring is |z⟩ = |0101...0101⟩; if n is odd, there will be one edge connecting two nodes
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of the same subsets so that the MaxCut value is n−1
n

= 1− 1
n
and the solution string is

|z⟩ = |0101...010⟩. The only possible subgraph type is a line of length 2p + 2 with the
given edge in the middle. Having n vertices, the weight for that subgraph type is n.
Maximizing eq. (2.20) for small values of p and recovering the general solution by
induction, Fahri et al. [10] found that

Mp = n
2p+ 1

2p+ 2
(2.26)

with a corresponding cut value of 2p+1
2p+2

. It is straightforward to see that by taking p large
enough the cut value can be made arbitrarily close to 1, proving the large-p limit in eq.
(2.10).

2.2.3 MaxCut on 3-regular graphs and performance guarantees

3-regular graphs have been useful to study the performance guarantees of QAOA, that
are the minimum approximation ratios the algorithm will achieve, which depend on
p, regardless the instance graph it has been fed with. Furthermore, some interesting
properties concerning the solution of the MaxCut which massively simplify the practical
usage of the algorithm on regular graphs have been conjectured [41].

p = 1 performance guarantees

Consider a generic 3-regular graph with n vertices. Suppose there are T isolated triangles
and S crossed squares like the following ones [10]:

To say that a triangle is isolated, the dotted outgoing lines must end to distinct vertices.
Because no isolated triangle and crossed square can share a vertex, in general 3T+4S ≤ n.
In each crossed square there is one edge whose associated subgraph is the double triangle
showed in fig. 2.2, call it g4, and 4 edges whose subgraph type is the single triangle, call
it g5. In each isolated triangle, 3 edges have subgraph g5. All other edges have an
associated tree subgraph, call it g6. Therefore, the expectation value of the cost function
can be written as:

F1(γ, β) = Sfg4 + (3T + 4S)fg5 +

(
3n

2
− 5S − 3T

)
fg6 (2.27)
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where the function fg has been defined in eq. (2.20). The maximum of F1 is [10]:

M1(n, S, T ) = max
γ,β

F1(γ, β). (2.28)

Now, in each crossed square or isolated triangle there is at least one edge out of the cut.
Hence, that the maximum cut value is upper bounded by 1− T

3n/2
− S

3n/2
. Scaling out n

and numerically evaluating the approximation ratio, it has been noticed that it reaches
its minimum when neither isolated triangle nor crossed square is present in the graph,
that is to say, T = S = 0 and all the edges have a g6 associated subgraph. Let’s call
these special graphs 1-trees. The minimum approximation ratio is 0.6924.

p ≥ 1 guarantees conjectures

Wurtz et al. [41] provided an alternative proof of the p = 1 performance guarantee
which leverages a so called graph hierarchy. Their proof can be summarized by saying
that given a graph G, one can find a new graph G′ whose approximation ratio is worse.
To construct the new graph G′, one needs to locate cycles whose length is smaller or
equal to 2p + 1 in the graph G and replace all the edges which are part of those cycles
with particular subgraphs shown in fig. 2.3. Replacing an edge with this subgraph
eliminates the small cycles, where with the term ”small” we mean that its length is
≤ 2p + 1, so that the algorithm has a harder time solving since it cannot identify any
closed easily-solvable loop in any subgraph. The subgraph type associated to each edge
in the replacing subgraph is the tree one.
At the very end, it has been found for p = 1 and p = 2 that 1-trees and 2-trees graphs
are the worst in terms of approximation ratio. In particular, for p = 2 the performance
guarantee has a value of 0.7559. Wurtz et al. [41] supposed that what they observed for
p = 1, 2 should hold also for p ≥ 2. This led to the following two conjectures:

• Graph hierarchy conjecture: Given an instance graph G and circuit depth p,
there exist optimal angles for the tree subgraph and there exists an edge replace-
ment with a subgraph of the same kind of the ones shown in fig. 2.3 such that the
new resulting graph has a smaller approximation ratio. The replacing subgraph
should not have any cycle of length smaller than 2p+ 2;

• Large loop conjecture: p-trees are worst case graphs. These graphs are con-
structed only out of the tree subgraph and do not have cycles smaller than 2p+2.
If the algorithm cannot distinguish between even and odd length cycles it is not
able to make good prediction about the cut estimate which require this distinc-
tion. Moreover, the algorithm ”sees” less of the full graph and this leads to worse
solutions.
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Figure 2.3: Edge replacement for p = 1 (a) and p = 2 (b) [41]

The fixed angle conjecture

In [41], Wurtz et al. discovered a very interesting and useful property regarding the
optimal parameters of the QAOA which can be synthesized by the so called fixed angle
conjecture which states the following:
Any graph evaluated at fixed angles optimal for the tree subgraph will have an approxi-
mation ratio larger than the guarantee.
These angles can be used as starting points for a further optimization procedure which
returns optimal angles for the specific graph of interest.
The fixed angles have been computed by Wurtz et al. [42] for 3-regular graphs and they
are shown in fig. 2.4. Furthermore, the fixed angle conjecture has been proved for the
n ≤ 16 3-regular graphs up to p = 11 and the results are shown in fig. 2.5. The worst
approximation ratio obtained among all the graphs of the ensemble, represented by the
lower bound of the shaded region, is always above the guarantee, represented by the
yellow dotted line, proving the fixed angle conjecture. As mentioned above, the fixed
angles can be used as a starting point for a local optimizer to find the global optimum for
that specific graph. Fig. 2.6 shows a comparison between average approximation ratio
of the n ≤ 16 3-regular graphs computed at fixed angles and at optimal angles, found by
the optimizer. For all the graphs at p = 1 and an overwhelming majority of the graphs
at p = 2, the optimizer found the real global optimum. As a consequence, fixed angles
are very good guesses for local optimizers and can be successfully exploited in this kind
of analysis significantly reducing the computational time needed by the optimizer.
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Figure 2.4: Performance guarantees up to p = 11 (on the left) and optimal angles for the
tree subgraph of 3-regular graphs up to p = 11 (on the right). These are the so called
fixed angles. If a graph is evaluated at fixed angles, the fixed angle conjecture states
that the approximation ratio will be larger than the guarantee in column 2 [42]. The
conjecture has been proved for the ensemble of the n ≤ 16 3-regular graphs

Figure 2.5: Approximation ratio for the n ≤ 16 complete ensemble of 3-regular graphs
[42]. The yellow line represents the performance guarantees shown in fig. 2.4. The blue
shaded region shows the range between the best and worst approximation ratio obtained
among all the graphs of the ensemble. As one can notice, the lower bound of the shaded
region is always above the guarantee.
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Figure 2.6: Comparison between the average approximation ratio of n ≤ 16 ensemble
of 3-regular graphs evaluated at global optima vs. fixed angles at p = 1, 2 [42]. Rows 1
and 2 represent the average approximation ratio evaluated at fixed and optimal angles.
Row 3 represents the average difference between the approximation ratio evaluated at
fixed and optimal angles. Row 4 indexes the number and percentage of graphs for which
the gradient ascent optimizer initialized at fixed angles finds the global optima. Row 5
represents the euclidean distance between the fixed angles and optimal ones in parameters
space. For both p = 1, 2 the fixed angles are very good initial guess for the optimizers
because the global optima has been found for almost every graph.

2.2.4 Transferability of optimal solutions

The discovery of fixed angles on 3-regular graphs [42], which can be exploited to find the
optimal parameters quicker, leads to an additional question: is there the possibility that
optimal parameters for a given graph G1 are also optimal for another graph G2 and, in
this case, under which conditions this happens?
A detailed analysis which answers to this question is present in [14]. Before looking at
the result Galda et al. [14] got, let’s define the so called Transferability of parameters:
given the optimal parameters for a small ”donor” graph, the transferability of parameters
is defined as the usage of the optimal parameters of the donor graph to prepare the
QAOA state which maximizes the expectation value of the same hamiltonian on a larger
”acceptor” graph
The exploitation of quickly computable parameters, which are optimal for the donor
graph and are also optimal or near-optimal for the acceptor graph, may lead to a dramatic
reduction of the time required to compute the optimal parameters for the acceptor graph
which, in principle, is the graph of interest. This can be seen as a sort of trick to speed
up the computation.
In order to find out, if there is, a rule capable to predict when the transferability is good
or bad between two graphs, it is important to understand if there is a pattern in the
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location of maxima and minima in the cost function, or, equivalently, energy, landscape
of the subgraphs of regular graphs. Fig. 2.7 shows the energy landscape of the subgraphs
of 3-, 4- and 5-regular graphs as a function of angles γ and β. As one can notice, maxima
and minima are located approximately in the same position among subgraphs of 3- and
5-regular graphs while only half of them match the corresponding maxima and minima
of subgraphs of 4-regular graphs. However, for what subgraphs of 4-regular graphs only
is concerned, maxima and minima are close between themselves. These observations led
to the following three conjectures [14]:

• Optimized parameters can be successfully transferred between any two random
d-regular graphs;

• Optimized parameters can be successfully transferred between two random d1- and
d2-regular graphs provided that d1 and d2 have the same parity, i.e. both even or
odd;

• Optimized parameters cannot be successfully transferred between two random d1-
and d2-regular graphs when d1 is even and d2 is odd or viceversa.

A simple test of these three conjectures is shown in fig. 2.8. This heatmap represent the
transferability coefficient, which is an indicator of good or bad transferability, between
all the p = 1 subgraphs of d-regular graphs with d ranging from 1 to 8. The transfer-
ability coefficient has been computed by optimizing the parameters (γ, β) on the donor
subgraph, from which the parameters are being transferred, starting from 20 different
random instances, and evaluating the ratio between the average expectation value of
the cost function using each of the 20 couples of optimized parameters on the acceptor
subgraph and the maximum energy contribution of the acceptor subgraph in the same
optimization procedure. The main result is that the transferability is very good between
subgraphs of even or odd regular graphs while the transferability is bad across subgraphs
of even and odd regular graphs. What has been shown by Galda et al. [14] is a partial
analysis. Further studies of the transferability at larger p are required. However, the
observations are compatible with the ones of Brandao et al. [4] shown in fig. 2.9. Here,
the expectation value of 25 different 3-regular graphs with 20 nodes each and a verified
MaxCut value of 26 has been evaluated using 3 sets of parameters for each p: the first
one is chosen such that the cost function value is low; the second one is randomly chosen
and the third one is chosen to give a high cost function expectation. The analysis has
been repeated for each p ranging from 2 to 8.
It is straightforward to notice that the standard deviation of the expectation is very low
compared to the average cost function value. This means that each set of angles (γi, βi)
gives approximately the same expectation value of the cost function for each graph in-
stance. Therefore, at least for 3-regular graphs, the transferability of parameters between
random graphs is good.
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An example of how transferability can be exploited to evaluate large graphs starting
from optimal parameters for small graphs is provided in [4]. Brandao et al. generated
a random 10-nodes 3-regular graph and optimized the 16 parameters at p = 8 starting
from 200 random instances and the best set of angles was kept. The approximation
ratio they found was 0.984. These angles has been used to evaluate 25 random 3-regular
graphs with 24 vertices. The average approximation ratio was 0.934 with a standard
deviation of 0.014. The optimal parameters for the 10-node graph were quasi-optimal
for all the 25 24-nodes graphs. Because no optimization was performed on the larger
graphs, the computational time was severely reduced and the quality of the solution was
still considerable.

Figure 2.7: Energy landscape of the p = 1 subgraphs of 3- (top row), 4- (middle row) and
5- (bottom row) regular graphs as a function of QAOA parameters [14]. Energy maxima
and minima are located approximately in the same position among the subgraphs of 3-
and 5- regular graphs. For subgraphs of 4-regular graphs, maxima and minima are still
located in the relative vicinity between themselves though only half of them match the
ones of subgraphs of 3- and 5-regular graphs.
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Figure 2.8: Transferability heatmap between all subgraphs of d-regular graphs with d
ranging from 1 to 8 and p = 1 [14]. Blue and red values represent good and bad
transferability, respectively. Good transferability is observed between subgraphs of odd
or even regular graphs while a bad transferability is observed across subgraphs of odd
and even regular graphs
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Figure 2.9: Mean and standard deviation of objective function values across 25 random
20-nodes 3-regular graph instances each of them having a MaxCut value of 26 [4]. For
each p there are 3 sets of fixed parameters. The first is chosen to give a low cost function
value, the second is randomly chosen and the third is chosen to make the cost function
high.

2.3 Connection with the Quantum Adiabatic Algo-

rithm

The Quantum Approximate Optimization Algorithm originates from the Quantum Adi-
abatic Algorithm (QAA) [11]. Before analyzing the connection between these two vari-
ational algorithms, it is important to recall two milestones of quantum mechanics and
quantum information: the quantum adiabatic theorem [5] and the Trotter’s decomposi-
tion [34].

The Quantum Adiabatic Theorem

Consider a time-dependent hamiltonian H(s) where s ∈ [0, 1] and it is defined as s = t
T

with t ∈ [0, T ] the time parameter and T the total evolution time.
The Quantum Adiabatic Theorem, according to [5], states that:
Suppose H(s) is an hamiltonian which has a non-degenerate ground state for any s ∈
[0, 1], and suppose that the total evolution time T satisfies

T ≥ 2

ε

[
c1
||Ḣ(0)||
∆(0)2

+ c1
||Ḣ(1)||
∆(1)2

+

∫ 1

0

ds

(
(3c21 + c1 + c3)

||Ḣ(s)||2

∆(s)3
+ c2
||Ḧ(s)||
∆(s)2

)]
.

(2.29)
Then the evolution of the initial state |ψ(0)⟩ = |ϕ(0)⟩ under the Schrödinger equation
(1.6) produces a final state |ψ(1)⟩ satisfying

|||ψ(1)⟩ − |ϕ(1)⟩|| ≤ ε (2.30)
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for some constant c1, c2, c3. |ψ(s)⟩ is defined as the actual state of the system and
|ϕ(s)⟩ is the instantaneous ground state of H(s). ∆(s) is the gap between the smallest
eigenvalue E(s) of H(s) and the nearest distinct eigenvalue of H(s) [5].

The Trotter’s decomposition

The proof of the Trotter’s theorem [27] [34] has been shown in detail in sec. 1.6.1. For
the sake of completeness of the current discussion, here we report only the statement:
Given an hamiltonian H = A+ B where [A,B] ̸= 0, the evolution of a system under H
for a time t can be written as

eit(A+B) = lim
N→∞

(
ei

t
N
Aei

t
N
B
)
. (2.31)

The quantum adiabatic algorithm [11] is designed to find the optimal solution of a given
problem exploiting the quantum adiabatic theorem. The QAA starts by putting the
system in the ground state of an hamiltonian B and slowly changes the hamiltonian
until it reaches the problem hamiltonian C, which does not commute with B. The
instantaneous hamiltonian can be written as

H(t) = (1− t/T )C + (t/T )B (2.32)

where T is the total evolution time. The quantum adiabatic theorem ensures that, if T
is sufficiently large, the system will be found in the ground state of C. Now, let’s set
B as in eq. (2.3), C as in eq. (2.1) and the initial state as in eq. (2.5). Leveraging
Trotter’s decomposition formula, we can discretize the adiabatic evolution of eq. (2.32)
by alternately applying evolution operators U(C, γ), U(B, β) to obtain the final state
|γ,β⟩, which is the final QAOA state. Looking from this perspective, the sum of the
angles is the total time T . We want angles to be small, so that the QAOA resembles the
adiabatic evolution, and the evolution time to be large, which forces p to be large. In
other words, we can always find a set of angles (γ,β) and a depth p such that we make
the expectation value of the cost function C, previously defined as Fp(γ,β) in eq. (2.7),
close to its maximum Mp as desired.
A remarkable difference between QAA and QAOA is that QAA works by producing a
state with a large overlap with the optimal bitstring. On the contrary, QAOA produces
a state whose energy is close to the maximum, but the overlap between this state and
the best one in terms of energy may be very small. This different behavior of the two
algorithms is due to the fact that QAA works by leveraging the quantum adiabatic
theorem [5] described above which directly controls the evolution of an initial state,
which is already the ground state of a given hamiltonian, towards the ground state of
the final cost hamiltonian. The QAOA, instead, exploits the Trotter’s formula but the
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quantity which undergoes optimization is the energy, i.e. the expectation value of the
cost function. As a consequence, if the QAOA algorithm does not perfectly succeed, it
will find a state whose energy is close to the maximum, but nothing guarantees that the
state itself is geometrically close to the ground state, i.e. that it has a large overlap with
the vacuum.
The overlap between two states |ψ⟩ and |ϕ⟩ is measured by computing the squared
modulus of the scalar product between the states and it’s called fidelity :

F (|ψ⟩, |ϕ⟩) = |⟨ψ|ϕ⟩|2 (2.33)

This quantity will play a crucial role in the determination of the success or failure of an
optimization procedure of the QAOA.

2.4 Classical optimizers

Hitherto we have stressed that, in order to optimize the QAOA parameters, a classical
optimizer coupled to the quantum circuit is required. There are plenty of classical opti-
mization algorithms, each of them having its own peculiar features. A first classification
of optimization algorithms can be made by splitting them into local optimization algo-
rithms and global optimization algorithms. A general description of the main algorithms
is provided in the following sections [12]. A technical analysis of all of them is, instead,
beyond the scope of this work.

2.4.1 Local optimization algorithms

Local search algorithms are designed to find the maximum or minimum (suppose for
the sake of simplicity to be a minimum) of an objective function f(x), where x is a
parameter vector, whose energy landscape is, roughly speaking, ”simple”, meaning that
only a single minimum is present in the search space i.e. local minima are absent.
From another perspective, we may think a local optimizer as an algorithm which is able
to locate a local minimum within a small region of the whole search space, where, in
principle, other local minima and a global minimum are present.
Some local search algorithms require the evaluation of the gradient of the cost function,
while others do not. The former are called gradient-based algorithms while the latter are
called gradient-free algorithms.

Gradient-based algorithms

Gradient-based algorithms compute the gradient of the objective function in order to
find a search direction at a given point on which an improvement in terms of energy is
expected. On this direction a new point to evaluate the cost function is selected. At the
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new point, the energy is smaller (remember that our goal is to minimize the objective).
This is the idea of the simplest gradient-based algorithm which is theGradient descent. In
some cases, the calculation of the derivatives of f(x) may be computationally demanding.
On the other hand, gradient-based algorithms are preferred when the search space is
large. The main gradient-based algorithms, which refine the idea of the gradient descent
are listed below [12]:

• Adam [18] is a stochastic gradient descent algorithm with adaptive learning rate
which helps dampening oscillations and accelerating the whole procedure. It is
suitable for non-stationary objective functions and requires little memory

• AMSGRAD [36] is a variant of the Adam. It uses long-term memory of past
gradients to improve convergence properties

• SPSA(Simultaneous Perturbation Stochastic Approximation) [32] is suit-
able for objective functions with multiple unknown parameters. Its main feature
is the gradient approximation which requires only two measurements of the cost
function regardless the dimension of the objective.

• CG(Conjugate Gradient) [26] uses only first derivatives to compute an improv-
ing approximate solution x for an objective function which can be written as

f(x) =
1

2
xTAx− xT b (2.34)

where A is a matrix and b is a vector. Minimizing f(x) is equivalent to solve the
equation

Ax = b. (2.35)

• TNC(Truncated Newton) [8] is a more sophisticated version of CG. It computes
the search direction dk by applying CG to solve

∇2
xxf(xk)dk = −∇f(xk) (2.36)

• L-BFGS-B(Limited-memory BFGS Bound) [22] belongs to the class of quasi-
Netwon methods. It uses the first derivative of f to compute the steepest descent
direction and an approximated inverse hessian matrix which is stored in little mem-
ory. It is suitable for problems involving several variables

• SLSQP(Sequential Least SQuares Programming) [23] involves BFGS method
to minimize a function with any combination of equality and inequality constraints.
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The search direction is computed solving the quadratic subproblem

min
d
f(xk) +∇f(xk)Td+

1

2
dT∇2

xxL(xk, λk, σk)d (2.37)

such that b(xk) +∇b(xk)Td ≤ 0 (2.38)

and b(xk) +∇b(xk)Td = 0 (2.39)

where L(x, λ, σ) = f(x)− λb(x)− σc(x) for a single equality and single inequality
constraints problem

Gradient-free algorithms

In some optimization problems, the information about the derivative of f(x) may be
unavailable or expensive to obtain in terms of computational resources because the ob-
jective itself is noisy or non-smooth. In these cases, gradient-based algorithms cannot
provide any relevant utility as they rely on derivatives or finite differences. Therefore,
gradient-free algorithms, which do not compute any derivative, are favorable. The main
gradient-free algorithms are [12]:

• COBYLA(Constrained Optimization BY Linear Approximation) [30] com-
putes the expectation of the objective function at the vertices of a trust region,
which is a simplex, in its mathematical meaning, in N dimension, where N is the
number of variables of the problem. A linear polynomial is then used to create an
interpolation of the objective function. The same is done for the constraints

• Nelder-Mead [15] is a direct search method which initially evaluates the objective
in N +1 test points arranged at the vertices of a simplex. It then computes a new
test point where the function is going to be evaluated and, if the expectation value
is better than at least one of the old test point, it replaces that point with the
new test point. This is repeated until convergence. This method is suitable for
problems whose objective varies smoothly and is unimodal

• Powell [30] method is a conjugated search method which finds local minima of a
real-valued function of N real-valued inputs. The algorithm starts from a point
x0 on which the objective is evaluated and defines N search vectors, typically the
normals {s1, ..., sN} aligned with each axis. It then performs a bi-directional search
along each vector si. The minima found during each bi-directional search are

x0 + s1α1, x0 +
2∑
i=1

siαi, ..., x0 +
N∑
i=1

siαi (2.40)

where the scalars αi are obtained during the search procedure. The point x0 +∑N
i=1 siαi is the new point to start a new bi-directional search. This is repeated

until convergence
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2.4.2 Global optimization algorithms

Global optimization algorithms are devised to search for the global optimum of an ob-
jective function f(x) whose landscape is populated by other local optima. When this
happens, it is very tricky for a local optimizer to correctly identify the global minimum
as it’ll probably get stuck in some local minima. A global search is then required. Un-
like local optimizers, for which the techniques to solve the problem rely on similar basic
ideas, the strategies may be completely different and, in general, there are a few if any
grantees that the algorithm will locate the global optimum. However, when the energy
landscape is too complicated to handle for a local optimizer, global search algorithms
are very useful and powerful tools. A global search often imply the evaluation of some
candidate solutions from which new candidates are generated and kept if there is an
improvement. Some global optimizers are listed below.

• Differential Evolution(DE) [9] [31] is based on population breeding and recom-
bination. Given an N -dimensional search space, DE starts by choosing a popula-
tion of M points in which the cost function is evaluated picking the best one, xbest.
After that, for each population’s member, a ”mutant” point is created in this way:

xmutant = xbest + F (x1 − x2) (2.41)

where F is called mutation factor and x1, x2 are chosen randomly among the mem-
bers. In the recombination phase some parameters of the member are replaced by
the mutant’s ones according to a several possible strategies. Finally, if the cost
function is lower in the modified target the point is kept, otherwise it’s discarded.
This is repeated until convergence

• Bayesian Optimization Algorithm [35] is made out of three phases. The
warmup phase is the same of DE, a set of points X = {θj}Mj=1 is chosen and

the best is picked. In the kernel optimization phase the hyperparameters (σ̃, l̃) are
fixed in order to minimize the likelihood function

log p(y|Θ) = −1

2
yT ·K−1 · y − 1

2
log detK− N

2
log 2π (2.42)

where Θ = (θ1, ...,θN) is the design matrix, y is the observation vector and K is
the covariance matrix whose elements are

k(θ,θ′) = σ2

(
1 +

√
3||θ − θ′||2

l

)
e−

√
3||θ−θ′||2

l (2.43)

where || · ||2 indicates the 2-norm. The final step consists in the proposal of a
new point θ′ to evaluate the cost function such that the expected improvement is
maximized. The point θ′ is added to the dataset and the procedure is repeated
until convergence
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• Basin-hopping [39] is a stochastic global search algorithm. It combines local op-
timization with a global-like perturbation of the candidate solution. In particular,
given the starting point x, the algorithm purpose a new candidate solution x′ which
is then perturbed. The perturbation allows to hop from the current basin of the
landscape to another one, where a global optimum may be present. The perturbed
candidate solution is accepted with a probability which depends on a ”tempera-
ture” parameter which is lowered at each step so that, at the very beginning of the
optimization routine, jumps across different basins are more probable while, at the
end, the algorithm becomes more and more selective

• Simulated Annealing [43] has some similarities with the Basin-hopping algo-
rithm. In fact, the main idea is to purpose a new candidate solution located in the
neighborhood of the starting point and accept that solution with a probability re-
lated to a decreasing ”temperature” parameter. Nonetheless, unlike basin-hopping,
the acceptance probability depends also on the energy difference between the start-
ing and the candidate points and no local optimization is performed

2.4.3 Comparison between global optimizers

A comparison of the performances of the four global optimizers described in the previous
section is presented in [35]. Tibaldi et al. asked the optimizers to solve the MaxCut
problem for the 10 nodes graph in fig. 2.10. The outcome of their analysis is depicted in
fig. 2.11. In particular, panel (a) shows the number of calls Nc to the quantum circuit
as a function of the circuit depth p to get the same approximation ratio of the Bayesian
optimizer. Panels (b) and (c) show, instead, the complement to 1 of the approximation
ratio 1−R and the fidelity F as a function of the number of optimization steps, averaged
over 30 runs, where p = 7. It is evident that the Bayesian optimizers outperforms the
other algorithms from every point of view. In fact, it is capable to achieve a higher
approximation ratio (or a smaller 1 − R, equivalently) and a higher fidelity than other
algorithms, being equal the number of steps. The other three optimizers need a much
larger number of steps to reach the same approximation ratio. The Differential Evolution
is, on the contrary, the worst in the large steps limit, reaching the smallest approximation
ratio and fidelity among the set of tested algorithms.
Another interesting feature of bayesian optimizer is worth to be highlighted. Fig. 2.12
shows the approximation ratio and the fidelity got for the same MaxCut problem as
before as a function of the number of measurements (or shots) Ns performed at the end
of QAOA to reconstruct the final state. 1/Ns = 0 corresponds to the approximation
ratio and fidelity got by means of an exact simulation, i.e. without performing any
measurement but taking the vector form of the final QAOA state. The remarkable point
consists in the fact that in passing from Ns = 1024 to Ns = 128 the approximation ratio
reduces of only the 5% and the same occurs passing from Ns = 128 to Ns = 16. The
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relatively small number of shots needed to reconstruct the quantum state could be seen
as a massive asset from the perspective of an application of the QAOA on NISQ devices,
since it allows to reduce the computational effort needed to reconstruct the final solution.

Figure 2.10: 10 nodes graph used to compare the performances of global optimizers in
[35]

Figure 2.11: (a) panel shows the number of calls Nc to the quantum circuit for the
Bayesian optimizer, the Basin-Hopping, the Simulated Annealing and the Differential
evolution in order to obtain the same approximation ratio of the Bayesian algorithm
as a function of the circuit depth [35]. (b) and (c) panels display the complement to
1 of the approximation ratio, i.e. 1 − R, and the fidelity F got by the aforementioned
four optimizers averaged over 30 runs for p = 7 as a function of the number of the
optimization steps, respectively. Those data refers to the solution of the graph in fig.
2.10
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Figure 2.12: Approximation ratio (plotted as 1 − R) and fidelity obtained by perform
Ns measurements of the final QAOA state for the same MaxCut problem on the graph
of fig. 2.10 [35]. 1/Ns = 0 correspond to the approximation ratio and fidelity got with
exact simulations. Taking Ns = 128 shots reduces the approximation ratio only of a 5%
with respect to Ns = 1024 and the same occurs passing from Ns = 128 to Ns = 16

2.4.4 Initialization strategies

As mentioned in the previous section, local optimizers may get trapped in local min-
ima when the energy landscape is populated by many local peaks. Furthermore, when
the problem involves a lot of qubits or the circuit depth becomes considerable, an ad-
ditional annoying issue comes out: the presence of barren plateaus in the landscape.
Barren plateaus are regions where the gradient of the objective function becomes neg-
ligible, hindering local optimizers in performing their task [1]. In order to avoid these
inconvenients, several initialization strategies have been developed [20][21][24]. The term
”initialization strategy” means an elaborate way to initialize the QAOA parameters with
the idea of massively reducing the probability of failure of the optimization procedure.
Most of the initialization strategies are depth-progressive, meaning that the initial pa-
rameter at depth p are computed starting from the optimal parameters at depth p− 1.
The most recent initialization strategies are listed below:

• Parameters fixing strategy(PFS) [20] works as follows:

1. Start from p = 1 and choose two random parameters (γ1, β1);

2. Optimize the two parameters at p = 1;

3. Repeat until the desired depth:

(a) Generate M = O(10) random instances of two additional parameters at
depth p+ 1, (γp+1, βp+1);

67



(b) For each instance, evaluate the expectation of the objective using the
parameters (γ1, β1, ..., γp+1, βp+1) and choose the best;

(c) Optimize the full list of parameters.

The parameters fixing strategy, as will be discussed later on, provides a very high
quality solution. The drawback is the considerable amount of computational re-
sources required to perform such a routine

• Layerwise approach [21] is similar to PFS but there is one fundamental difference
which negatively affects the solution quality: only the last two parameters are
optimized at each depth step. The main advantage of this procedure is the time
saving in running the algorithm

• Bilinear strategy [21] works as follows:

1. Choose random angles and find the optimum for p = 1 and p = 2. In order
to do this one may follow the same steps of PFS up to p = 2;

2. Start from p = 3 and repeat until the desired depth:

(a) Define ∆p
j,j−1 = ϕpj − ϕ

p
j−1;

(b) Define ∆p,p−1
j = ϕpj − ϕ

p−1
j ;

(c) ∀j ≤ p− 2, ϕpj = ϕp−1
j +∆p−1,p−2

j ;

(d) ϕpp−1 = ϕp−1
p−1 +∆p−1,p−2

p−1 ;

(e) ϕpp = 2ϕpp−1 − ϕ
p
p−2;

(f) Optimize the full set of parameters.

The symbol ϕpj stands for the j-th γ or β parameter at depth p. Since the initial
parameters are computed directly from optimal parameters at depth p− 1 without
querying the quantum circuit, the computational time is expected to be smaller
than that needed by PFS

• INTERP algorithm [24] takes its name by the fact that the optimal parameters
at depth p are interpolated in order to generate the initial parameters at depth
p+ 1. The procedure works as follows:

1. Start by choosing a guess for p = 1 parameters (γ1, β1);

2. Optimize p = 1 parameters;

3. Repeat up to the desired depth:

(a) ∀j ≤ p+ 1, ϕp+1
j = j−1

p
ϕpj−1 +

p−j+1
p

ϕpj

(b) Optimize the above parameters

68



2.4.5 Performances of initialization strategies

In this section we’ll analyze the performance of the aforementioned initialization strate-
gies in various scenarios.

Approximation ratio

The parameters fixing strategy has been compared to a random start routine on the solu-
tion of the MaxCut problem on the whole set of 3-regular graphs with n = 6, 8, 10, 12, 16,
though the total number of instances is not clearly specified [20]. The results are shown
in fig. 2.13 where the average approximation ratio, taken as the mean of the approxi-
mation ratio got for every graph instance, is plotted as a function of the circuit length.
The local optimizer chosen was Nelder-Mead. The approximation ratio increases with p
when PFS is applied. On the contrary, a random start approach cannot guarantee such a
monotonic behavior of the approximation ratio. Furthermore, at large p, the approxima-
tion ratio is clearly better when using PFS and it approaches 1. The standard deviation
related to the average appoximation ratio is, instead, showed in fig. 2.14. At large p the
standard deviation decreases, meaning that the algorithm is capable to correctly identify
a near-optimal solution in most of the graph instances.
The bilinear strategy, which has been developed later than PFS, has been compared to
both PFS and the layerwise approach in terms of both approximation ratio and required
computational resources on 20 instances of 3-regular graphs and 11 instances of 4-regular
graphs [21]. The optimizer used in this analysis was L-BFGS-B. The results are shown
in fig. 2.15. The approximation ratio got using the bilinear strategy matches the one
obtained with PFS. A remarkable difference between the two strategies is clearly visible
in panel (c) and (d) of fig. 2.15. As one can notice, the number of optimization steps
nfev required by the bilinear strategy is significantly smaller compared to PFS. For what
layerwise approach is concerned, the average approximation ratio is smaller than the one
obtained with the other two methods. As mentioned in the previous section, because
in the layerwise approach only the last two parameters are optimized in each step, it
is expected that this method does not achieve the desired solution quality though the
computational time needed for the optimization is, of course, smaller than that needed
by the other two approaches for sufficiently large p.

Smooth optimal solutions

Typically, when applying such depth-progressive initialization strategies, the optimal
solutions come out to be ”smooth” in the layer index. The analysis performed by Mele
et al. [24] shows exactly this peculiar feature of optimal solutions obtained via INTERP
for the ground state preparation of Heisenberg XYZ and longitudinal transversal field
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Ising model (LTFIM) whose hamiltonians are:

HXY Z =
N∑
j=1

(σxj σ
x
j+1 +∆yσ

y
jσ

y
j+1 +∆zσ

z
jσ

z
j+1) (2.44)

HLTFIM =
N∑
j=1

σzjσ
z
j+1 + gx

N∑
j=1

σxj + gz

N∑
j=1

σzj (2.45)

with ∆y,∆z, gx, gz > 0. The initial p = 1 parameters have been chosen to be (γ1, β1) =
(0.1, 0.1) in every analysis, including the one presented in the following paragraph, since
the authors verified that this choice allows a convergence to a well-defined minimum in
the p = 1 search space. Smooth optimal solution for both models with p = 16 and
different system sizes are shown in fig. 2.16.
The optimal solutions are not only evidently smooth in the layer index, but the smooth-
ness can be also seen when comparing two lines referring to two neighbor system sizes,
e.g. N = 16 and N = 14, or N = 12 and N = 10. The two lines are, in fact, almost
overlapping each other. The increasing or decreasing trend of the smooth parameters is,
instead, dictated by the model.

Transferability to larger graphs

Still in the context of INTERP strategy [24], the optimal solutions remain almost the
same varying N , suggesting a good transferability to larger systems. This type of trans-
ferability presents a main difference with the one discussed in sec. 2.2.4. In fact, transfer-
ring optimal parameters to a larger graph, with the idea of speeding-up the computation,
can be actually seen as a process where what changes is the number of vertices of the
graph but not its substantial nature, since we are still handling rings. However, because
the donor small graph and the larger acceptor are still 2-regular graphs, the inferences
related to a good transferability of parameters discussed in sec. 2.2.4 keeps holding.
Furthermore, transferring optimal smooth solutions to systems with different size allows
to avoid barren plateaus in the energy landscape as proved in [24]. Fig. 2.17 shows
the average gradient evaluated around the optimal smooth solution found for an N = 8
system, precisely in the ϵ-neighborhood of the solution, with ϵ = 0.05 and globally, as the
average of the gradient in 1000 random points of the search space. The global gradient
exponentially decreases as N gets larger and this represents the evidence of the presence
of barren plateaus in the landscape. On the contrary, around transferred smooth solution
the gradient is almost constant at a non-zero value as p gets larger and decreases very
slowly with N . As a consequence, a local optimization procedure on the larger system
would probably succeed. Smooth solutions can be exploited as an educated guess for a
further refinement optimization.
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Figure 2.13: Mean approximation ratio as a function of the circuit depth for both the
random start procedure and the parameters fixing strategy for the solution of MaxCut
on the whole set of 3-regular graphs with n = 6, 8, 10, 12, 16 [20]. The mean value is com-
puted by averaging the approximation ratio got for every graph instance. Approximation
ratio is clearly better when PFS is applied. Moreover, the random start routine does not
guarantee that increasing the depth leads to a larger approximation ratio. When PFS is
applied, instead, the behavior of the approximation ratio is monotonic
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Figure 2.14: Standard deviation of the approximation ratio in with parameters fixing
strategy [20]. The standard deviation decreases when p is large, that is to say, when the
average approximation ratio approaches 1. Therefore, at large p, the algorithm becomes
more capable to identify the best solution in most graph instances

Figure 2.15: Comparison of the results of PFS, layerwise approach and the bilinear
strategy on 20 random instances of 3-regular graphs and 11 instances of 4-regular graphs
[21]. Blue dots refer to PFS, the orange line represents the bilinear strategy and the green
line stands for layerwise approach. nfev is the number of optimization steps required by
L-BFGS-B to locate the optimal solution. The approximation ratio obtained using the
bilinear strategy matches the one obtained with PFS, though the computational time
needed by the bilinear is much smaller compared to the time needed by PFS. Layerwise
approach required a low computational time as low is the quality of the solution
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Figure 2.16: Optimal smooth solution (γ∗,β∗) for both the Heisenberg and the LTFIM
models with p = 16 and different system sizes obtained via INTERP [24]. On the x-axis
the index m̃ = (m− 1)/(p− 1) is plotted where m is the layer index which ranges from
1 to p

Figure 2.17: Single partial derivative of the cost hamiltonian in eq. (2.44,2.45) with
respect to the parameter α1 [24]. The derivative has been evaluated both in the ϵ-
neighborhood (with ϵ = 0.05) of the transferred smooth solution (denoted as ”smooth”)
and globally, averaging the gradient in 1000 points all around the search space (denoted
as ”global”). The parameters used here are the optimal ones for a N = 8 spin chain
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Chapter 3

The Ising model with transverse
field

The XY model, which is a generalization of the simpler one dimensional quantum Ising
model, is a milestone of quantum many body theory because of its rich phase diagram
and the possibility of potentially calculating every single quantity of interest. This model
became fundamental to test new conjectures, ideas and hypotheses including the ones
coming from the world of quantum computation. In our simulations, discussed in the
next chapter, we considered, in fact, the one dimensional Ising model with transverse
field, which is a special subclass of the more general XY model [13].
In this chapter we present a general overview of the XY model listing its main properties,
with a particular focus on the ones useful for our simulation purposes. We then show
how to recover the exact solution of the XY chain by diagonalizing the hamiltonian and
exploiting the Jordan-Wigner and the Bogoliubov transformations. We will then proceed
to analyze the behavior of the spin chain in the ordered and disordered phases, with a
deepening on the possible degeneracy of the ground state. In the second to last section
of the chapter we briefly show how to compute the correlation functions. The very last
section is designated to illustrate the specific model we worked in our simulations, i.e.
the Ising model with transverse field, providing a brief overview of the most interesting
properties for what quantum simulations is concerned.

3.1 General overview

The one dimensional XY model is the simplest non-trivial integrable model and its
excitations are non-local free fermions. The two parameters which characterize the model
are called γ and h. The former encodes the anisotropy of the interaction while the latter
represents the external magnetic field. The phase diagram presents two quantum phase
transitions: one belonging to the universality class of the Heisenberg chain, where γ = 0,
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Figure 3.1: Phase diagram of the XY model [13]. The quantum phase transitions are
located at the γ = 0 line and at the critical magnetic field h = 1. For γ = 1 we recover
the 1D Ising model with transverse field

|h| ≤ 1 and the model reduces to the XX model, and the second one belonging to the
universality class of the Ising model, i.e. a simple Ising transition, where |h| = 1. We’ll
focus on the sector of the phase diagram where γ, h ≥ 0, therefore dropping the sidebars
of the absolute value for the magnetic field.
The hamiltonian of the XY model is displayed below:

H =
J

2

N∑
j=1

[(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ
2

)
σyjσ

y
j+1 + hσzj

]
. (3.1)

From now on, we will set J = −1, thus considering a ferromagnetic interaction.
The spins interact anisotropically with their nearest neighbors and with an external
magnetic field on the ẑ direction.
The model has two fundamental symmetries:

• A rotation of an angle π/2 about the ẑ axis interchanges the roles of x and y and
is equivalent to reverse the sign of γ, i.e. γ → −γ;

• A reflection of the spin across the x− y plane is compensated by reversing the sign
of h, i.e. h→ −h.

It is straightforward to notice that the 1D Ising model can be recovered when γ = 1.
Fig. 3.1 shows the phase diagram of the XY model. The two quantum phase transitions
are located at the isotropic line γ = 0, h ≤ 1 and on the critical magnetic field h = 1.
The critical line, in particular, splits the phase diagram into two different regions: the
disordered phase and the ordered phase. In the disordered phase the ground state is
non-degenerate in the thermodynamic limit, while in the ordered region it is doubly-
degenerate. The order parameter of the transition is the magnetization along the x̂ axis,
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⟨σx⟩. It is identically zero in the disordered phase and non-vanishing mx in the ordered
phase. Consider the point where (γ, h) = (1, 0), i.e. the Ising model with no field.
Assuming period boundary conditions, the two ground states in the ordered phase are:

|GS⟩1 = | →→→ ...⟩ =
N∏
j=1

1√
2
(| ↑j⟩+ | ↓j⟩)

|GS⟩2 = | ←←← ...⟩ =
N∏
j=1

1√
2
(| ↑j⟩ − | ↓j⟩) (3.2)

where the states | ↑j⟩ and | ↓j⟩ indicate the single spin state with positive or negative
projection onto the ẑ axis, respectively. In these states ⟨σx⟩ = ±1. The exact degeneracy
of the ground state is present only in the thermodynamic limit while for chains of finite
length there is still an energy gap between them. However, the factorized form of the
degenerate ground state is preserved on the line γ2 + h2 = 1 represented in blue in fig.
3.1. In fact, they can be always written as:

|GS⟩1 =
N∏
j=1

(cos θ| ↑j⟩+ sin θ| ↓j⟩)

|GS⟩2 =
N∏
j=1

(cos θ| ↑j⟩ − sin θ| ↓j⟩) (3.3)

where cos2(2θ) = 1−γ
1+γ

. The peculiarity of this line is that the degeneracy is exact for
any length of the chain. On the bicritical point, i.e the intersection point between the
isotropic and the critical line (γ, h) = (0, 1), the energy spectrum becomes perfectly
quadratic.
Now let’s look at the step-by-step solution to algebraically recover these interesting
features [13].

3.2 Diagonalization of the hamiltonian

Since we are treating a one-dimensional spin chain, we can exploit the so called Jordan-
Wigner transformations which map a spin chain into a chain of spinless fermions. The
reason behind the employment of these transformation is that it is not convenient to
work directly with spin variables because they are fermionic but commute bosonically
between different sites. The price to pay is that the mapping is highly non-local.

3.2.1 Jordan-Wigner transformations

First of all, define:
σ± = (σx ± iσy)/2 (3.4)
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Then proceed to define new fermionic variables ψj such that:

σ+
j = eiπ

∑
l<j ψ

†
l ψlψj =

j−1∏
l=1

(
1− 2ψ†

lψl

)
ψj

σ−
j = ψ†

je
−iπ

∑
l<j ψ

†
l ψl =

j−1∏
l=1

(
1− 2ψ†

lψl

)
ψ†
j

σzj = 1− 2ψ†
jψj (3.5)

Jordan-Wigner transformations map a spin up into an empty site and a spin down into an
occupied site. The non-local part of the transfromation is called Jordan-Wigner string
and fixes the anticommutation relation between sites of the spinless fermions chain,
breaking also the translational invariance of the model by selecting site 1 as the starting
point of the chain. The Jordan-Wigner string, i.e. the sum in the exponent in eq. (3.5),
counts the number of fermions at the left with respect to site j. Rewriting the whole
hamiltonian in terms of these new fermionic variables we get:

H = −1

2

N−1∑
j=1

(
ψ†
jψj+1 + ψ†

j+1ψj + γψ†
jψ

†
j+1 + γψj+1ψj

)
+h

N∑
j=1

ψ†
jψj −

hN

2
+
µxN
2

(
ψ†
Nψ1 + ψ†

1ψN + γψ†
Nψ

†
1 + γψ1ψN

)
(3.6)

where µxN is defined as

µxN =
N∏
j=1

(
1− 2ψ†

jψj

)
=

N∏
j=1

σzj (3.7)

and it’s called parity operator. For the sake of clarity, the parity is defined as the
evenness/oddness of the number of fermions in the chain. If the chain contains an even
number of fermions, µxN = 1, otherwise it is −1.
Let’s focus our attention for a while on the hamiltonian in eq. (3.6). The first two terms
in the sum describe fermions hopping on a lattice and are hence called hopping terms.
The latter two terms are the interaction terms. They’re superconducting-like terms
which create or destroy fermions in pairs. The terms multiplied by µxN is the boundary
term and can be disregarded in the thermodynamic limit. Nevertheless, it is important
to establish the degeneracy of the model in the ordered phase. It is straightforward to
notice that, if γ ̸= 0, and, by the way, this is true also in the particular case of the Ising
model with transverse field, the hamiltonian does not conserve the number of fermions.
However, since fermions are created/destroyed in pairs, the total parity of the chain is
invariant. As a consequence,

[µxN , H] = 0. (3.8)
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This peculiarity allows us to give separate descriptions of the system when the parity is
even/odd. In particular, the hamiltonian can be written as:

H =
1 + µxN

2
H+ +

1− µxN
2

H− (3.9)

where H± have the same form as in (3.6) with µxN = ±1, respectively.
In order to satisfy the boundary terms, we must impose antiperiodic boundary conditions
in the even particle sector and periodic boundary conditions in the odd particle sector,
i.e.:

ψ
(+)
j+N = −ψ(+)

j

ψ
(−)
j+N = ψ

(−)
j . (3.10)

Each sector is governed by the same hamiltonian but the Fock space is different due to
the different boundary conditions.

3.2.2 Fourier transform

The next step is to Fourier transform the hamiltonian. In order to take into account
the different boundary conditions each sector is governed by, we will sum over integers
in the odd particle sector and over half-integers in the even particle sector. The Fourier
index is therefore moving in the following ranges:

q ∈ 1

2
,
3

2
, ..., N − 1

2
µxN = +1

q ∈ 0, 1, ..., N − 1 µxN = −1. (3.11)

Now we are able to rewrite the Jordan-Wigner variables as Fourier sums in this way:

ψ
(±)
j =

1

N
ei

π
4

∑
q∈Γ±

ei
2π
N
qjψq

ψq = e−i
π
4

N∑
j=1

e−i
2π
N
qjψ

(±)
j (3.12)

where Γ± are the ranges within which q belongs for µxN = ±1, respectively, as displayed
in eq. (3.11). The hamiltonian in Fourier space becomes:

H± =
1

N

∑
q∈Γ±

[
h− cos

(
2π

N
q

)]
ψ†
qψq +

γ

2N

∑
q∈Γ±

sin

(
2π

N
q

)[
ψqψ−q + ψ†

−qψ
†
q

]
− hN

2
.

(3.13)
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3.2.3 Bogoliubov transformations

The next step toward the diagonalization of the hamiltonian is to make use of the Bo-
goliubov transformations which are defined below:

χq = cos θq ψq − sin θq ψ
†
−q

χ−q = cos θq ψ−q + sin θq ψ
†
q (3.14)

where the angle θq, called the Bogoliubov angle, is defined such that it obeys the following
relation:

tan(2θq) =
γ sin(2π

N
q)

h− cos(2π
N
q)
. (3.15)

Basically, the Bogoliubov transformations define new fermionic variables so that the
hamiltonian, in terms of them, becomes diagonal. In fact,

H± =
1

N

∑
q∈Γ±

ε

(
2π

N
q

)[
χ†
qχq −

N

2

]
. (3.16)

The Bogoliubov variables describe so called quasi-particles, behaving as free fermions.
The energy spectrum of quasi-particles is:

ε(α) =
√

(h− cosα)2 + γ2 sin2 α. (3.17)

3.3 Even/odd particle sectors

After diagonalizing the hamiltonian, let’s deepen our knowledge regarding the behavior
of the system in the even and odd particle sectors by highlighting the main features char-
acterizing each sector and emphasizing the differences between them. In particular, we’ll
focus on the ground states and their associated energies in order to understand how they
look like. These in-depth analysis come out to be very useful for the contextualization
of the results we got from the application of the QAOA to the Ising model.

3.3.1 Even particle sector

Since the spectrum is always positive, the ground state is simply defined as the state
which can be annihilated by the destruction operator χq:

χq|GS⟩+ = 0 q =
1

2
, ..., N − 1

2
. (3.18)
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In the state |GS⟩+, where the subscript + refers to the even particle sector, there are no
quasi-particles. The vacuum of quasi-particles, expressed in terms of physical fermions,
becomes:

|GS⟩+ =

(N−1)/2∏
q=0

(
cos θq+1/2 +

1

N
sin θq+1/2ψ

†
q+1/2ψ

†
−q−1/2

)
|0⟩ (3.19)

where the state |0⟩ is the vacuum state of physical fermions, annihilated by the operator
ψq. The ground state energy is, instead:

E+
0 = −1

2

N−1∑
q=0

ε

[
2π

N

(
q +

1

2

)]
N→∞−−−→ −N

2

∫ 2π

0

dq

2π
ε(q) (3.20)

where, in the last expression, the thermodynamic limit is taken.
The Hilbert space is generated by applying creation operators on the ground state. In
order to maintain the parity and remain in the even particle sector, where the number
of quasi-particles should be even, creation operators must be applied in pairs. Each
excitation adds an energy equal to ε(2πq/N). As a remark, the quasi-particles can be
also called elementary excitations.

3.3.2 Odd particle sector

The odd particle sector is more interesting than the even particle sector because of the
presence of zero mode elementary excitations. This causes the splitting of the phase
diagram into the disordered and the ordered phase, which present a different degeneracy
of the ground state. The two phases are separated by the critical line h = 1, across
which an Ising transition occurs.
Intuitively, we may be tempted to define the ground state in the odd particle sector as
the state annihilated by the operator χq where now q runs from 0 to N − 1 in this way:

χq|GS ′⟩− = 0 q ∈ 0, ..., N − 1 (3.21)

but one can consistently reply that this state is not allowed by the constraint of odd
excitations. Therefore, the actual ground state in this sector is the one which involves
the minimum odd number of excitations, i.e. 1, with the minimum energy, i.e. q = 0.
This state has hence the following form:

|GS⟩− =
1√
N
χ†
0|GS ′⟩− =

1√
N
ψ†
0

N/2∑
q=1

(
cos θq +

1

N
sin θqψ

†
qψ−q†

)
|0⟩. (3.22)

The zero mode has to be treated separately. In fact, for q = 0 the superconducting-
like interaction term in the hamiltonian vanishes and the physical fermionic operator
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ψ0 coincides with its corresponding Bogoliubov transform, i.e. χ0. Moreover, the zero
mode excitation carries an energy contribution of exactly h − 1. As a consequence, the
hamiltonian H− has to be written as:

H− = (h− 1)

[
1

N
χ†
0χ0 −

1

2

]
+

N−1∑
q=1

ε

(
2π

N
q

)[
1

N
χ†
qχq −

1

2

]
. (3.23)

The prefactor h− 1 in the hamitonian can be either positive or negative and its sign has
important consequences on the degeneracy of the ground state. Let’s analyze in detail
what happens both in the ordered and in the disordered phases.

Disordered phase

For h > 1:
h− 1 = ε(0) > 0 (3.24)

and therefore the hamiltonian in eq. (3.23) is the same as the one displayed in eq.
(3.16). The Hilbert space is, as well as the one of the even particle sector, generated by
applications of pairs of creation operators such as χ†

qχ
†
q′ or, alternatively, by application

of a creation/destruction pair such as χ†
qχ0, where we’re replacing the zero momentum

quasi-particle with another one with a higher energy.
The states generated in the disordered phase of the odd particle sector and the ones
generated in the even particle sector intertwine in the thermodynamic limit and one can
effectively disregard the separation into the two sectors. The ground state is therefore
non-degenerate in the disordered phase.

Ordered phase

For h < 1:
h− 1 = −ε(0) < 0 (3.25)

and the presence of the zero mode lowers the energy of the system which becomes:

E−
0 =

1

2
(h− 1)− 1

2

N−1∑
q=1

ε

(
2π

N
q

)
N→∞−−−→ −N

2

∫ 2π

0

dq

2π
ε(q). (3.26)

In the thermodynamic limit, the ground state with no excitations |GS⟩+ and the lowest
energy state in this sector, i.e. |GS⟩−, become degenerate since E+

0 = E−
0 . Furthermore,

the gap between |GS⟩+ and |GS⟩− closes exponentially in the system size N . In the
ordered phase, the ground state is then doubly degenerate, meaning that there are two
states with the same minimum energy.
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3.4 Finite temperature behavior and correlation func-

tions

For the sake of completeness of the description of the XY model, a brief discussion about
the finite temperature behavior of the chain and the correlation functions of spins is
presented in this section even though this concepts are not strictly of concern for what
the thesis project is regarded.

3.4.1 Partition function at finite temperature

The partition function at finite temperature for h < 1, i.e. in the ordered phase, is given
by:

Z =
∑

e−βEi =

= 2N−1

{
N−1∏
q=0

cosh

[
β

2
ε

(
2π

N
q +

π

N

)]
+

N−1∏
q=0

sinh

[
β

2
ε

(
2π

N
q +

π

N

)]}

+2N−1

{
N−1∏
q=0

cosh

[
β

2
ε

(
2π

N
q

)]
+

N−1∏
q=0

sinh

[
β

2
ε

(
2π

N
q

)]}
(3.27)

Taking the thermodynamic limit, the free energy per site comes out to be:

F = − 1

β
lim
N→∞

(
− 1

N
lnZ

)
=

= − 1

β
ln 2− 1

πβ

∫ π

0

ln cosh

(
β

2
ε(ω)

)
dω − 1

β
lim
N→∞

1

N
ln

[
1 +

N−1∏
q=0

tanh
β

2
ε

(
2π

N
q

)]
,

(3.28)

where the last term, which encodes the degeneracy of the model, is negligible in the
thermodynamic limit.
In the disordered phase, i.e. when h > 1, similar expressions for both the partition func-
tion and the free energy can be recovered and they are even simpler since the degeneracy
term is not present. They read:

Z = 2N−1

{
N−1∏
q=0

cosh

[
β

2
ε

(
2π

N
q +

π

N

)]
+

N−1∏
q=0

sinh

[
β

2
ε

(
2π

N
q +

π

N

)]}

+2N−1

{
N−1∏
q=0

cosh

[
β

2
ε

(
2π

N
q

)]
−

N−1∏
q=0

sinh

[
β

2
ε

(
2π

N
q

)]}
(3.29)
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F = − 1

β
ln 2− 1

πβ

∫ π

0

ln cosh

(
β

2
ε(ω)

)
dω. (3.30)

From the partition function and the free energy, all the other thermodynamic quantities
can be computed obtaining that the whole thermodynamics of the model is essentially
that of free fermions as expected.

3.4.2 Correlation functions at zero temperature

Since every n-point correlation function can be expressed as a product of 2-point corre-
lation functions by means of the Wick’s theorem, we’ll thus focus our attention to the
latter. Because the destruction operator χq annihilates the vacuum of quasi-particles
|GS⟩ = (|GS⟩+ + |GS⟩−)/

√
2, the only non-zero two-point function, in terms of the

Bogoliubov operators, is:
⟨GS|χqχ†

k|GS⟩ = Nδq,k. (3.31)

Now, rewriting the χq operators in terms of the physical fermions in Fourier space,
exploiting reverse Bogoliubov transformations, the two-point functions become:

⟨GS|ψ†
qψk|GS⟩ =

1− cos θq
2

Nδq,k

⟨GS|ψqψ†
k|GS⟩ =

1 + cos θq
2

Nδq,k

⟨GS|ψqψk|GS⟩ = −
sin 2θq

2
Nδq,−k

⟨GS|ψ†
qψ

†
k|GS⟩ =

sin 2θq
2

Nδq,−k (3.32)

where θq is the Bogoliubov angle defined in eq. (3.15).
By Fourier transform we can get the correlators in coordinate space. In the thermody-
namic limit they read:

Fjl = i⟨GS|ψjψl|GS⟩ = −i⟨GS|ψ†
jψ

†
l |GS⟩ =

∫ 2π

0

dq

2π

sin 2θ(q)

2
eiq(j−l)

Gjl = ⟨GS|ψjψ†
l |GS⟩ =

∫ 2π

0

dq

2π

1 + cos 2θ(q)

2
eiq(j−l), (3.33)

where the function θ(q) is defined as θ(q) = 1
2
arctan γ sin q

h−cos q
and it represents the contin-

uum limit of the Bogoliubov angle.
At this point we need to take into account for the Jordan-Wigner transformation in order
to get the spin-spin correlators. First of all, let’s define the generic expectation value:

ρνlm = ⟨GS|σνl σνm|GS⟩ (3.34)
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where ν ∈ {x, y, z}. In terms of spin creation and annihilation operators, each possible
correlator becomes:

ρxlm = ⟨GS|
(
σ+
l + σ−

l

) (
σ+
m + σ−

m

)
|GS⟩

ρylm = −⟨GS|
(
σ+
l − σ

−
l

) (
σ+
m − σ−

m

)
|GS⟩

ρzlm = ⟨GS|
(
1− 2σ+

l σ
−
l

) (
1− 2σ+

mσ
−
m

)
|GS⟩. (3.35)

In terms of the Jordan-Wigner operators ψj, the spin-spin correlators can be rewritten
as expectation values of products a string of operators:

ρxlm = ⟨GS|BlAl+1Bl+1...Am−1Bm−1Am|GS⟩
ρylm = (−1)m−1⟨GS|AlBl+1Al+1...Bm−1Am−1Bm|GS⟩

ρzlm = ⟨GS|AlBlAmBm|GS⟩, (3.36)

where Al = ψl + ψ†
l and Bl = ψl − ψ†

l .
It is straightforward to check that ⟨GS|AlAm|GS⟩ = ⟨GS|BlBm|GS⟩ = 0. Therefore,
using the Wick’s theorem as announced at the beginning of this section, one can express
the zz correlator in the following way:

ρzlm = H2(0)−H(m− l)H(l −m) (3.37)

where the function H(m− l), which has nothing to do with the hamiltonian though the
same letter H has been used, is defined as:

H(m− l) = ⟨GS|BlAm|GS⟩ =
1

2

∫ 2π

0

dq

2π
e2iθ(q)eiq(m−l). (3.38)

The other two correlators, namely the xx and yy correlators, involving a string of m− l
operators, can be expressed as the determinant of (m − l) × (m − l) matrices called
Toeplitz matrices. They read:

ρxlm =

∣∣∣∣∣∣∣∣∣
H(−1) H(−2) · · · H(−n)
H(0) H(−1) · · · H(1− n)
...

...
. . .

...
H(n− 2) H(n− 3) · · · H(−1)

∣∣∣∣∣∣∣∣∣ (3.39)

ρylm =

∣∣∣∣∣∣∣∣∣
H(1) H(0) · · · H(2− n)
H(2) H(1) · · · H(3− n)
...

...
. . .

...
H(n) H(n− 1) · · · H(1)

∣∣∣∣∣∣∣∣∣ . (3.40)

84



The behavior of all the correlation functions are displayed in fig. 3.3 and fig. 3.4 in terms
of the length-scale parameters λ± which are defined as:

λ± =
h±

√
γ2 + h2 − 1

1 + γ
(3.41)

and they are the zeros of the extension to the complex plane of the energy spectrum in
eq. (3.17). The logarithms of such parameters give the correlation lengths of the chain,
in unit of the lattice spacing a:

ξ± =
a

| lnλ±|
. (3.42)

The behavior of the λ± parameters in the different phases of the system is, instead,
displayed in fig. 3.2.
In the disordered phase, both λ± are real, thus providing a measurable finite correlation
length. The magnetization along the x̂ axis is zero in this phase. At criticality, i.e. when
h = 1, λ+ becomes exactly equal to one and the correlation length approaches infinity,
therefore entailing a scale-invariant behavior of the system. In the ordered phase, when
h2+γ2 > 1, the correlation length is finite and measurable again cause the λ′s are smaller
than unity. In this phase, moreover, the system acquires a net magnetization along the
x̂ axis, i.e. ⟨σx⟩ = mx ̸= 0. When, on the contrary, h2 + γ2 < 1 we are in the so called
oscillatory phase. The name of this phase comes from the behavior of the xx correlator,
which assumes a periodic modulation since λ± become complex conjugated. For what
the other regions of the phase diagram is concerned, going to negative magnetic fields
requires the inversion of the roles of λ+ and λ− while for negative γ we must replace λ±
with their reciprocal λ−1

± . Additional details on the XY model, which are beyond the
scope of this thesis work, can be found in [13].

Figure 3.2: Positions of the length-scale parameters λ± with respect to the unit circle in
the complex plane in the different phases of the system [13]
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Figure 3.3: Asymptotic behavior of the two-point correlators [13]. Cx = 1
2A3 e

1/421/12,
Cy = − 1

32A3 e
1/421/12, C = 1

A6 e
1/222/3 and A ≃ 1.282. The other prefactors are listed in

the figure below

Figure 3.4: Dependence on the parameters λ± of the prefactors in the table above [13]

3.5 Ising model with transverse field

In the last section of this chapter dedicated to the review of the XY model and its
peculiar features, we would like to stress the main characteristics of this model which are
interesting from the point of view of the simulations and analysis performed during this
thesis project whose results and outcomes are presented completely in the next chapter.

3.5.1 Hamiltonian

The model we have focused on in our simulations is the Ising model with transverse field.
It is a particular case of the XY model where γ = 1. Furthermore, we considered the
case where the interaction is set along the ẑ direction and the magnetic field lies along
the x̂ axis, which is the reversal of the hamiltonian of the XY model we treated so far. At
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the end of the story, the expression of the hamiltonian we worked with is the following:

H = −
N∑
j=1

σzjσ
z
j+1 − h

N∑
j=1

σxj (3.43)

where we assumed periodic boundary conditions, i.e. σzN+1 = σz1.
Replacing the σ′s with their corresponding single qubit gates, just to rewrite the hamil-
tonian in a way which recalls the world of quantum computation, it becomes:

H = −
N∑
j=1

ZjZj+1 − h
N∑
j=1

Xj. (3.44)

3.5.2 Phases and ground states

The Ising model with transverse field correspond to the green line on the phase diagram
of fig. 3.1. The phase transition, as explained previously in this chapter, occurs for
h = 1. For h < 1 the system is in the ordered phase and the ground state is doubly
degenerate. On the contrary, for h > 1, the system is in the disordered phase and the
ground state is non-degenerate. Those ground states can be possibly found analytically,
by diagonalizing the hamiltonian. In two cases they can be easily written down without
resorting to the diagonalization of the hamiltonian:

• When the external field h = 0, the model reduces to a ferromagnetic Ising without
magnetic field. The non-commuting term vanishes and the ground states (they are
two, since we are in the ordered phase), in the thermodynamic limit, are:

|GS⟩1 = | ↑↑↑ ... ↑⟩ = |000...0⟩
|GS⟩2 = | ↓↓↓ ... ↓⟩ = |111...1⟩ (3.45)

It is worth to highlight that these two ground state are equivalent to the states of
eq. (3.2);

• When h→∞, the only relevant term in the hamiltonian is the one depending on
the field and the model reduces to a chain of non-interacting spins exposed to an
external magnetic field. The non-degenerate ground state in the thermodynamic
limit is:

|GS⟩ = | →→→ ...→⟩ =
N∏
j=1

1√
2
(|0⟩+ |1⟩)j = |+++ ...+⟩. (3.46)

When we consider short chains, i.e. far from the thermodynamic limit, the degeneracy
of the ground state in the ordered phase is not present if the field is different from zero.
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It is therefore possible to identify a unique ground state of the system even for h < 1.
Nevertheless, as remarked in sec. 3.3.2, when the chain becomes longer and longer, the
two ”ground states” get exponentially closer in energy, though a correct identification of
the ground state is still possible. However, to find such a state, analytical methods are
required because the mathematical form of the ground state is much more complicated
than the ones displayed above for the two simple cases h→ 0 and h→∞.
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Chapter 4

QAOA applied to the Ising model

The last chapter of this thesis is dedicated to illustrate the outcomes of the simulations
we performed. The main idea of the thesis project is to test the INTERP optimization
schedule [24] for the Quantum Approximate Optimization Algorithm on the ground
state preparation of the Ising model with transverse field [13]. The former has been
described in detail in sec. 2.4.4, while the latter has been described in sec. 3.5. The
main properties of the XY model, of which the Ising with transverse field is a particular
case, are illustrated in chapter 3. However, a brief recap of the most valuable properties
and peculiarities of both the physical model and the algorithm are provided also at the
beginning of this chapter for the sake of clarity and completeness of the description. Since
the Ising model with transverse field is exactly solvable, it represents a good candidate for
the role of test model of new quantum algorithms, including initialization strategies for
the QAOA, which include also the aforementioned INTERP algorithm. In particular,
what we would like to prove by means of the simulations, is that the combination of
initialization strategies, powerful local optimizers, correctly designed quantum circuits
and possibly the transferability of optimal solutions mechanism, provide a clear and
undeniable advantage from a computational time and solution quality points of view,
with respect to standardized classical procedures for the application of the QAOA on
the solution of quantum many body problems.
This chapter is organized as follows: sec. 4.1 is dedicated to a brief review of the
INTERP algorithm and the main features of the Ising model with transverse field; sec.
4.2 describes the common methodologies of all the simulations we performed; in sec. 4.3
we show how to construct the QAOA quantum circuit; sec. 4.4 provides the smooth
optimal solutions for the Ising model with h = 0.5 both listing them in a table and
plotting them in a figure; sec. 4.5 displays a comparison between the most commonly-
used local optimizers, proving the L-BFGS-B to outperform its challengers; sec. 4.6
shows that in the disordered phase of the Ising model, the QAOA at low depth is able
to locate the real ground state anyway; sec. 4.7 provides the reconstruction of the
quantum state via measurements; sec. 4.8 shows how the computational time and the
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optimization steps behave with respect to N and p; in sec. 4.9 the transferability of
optimal solution is exploited to speed-up the optimization procedure; in sec. 4.10 a
modified version of the INTERP strategy is presented as another tailored algorithm to
speed-up the optimization; sec. 4.11 discuss the results from a wider perspective, looking
also at further developments.

4.1 The INTERP strategy and the Ising model

The INTERP initialization strategy is a depth-progressive schedule. The meaning of
depth-progressive is that the QAOA is applied, at the beginning of the procedure, at
lowest depth, i.e. p = 1, optimizing the two parameters γ1 and β1 for that circuit. The
initial choice of the lowest-depth parameters is, from now on, fixed to (0.1, 0.1) since,
as suggested in [24], it reduces the probability of failure of a good local optimizer. The
depth is then progressively increased one by one until the desired depth is reached, and
at each step an optimization of the parameters is performed. The optimal parameters
at depth p are interpolated to compute the starting parameters for the optimization
procedure at depth p+1. The main advantages provided by the INTERP algorithm are
related to the avoidance of barren plateaus by the local optimizer which is then capable to
correctly locate the optimal point without annoyance. Because of that, the quality of the
solution is generally improved with respect to the one got applying a random optimization
procedure. Furthermore, the application of the INTERP algorithm produces so called
smooth solutions, where the optimal parameters vary slowly in the layer index. This
fact, in principle, is not a symptom of some advantage, but it is a very peculiar feature
of this kind of strategies and it will be taken into account as a characteristic we expect
to reproduce in our simulations, where we apply the INTERP strategy on a slightly
different model, the Ising with transverse field, than the ones in [24].
The Ising model with transverse field is a particular case of the XY model where the
interaction is present along a single direction (for us it will be the ẑ direction) and it is
ferromagnetic, i.e. we take the hamiltonian in eq. (3.1) and choose J = −1 and γ = 1.
The external magnetic field, instead, is directed along x̂. Therefore the hamiltonian of
the model is:

H = −
N∑
j=1

ZjZj+1 − h
N∑
j=1

Xj (4.1)

where Zj is the Pauli Z matrix acting on the spin on site j, Xj is the Pauli X matrix, N is
the length of the spin chain, h is the magnetic field and periodic boundary conditions are
assumed, so that the chain ”closes” and resembles a ring. Notice that we have already
translated the Pauli matrices into a gate notation. The main features of the Ising with
transverse field are that:

• It can be exactly solved by diagonalizing the hamiltonian, as illustrated in chapter
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3, though the diagonalization requires a lot of computational resources, because
the dimension of the matrix scales exponentially in N , and it is then practically
feasible only for small systems unless a supercomputer is available;

• It has two phases [13]: in the disordered phase, i.e. when h > 1, the ground state
is non-degenerate and, in the large field limit, it becomes:

|GS⟩ = |+++ ...+⟩ =
∏
j

1√
2
(|0⟩+ |1⟩)j (4.2)

In the ordered phase, i.e. h < 1, the ground state is doubly degenerate and, in the
low field limit, it is:

|GS⟩1 = |000...0⟩
|GS⟩2 = |111...1⟩; (4.3)

• The degeneracy of the ground state in the ordered phase arises only in the thermo-
dynamic limit, unless h = 1 or h = 0, where the ground state is degenerate for any
length of the chain. It is therefore possible to identify a unique ground state also in
the ordered phase but the energy gap between the two ”ground states” closes ex-
ponentially in N . As a consequence, for very large systems, it becomes non-trivial
to distinguish between them. Nevertheless, since we will work with small systems
(N ≤ 14), this inconvenient will not affect much our simulations.

As a remark, the reader is invited to notice that the hamiltonian in eq. (4.1) is made
out of two non-commuting terms since the Z and X operators do not commute. The
interaction term will generate the cost layer of the QAOA while the field term will
produce the mixer layer. This will be discussed later on in this chapter.

4.2 General methodologies

In the thesis project, several types on analysis and simulations have been performed,
each of them having a specific idea behind it. However, some common features charac-
terize all the simulations. First of all, the simulations have been performed with Python
programming language adopting the Qiskit library [19] for building up the QAOA. This
library contains specific commands to construct gate-based (even parameterized) quan-
tum circuits and perform many kind of analysis including optimization of parameters,
which is what we are really after. Nonetheless, other possible equivalent choices, for
what the programming language and the libraries is concerned, are available, e.g. the
Pennylane library for Python [3].
The following common feature of all the simulations regards the initialization strategy
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used to produce the results, which is always the INTERP algorithm, unless if specified
differently. Furthermore, the QAOA circuit preparation is the same and a dedicated
section will describe how the quantum circuit has been implemented and how does it
look like.
An additional remarkable point is that for simulation purposes, the final state vector
the QAOA returns is directly saved and no measurement process is performed, unless
if specified differently. Since the optimization schedules are deterministic, if the same
optimization is repeated multiple times under the same conditions, the algorithm will
return the same optimal parameters employing the same number of optimization steps.
The only feature which may be affected by statistical error is the computational time,
and, in case the simulation involves the evaluation of computational time, the statistical
error is shown.
Each subsequent section, besides the next one, which regards the implementation of the
QAOA, contains the outcomes of a particular kind of analysis together with an exhaustive
description of the specific methodologies adopted for that simulation.

4.3 QAOA circuit preparation

The construction of the correct QAOA circuit, which allows us to find the ground state
of an Ising chain, follows five main steps:

1. Embedding;

2. Construction of the cost layer, also known as entangling layer;

3. Construction of the mixer layer;

4. Alternated juxtaposition of p cost layers and p mixer layers;

5. Possible insertion of measurements, if the reconstruction of the final state is
made by averaging the outcomes of many repetitions of the algorithm as described
in sec. 1.4.2. On the contrary, for simulation purposes, the exact final state vector
can be directly saved. Nevertheless, this is not the standard procedure occurring
on a real quantum device.

Each step will be described in detail in the following sections.

4.3.1 Embedding

With the term embedding [7] we define a procedure with which the physical system we
would like to study, in our case the Ising spin chain, is somehow mapped onto the qubits
in the QPU and the quantum state of the qubits is initialized in a precise way.
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In our specific case, suppose the N spins belonging to the chain can be labeled as
s0, s1, s2, ..., sN−1. The embedding mapping is quite straightforward, since each spin
of the chain is mapped onto a single qubit, the latter labeled, for the sake of simplicity,
as q0, q1, q2, ..., qN−1. Since the initial state of the qubits in the QAOA algorithm is chosen
to be | + + + ...+⟩ = |+⟩⊗N , an Hadamard gate is applied to each qubit as depicted in
fig. 4.1.

4.3.2 Cost layer

Consider the hamiltonian in eq. (4.1). The cost layer of the QAOA is the evolution
operator generated from the interaction term of this hamiltonian, i.e.

eiγi
∑N

j=1 ZjZj+1 (4.4)

where γi is the QAOA parameter related to that layer with the index i = 1...p being p
the depth of the circuit. Now, since the sum is a linear operator and the terms in the
sum commute between each others, it can be brought out of the exponential becoming
a product. Hence, we look at each single term of the product, i.e.

eiγiZjZj+1 (4.5)

acting on qubits j and j + 1. In order to implement this evolution operator involving
two qubits, we exploit the universality of CNOTs and rotations to simplify down the
evolution operator in the following way:

1. Apply a CNOT gate, where the control qubit is the j-th and the target is the
(j + 1)-th;

2. Perform a rotation about the ẑ axis of an angle 2γi on the (j+1)-th qubit, i.e. the
target of the CNOT;

3. Repeat step 1;

The above three steps must be repeated for each pair of neighbor qubits in order to
implement all the evolution operators in the product where j ranges from 1 to N .

4.3.3 Mixer layer

The mixer layer is, instead, generated by the field term of the hamiltonian in eq. (4.1).
Its mathematical expression is then

eihβi
∑N

j=1Xj (4.6)
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Figure 4.1: Preparation of the quantum circuit which implements the QAOA algorithm
for N = 4, p = 1 and h = 0.5. First of all, we apply Hadamard gates to all the qubits
in order to initialize the state to |+⟩⊗N . We then apply a cost and a mixer layer where
the former consists in two CNOTs spaced out by a rotation about the ẑ axis, repeated
for all the possible pairs of neighbor qubits, whereas the latter is made out of a simple
rotation about the x̂ axis of all the qubit. The rotation angles are proportional to the
QAOA parameters (γ,β). Further details are given in the main text

where h is the magnetic field and βi is the QAOA parameter associated to that mixer
layer. Again, transforming the exponential of a sum, because the terms in the sum
commute between each others, into a product of one-qubit exponentials and singling out
one of those terms we get the following evolution operator:

eihβiXj (4.7)

acting on qubit j. The implementation of this operator is rather easier than the one
of the cost layer since it involves only one qubit. It can be therefore simplified into a
rotation about the x̂ axis of an angle 2hβi and it has to applied to all qubits to construct
the whole layer.

4.3.4 Combination of many layers

Once the cost and the mixer layers have been built up, the only remaining step is to join
together p cost layers and p mixer layers in an alternated fashion after the embedding,
starting from a cost layer. Fig. 4.1 displays an example of QAOA circuit where N = 4,
p = 1 and h = 0.5, hence we have four terms per each layer and two total layers, one
cost and one mixer, respectively. Don’t forget that the last term in the cost layer exists
due to the periodic boundary conditions we chose.

4.3.5 Remark: desirable circuit depth and fidelity

There is a fundamental remark to point out before talking about the simulation we
performed in this project and the results we got, that is to say, the desirable circuit
depth to reach in order to correctly identify the ground state of the system and the
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quantity we use to check the goodness of our predictions, namely the fidelity.
In the second chapter of this thesis, we stressed on an important feature regarding the
QAOA algorithm in general which states that, in order to make good predictions, the
depth of the circuit should be properly chosen such that there are no closed loops whose
length is larger than 2p + 1 [41]. Now, consider our 1D N -spins chain which, because
of periodic boundary conditions, is closed and resembles a ring. The aforementioned
conjecture provides an essential lower bound for what the circuit depth is concerned. In
fact, it suggests that, in order to have a chance to get the actual vacuum state of the
Ising chain, we must implement a circuit whose depth is at least p ≥ int(N

2
), where the

function int() selects the closest integer equal or greater than its argument.
The physical quantity we compute in order to get an estimate of the goodness of a given
outcome of the algorithm is called fidelity. In principle, the fidelity between two quantum
states, say |ψ1⟩ and |ψ2⟩ is defined as the squared modulus of the scalar product of the
two states, hence:

F = |⟨ψ1|ψ2⟩|2. (4.8)

For our simulation purposes, the fidelity is computed to check if the algorithm produced
the exact ground state of the chain or not. The actual ground state can be directly
computed via diagonalization of the hamiltonian and call it |GS⟩. The QAOA circuit
produces a final state which, in principle, may be the correct ground state or not, call it
|ψQAOA⟩. If the algorithm succeeded, we expect

F = |⟨GS|ψQAOA⟩|2 = 1. (4.9)

If F is smaller than unity, we conclude that something went wrong and the procedure
failed. The possible reasons of a failure include the non-optimal choice of the circuit
depth and a fault of the optimization procedure which, for some reasons, fell through. In
this sense, it is worth to keep stressing that some optimizers are better than other ones
and nothing guarantees that all the optimization schedules, each of them implementing
a different strategy, would succeed in locating the optimal point on the landscape.

4.4 Smooth optimal solutions

In this section we show that the application of the INTERP procedure produced optimal
parameters which are smooth, in the sense clarified at the beginning of the chapter,
also for the Ising model with transverse field. To prove the smoothness of the optimal
parameters for the Ising model, we chose h = 0.5 and computed the optimal point
through the QAOA with INTERP method, selecting the L-BFGS-B [22] as the local
optimizer. The latter choice is not random, since, as we’ll show later on in another
section of this chapter, this particular optimizer comes out to perform the best among
a set of 8 candidates local optimizers provided by the Python’s package scipy.optimize
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[38]. As an heads-up of what the reader will find in the dedicated section, the L-BFGS-
B is always able to correctly identify the ground state of the Ising chain, at least for
N ≤ 12, provided a suitable circuit depth is chosen. It is worth to stress that, since the
optimization schedule is deterministic and no random components are present and no
statistical error affects the optimal parameters. Repeating the optimization several times
under the same conditions, in fact, one effectively obtains the same exact parameters.
This holds for all the local optimizers we will use to perform the simulations, but it is
not true in general. In fact, for instance, the bayesian optimizer [35] and the differential
evolution algorithm [31] involve a random component which lead to slightly different
optimal parameters each run. As a consequence, the fidelity itself does not suffer from
statistical error in our simulations. Table 4.1 lists the optimal parameters for different
values of N and p. N ranges from 2 to 14 with step 2 while p = N

2
has been set equal

to half of the chain length for the reason discussed in the previous section. With this
circuit depth, the optimization always succeeded, as one can notice from the values of
the infidelity, defined as 1 − F , reported in the last column of table 4.1. The optimal
parameters are truncated at the third decimal place for the sake of clarity. However, the
infidelity displayed in the last column refers to the optimal parameters in their entirety,
though the digits beyond the third decimal do not affect considerably the infidelity. The
same parameters have been plotted in fig. 4.2 where the parameters are displayed as a
function of the layer index. Hence, each line, which refers to a specific value of N , has a
different length. The values of N and p a line refers to, can be deduced by the length of
the line, which has to be equal to the circuit depth p, and N will be then its double. The
smoothness of the parameters got for the Ising model is comparable to that got by Mele
et al. [24] for the Heisenberg and longitudinal transversal field Ising models, displayed
in fig. 2.16. It is worth to notice that, in each line of fig. 4.2, i.e. for every system size
N , the parameter βp, where p =

N
2
, is always much smaller than the other β parameters.

This behavior is also reported in [24] (fig. 2.16).
Similar smooth solutions can be found for different values of the magnetic field. Since
we have mainly worked with a field value of h = 0.5, we reported the optimal parameters
for this specific case.
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N p optimal parameters (β1, ..., βp, γ1, ..., γp) 1− F
2 1 (0.785, 0.277) ≤ 10−9

4 2 (1.142, 0.815, 0.353, 0.489) ≤ 10−9

6 3 (1.214, 1.194, 0.838, 0.376, 0.577, 0.534) ≤ 10−9

8 4
(1.247, 1.268, 1.229, 0.852, 0.386, 0.604,
0.622, 0.551)

≤ 10−9

10 5
(1.265, 1.303, 1.305, 1.250, 0.861, 0.392,
0.617, 0.649, 0.640, 0.559)

≤ 10−8

12 6
(1.276, 1.323, 1.340, 1.327, 1.264, 0.866,
0.396, 0.625, 0.663, 0.667, 0.650, 0.565)

≤ 10−8

14 7
(1.284, 1.336, 1.360, 1.363, 1.342, 1.274,
0.870, 0.399, 0.630, 0.671, 0.681, 0.677, 0.656,
0.568)

≤ 10−8

Table 4.1: Optimal parameters for different values of N and p = N
2
for the Ising chain

with h = 0.5. The optimal parameters are truncated at the third decimal place for the
sake of clarity. However, the infidelity displayed in the last column refers to the optimal
parameters in their entirety, though the digits beyond the third decimal do not affect
considerably the infidelity

Figure 4.2: Optimal smooth parameters for the Ising chain with h = 0.5 for different
values of N and p = N

2
. The number of qubits ranges from 2 to 14 with step 2. The

parameters are plotted as a function of the layer index. Hence, each line, which refers to
a specific value of N , has a different length. The values of N and p a line refers to, can
be deduced by the length of the line, which has to be equal to the circuit depth p, and
N will be then its double
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4.5 Comparison between local optimizers

Once verified that the INTERP procedure actually produces smooth solutions, we de-
cided to focus our attention on the comparison between local optimizers, with the idea
of establishing which optimizer performs the best and is the most reliable among the
others. The reliability of the optimizer is a very significant factor to take into account in
such kind of analysis which exploit hybrid algorithms. In fact, choosing a bad optimiza-
tion schedule has massive negative consequences on the outcome of the analysis, which
is probably doomed to a total failure.
There are many factors which characterize an optimizer from a practical point of view.
We list the ones we deem the most valuable below:

• Computational time: we defined it as the time the optimizer needs to perform
an optimization procedure. This parameter is primarily influenced by the compli-
cations of the optimization due to the complicated nature of the energy landscape,
which may present many or few peaks or plateaus. Furthermore, the computational
time is straightforwardly conditioned also by the power of the device on which we
run the simulation. Nevertheless, if the simulation is run in the same conditions,
the computational time becomes relevant to determine if a given algorithm is in-
trinsically slower or faster than another one;

• Optimization steps: It is the number of optimization steps the algorithm requires
to perform the optimization. Though this parameter is not be strictly proportional
to the time, because some optimization steps may be faster or slower than other
ones, depending again on the landscape shape, it is an important parameter to
be taken into account anyway. In fact, the number of steps of the optimization
procedure is somehow an intimation of the computational resources required to
perform such optimization;

• Reliability: it’s time to provide a better definition of what we mean with ”relia-
bility” of an optimizer. It is defined as the capability of the algorithm to correctly
identify the ground state of the model we’re studying, provided a suitable circuit
depth, regardless the number of qubits the circuit involves. In other words, the
reliability is related to the maintenance of a unit fidelity for any value of N .

The aforementioned descriptors have been studied for a stocked set of local optimizers.
This set contains the following algorithms:

• Nelder-Mead (NM);

• Powell;

• CG;
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• BFGS;

• L-BFGS-B;

• TNC;

• COBYLA;

• SLSQP.

These algorithms are provided by the scipy.optimize package of Python programming
language [38] and are the most commonly used. In particular, Nelder-Mead [15], Powell
and COBYLA [30] are gradient-free while CG [26], BFGS, L-BFGS-B [22], TNC [8] and
SLSQP [23] are gradient-based. These local optimizers have been presented in sec. 2.4.1
together with others not used in this analysis.
For each algorithm, the computational time, the optimization steps and the fidelity have
been evaluated for several optimization procedures. For the usual Ising model with
h = 0.5, we performed a QAOA with INTERP strategy choosing the local optimizer
from the list above. Each optimizer has been asked to find the ground state of the Ising
chain varying N from 2 to 12 with step 2 and choosing p = N

2
. The optimization has

been repeated 10 times to get the statistical error on the computational time and the
average value is plotted.
Fig. 4.3, 4.4 and 4.5 show the histograms, each of them referring to a specific value of
N and p, of the computational time, the optimization steps and the fidelity of all the
local optimizers in the test set, respectively. In addition, fig. 4.6, 4.7 and 4.8 display the
computational time, the optimization steps and the fidelity as a function of N for every
optimizer, respectively.
What one immediately notices is that the L-BFGS-B algorithm outperforms the other
ones from all possible points of view: it is the fastest, requires the smallest amount
of resources, i.e. performs the smallest number of optimization steps, and it’s totally
reliable, since it identifies the correct ground state getting a unit fidelity regardless the
number of qubits. That’s why the L-BFGS-B has been chosen as our reference optimizer
and, besides this analysis, we exploited it for all the other simulations reported in this
chapter. Another interesting result to point out is that gradient-free search algorithms
are typically the worst or near-worst from every point of view. They are slow and cannot
maintain the maximum fidelity as the spin chain becomes larger. However, for the TNC
method, which is gradient-based, the fidelity rapidly drops down also for small N . The
SLSQP does the same but it could maintain a unit fidelity until N = 10, but it is, unlike
TNC, rather fast.
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(a) Computational time for
N = 2 and p = 1

(b) Computational time for
N = 4 and p = 2

(c) Computational time for
N = 6 and p = 3

(d) Computational time for
N = 8 and p = 4

(e) Computational time for
N = 10 and p = 5

(f) Computational time for
N = 12 and p = 6

Figure 4.3: Histograms of the computational time of the local optimizers. From left to
right and from top to bottom: (N, p) = (2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6). Each
value represents the average over 10 runs of the simulation
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(a) Optimization steps
for N = 2 and p = 1

(b) Optimization steps
for N = 4 and p = 2

(c) Optimization steps
for N = 6 and p = 3

(d) Optimization steps
for N = 8 and p = 4

(e) Optimization steps
for N = 10 and p = 5

(f) Optimization steps
for N = 12 and p = 6

Figure 4.4: Histograms of the optimization steps of the local optimizers. From left to
right and from top to bottom: (N, p) = (2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6)

(a) Fidelity for N = 2
and p = 1

(b) Fidelity for N = 4
and p = 2

(c) Fidelity for N = 6
and p = 3

(d) Fidelity for N = 8
and p = 4

(e) Fidelity for N = 10
and p = 5

(f) Fidelity for N = 12
and p = 6

Figure 4.5: Histograms of the fidelity of the local optimizers. From left to right and from
top to bottom: (N, p) = (2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6)
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Figure 4.6: Summary of the computational time (in seconds) of all the tested local
optimizers as a function of the chain length. The L-BFGS-B, for large N , the fastest
optimizer. On the contrary, gradient-free algorithms come out to be the slowest as N
increases. Each point of each line is the average over 10 runs

Figure 4.7: Summary of the optimization steps of all the tested local optimizers as a
function of the chain length. The algorithm which requires the smallest amount of com-
putational resources is, again, the L-BFGS-B, closely followed by the SLSQP. Moreover,
gradient-free algorithms proved another time not to be so performative for large N

Figure 4.8: Summary of the fidelity reached by all the tested local optimizers as a
function of the chain length. The black line represents all the algorithms which gets unit
fidelity for that value of N and p. The L-BFGS-B, together with other gradient-based
optimizers, was capable to obtain a unit fidelity for any length of the chain, i.e. finding
the real ground state. On the contrary, Nelder-Mead and COBYLA (which are gradient-
free) together with TNC and SLSQP (which are gradient-based) could not maintain
a maximum fidelity. In particular, as N increases, the fidelity they reached severely
decreases, proving, at least in this types of analysis, to be unreliable
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4.6 Fidelity and phase transition

Meanwhile discussing the features of the Ising model with transverse field, we pointed
out that the non-degenerate ground state in the large field limit was exactly |+⟩⊗N . As
one may notice, this state is the initial quantum state of the qubits at the beginning of
the QAOA. The obvious deduction is that, if we consider the large field Ising chain, and
we perform a QAOA to find its ground state, the embedding puts the qubits in the exact
state we wish to find and the evolution is led by an hamiltonian which the qubits state is
ground state of. Hence, the algorithm will guess the ground state of the Ising regardless
the depth of the circuit. Moreover, one can hypothesize that, after the phase transition
occurring at h = 1, since the ground state is, roughly speaking, ”closer” to the initial
QAOA state, also circuits shallower than the required, may get an higher fidelity with
respect to the fidelity they would get before the phase transition, i.e. for h < 1.
Inspired by this apparently flawless reasoning, we decided to check if our observation
had some grounds. We considered the Ising model with different values of the magnetic
field: we chose h = 0.1, 0.3, 0.5, 0.8, 1.0, 2.0, 5.0, 10.0. For each value of the field, we
considered three possible values of the chain length, i.e. N = 6, 8, 10. For each possible
combination of (h,N) we performed a QAOA with INTERP strategy and L-BFGS-B as
local optimizer, to find the ground state of the model where the depth varies in the range
p ∈ [1, N

2
]. In this way we could potentially verify that also shallow circuits identify the

ground state when the field is larger than 1.
Fig. 4.9, 4.10 and 4.11 depict the behavior of the fidelity with respect to the magnetic
field for N = 6, 8, 10, respectively. Each figure displays different lines, one for every
possible value of the circuit depth ranging from 1 to the required value to get unit
fidelity.
This analysis led us to prove two important things:

• The former is the one discussed a while ago. The larger is the field beyond h = 1,
the shallower can be the circuit to get a fidelity greater than a given threshold;

• The latter regards the lower bound of the circuit depth. In order always to get a
fidelity F = 1 regardless anything, we must set the depth p = int(N

2
).
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Figure 4.9: Fidelity as a function of the magnetic field for N = 6. p = 3 is the required
depth to get maximum fidelity regardless the model

Figure 4.10: Fidelity as a function of the magnetic field for N = 8. p = 4 is the required
depth to get maximum fidelity regardless the model

Figure 4.11: Fidelity as a function of the magnetic field for N = 10. p = 5 is the required
depth to get maximum fidelity regardless the model
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4.7 Reconstruction of the quantum state via mea-

surements

What if, at the end of the QAOA algorithm, we wish to reconstruct the quantum state
by averaging measurement outcomes as it should occur on a real quantum device? What
is the minimum amount of measurements to get enough statistics to reconstruct the
quantum state with arbitrarily small approximation?
In this section we provide an exhaustive answer to these non-trivial and non-negligible
questions if we wish, one day, to implement quantum algorithms on real quantum devices.
Consider once again the Ising model with h = 0.5. We performed a QAOA with INTERP
strategy and L-BFGS-B as local optimizer to find the ground state of the model for
N ∈ {2, 4, 6, 8, 10} and p = N

2
. The starting assumption states that, because of what we

have proved in the previous section, the algorithm outputs the correct ground state of
the model. For each chain length, we tried to reconstruct the quantum state performing
M measurements, with M ∈ {10, 30, 50, 100, 300, 500, 1000, 3000, 5000, 10000}. We refer
to each run of the algorithm with measurements as a shot. So M can be also called the
”number of shots”. Each reconstruction of the state for a N spins chain and M shots
has been repeated 20 times to provide a statistically significant result.
Fig. 4.12 shows the fidelity as a function of the number of shots. The algorithm produces
the exact ground state with F = 1 but, because of the statistical nature of measurements,
the actual fidelity approaches unity asymptotically. However, this is what we actually
expected from the beginning. The longer the chain is, the larger the number of shots
should be to reach the same fidelity. This analysis paves the way for possible future
measurements-based simulations. In fact, given a fidelity threshold Fmin and a chain
of length N , one can compute the lower bound of the number of shots required to
reach a fidelity F ≥ Fmin with an arbitrarily high probability. It is worth to remark,
however, that, in order to reach a considerably high fidelity, also for small chains the
minimum amount of measurements to perform is significantly large. As a consequence,
the implementation of this kind of algorithms is badly affected by this inconvenient, since
the total amount of computational resources required experiences a massive growth.
As a remark, the total amount of measurements needed to reconstruct the final state for
N = 10 with a fidelity Fexp

Fexact
, where Fexp is the fidelity got with M measurement and

Fexact is the fidelity got with exact simulation (for us it is Fexact = 1), larger than a given
threshold is comparable to the number of measurements required by the bayesian [35]
algorithm, displayed in fig. 2.12 in chapter 2.
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Figure 4.12: Fidelity obtained for each different number of shots. Each line represent
the same analysis for different chain length N ∈ {2, 4, 6, 8, 10}

4.8 Time and step’s trend

In this section we’ll provide an in-depth analysis for what the trend of the computational
time and the optimization steps as a function of N and p is concerned. What we would
like to observe is how two out of three fundamental descriptors of a local optimization
algorithm vary when either the length of the spin chain or the circuit depth changes. In
particular their slopes may provide some indications and estimates for the computational
power needed to perform analysis on possibly larger systems.
In this simulation we considered the QAOA with INTERP strategy applied to the already
familiar Ising model with h = 0.5 with the well-known L-BFGS-B as local optimizer. We
let the chain length range in the interval N ∈ {2, 14} with step 2 and the circuit depth
within p ∈ {1, 7} with step 1. For each possible combination of (N, p) we evaluated
the computational time and the number of optimization steps required by L-BFGS-B to
locate the optimum on the energy landscape and plotted the outcomes in various ways,
described in a while. As a remind, for some combinations of (N, p) we may reach a unit
fidelity, i.e. when p ≥ N

2
; on the contrary, when p < N

2
we cannot reach the maximum

fidelity. Furthermore we believed that it could be interesting to evaluate the trend of the
computational time and optimization steps for the possible pairs (N, p) where N ranges
in the usual interval and p = N

2
. In this way the algorithm is able to identify the real

ground state of the system, and since p is exactly equal to half of the chain length, it
does so with the minimum effort, computationally speaking. The simulations are exact,
therefore there is statistical error only on the computational time, for which we provide a
result averaged over 10 runs. However, the error bars are very small and one can barely
glimpse them.
The outcomes of the simulations have been plotted in a complementary way. Fig. 4.13
and 4.15 show the behavior of the time as a function of N , in the former plot, or p,
in the latter. Fig. 4.14 and 4.16 display the number of optimization steps, again as a
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function of either N or p, respectively. Since the scale of the y axis is logarithmic, we
can conclude that:

• The computational time varies exponentially in N , since the curve has a linear
trend in logarithmic scale, and slower than exponentially in p;

• The optimization steps tend to become constant in N as it increases, while it grows
slower than exponentially in p.

Fig. 4.17 and 4.18 show the trend of time and steps for the pairs (N, p) where N ∈
{2, 14} with step 2 and p = N

2
, respectively. Once again, the y axis scale is logarithmic.

The time grows exponentially or almost exponentially while the steps increase slower
than exponentially. Nevertheless, it would be desirable, as a possible deepening, to
reproduce this simulation on larger systems in order to provide an exhaustive and detailed
description of the behavior of time and steps as a function of (N, p). Because of the
limited computational capability at our disposal in this project, it was not possible to
increment the size of the system beyond N = 14 due to exponential behavior of the
computational time required to perform such simulations. If, in principle, one could
have access to a supercomputer, it would be possible to enlarge the system at least
beyond N = 20 and run the algorithm in a reasonable amount of time.

Figure 4.13: Computational time (in seconds) as a function of the chain length N . Each
line correspond to a different value of the circuit depth p. Each point is the average over
10 runs, though the error bars are too small to be visible
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Figure 4.14: Optimization steps as a function of the chain lengthN . Each line correspond
to a different value of the circuit depth p

Figure 4.15: Computational time (in seconds) as a function of the circuit depth p. Each
line correspond to a different value of the chain length N . Each point is the average over
10 runs, though the error bars are too small to be visible

Figure 4.16: Optimization steps as a function of the circuit depth p. Each line correspond
to a different value of the chain length N
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Figure 4.17: Computational time (in seconds) for the pairs (N, p) with N within the
range [2, 14] with step 2 and p = N

2
in order to obtain with minimum effort a unit

fidelity. Each point is the average over 10 runs, though the error bars are too small to
be visible

Figure 4.18: Optimization steps for the pairs (N, p) with N within the range [2, 14] with
step 2 and p = N

2
in order to obtain with minimum effort a unit fidelity

4.9 Transferability of optimal solutions

In section 2.2.4, we introduced the reader to the concept of Transferability of optimal so-
lutions from a smaller sized system to a larger one [14] and the conditions under which it
could effectively bring an advantage for simulation purposes. In this section we analyze
how the exploitation of the transferability mechanism affects the computational time
and optimization steps. In particular, what we would like to prove is that, if optimal
parameters are transferred from a smaller spin chain to a larger one, and a refinement
optimization is performed on the larger system, some time is saved and this procedure is
faster than a standard optimization routine. We considered the Ising model with h = 0.5
and applied QAOA with INTERP startegy on it. The circuit depth has been fixed to
p = 7. In this way, we are sure to reach F = 1 also for the largest system involved in
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this analysis, which has N = 14. We chose three different sizes of the starting chain,
Nstart = 4, 6, 8. For each of them, the parameters have been optimized for p = 7 and
transferred to larger systems with size equal to Ntarget ∈ [Nstart + 2, 14] with step 2.
The refinement optimization has been then performed on the larger system. A standard
optimization routine has been performed separately.
Fig. 4.19 depicts the ratio between the time required to perform the optimization via
transferability, as described above, and the time needed for the standard routine. Basi-
cally, the smaller is this ratio, the greater is the advantage brought by the employment of
transferability. The optimization has been performed 10 times to make statistics on the
computational time. Fig. 4.20 displays the same ratio referred, instead, to the number
of optimization steps. Three notable results have come out:

• The smaller is Nstart, the smaller are the time ratio and the step ratio being equal
Ntarget. This was straightforwardly expected since the idea of transferability hinges
on the fact that the optimal parameters also for a very small system are, however,
near-optimal for the larger one. Because, as proved in the previous section, the
computational time grows exponentially in N , is it legitimate to expect that a
smaller Nstart leads to a bigger benefit from this point of view. The same logic can
be applied also to the step ratio;

• In fig. 4.19, all the three curves somehow flow into the same value of the time ratio
for N = 14. This result looks quite non-trivial to explain. A possibility concerns
the existence of a sort of critical time ratio, below which it is impossible to go
regardless the value of Nstart and, in the large Ntarget limit, each curve approaches
the criticality. If that was true, and by the way nothing guarantees it, we could
provide a lower bound on the advantage entailed by the employment of transfer-
bility and state that no transferability procedure could employ less than 35% of
the time required by a standard optimization routine. Nonetheless, this is just an
hypotheses. The right way to possibly get a proof of that is to perform the same
simulation increasing Ntarget and look at the behavior of the curves from a more
global perspective;

• What has been said for the computational time in the previous point can be said
also for the number of steps but with a main difference (fig. 4.20). The ratios of
the steps for different starting systems do not converge to the same value. They
rather seem to maintain a constant difference or ratio between them in the large
N limit. Again, it would be interesting to perform the same simulation increasing
Ntarget and check if the difference or the ratio between the lines stabilizes to a
constant value and possibly provide an estimate of the latter. Moreover, we could
estimate the maximum advantage in terms of optimization steps brought by the
employment of the transferability mechanism.
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As discussed also in the previous section, the impossibility to perform simulations on
larger scales is the main reason behind the incompleteness of our results. However, they
can doubtlessly be considered as starting point for further developments in this sense and
possibly they could pave the way for additional analysis on real QPUs, when available.
We are, indeed, satisfied of the quality and interest of what we got up to now. Moreover,
the optimization routine relying on transferability returns the exact optimal parameters
of the standard schedule, reaching a unit fidelity. This is another point in favor to its
adoption in further simulations.

Figure 4.19: Ratio between the computational time required to perform the optimization
involving the transferability mechanism, i.e. optimizing the parameters for the smaller
system and perform a refinement on the larger one, and the time needed to perform a
standard optimization. p = 7, in order to get unit fidelity at the end of the refinement
also for N = 14. Each line refers to a different size of the starting system while, on the
x̂ axis, the size of the target system is indicated. Each point is the average over 10 runs
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Figure 4.20: Ratio between the number of steps required to perform the optimization
involving the transferability mechanism, i.e. optimizing the parameters for the smaller
system and perform a refinement on the larger one, and the number of steps needed to
perform a standard optimization. p = 7, in order to get unit fidelity at the end of the
refinement also for N = 14. Each line refers to a different size of the starting system
while, on the x̂ axis, the size of the target system is indicated

4.10 Modified INTERP strategy

The final section of this chapter is dedicated to the presentation of a slightly modified
version of the INTERP depth-progressive strategy. As remarked at the beginning of the
chapter, the INTERP algorithm works by uploading the circuit depth at every iteration
until the desired depth is reached. By the way, we have seen that the desired value of
p coincides with N

2
, to get the actual ground state of the model employing the smallest

possible effort. We have also verified that the transferability mechanism is helpful in
this sense by lowering the amount of time needed to perform the optimization routine.
This method holds because the optimal solution for an Ising chain with N quite small,
are, indeed, near-optimal for larger spin chains, whatever is its length, provided that it
is a even number. This fundamental observation led us to test an improvement of the
INTERP strategy which works as follows:

1. Start from (N, p) = (2, 1) and set (γ1, β1) = (0.1, 0.1)

2. Optimize the two parameters;

3. Upload both the system size N and the circuit depth p as follows:

• N → N + 2;

• p→ p+ 1;

4. Compute the starting value for the new parameters by interpolating the optimal
point at previous depth, following the exact scheme of the standard INTERP sched-
ule;
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5. Optimize the parameters and repeat from point 3 until the desired pair (N, p) is
reached.

This improved version of INTERP is definitely tailored to the specific problem of the
ground state preparation of an Ising model, or, more in general, of a many body theory
1D model. This could possibly represent, in principle, a sort of limitation.
We decided to compare, again, the computational time and optimization steps required
by this modified procedure with respect to the ones needed by the standard INTERP
method. We considered the Ising with h = 0.5, our reference model, and the pair
(N, p) ∈ [(2, 1), ..., (14, 7)].
Fig. 4.21 displays the ratio, in green for the steps and in red for the time, between
those quantities for the modified version and those for the standard version of INTERP.
For what time ratio is concerned, each point is the average over 10 runs. As one may
notice, the employment of the improved version brings an advantage, greater from a
computational time point of view rather than from an optimization steps perspective.
Furthermore, the larger is the system size, the smallest are the ratio, especially the one
referred to time, and therefore the greater is the advantage provided by the new ver-
sion of INTERP. An important remark about the fidelity: the new procedure outputs the
same exact best parameters thus getting the highest fidelity F = 1. A final consideration
regards the possible combination of the modified version of the INTERP with the trans-
ferability mechanism. We may expect it leads to a further improvement of simulations
concerning the solution, i.e. ground state preparation, of many body problems.

Figure 4.21: The green line represents the ratio between the optimization steps required
by the modified INTERP and those required by the standard INTERP. The red line
displays the same ratio referred, instead, to the computational time. One can notice
that the improved version provides a considerable advantage in terms of computational
time and a slight advantage from what the steps is concerned. Furthermore, the larger is
the system, the greater is the advantage. Each point of the line regarding computational
time is the average over 10 runs
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4.11 Discussion

After the gathering of all the outcomes of our simulations, it’s time to take stock of the
main results we got and summarize them once for all.
First of all, the application of the QAOA with INTERP strategy to the Ising model with
transverse field has been extremely successful from every point of view. We recovered
the main feature of the INTERP algorithm, i.e. the smoothness of the best solutions,
also in our simulations. We verified that the L-BFGS-B is the best local optimizer, and
this is the reason of its massive employment also for what machine learning is concerned.
We tested several optimization schedules, including a modified version of INTERP and
the adoption of the transferability mechanism, already well-known in the literature, to
improve the QAOA in general, as it should be considered in its entirety, that is to say,
a hybrid quantum-classical algorithm, where the classical part with all its possible flaws
and limitations, plays an extremely relevant, not to say fundamental and crucial, role.
Further improvements can be surely made and, because of the importance of the opti-
mization schedules both for QAOA itself and from a machine learning perspective, this
represents a very interesting and fascinating research field to delve into.
Moreover, we investigated the properties of the Ising model itself, focusing our attention
on the phase transition occurring at the critical field h = 1, proving that, above the
transition, the QAOA is more efficient in the identification of the ground state of the
system.
We analyzed also the complications emerging in the exploitation of QAOA as a real
quantum algorithm. I’m obviously talking about the implementation of measurement
processes, without which nobody can effectively employ any quantum hardware for com-
puting and information purposes. The large number of shots required to recover a quan-
tum state is definitely worsening our future perspective concerning quantum information,
together with faulty quantum gates which all alone make the outcomes worse. However,
the possible employment of some superconducting architectures, for instance IBM’s [33],
would severely reduce the time needed to perform simulations and measurement. With
IBM quantum computer, one can easily perform a number of measurements of the order
of 103 within little time.
The results presented in this chapter ultimately helps in paving the way to future inves-
tigations on possible further improvements and modifications of already-existing hybrid
algorithms, such as QAOA.
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Conclusions

This thesis project focused on one of the most celebrated hybrid quantum-classical al-
gorithm, namely the Quantum Approximate Optimization Algorithm [10]. After a brief
but, in my opinion, fundamental introduction to the mathematical and physical frame-
work of quantum computation and information [27], we introduced the reader to the
main features of the QAOA, highlighting its suitability for what the problem of the
preparation of ground states is concerned and its typical applications to quantum many
body theory models. It is worth to remark that both the quantum and the classical part
of the algorithm play a relevant role and an optimal functioning of both is crucial to a
successful application of QAOA. As a consequence of that, we illustrated a review, based
on recent scientific literature, of all the techniques, with a deepening on the transferabil-
ity of optimal solutions and initialization strategies [14] [20] [21] [24], which have been
verified to provide a significant improvement of the efficiency of the algorithm from a
computational point of view. After that, we introduced the Ising model with transverse
field [13], a well-known many body model suitable for testing hybrid algorithms. In the
last chapter of the thesis we provided the outcomes of all the simulations we performed.
The idea of such simulations was double: first of all, we wanted to verify if the QAOA,
coupled to the INTERP initialization strategy, was effectively able to identify the ground
state of the Ising model in many possible scenarios, i.e. solving it, and reproduce a pecu-
liar characteristic of INTERP strategy which is the smoothness, in the layer index, of the
best parameters; in addition, we wanted to check what is the amount of computational
resources required by the algorithm to run and its possible dependence on the optimiza-
tion schedule chosen, including the adoption of a measurement process at the end of the
quantum circuit. The capability of the algorithm to be both accurate in the location of
the ground state and efficient in terms of computational time is of fundamental impor-
tance in the perspective of applying, hopefully in the near future, this kind of algorithms
on NISQ devices. NISQ devices are primarily negatively affected by the noise produced
by the quantum gates we apply on the qubits system. This massive flaw entails the usage
of a complex error correction system which makes an application of quantum algorithms
on many-qubits systems unfeasible from a practical point of view. That’s the main rea-
son of the adoption of simulation techniques of the QAOA on classical devices. The
results got from these simulations are, indeed, very important for a better understand-
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ing of the potentialities of the algorithm, both nowadays and for future. The QAOA,
in fact, plays a relevant role also from a machine learning perspective [28] [29], which is
nowadays widely spread and employed, however still classically, for many useful tasks in
a lot of disparate sectors, from medicine to engineering, from economics to climatology.
It is reasonable to think that the future of mankind is going towards an overwhelm-
ing transformation of classical computation methods into their quantum counterparts.
After all, we have already started the so called ”second quantum revolution”. Hybrid
algorithms and then fully quantum algorithms will therefore be the protagonists of this
drastic change. No one knows how much time this transformation will take. What we
can do is to accept this challenge and try to give as many contributions as possible in
this sense. This is also the scope of this project and surely it is the scope also of previous
and future related works.
In our analysis, we proved that the adoption of the transferability mechanism [14] and
the INTERP strategy [24] provided a concrete advantage in the speed-up of the en-
tire algorithm, severely reducing the total computational time needed to perform the
optimization procedure. Furthermore, we identified the best local optimizer to employ
for QAOA. This is the L-BFGS-B search algorithm, which proved itself to be both the
fastest in terms of time and optimization steps and the most accurate, since it perfectly
locates correct the ground states of the Ising model, at least for a number of qubits
N ≤ 14. Following this branch, we described and tested a modified INTERP procedure
where both the number of qubits and the depth of the quantum circuit are optimized
at each step. This modification brings an advantage, computationally speaking, still
maintaining a perfect accuracy. Because the computational time increases exponentially
in the system size N , it is rather important to take into account all the possible meth-
ods to improve the algorithm in this sense. For what global optimizers is concerned,
the bayesian algorithm [35] looks very promising. The main reason is that, since it is
a global optimizer it does not require a depth-progressive strategy because it is able to
avoid barren plateaus without them. In addition, it outperformed other global search
algorithms and it is competitive, from a resources perspective, with local optimizers.
For what the Ising model itself is concerned, we checked that the employment of the
INTERP strategy ensures to find smooth optimal solutions as expected from previous
works [24]. Moreover, we proved that, when the magnetic field of the Ising chain is h > 1,
i.e. we are in the disordered phase, the QAOA identifies the ground state regardless the
circuit depth p, in particular in the large h limit. On the contrary, in the ordered phase,
i.e. h < 1, we need a quantum circuit whose p is at least half of the Ising chain length N
to locate the ground state with maximum fidelity F . We decided to focus our attention
also on the employment of a measurement process at the end of the circuit to reconstruct
the ground state. The number of measurements needed to construct the quantum state
rapidly increases with the system size and this may represent a limitation we have to
consider from the perspective of an application of the QAOA on NISQ devices.
For what possible further developments is concerned, in order to check the validity of
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what we have proved and discovered also for larger systems, it would be rather important
to repeat the analysis on systems with larger N , which requires a computational power
we couldn’t have at our disposal. Hopefully, on bigger systems, the employment of strate-
gies to improve the performance of the QAOA would allow to perform such simulations
with the minimum effort, strengthening our statements and the validity of our analysis.
Furthermore, it would be very interesting to test this algorithm on quantum devices,
when available, even with a small number of qubits, and see what we can deduce about
the actual feasibility of the implementation of hybrid algorithms on NISQ devices.
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