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Abstract

The biomedical sector, rich in unstructured data from sources like clinical

notes and health records, presents a prime opportunity for Natural Language

Processing (NLP) applications. Especially pivotal is the task of entity link-

ing, wherein textual mentions are mapped to medical concepts within a know-

ledge base, in this case, represented by the Unified Medical Language Sys-

tem (UMLS) Metathesaurus. Within this realm, the Italian language faces re-

source constraints (only 4% of UMLS 4M concepts have a label in the Italian

language). Current systems like MAPS Group’s Clinika software lean on la-

bel matching to link the extracted facts to the corresponding UMLS concepts.

This dissertation deals with the design of a new Clinika component aimed

at enhancing entity linking for Italian terms against UMLS, even in the ab-

sence of direct Italian labels. Employing transformer-based multilingual em-

beddings, a novel ‘concept guesser’ architecture was developed to tackle the

linking challenge intelligently, maximizing the level of exploitation of the cur-

rently available knowledge. This innovation not only enhances Clinika’s ef-

fectiveness but also paves the way for advanced multilingual clinical decision

support systems.
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Chapter 1

Introduction

The project that is the subject of this thesis was performed during a curricular

internship period at MAPS S.p.A. within the research and development area.

The principal objective was to enhance the capabilities of the Clinika software

regarding the entity linking of clinical terms against the UMLSmetathesaurus.

This led to an exploration of the domain, an assessment of the available re-

sources, an examination of the state-of-the-art techniques, the development of

an architecture that integrates various components to perform the task, and an

evaluation of the results.

1.1 Context and Domain

The biomedical domain is relevant for healthcare services, clinical research,

and medical education. Within this complex landscape, the profusion of med-

ical documentation, in the form of electronic medical records (EMR), clinical

notes, medical publications, or prescriptions, forms the basis of clinical and

administrative decision-making. Nonetheless, the unstructured disposition of

this voluminous documentation constitutes a limitation to its effective utiliza-

tion. A significant portion of valuable information within this domain is in the

form of textual narratives that necessitate systematic organization and analysis

to unlock their potential in serving the diverse tasks in healthcare.
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One of the pivotal tasks toward the effective utilization of information in

these documents is the clinical terminology coding [Blundell, 2023]. Coding

refers to the process of mapping free-text clinical terms to standardized terms

or codes from established medical terminologies. This endeavor provides a

structured and standardized representation of medical information, which is

instrumental for amultitude of applications ranging from clinical decision sup-

port systems, healthcare analytics, to research and development in medicine.

The Unified Medical Language System (UMLS) [Bodenreider, 2004]

stands as a comprehensive resource that aggregates numerous health and bio-

medical vocabularies, providing a unified, standardized lexicon along with a

semantic network to elucidate relationships between medical concepts. Map-

ping clinical terms to such a metathesaurus allows the effective utilization of

the extracted knowledge by reasoning upon it in a systematic and reliable way.

In the context of a multilingual and multicultural world, the endeavor

of encoding assumes an additional layer of complexity. Languages such as

Italian, with a lack of resources compared to English, face an uphill challenge

in the precise mapping of clinical terms to established knowledge bases like

UMLS. The absence of direct translations or equivalents makes the challenge

more difficult, seeking innovative approaches to face these issues.

Once clinical terms have been encoded against the Unified Medical Lan-

guage System (UMLS), a wide array of tasks can be facilitated within the

biomedical domain. Here are some of the prominent tasks:

Clinical Decision Support Systems CDS Systems [Wasylewicz and

Scheepers-Hoeks, 2019] can rely on encoded terms to provide robust

and accurate results based on standardized and structured data, that can

be analyzed to support clinicians.

Healthcare Analytics Healthcare organizations can perform analytics to

monitor and improve the quality of care, manage operations efficiently,

and identify areas for cost savings or operational improvements.
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Regulatory Compliance and Reporting Standardized coding of clinical

terms assists inmeeting regulatory requirements and streamlined report-

ing to various stakeholders, including government health departments,

insurance companies, and accreditation organizations. In Italy, the le-

gislation [Italian Government, 2008] forces the codification of some

information in the hospital discharge records against the International

Classification of Diseases (ICD9CM).

Interoperability Encoding clinical terms fosters interoperability among dif-

ferent healthcare information systems by enabling the seamless ex-

change and interpretation of medical data.

Semantic Search and Retrieval Enables more effective and semantically

enriched search and retrieval of medical information, which is crucial

for clinicians, researchers, and healthcare administrators.

1.2 Clinika

Clinika, a patented software developed by MAPS S.p.A. [Emiliani, 2017],

serves as an automated analytical tool for processing medical documents. It

uses a semantic engine to extract and code relevant concepts in clinical texts

for automated processes and decision support systems in clinical and admin-

istrative settings. Since 2013, several Italian local health units have adopted

Clinika for their operational needs. In particular, Clinika VAP (Automatic

Prescription Verification) is capable of examining the unstructured free text of

medical prescriptions and extracting structured knowledge that supports stra-

tegic decisions. The objective is to evaluate and verify the adequateness of

the prescriptions made by healthcare professionals. The insights provided by

Clinika enable the directors of a health facility to strategically orchestrate re-

source allocation and identify critical areas where enhanced awareness among

the doctors is needed.
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Specifically, Clinika executes Named Entity Recognition (NER) on an ar-

ray of medical documents including medical reports, prescriptions, and dis-

charge letters. It is notable that all documents processed are articulated in

the Italian language. Clinika ambitiously aims to map interesting targets to a

pre-established terminology system encompassing millions of potential terms.

Among the well-established and reputable terminology systems in the bio-

medical field, MAPS S.p.A. has opted for UMLS as the primary reference

metathesaurus.

The legacy version of Clinika preceding this work relied on the exact

matching of Italian labels to associate targets with UMLS concepts, a meth-

odology that, while straightforward, posed limitations in terms of flexibility

and comprehensiveness. This approach necessitated a precise correspondence

between the labels within the documents and those existing within the UMLS

metathesaurus, potentially overlooking or misrepresenting nuanced or varied

terminological expressions prevalent in clinical discourse.

This thesis relies on and integrates the work of the existing Clinika infra-

structure and the work of the other interns. Themost relevant component is the

data extraction pipeline. It integrates a series of SpaCy components designed

to discern significant tokens within an input clinical text. The Dependency

Parser is the most relevant component, that is in charge of determining the

syntactic structure of the sentences with all their linguistic relations. This task

is quite difficult because of the nature of clinical documents that are often

written in a nominal way deviating from the standard logical and grammar

conventions. This pipeline yields a list of mentions with eventually some at-

tached metadata, that are intended to be the relevant terms that need to be

coded against the UMLS knowledge base.
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1.3 Objectives

This thesis delves into the relevant task of encoding clinical terms, particu-

larly focusing on bridging the linguistic gap faced by the Italian language, by

mapping them to the UMLS metathesaurus. By exploiting the advancements

in Natural Language Processing (NLP), machine learning, and biomedical

knowledge basis, this thesis aims to contribute toward enhancing the effect-

iveness and accessibility of medical information across linguistic boundaries.

By referring to Clinika software developed by MAPS S.p.A., the subsequent

chapters will unfold the design, implementation, and evaluation of a new ar-

chitecture aimed at automatic terminology coding for the biomedical domain.

Overall, the objective is to build a system that reliably performs entity-

linking between extracted Italian mentions and the UMLS concepts. The main

challenges to deal with are about the scarcity of Italian labels in the UMLS

metathesaurus, the disambiguation of similar but unrelated terms, and the

alignment to the most pertinent and specific concept. Each of these challenges

requires a detailed and clear approach to build a strong linking framework

that can manage the complex language of the biomedical field. By solving

these challenges, this project aims to greatly improve the precision of Clinika’s

entity-linking system and the amount of coded terms, thereby increasing the

correctness of information collected and supporting better clinical and admin-

istrative decisions.

The main challenge is to correctly link an Italian biomedical term to the

most pertinent UMLS concept even in the absence of a corresponding Italian

label. For instance, the text ‘collo omerale’1 is not present in UMLS, while

there is the word ‘collo’2 and ‘omero’3. The word ‘collo’2 is also ambiguous.

So, associating the right CUI to this piece of text is not a straightforward task.

1Italian for ‘humeral neck’
2Italian for ‘neck’
3Italian for ‘humerus’



Chapter 2

Background

This chapter delves into a comprehensive examination of the existing re-

sources that allow the achievement of the goals of this project, with a great

focus on the NLP techniques pivotal for the entity linking task.

2.1 UMLS

A medical terminology system is a specialized language or standardized

vocabulary used in the healthcare industry to accurately describe the pro-

cesses, procedures, symptoms, diseases, and conditions pertaining to med-

ical practice and research. These terminologies enable clear communica-

tion and shared understanding among healthcare professionals, researchers,

and administrators, ensuring consistency and reducing ambiguity in the doc-

umentation and communication of medical information. The main advant-

ages of using a medical terminology system include standardization. Coding

and classification allow for the easy grouping and identification of diseases,

conditions, and treatments, and enable the systematic classification of health

information crucial for analytical purposes. Examples of medical termino-

logy systems include the Systematized Nomenclature of Medicine – Clinical
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Terms1 (SNOMED CT), the International Classification of Diseases2 (ICD),

the Logical Observation Identifiers Names and Codes3 (LOINC), and the Uni-

fiedMedical Language System (UMLS) which integrates several standardized

medical terminologies into a single, comprehensive system. Medical termino-

logy systems may also include relational and hierarchical structures that delin-

eate the relationships among diverse concepts, facilitating more streamlined

information retrieval and analysis.

The UnifiedMedical Language System4 (UMLS) [Bodenreider, 2004] is a

set of databases and tools developed by the U.S. National Library ofMedicine5

(NLM). UMLS provides a common framework that bridges various vocabu-

laries and standards used in the healthcare domain to enable computer sys-

tems to better process medical information. The UMLS reference version for

this thesis is the 2020AB. UMLS consists of three knowledge sources: meta-

thesaurus, semantic network, and lexicon and lexical tools.

Metathesaurus The UMLSMetathesaurus is the primary component of the

Unified Medical Language System (UMLS). It is essentially a large, multi-

purpose, and multilingual database containing biomedical and health-related

concepts. It aggregates and interlinks a wide variety of different terminologies

and classifications used across various healthcare systems, research domains,

and standard-setting organizations.

Conceptual Organization Various elements play crucial roles in form-

ing a coherent and comprehensive terminology system. At the core are ‘con-

cepts’, which represent distinct meanings or ideas in the biomedical or health-

care domain. Each concept aggregates various terms or phrases that share the

same meaning, from different source vocabularies, into a unified entity. These
1https://www.snomed.org/
2https://www.who.int/standards/classifications/

classification-of-diseases
3https://loinc.org/
4https://www.nlm.nih.gov/research/umls/
5https://www.nlm.nih.gov/

https://www.snomed.org/
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://loinc.org/
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/
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terms or phrases are referred to as ‘atoms’. Each atom within a concept essen-

tially represents a different expression for the same underlying idea. These

atoms are derived from different ‘dictionaries’ or source vocabularies, each

with a specific associated ‘string’ and language. The dictionaries encompass a

range of specialized vocabularies, standards, or coding systems utilized across

different sectors within healthcare and biomedical domains. On another layer,

‘relationships’ form the backbone of the conceptual structure by interlinking

atoms, thus also concepts, in a meaningful manner. Relationships can be hier-

archical, where a parent-child relationship between concepts is established, or

associative, where non-hierarchical connections are made, such as the rela-

tionship between a disease and its common treatments.

UMLS includes a vocabulary ranking system6 that assigns a rank score to the

combination of SAB (vocabulary) and TTY (term type), enabling a depend-

able ranking of concept terms.

Identifiers Each component is identified with a unique code. From a

bottom-up perspective, each source dictionary is identified by its Source Ab-

breviation (SAB). The atoms derived from a dictionary are identified by the

Atom Unique Identifier (AUI). Language associated with the atoms is identi-

fied by a Language of Terms (LAT). The strings are identified by the String

Unique Identifier (SUI). The unique identifier of a string in a source is the

CODE (dictionary dependent). The concepts, atoms aggregators, are identi-

fied by a Concept Unique Identifier (CUI). Then, each relationship is identi-

fied by a Relationship Unique Identifier (RUI) and its type is the REL with

optionally a standardized specification, the Relationship Attribute (RELA).

Finally, the semantic type of a concept is identified by a Type Unique Identi-

fier (TUI). There are more identifiers and components but the ones described

are enough for the sake of this thesis.
6Table MRRANK in UMLS
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Semantic Network The Semantic Network acts as a categorization mech-

anism for all concepts encapsulated in the Metathesaurus. It organizes these

concepts into broad, generally understood classes, and delineates relationships

among them. A fundamental element of the Semantic Network is the ‘Se-

mantic Type’. Each concept in the Metathesaurus is assigned at least one

semantic type, that represents its category. Each semantic type possesses

a unique definition and a designated place in the network’s hierarchy, with

examples including ‘Disease or Syndrome’, ‘Pharmacologic Substance’, and

‘Diagnostic Procedure’. Beyond the semantic types, ‘Semantic Relationships’

are defined; these relationships elucidate how different concepts interrelate

within the biomedical domain, with common semantic relationships being

“is_a” (a hierarchical relationship) or “treats” (a non-hierarchical relation-

ship). To facilitate an even higher-level organization, ‘Semantic Groups’ ag-

gregate semantic types that share logical associations. These groups further

organize the semantic types into broader categories, for instance, all diseases

and pathological conditions might be congregated into the ‘Disorders’ group.

SPECIALIST Lexicon and Lexical Tools These resources are useful for

some medical natural language processing (NLP) tasks. The SPECIALIST

Lexicon is a comprehensive lexical database with biomedical and general Eng-

lish vocabulary, crucial for supporting linguistic applications in processing

biomedical texts. On the other hand, the Lexical Tools, leveraging the SPE-

CIALIST Lexicon, facilitate various lexical operations for NLP tasks such as

morphological analysis and synonym identification.

2.1.1 Quantitative Analysis

UMLS is an important and rich resource and in order to understand it better and

make data-driven decisions, it is important to perform a quantitative analysis

of the metathesaurus, by looking at the distribution of its components.
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Languages

UMLS lacks solid multi-lingual support, there are 25 represented languages.

However, its English coverage is quite impressive but the difference between

English and any other language is quite large. For the sake of simplicity, a

concept is said to belong to a language if it exists at least one label of that

language. There are only 1.151 concepts without an English label. As shown

in table 2.1 even if the Italian language is the third most-covered language

in terms of concepts, the ratio between the number of Italian concepts and

English concepts is less than 4%. It also emerges that Latin and Germanic

(western) languages are the most represented, with an exceptional number of

Spanish atoms. On the other side, oriental languages are poorly represented.

Surprisingly Japan is the language withmore atoms per concept, while English

is not the one with the highest ratio. This may suggest that there can be many

alone atoms poorly associated with concepts.

Language (LAT) Concepts Atoms Atoms per Concept
ENG 4,261,033 9,421,201 2.21
SPA 463,552 1,172,015 2.53
ITA 164,584 239,011 1.45
DUT 155,108 282,772 1.82
FRE 148,352 418,938 2.82
POR 144,020 400,373 2.78
RUS 131,446 281,319 2.14
GER 114,192 223,292 1.96
CZE 90,174 188,790 2.09
KOR 85,199 137,432 1.61
CHI 78,259 78,300 1.00
JPN 70,811 297,224 4.20
TOTAL 4,262,184 13,507,570 3.17

Table 2.1: Quantitative analysis for not suppressed top represented languages

Semantic Types

It is important to know the distribution of semantic types in UMLS to under-

stand the coverage of the types of interest. There are 127 sematic types, so
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it is evident that grouping is paramount. As shown in table 2.2 and table 2.3,

There are so many concepts belonging to categories that are not so useful for

the context of interest of the original objective. Indeed, the living beings se-

mantic group will be rarely used. Nevertheless, the coverage of interesting

types like disorders, procedures, and anatomies, is still relevant.

Semantic Type (STY) Concepts
Eukaryote 979.954
Bacterium 420.586
Finding 306.126
Therapeutic or Preventive Procedure 301.753
Organic Chemical 244.965
Plant 223.147
Pharmacologic Substance 175.109
Fungus 160.240
Amino Acid, Peptide, or Protein 158.155
Clinical Drug 128.848
Injury or Poisoning 109.705
Disease or Syndrome 109.660
Clinical Attribute 99.025
Body Part, Organ, or Organ Component 91.063
Gene or Genome 79.825

Table 2.2: Concepts per semantic types

Relations

Relations represent a crucial part of UMLS. There are 11 relationship types7

and 974 relationship attribute types [Tables 2.4, 2.5]. There are in total

84,350,564 relationships. Even if it might seem a big number, it is important to

take into consideration the fact that relations are unidirectional but their sym-

metric version is always present. Moreover, relations are defined on atoms,

so the same relation between concepts can appear multiple times. Sibling re-

lations are the most numerous even if they can be easily derived. So, skipping

siblings and halving the relations, leads to 22,534,518 relations. The ratio of
7REL abbreviations description https://www.nlm.nih.gov/research/umls/

knowledge_sources/metathesaurus/release/abbreviations.html#mrdoc_REL

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html#mrdoc_REL
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html#mrdoc_REL
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Semantic Group Concepts
Living Beings 1.951.563
Chemicals & Drugs 929.935
Disorders 642.428
Procedures 435.413
Physiology 169.310
Anatomy 153.633
Concepts & Ideas 92.476
Genes & Molecular Sequences 80.501
Devices 68.811
Objects 24.770
Phenomena 15.035
Activities & Behaviors 5.741
Geographic Areas 4.633
Organizations 4.050
Occupations 2.074

Table 2.3: Concepts per semantic types

relations per concept is 5.29. Considering the complexity of the biomedical

domain, this ratio is not so high.

REL Count
SIB 39,281,528 (19,640,764)
RO 17,834,406 (8,917,203)
SY 7,129,688 (3,564,844)
CHD / PAR 6,077,711
RQ 2,947,678 (1,473,839)
RB / RN 1,856,128
QB / AQ 613,457
RL 62,672 (31,336)

Table 2.4: Relation types count

Sources

The reliability of UMLS derives directly from its source vocabularies. There

are some vocabularies that provide more atoms than others and it is interesting

to know howmany synonyms each vocabulary provides for the same concept.

The results of this inquiry are shown in table 2.6. Each vocabulary has a focus
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RELA Count
<not specified> 51,409,014
inverse_isa 2,612,975
isa 2,612,975
translation_of 1,697,294
has_translation 1,697,294
has_inactive_ingredient 1,452,046
inactive_ingredient_of 1,452,046
classified_as 1,242,870
classifies 1,242,870
member_of 1,161,041
… same_as 194,650

Table 2.5: Relevant relation attribute types count

on some particular semantic types and usually one language.

Vocabulary (SAB) Concepts Atoms Atoms per Concept
NCBI 1,907,782 2,085,881 1.09
MSH 404,655 908,129 2.24
MEDCIN 358,221 945,560 2.64
SNOMEDCT_US 352,881 943,751 2.67
SCTSPA 343,591 854,528 2.49
MTH 234,078 235,349 1.01
LNC 216,799 587,633 2.71
ICD10PCS 190,672 269,665 1.41
NCI 161,477 386,147 2.39

Table 2.6: Quantitative concept analysis for the top represented vocabularies

Regarding the relations, the same observation is valid, in table 2.7 the

sources that provide the highest number of relations are shown. There are

sources that provide many atoms and a few relations and vice-versa.

2.2 Language Models

The Transformer architecture [Vaswani et al., 2017] has set the stage for a

multitude of sophisticated models capable of handling a wide range of NLP

tasks with significant efficacy. Among these models, Bidirectional Encoder

Representations from Transformers (BERT) [Devlin et al., 2018], by Google,
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Vocabulary (SAB) Relations
SNOMEDCT_US 6,817,224
SCTSPA 5,993,222
MTHSPL 4,211,900
LNC 3,931,302
NCBI 3,822,748
MSH 3,152,576
RCD 2,929,222
GO 2,553,632
RXNORM 2,474,682
MDRJPN 2,367,490

Table 2.7: Quantitative relations analysis for the top represented vocabularies

has emerged as a notably influential and powerful model that has significantly

advanced the state of the art in NLP.

At the heart of BERT is the Transformer architecture, which employs the

self-attention mechanism to weigh the importance of different parts of the in-

put text relative to each other. Unlike its predecessors, which processed text

in a unidirectional manner, BERT operates bidirectionally. This bidirectional

processing enables BERT to capture a more comprehensive understanding of

the contextual relationships between words in a sentence.

The pre-training and fine-tuning strategy enables the ease of usage of

BERT. Initially, BERT is pre-trained on a vast corpus of text, during which it

learns to predict missing words in a sentence, the self-supervised masked lan-

guage modeling (MLM) task. This pre-training phase allows BERT to learn a

rich understanding of language, capturing semantics, relationships between

words, and other linguistic nuances. However, the true potency of BERT

is unveiled during the fine-tuning phase. Fine-tuning is the process wherein

the pre-trained BERT model is adapted for a specific NLP task. During fine-

tuning, the parameters of the BERT model are slightly adjusted (some layers

can be frozen) on the task-specific data to achieve optimal performance for

that particular task. This two-step process of pre-training and fine-tuning not

only drastically reduces the amount of training data required for the target task



2.2 Language Models 15

but also leads to models that generalize well on a variety of tasks, showcasing

the versatility and efficiency of BERT. It also allows for reduced costs consid-

ering that full training of such a big model can be heavily resource-demanding

and fine-tuning is relatively lightweight.

The success of BERT led to the development of numerous variants and

extensions, each designed to tackle unique challenges or to optimize perform-

ance in specific domains. For the sake of this project, the interest is focused

on models capable of handling the Italian language and biomedical-specific

terminology. Indeed, utilizing a general-purpose, pre-trained model directly

for biomedical applications may result in suboptimal performance due to the

pronounced distributional disparities between texts from general domains and

those from biomedical realms. When there is a significant divergence between

the target domain and the corpus on which the model was originally trained,

as is the case in biomedicine, the model can greatly benefit from a domain-

adaptive training phase, like the BioBERT model [Lee et al., 2020], but it has

the drawback of being limited to the English language.

2.2.1 Embeddings

BERT’s transformer-based architecture can be used to generate feature vec-

tor representations of words or sentences, namely embeddings. The BERT

model first encodes the tokenized input text using a stack of encoder layers.

Each encoder layer consists of a self-attention mechanism and a feed-forward

network. The self-attention mechanism allows the model to learn the rela-

tionships between different words in the input sequence. The feed-forward

network then applies a non-linear transformation to the output of the self-

attention mechanism. to further refine the understanding and representation

of each token. The output of the last encoder layer is a sequence of hidden

state vectors, each a high-dimensional representation of a token. These hid-

den state vectors represent the contextual embeddings of the words in the input
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sequence.

BERT’s architecture allows it to learn long-range dependencies in the input

text sequence. This is important for understanding the meaning of text, as the

meaning of a word or phrase can be affected by words that are far away in the

sentence. It is also able to learn the relationships between different words in

the input text sequence. This is important for tasks such as semantic similarity

and text classification, where the model needs to understand the meaning of

the entire sentence.

Pooling

Pooling is a technique employed to aggregate information from a sequence

of vectors to produce a fixed-size vector, irrespective of the input sequence’s

length. This is particularly useful when handling text of varying lengths. In

the context of BERT, pooling is often performed on the output embeddings of

the tokens to create a single vector representation of the entire input sequence

[Ma et al., 2019]. This feature vector can then be used for various down-

stream tasks. It is important to consider that the input string s is tokenized

as [CLS], s0, . . . , sk, [SEP] and the BERT model encodes s to a series of hid-

den states h[CLS], h0, . . . , hk, h[SEP]. Different pooling strategies can be used

to obtain the embedding e ∈ Rl with usually l = 768.

Mean Pooling It consists of taking the mean of the embeddings of all tokens

or a selected group of tokens (e.g. excluding [CLS] and [SEP]):

emax = MaxPool(h[CLS], h0, . . . , hk, h[SEP]).

Max Pooling For each dimension of the embedding space, the maximum

value is selected across all the token embeddings in a given sequence.

This operation results in a single vector that retains the highest activa-

tion across each dimension, from all tokens:

eavg = AvgPool(h[CLS], h0, . . . , hk, h[SEP]).
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CLS Token Pooling BERT pre-training involves training a [CLS] (classific-

ation) token whose embedding is intended to be used for classification

tasks. Post-training, the embedding of the [CLS] token can be used as

a pooled representation of the entire sequence:

e = e[CLS] = h[CLS].

2.2.2 Multilingual BERT

Multilingual BERT (mBERT) is a variant of the original BERT model, de-

veloped with the capability to process text from 104 different languages, in-

cluding Italian, through a shared subword vocabulary constructed from the

text of all included languages. Unlike having individual models for each lan-

guage, mBERT operates on a single model architecture, trained on a multilin-

gual corpus, to create a language-agnostic representation space. This unique

approach facilitates zero-shot learning across different languages, allowing a

model trained on a specific task in one language to be applied to the same

task in other languages without requiring additional training data. This fea-

ture, known as cross-lingual transfer, is particularly beneficial in scenarios

with scarce training data for certain languages.

The mBERT model is pre-trained using similar objectives to the original

BERT, including masked language model (MLM) and next sentence pre-

diction (NSP), but on a multilingual corpus, which helps the model learn

language-agnostic representations. The applications of mBERT are diverse

and significant, especially in cross-lingual NLP tasks such as document clas-

sification, named entity recognition, and question answering among others,

where it has shown strong performance on various benchmarks.
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2.2.3 MedBIT

MedBIT is a model published by the Italian Neuroscience and Rehabilitation

Network (RIN) [Buonocore et al., 2023]. Its objective is to provide an effect-

ive model for the Italian biomedical context. It is a model based on BioBERT

[Lee et al., 2020] trained on Italian biomedical corpora.

Training The model is trained against the self-supervised MLM task with

essentially two types of data [Figure 2.1]. The first dataset is derived from the

PubMed8 abstracts undergone through the Google’s Neural Machine Transla-

tion (NMT) System [Wu et al., 2016] translated from English to Italian, priv-

ileging quantity over quality. The authors refer to the model trained only with

this machine-translated dataset as BioBIT. Then, MedBIT is obtained from

BioBIT by additionally training it with an Italian biomedical corpus derived

from reliable resources written by humans. However, the quantity of data is

very small but for this training quality is privileged over quantity.

Figure 2.1: BaseBIT, BioBIT, and MedBIT training and evaluation pipeline
[Buonocore et al., 2023]

8https://pubmed.ncbi.nlm.nih.gov/

https://pubmed.ncbi.nlm.nih.gov/
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Catastrophic Forgetting Mitigation MedBIT was trained with techniques

to mitigate the catastrophic forgetting phenomenon, thus avoiding significant

deviations from the previously learned parameters. The employed strategies

are about learning regularization such as Layer-wise Learning Rate Decay

(LLRD), Warmup, and Layer Freezing, alongside knowledge distillation tech-

niques like Mixout and Experience Replay.

LLRD introduces a decay function to the learning rate on a per-layer basis,

such that layers situated closer to the input nodes, often encodingmore general

information, experience a smaller learning rate. The learning rate schedule can

be prefaced with a brief warm-up phase, facilitating a smoother transition into

the learning process. Layer Freezing procedure nullifies the gradient of the

network’s earliest layers prior to the last training phase.

On the other hand, the Mixout approach adopts a stochastic procedure to

mix theweights of the pre-trained checkpoint with those of themodel currently

undergoing training. This is intended to augment the stability of language

model tuning. Instead, experience replay is realized by furnishing the model

with an additional batch of data, sampled from the corpus used for the preced-

ing pre-trained checkpoint (BioBIT), every n steps, the replay frequency.

These diversified techniques, harmoniously integrated, are aimed at en-

suring the retention of crucial prior knowledge while adeptly adapting to the

peculiarities of biomedical texts.

Evaluation The models have been evaluated with respect to the baseline

represented by the BaseBIT model, trained with an Italian general corpus.

All the models share the same dictionary, relying upon the BERT tokeniza-

tion method. The metric to evaluate the MLM performance is the average

pseudo-perplexity (PPPL) [Salazar et al., 2020] in equation 2.1, and the Mean

Reciprocal Rank of the top five tokens T5, as shown in equation 2.2. Let N

denote the number of tokens within the corpus C being evaluated. Where N

is the number of tokens of the corpus C under evaluation, wt is the word of
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the sentence S of the corpus C in position t. Then p(wt|S\t) is the conditional

probability for the masked word wt given the other words of the sentence S\t.

Then Rw
MS

is the rank of the correct word wM of the sentence S.

PPPL(C) = exp

− 1
N

∑
S∈C

|S|∑
t=1

log p(wt|S\t)

 (2.1)

MRR(C) = 1
|C|

∑
S∈C


1

Rw
MS

, if wM ⊂ T5

0, otherwise
(2.2)

The models are evaluated not only against the MLM task but also against

other downstream tasks like Question Answering, Relation Extraction, and

Named Entity Recognition, after a fine-tuning round. Tests by the authors

show that MedBITR3+ is one of the best for the cited downstream tasks.

2.2.4 CODER

Contrastive learning on knowledge graphs for cross-lingual medical term rep-

resentation (CODER) [Yuan et al., 2022] is a model aiming to provide a dense

representation in which terms of related biomedical concepts are close, in

a multi-lingual manner. It exploits UMLS synonyms and relations [Figure

2.2] to provide high-quality features. For the sake of this thesis, only the

CODERALL model based on mBERT is taken into consideration.

Based on our research, CODER is the only work that fully utilizes UMLS

as a knowledge graph and in a multilingual way. Other models like SapBERT

[Liu et al., 2020] utilize only synonyms from UMLS.

Term Normalization Referring to UMLS [Section 2.1], D = {ci}|D|
i=1 is the

metathesaurus concept dictionary, and R = {ri}|R|
i=1 is the set of relationships

among the concepts inD, represented by triplets {(h, r, t)} of an head concept

h ∈ D, a tail concept t ∈ D, and a relation r ∈ R. Each concept ci is defined

by a set of terms (represented with strings) Ti = {sj
i }

|Ti|
j=1. The embedding of



2.2 Language Models 21

Figure 2.2: CODER term encoding and similarity [Yuan et al., 2022]

sj
i is referred to as ej

i ∈ Rl with l = 768, obtained with the CLS token pooling

[Section 2.2.1]. The objective is to predict the correct concept c of an input

term s with embedding e. The predicted concept ĉ is given by the concept

associated with the most similar term with respect to the given one taking into

consideration the cosine similarity of the embeddings: ĉ = carg maxi(cos(ej
i ,e)).

Training CODER bases the training process on a contrastive learning

framework by maximizing the similarity between positive term-term pairs and

term-relation-term pairs from the reference KG. At each training step the fol-

lowing steps are performed to compute the loss:

1. A batch of k relationship triplets {(h, r, t)}k
i=1 is sampled from the KG.

To have a uniform notation for concepts, denote ci = hi and ck+1 = ti.

In this way, there are 2k possibly not-unique concepts.

2. For each concept ci, given its set of terms Ti = {sj
i }

|Ti|
j=1, only one term

si is sampled. Thus, there are 2k terms.

3. The current CODER model is used to embed the set of terms {si}2k
i=1

into the set of embeddings {ei}2k
i=1.

4. The term-term pair label τij between si and sj is 1 if ci = cj , 0 otherwise.

The similarity of the two terms is given by the cosine of the embeddings

Sij = cos(ei, ej).

5. The pair-based Multi-Similarity loss (MS-loss) [Wang et al., 2019] is
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adopted as depicted in equation 2.3. Given an anchor, theMS-loss deals

only with hard negative pairs Ni and hard positives Pi.

Ni = {j|τij = 0, Sij > min
τik=1

Sik − ϵ},

Pi = {j|τij = 1, Sij < min
τik=0

Sik + ϵ},

LMS = 1
2k

2k∑
i=1

( 1
α

log(1 +
∑

j∈Pi

exp(−α(Sij − λ))

+ 1
β

log(1 +
∑

j∈Ni

exp(β(Sij − λ))
)

(2.3)

6. The term-relation-term label τ rel
ij between si and sj is 1 if (hi, ri, tj−k ∈

KG, 0 otherwise. The similarity is given by the multiplication of the

relation mapping matrix Srel
ij = cos(M⊤

ri
ei, ej), where Mri

∈ Rl×l.

7. With the same principle at step 5 the MS-loss of term-relation-termLrel
MS

is computed.

8. The final loss is given by L = LMS + µLrel
MS with µ a hyperparameter.

Evaluation CODER was evaluated by the authors against some medical

term normalization tasks with English datasets in a zero-shot setting. Based on

their experiments comparing other popular BERT-based models, it is shown

that for this task CODERENG performs significantly better than CODERALL.

Moreover, contextual pre-trainedMLM embeddings do not succeed in achiev-

ing embedding-based normalization, and medical word embeddings do not

provide improvements over the word embedding baseline. Another test was

done with non-English datasets comparing CODERALL with mBERT, result-

ing in the former outperforming by far the latter.

Some other tests, involving t-SNE visualization of different contextual em-

beddings, clearly show that CODER clusters and groups concepts concerning

the semantic types.
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CODER++

CODER employs contrastive learning to generate embeddings that bring

closely related terms within a conceptual vicinity. While these embeddings

have exhibited promising results in various applications, they are not without

limitations. The main limitation is their insensitivity to minor textual dif-

ferences, showing high similarities for non-synonymous but textually similar

terms. This insensitivity can lead to suboptimal results when clustering bio-

medical terms, where precise distinctions are often crucial. An upgraded ap-

proach named CODER++ has been conceived [Zeng et al., 2022]. CODER++

addresses the need for fine-grained representations in the realm of term em-

beddings. It introduces sampling that dynamically selects hard positive and

negative samples during contrastive learning. This strategic adjustment allows

CODER++ to capture subtle nuances in term semantics, resulting in more ac-

curate and effective biomedical term clustering. CODER++ was pre-trained

by the authors only for the English language and at the moment there is no

multilingual CODER++ version.

Hard Negative Sampling The advancement of CODER++ consists of the

usage of dynamic hard negative samples during pre-training with the objective

of generating better term clustering, by pushing further semantically different

but syntactically similar terms. For each term si, k positive terms pi1 , . . . , pik

with the same CUI of si are sampled. The textual difference between si and a

positive sample pi is an indicator of how hard the positive sample is. The most

relevant strategy is about the negative sampling, indeed, for each term si, m

negative hard terms ni1 , . . . , pim are drawn by looking at the current nearest

neighbors of si. These neighbors if have a different CUI of si, constitute the

hard negative samples. Because it is expensive to look for all the embeddings

of all the terms in the KG, a vector library [Section 3.3] is used and an index of

embeddings is updated at each epoch with the new results of the model under

training. The loss, as in CODER, is the MS-loss. This aims at pushing further
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negative terms that the model considers as positives, in a more effective way.

2.3 Related Works

In literature, several attempts have been made towards the biomedical entity

linking goal, often referred to as medical concept normalization. The em-

ployed techniques evolved as the technologies in NLP did. Among the sci-

entific community, UMLS stands out as a highly regarded and dependable

resource. Nevertheless, the field of research still awaits a substantial multi-

lingual breakthrough, despite some noteworthy efforts that have been made in

this direction.

MetaMap MetaMap [Aronson, 2001, Aronson and Lang, 2010] is a tool

developed by the National Library of Medicine (NLM) that annotates bio-

medical texts against the UMLS metathesaurus. This tool conducts a series

of linguistic analyses, including tokenization, part-of-speech tagging, lexical

lookup, and syntactic parsing. It also generates variants of phrases, identi-

fies candidate matches in the Metathesaurus, constructs mappings, and offers

word sense disambiguation (WSD).

MetaMap’s evaluation process relies on four linguistic measures: centrality,

variation, coverage, and cohesiveness. It boasts a robust lexicon, a relaxed

data model, and efficient processing options. However, MetaMap is limited

to English text and has room for improvement in terms of disambiguating am-

biguous terms.

Despite its strengths, MetaMap’s reduced accuracy in handling ambiguity re-

mains a challenge. That is because MetaMap can be considered obsolete

nowadays with respect to NLP advancements. Purely syntactic methods are

insufficient to reach high-level performances. It is now often used as a baseline

for these types of problems.
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Classification The entity linking problem can be framed as a classification

one [Miftahutdinov and Tutubalina, 2019]. The classification problem ad-

dressed in this research revolves around the mapping of entity mentions from

User-Generated Texts (UGTs) to specific medical concepts within UMLS.

This linguistic-based system employs lexical lookups and variants to assign

scores to phrases within a sentence. This process involves converting textual

mentions into numerical representations using neural network models, cap-

turing their underlying semantic meaning. To enhance this mapping, domain-

specific knowledge from UMLS is incorporated, allowing for the computa-

tion of semantic similarity features. A classification algorithm then assigns

probability scores to potential medical concepts for each mention, ultimately

selecting the concept with the highest probability as the classification result.

The aim is to automate the normalization of UGT entity mentions into stand-

ardized medical terminology, which holds significant promise for applications

in healthcare and biomedical research.

Although state-of-the-art embedding mechanisms and language models such

as BERT were used, the huge number of classes still represents an impairment

for such an approach. Moreover, the classification approach is also inflexible

with respect to classes modifications, requiring new training.

Ranking The ranking approach [Sung et al., 2020] focuses on ranking can-

didate concepts based on their similarity to the input term. Unlike the classi-

fication method, this approach uses a binary classifier, where positive samples

consist of terms paired with their corresponding concept names, and negative

samples consist of terms paired with non-corresponding concept names. The

classifier output serves as a measure of similarity used to rank candidate con-

cepts for normalization. In rankingmethods, the goal is to assess the similarity

between the input term and candidate target terms by training them as posit-

ive and negative pairs. For instance, DNorm [Leaman et al., 2013] learns to

rank target terms by calculating similarities between TF-IDF vectors. While
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CODER [Yuan et al., 2022, Zeng et al., 2022] [Section 2.2.4] uses pre-trained

BERT-based embeddings and contrastive learning to generate a representation

space for UMLS terms and then find the nearest neighbors of the queries.

Italian Annotator Relevant efforts have been made by the Italian com-

munity towards the annotation problem [Attardi et al., 2015]. This approach

uses three specialized Named Entity Recognizers (NERs) for extracting men-

tions of body parts and treatments, other clinical entities, and measurements.

Tanl NER [Attardi et al., 2009], a statistical sequence tagger, was employed.

The tagger utilizes a Conditional Markov Model [McCallum et al., 2000] and

offers various configuration options for classification algorithms and feature

extraction templates. Different feature sets were experimented with, such

as word shape features, dictionary features, prefixes, suffixes, bigrams, last

words, first words, and frequent words extracted from the training data.

The issue of a lack of Italian annotated corpus forced to rely on automatically

annotated data. Impressive results are shown with an F1-score above 96%.

But, as the authors warn, it’s important to note that these accuracy results are

indicative, primarily due to the automatic annotation bias in the corpus.

Medical Conceptual Similarity Measure A metric for embeddings evalu-

ation of their clusterization with respect to the semantic types has been devised

[Choi et al., 2016]. Given a set of conceptsC, a semantic type T , and the num-

ber of nearest-neighbors k MCSM is defined in equation 2.4.

MCSM(C, T, k) = 1
|C(T )|

∑
c∈C(T )

k∑
i=1

1T (c(i))
log2(i + 1)

(2.4)

Where C(T ) ⊂ C is the set of concepts of semantic type T , c(i) is the ith

closest neighbor of c, and 1T is the indicator function of T . If k → ∞, the

measure becomes meaningless, and on the opposite, if k is excessively small,

it leads to an excessive variance.
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Methodology

The inherent complexity of medical records, which deals with various non-

standard names, abbreviations, and misspellings, necessitates the standardiz-

ation of these terms. The process of term normalization can be approached

either as a classification or ranking problem. Classification methods, while

achieving impressive results, face limitations when dealing with the vast num-

ber of concepts within terminology systems like the UMLS. In contrast, rank-

ing methodologies excel in handling extensive and flexible concept sets.

In the process of linking biomedical terms to the UMLS metathesaurus,

several critical challenges need to be overcome. These challenges primar-

ily revolve around ensuring accurate contextual comprehension, disambigu-

ating terms that are lexically similar but differ in meaning, and addressing

the scarcity of resources in the Italian language. Furthermore, developing a

robust, trustworthy, and efficient system is crucial, especially considering its

practical applications in various industries.

Therefore, this research focuses on the entity linking task, treating bio-

medical term linking against the UMLS as a ranking problem, with a particu-

lar emphasis on its seamless integration into the Clinika architecture pipeline,

by exploiting the already-built functionalities. In particular by integrating the

entity linking part of the current document annotation pipeline [Figure 3.1]

[Barbieri, 2023].
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The assertion of this study is that through intelligent utilization of the se-

mantic relationships (eventually hierarchical) within UMLS and the syntactic

relationships within the free documents, it becomes feasible to execute reli-

able and precise entity linking. Precision is prioritized because, for the context

domain, it is extremely important not to have false positives.

Figure 3.1: Clinika annotation pipeline [Barbieri, 2023]

3.1 Entity Extraction

The final objective is to produce an annotated document, with its set of as-

sociated UMLS concepts, derived from a medical text. The first requirement

is to identify and extract relevant segments of text in the document that are

worthy of being coded, the so-called mentions. They usually consist of dis-

ease names, treatments, body parts, medicines, medical devices, or surgeries.

This task is performed by the entity extraction components (from the begin-

ning to the match rules engine) of the Clinika annotation pipeline designed

and implemented by other colleagues [Figure 3.1] [Barbieri, 2023]:
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1. SpaCy Standard Pipeline SpaCy1 is a popular Python library for NLP

that offers a standard processing pipeline for various tasks. It consists

of several components, that are mainly used here for syntactic analysis.

These components work together in a sequential manner, with each one

building on the output of the previous step.

(a) Tokenizer It is in charge of breaking down the input text into indi-

vidual tokens. It segments the input text into words, punctuation,

and other meaningful units.

(b) Senter The senter, short for sentence segmenter, is responsible for

splitting the text into sentences. It identifies sentence boundaries

based on punctuation marks and context.

(c) Tok2Vec It is a feature extractor. It converts each token into a

dense vector representation, capturing semantic information about

the token in the context of the entire document.

(d) Tagger It is responsible for assigning part-of-speech (POS) tags

to each token in the text. Part-of-speech tagging helps identify

the grammatical roles of words in sentences, such as nouns, verbs,

adjectives, and adverbs.

(e) Dependency Parser It performs dependency parsing by analyz-

ing the grammatical structure of sentences and determining how

words relate to each other within a sentence [Figure 3.2]. This

leads to the creation of a dependency tree, where each word is

linked to its syntactic head.

Figure 3.2: Dependencies for an Italian medical sentence [Barbieri, 2023]

1https://spacy.io/

https://spacy.io/
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(f) Lemmatizer It reduces words to their base or dictionary form, by

standardizing word forms and limiting inflectional variations.

2. Label Matcher It is a custom component in the pipeline designed to

identify UMLS labels within a givenmedical text and assign the respect-

ive Concept Unique Identifiers (CUIs). This search is performed on

both the original text and the lemmatized one. The Label Matcher lever-

ages the spaCy PhraseMatcher component, which identifies a list of pat-

terns within a document. UMLS labels have been converted into spaCy

documents, in order to leverage the efficiency of the PhraseMatcher.

This was done with exceptional attention to the tokenization.

3. Label Dependency Matcher It is designed to address a limitation of

the Label Matcher. Indeed, it can only find labels that appear contigu-

ously in the text. For instance, to find the label ‘fracture of the femur’

from the text ‘fracture of the neck of femur’ it’s essential to have the

more specific label in UMLS. It cannot discover the broader label if the

specific one is missing. To overcome this limitation, the Label Depend-

ency Matcher searches for labels within the text’s syntactic tree.

4. Conjunction-Aware Label DependencyMatcher It is tailored for de-

tecting labels linked by conjunctions within the syntactic tree of docu-

ments. This component unveils hidden syntactic relationships by modi-

fying the input document’s tree to make them explicit, allowing for the

extraction of all associated labels. It enhances the Label Dependency

Matcher’s capabilities by handling conjunctions effectively and unify-

ing the results with previously discovered labels. For instance, for the

text ‘fracture of the tibia and fibula’, it is possible to generate the two

mentions ‘fracture of the tibia’ and ‘fracture of the fibula’.

5. Target Guesser To overcome these issues about sensitivity to typos,

tokenization differences, and variations in labels, a custom component

called the Target Guesser, based on spaCy’s SpanCategorizer and a pre-

dictive model, identifies and categorizes relevant text spans. It deserves
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deeper attention in the following paragraphs [Section 3.1.1].

6. Match Rules Engine The Match Rules Engine serves to address scen-

arios where matches found by previous components do not correspond

to desired text spans or where some spans remain undetected due to not

being present in the knowledge base. This component allows to specify

custom rules for manipulating matches based on certain conditions, in-

cluding token and span attributes like part-of-speech, lemma, or syn-

tactic dependencies. Each rule applied by this component includes an

‘action’ field that dictates how it should affect the identified matches:

(a) Remove Removes an undesired match.

(b) Set Sets a specified concept for a match, replacing any existing

concepts. This helps disambiguate terms with multiple meanings.

(c) Add Adds specified concepts to a match, without removing ex-

isting concepts. It’s useful for adding not present synonyms.

3.1.1 Target Guesser

The Target Guesser component [Barbieri, 2023] is crucial for detecting men-

tions that are not perfectly matched with UMLS. Indeed, the scope of the pro-

ject of this thesis is to provide the best possible concept for a mention, even

in the absence of a direct label. Without the target guesser, this wouldn’t have

been possible. It is based on the SpanCategorizer spaCy component. The

SpanCategorizer is based on a predictive model that detects relevant portions

of text and classifies them. For the sake of the target guesser, only one class

is needed. It is similar to a Named Entity Recognizer (NER) but it is able to

handle also overlapped portions of text. The spaCy SpanCategorizer is made

up of a suggester and a classifier. The suggester is a customizable function that

extracts all candidate spans. This function can be rule-based or use machine

learning approaches. The classifier’s role is to predict the correct class for

the extracted spans provided by the suggester, considering their surrounding
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context. The classifier is composed of an embedded, a pooler, and a scorer.

Although the single-class usage of the target guesser, the classifier becomes

useful if used in a binary way to decide whether to emit or not a target. Indeed,

only targets with a score higher than 0.5 are emitted. The custom SpanCat-

egorizer is based mainly on LSTM networks [Hochreiter and Schmidhuber,

1997] in a bi-directional fashion.

Corpus Because of the lack of Italian resources for this specific context,

a manually annotated corpus was used to train the SpanCategorizer. In par-

ticular, 468 medical reports were annotated with 6, 000 targets globally. The

annotation tool used is Prodigy2 which perfectly integrates with spaCy. The

first 15% of the documents have been annotated completely manually, then an

initial draft model was trained in order to automatically annotate the rest of the

documents and manually correct the generated targets, instead of annotating

everything from scratch.

Performances The evaluation metric is done in a word-based tokenized

way, to provide a better reliability of the results. Indeed, if all the target text

is considered, the model gets penalized even if the detected target is almost

correct. In table 3.1 it is shown how a metric that considers tokens is more ef-

fective in the evaluation. The target guesser is considered to be highly reliable.

Indeed, it reaches a 98.44% precision, a 96.75% recall, a 97.58% F1-score.

Text the radiography shows a displaced fracture
Tokens the radiography shows a displaced fracture
True Targets     
Detected Targets      
Standard metric TN TP TN TN FN FP
Tokenized metric TN TP TN TN FN TP

Table 3.1: Target Guesser evaluation metrics example

2https://prodi.gy/

https://prodi.gy/
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3.1.2 Connected Components

The Clinika pipeline is able to provide relevant information about the text to

be annotated. It first detects the components that are worth to be annotated and

then determines the compatibilities among them. Using the rules it is possible

to extract also mentions that are not directly present in UMLS (e.g. ‘frattura

del collo del femore’3) [Figure 3.3].

Figure 3.3: Mentions of sentence in figure 3.2 [Barbieri, 2023]

In the end, it is important to emit one ormore concepts but not all the detec-

ted mentions have to be annotated. Indeed, the best combination of mentions

should be found, e.g. it is not possible to emit both ‘collo’4 and ‘collo del

femore’5, they are clearly incompatible. This concept of compatibility [Bar-

bieri, 2023] is better formalized by the pipeline, declaring as incompatible

mentions that are in the same conflict set [Figure 3.2]. Two or more matches

are considered compatible if the text spans they cover do not have any tokens

in common. It is then possible to concatenate the mentions of multiple com-

patible matches, producing a unified text string for generating a new mention.

Concatenation options include using the original texts from the document, util-

izing Italian preferred labels, or employing English preferred labels. In this

way, it is possible to perform additional reasoning to emit a reliable solution.
3Italian for ‘femoral neck fracture’, even if this label exists, let’s pretend that it does not
4Italian for ‘neck’
5Italian for ‘femural neck’
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frattura collo femore frattura collo del sospetta frattura frattura del
del collo femore frattura del femore collo del femore

frattura   
collo   
femore    
frattura 
del collo
collo del  
femore
sospetta   
frattura
frattura

del femore
frattura del

collo del femore

Table 3.2: Compatibilities of sentence in figure 3.2

3.2 Vector Representation

Because of the great number of concepts and atoms, it is important to have a

dense representation of them in a high-dimensional vector space Rl, usually

with l = 768. The embedding system has to be inductive, allowing for the

representation of strings that are not part of the training set. Moreover, the

inference has to be fast. To fulfill these needs, a BERT-based language model

is perfectly suitable [Section 2.2].

Figure 3.4: Embedding desired example with l = 2

The desired terms in the embedding space should ideally be grouped on

their semantic types [Figure 3.5]. Synonyms should be closer and they should

also capture hierarchical relations. To solve ambiguity issues, the embeddings

should relate terms also on the basis of their context and the relations that are

not hierarchical. For instance, as shown in figure 3.4, the ‘neck’ should be
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quite distant from the ‘neck of femur’ even if it shows a high lexical similarity.

Moreover, supposing that the ‘femoral neck fracture’ is not in the knowledge

(UMLS metathesaurus) but there is ‘fracture’ and ‘neck of femur’, the model

is supposed to understand that the ‘femoral neck fracture’ is a specification

of ‘fracture’ and its location is the ‘neck of femur’. The ‘neck’ alone should

show a low similarity because it is an anatomical part distant from the ‘femur’

and it is not involved at all.

(a) CODERENG (b) BioBERT

Figure 3.5: t-SNE for concepts of different semantic types [Yuan et al., 2022]

3.2.1 Vector Load and Storage

In order to build a ranking system, it is essential to have access to the know-

ledge base in a rapid way. For this reason, it is crucial to have a system that

given a string returns the relative embedding with the smallest latency pos-

sible. Before storing the embeddings, they should be generated from the terms

of the knowledge base. Even if this task might seem straightforward, it is not

because of the huge amount of data in the knowledge base [Section 2.1.1]. The

full UMLS weighs about 30 GB with 13,507,570 atoms. It is evident how it

is difficult to work with in-memory solutions like Pandas6.

Load UMLS has been deployed on a MySQL database by MAPS S.p.A.

leading to the possibility of using SQL cursors. However, difficulties have
6https://pandas.pydata.org/

https://pandas.pydata.org/
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been experienced with the low reactivity of MySQL. The solution adopted is

Dask7 for Python. Its efficiency when dealing with large files is given by the

following techniques:

1. Parallelization and Scalability It is designed to handle parallel and

distributed computing. When reading large datasets, it can split the

work across multiple CPU cores or across multiple nodes in a cluster.

2. Lazy Evaluation and Out-of-Core Processing It doesn’t load the en-

tire dataset into memory at once. Instead, it creates a computational

graph representing the data processing steps to be performed. As a res-

ult, Dask can efficiently read and process data in small, manageable

chunks, minimizing memory usage.

3. Optimized Backends It leverages optimized backend libraries for file

reading, such as fsspec and fastparquet, which are designed for efficient

I/O operations.

4. Data Structures It uses its own parallelized data structures, which are

optimized for distributed computing.

Dask’s ability to parallelize, lazily evaluate, and efficiently manage memory,

along with its optimized backends and scalability options, make it a sensitive

choice for reading and processing large datasets.

Storage Embeddings need to be stored in a compact and rapidly-retrievable

way. Considering l = 768, a 8 bytes representation for numbers in R, and

13, 507, 570 atoms, the memory allocation would end up with an overall ∼ 83

GB representation. However, embeddings are unique for each string and not

for each atom, so it is possible to consider only the 11, 674, 270 unique strings.

With such high dimensional space, the contribution of precision between

float32 and float64 representations is not so important. Thus, using 4 bits

for real numbers and only the unique strings, the required memory drops to
7https://www.dask.org/

https://www.dask.org/
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∼ 36 GB. Further reductions could be performed with an NN-based embed-

ding compressor or a memory-efficient storage system.

For the sake of this project, it is essential to have a low-latency reading embed-

ding database. LevelDB8 was chosen for this purpose. It is an open-source,

high-performance key-value storage library developed by Google, designed

for efficiency, reliability, and versatility. LevelDB leverages Bloom filters

[Bloom, 1970] to reduce the number of disk reads when looking up a key.

LevelDB organizes data on disk in a series of sorted files. Before reading a

file, it checks the Bloom filter for that file. If the Bloom filter suggests that

the key might exist in the file, LevelDB proceeds with a disk read operation.

If the filter indicates that the key is definitely not in the file, LevelDB avoids

reading the file, which can significantly reduce I/O operations and improve

lookup performance. The Bloom filter is initialized with a fixed size, that in-

fluences the number of false positives. When an element is inserted into a

Bloom filter, it goes through multiple hash functions, each of which produces

a different index within the filter’s array of bits. These bits are then set to 1 in

the filter. Instead, when checking if an element exists in the set, it gets hashed

with the same hash functions used during insertion. If all of the corresponding

bits in the filter are set to 1, the filter indicates that the element might exist in

the set. If any of the bits are 0, then the element definitely does not exist in

the set. Bloom filters are fast for both insertion and membership tests because

they involve simple bit manipulations and hash computations.

3.3 Vector Indexing

Once the embeddings of the knowledge base are generated and stored, a sys-

tem able to perform searches on this dataset is paramount. There are several

vector databases and libraries that suitable for this nearest neighbors search
8https://github.com/google/leveldb

https://github.com/google/leveldb
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task. Annoy9 (Approximate Nearest Neighbors Oh Yeah) was chosen because

it is almost as fast as the other solutions and its indexes are portable. Annoy

is a popular open-source library designed by Spotify to efficiently search for

approximate nearest neighbors in high-dimensional spaces. It was created to

address the problem of finding approximate nearest neighbors quickly, which

can be computationally expensive for large datasets and high-dimensional data

using traditional methods. It is designed for efficiency and can perform ANN

search significantly faster than brute-force methods. However, the results are

approximated, depending on the chosen parameters the quality of the approx-

imation may vary.

It also supports multiple distance metrics (Euclidean, Manhattan, Angular,

Hamming, or Dot Product). The angular distance, is computed by the Euc-

lidean distance of normalized vector, i.e. dang(u, v) =
√

2(1 − cos(u, v)).

The Annoy workflow is the following:

1. Forest Annoy builds a data structure called a ‘forest’ or ‘forest of ran-

dom projections’. This data structure consists of a collection of binary

trees, each of which is responsible for partitioning the dataset into smal-

ler subsets.

2. Random Projections Annoy employs random projections to divide

the data into different regions. Random projections are a type of di-

mensionality reduction technique. They project high-dimensional data

onto lower-dimensional subspaces in a randomized manner. By using

random projections, Annoy creates a set of hyperplanes that divide the

dataset into smaller parts.

3. Construction During the construction phase, Annoy builds the forest.

Each tree is constructed independently. For each tree, a random subset

of the data points is chosen, and then a binary tree is built based on the

random projections. The number of trees and the size of the subsets are
9https://github.com/spotify/annoy

https://github.com/spotify/annoy
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parameters that can be adjusted. These parameters determine at write-

time the trade-off between speed and accuracy. Also, the distancemetric

must be chosen at write-time.

4. Query When it is needed to find the k-nearest-neighbors of a query

point, Annoy traverses each tree in the forest to search for potential

candidates. It uses the random projections to quickly eliminate large

portions of the dataset that are not relevant to the query. It returns a set

of candidate points that are likely to be approximate nearest neighbors.

These candidates are selected based on their proximity to the query point

in the lower-dimensional space defined by the random projections.

5. Ranking The library calculates the actual distances between the query

point and the candidates in the original high-dimensional space. It ranks

the candidates by their true distances, allowing you to retrieve the top-k

nearest neighbors.

Index File Annoy uses a binary file format to store the data structure it con-

structs during the indexing phase. This binary file contains all the information

needed to perform approximate nearest neighbor queries. This file format is

platform-independent, making it suitable for cross-platform compatibility. It

provides built-in functions to serialize (save) and deserialize (load) its data

structures to and from files. Annoy’s file portability makes it convenient for

sharing pre-trained indexes without recomputing them.

Position Alignment The main issue to deal with when working with vector

libraries like Annoy, is the key-alignment. Annoy indexes vectors based on

a key called position. The position is a progressive integer number. Because

of this, an external data structure that links positions with the actual embed-

ded string is essential. To this purpose, it was decided to employ a MySQL

database with a look-up table indexed on this position, containing also other

information with respect to the UMLS knowledge base. Maintaining this table
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consistent with the Annoy index is a full responsibility of the developers.

Performance Parameters Tuning Annoy involves primarily two key para-

meters: the number of trees, denoted as ‘n_trees’, and the number of nodes

to inspect during searching, known as ‘search_k’. The number of returned

neighbors will be referred to as k, but it does not affect performances. The

choice of values for these parameters should align with the application’s need

for accuracy, index size, and query performance.

1. Trees The ‘n_trees’ parameter is specified during the index construc-

tion phase and has a significant impact on both the build time and the

resulting index size. Indeed, Increasing the value of ‘n_trees’ improves

the accuracy of query results by building a more refined and diversified

set of trees. However, the drawback is that it also results in larger index

files and longer build times.

2. Nodes to Inspect During the nearest neighbor search, the ‘search_k’

parameter determines the maximum number of nodes to examine for

potential candidates. A higher value for ‘search_k’ increases the likeli-

hood of finding accurate nearest neighbors but extends query times.

3.4 Ranking and Aggregation

A ranking system is built using the discussed components. When it is needed

to find the nearest neighbors of a string, this string should be embedded with

the same model used for the creation of the Annoy index. Then. the vector of

this string can be directly passed to the Annoy query system to retrieve the po-

sitions of the k-nearest-neighbors and their distances. These positions should

be decoded using the look-up knowledge base positioning table.

However, it is important to have a similarity score associated with each

neighbor to ease the reasoning. Indeed, the first step of the ranking sys-

tem is to convert the distances into scores, e.g. for the angular similarity:
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sang = −(d2
ang/2) + 1. Then, a temporary rank r̂ is assigned by sorting the

results by the similarity in descending order.

The results might likely be relative to more concepts. Because the desired

output is a concept, it is possible to exploit the obtained ranking of labels to

derive a ranking of concepts. Let k be the number of retrieved labels, n be the

number of different concepts associated with the retrieved labels, L be the set

of retrieved labels, ci be the concept associated with label i, ŝi be the score of

label i, and be sj the score of concept j. Several strategies can be adopted,

each with different efficiency and drawbacks:

1. Max The retrieved labels are grouped by their CUI and the maximum

score within the group is selected.

2. SumThe retrieved labels are grouped by their CUI and the within-group

scores are summed up. Each label’s score is treated as a vote for its

associated concept. Then, each summation is divided by k. In this way,

the score meaning is preserved, while a normalization to 1 would end

up with a probability-like result.

3. Weighted Sum The sum isweighted on the basis of the ranking position

r̂i of the label. A new label score is computed ŝti
= ŝi(k − i + 2)α

where α is a weighting parameter for the ranking relevance. Then, the

new label scores ŝti
are summed up like at point 2.

4. Hierarchical If resulting concepts and labels are organized hierarchic-

ally, forming a taxonomy, label scores can be aggregated hierarchically,

with parent concepts inheriting scores from their child labels. How-

ever, this assumption does not always hold in this context. This method

provides context-aware rankings.

5. Machine Learning Advancedmachine learningmodels, such as neural

networks or gradient boosting, can be trained to predict concept scores

based on label scores. Additional features, context, or metadata can

also be incorporated into the model, like the information provided by

the entity extraction pipeline. This approach is suitable for applications
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where traditional methods may not capture the nuanced relationships

between labels and concepts.

6. Lexical Similarity The lexical similarity between the target mention

and the nearest neighbors can be used to assign an additional score.

For instance, the Damerau–Levenshtein distance [Damerau, 1964] is

a string similarity metric that measures how different two strings are

by considering four basic operations: insertions, deletions, substitu-

tions, and transpositions (swapping adjacent characters). It is calculated

through a dynamic programming approach using a matrix where each

cell represents the distance between the corresponding substrings of the

two input strings. Initially, the matrix is filled with distances for indi-

vidual characters. Then, by considering adjacent cells, the algorithm

computes the minimum distance needed to transform one string into the

other, accounting for the four operations. However, due to the sensit-

ivity to minor typographical errors of lexical similarity measures, the

scores are not highly reliable in this context.

It is important to underline that these ranking mechanisms depend on the num-

ber of labels per concept in the knowledge base. If there is a specific correct

concept but with only a label, and there is a less specific concept with more la-

bels, this last one could override the most correct one. However, the similarity

measure should be higher for the more specific label. Thus, using a weighted

sum rather than the normal sum, or other advanced techniques, is extremely

relevant.

All these approaches should be equipped with a threshold that can be ap-

plied either to the label scores si or to the concept scores cj , or even both. The

adopted threshold is fixed to not add an additional overhead.
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3.5 Graph Representation

The UMLS dataset contains valuable relational knowledge that enhances our

inference process. Instead of solely relying on embedding values, we in-

corporate the semantics of the index results, utilizing relationships among

atoms. These relationships encompass a predefined set of standardized re-

lations, along with their respective specifications. Additionally, there exist

asserted hierarchical relations within the dataset. To facilitate reasoning and

analysis of this relational knowledge, we conducted a seamless migration of

UMLS into Neo4J10. This migration allows to effortlessly traverse the graph

structure and apply algorithms for further insights and applications.

Neo4j is a schema-free graph database management system. It is designed

to efficiently store, manage, and query data in a graph format. Unlike tra-

ditional relational databases that use tables and rows, Neo4j is specifically

optimized for working with data that has complex relationships. It has a nat-

ive graph data model, which consists of nodes, relationships, and properties.

Nodes represent entities, relationships connect nodes and define how they are

related, and properties store additional information about nodes and relation-

ships. Neo4j uses Cypher, a powerful and expressive query language specific-

ally designed for querying graph data, allowing retrieval and manipulation of

data patterns within the graph. Neo4j is ACID compliant, ensuring data integ-

rity and reliability even in the face of concurrent transactions. Finally, Neo4j

offers a variety of efficient graph algorithms that are commonly used in data

science and analytics. It is worth mentioning that every relationship in Neo4J

must be unidirectional, however, at read-time, it is possible to consider the

relationships as undirected. Neo4j offers various indexing methods, includ-

ing label indexing, property indexing, full-text indexing, and spatial indexing.

Indexes help quickly locate nodes, relationships, or properties based on spe-

cific criteria, significantly improving query performance and making Neo4j
10https://neo4j.com/

https://neo4j.com/
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suitable for complex graph data analysis.

Figure 3.6: Graph representation of a concept and its labels

For the migration, it is necessary to identify the nodes, the relationships,

and their properties. Not everything of UMLS was migrated, but only the rel-

evant part of the metathesaurus. The fundamental components are the atoms.

Everything revolves around them. Each atom, identified by an AUI, defines

a concept node and a string node. Concepts and strings can be defined by

multiple atoms [Figure 3.6]. The relationships are defined between atoms and

are symmetrically duplicated. Then, there are nodes for the possible semantic

types and groups, concepts are associated with semantic types with a belong-

ing relationship and so are the semantic types with the semantic groups. Fi-

nally, indices were added to the most queried properties and labels.

For read-optimization purposes, relationships are written redundantly on

the concepts. In this way, it is possible to run algorithms directly on concepts

without the overhead of traversing the atoms, significantly improving the re-

sponse time.



3.6 Architecture 45

In Neo4J, an essential tool is the shortest path algorithm, used to find the

most concise route between two nodes in a graph. Neo4j provides the APOC

(Awesome Procedures on Cypher) library, which extends the functionality of

Neo4j, including the shortest path algorithm. It is possible to performmore ad-

vanced shortest-path queries, such as finding paths within a specific distance,

considering node properties, or considering weighted relationships.

3.6 Architecture

The designed architecture is meant to be modular, expandable, pipelined, and

easily accessible. The high-level architecture depicted in figure 3.7 shows the

dependencies between the various components.

Figure 3.7: High-level service architecture

For the sake of having a modular and reliable implementation, an object

oriented infrastructure was built [Figure 3.8]. The broad principle is to have

a general interface for each component that can then be implemented with its

own concrete logic. The functionalities are the following:

1. Entities The entities represent the base blocks of the system. Each

concept has a set of associated labels that has an associated string. Each

of these entities can be further specified with eventual scores, positions,

or embeddings.

2. Storage Management It is responsible for storing the various entities

and additional information. The type of storage is independent from the

storage concept, indeed it can be chosen and implemented in various

ways. For the sake of this project, only SQL storage have been built.
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Figure 3.8: Object-oriented class diagram

3. Indexed Embedding This module has the responsibility of performing

a nearest neighbors search. The only implementation is done through

Annoy, but many other are possible like Faiss, Pinecone, etc.

4. Embeddings The generation of embeddings is the crucial part of this

project. The embedder can be exchanged in a modular way.

5. Scoring The scoring system aggregates labels and assigns scores to

concepts. Different types of evaluation strategies can be implemented

upon this architecture.

3.7 Service Industrialization

The proposed architecture has been industrialized to provide REST APIs that

efficiently fulfill the core task of obtaining a ranking of concepts (CUIs) based
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on input text. To realize this, the implementation was carried out using the

Python library FastAPI11, which facilitates the development of a robust and

user-friendly API system. FastAPI is a high performance micro web frame-

work that simplifies the creation of web applications, suitable for building

RESTful APIs.

To further enhance the performance and scalability of the REST APIs, the

ASGI (Asynchronous Server Gateway Interface) server Uvicorn12 was integ-

rated with FastAPI. Uvicorn is a lightning-fast ASGI server that allows for

asynchronous request handling. By combining FastAPI with Uvicorn, the ar-

chitecture ensures efficient and responsive handling of incoming HTTP re-

quests.

These REST APIs, powered by FastAPI and Uvicorn, allow users to seam-

lessly submit text queries and receive ranked concept responses. This integra-

tion not only makes the system accessible and user-friendly but also ensures

that it can handle a large number of concurrent requests.

The supporting Neo4J graph and MySQL database are deployed on separ-

ate independent services. Thus, the whole architecture could be easily ported

on a series of Docker13 containers.

Services

The developed API endpoints are intended to exploit the whole already built

architecture with GET requests and are the following:

1. Embed This endpoint is used to retrieve the embedding of a list of

strings according to the specified embedder.

2. Nearest Neighbors Finds the nearest neighbors of a string, given an

embedder and a distance metric [Listing ref TODO]. For each neighbor

returns its position in the index, the distance from the target, the derived

score, and the label information (CUI, SUI, STR, LAT) [Table 3.3].
11https://fastapi.tiangolo.com/
12https://www.uvicorn.org/
13https://www.docker.com/

https://fastapi.tiangolo.com/
https://www.uvicorn.org/
https://www.docker.com/
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3. Aggregated Nearest Neighbors Given an aggregation strategy with its

eventual parameters, it computes the nearest neighbors and aggregates

the relative concepts. It returns the list of concepts with the CUI, the

associated score, and the preferred label of that concept [Table 3.4].

4. Multi It is possible to use the ‘multi’ version of the preceding endpoints

by providing multiple strings. The result will be the list of the results

of each individual string. In this way, the overhead of eventual multiple

invocations is reduced and the system can optimize the inference by

leveraging batch computation.

5. Concept Info It is a utility function that aggregates UMLS data. Given

a CUI, it returns all its labels with the associated information. It also

aggregates additional label information such as the semantic type, the

computed rank, and the definition if present.

6. Vocabulary Code Concept It is also a utility function that returns the

source code of a concept given its CUI and the filtered source. For

instance, this will be useful in the case of ICD9CM usage.

7. Shortest Path This endpoint exploits the Neo4J shortest path function

to retrieve all the paths between two concepts that have the minimum

distance. The distance is not weighted and is computed only with the

number of traversed edges. It is possible to specify some filters like the

maximum search distance (it impacts the performances), the exclusion

of paths that traverse the same nodes, the usage of only ‘is a’ relations,

the usage of relations only in one direction, and the inclusion/exclusion

of some specified relationships and/or sources. This function leverages

the optimization done on the relations derivation on concepts.

8. All Paths This endpoint is similar to the shortest path one but instead

returns all the paths between two concepts with a maximum specified

distance. The available filters are the same as the previous endpoint.

As shown in tables 3.3 and 3.4, this system is able to provide good quality

answers in a fast and reliable way. Indeed, the processing time of the request,
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String SUI CUI LAT Score Distance
humerus neck S11899211 C0448034 ENG 0.79 0.64
cuello de húmero S12447682 C0448034 SPA 0.79 0.64
Collum chirurgicum humeri S9239249 C0223685 ENG 0.78 0.65
Neck of humerus S0952987 C0448034 ENG 0.77 0.67
neck of humerus S11917261 C0448034 ENG 0.77 0.67
cuello de la escápula S4720608 C0223632 SPA 0.76 0.68

Table 3.3: Nearest neighbors service response on the string ‘collo omerale’
(Italian for ‘humerus neck’), non existing in UMLS. Using k = 6, CODER
embedder and angular distance/scoring.

CUI Preferred string Score
C0448034 Neck of humerus 0.52
C0223685 Structure of surgical neck of humerus 0.13
C0223632 Structure of neck of scapula 0.13

Table 3.4: Aggregated Nearest neighbors service response on the results in
table 3.3 with summation aggregation strategy.

without HTTP overheads, is about 250ms. If further insights are needed, it is

possible to use the graph endpoints to gainmore knowledge about the resulting

concepts.



Chapter 4

Datasets

In the context of conducting research for this thesis, a significant challengewas

encountered due to the absence of readily available datasets containing Italian

mentions explicitly associated with UMLS concepts. This absence posed a

substantial hurdle as the primary objective of this study was to explore and

analyze the relationships between Italian medical terms and their correspond-

ing UMLS concepts. The unavailability of such datasets meant that alternative

data collection and annotation efforts were required to establish a foundation

for the research.

4.1 UMLS Subset

UMLS is an extensive resource [Section 2.1.1] but it is too large to be handled

during the experiments. Moreover, the contribution of some labels can be

intuitively considered low. For this purpose, only a subset of it was used.

When referring to the results of the system, this subset has to be considered

and not the whole UMLS.

Even if it is recognized that for the sake of the context of this thesis, some

sources can be more valuable than others and that not all the semantic types

are equally useful, however, the filtering choice is done only with respect to

the languages. Indeed, it was chosen to include only the Italian, Spanish, and
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English non-suppressed labels of concepts that have at least one label either

in Italian, in Spanish, or both. This because they are the top-3 represented

languages,

Recalling the UMLS quantitative analysis [Section 2.1.1], there are

9,421,201 English, 1,172,015 Spanish, and 239,011 Italian. The number

of concepts is respectively 4,261,033 for English, 463,552 for Spanish, and

164,584 for Italian. There are 164,579 concepts that have at least one English

and Italian label, and 462,770 for English and Spanish. Thus, there are 5 miss-

ing Italian concepts and 782 Spanish ones, without a corresponding English

label. This leads to 481,792 concepts that have an English label and an Italian

or Spanish one. Finally, it was decided to drop all the duplicated labels for

strings, concepts, and language. All this process led to the dataset illustrated

in table 4.1.

Language (LAT) Concepts Atoms Atoms per Concept
ENG 481,792 2,210,114 4.59
SPA 462,770 1,116,424 2.53
ITA 164,579 202,280 1.23
TOTAL 481,792 3,528,818 7.32

Table 4.1: Quantitative analysis for the chosen UMLS subset

The significant increase of the atoms per concept ratio from 3.17 in the

full UMLS [Table 2.1] to 7.32 of the selected subset [Table 4.1] indicates that

the selected concepts have a higher representation than the average. It could

be hypothesized that the most represented concepts are of a higher quality and

better connected because of the large number of sources converging to them.

However, the drawback might be that some very specific terms are missing.

Considering embeddings in R768 for the pooled output of CODER, and a

4-byte representation for real numbers, the overall memory allocation of the

uncompressed embedded labels of this subset is 10.84 GBs.
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4.2 MedMentions

MedMentions1 is a corpus of biomedical texts annotated against UMLS [Mo-

han and Li, 2019]. It is a valuable resource for NLP tasks in the medical do-

main, in particular for entity linking. It consists of a corpus of 4,392 papers,

including titles and abstracts, which were randomly selected from PubMed2

in 2016. These papers are exclusively from the biomedical field and are pub-

lished only in English. Although it does not contain any Italian information,

it is still a valuable resource.

To ensure the high quality of annotations, a team of professional annot-

ators with extensive experience in biomedical content curation was engaged.

Their task was to comprehensively annotate all mentions in these papers us-

ing the UMLS 2017AA terminology. Although no stringent Inter-Annotator

Agreement (IAA) data was gathered, a precision assessment was performed,

by selecting a small subset of the corpus and two independent biologists as

the reviewers. This test led to an agreement with the annotators of a 97.3%

precision.

Data extraction The dataset follows the PubTator format [Wei et al., 2013],

with each paper document identified by its PubMed identifier (PMID), accom-

panied by its title, abstract, and mentions. Each annotated mention is a row

with the start and end indices (obtained by concatenating the title and the ab-

stract), the actual textual span of the mention, its semantic type (TUI), and the

associated UMLS concept (CUI).

A script was implemented to extract the data in a more decontextualized way

with respect to the original format. Indeed, it would be easier to use only the

mentions without their surrounding context to evaluate individually the CUI

guesser service. Thus, the extracted dataset contains the string of the mention,

the CUI, the full sentence where the string is contained, the preferred string of
1https://github.com/chanzuckerberg/MedMentions
2https://pubmed.ncbi.nlm.nih.gov/

https://github.com/chanzuckerberg/MedMentions
https://pubmed.ncbi.nlm.nih.gov/
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the concept, and the legacy MedMentions information to identify a mention

(PMID, start index, end index) [Table 4.2].

However, not all the concepts in MedMentions are included in the UMLS

subset [Section 4.1]. Thus, filtering is necessary to draw fair considerations.

The filtered MedMentions subset that contains only concepts of the UMLS

subset will be referred to as ‘pruned MedMentions’ and it will be the default

dataset in the absence of other specifications.

String CUI Sentence Preferred String PMID SI EI
DCTN4 C4308010 DCTN4 as a modifier of DCTN4 protein, 25763772 0 5

chronic Pseudomonas aer... human
chronic Pseudomonas C0854135 DCTN4 as a modifier of Pseudomonas aeruginosa 25763772 23 63
aeruginosa infection chronic Pseudomonas aer... infection
cystic fibrosis C0010674 Pseudomonas aeruginosa Cystic Fibrosis 25763772 124 139

(Pa) infection in cysti...

Table 4.2: MedMentions [Mohan and Li, 2019] extracted subset example

4.3 ICD-9-CM Codebook

ICD-9 stands for the International Classification of Diseases3, 9th Revision,

Clinical Modifications. It is a globally recognized system for classifying and

coding various diseases, conditions, and medical procedures. ICD-9 was de-

veloped and published by the World Health Organization (WHO) and is used

for tracking and reporting diseases and health conditions, as well as for billing

and statistical purposes in healthcare settings.

ICD-9 codes consist of alphanumeric characters and provide a standard-

ized way to represent medical diagnoses and procedures. These codes are

organized into a hierarchical structure, allowing for the classification of dis-

eases into categories and subcategories. The use of ICD-9 codes is essential to

ensure consistency and accuracy in medical record-keeping. In Italy, the legis-

lation [Italian Government, 2008] forces the codification of some information

in the hospital discharge records against ICD-9-CM.
3https://www.who.int/standards/classifications/

classification-of-diseases

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
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It is worth noting that ICD-9 has been succeeded by ICD-10 (the 10th Re-

vision) in many countries, which offers a more extensive and detailed coding

system. ICD-10 provides greater specificity and granularity in describing dis-

eases and medical procedures, reflecting advances in medical knowledge and

technology. However, some regions may still use ICD-9 for certain purposes

or as a historical reference.

UMLS includes ICD-9-CM among its sources. The associated labels gen-

erated by it are only the official English ones. Because the Italian government

itself relies on ICD-9-CM an official codebook was scraped by MAPS S.p.A..

The obtained dataset contains Italian diagnosis isolated mentions and the rel-

ative ICD-9-CM code. However, they are written in the original codebook in

a hierarchical way but the hierarchy is not preserved in the extracted dataset.

Moreover, the main issue is that the ICD-9-CM codes proposed are the same

across the hierarchy, thus pointing to the most general concept.

4.4 Medical Reports

MAPS S.p.A. possesses a substantial repository of anonymized medical re-

ports within its resources. It is important to note that while these reports re-

main unannotated, rendering them unsuitable for training or quantitative as-

sessment purposes, they still represent a worth mentioning valuable dataset.

Indeed, this dataset, albeit unstructured, can serve a distinct purpose of qual-

itative analysis and manual inspection. It allows for conducting examinations

that may uncover valuable nuances within the medical reports and annotation

strategies. While it may not be employed for quantitative evaluations, its qual-

itative value should not be underestimated, making it a noteworthy component

within the available resources.

An unannotated dataset was derived from this corpus by randomly

sampling 5,000 medical reports written in Italian. Subsequently, the mentions

were extracted using the target guesser, yielding a total of 35,370 targets.



Chapter 5

Experiments and Results

The experiments and results presented in this study are notably impacted by

the scarcity of annotated Italian language resources in the field. Addressing

this challenge required a substantial endeavor to maximize the utilization of

the limited datasets at our disposal. The research was conducted within the

constraints of this linguistic resource gap, prompting the adaptation of the ex-

isting resources to suit the Italian context. The scarcity of annotated data ne-

cessitated a more resourceful and creative approach.

5.1 Dense Representation

The first thing to be dealt with in the proposed system is the dense represent-

ation method. Because of the lack of resources to perform intensive trainings,

it was decided to rely on a pre-trained language model [Section 2.2]. The

available and most prominent models are mBERT1, MedBIT2, and CODER3.

Unfortunately, there are no Italian annotated datasets to test the models with.

Moreover, to rely on the quality of the results, the query strings should be

lexically different from the ones in the knowledge base but with the same se-

mantic meaning.
1mBERT uncased https://huggingface.co/bert-base-multilingual-uncased
2MedBITr3+ https://huggingface.co/IVN-RIN/medBIT-r3-plus
3CODERALL https://huggingface.co/GanjinZero/coder_all

https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/IVN-RIN/medBIT-r3-plus
https://huggingface.co/GanjinZero/coder_all
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A qualitative evaluation was performed by manually checking a little bunch

of labels [Table 5.1]. To obtain neutral results, the summation aggregation

strategy is chosen with k = 6, the distance is the angular one, and only the

first concept in the ranking is considered. A score equal to 2 is assigned when

the model correctly predicts the concepts or finds an alternative correct repres-

entation, a score of 1 if the concept is not the correct one but closely related,

0.5 if the concept is wrong but it has some far relation with the correct one, 0

if completely wrong. The knowledge base is represented by the UMLS subset

[Section 4.1]. The evaluations are done by non-physicians on the basis of the

descriptions of reliable sources. All the mentions to annotate are not present

in Italian or are not present at all in UMLS. A concept is considered good if it

is either the right one or can be considered its direct parent.

ID Mention CUI Description
0 Collo omerale C0448034 Neck of humerus
1 Intossicazione da oppiacei C0029100 Opioid intoxication
2 Fosfaturia renale C0282201 Phosphate Diabetes
3 Allergia gastrointestinal C0221034 Gastrointestinal allergy
4 Angiografia oculare C1444574 Ophthalmic angiography
5 Sindrome del dolore C0458110 Myofascial pain syndrome

miofasciale del collo of neck
6 Sedimetria C1176468 Erythrocyte sedimentation

rate measurement
7 Flogosi articolare C0574941 Inflamed joint
8 Fibro fog - -
9 Tender point miofasciali - -

in sede atipica - -

Table 5.1: Tiny dataset of hard Italian mentions

The results presented in Table 5.2 clearly demonstrate the superior per-

formance of the CODER model compared to others. As a result, CODER is

selected as the reference model. However, it’s important to note that there is

still significant room for improvement, as CODER achieved a score of only

10.5 out of 20.

Surprisingly, the MedBIT model performed worse than mBERT. This could
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ID mBERT MedBIT CODER
0 C0043425 C0456914 C0448034

Yolk Sac Intrastomal Neck of humerus
0.33 0.15 0.52
Wrong: 0 Wrong: 0 Right: 2

1 C0161558 C1290402 C0857503
Poisoning by barbiturate Neoplasm of myocardium Opiate toxicity
0.17 0.15 0.47
Wrong: 0 Wrong: 0 Right alternative: 2

2 C0002534 C0032519 C0031678
Renal aminoacidurias Polymenorrhea Phosphoric Monoester Hydroleases
0.17 0.16 0.34
Wrong: 0 Wrong: 0 Wrong: 0

3 C0017184 C0162275 C1720579
Gastrointestinal Motility Ketonuria Allergic disorder of digestive system
0.17 0.16 0.51
Wrong: 0 Wrong: 0 Right alternative: 2

4 C0007767 C1290401 C1444574
Cerebral Angiography Neoplasm of endocardium Ophthalmic angiography
0.33 0.15 0.86
Almost right: 1 Wrong: 0 Right: 2

5 C0027073 C1278535 C0458110
Myofascial pain syndromes Post infarct angina Myofascial pain syndrome of neck
0.17 0.15 0.61
Almost right: 1 Wrong: 0 Right: 2

6 C0009661 C0228087 C0036289
Conductometry Macroglia Scattering, radiation
0.33 0.29 0.19
Wrong: 0 Wrong: 0 Wrong: 0

7 C0003881 C0230060 C1253936
Arthrodesis Structure of inferior wall of orbit Hydrarthrosis
0.17 0.16 Hydrarthrosis
Wrong but related: 0.5 Wrong: 0 Wrong: 0

8 C0015282 C0854374 C0028882
Exocrine glands Pigmentation lip Odontoma
0.17 0.16 0.50
Wrong: 0 Wrong: 0 Wrong: 0

9 C1969817 C0600521 C1504509
Secondary nocturnal enuresis Radiotherapy, conformal Localised muscle pain
0.17 0.15 0.33
Wrong: 0 Wrong: 0 Wrong but related: 0.5

TOT 2.5 0 10.5

Table 5.2: Results of the different models for data in table 5.1 with their
predicted CUI, the preferred string of that concept, the confidence score of
the prediction, and the result evaluation.

be attributed to potential issues like catastrophic forgetting, despite the reg-

ularization techniques employed by the authors. Nevertheless, it is essential

to acknowledge that this empirical evaluation lacks quantitative evidence and

relies on a somewhat simplistic metric. Additionally, the absence of an an-

notated Italian dataset poses challenges, and the complexity of the domain

necessitates validation of the considerations by medical professionals.

Furthermore, it’s important to mention that the selected mentions [Table 5.1]

lack Italian labels that are syntactically similar. In cases where such labels
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are absent, it is possible that the target concept is not included in the chosen

subset, nor are its English labels. Lastly, during the inference process, a con-

textual analysis should be conducted by considering the entire textual context

containing the mention.

5.2 MedMentions

MedMentions [Mohan and Li, 2019] represents a valuable resource though

only in English [Section 4.2]. It cannot be considered a reliable candidate

for assessing quantitative results against Italian mentions annotations. The

assumption that considerations done for English mentions hold also for the

Italian ones, is over-simplistic. However, it can be used to gain insights about

the system like hyperparameters tuning and hypothesis validation.

Hyperparameter k In order to find a good k hyperparameter for the num-

ber of neighbors extracted from the index [Section 3.3], some tests were per-

formed by evaluating the top-n accuracy, namely, hits at n (H@n), and the

mean reciprocal rank (MRR) [Equation 2.2], for all n ≤ k. In particular, the

test was performed by taking into consideration the summation aggregation

strategy in order to understand also howmuch noise is obtained as k increases.

Figure 5.1: Mean Reciprocal Rank and miss rate on MedMentions
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As illustrated in figure 5.1, as the value of k increases, both the miss rate

(indicating the absence of correct concepts among the top-k predictions) and

the MRR exhibit a decrease, which aligns with our expectations. Notably,

the miss rate experiences a gradual decrease, implying the effectiveness of

the employed strategies. Nevertheless, there is room for improvement in the

aggregation strategy to elevate lower-ranked concepts to higher positions.

Figure 5.2: Hits at k trend

Figure 5.2 summarizes the results obtained by changing k from 22 to 27.

The summation strategy brings lower-ranked wrong concepts to high posi-

tions. That’s why a weighted summation depending on the ranking should be

employed. It is clear the dominance of the top-ranking concepts. Increasing k

too much worsens efficiency and effectiveness. It is believed that an optimal

value is around 8. After that, the noise gathered is more heavy than the pos-

sibility of coding a right lower-ranked concept.

Worth to mention is the astonishing increase between H@1 and H@2. This

suggests that often the system is in doubt between two similar concepts but

only one is the right one. Moreover, it could be the case that the top-ranked

concept is correct but a duplicate of the one in the reference dataset.
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Overall, even if the performances on MedMentions of H@1 reached

62.70%, and H@32 of 72.30%, these experiments still provided good insights

into the behavior of the system and how to choose the hyperparameters.

5.3 Medical Reports

The dataset of the targets extracted from the medical reports of MAPS S.p.A.

was used to manually check the annotations provided by the system. For each

mention mi ∈ M its number of occurrences oi among the extracted targets,

was counted. The top-counting 216 mentions were selected. All these men-

tions constitute 14,670 occurrences in the documents, over the total 35,370:

the 41% of all the targets.

Then they are automatically annotated by the built system with the sum-

mation aggregation strategy and the top-ranking concept is selected. Then, the

annotations are manually checked for correctness, assigning them a boolean

score. In this way, the ambiguity of repeated concepts in UMLS is avoided.

The results aggregated per semantic group are reported in table 5.3, with an

overall 94.96% corpus accuracy. The corpus accuracy is obtained by consider-

ing the occurrences of each mention, while the standard accuracy is computed

as if the multiplicity is one. Filtering only for the most relevant semantic

groups (anatomy, disorders, chemicals & drugs, and procedures) leads to an

even higher 95.55% corpus accuracy.

Semantic Group Count Occurrences Correct Wrong Accuracy Accuracy
Count Count Count Corpus

Disorders 86 5789 75 11 87.21 92.85
Anatomy 80 4693 79 1 98.75 99.00
Procedures 27 1662 26 1 96.30 96.69
Concepts & Ideas 10 1531 10 0 100.00 100.00
Living Beings 4 688 2 2 50.00 72.53
Chemicals & Drugs 7 233 6 1 85.71 84.98
Occupations 1 46 1 0 100.00 100.00
Phenomena 1 28 1 0 100.00 100.00
TOTAL 216 14,670 200 16 92.59 94.96

Table 5.3: Results of medical report annotation
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Hard Mentions

As shown in table 5.4, the system is able to correctly annotate mentions whose

Italian labels are not present in the UMLS knowledge base. This is a very

important result, allowing the codification of things that are never seen. This

demonstrates the ability of the model to learn good embeddings and of the

overall surrounding ranking system to extract valuable results.

Mention Annotated Annotated Annotated
CUI Preferred string Semantic Group

Lesioni pleuro parenchimali C1536731 Disorder of pleura Disorders
AND/OR pleural cavity

Impregnazioni contrastografiche C0009924 Media, Contrast Chemicals & Drugs
Alterazioni densitometriche C0544704 Density, abnormal Disorders
Microcalcificazioni patologiche C0521174 Microcalcification, Disorders

calcified structure
Alterazioni bronchitiche C0006261 Bronchial Disease Disorders

Table 5.4: Correctly annotated hard mentions

Error Analysis

It is important to analyze the errors of the system. In table 5.5 are shown 5 of

the 16 wrongly annotated mentions. They belong to different semantic groups

and their annotations are clearly wrong.

The mention ‘lobo’4 is associated with a disorder while it should be an ana-

tomy. The context is nonexistent but if the system is prompt with a specifica-

tion of it like ‘lobo auricolare’5, then it returns the correct concept C0229315

with a 0.55 confidence score. Thus, the context surely helps the system to find

more accurate results.

Other mentions are coded wrongly but are not so distant from the real target.

That’s why a binary metric fails to capture these nuances. For instance, ‘par-

enchima polmonare’6 even if its codification is ‘pulmonary alveoli’, this is not

so distant from the true concept. Indeed, they could be considered siblings in
4Italian for ‘lobe’
5Italian for ‘ear lobe’
6Italian for ‘lung parenchyma’
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a way, they belong to the same organ and are physically very close.

Mention Occur- Annotated Annotated Annotated
rences CUI Preferred string Semantic Group

Lobo 68 C0152066 Blastomycosis, keloidal Disorders
Controllo ortopedico 55 C0024725 Manipulation, Orthopedic Procedures
Spazi liquorali 49 C0023529 Encephalomalacias, Disorders
periencefalici Periventricular
Parenchima polmonare 47 C0034051 Pulmonary Alveoli Anatomy
Macrocalcoli 35 C0032483 Glycols, Polyethylene Chemicals & Drugs

Table 5.5: Errors of medical report annotation

5.4 Graph Distances

One claim of this thesis is that relations in the knowledge graph generated by

UMLS can help to disambiguate terms. In particular, distances between the

mentions of the same sentence are considered. Moreover, an endeavor was

made to prune and group the relationships. Indeed, some relations that can

easily be derived, like the ‘sibling’ one, are cut away in order to mitigate the

noise and have distances that are more representative of reality. Moreover,

some of them were grouped in a way similar to the semantic groups, with the

same purposes, for instance, the PAR/CHD and RB/RN are IS-A/HAS-A re-

lationships. The new relationships will be referred to as ‘simplified’. Several

layered tests were made to observe the connection patterns by using the filters

provided by the service [Section 3.7]. All the shortest path experiments were

tested with a maximum search distance equal to 5.

The sentence under examination is ‘frattura del capitello del radio’7. The

annotated targets by exact label matching are reported in table 5.6. As it is

possible to see, the word ‘radio’ is heavily ambiguous because can have three

different meanings, incompatible with each other. The objective is to exclude

the non-related concepts.
7Italian for ‘fracture of the radial head’
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Mention Concepts Preferred labels
Frattura C0016658 Fracture
radio C0034625 Radium
radio C0034627 Bone structure of radius
radio C0034546 Radio communications
Frattura del radio C0034628 Radius fractures
Frattura del capitello del radio C0435577 Fracture of radial head

Table 5.6: Exact label matching example

Embedding distances The embedding angular distances [Figure 5.3] com-

puted on the target text spans, show that disambiguation with lexically similar

terms is difficult. One strategy is to perform the measurements on the pre-

ferred labels of the directly matched mentions, however, it is risky because if

it does not introduce additional context, the problem still remains. This case

was lucky because of the descriptions of the preferred labels.

(a) Strings (b) Preferred labels

Figure 5.3: Mention embedding distances

All undirected relationships Another strategy could be to measure the dis-

tances between the concepts [Figure 5.4], hoping that non-related concepts are

put far away from the others. This technique relies on the number of target

mentions within a sentence. However, it results that also not-related concepts

are highly connected. That’s because of the collagen effect of some UMLS

relationships and too general and too close parent nodes.
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(a) Standard relationships (b) Simplified relationships

Figure 5.4: Shortest path distance, all undirected relationships

Is-a undirected relationships Filtering the relationships by keeping only

the IS-A ones [Figure 5.5], is an effective strategy. This filtering approach

yields results that are notably straightforward and relevant in terms of related

concepts. However, it’s worth noting that this type of query can be computa-

tionally intensive and may require substantial time and resources to execute.

(a) Standard relationships (b) Simplified relationships

Figure 5.5: Shortest path distance, is-a undirected relationships

Is-a directed relationships The hardest strategy is to rely only on directed

IS-A paths [Figure 5.6]. This results in a too-strong filtering. However, it can
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still be used for hard confirmations. It is important to notice that this approach

fails to capture closely related siblings. Nevertheless, its potentiality stays in

the fact that it can be used to determine the generality level of the concept to

emit, and eventually prune general concepts in favor of more specific ones, or

the opposite in the case of safer requirements.

(a) Standard relationships (b) Simplified relationships

Figure 5.6: Shortest path distance, is-a directed relationships

In summary, the assessment of distances between candidate concepts as-

sociated with a given mention proves to be a valuable tool for disambiguating

biomedical terms. This approach can seamlessly integrate with the concept

guessing pipeline, enhancing the precision of its outcomes. Furthermore, it

holds the potential to significantly support the concept ranking strategy, of-

fering a more robust and context-aware mechanism for identifying the most

relevant concepts. As demonstrated, by incorporating such distance measure-

ments and considerations, it is expected an improved precision entity linking

task, and an enhanced reliability of the scores.



Chapter 6

Conclusions

This thesis has successfully demonstrated an effective ranking methodology

that integrates and implements an NLP pipeline for the annotation of biomed-

ical documents. The carefully designed architecture addresses the industrial

needs of MAPS S.p.A., making it a valuable asset for the company.

Despite the scarcity of Italian resources, leveraging all available assets, includ-

ing Italian non-annotated corpora and English datasets from the literature, has

yielded valuable results by harnessing the UMLS relational knowledge.

The primary objective of this project was to enhance the capabilities of MAPS

S.p.A.’s Clinika software in the entity linking task for biomedical targets

against the UMLS. Through the utilization of state-of-the-art language models

and ranking techniques, an impressive accuracy rate of 94.96% was achieved

on domain-specific data. Notably, the system demonstrated the ability to code

labels that are not present in the UMLS knowledge base and disambiguate lex-

ically similar mentions.

The entity extraction pipeline plays a crucial role as an input provider for the

concept guesser architecture, supporting the overall effectiveness.

In summary, it can be confidently stated that the designed component for

Clinika is reliable and effective, representing a substantial improvement in

the multilingual entity linking task, particularly against predominantly Eng-

lish knowledge bases.
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6.1 Future Works

Progress in NLP opens up opportunities to enhance different facets of this

project’s architecture. Furthermore, it’s worthwhile to investigate and assess

alternative solutions.

Ranking Strategy The ranking strategy could be enhanced by incorporating

the graph’s relational knowledge and utilizing machine learning techniques to

identify the most significant candidates. Additionally, analyzing all the labels

linked to a candidate concept could provide further improvements. Further-

more, it would be valuable to automatically reason upon the semantic types

and dependencies provided by the entity extractor.

Graph Embeddings The Neo4J Graph Data Science (GDS) library

provides a straightforward way to generate graph embeddings given a sim-

ilarity, an encoder, a decoder, and a loss function. However, for ranking pur-

poses, it’s crucial that these embeddings are inductive. TNeo4J offers native

algorithms such as Fast Random Projection, node2Vec, and GraphSAGE. The

first algorithm is based on linear algebra, while the latter two leverage neural

networks. It would be valuable to assess the performance of graph-generated

embeddings, including the possibility of properly selecting the relationships.

ICD-9 Linking Providing an ICD-9 code for a given target is a valuable

functionality. Nonetheless, the challenge lies in the generality of the codes

linked to UMLS concepts. During this project, an analysis was made about

the distances between the coded specific correct concept and the concept with

the correct ICD-9 code associated. A systematic approach should be designed.

CODER++ Training As demonstrated, CODER constitutes a valuable re-

source but CODER++ was not tested because of its training that was made

only on English corpora. It is plausible that training CODER++ on Italian
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and other languages could yield noteworthy improvements in embedding per-

formance. Regrettably, this endeavor was not pursued in this thesis due to

constraints in computational resources and time.

Large Language Models Recent advancements in the field of Large Lan-

guage Models have significantly advanced AI capabilities. Major companies,

like Google, are actively developing medical-specific language models like

Med-PaLM [Singhal et al., 2023]. Investigating and leveraging such solutions

represent the most promising frontier in the current landscape.

Indexing Technologies The current indexing architecture relies on Annoy

and MySQL. Keeping the positions aligned is a full responsibility of the de-

velopers. Also, MySQL is not optimized for this kind of positioned label

retrieval task. New solutions appeared in the computer science/engineer-

ing landscape, like Pgvector and PostgreSQL. While PostgreSQL is a well-

established object-relational DBMS, Pgvector was developed only recently

and it is fully integrated with PostgreSQL, dealing with the position alignment

task automatically in an optimized way.

BIOS -Biomedical InformaticsOntology System BIOS1 is a recently pub-

lished Chinese-based ontology system similar to UMLS. Exploring and integ-

rating new solutions might be interesting for the improvements of the whole

Clinika pipeline.

Italian Dataset To evaluate progress more accurately, it is crucial to create

a specialized Italian dataset tailored to Clinika’s objectives. Within each docu-

ment, every relevant piece of text should be associated with the corresponding

concept. To facilitate the dataset’s construction, the existing pipeline can be

utilized for initial text annotations. Subsequently, manual review, correction,

and supplementation of automatically identified matches can be performed.

1https://bios.idea.edu.cn/lang-en

https://bios.idea.edu.cn/lang-en
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