
ALMAMATER STUDIORUM ·UNIVERSITÀDI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Natural Language Processing

ON THE USE OF PROMPTING FOR
FINE-TUNING NEURAL MODELS FOR

SPEECH PROCESSING

CANDIDATE SUPERVISOR

Stefano Ciapponi Prof. Paolo Torroni

CO-SUPERVISOR

Alessio Brutti, PhD.

Academic year 2022-2023

Session 2nd

Dedicata ad amici e famiglia, persone e animali,

per essermi stati vicino durante questi (due) anni a Bologna.

Non sto a fare tutti i nomi, se no la lista non finisce più.

ii

Abstract

Recent advances in thedevelopmentof extremely large,multi-purposemodels have

motivated computer scientists to explore methods for adapting them to more spe-

cific tasks. Fine-tuning is themost widely used approach to this problem, in which

a more general model is trained on a new dataset of labeled data for the new task.

While fine-tuningmitigates thedata availability problemandenablesmodels trained

on small labeled datasets to achieve state-of-the-art performance, it also exhibits

some key disadvantages: inefficiency, resource-intensive computation and mak-

ing the models less general. This study investigates the use of learnable prompts, a

parameter-efficientfine-tuning alternative, in spoken languageunderstanding (SLU)

tasks. To our knowledge, learnable prompts have not been previously applied to

SLU, but have been tested on text-based natural language processing (NLP) tasks

and computer vision tasks, achieving promising results. Therefore, we’ll be intro-

ducing our proposed approach, using learnable prompts in a SLU context, and

analyse some experimental results on two different deep learning-based end-to-end

SLUmodels.

iii

Contents

Abstract

1 Introduction 1

2 State of the art 3

2.1 Historical Overview, from ASR to SLU 3

2.2 Fine-tuning Alternatives . 11

3 Proposed Approach 15

3.1 Shallow and Deep Prompting Techniques 16

3.2 Audio Spectrogram Transformer 19

3.3 Wav2Vec 2.0 . 22

3.4 Prompting Implementation . 24

4 Dataset and Experiments 28

4.1 Dataset and Task . 28

4.2 Experiments on AST . 33

4.2.1 Shallow Prompt-Tuning SPT 33

4.2.2 Deep Prompt-Tuning 37

4.3 Tests onWav2Vec 2.0 . 40

5 Discussion 45

6 Conclusion and Future Improvements 48

i

Bibliography 52

Acknowledgements 61

ii

List of Figures

2.1 HMM for sentence modeling diagram (esat.kuleuven.be) 6

2.2 Transformer Model Architecture (Encoder-Decoder) 10

2.3 ComparisonbetweenModelTuning, PromptTuning (soft prompts)

and Prompt Design (hard prompts), Google Research [38] 14

3.1 SPT, Architecture Scheme . 17

3.2 DPT Architecture Scheme . 19

3.3 AST Preprocessing & Patch Embedding, diagram from the origi-

nal paper . 21

3.4 Some of the audioset labels . 22

3.5 Simplified view of the Wav2Vec Backbone 24

3.6 SPT, PromptedArchitectureDiagram,AST (3×2patches example) 25

3.7 SPT, Prompted Architecture Diagram, Wav2Vec 27

4.1 SPT, Intent Classification Accuracy on test and validation sets . . 35

4.2 SPT vs SPT + scheduler, Intent Classification Accuracy on test

and validation sets . 36

4.3 DPT, Intent Classification Accuracy on test and validation sets . . 38

4.4 DPT + Scheduler, Intent Classification Accuracy on test and val-

idation sets . 39

4.5 Comparisonbetweenparameter%comparableDPTandSPTmod-

els, intent accuracy on test set 40

4.6 Wav2Vec SPT + scheduler, intent accuracy on test and validation

sets . 41
iii

4.7 Wav2VecDPT+ scheduler, intent accuracy on test and validation

sets. 43

4.8 Wav2VecDPT vs SPT, Intent ClassificationAccuracy on test and

validation sets for both approaches. The horizontal axis is on a log

scale to make the plot more readable, because of the difference in

% of parameters between SPT and DPT. 44

5.1 Focus on SPT prompting in the Wav2Vec architecture, prompts

are prepended to higher level audio features extracted from raw

speech. 47

iv

List of Tables

2.1 Comparison between E2E ASR and HMM 8

2.2 Comparison between Hard and Soft prompts 13

3.1 Comparison of the two foundation models we decided to train

using learnable prompts. 26

4.1 Information about the Fluent Speech Commands dataset (Origi-

nal Paper [55]) . 31

4.2 SPT, Learnable Parameters . 34

4.3 SPT, Train Hyperparameters 34

4.4 DPT, Learnable Parameters . 37

4.5 DPT, Training Hyperparameters 37

4.6 Experiments onWav2Vec . 42

v

Chapter 1

Introduction

Recent advances in thedevelopmentof extremely large,multi-purposemodels have

motivated computer scientists to explore methods for adapting them to more spe-

cific tasks, which often lack adequate labeled datasets. Standard Fine-tuning is the

most widely used approach to this problem, in which a more general model, of-

ten pre-trained on semi-supervised tasks, is trained on a new dataset of labeled data

for the new task, modifying all the model weights with backpropagation. While

fine-tuning mitigates the data availability problem and enables models trained on

small labeled datasets to achieve state-of-the-art performance, it also exhibits some

key disadvantages. Modifying all of themodel weights is typically inefficient, com-

pared to modifying only a subset of them; to some extent resource intensive, since

itmultiple versions of amodel to respond to different tasks; and reduces the under-

lyingmodel’s generalization capabilities, since all the model weights are changed at

training time, making the model specialized in a more restricted number of tasks.

This study investigates the use of learnable prompts, a parameter-efficient fine-

tuning alternative, in spoken language understanding (SLU) tasks. To our knowl-

edge, learnable prompts have not been previously applied to SLU, but have been

tested on text-based natural language processing (NLP) tasks and computer vision

tasks, achieving promising results. Therefore, we’ll be introducing our proposed

approach, using learnable prompts in an SLU context, and analyse some experi-

mental results on two different deep Learning based End to End SLUmodels.

Introduction 2

SLU is the field of computer science that deals with the ability of machines to

understand the meaning of spoken language, It is a broad area which happened to

see some paradigm changes during time. For this reason, in chapter 2, we’ll start by

introducing some concepts and historical overview about fine-tuning alternatives

and SLUmodels. This will help us contextualise our proposed approach in chap-

ter 3, based on end-to-end SLU foundation models, namely Audio Spectrogram

Transformers andWav2Vec 2.0 and two different learnable prompt techniques as

a fine-tuning alternative. In chapter 4 we’ll describe our experimental setup, the

task we’re dealing with and report the experimental results on both models, then,

in chapter 5 we’ll confront the results from both models and reason around the

way they learn new tasks using learnable prompts. Finally, in chapter 6 we’ll draw

conclusions and think about some future improvements and SLU application do-

mains in which learnable prompts and parameter-efficient fine-tuning could be ap-

plied.

Chapter 2

State of the art

This chapterwill review the evolutionof automatic speech recognition (ASR) from

statistical based to end-to-end deep learning approaches, its application in SLU sys-

tems, and discuss alternatives to fine-tuning neural models. We will begin by pro-

viding a brief overview of the traditional acoustic-languagemodel paradigm. Next,

we will discuss the recent shift towards end-to-end SLU systems, and highlight the

key advances that have been made in this area. Finally, we will discuss alternatives

to fine-tuning neural models, and consider their potential impact on the future of

ASR and SLU.

2.1 Historical Overview, from ASR to SLU

Automatic Speech Recognition (ASR) is the process of converting spoken lan-

guage into written text. It is a field of computer science that has been developing

for many years, and has made significant progress in recent years. Some examples

of areas which employ ASR in use today are voice assistants, smart speakers, tran-

scription services, video captioning services and voice control systems. Generally,

ASR systems work in three steps:

• First, they extract acoustic features from an audio signal.

• These features are then used to train machine learning models to recognize

2.1 Historical Overview, from ASR to SLU 4

different words and phrases.

• Once the model is trained it can be used to decode new audio signals and,

typically, generate text transcripts.

One step further into the application of ASR is Spoken Language Understanding

(SLU). Academically speaking, SLU can be defined as the task of automatically

extracting meaning from spoken language. Once the speech has been transcribed

or processed by an ASR system, a SLU system uses a variety of NLP techniques to

understand the meaning of the spoken utterances. These techniques may include:

• Intent detection: Identifying the user’s goal or intention in speaking.

• Slot filling: Extracting specific information from the user’s speech.

• Entity recognition: Identifying named entities in the user’s speech, such as

people, places, and organizations.

• Dialogue state tracking: Keeping track of the state of a conversation in order

to provide more relevant and informative responses.

Once the SLU system has understood themeaning of the user’s speech, it can then

generate an appropriate response. To sum everything up: ASR is the process of

converting spoken language into text, while SLU is the process of understanding

the meaning of that text. ASR is a prerequisite for SLU, but SLU is more complex

than ASR because it requires the system to understand the context of the speech

and the speaker’s intentions.

The evolution of ASR systems, often employed for SLU tasks, was subject to a

paradigm shift, from a statistical based approach to a more data-driven approach,

which lead to the implementation of end-to-end SLU systems, in which the acous-

tic and language models, part of the SLU system, are not modeled distinctively.

We’ll showcase this paradigm shift more in detail in the next paragraphs.

2.1 Historical Overview, from ASR to SLU 5

Hidden Markov Models Hidden Markov models (HMMs) [1] are a powerful

tool for modeling sequential data, such as speech signals. They can capture the

probabilistic dependencies between the observed features and the underlying states

of a system, and allow for efficient inference and learning algorithms. In the con-

text of speech recognition, anHMMcanbe used tomodel the sequence of acoustic

features that are extracted froma speech signal. Thehidden states of theHMMrep-

resent the different phonemes or words in the speech signal, and the observations

represent the acoustic features.

The HMM assumes that the speech signal evolves over time according to a

Markov process, meaning that the current state depends only on the previous state.

This is a reasonable assumption for speech signals, as the acoustic features of a

phoneme or word are typically influenced by the preceding phoneme or word.

HMMs are trained on a corpus of speech data, which is used to estimate the proba-

bilities of the hidden states and the observations. Once theHMM is trained, it can

be used to recognize speech by finding the most likely sequence of hidden states

that generated the observed acoustic features.

Studies on the applications of HMMs to speech recognition have been doc-

umented as early as 1986 in Bahl et Al. paper Maximum mutual information

estimation of hidden Markov model parameters for speech recognition [2]. In this

article IBM researchers propose a method for estimating the parameters of hid-

den Markov models of speech, in which parameter values are chosen to maximize

the mutual information between an acoustic observation sequence and the corre-

sponding word sequence.

In 1991 Bell Lab researchers, Juang et Al. wrote an expository article,Hidden

Markov Models for Speech Recognition [3], a comprehensive overview of HMMs

applied in a Speech Recognition domain in which they show how the strengths of

the method lie in the consistent statistical framework that is flexible and versatile

and that and the ease of implementation makes the method practically attractive,

showing that HMM systems were capable of achieving recogntiion rates of more

than 95% word accuracy in certain speaker-independent tasks, with vocabularies

2.1 Historical Overview, from ASR to SLU 6

on the order of 1000 words.

Figure 2.1: HMM for sentence modeling diagram (esat.kuleuven.be)

In 2007 Gales et Al. published The Application of Hidden Markov Models in

Speech Recognition [4] a review of the core architecture of an HMM-based system

and a case study on Large Vocabulary Continuous Speech Recognition (LVCSR)

for broadcast News and Conversation Transcription. This is done by using an

acoustic model to compute the Likelihood of a word alongside a language model

to compute the prior of the given word in a sentence structure. The researchers

conclude the review pointing out that the HMM architecture results in transcrip-

tion tasks fall short of human capabilities and that it is arguable that the HMM ar-

chitecture is fundamentally flawed and that performance must asymptote at some

point, but no good alternatives to theHMMwere foundyet. The limits researchers

wrote about consisted in three key points: HMMs are not able to learn long-range

dependencies in the data, they are sensitive to the choice of features and are com-

putationally more expensive than other models, which canmake them impractical

for some real-time applications. The shortcomings of the hidden Markov model

approach to automatic speech recognition were overcome by the development of

deep learning ASRmodels.

Deep Learning-based ASR and End to End SLU Deep learning [5] has revo-

lutionized the field of SLU in recent years. Deep learning models are able to learn

2.1 Historical Overview, from ASR to SLU 7

complex relationships between speech features and text transcripts, which leads to

more accurate and robust SLU systems.

One of the first articles about the use of Deep Learning in an ASR context

is Acoustic Modeling Using Deep Belief Networks by Mohamed et Al. [6] (2011),

in which researchers train a Deep Belief Network as a replacement to Gaussian-

mixture model to estimate the emission distribution model for an HMM. This is

done through a multi-layer generative model of a window of spectral feature vec-

tors without making use of any discriminative information.

A step forward was made in 2012 after the publishing of Abdel-Hamid et Al.

articleApplyingConvolutionalNeuralNetworks concepts to hybridNN-HMMmodel

for speech recognition [7]. In this paper researchers applying CNNprinciples along

the frequency axis of speech signals because the variability along the time axis is

handled by theHMMmodel and the dependency between adjacent speech frames

is dealt with a long time context window feeding as an input to the NN as in stan-

dard hybrid NN-HMMmodels [6].

Another important progress in the field, which happened during the last decade,

was the introduction of End to End (E2E) SLUmodels. What differentiates them

from the typical HMM-based model is the ability of learning the mapping from

speech signals to text transcripts directly, without the need for any intermediate

steps, such as acoustic modeling or language modeling. Most end-to-end speech

recognitionmodels include the following parts: encoder, whichmaps speech input

sequence to feature sequence; aligner, which realizes the alignment between feature

sequence and language; decoder, which decodes the final identification result. One

thing to note is that this division does not always exist, because end-to-end itself is

a complete structure, and it is usually very difficult to tell which part does which

sub-task [8].

Table 2.1displays a comparisonbetween end-to-end architectures andprevious

approaches. Some of the reasons which E2E architectures to be conceived are:

• Advances inDeepLearning, which revolutionisedASRalongsidemanyother

2.1 Historical Overview, from ASR to SLU 8

Criterion E2E SLU Previous approaches

Training: Trains a single model to directly
map speech signals to text transcripts.

Trains two separate models:
an acoustic model and a language model.

Deployment: Deploy a single model. Deploy two separate models

Accuracy: State-of-the-art accuracy
on a variety of benchmarks.

Good accuracy on a variety of benchmarks,
but not as good as E2E ASR.

Robustness: More robust to noise and other distortions. Less robust to noise and other distortions.

Data requirements: Requires large amounts of labeled
speech data to train.

Requires less labeled speech data to train
than E2E ASR, but still requires a significant amount.

Computation cost: Can be computationally expensive
to train and deploy.

Can be less computationally expensive
to train and deploy than E2E ASR, but still requires a
significant amount of computation.

Table 2.1: Comparison between E2E ASR and HMM

fields in recent years;

• Availability of large datasets, since E2E SLU systems require large amounts

of labeled speech data to train;

• IncreasedComputationalResources, becauseE2Emodels areusually extremely

expensive computationally

One of the main Advances in Deep Learning which lead to the development of

E2E models is the invention of the Connectionist Temporal Classification (CTC)

loss function, proposed by Graves et Al. [9] in 2006. CTC loss works by consider-

ing all possible alignments between the input audio sequence and the output text

sequence. To do this, it allows the output sequence to be repeated or blank sym-

bols to be inserted. The CTC loss is then calculated as the negative log-likelihood

of the correct alignment, given the input sequence. To understand how CTC loss

works, it is helpful to first understand the concept of a lattice. A lattice is a directed

acyclic graph (DAG) that represents all possible alignments between two sequences.

Each node in the lattice represents a possible state of the alignment, and each edge

represents a transition from one state to another.

The CTC loss is calculated using the forward-backward algorithm [10], an in-

ference algorithm for hidden markov models (HMM). This algorithm computes

the probability of each state in the lattice, given the input sequence. The CTC loss

is then calculated as the negative log-likelihood [11] of the state that corresponds

to the correct alignment.

2.1 Historical Overview, from ASR to SLU 9

One of the first applications of CTC to large vocabulary speech recognition

was documented inTowardsEnd-to-EndSpeechRecognitionwithRecurrentNeural

Networks byGraves et al. in 2014 [12]. They combined a hybridDNN-HMMand

a CTC trained model to achieve state-of-the-art results [13]. In this paper Graves

et Al. propose a system is based on a combination of the deep bidirectional LSTM

[14], [15] recurrent neural network architecture and the connectionist Temporal

Classification objective function. Through this paper they managed to demon-

strate that character-level speech transcription can be performed by a recurrent

neural network with minimal preprocessing and no explicit phonetic representa-

tion.

The most recent breakthrough in the SLU field is the adoption of Transformer

Models [16], a type of neural network architecture that have become the state-of-

the-art for many natural language processing (NLP) (such as machine translation,

text summarization, and question answering) and Computer Vision tasks. These

models are based on the self-attention [17]mechanism, which allows them to learn

long-range dependencies in sequential data without the need for recurrent connec-

tions. Self-attention allows a transformer to learn how each element in a sequence

relates to all other elements in the sequence, regardless of their distance apart. This

is in contrast to recurrentneural networks (RNNs),which canhavedifficulty learn-

ing long-range dependencies because of the vanishing gradient problem [18].

Thefirst documented applicationofTransformerneural networks to SLUtasks

was Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech

Recognition, Dong et Al. 2018. In this paper researchers present a no-recurrence

sequence-to-sequence model entirely relies on attention mechanisms to learn the

positional dependencies, which can be trained faster with more efficiency than

recurrent sequence-to-sequence models. Their best model achieves competitive

word error rate (WER) of 10.9%, while the whole training process only takes 1.2

days on1GPU, significantly faster than thepublished results of recurrent sequence-

to-sequence models.

2.1 Historical Overview, from ASR to SLU 10

Figure 2.2: Transformer Model Architecture (Encoder-Decoder)

The advantage of the adoption of Transformer models, compared to Recur-

rent Neural networks has been confirmed by Karita et Al. paper, A Comparative

Study on Transformer vs RNN in Speech Applications [19] in 2019. The study re-

sults show that Transformer outperforms RNN on 13/15 corpora in their experi-

ment. Although their system has no pronunciation dictionary, part-of-speech tag

nor alignment-based data cleaning unlike Kaldi [20], an HMM ASR tolkit, their

Transformer provides comparable CER/WERs to the HMM-based system, Kaldi

on 7/12 corpora.

In2019 studies aboutAnew jointCTC-attention-based speech recognitionmodel

withmulti-levelmulti-head attention [21] were conducted byQin et. Al. This lead

to a series of articles improving ASR and SLUmodels, utilizing transformer-based

2.2 Fine-tuning Alternatives 11

and transformer-hybrid technologies. In the future Automated Speech Recogni-

tion technologies are expected to become more and more pervasive, accurate and

available to everyone. To do that the scientific community is both researchingways

to improve the models accuracy, but also ways to ease model deployment, retrain-

ing and make models run on heterogeneous hardware, overcoming the limits of

Transformer-based models [22]. For this reason we decided to run some tests us-

ing a parameter-efficient fine-tuning alternative on ASTmodels, which could lead

to easier deployement and ease model retraining.

2.2 Fine-tuning Alternatives

Fine-tuning is a common technique for adapting pre-trained models to new tasks.

It involves updating all of the model parameters to minimize the loss on a labeled

dataset for the target task. However, fine-tuning can be computationally expen-

sive and can lead to overfitting, especially for large pre-trained models. Adapter-

tuning and Prompt-Tuning are two emerging parameter-efficient techniques for

adapting pre-trained models (PMs) to new tasks with fewer parameters and less

training time. Some examples of fine-tuning applied to ASR and SLUmodels are

[23]–[26].

Adapters Adapter tuning is a fine-tuning technique for large models that in-

volves adding small, task-specific ”adapter”modules to thepre-trainedmodel. These

adapters are trained on a few examples of the specific task, and can significantly im-

prove the model’s performance on that task without requiring the entire model to

be retrained. Adapter tuning is based on the idea that different tasks require differ-

ent types of knowledge. For example, a task like machine translation may require

knowledge of different languages and cultures, while a task like question answer-

ing may require knowledge of different types of facts and relationships. By adding

adapters that are specifically tailored to each task, we can help the LLM to learn the

knowledge that it needs to perform that taskwell. Given aTransformermodelwith

2.2 Fine-tuning Alternatives 12

parameters θ, Adapter-tuning inserts some task-specific modules with parameters

φ between its layers; these modules are called adapters. Typically the new param-

eters φ are trained on the target task while keeping the Pre-trained model frozen,

which implies that the new weights can learn to encode task-specific features [27].

It has been experimentally proven that adding a two-layer bottleneck feed-forward

neural network at every layer of the pre-trained Transformer works well [28]; how-

ever, choosing the exact placement of these extra parameters is a difficult task, as it

can have a significant impact on performance.

Adapter tuning has been shown to be effective for a wide range of tasks in the

application domains ofNatural language Processing [29], Computer Vision [30]–

[32], Automatic Speech Recognition [33], [34] andMultimodal Information Re-

trieval [35]. It is a particularly promising technique for tasks where there is limited

labeled data available, as it allows us to leverage the knowledge that the model has

already learned from its pre-training.

Prompt Tuning Prompting is a newer technique that can be used as an alterna-

tive to fine-tuning. It involves providing the pre-trained network with a prompt,

which is a piece of text or code that is added, appended or prepended to the net-

work layers input and helps it understand the task and generate the desired output.

One advantage of prompting is that it does not require any fine-tuning of the net-

work’s parameters. This means that it can be much faster and more efficient than

fine-tuning, especially for tasks where there is only a small amount of labeled data

available. Another advantage of prompting is that it can be used to adapt the net-

work to a wide variety of tasks, even tasks that are very different from the task that

the network was originally pre-trained on. There are two main types of prompts:

hard prompts and soft prompts.

Hard prompts [36] are fixed pieces of text or code that are provided to the net-

work as input. They are typically used to specify the task that the network should

perform and to provide the network with some context about the input data.

Soft prompts are learnable parameters that are optimized during the training

2.2 Fine-tuning Alternatives 13

process and can be seen as virtual tokens [37]. They are typically used to fine-tune

the network’s response to the prompt. Learnable prompts work by allowing the

network to learn how tobest use the prompt to generate the desired output. Learn-

able prompts can be used to improve the performance of prompting on a variety of

tasks and they have been successfully used in different application domains, such

as NLP [38][39], computer vision [40] and continual learning [41]. Leister et Al.

[38] have also empirically shown that soft-prompting is comparable to fine-tuning

in models made out of Billions of parameters.

Feature Soft prompt Hard prompt

Definition A learnable parameter that is
optimized during the training process.

A fixed piece of text or code that
is provided to the network as input.

Interpretability Not interpretable. Interpretable.
Transferability Poor transferability. Good transferability.
Data requirements Requires more data to train. Requires less data to train.

Example [PROMPT_EMBEDDING] ”Translate the following sentence
into Spanish: I love cats.”

Table 2.2: Comparison between Hard and Soft prompts

Table 2.2 shows the main feature differences between hard and soft prompts.

Overall we could say that learnable soft prompts appear to be worse than hand-

crafted hard prompts under every aspect, but we should keep in mind that it’s re-

ally hard to think of a way to handcraft prompts outside of a typical Text-based

NLP domain. This is especially true in the context of SLUmodels: because of the

probabilistic nature of speech, defining some fixed tokens which can be inputed

by the user while interacting with the model, could be seen as a task itself, which

would make hard prompting extremely complicated in this application domain.

We can see that Hard prompts are Interpretable since they are handcrafted and

can be used to infer an expected behaviour from a neural model, while Soft learn-

able prompts aren’t, since they are vectors of learnt parameters which have no di-

rect meaning embodied in them. In the Table context Transferability [42] refers

to the ability of a prompt to be used for a task that is different from the task that

the prompt was trained on. For example, in a Natural Language Processing Con-

text, a prompt that was trained for a text classification task may be transferable to

2.2 Fine-tuning Alternatives 14

a text generation task. Although soft prompts are generally less transferable than

hard prompts, since they are optimized to perform a specific task with a specific

language model, they have been proven to be transferable both cross-model and

cross-task [37]. This could have important applications in model deployment and

in multi-model federated learning [43] settings. This could be extremely useful

since, a typical use case for SLUmodel consists in them to be deployed directly on

devices which, sometimes, collaborate together for acoustic scene understanding

tasks. Soft prompting could also allow foundation models to be used on different

tasks, simply changing prompt weights, without putting pressure on the server-

side storage capabilities. This approach can be extremely useful in amore back-end

oriented SLU use case, such as the current voice assistant products (e.g. Amazon

Alexa).

Figure 2.3: Comparison between Model Tuning, Prompt Tuning (soft prompts)
and Prompt Design (hard prompts), Google Research [38]

Chapter 3

Proposed Approach

In this chapter we’ll introduce the main neural architecture components which

have been used and combined to test learnable prompts on speech. To do that we

decided to employ a two transformer models: Audio Spectrogram transformers

and Wav2Vec2. The former is pre-trained on Sound classification, while the lat-

ter is pre-trained identifying the true quantized latent speech representation for a

masked time step within a set of distractors. We decided to test prompting tech-

niques to fine-tune them on Automatic Speech Recognition Tasks (Speech Com-

mand IntentClassification). The chapter is divided in threemain sections, namely:

• First, we’ll introduce Shallow and Deep Prompting techniques originally

applied both in Computer Vision and Text-based Natural Language Pro-

cessing Tasks;

• Next, we’ll investigate and justify the Transformer Architecture we chose to

deal with Automatic Speech Recognition Tasks;

• Finally, we’ll show how those two have been used together to tackle the task

at hand.

This chapter will serve as an introduction to the actual experiments which will be

further explored in the next chapter.

3.1 Shallow andDeep Prompting Techniques 16

3.1 Shallow and Deep Prompting Techniques

Jia Et Al. [40] paper,Visual Prompt Tuning, has been our main source of inspira-

tion for our experiments, since it revolves around an in-depth analysis of prompt-

ing techniques tested on Vision Transformers (ViT, [44]) and it caught our atten-

tion since, as of 2023, it has been one of the few examples of prompting techniques

applied outside the typical Text-Based Large Language Model domain.

The authors’ main focus of research is finding ways to reduce the memory im-

pact and, consequentially, ease deployment of Fine Tuned Transformer-based Vi-

sion models. To do that they employ two Prompting Techniques, namely: VPT-

Shallow andVPT-Deep, whosemaindifference is thenumber ofTransformer layers

involved in the task.

GeneralOverview Given aTransformerModel (ViT in [40] case)withN layers,

an input vector of m input features Ij, 1 ≤ j ≤ m is mapped in a collection of

input embeddings ej
0, j = 1, 2, ..., m, each computed by en embedding function

Embed(Ij), into in a d-dimensional latent space with positional encoding.

This collection is denoted as Ei = {ej
i ∈ Rd|j ∈ N, 1 ≤ j ≤ m} and

represents the inputs of the (i + 1)-th Transformer layer (Li+1). Together with

xi ∈ Rd, an extra learnable classification token ([CLS]), the whole transformer

model is formulated as:

[xi, Ei] = Li([xi−1, Ei−1])i = 2, 3, ..., N (3.1)

y = Head(xN) (3.2)

Shallow Prompt Tuning Prompts are inserted into the first Transformer layer

L1 only.

A collection of p prompts is denoted as P = {pk ∈ Rd|k ∈ N, 1 ≤ k ≤ p}.

3.1 Shallow andDeep Prompting Techniques 17

Given that, a shallow-prompted Transformer can be defined as:

[x1, Z1, E1] = L1([x0, P, E0]) (3.3)

[xi, Zi, Ei] = Li([xi−1, Zi−1, Ei−1]), i = 2, 3, ..., N (3.4)

y = Head(xN) (3.5)

where Zi ∈ Rp×d represents a set of features computed by the i-th Transformer

layer , and [xi, Zi, Ei] ∈ R(1+p+m)×d. In this approach the only learnable parame-

ters of themodel areP , the set of prompts, andHead, theMulti-Layer-Perceptron

Classification Head. This results in an extremely small amount of weight changes

compared to the original model (around 1-2% of the total model weights), whose

weights remain frozen at training time.

Figure 3.1: SPT, Architecture Scheme

3.1 Shallow andDeep Prompting Techniques 18

In figure 3.1we can see a brief architecture scheme for the SPT approach, high-

lightingwhich components of the network architecture are trainable andwhich are

not.

Deep Prompt Tuning Prompts are injected in every Transformer layer’s input

space. In the context of a Transformer Model with N layers, we define N collec-

tions of input learnable prompts: Pi = {pk
i ∈ Rd|k ∈ N, 1 ≤ k ≤ m}, i =

1, 2, ..., N .

The deep-prompted transformer is the formulated as:

[xi, _, Ei] = Li([xi−1, Pi−1, Ei−1]), i = 2, 3, ..., N (3.6)

y = Head(xN) (3.7)

As we can derive from the previous equations, prompts collections are learnt

and then, at each forwardpropagation step, a prompt-setPi is replacedby aprompt

setPi+1, this results in each layerLi outputhaving the samedimension: [xi, _, Ei] ∈

R(1+p+m)×d.

In figure 3.2 we can see an architecture scheme similar to figure 3.1. The main

difference between the two approaches is highlited by the trainable parameters,

which, in the former approach are appended to each encoder input. This leads

to two different ways of thinking about the prompt size p.

Either:

• p is the total number of prompts, so each layer is assigned p/12 prompts.

• or, p is the prompt number for each layer, so the model is learning 12 × p

prompts.

During the implementation we decided to adopt the latter method, therefore if we

are testing the DPT approach with 50 tokens, we are actually learning a prompt

pool of 12 × 50 = 600 tokens, throughout all the Transformer Layers.

3.2 Audio Spectrogram Transformer 19

Figure 3.2: DPT Architecture Scheme

3.2 Audio Spectrogram Transformer

Since Jia Et Al. paper is based on Vision Transformers [44] we decided to work

with a similar architecture trained for Sound Classification tasks. Audio Spectro-

gram Transfomers (AST), introduced by Gong et Al. [45] in 2022, tackle Audio

Classification Problems using a convolution-free, purely attention-based model.

This architecturewas developed to understandwhether is it possible get rid of con-

volutions in a CNN-Attention hybrid Audio Classification Neural Architecture

achieving comparable performance. To deal with this challenge they decided to

modify a standardVisionTransformer Architecture so that it accepts Spectrograms

as input and deals with Sound Classification instead of the standard Image Classi-

fication task.

3.2 Audio Spectrogram Transformer 20

AudioPre-processing As thename suggests anAudio SpectrogramTransformer

uses Spectrograms as an input to the Transformer model. Spectrograms can be de-

fined as the visual representation of frequencies in a signal, as it varies with time.

They can be seen as a bi-dimensional featuremap inwhich one axis represents time

while the other axis represents frequency; each pixel intensity represents the am-

plitude of a particular frequency at a particular time (usually discretised through

frequency binning and time windowing). Spectrograms may be created from a

time-domain signal in one of two ways: either approximated as a filterbank that

results from a series of band-pass filters or calculated from the time signal using a

Fourier Transform (typically Short-Time Fourier Transform). Architectures based

on Spectrograms have been employed since the early days of experiments in the

NeuralNetworkDomain, an example of such isYeshwant et Al.[46] inwhich spec-

trograms are compared to cochleagrams (similar feature map which mimics the

outer- and middle-ear response to frequencies) and appear to share a similar per-

formance when used as an input for a vowel classification problem.

In the AST context, inputs are pre-processed the following way:

1. First, the input audio waveform of t seconds is converted into a sequence

of 128-dimensional log Mel filterbank (fbank) features, computed with a

25ms Hamming window every 10ms.

This results in a 128×100t spectrogram as input to theAudio Spectrogram

Transformer.

2. The Spectrogram is divided into a sequence of N 16 × 16 patches with an

overlap of 6 both in time and frequency dimension.

N = 12[(100t − 16)/10] is the number of patches and the effective input

sequence length for the Transformer.

3. Each 16 × 16 patch is flattened into a 1D patch of size 768 using a linear

projection layer (patch embedding).

4. A trainable positional embedding (size768) is added to capture the structure

3.2 Audio Spectrogram Transformer 21

of the 2D audio spectrogram.

The patch embedding layer can be viewed as a single convolution layer with large

kernel and stride size and the projection layer in each Transformer block is equiva-

lent to 1 × 1 convolution. Figure 3.3 shows diagram displaying the pre-processing

steps.

Figure 3.3: AST Preprocessing & Patch Embedding, diagram from the original
paper

Cross-Modality Transfer Learning The paper’s authors decided to employ

cross-modality transfer learning from a Vision Transformer model trained on Im-

agenet. This is motivated by the lack of large audio datasets, which are typically of

smaller size compared to their Image counterpart. To do that they employed a few

modifications to the standard ViT architecture, namely:

• SinceASTuses 1-channel input Spectrograms, compared toViT,whichuses

3-channel input images, the weights corresponding to each of the three in-

put channels are averaged, which is equivalent to expanding a 1-channel in-

put to 3-channels, but more computationally efficient.

• The authors propose a cut and bi-linear interpolationmethod for positional

embedding adaptation. This is due to Spectrograms having variable length

compared to the fixed Image size of Vision Transformers.

3.3 Wav2Vec 2.0 22

Figure 3.4: Some of the audioset labels

These modifications allowed them to transfer 2D spatial Knowledge from a pre-

trained ViT to AST taking into account differences in the input shape.

The model has then been Trained on AudioSet, a collection of over 2 million

10 second audio clips excised fromYoutube videos and labeledwith the sounds that

the clip contains from a set of 527 labels (figure 3.4). Overall the model is able to

achieve around 98% accuracy when fine-tuned on the Google Speech Command

V2 dataset [47]. This is promising because the dataset we are interested in testing

the model with has a similar structure.

3.3 Wav2Vec 2.0

We decided to apply some further investigations on a different foundation model

for Automatic Speech Recognition to see whether our proposed approach works

on a wider range of models. To do that we decided to employWav2Vec 2.0 [48]

(Baevski ed Al, 2020), another model based on a Transformer architecture, whose

input features differ from AST.

Input Features Insteadof receiving spectrograms as an input for theASTmodel,

Wav2Vec takes Raw Waveforms as an input. These waveforms are processed the

following way:

3.3 Wav2Vec 2.0 23

1. The signal (speech) passes through 7 Convolution layers, namely:

• A 1−d convolution layer with 1 input channel, 512 output channels,

kernel size 10, stride 5 a GELU activation function and a normaliza-

tion layer.

• 4 × 1 − d convolution layers with 512 input channel, 512 output

channels, kernel size 3, stride 2 and a GELU activation function.

• 2 × 1 − d convolution layers with 512 input channel, 512 output

channels, kernel size 2, stride 2 and a gelu activation function.

The effective window size and stride of the encoder are 400 and 320, respec-

tively. For example, for 1-second input, the encoder outputs 49 (temporal)

× 512 (feature) vector. [49].

2. The t × 512 feature vectors are projected into a t × 768 vector through a

feature projection layer (MLP).

3. Each t×768 vector is used as an input to a 12-layer transformer encoderwith

convolutional positional embedding and pre-trained to distinguish true fu-

ture audio samples from fake distractor samples by using the context vector

(transformer output). This is done by solving a contrastive task, identifying

a true quantized latent speech representation for a masked time step within

a set of distractor, augmented by a diversity loss, encouraging the model to

use the negative and positive examples equally often.

Pretraining Dataset Differently toAudio SpectrogramTransformer,Wav2Vec

is pretrainedon960hours ofRawSpeech. Wav2vec is trainedusing a self-supervised

approach called contrastive learning. In contrastive learning, the model is pre-

sented with pairs of audio clips, one original and one modified, and is tasked with

distinguishing between the two. Themodel learns to do this by extracting features

from the audio clips that are robust to themodifications, such as backgroundnoise

and speaker variations. This leads to better performances on SpeechClassification,

3.4 Prompting Implementation 24

Figure 3.5: Simplified view of the Wav2Vec Backbone

such as 99.7% on Fluent SpeechCommand End-to-End intent Classification [50].

Because of this reasonwe expect themodel to achieve better results when tested on

learning the same Speech Recognition Task.

3.4 Prompting Implementation

CombiningAudioSpectrogramTransformers andWav2VecwithShallowandDeep

Prompt-Tuning Techniques is quite straightforward, given that these techniques

are generalizable to any Transformer-BasedModel. Prompts are simply declared as

Learnable Parameters, which are prepended after theLinear Projection Layer (SPT

case) or at each transformer layer ([DTP] case) over the ASTmodel.

Figure 3.6 illustrates prompting added to an Audio Spectrogram Transformer

Architecture, for SPT. The DPT diagram is analogous, except the backbone part

on top of the linear projection layer should be replaced by figure 3.2. We decided to

divide the spectrogram into 6 patches tomake the diagammore understandable, in

actuality all spectrograms are divided into 16×16 patches, similarly to the original

Vision Transformer paper [44]. Each prompt is defined as a learnable parameter,

initialized with a Xavier Uniform Initializer.

Similarily, figure 3.7 shows SPTpromptingusedon theWav2VecArchitecture.

3.4 Prompting Implementation 25

Figure 3.6: SPT, Prompted Architecture Diagram, AST (3 × 2 patches example)

The audio embedding part is also simplified in this diagram, since the input audio

usually produces a larger amount of temporal phoneme embeddings. One key dif-

ference between this prompting scheme and the one on AST is that we prepend

prompts after the convolutional front-end, this means that our virtual tokens rep-

resent higher level features of raw speech compared to the ones we are adding to

the AST input, which is only a linear projection of the spectrogram patches.

To conclude, table 3.4 contains a summary on the key differences between the

3.4 Prompting Implementation 26

Feature Wav2Vec Audio Spectrogram Transformer
Input Raw audio waveform Audio spectrogram
Architecture Transformer with a convolutional front-end Transformer
Self-supervised learning Yes No

Pre-training On large unlabeled corpora of speech On large labeled corpora of audio
spectrograms

Performance State-of-the-art on a variety of speech
recognition and understanding tasks

State-of-the-art on a variety of
audio classification and retrieval tasks

Table 3.1: Comparison of the two foundation models we decided to train using
learnable prompts.

two foundationmodels we decided to employ to test to test how learnable prompts

work on speech language understanding tasks.

3.4 Prompting Implementation 27

Figure 3.7: SPT, Prompted Architecture Diagram, Wav2Vec

Chapter 4

Dataset and Experiments

In this chapter we’ll first focus on defining the task we want to test our models

on. Then we’ll list some datasets typically used to train SLU models and and go

more in detail explaining the dataset we chose to train ourmodels on. Finally, we’ll

be giving details about the way we implemented the experimental setup and the

gathered results which we’ll be discussing in the next chapter.

4.1 Dataset and Task

Task Among different SLU tasks, which we briefly introduced in the state-of-

the-art chapter, we chose to evaluate the performance of prompting on an E2E

SLU model tackling an intent classification task. This supervised machine learn-

ing task aims to train amodel to predict the intent of a spoken utterance. We chose

this task because single-label classification tasks are generally easier to tackle and im-

plement coding-wise. Additionally, the simplicity of the implementation allowed

us to evaluate performance the Wav2Vec 2.0 architecture using the same PyTorch

pipeline as the onewebuilt forAudio SpectrogramTransformers (AST),withmin-

imal code adjustments.

4.1 Dataset and Task 29

Formally, an intent classification task is the following: given a set of N labeled

examples D = {(xi, yi)}N
i=1, where xi is a speech utterance and yi is the corre-

sponding intent, the task consists in training a transformer model T to predict the

intent of a new speech utterance x:

T (x) = ŷ (4.1)

The goal of the training process is to minimize the cross-entropy loss func-

tion[51]:

arg min
T

N∑
i=1

L(ŷi, yi), (4.2)

where L is the cross-entropy loss:

L(ŷi, y) = −
K∑

i=1
yi log(ŷi), (4.3)

In the previous equation K is the number of classes and ŷi can be seen as the soft-

max probability for the i-th class. ŷ is the output of a classification head added to

the transformer output.

SLU Datasets Collecting datasets for SLU is more challenging than for ASR as

they require not only the transcript but also lables related to the speaker intent.

Therefore not many public resources are available. Among them, some datasets

worth mentioning are:

• SLURP (Spoken Language Understanding Resource Package)[52]: A large

anddiverse dataset of spoken language utterances inEnglish, covering awide

range of domains, including travel, weather, music, and navigation. The

dataset is labeled with intent, slot values, and dialogue context, making it

suitable for a variety of spoken language understanding tasks.

• Spoken-SQuAD[53]: Adataset of spokenquestion-answer pairs, where the

4.1 Dataset and Task 30

document is in spoken form and the answer is always a span in the docu-

ment. The dataset is designed to be challenging for spoken language under-

standing models, as it requires them to understand both the question and

the document in order to generate the correct answer.

• SLUE(SpokenLanguageUnderstandingEvaluation) [54]: A suite ofbench-

mark tasks for SpokenLanguageUnderstandingEvaluation (SLUE) consist-

ing of limited-size labeled training sets and corresponding evaluation sets. It

focuses on ASR and Named Entity Recognition (NER) tasks.

• Fluent Speech Command [55]: A SLU dataset of speech utterances used as

commands for smart home devices.

For our experiments we decided to choose to use a more manageable and well-

established dataset, which may necessitate the use of an encoder-only Transformer

model to address the proposed tasks. Therefore, we decided to work with Fluent

Speech Commands, which we’ll introduce in the next paragraph.

Dataset The Dataset we choose to test the Prompting approach on is Fluent

Speech Command [55], introduced by Fluent.ai, and Mila (Universitè de Mon-

trèal) in 2019. The original paper focuses on Pre-training Techniques for End-to-

End Spoken Language Understanding and introduced FSC as a new SLU dataset

to show that their method improves performance both when the full dataset or a

subset of it is used for training.

The dataset is composed of 16 kHz single-channel .wav audio files. Each au-

dio file contains a recording of a single spoken English smart home/virtual assis-

tant command (e.g. ”Turn on the Bedroom Lights”). Each audio is labeled with

three slots: action, object and location, such as {action: “activate”, object: “lights”,

location:“bedroom”}. Each slot can take one of multiple values (including ”none”).

This makes the dataset usable for both:

• multi-task classification, defining the task to predict actions, objects and lo-

cations.

4.1 Dataset and Task 31

• intent classification tasks, since each combination of slots can be “flattened”

and used as 31 distinct labels used for single-label classification. For each

intent there are multiple possible wordings, for example:

the intent {action: “activate”, object: “lights”, location:“none”} can be

expressed as ”turn on the lights”, ”switch the lights on”, ”lights on”, etc.

Split # of speakers # of utterances # hours

Train 77 23,132 14.7
Valid 10 3,118 1.9
Test 10 3,793 2.4

Total 97 30,043 19.0

Table 4.1: Information about the Fluent Speech Commands dataset (Original Pa-
per [55])

In table 4.1we can see how the original dataset has been split intoTrain, valida-

tion and test in the original paper. One key point which in this table is the fact that

Train, Test and Validation splits are not composed by recordings from the same

speakers. This is because researchers want SLUmodels to be able to generalize and

be able to perform Speech Understanding speaker-independently.

Implementation Details: We implemented our models using the PyTorch [56]

deep learning library, which is known for its flexibility and ease of use. We fine-

tuned two pre-trained models from the Huggingface Hub: Audio Spectrogram

Transformer and Wav2vec21. To gather experimental results we modified the ar-

chitectures of the downloaded models to adapt them to our proposed approach,

converting themodels to TorchNNModules, a standard way of representing neu-

ral networks in PyTorch. To do so, we extracted themain architecture components

(e.g. projection layers, transformer encoders, etc.) from the predefined classes de-

fined by the original developers and added a prompting mechanism inspired by
1We used checkpoints ”MIT/ast-finetuned-audioset-10-10-0.4593” and ”facebook/wav2vec2-

base-960h”

4.1 Dataset and Task 32

[40] original code. To do that we defined prompts as learnable parameters and re-

defined the NN Module foward function to incorporate prompts alongside the

standard input between transformer layers. Additionally, we used Hydra [57] to

manage our experiments and to easily configure different runs andWeights&Biases

[58] to log our experiment results and track the performance of our models 2. We

havemade all of our code and implementation details available in a public GitHub

repository3 to facilitate the reproducibility of our results and to encourage other

researchers to build on our work.

2WandB Project Link: https://wandb.ai/sciapponi/AST%20Prompt%20Tuning%20New
3Repository Link: https://github.com/sciapponi/sluprompts

4.2 Experiments on AST 33

4.2 Experiments on AST

In this section we’ll report the results of our experiments on the Audio Spectro-

gram Transformer model. We performed tests on both shallow adn deep prompt

tuning techniques and then retrained themodels from scratch introducing a learn-

ing rate scheduler to see whether it would improve the models’ accuracy.

Baselines Wedefined some baseline results to check the impact of prompting on

our proposed architecture accuracy. More specifically:

• Lower Bound: defined by a full training on the frozen model. The only

weights which are learnt in this experiment consist in the 31 output lin-

ear perceptron classification head, connected to the end of the transformer

model and used to learn the intents. No prompts have been added for this

experiment, which, in our context, is equivalent to performing an experi-

ment with a prompt length of 0 tokens. After 50 epochs of training, with

batch size = 16 and fixed learning rate = 5 · 10−3, the model was able to

output an intent accuracy of 25.354% on the test set.

• Upper Bound: it’s defined as the model fine-tuning on the Fluent Speech

Command dataset. The model, finetuned for 10 epochs, with batch size =

16 and fixed learning rate = 5e−4 results in an intent accuracy of 97.30% on

the test set.

4.2.1 Shallow Prompt-Tuning SPT

We start our experimental analysis considering shallow prompting were prompt of

length N are prepended to the input of the first Transformer Layer. In table 4.2

we can see what percentage of the network parameters is trained during our fine-

tuning alternative method. The Trainable Parameters column reports the count

of all non-frozen parameters of the network, including the classification head. As

we can see most experiments trained less than 1% of the network parameters. The

4.2 Experiments on AST 34

% column contains the percentage of Prompt Parameters with respect to the trans-

former encoder parameters.

Tokens Trainable parameters Prompt Parameters %

0 23839 0 0
50 62239 38400 0.045
100 100639 76800 0.090
600 484639 460800 0.54
1600 1252639 1228800 1.44

Table 4.2: SPT, Learnable Parameters

In this table the 0 tokens example represents the baseline we previously intro-

duced. The only trainable parameters (23,839) consist in the 31 neuron multi-

layer perceptron added to the end of the transformer to classify the intents. In all

other tests the trainable parameters of the 0 tokensmodel are substracted from the

trainable parameters of the run to compute the prompt parameters. These are then

used to compute the parameter percentage over the transformer encoder parame-

ters (850M).

Tokens Batch Size Gradient Acc. Learning Rate Epochs

0 16 FALSE 5.00E-03 50
50 16 FALSE 5.00E-03 50
100 16 FALSE 5.00E-03 50
600 8 TRUE 5.00E-03 50
1600 4 TRUE 5.00E-03 50

Table 4.3: SPT, Train Hyperparameters

Figure 4.1 presents the plotted results of the experiments. We selected a line

plot to visualize the general trend between prompt size and accuracy. We plotted

both the intent accuracies for the test and validation sets because the FSC valida-

tion set is notoriously difficult and may be of interest as a worst-case scenario for

accuracy analysis. All intent accuracies achieved are better than the baseline lower

4.2 Experiments on AST 35

Figure 4.1: SPT, Intent Classification Accuracy on test and validation sets

bound result, but they appear tobe significantly lower than theupper bound. Gen-

erally, we observe that longer prompts lead to better intent accuracy for the SPT

approach. The accuracy improvement does not scale linearly with the number of

prompt tokens and appears to saturate around 60% with prompt lengths over 100

tokens.

Figure 4.2 shows a plot of the intent accuracies of the same experiments as fig-

ure 4.1, but with an added cosine annealing learning rate scheduler [59] at training

time. A cosine annealing learning rate scheduler gradually decreases the learning

rate during training, following a cosine curve. The learning rate starts at a high

value and then gradually decreases to a minimum value, and then increases back

to the high value. This process is repeated until the training is complete. This is

determined by equation 4.4.

4.2 Experiments on AST 36

Figure 4.2: SPT vs SPT + scheduler, Intent Classification Accuracy on test and
validation sets

lr = ηmin + (ηmax − ηmin)cos(π t

T
) (4.4)

where:

• ηmin is the minimum learning rate

• ηmax is the maximum learning rate

• t is the current training step

• T is the total number of training steps

We decided to apply this type of learning rate scheduler following [40] with

ηmax = 5 · 10−3, ηmin = 0, and T = 50. Utilising a cosine annealing learning

rate scheduler allowed us to improve the results of about 10% on all the prompt

tests, except the base line which doesn’t strongly benefit from a lowering learning

rate during training. This is most likely because the model was stuck in a local

minimum and slowly lowering the learning rate allowed the model to overcome it

during the gradient optimization process.

4.2 Experiments on AST 37

4.2.2 Deep Prompt-Tuning

In this section we’ll show training setup and results for experiments with theDPT

approach, introduced in chapter 3. Tables 4.4 and 4.5 display the percentage of

the prompt parameters with respect to the transformer encoder and the training

hyperparameters, in a similar fashion as the tables regarding the SPT approach.

As we preannounced in the proposed approach section the # Tokens column in

table 4.4 should be multiplied by 12 to calculate the actual size of the prompt pa-

rameters learnt by the network. In this context the 50 tokens row is comparable

to the SPT experiment with 600 tokens, since they both represent 0.54% of the

encoder weights.

Tokens Trainable parameters Prompt Parameters %

50 484639 460800 0.54
100 945439 921600 1.08
200 1867039 1843200 2.17

Table 4.4: DPT, Learnable Parameters

We decided to test three models, doubling the prompt length at each new run,

to discover how it would affect the accuracy performances. This resulted in the

percentage of parameters also doubling at each new experiment.

Tokens Batch Size Gradient Acc. Learning Rate Epochs

50 16 FALSE 5.00E-03 50
100 16 FALSE 5.00E-03 50
200 8 TRUE 5.00E-03 50

Table 4.5: DPT, Training Hyperparameters

In table 4.5 we can see that the hyperparameters are similar to the ones used

when testing the SPT approach. The only notable change is the use of gradient

accumulationwith respect to the overall prompt parameter percentage, since what

impacts computation on the DRAM is mostly the input size of the first layer of

the transformer, which is handled as input by the CUDAAPI.

4.2 Experiments on AST 38

Figure 4.3: DPT, Intent Classification Accuracy on test and validation sets

Figure 4.3, similarly to the result plots for SPT, shows the Intent classification

accuracy for each run. Overall, allmodels were able to achieve a better classification

accuracy than SPT, even without employing a learning rate scheduler. Another

similar aspect of this run is that the accuracy seems to saturate from a number of

prompt tokens onwards, with only slight improvements doubling or quadruplicat-

ing the number of prompt weights learnt by the model.

We decided to test the same models with the same hyperparameter configura-

tions, employing the cosine annealing learning rate scheduler. Since it improved

the SPT results by around 10%, we expected a similar behaviour in the DPT con-

text. Figure 4.4 shows the Intent Classification accuracy on both test and valida-

tion sets for the models, on runs with and without scheduler. As we can see from

the plot, the employement of a cosine annealing learning rate scheduler improves

the results between 12 and 15% on both test and validation intent classification

accuracy.

Figure 4.5 includes a comparisonbetween theDPTand SPTexperiments. The

main comparison criteria consists in thepercentageof thepromptparameterweights

4.2 Experiments on AST 39

Figure 4.4: DPT+Scheduler, IntentClassificationAccuracy on test and validation
sets

with respect to the Audio SpectrogramTransformer encoder. The results are com-

posed of the intent accuracy on the test set for variousmodels. To gather compara-

ble results for the 0.043% DPTmodel we ran an experiment with 4 token prompt

length (48 learnt tokens spread throughout the transformer layers). All the exper-

iments we are analysing make use of the cosine annealing learning rate scheduler,

since using it made us able to achieve better results.

As we can see from the histogram, the DPT approach outperforms SPT on

models with a comparable size. The 0.54%model (DPTwith 50 tokens) is the best

compromise between the highest accuracy with the lowest amount of parameters

and outperforms the SPTmodel of equivalent size (SPT 600 tokens) by about 25%

accuracy.

4.3 Tests onWav2Vec 2.0 40

Figure 4.5: Comparison between parameter % comparable DPT and SPTmodels,
intent accuracy on test set

4.3 Tests on Wav2Vec 2.0

To test whether our proposed approach worked on other transformer architec-

tures for SLU we decided to run similar tests for the Wav2Vec2. Because of time

constraints we couldn’t manage to run extensive experiments on the architecture,

meaning we only have some preliminary data. Fortunately results appear to be

promising and it could be useful to further investigate them.

Baselines Similarly to what we did in the experiments on Audio Spectrogram

Transformers, we defined some baseline results to check the impact of prompting

onWav2Vec2:

• Lower Bound: defined by a full training on the frozen model. The only

weights which are learnt in this experiment consist in the 31 output lin-

ear perceptron classification head, connected to the end of the transformer

4.3 Tests onWav2Vec 2.0 41

model and used to learn the intents. Analogously to the Lower Bound on

AST this is equivalent to selecting a prompt length of 0 tokens. After 50

epochs of training, with batch size = 16 and fixed learning rate = 5e−3, the

model was able to output an intent accuracy of 81.38% on the train set.

• UpperBound: Aswe specified in theproposed approach section,Wav2Vec2

achieves an accuracyof99.7%on theFluent SpeechCommand test setwhen

used for an End-to-End intent Classification. This result was benchmarked

by Seto et Al. [50]. We have to note that Wav2Vec, diversely from AST is

trained on speech data, whichmeans that it genereally works better on SLU

tasks.

Figure 4.6: Wav2Vec SPT + scheduler, intent accuracy on test and validation sets

Figure 4.6 presents the results of our experiments on Wav2Vec using the SPT

prompting technique. All experiments utilized a cosine annealing learning rate

scheduler. We chose this type of learning scheduler because it improved the re-

sults of our experiments on the Audio Spectrogram Transformer model. All runs

4.3 Tests onWav2Vec 2.0 42

Wav2Vec [SPT] Wav2Vec [DPT]

#TOKENS %PARAMETERS #TOKENS %PARAMETERS

10 0.008 7 0.07
48 0.04 50 0.51
80 0.068 100 1.02
100 0.085 200 2.05
600 0.51 300 3.07

Table 4.6: Experiments onWav2Vec

started with a learning rate of 5 · 103, which was decreased at each epoch using

Equation 4.4. We were able to run all experiments with a batch size of 16 because

the lack of preprocessing and the use of raw audio as input allowed us to put less

pressure on the GPUDRAM.

As shown in the plots, the model achieved optimal results even with a signifi-

cantly smaller number of parameters than the transformer encoder (see Table 4.3).

Overall, the approach was able to classify intents with an accuracy close to the up-

per bound of 99.7

Figure 4.7 presents the results of our experiments onWav2Vec using the DPT

prompting approach. These results are consistent with our expectations from the

AST results, both in terms of intent accuracy on the test and validation sets and

in how it relates to the prompt length hyperparameter. Because Wav2Vec does

not require preprocessing, training took less time, allowing us to conduct more

experimental runs than with Audio Spectrogram Transformers. The 200-token

run achieved the best accuracy on both the test and validation sets. Interestingly,

a 300-token experiment performed slightly worse than the 200-token experiment,

likely due to overfitting, which suggests a limitation of the prompting approach on

theWav2Vec model.

Figure 4.8 compares theperformanceof theDPTandSPTmodels onWav2Vec.

The vertical axis represents the model accuracy, and the horizontal axis shows the

prompt weights percentage on a log scale. The results show that the SPT model

outperforms the DPT model on intent accuracy, even with a significantly smaller

4.3 Tests onWav2Vec 2.0 43

Figure 4.7: Wav2Vec DPT + scheduler, intent accuracy on test and validation sets.

number of parameters. Theprecise cause of this difference inperformancebetween

the two aforementionedmethods is still under investigation, but we propose some

hypotheses in the next chapter.

4.3 Tests onWav2Vec 2.0 44

Figure 4.8: Wav2Vec DPT vs SPT, Intent Classification Accuracy on test and val-
idation sets for both approaches. The horizontal axis is on a log scale to make the
plot more readable, because of the difference in % of parameters between SPT and
DPT.

Chapter 5

Discussion

In this chapter,wewill compare andcontrast theperformanceofASTandWav2Vec

on a the experiments results from the previous chapter. We will also focus on

Wav2Vec’s achievement of 97% intent accuracy on the test set in an experiment

with shallowprompt tuning. This result is significantbecause it suggests thatWav2Vec

can be used to achieve close to state-of-the-art results on SLU tasks with our pro-

posed approach. We believe that learnable prompts are a powerful technique that

has the potential to revolutionize the way that speech recognition models are de-

ployed and used. In this chapter, wewill analyze the results of explore the potential

of prompt tuning in more detail.

Model results comparison As demonstrated in the previous chapter, Wav2Vec

outperformed AST on the SLU intent classification task. This was anticipated,

given that Wav2Vec is pre-trained directly on speech data using contrastive loss to

distinguish between real and fake phonemes extracted from raw audio. In contrast,

ASTs are trained on sound classification, a more general task that makes the model

less specialized and less capable in the SLU domain.

Overall, we demonstrated that learnable prompts are a viable fine-tuning al-

ternative for SLU foundation models. Our results on AST models are inferior to

those achieved by Jia et al. [40] (2022) on vision transformers. This is likely due

to the inherent complexity of human speech, which is probabilistic in nature from

Discussion 46

physical, structural, and semantic perspectives. Also we need to consider that the

AST model is, in fact, a Vision Transformer adapted to sound classification tasks

usingmodel weights originally trained on image classification tasks. Cross domain

transfer learning could lead the model to less general knowledge on speech com-

pared to the ability to classify images of a standard Vision Transformer and achieve

worse accuracy. We also have to consider that the input spectrogram size is bigger

than the standard 224 × 224 pixel input size of ViT, making equally long prompt

length experiments carry less information in the AST context.

Prompting on Wav2Vec managed to achieve better results than AST. This is

most likely due to the different model pretraining and architecture. What’s in-

teresting, apart the results themselves, is the way the two different proposed ap-

proaches, deep and shallow prompt tuning, have different performances on the

two foundation models, namely:

• AST: behaved in a similar way as the benchmarks on Vision Transformers

by Jia et Al., with better performances on the DPT approach experiments

and worse perofrmances on SPT.

• Wav2Vec: had better performances using the SPT approach compared to

DPT, although DPT still had comparable performances to the ones it had

on theASTmodel. These results are actually closer to the benchmarks from

Leister et. Al [38]whoworked onNatural Language ProcessingTasks using

an SPTapproach. Wehave to keep inmind that Leister etAl. triedmanydif-

ferent initialization techniques for promptswhichwe aren’t able to translate

from a text based to a speech domain, so results are not fully comparable.

Discussion 47

Wav2Vec SPT performance The reasons behindWav2Vec achieving an higher

intent classification accuracy than ASTwith the SPT approach is still unknown to

us. This could be attributed to multiple explanations:

• In Wav2Vec’s context, prompts are prepended to higher level aggregated

speech features (see figure 5.1). This is because we learn and add prompts

to the transformer layer after the input raw speech is processed through

a convolutional backend, which extracts higher level information from it.

Prompts representinghigher level features, outside the time-frequency realm

could lead to more meaningful information needed for a classification task.

• Wav2Vec is more similar in structure to a language model, compared AST.

It’s trained on a contrastive self-supervised approach, which closely resem-

bles the way text-based languagemodels are trained. This could explain why

its results are closer to results fromLeister et Al. [38]work on languagemod-

els shallow prompt tuning.

Figure 5.1: Focus on SPT prompting in the Wav2Vec architecture, prompts are
prepended to higher level audio features extracted from raw speech.

These explanations are just hypotheses and should be further investigated to

have a proper explanation to why Wav2Vec works this well with a shallow prompt

tuning approach.

Chapter 6

Conclusion and Future

Improvements

In this thesis, we explored the use of learnable prompts as a fine-tuning alternative

on transformer-basedmodels for Speech LanguageUnderstanding. We specifically

tested shallow (SPT) and deep (DPT) prompt tuning techniques on two differ-

ent models: Audio Spectrogram Transformer (AST) and Wav2Vec 2.0. We eval-

uated the performance of these approaches on an intent classification task, which

involved predicting the intent of speech commands for smart home devices.

Our results demonstrated that learnable prompts can be used as a viable alter-

native to fine-tuning for specific application domains. Some of our experiments

achieved intent classification accuracies close to those of models fine-tuned with a

standard approach, which modifies all the model’s pre-trained weights. However,

wewere able to achieve this performance by keeping themodel frozen and learning

new weights corresponding to around 1% or less of the models’ encoder.

We believe that our work has several important implications. First, it demon-

strates that learnableprompts canbeused to effectivelyfine-tune transformer-based

models for SLU tasks. Second, our results suggest that learnable prompts can be

used to fine-tune SLUmodels without requiring significant changes to themodel’s

architecture or pre-trained weights. This is important because it can reduce the

computational cost and complexity of fine-tuning SLUmodels.

Conclusion and Future Improvements 49

In the following paragraphs, we discuss some potential avenues for future re-

search that could extend and complement the work presented in this thesis.

Further tests and experiments To further confirm our hypothesis, we could

run experiments and tests with different directions.

• Test both SPT andDPTondifferent SLU tasks, such as named entity recog-

nition, dialogue state tracking, or speech information extraction. Thiswould

allow us to assess the generalizability of our findings to other SLU tasks.

• Run experiments on more models specifically pre-trained for SLU, to see

whether their experimental results would come closer toWav2Vec, favoring

SPT to DPT. This would help us to understand whether the superior per-

formance of Wav2Vec on SPT is due to the fact that it is pre-trained on a

large corpus of speech data.

• Since theLeister et al. paper states that the larger themodel, the closer prompt-

tuning results resemble standard fine-tuning, it would be interesting to test

prompt tuning on larger models. This would help us to understand the re-

lationship between the size of the model and the effectiveness of prompt

tuning in a SLU domain.

• Experimentonprompt transferability, both cross-model and cross-task. Prompt

transferability [42] refers to the ability to use a prompt that has been trained

on onemodel or task to improve the performance of another model or task.

This is an area that is worth researching for its utility in many use cases,

such as when we have limited labeled data, when we want to quickly adapt

a model to a new task or when we want to transfer knowledge to a different

SLUmodel.

In addition to these experiments, we could also explore other avenues for improv-

ing the performance of prompt tuning for SLU tasks. For example, we could in-

vestigate new techniques for designing and training learnable prompts, orwe could

Conclusion and Future Improvements 50

explore the use of prompt tuning in conjunctionwith othermachine learning tech-

niques, such as meta-learning [60] or transfer learning [61].

Possible Case Studies One potentially fruitful avenue for evaluating the capa-

bilities of our approach would be through case-study research. This would allow

us to leverage the small size of learnable prompts to solve practical problems where

model size is a critical consideration.

For example, we could use learnable prompts trained on different tasks to im-

plement a multi-task SLU API. In such a system, a frozen model would leverage

different prompts, each specialized in a different task, depending on the type of in-

ference request being received. This approach would have several advantages over

traditional SLU systems, which typically is based on specialized model each one

trained to respond to each task. First, it would allow us to develop amore compact

and efficient SLUmodel. Second, it would enable us to fine-tune the performance

of individual tasks by training specialized prompts. Finally, it would make it easier

to add new tasks to the system without having to retrain the entire model.

Another aspect which would be interesting to investigate is the use of prompting

in a federated learning [43] setting. Federated learning is a privacy-preserving ma-

chine learning technique that allows devices to collaboratively train a model with-

out sharing their data. Each device trains the model on its own data and sends

the updated model parameters to a central server. The server aggregates the up-

dates from all devices and uses them to update the global model, which is then

sent back to the devices. In a federated learning setting prompts could be useful

to reduce communication overhead. This is because communicating the model

updates to the central server can be a significant burden on communication band-

width and battery life. Learnable prompts can reduce this overhead by allowing

clients to communicate only a small number of parameters, rather than the entire

model. Moreover, federated learning is often used in settings where the data on

Conclusion and Future Improvements 51

different clients is heterogeneous, meaning that it comes from different distribu-

tions. Learnable prompts can help to address this challenge by allowing clients to

learn prompts that are specific to their own data distribution. This can make the

globalmodelmore robust to data heterogeneity and improve its performance on all

clients. Finally learnable prompts could be used for Rehearsal-free federated con-

tinual learning: the task of t raining a model to learn new tasks without forgetting

the knowledge it has learned from previous tasks. Learnable prompts can be used

to facilitate knowledge transfer between tasks and clients in rehearsal-free federated

continual learning in a similar way as [41].

Bibliography

[1] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions

of finite statemarkov chains,”The annals ofmathematical statistics, vol. 37,

no. 6, pp. 1554–1563, 1966.

[2] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “Maximum mutual infor-

mation estimation of hidden markov model parameters for speech recogni-

tion,” in ICASSP ’86. IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol. 11, 1986, pp. 49–52. doi: 10.1109/ICASSP.

1986.1169179.

[3] B. H. Juang and L. R. Rabiner, “Hidden markov models for speech recog-

nition,” Technometrics, vol. 33, no. 3, pp. 251–272, 1991. doi: 10.1080/

00401706.1991.10484833. [Online].Available:https://www.tandfonline.

com/doi/abs/10.1080/00401706.1991.10484833.

[4] M.Gales andS.Young, “The applicationofhiddenmarkovmodels in speech

recognition,” Foundations and Trends® in Signal Processing, vol. 1, no. 3,

pp. 195–304, 2008, issn: 1932-8346. doi: 10.1561/2000000004. [On-

line]. Available: http://dx.doi.org/10.1561/2000000004.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, p. 436, 2015.

[6] A.-r.Mohamed,G. E.Dahl, andG.Hinton, “Acousticmodeling using deep

belief networks,” IEEE Transactions on Audio, Speech, and Language Pro-

cessing, vol. 20, no. 1, pp. 14–22, 2012. doi: 10 . 1109 / TASL . 2011 .

2109382.

https://doi.org/10.1109/ICASSP.1986.1169179
https://doi.org/10.1109/ICASSP.1986.1169179
https://doi.org/10.1080/00401706.1991.10484833
https://doi.org/10.1080/00401706.1991.10484833
https://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484833
https://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484833
https://doi.org/10.1561/2000000004
http://dx.doi.org/10.1561/2000000004
https://doi.org/10.1109/TASL.2011.2109382
https://doi.org/10.1109/TASL.2011.2109382

BIBLIOGRAPHY 53

[7] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying con-

volutional neural networks concepts to hybrid nn-hmm model for speech

recognition,” in 2012 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2012, pp. 4277–4280. doi: 10.1109/

ICASSP.2012.6288864.

[8] D.Wang, X.Wang, and S. Lv, “An overview of end-to-end automatic speech

recognition,” Symmetry, vol. 11, no. 8, 2019, issn: 2073-8994. doi: 10.

3390/sym11081018. [Online]. Available: https://www.mdpi.com/

2073-8994/11/8/1018.

[9] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist

temporal classification: Labelling unsegmented sequence data with recur-

rent neural networks,” in Proceedings of the 23rd International Conference

on Machine Learning, ser. ICML ’06, Pittsburgh, Pennsylvania, USA: As-

sociation forComputingMachinery, 2006, pp. 369–376, isbn: 1595933832.

doi: 10.1145/1143844.1143891. [Online]. Available: https://doi.

org/10.1145/1143844.1143891.

[10] R. L. Stratonovich, “Conditional markov processes,” in Non-linear trans-

formations of stochastic processes, Elsevier, 1965, pp. 427–453.

[11] D. Zhu,H. Yao, B. Jiang, and P. Yu,Negative log likelihood ratio loss for deep

neural network classification, 2018. arXiv: 1804.10690 [cs.LG].

[12] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with re-

current neural networks,” in Proceedings of the 31st International Confer-

ence on Machine Learning, E. P. Xing and T. Jebara, Eds., ser. Proceedings

of Machine Learning Research, vol. 32, Bejing, China: PMLR, 22–24 Jun

2014, pp. 1764–1772. [Online]. Available: https : / / proceedings .

mlr.press/v32/graves14.html.

[13] A.Hannun, “Sequencemodelingwith ctc,”Distill, 2017, https://distill.pub/2017/ctc.

doi: 10.23915/distill.00008.

https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.3390/sym11081018
https://doi.org/10.3390/sym11081018
https://www.mdpi.com/2073-8994/11/8/1018
https://www.mdpi.com/2073-8994/11/8/1018
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/1804.10690
https://proceedings.mlr.press/v32/graves14.html
https://proceedings.mlr.press/v32/graves14.html
https://doi.org/10.23915/distill.00008

BIBLIOGRAPHY 54

[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, issn: 0899-7667.

doi: 10.1162/neco.1997.9.8.1735. eprint: https://direct.

mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.

8.1735.pdf. [Online]. Available: https://doi.org/10.1162/neco.

1997.9.8.1735.

[15] A.Graves and J. Schmidhuber, “Framewisephonemeclassificationwithbidi-

rectional lstmnetworks,” inProceedings. 2005 IEEEInternational JointCon-

ference onNeuralNetworks, 2005., vol. 4, 2005, 2047–2052 vol. 4. doi: 10.

1109/IJCNN.2005.1556215.

[16] A.Vaswani,N. Shazeer,N. Parmar, et al., “Attention is all youneed,”CoRR,

vol. abs/1706.03762, 2017. arXiv:1706.03762. [Online].Available:http:

//arxiv.org/abs/1706.03762.

[17] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, “Deep networks

with internal selective attention through feedback connections,” inAdvances

in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C.

Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27, Curran Associates,

Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/

paper_files/paper/2014/file/19de10adbaa1b2ee13f77f679fa1483a-

Paper.pdf.

[18] S. Hochreiter, “The vanishing gradient problem during learning recurrent

neural nets and problem solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, pp. 107–116, Apr. 1998.

doi: 10.1142/S0218488598000094.

[19] S. Karita, N. Chen, T. Hayashi, et al., “A comparative study on transformer

vs RNN in speech applications,”CoRR, vol. abs/1909.06317, 2019. arXiv:

1909.06317. [Online]. Available: http://arxiv.org/abs/1909.

06317.

https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/IJCNN.2005.1556215
https://doi.org/10.1109/IJCNN.2005.1556215
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2014/file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf
https://doi.org/10.1142/S0218488598000094
https://arxiv.org/abs/1909.06317
http://arxiv.org/abs/1909.06317
http://arxiv.org/abs/1909.06317

BIBLIOGRAPHY 55

[20] D. Povey, A. Ghoshal, G. Boulianne, et al., “The kaldi speech recognition

toolkit,” in IEEE 2011Workshop on Automatic Speech Recognition andUn-

derstanding, IEEE Catalog No.: CFP11SRW-USB, Hilton Waikoloa Vil-

lage, Big Island, Hawaii, US: IEEE Signal Processing Society, Dec. 2011.

[21] C.-X.Qin,W.-L.Zhang, andD.Qu, “Anew joint ctc-attention-based speech

recognition model with multi-level multi-head attention,” EURASIP Jour-

nal on Audio, Speech, and Music Processing, vol. 2019, no. 1, p. 18, Oct.

2019, issn: 1687-4722. doi: 10.1186/s13636-019-0161-0. [Online].

Available: https://doi.org/10.1186/s13636-019-0161-0.

[22] W. Lin, “Drawbacks of transformers,” Apr. 2023.

[23] V. Pratap,A. Sriram, P.Tomasello, et al.,Massivelymultilingual asr: 50 lan-

guages, 1model, 1 billion parameters, 2020. arXiv:2007.03001[eess.AS].

[24] J. Bai, B. Li, Y. Zhang, et al., “Joint unsupervised and supervised training for

multilingual asr,” in ICASSP 2022 - 2022 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 6402–6406.

doi: 10.1109/ICASSP43922.2022.9746038.

[25] A. Baevski and A. Mohamed, “Effectiveness of self-supervised pre-training

for asr,” in ICASSP2020 - 2020 IEEE InternationalConference onAcoustics,

Speech and Signal Processing (ICASSP), 2020, pp. 7694–7698. doi: 10 .

1109/ICASSP40776.2020.9054224.

[26] X. Zheng, Y. Liu, D. Gunceler, and D. Willett, “Using synthetic audio to

improve the recognition of out-of-vocabulary words in end-to-end asr sys-

tems,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2021, pp. 5674–5678. doi: 10 .

1109/ICASSP39728.2021.9414778.

[27] J. Pfeiffer, A. Rücklé, C. Poth, et al., “Adapterhub: A framework for adapt-

ing transformers,”CoRR, vol. abs/2007.07779, 2020. arXiv: 2007.07779.

[Online]. Available: https://arxiv.org/abs/2007.07779.

https://doi.org/10.1186/s13636-019-0161-0
https://doi.org/10.1186/s13636-019-0161-0
https://arxiv.org/abs/2007.03001
https://doi.org/10.1109/ICASSP43922.2022.9746038
https://doi.org/10.1109/ICASSP40776.2020.9054224
https://doi.org/10.1109/ICASSP40776.2020.9054224
https://doi.org/10.1109/ICASSP39728.2021.9414778
https://doi.org/10.1109/ICASSP39728.2021.9414778
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/2007.07779

BIBLIOGRAPHY 56

[28] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., “Parameter-efficient transfer

learning for NLP,” in Proceedings of the 36th International Conference on

Machine Learning, K.Chaudhuri andR. Salakhutdinov, Eds., ser. Proceed-

ings of Machine Learning Research, vol. 97, PMLR, Sep. 2019, pp. 2790–

2799. [Online]. Available: https://proceedings.mlr.press/v97/

houlsby19a.html.

[29] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., Parameter-efficient transfer

learning for nlp, 2019. arXiv: 1902.00751 [cs.LG].

[30] B. X. B. Yu, J. Chang, L. Liu, Q. Tian, and C. W. Chen, Towards a uni-

fied view on visual parameter-efficient transfer learning, 2023. arXiv: 2210.

00788 [cs.CV].

[31] D.Yin,Y.Yang,Z.Wang,H.Yu,K.Wei, andX. Sun, “1%vs 100%:Parameter-

efficient low rank adapter fordensepredictions,” inProceedings of the IEEE/CVF

Conference onComputerVisionandPatternRecognition (CVPR), Jun. 2023,

pp. 20 116–20 126.

[32] H. Chen, R. Tao, H. Zhang, et al., Conv-adapter: Exploring parameter effi-

cient transfer learning for convnets, 2022. arXiv: 2208.07463 [cs.CV].

[33] H. Le, J. Pino, C. Wang, J. Gu, D. Schwab, and L. Besacier, Lightweight

adapter tuning formultilingual speech translation, 2021. arXiv:2106.01463

[cs.CL].

[34] X. Gong, Y. Lu, Z. Zhou, and Y. Qian, “Layer-wise fast adaptation for end-

to-end multi-accent speech recognition,” in Interspeech 2021, ISCA, Aug.

2021. doi: 10.21437/interspeech.2021-1075. [Online]. Available:

https://doi.org/10.21437%2Finterspeech.2021-1075.

[35] B. Zhang, X. Jin, W. Gong, et al.,Multimodal video adapter for parameter

efficient video text retrieval, 2023. arXiv: 2301.07868 [cs.CV].

https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2210.00788
https://arxiv.org/abs/2210.00788
https://arxiv.org/abs/2208.07463
https://arxiv.org/abs/2106.01463
https://arxiv.org/abs/2106.01463
https://doi.org/10.21437/interspeech.2021-1075
https://doi.org/10.21437%2Finterspeech.2021-1075
https://arxiv.org/abs/2301.07868

BIBLIOGRAPHY 57

[36] Z. Jiang, F. F.Xu, J. Araki, andG.Neubig, “HowCanWeKnowWhatLan-

guage Models Know?” Transactions of the Association for Computational

Linguistics, vol. 8, pp. 423–438, Jul. 2020, issn: 2307-387X.doi:10.1162/

tacl_a_00324. eprint: https://direct.mit.edu/tacl/article-

pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.

pdf. [Online]. Available: https://doi.org/10.1162/tacl%5C_a%

5C_00324.

[37] Y. Su, X.Wang, Y. Qin, et al., “On transferability of prompt tuning for nat-

ural language processing,” inProceedings of the 2022Conference of theNorth

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Association for Computational Linguistics, 2022.

doi: 10 . 18653 / v1 / 2022 . naacl - main . 290. [Online]. Available:

https://doi.org/10.18653%2Fv1%2F2022.naacl-main.290.

[38] B. Lester, R. Al-Rfou, andN.Constant, “The power of scale for parameter-

efficient prompt tuning,”CoRR, vol. abs/2104.08691, 2021. arXiv: 2104.

08691. [Online]. Available: https://arxiv.org/abs/2104.08691.

[39] Z. Yang, S. Wang, B. P. S. Rawat, A. Mitra, and H. Yu, Knowledge injected

prompt based fine-tuning for multi-label few-shot icd coding, 2022. arXiv:

2210.03304 [cs.CL].

[40] M. Jia, L. Tang, B.-C. Chen, et al., “Visual prompt tuning,” in European

Conference on Computer Vision, Springer, 2022, pp. 709–727.

[41] Z.Wang, Z. Zhang, C. Lee, et al., “Learning to prompt for continual learn-

ing,” CoRR, vol. abs/2112.08654, 2021. arXiv: 2112 . 08654. [Online].

Available: https://arxiv.org/abs/2112.08654.

[42] N. F. Liu,M.Gardner, Y. Belinkov,M. E. Peters, andN.A. Smith, “Linguis-

tic knowledge and transferability of contextual representations,” inProceed-

ings of the 2019 Conference of theNorth American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1

https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00324
https://doi.org/10.1162/tacl%5C_a%5C_00324
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653%2Fv1%2F2022.naacl-main.290
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2210.03304
https://arxiv.org/abs/2112.08654
https://arxiv.org/abs/2112.08654

BIBLIOGRAPHY 58

(Long and Short Papers),Minneapolis,Minnesota:Association forCompu-

tational Linguistics, Jun. 2019, pp. 1073–1094. doi: 10.18653/v1/N19-

1112. [Online]. Available: https://aclanthology.org/N19-1112.

[43] H.B.McMahan, E.Moore,D.Ramage, andB.A. yArcas, “Federated learn-

ing of deep networks using model averaging,” CoRR, vol. abs/1602.05629,

2016. arXiv: 1602.05629. [Online]. Available: http://arxiv.org/

abs/1602.05629.

[44] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16

words: Transformers for image recognition at scale,” CoRR, 2020. arXiv:

2010.11929. [Online]. Available: https://arxiv.org/abs/2010.

11929.

[45] Y. Gong, Y. Chung, and J. R. Glass, “AST: audio spectrogram transformer,”

CoRR, vol. abs/2104.01778, 2021. arXiv: 2104.01778. [Online]. Avail-

able: https://arxiv.org/abs/2104.01778.

[46] Y.Muthusamy,R.Cole, andM. Slaney, “Speaker-independent vowel recog-

nition: Spectrograms versus cochleagrams,” in International Conference on

Acoustics, Speech, andSignalProcessing, 1990, pp. 533–536.doi:10.1109/

ICASSP.1990.115767.

[47] P.Warden, “Speech commands:Adataset for limited-vocabulary speech recog-

nition,”CoRR, vol. abs/1804.03209, 2018. arXiv: 1804.03209. [Online].

Available: http://arxiv.org/abs/1804.03209.

[48] A.Baevski,H.Zhou,A.Mohamed, andM.Auli,Wav2vec 2.0:A framework

for self-supervised learning of speech representations, 2020. arXiv:2006.11477

[cs.CL].

[49] K. Choi and E. J. Yeo, Opening the black box of wav2vec feature encoder,

2022. arXiv: 2210.15386 [cs.SD].

https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://aclanthology.org/N19-1112
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2104.01778
https://arxiv.org/abs/2104.01778
https://doi.org/10.1109/ICASSP.1990.115767
https://doi.org/10.1109/ICASSP.1990.115767
https://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2210.15386

BIBLIOGRAPHY 59

[50] S. Seo, D. Kwak, and B. Lee, Integration of pre-trained networks with con-

tinuous token interface for end-to-end spoken language understanding, 2022.

arXiv: 2104.07253 [cs.CL].

[51] I. J. Good, “Rational decisions,” Journal of the Royal Statistical Society. Se-

ries B (Methodological), vol. 14, no. 1, pp. 107–114, 1952, issn: 00359246.

[Online]. Available: http://www.jstor.org/stable/2984087 (vis-

ited on 09/21/2023).

[52] E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser, Slurp: A spoken lan-

guageunderstanding resource package, 2020. arXiv:2011.13205[cs.CL].

[53] C.-H. Li, S.-L. Wu, C.-L. Liu, and H.-y. Lee, Spoken squad: A study of mit-

igating the impact of speech recognition errors on listening comprehension,

2018. arXiv: 1804.00320 [cs.CL].

[54] S. Shon, A. Pasad, F. Wu, et al., Slue: New benchmark tasks for spoken lan-

guageunderstanding evaluation onnatural speech, 2022. arXiv:2111.10367

[cs.CL].

[55] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio, Speech

model pre-training for end-to-end spoken languageunderstanding, 2019. arXiv:

1904.03670 [eess.AS].

[56] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-

performance deep learning library,” inAdvances inNeural InformationPro-

cessing Systems 32, CurranAssociates, Inc., 2019, pp. 8024–8035. [Online].

Available: http://papers.neurips.cc/paper/9015-pytorch-

an - imperative - style - high - performance - deep - learning -

library.pdf.

[57] O. Yadan, Hydra - a framework for elegantly configuring complex applica-

tions,Github, 2019. [Online].Available:https://github.com/facebookresearch/

hydra.

https://arxiv.org/abs/2104.07253
http://www.jstor.org/stable/2984087
https://arxiv.org/abs/2011.13205
https://arxiv.org/abs/1804.00320
https://arxiv.org/abs/2111.10367
https://arxiv.org/abs/2111.10367
https://arxiv.org/abs/1904.03670
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

BIBLIOGRAPHY 60

[58] L. Biewald, Experiment tracking with weights and biases, Software available

from wandb.com, 2020. [Online]. Available: https : / / www . wandb .

com/.

[59] I. Loshchilov and F. Hutter, Sgdr: Stochastic gradient descent with warm

restarts, 2017. arXiv: 1608.03983 [cs.LG].

[60] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey,Meta-learning in

neural networks: A survey, 2020. arXiv: 2004.05439 [cs.LG].

[61] F. Zhuang, Z. Qi, K. Duan, et al., A comprehensive survey on transfer learn-

ing, 2020. arXiv: 1911.02685 [cs.LG].

https://www.wandb.com/
https://www.wandb.com/
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/2004.05439
https://arxiv.org/abs/1911.02685

Acknowledgements

I’mvery grateful toAlessioBrutti andUmbertoCappellazzo for guidingme through

my internship at Fondazione Bruno Kessler. I’d also like to acknowledge my advi-

sor, prof. Paolo Torroni, for sending some timely advice when needed.

	Introduction
	State of the art
	Historical Overview, from ASR to SLU
	Fine-tuning Alternatives

	Proposed Approach
	Shallow and Deep Prompting Techniques
	Audio Spectrogram Transformer
	Wav2Vec 2.0
	Prompting Implementation

	Dataset and Experiments
	Dataset and Task
	Experiments on AST
	Shallow Prompt-Tuning SPT
	Deep Prompt-Tuning

	Tests on Wav2Vec 2.0

	Discussion
	Conclusion and Future Improvements
	Bibliography
	Acknowledgements

