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Abstract

Uncertainties on the nature and efficiency of internal mixing processes in stars are becom-

ing the dominant limitation to inferring accurate stellar ages. One particularly relevant

uncertainty is that of the efficiency of additional mixing at the boundary of convective

cores in the core hydrogen-burning phase. This project investigates a novel method of

constraining such mixing processes, in particular those induced by rotation, by study-

ing their imprint on the observed luminosity distribution and core-properties of low- to

intermediate-mass core helium burning stars. Through the computation of single-age

synthetic stellar populations using models that incorporate rotation-induced mixing, we

have uncovered the appearance of extended red clumps within single-age clusters. The

properties of these red clumps possess the potential to provide valuable insights into the

efficiency of rotation-induced mixing processes, the origins of the observed extended red

clumps and turn-offs, and to enhance the accuracy of age determinations. An initial as-

sessment comparing the results with observations appears to support the plausibility of

this scenario to some extent.
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6 Introduction

Chapter 1

Introduction

A comprehensive understanding of how stars evolve and interact with their surrounding

medium is vital for various fields in astrophysics. Accurate estimation of stellar parameters

such as ages, masses, radii, and metallicities within stellar populations is essential for

research in areas like galactic structure and formation history, stellar system dynamics

and kinematics, and the characterization of parent stars in planetary systems, among

others. Achieving this understanding hinges on having reliable evolutionary models for

the constituent stars of these populations. In stars with convective cores, the extent

and efficiency of near-core mixing processes play a critical role in determining the core

mass and the main-sequence lifetime. However, these mixing processes remain poorly

understood, leading to significant uncertainties in stellar structure and evolution models.

Our focus in this study is on stars with masses ranging from 1.7 to 3 solar masses. These

stars bridge the gap between Low-Mass Stars (LMS) and Intermediate-Mass Stars (IMS)

and, when in the core He burning phase, they are commonly referred to as secondary

clump stars (2RCS), as we will elaborate on shortly. The properties of this transition

phase are influenced by various factors, with the efficiency of internal mixing processes

being a key consideration. Rotation in stars can induce large-scale displacements, such

as meridional circulation, and lead to instabilities like shear instability, all of which can

affect the transport of chemical elements within the star. However, the extent to which

rotation-induced mixing influences these processes remains uncertain.

This work aims to address this issue by investigating the impact of rotation-induced

mixing on secondary clump stars, both as individual stars and within single-age stel-

lar populations. Utilizing models of rotating stars, and combining them in single-age

synthetic stellar populations we aim to make predictions that can be compared with ob-

servations. This will help to constrain the efficiency of these mixing processes, refine

our understanding of stellar rotation, and ultimately improve the accuracy of age, mass,

radius, and metallicity determinations for stars.

We will begin by establishing the fundamental principles of stellar modeling, while for
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comprehensive insights into the observational aspects of stars, we refer readers to other

sources like Böhm-Vitense 1989.

In Chapter 2, we provide a brief overview of the core concepts in standard stellar

evolution. This serves as a foundational context for the subsequent chapters.

Chapter 3 delves into a comprehensive exploration of the fundamental concepts of

rotation in stars and the various approaches employed in modeling this phenomenon.

Chapter 4 takes an in-depth look at the properties of a limited grid of rotating models

derived from the Geneva stellar evolution code. These models serve as a reference for the

higher-resolution grid of MESA models introduced in Chapter 5. These MESA models

incorporate rotation-induced mixing of chemicals and are calibrated based on the reference

models to investigate secondary clump stars within synthetic stellar populations.

Within Chapter 5, we conduct a preliminary comparison with observations of field

stars and stars within stellar clusters, emphasizing that this comparison is not meant to

be exhaustive but rather serves as an initial assessment.
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Chapter 2

Stellar Evolution of Low- and

Intermediate-Mass Stars

The determination of stellar classical parameters (such as age, mass and radius) is pos-

sible through the comparison of observational constraints such as luminosity, effective

temperature, surface abundances and oscillation properties with predictions from stellar

models. These models depend on micro and macro-physics inputs ingredients and can be

constrained thanks to spectroscopic, astrometric, photometric, interferometric, and aster-

oseismic observations. Given the primary focus of this study on how rotation influences

stellar structure and evolution, a significant portion of our work is dedicated to eluci-

dating these effects. Therefore, we assume a basic understanding of non-rotating stellar

evolution and will provide a concise overview of key concepts as a foundation for our

subsequent discussions. For more comprehensive explanations, we recommend referring

to other sources, such as Salaris and Cassisi 2006.

2.1 Fundamental Equations of Stellar Structure Without

Rotation

Stellar hydrostatic1 models are based on four fundamental equations that express the com-

plete set of equilibrium conditions which must be fulfilled throughout the stellar structure.

These conditions can be presented in both Eulerian coordinates, with independent vari-

1Assuming that models are in hydrostatic equilibrium is justified when when evolution is slow with

respect to the dynamical timescale.
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ables (r, t), and Lagrangian coordinates2, with independent variables3 (Mr, t):

1. Equation of hydrostatic equilibrium:

dP

dr
= −GMr

r2
ρ or

dP

dMr

= −GMr

4πr4
. (2.1)

2. Mass continuity equation:

dMr

dr
= 4πr2ρ or

dr

dMr

=
1

4πr2ρ
. (2.2)

3. Equation of energy transport:

• Radiative transport :

dT

dr
= − 3κρ

4acT 3

Lr

4πr2
or

dT

dMr

= −GMrT

4πr4P
∇rad. (2.3)

• Convective transport (valid only where convection is an efficient transport

mechanism):

dT

dr
=

Γ2 − 1

Γ2

T

P

dP

dr
or

dT

dMr

= −GMrT

4πr4P
∇ad. (2.4)

In the interiors, convection is present if ∇rad > ∇ad, otherwise the transport is

radiative.

4. Equation of energy conservation:

dLr

dr
= 4πr2ρ(ϵnuc + ϵgrav − ϵν) or

dLr

dMr

= (ϵnuc + ϵgrav − ϵν), (2.5)

where P is the pressure, ρ is the density, T is the temperature, Lr is the luminosity at

radial coordinate r, Γ2 is an adiabatic coefficient4, ϵnuc, ϵgrav, ϵν terms are the energy

generation rates respectively from nuclear reactions, gravitational contraction/expansion,

2The obvious coordinate to use in a Eulerian coordinate system is the radius of a spherical shell,

r ∈ [0, R]. However, in stellar evolution, the coordinate r is not always convenient as an independent

variable. Except for particular cases of heavy mass loss, the stellar mass remains almost constant, while

the stellar radius may rapidly change. It is thus more appropriate (and simpler) to choose the mass Mr

or the mass fraction (Mr/Mtot) as an independent variable.
3Here we write the variable M = M(r) as Mr to explicitly show that they are interchangeable as

independent variables, r = r(M).
4Adiabatic coefficients describe the response of the system to an adiabatic change, they essen-

tially describe the relations between the various differentials along an adiabat. Γ2 is defined by
Γ2−1
Γ2

= ( ∂ lnT
∂ lnP )ad = ∇ad
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neutrino production. G, a, and c are three physical constants (gravitational constant,

radiation constant, and light speed) and:

∇ad = (
∂ lnT

∂ lnP
)ad =

Γ2 − 1

Γ2

and ∇rad =
3

16πacT 4

κLrP

MrT 4
. (2.6)

The radiative gradient ∇rad is defined as the thermal gradient which would be necessary

to carry the sum of the radiative and convective fluxes by radiation only. We refer to

Salaris and Cassisi 2006 for an extensive explanation of how these equations are obtained.

In order to solve these equations, the following physical aspects are essential:

• Nuclear reaction rates to evaluate ϵnuc and ϵν .

• The equation of state to determine ρ given T , P , and chemical composition.

• Opacities (κ) for calculating ∇rad.

• A convection treatment for computing the convective flux and the temperature

gradient where convection is inefficent.

• The rate of change of chemical species due to nuclear reactions. When atomic

diffusion and radiative levitation are integrated into the stellar model, equations

describing the change in chemical composition due to diffusion are necessary. So if

Xi is the abundance in mass of the element labeled with i, for each element we have

an equation:
dXi

dt
= (

dXi

dt
)nuc + (

dXi

dt
)diff . (2.7)

In other words, the differential equations (2.1)-(2.2)-(2.3)/(2.4)-(2.5) are formulated in

terms of the dependent variables (Mr, P, Lr, T,Xi). Hence we must be able to express

the right-hand sides of the equations in terms of these variables. To do so requires ex-

pressions for ρ, ϵgrav, ϵν , Γ2, κ, ϵ, (dXi/dt)nuc and (dXi/dt)diff , as functions of P , T

and chemical composition. These expressions are obtained from thermodynamics, atomic

physics and nuclear physics. The differential equations (2.1)-(2.2)-(2.3)-(2.4)-(2.5) must

be supplemented by suitable boundary conditions. We have four conditions with three

free parameters R, L and M . Let us suppose that we integrate the four equations starting

from the surface. When the center is reached, i.e., at r = 0, one should normally also

have Lr = 0 and Mr = 0. This is not automatically the case for an arbitrary choice of R,

L and M at the surface. This means that for a given M the other two surface parame-

ters have to be adjusted until the integration leads simultaneously to r = 0, Lr = 0 and

Mr = 0 when the center is reached. The two additional conditions at the center reduce

the number of free parameters at the surface from three to one. Usually, one chooses the

stellar mass M . Finally we need an initial model. This can be obtained from more or less
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detailed studies of the early phases of stellar evolution, starting from the contraction of

the original interstellar cloud. A simple alternative is to neglect the early history of the

star, and assume that it is initially chemically homogeneous, and in thermal equilibrium,

so that ϵgrav can be neglected. Fortunately it turns out that the later evolution of the star

is quite insensitive to the assumed initial conditions.

As the equations of stellar evolution have in general no analytical solutions, one solves

them numerically, especially given that opacities and nuclear reaction rates are given as

data tables. Many properties found by the numerical models can be derived analytically

in a simplified and approximate way. Often, the analytical developments were made after

the numerical models. The knowledge of the analytical relations is enlightening for the

physical understanding of the astrophysical processes.

2.2 Evolutionary Phases

During its evolution, a star goes through several stages where its internal structure trans-

forms. These changes can be tracked using the Hertzsprung-Russell diagram (HRD), see

Fig.2.1, which showcases variations in surface luminosity (L) and effective temperature

(Teff ) over time. Most of the evolutionary phases originally take their names from the

features in the color-magnitude diagrams (CMDs) of star clusters that they populate,

however they terminology is extended to the corresponding features in the evolutionary

tracks of single stars. In the forthcoming paragraphs, we will offer a brief overview of the

sequential evolutionary phases experienced by stars within the mass range of 1.7 M⊙ to

3 M⊙. This overview serves to introduce terminology and contextualize the subsequent

content. For a more comprehensive and detailed exploration of all evolutionary stages,

interested readers are directed to Salaris and Cassisi 2006.

2.2.1 Main Sequence

After the initial contraction phase of the original interstellar cloud, which, as previously

indicated, has minimal impact on the subsequent stellar evolution, stars spend the major-

ity of their lifespan on the Main Sequence (MS, Fig. 2.1) phase. During this MS phase,

hydrogen burning serves as the primary source of nuclear energy, crucial for sustaining the

star’s stability. In stars where the CNO cycle takes precedence as the primary hydrogen-

burning process, the core typically transitions to a convective state. This phenomenon

arises due to the strong temperature dependency of CNO nuclear reactions, resulting in

the generation of a substantial amount of energy within a narrow central region. Radia-

tion alone proves inadequate for efficiently transporting this considerable energy in such

a confined space. It’s noteworthy that convective cores can also be encountered in certain
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earlier phases (e.g., deuterium burning and out-of-equilibrium 3He burning) as well as

later burning stages (e.g., helium burning). Conversely, in stars where the pp-chain is the

dominant nuclear burning process, a radiative core develops. The parameter that pro-

foundly affects the efficiency of nuclear burning is temperature, and this is closely tied to

the initial mass of the star. The transition point between the two hydrogen-burning chan-

nels occurs within the LMS range. Notably, stars with masses approximately in the range

of 1.2 to 1.3 M⊙ initiate the development of convective cores fueled by CNO-burning, with

the size of these cores increasing with stellar mass. However, stars with masses exceeding

the 1.2 to 1.3 M⊙ range maintain a radiative region above the mixed core, where the

pp-chain dominates.

2.2.2 Sub Giant Branch

Once hydrogen in the core is depleted, nuclear reactions in the centre stop. Consequently,

the star departs from the MS phase and proceeds with its evolutionary course along the

Sub Giant Branch (SGB), as illustrated in Fig. 2.1. At this point both the central

luminosity and the temperature gradient drop to zero. The core, mainly made of helium,

contracts and becomes hotter and denser. As a result, the layers immediately above the

core increase their temperature too and ignite hydrogen nuclear reactions in a thick shell

surrounding the core. The burning shell becomes thinner and thinner, converting hydrogen

by the CNO-cycle channel into helium, which is deposited on the core. In the meantime,

the envelope reacts to the contraction expanding and cooling down but maintaining an

almost constant luminosity, following the Stefan-Boltzmann law for black bodies:

L = 4πσR2T 4
eff . (2.8)

The outer convection zone gradually extends deeper into the star’s interior, and this phe-

nomenon occurs as the star’s effective temperature (Teff ) has considerably decreased. It

reaches a crucial phase at the base of the red giant branch (see Section 2.2.3), transporting

the byproducts of nuclear reactions to the stellar surface, a process often referred to as

the first dredge-up. Depending on the initial mass, stars can develop an isothermal core

in a non electron-degenerate regime. For such stars the hydrostatic equilibrium persists,

supported by the density gradient only, until the mass of the helium core (which is in con-

stant growth) exceeds the Schönberg-Chandrasekhar limit (Schönberg and Chandrasekhar

1942):

MSC = 0.37 ·M
(
µenv

µcore

)2

, (2.9)

where µenv and µcore are respectively the mean molecular weight (average mass of the

particles in a gas divided by the atomic mass unit) of the envelope and the core. A

core mass larger than MSC , starts to contract on a Kelvin-Helmholtz timescale, unless
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the electron gas in core starts to become degenerate, in which case the contraction is

significantly slowed down. If M > MSC , due to the very fast evolution, it is not likely

to observe stars in this phase, so in the CMDs of stellar populations we observe a ”gap”

known as the Hertzspung gap.

2.2.3 Red Giant Branch

Continuing along its evolution, the star then approaches the Hayashi limit, an almost

vertical line in the HRD where fully convective objects are in hydrostatic equilibrium.

Almost the entire envelope is convective and the H-burning shell is now thin. The core

is still in contraction but Teff cannot decrease any longer, since no stars in hydrostatic

equilibrium can exist at Teff cooler than the Hayashi limit. Therefore the only possibility

to expand the envelope is to increase the luminosity: the Red Giant Branch (RGB) begins

(Fig. 2.1). In low-mass stars the electron component of the gas gradually becomes fully

degenerate and creates a strong pressure able to contrast the gravity and slows down the

contraction of the core:

Pe ∝ ρ5/3. (2.10)

The total pressure is now formed of two components: the pressure of the electrons Pe

(2.10) and the pressure of the nuclei of helium which are still in a perfect gas condition:

P = Pe + Pnuclei = Kρ5/3 +
kBρT

muµ
, (2.11)

where µ is the mean molecular weight, kB is the Boltzmann’s constant and mu is the

atomic mass unit. The pressure of the perfect gas component is negligible with respect

to the degenerate component, hence the central temperature does not affect the total

pressure but depends only on density. Since the H-burning shell is active, new helium

is produced and deposited on the surface of the core, which grows in mass and becomes

hotter and denser.

The H-burning shell is also responsible for the surface luminosity. It can be shown

that luminosity and core mass are connected by homology relations, L ∝ M8−10
HeC . During

the ascent on the RGB, the H-burning shell crosses the chemical discontinuity left by

the first dredge-up. The monotonic increase of luminosity is abruptly interrupted since

the molecular weight µ in H-shell decreases. In fact, the homology relation shows that

L ≈ µ7. Once the H-burning shell has passed the discontinuity, the luminosity rises

again. In stellar populations with low-mass stars this event generates the RGB-bump

(RGBb). Observationally speaking, the bump produces an accumulation of stars that is

easily visible as a peak in the luminosity function of of the RGB in globular and open

clusters.



14 Stellar Evolution of Low- and Intermediate-Mass Stars

Stellar evolution theory predicts a fundamental dichotomy between the evolutionary

behaviour of stars that do, and those that do not develop electron degenerate cores after

central hydrogen exhaustion. Stars of masses lower than about 1.8 - 2.2 M⊙ develop

degenerate cores, and climb the red giant branch (RGB) until the core mass grows to about

0.45 M⊙. Degeneracy impose to LMS grow their helium core to the mass of approximately

0.45 M⊙ in order to reach temperatures necessary to ignite the helium nuclear reactions.

However, the pressure is dominated by the electron-degenerate component, therefore when

energy is released by He-burning nuclear reactions the gas can not expand and cool down.

Since the temperature and the nuclear energy production are strongly related, a thermal

runaway occurs. When the temperature becomes high enough, the perfect gas component

of the total pressure (2.11) is no longer negligible and the gas is free to expand and

cool down, removing the degeneracy. The entire process is called Helium Flash (HeF).

The maximum mass of stars that follow this evolutionary scheme is usually denoted as

MHef . Stars of masses slightly above MHef have a weakly degenerate core, and are able

to ignite helium with a lower core mass, of about 0.33 M⊙; therefore their RGB phase is

significantly abbreviated. For stars of higher masses, the core mass at He ignition becomes

an increasing function of stellar mass, and the evolutionary phase equivalent to the RGB

is practically missing.

2.2.4 Quiescent Core He Burning Phase (QCHeB)

Once the degeneracy is removed from the core (in LMS) or helium burning in a non-

degenerate core is set up (in IMS), the star is subject to a fast readjustment (decreases

its L and R, with a slight increase in Teff ) to reach the new equilibrium configuration

with the new available source of energy. During this stable core-He burning phase, also

called Quiescent Core He Burning Phase (QCHeB), the star has a different structure

and global properties with respect to the RGB phase. From the surface to the centre,

the internal structure consists of a large convective envelope, a H-burning shell and a

region composed primarily of helium. At the center two nuclear reactions are present

simultaneously: the triple-α reactions and carbon into oxygen reaction (12C(α, γ)16O).

Given the high dependence on the temperature of helium-burning reactions, nuclear energy

generation is confined inside a very compact and convective core. Due to the central

convection, the helium burning core is chemically homogeneous. Therefore, since the core

grows, a chemical discontinuity at the convective border develops, and becomes more and

more pronounced as He-burning proceeds (the situation changes depending on the mixing

prescription adopted to define the convective boundaries).

At the beginning of the helium burning phase, the triple-α reactions dominate until

the mass fraction of helium in the core drops under approximately 0.2. Then, the energy
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production by the 12C(α, γ)16O reactions becomes greater than that by the triple-α re-

actions. The entire helium core becomes more compact, the H-burning shell increases its

energy generation rate and the total luminosity rises.

Red Clump and Secondary Clump

During the red giant phase, the star spends most of its lifetime in the loop corresponding

to the stable core helium-burning phase. Consequently, it is much more likely to observe

a red giant star during the QCHeB phase than during its rapid evolution on the red giant

branch in the hydrogen shell-burning phase. This is observed in the CMDs of stellar

populations as a clump of stars in the region corresponding to this phase which is called

the Red Clump (RC). The difference in the core mass at the beginning of the stable core

He-burning phase reflects directly on the luminosity of these stars: for M < MHef their

luminosity is almost constant at Log(L/L⊙) ≈ 1.5 which gives an origin to the clump of

red giant stars (or to the horizontal branch in the case of Population II stars); for masses

slightly above MHef this luminosity is predicted to have a minimum value about 0.4 mag

below the clump of lower mass stars; and for still higher total mass the He-burning stars

shift progressively to higher luminosities (see Fig. 5.12), so that they no longer correspond

to the ”red clump”. This ”dip” in luminosity generates, in the CMDs of composite stellar

populations, an extension to lower luminosities, called Secondary Clump (2RC), which

goes down about 0.4 mag below the main clump of lower mass stars and at its blue

extremity (Girardi et al. 1998 and Girardi 1999). The exact values of the stellar masses

and luminosities in the 2RC depend slightly on the assumed values of Z and Y . The

limiting mass MHef also depends, as discussed extensively in Section 5.2 on the efficiency

of near-core mixing processes during the MS phase.

2.2.5 Asymptotic Giant Branch

As helium becomes depleted in the core, the process of He-burning ceases. Consequently,

the central convective region rapidly diminishes and vanishes. Both the luminosity at

the core and the temperature gradient decline to zero, causing the core to become nearly

isothermal. The star approaches the Hayashi limit again, initiating a phase known as the

Asymptotic Giant Branch (AGB). During this phase, the core contracts again. Analogous

to the hydrogen-burning in the Subgiant Branch (SGB), helium-burning ignites within a

shell. The nuclear burning in the helium shell is non-convective, thus, as the helium abun-

dance diminishes, the helium-burning shell moves outward, leaving behind the byproducts

of nuclear reactions. This leads to an increase in the mass of the C/O core and brings the

helium shell closer to the hydrogen-burning shell.

Throughout the AGB phase, the star’s internal structure can be described as follows:
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• a core primarily composed of carbon and oxygen, accompanied by degenerate elec-

trons,

• a shell where helium-burning occurs,

• a shell for hydrogen-burning,

• a deep convective envelope.

In the CMDs of stellar populations, the formation of the helium-burning shell corresponds

to what is known as the AGB bump (AGBb). Analogous to the RGBb, this AGBb

consists in an initial decrease followed by an increase in the total luminosity. The reason

for the occurrence of the AGBb is immediately evident after the cessation of Helium-

core burning. Without nuclear energy production at the core, the entire stellar structure

adjusts to compensate for the loss of this energy source. Beyond the boundary of the

former convective core, the energy generation rate due to He-burning reactions increases

in a shell. This is primarily due to the higher helium abundance in relation to the inner

region (the discontinuity) and the temperature profile. Initially, due to the expansion of

the layers between the two shells, both the luminosity from hydrogen-shell-burning and

the total luminosity decrease, while the helium shell contributes an increasing portion to

the total luminosity. Eventually, the He-burning shell surpasses the H-burning shell as

the primary source of nuclear energy. Consequently, the total luminosity begins to rise

anew, whereas the energy output of the H-burning shell diminishes, as it has expanded

and cooled due to the ignition of a secondary burning shell.

Towards the conclusion of the AGB phase, the two shells approach each other closely

and undergo periodic thermal instabilities, termed Thermal Pulses. During these pulses,

the helium-burning shell experiences periodic thermonuclear runaways. As a result of the

huge energy release, an inter-shell convective zone forms, extending toward the hydro-

gen/helium discontinuity, where the hydrogen-burning shell is located. During this phase,

the helium-burning shell and the hydrogen-burning shell alternately switch on and off.

When the hydrogen-burning shell is switched off following the reignition of the helium-

burning shell, the convective envelope can move inward in terms of mass, crossing the

hydrogen/helium discontinuity. In such instances, a new dredge-up event takes place,

known as the third dredge-up5. During the third dredge-up, helium, products of helium

burning (mainly carbon), and heavy s-elements6 are brought up into the envelope and

eventually transported to the surface, where they become observable.

5For stars more massive than 3-5 M⊙ there is a second dredge up in the early- AGB phase that does

not happen in lower mass stars.
6s-elements refer to elements formed primarily through the slow neutron-capture process (s-process)

in stars, leading to their abundance in the s-process-rich materials. These elements include strontium

(Sr), barium (Ba), yttrium (Y), and other heavier isotopes.
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Instabilities at the base of the envelope lead to its detachment from the star, resulting

in the formation of a Planetary Nebula (PN). The remnant takes the form of a com-

pact object, primarily composed of carbon and oxygen and existing under high electron

degeneracy. This compact object is referred to as a White Dwarf (WD).
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Figure 2.1: Evolutionary track of 2.0 M⊙ from our grid of models described in Section 4.1

computed up to the first thermal pulse.
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Chapter 3

Rotating Stars

Thanks to the numerous achievements of the standard theory of stellar evolution, rota-

tion has mostly been seen as a secondary factor. This viewpoint has been reasonable

in many cases. However, notable differences and uncertainties have arisen between the

expectations of models without rotation and observations. These differences apply not

only to massive stars but also to those with lower masses. The main challenge in accu-

rately determining stellar ages has now shifted to uncertainties related to the modelling

of transport processes within stars. In this context, rotation emerges as a natural driver

for these transport processes or, at the very least, as a key aspect that needs thorough

investigation to understand its impact on chemical mixing. Also, it is important to note

that that there is clear observational evidence of the effects of rotation. This evidence

originates from spectroscopic analyses, and more recently through measurements from

interferometry, chemical composition studies, and from studying solar and stellar oscil-

lations. The abundance of evidence itself emphasizes the importance of studying how

rotation influences stars.

The physical effects of stellar rotation are numerous. Rotation shapes the course of

stellar evolution through two distinct mechanisms:

• Equilibrium Configuration Deformation: there is a deformation (flattening) of the

equilibrium configuration: the characteristics become dependent on the colatitude

considered. This alteration impacts the stellar parameters inferred from observations

and introduces an anisotropic pattern in the star’s mass loss.

• Generation of Internal Circulation and Instabilities: Rotation drives internal circu-

lation motions and various instabilities which transport both the chemical elements

and the angular momentum. These mechanisms result in significant deviations from

the standard (non-rotating) evolution.

Given these considerations, it becomes evident that the fundamental equations governing

stellar structure need to be modified.
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In the following sections we will give a basic physical description of stellar rotation

in order to illustrate the concepts needed to understand and interpret the results of the

rotating stellar models. Moreover we will discuss the different approaches in implementing

rotation in stellar evolution codes and describe broadly the properties of rotating models,

how they compare with observations and, in some more detail, the properties of a small

grid of rotating models computed with the Geneva stellar evolution code (Eggenberger

et al. 2008) also referred to as GENEC, that we will use as reference rotating models for

this work.

3.1 Physical Description of Stellar Rotation

In a rotating star, the centrifugal forces lead to a reduction in effective gravity, which varies

with colatitude and introduces deviations from sphericity. When rotation is present, the

four equations governing stellar structure need to be modified. The original approach,

introduced by Kippenhahn and Thomas 1970 and subsequently adopted in many works,

involves substituting the conventional spherical Eulerian or Lagrangian coordinates with

new coordinates that define equipotential surfaces. This method is applicable in cases

where the effective gravity can be derived from a potential, i.e. when the problem is

conservative. This holds true for scenarios like solid body rotation or constant rotation

along cylinders centered on the rotation axis. Although internal rotation often evolves

towards non-conservative rotation laws, rendering this method not physically consistent,

it still proves valuable not only because it approximates real systems (or portions of them)

reasonably well, but also because it offers insights into concepts that remain relevant even

in more complex models.

3.1.1 Hydrostatic Equilibrium for Solid Body Rotation

Let’s consider a fluid in rotation with a constant angular velocity denoted by Ω. This

angular velocity is the same throughout the fluid. We will use primed symbols, such as r′,

v′, Ω′, a′, to denote quantities measured within the rotating reference frame. Conversely,

unprimed symbols, like r, v, Ω, a, will represent the equivalent quantities measured

within the non-rotating reference frame. In the rotating reference frame we have that the

equation of apparent motion of a fluid element of mass m, is:

ma′ = f −mΩ× (Ω× r) − 2mΩ× v. (3.1)

where f indicates the forces acting on the fluid element. The second term on the right-

hand side of equation (3.1) is the centrifugal force, while the third term represents the

Coriolis’ force. These forces are referred to as fictitious because they arise from the

non-inertial nature of the rotating reference frame.
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Assuming hydrostatic equilibrium within the rotating reference frame and neglecting

the viscous components in the Navier-Stokes equations, the set of hydrodynamic equations

simplifies to:
1

ρ
∇p = −∇Φ −Ω× (Ω× r). (3.2)

In this equation, ρ and p stand for density and pressure, respectively, while Φ represents

the gravitational potential. The second term on the right-hand side of equation (3.2) repre-

sents the centrifugal acceleration, denoted as gc. When expressed in spherical coordinates

(r, θ,Φ), the centrifugal acceleration takes the form:

gc = Ω2r sin θ(sin θer + cos Φeθ). (3.3)

This expression can be derived from the gradient of the centrifugal potential, as outlined

below1. The centrifugal potential χ is defined as:

χ(r, θ) = −Ω2r2

2
sin2 θ. (3.4)

Moving on to the gravitational potential Φ, it is defined by the equation:

gg = −∇Φ. (3.5)

Here, gg represents the gravitational acceleration. We’ll consider a system that is spher-

ically symmetric, and we’ll assume that rotation doesn’t modify the potential Φ. This

assumption, known as the Roche approximation, can be mathematically expressed as:

Φ ≈ −GMr

r
or gg ≈ −GMr

r2
r

r
. (3.6)

We introduce the total potential ψ as:

Ψ = Φ + χ. (3.7)

With this definition, we can reconfigure the equation of hydrostatic equilibrium as follows:

1

ρ
∇p = −∇Ψ or

1

ρ
∇p = geff . (3.8)

Here, geff represents the effective gravity, which combines both gravitational and cen-

trifugal acceleration. It can be expressed as:

geff = −∇Ψ. (3.9)

Equation (3.8) implies that pressure remains uniform on an equipotential surface, denoted

as p = p(ψ). Consequently, the equipotential lines coincide with lines of constant pressure

1It is important to note that this holds true not only for a constant Ω, but also when Ω is constant

on cylindrical surfaces.
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(isobars). This characteristic designates a star as barotropic. Conversely, if the pressure

is not uniform on equipotential surfaces, the star is said to be baroclinic.

If the star is indeed barotropic, an additional relation holds:

∇p =
dp

dΨ
∇Ψ. (3.10)

Substituting (3.10) into (3.8) yields:

1

ρ

dp

dΨ
= −1. (3.11)

Consequently, density is exclusively a function of ψ, that is, ρ = ρ(ψ). Through the

equation of state p = p(ρ, T ), it can also be deduced that T = T (ψ). Hence, the quantities

ρ, p, and T all remain constant on equipotential surfaces defined by ψ = const.

3.1.2 Stellar Surface and Gravity

The surface of the star represents an equipotential (ψ = const.), as any deviation from

this would lead to the formation of ”mountains” on the star’s surface and cause material

to flow from higher to lower levels. By combining equations (3.4), (3.6), and (3.7), the

total potential at a given radius r and colatitude θ (θ = 0 at the pole) can be formulated

as follows:

Ψ(r, θ) = −GMr

r
− 1

2
Ω2r2 sin2 θ. (3.12)

Consider a star with a total mass M , and let R(θ) denote the stellar radius at colatitude

θ. Given that the centrifugal force is absent at the pole, the potential at the stellar

pole simplifies to −GM/Rp, where Rp represents the polar radius. This establishes the

constant value of the equipotential at the star’s surface, given by:

GM

R(θ)
+

1

2
Ω2R2(θ) sin2 θ =

GM

Rp

. (3.13)

The resultant effective gravity, arising from both the gravitational potential and the

centrifugal force, is expressed in equation (3.9). Assuming er and eθ as unit vectors in

the radial and latitudinal directions respectively, the effective gravity vector at the star’s

surface can be described as:

geff =

[
− GM

R2(θ)
+ Ω2R(θ) sin2 θ

]
er +

[
Ω2R(θ) sin θ cos θ

]
eθ. (3.14)

The gravity vector is not aligned with the radius vector. The magnitude geff = ||geff ||
of the effective gravity is:

geff =

[(
− GM

R2(θ)
+ Ω2R(θ) sin2 θ

)
+ Ω4R2(θ) sin2 θ cos2 θ

] 1
2

. (3.15)
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Figure 3.1: The shape of R(θ) in a quadrant of rotating 20 M⊙ models with Z=0.02 on the

ZAMS. One barely notices the small decrease of the polar radii for higher rotation velocities.

Taken from Maeder 2009.

When the magnitude of the centrifugal force equals that of the gravitational attraction

at the equator, the star is said to be rotating at the critical velocity, or break-up velocity.

From equation (3.15), the critical angular velocity Ωcrit that yields geff = 0 at the equator

(θ = π/2) is given by:

Ω2
crit =

GM

R3
e,crit

, (3.16)

Here, Re,crit denotes the equatorial radius at break-up. Substituting this value of Ωcrit into

the surface equation (3.13) at the point of break-up yields the ratio of equatorial radius

to polar radius at critical velocity:

Re,crit

Rp,crit

=
3

2
. (3.17)

At break-up, the equatorial radius is 1.5 times the polar radius. The equatorial break-up

velocity is then calculated as follows:

v2crit = Ω2
critR

2
e,crit =

GM

Re,crit

=
2GM

3Rp,crit

. (3.18)

This expression is commonly used; however, formally, it is applicable to solid body rota-

tion. Now, introducing a non-dimensional rotation parameter ω, defined as the ratio of

angular velocity to the angular velocity of break-up:

ω =
Ω

Ωcrit

=⇒ ω2 =
Ω2R3

e,crit

GM
. (3.19)

This can also be expressed as:

Ω2 =
8

27

GMω2

R3
p,crit

, (3.20)
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And the surface equation (3.13) can be rewritten in terms of a non-dimensional parameter

x = R/Rp,crit as:
1

x
+

4

27
ω2x2 sin2 θ =

Rp,crit

Rp(ω)
. (3.21)

Equation (3.21) is a cubic algebraic equation. Fig. 3.2 shows the critical velocities vcrit for

stars of various masses and metallicities. The critical velocties grow with stellar masses,

because the stellar radii increase only slowly with stellar masses. The critical velocities

are very large for low metallicity stars, since their radii are much smaller as a result of

their lower opacities. The shape of a Roche model is illustrated in Fig. 3.1 for different

Figure 3.2: The critical velocities vcrit as a function of stellar masses for different metallicities Z

for stars on the ZAMS. The effect of the changes of the polar radius with rotation is accounted

for. Taken from Maeder 2009.

rotation velocities. Fig. 3.3 shows the variation of the ratio of the equatorial radius to

the polar radius for the Roche model as a function of the parameter ω = Ω/Ωcrit. We

see that up to ω = 0.7, the increase of the equatorial radius is inferior to 10%. The

substantial increase in the equatorial radius predominantly takes place within the high

rotation regime.

3.1.3 Breakdown of Radiative Equilibrium

Within the interior of the star, the departure from radiative equilibrium on equipoten-

tial surfaces triggers internal fluid motions known as meridional circulation currents (as

discussed in Section 3.1.6). These currents are extensive and contribute to the mixing of

chemical elements as well as the transport of angular momentum. Both of these effects

play a substantial role in influencing the course of the star’s evolution.
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Figure 3.3: The variation of the ratio Re/Rp of the equatorial to the polar radius as a function

of the rotation parameter ω in the Roche model. Taken from Maeder 2009.

The deviation from radiative equilibrium on equipotential surfaces becomes evident

through a straightforward analysis of the radiative flux expression. Consider the scenario

of a star exhibiting solid body rotation. As outlined in Section 3.1.1, the temperature T ,

pressure P , and density ρ are solely functions of the total potential Ψ, encompassing both

gravity and rotation effects. At a specific level r, the radiative flux is given by:

F = −4acT 3

3κρ
∇T = (−4acT 3

3κρ

dT

dΨ
)∇Ψ. (3.22)

This is due to T = T (Ψ), with the same being applicable for ρ and P . Notably, the terms

within the parentheses in the above expression are functions solely of Ψ, as the opacity κ

relies on ρ and T . Therefore, we can deduce the following observations:

• The radiative flux is aligned with the gradient of Ψ.

• On an equipotential, the flux is solely proportional to ∇Ψ, as the term in parentheses

remains constant across equipotentials.

This implies that a change in temperature (T ) on a level surface will solely impact the

average flux, without altering the flux’s direction or its relative contributions based on the

surface’s location. Now, we calculate the divergence of the radiative flux, which should

be zero in the absence of energy production or absorption:

∇ · F =
d

dΨ

(
−4acT 3

3κρ

dT

dΨ

)
(∇Ψ)2 +

(
−4acT 3

3κρ

dT

dΨ

)
∇2Ψ. (3.23)

Additionally, from (3.4)-(3.6)-(3.7), it follows that ∇2Ψ = 4πGρ−2Ω2, where Ω represents

the constant angular velocity. Consequently, in (3.23), all quantities remain constant on
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an equipotential except ∇Ψ, as the equipotentials exhibit varying spacings with respect

to colatitude θ. In polar regions, they are closer together, whereas they are more spread

out in equatorial regions. Consequently, ∇·F must change on an equipotential, unlike the

case where radiative equilibrium holds everywhere, and ∇ · F would be uniformly zero.

This local variation leads to the local breakdown of radiative equilibrium. On average

over an equipotential, ⟨∇ · F ⟩ = 0, as no energy is locally produced or consumed. When

transitioning from the pole to the equator, ∇ · F assumes positive values over a range of

colatitudes and negative values over others. When ∇ ·F > 0 locally, there is an excess of

energy within the medium, causing it to heat up and ascend locally. Conversely, in the

opposite scenario, cooler regions lead to descending motion.

The first term in the right-hand side of (3.23), which behaves like (∇Ψ)2, is more sig-

nificant at the pole than at the equator (particularly more pronounced in the deep interior

compared to external regions). This term primarily drives the circulation currents. For

the case of solid body rotation, it implies that within the deep radiative layers, circulation

motion rises at the pole and descends at the equator, in response to local deviations from

radiative equilibrium. Further exploration of this circulation is carried out in Section

3.1.6.

3.1.4 The Von Zeipel Theorem

The Von Zeipel theorem establishes a relationship between the radiative flux at a specific

colatitude θ on the surface of a rotating star and the local effective gravity geff (Ω, θ).

This flux is given by (3.22) and as previously highlighted, in the case of a star rotating

as a solid body, the equipotentials and isobars coincide (barotropic). Moreover they also

represent surfaces of constant T and ρ. Utilizing the equation of hydrostatic equilibrium

(3.8), one can express (3.22) as:

F (Ω, θ) = −4acT 3

3κρ

dT

dP
∇P (Ω, θ) = −ρ4acT 3

3κρ

dT

dP
· geff (Ω, θ). (3.24)

Notably, the pressure gradient and effective gravity are parallel. The term (ρ4acT 3

3κρ
dT
dP

)

remains constant on a given equipotential, leading to the flux being proportional to the

effective gravity on the equipotential.

It can be demonstrated (Maeder 2009) that:

F (Ω, θ) = − L

4πGM∗ · geff (Ω, θ) (3.25)

with M∗ = M

(
1 − Ω2

2πGρM

)
. (3.26)

Here, ρM represents the average density of the star. Equation (3.25) constitutes the Von

Zeipel theorem (von Zeipel 1924), which implies that the radiative flux at the surface
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of a rotating star is proportional to the local effective gravity at the considered colati-

tude. According to the Stefan-Boltzmann law, F = σT 4, which means that the effective

temperature also takes on a dependency on Ω and θ:

Teff =

[
L

4πσGM∗ geff (Ω, θ)

]1/4
. (3.27)

Both geff and Teff exhibit variation across the surface of a rotating star and conse-

quently influence the emergent spectrum. Equatorial regions appear dimmer and cooler

compared to polar areas, which are brighter and hotter. This phenomenon is termed

gravity-darkening. Given that deformation becomes notable only during rapid rotation

Figure 3.4: The local Teff as a function of the colatitude θ for the same models of Fig. 3.1.

Taken from Maeder 2009.

(ω > 0.7), stars observed at this magnitude present higher L and Teff when viewed pole-on

compared to the same star observed with an average inclination. Conversely, a rapidly-

rotating star viewed equator-on will appear dimmer and cooler than usual (Georgy et al.

2014a). This can potentially impact the inferred mass and age for the observed star.

3.1.5 Shellular Rotation

Internal rotation within stars generally evolves towards rotation laws that are non-

conservative, which renders the treatment described in the preceding sections physically

inconsistent. However, as demonstrated by Meynet and Maeder 1997, it remains possi-

ble to formulate the equations of stellar structure consistently by employing coordinates

that refers to the mass enclosed within isobaric surfaces. Consequently, the problem of

addressing the structural properties of a differentially rotating star characterized by an
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angular velocity Ω = Ω(r) can be reduced to a one-dimensional problem. This specific

form of differential rotation is referred to as shellular rotation, and its validity is sup-

ported by studies of turbulence in the sun and other stars (Spiegel and Zahn 1992, Zahn

1992). Such a law results from the fact that turbulence is very anisotropic, with a much

stronger, geostrophic-like transport2 in the horizontal direction than in the vertical one,

where stabilization is favored by the stable temperature gradient and gradients in chem-

ical composition. The horizontal turbulence enforces essentially constant rotation rate

on isobars, thus producing the above mentioned rotation law. Given the relationship

∇P = ρgeff , the phrase ”constant in the horizontal direction” signifies constancy along

isobars, that is, Ω = Ω(P ). At a specific point (r, θ) in spherical coordinates, the angular

velocity Ω is expressed as:

Ω(P, θ) = Ω(P ) + Ω̂(P, θ), (3.28)

where Ω̂ << Ω (the average Ω over an isobar with radius r is determined to satisfy the

angular momentum conservation equation 3.47, see Maeder 2009). The term Ω̂(P, θ) can

be expanded using Legendre polynomials3. Taking into account terms beyond the second

order allows for the consideration of higher rotation velocities (Mathis and Zahn 2004).

Up to second order, the following expression holds:

Ω̂(P, θ) = Ω2(P )P2(cos θ), (3.29)

where P2(cos θ) denotes the second Legendre polynomial.

Various variables, such as P , T , ρ, etc., can be represented using Legendre polynomials.

For instance, a generic quantity f(P, θ) can be decomposed into its mean value and its

latitudinal perturbation:

f(P, θ) = f(P ) + f2(P )P2(cos θ). (3.30)

It is important to highlight that the isobars are not spherical surfaces. There exists an

angle ϵ between the radial direction and the direction of gravity, or between a spherical

shell and an equipotential surface. Thus, when expressing shellular rotation as Ω ≈ Ω(r),

extreme rotation velocities are not considered in this context.

2Geostrophic flow is a flow characterised by the balance between pressure, gravity and Coriolis forces.

An imbalance between pressure gradient and gravity can forces the fluid to start moving. As soon as the

fluid starts to move, the Coriolis force acts at right angles to this movement. The faster the flow speed,

the greater the deflection. Eventually the Coriolis force will balance the pressure gradient force and the

flow will move parallel to the isobars.
3The Legendre polynomials are a set of orthogonal functions utilized to solve Laplace’s equation

∇2Φ = 0 in spherical coordinates when azimuthal symmetry ∂Φ = 0 is present. The second-order

Legendre polynomial is P2(x) =
1
2

(
3x2 − 1

)
.
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Properties of the Isobars

In the case of shellular rotation, the centrifugal force cannot be derived from a poten-

tial. Let’s focus on the surface of constant Ψ (3.12), which, in this context, is not an

equipotential 4:

Ψ = Φ − 1

2
Ω2r2 sin2 θ = const. (3.31)

It is important to note that in this case, Ω is no longer constant. As in Section 3.1.1, the

gravitational potential is defined by ∂Φ/∂r = GMr/r
2 and Φ = −GMr/r in the Roche

approximation. The components of the gradient of ψ in polar coordinates (r, θ) are given

by:
∂Ψ

∂r
=
∂Φ

∂r
− Ω2r sin2 θ − r2 sin2 θΩ

∂Ω

∂r
, (3.32)

1

r

∂Ψ

∂θ
=

1

r

∂Φ

∂θ
− Ω2r sin θ cos θ − r2 sin2 θΩ

1

r

∂Ω

∂θ
. (3.33)

In the Roche model, according to (3.14), the first two components of the effective gravity

geff = (−geff,r, geff,θ, 0) are:

geff,r =
∂Φ

∂r
− Ω2r sin2 θ, (3.34)

geff,θ = Ω2r sin2 θ cos θ. (3.35)

By comparing these expressions with the derivatives of Ψ, we can write:

geff = −∇Ψ − r2 sin2 θΩ∇Ω. (3.36)

The equation of hydrostatic equilibrium ∇P = ρgeff becomes:

∇P = −ρ(∇Ψ + r2 sin2 θΩ∇Ω). (3.37)

Given that Ω is constant on isobars, the vector ∇Ω is parallel to ∇P . Equation (3.37)

implies that ∇P and ∇Ψ are parallel. Therefore, in this non-conservative case, the

surfaces defined by Ψ = const. (3.31) are isobaric surfaces. It is worth noting that the

shape of these isobars for a shellular rotation law matches the shape of equipotential

surfaces in a conservative scenario. However, the effective gravity can’t be defined as

geff = −∇Ψ anymore, as Ψ is not a potential. Consequently, for shellular rotation, one

can choose to formulate the equation of stellar structure on the isobars, making use of a

method similar to the one designed for the conservative case (Meynet and Maeder 1997).

This approach retains the advantage of maintaining one-dimensional equations for stellar

structure.

4An equipotential is defined by the condition that a displacement ds on the equipotential neither

requires nor produce energy, so geff · ds = 0
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Equation of the Surface for Shellular Rotation

In the context of shellular rotation, the equation for the isobars is defined by the expression

(3.31), which interestingly matches the expression describing equipotentials in the case

of solid body rotation. To explore the equation governing equipotentials, particularly for

the star’s surface, we consider the condition where a displacement ds on the equipotential

neither requires nor produce energy:

geff · ds = 0. (3.38)

Using the expression for the effective gravity provided by (3.36), this equation can be

expressed as:

∂Ψ

∂r
+

1

r

∂Ψ

∂θ
rdθ + r2 sin2 θΩ

∂

∂r
dr + r2 sin2 θ

Ω

r

∂Ω

∂θ
rdθ = 0. (3.39)

When considering shellular rotation, where Ω approximately depends on r, this equation

simplifies to:

dΨ + r2 sin2 θΩ
dΩ

dr
dr = 0. (3.40)

This is a more generalized version of the equation describing equipotentials. If Ω is a

constant, this simplifies further to Ψ = const., aligning with the familiar result. Integrat-

ing the equation above leads us to the equation governing the shape R(θ) of the stellar

surface as a function of Ω(r) in the outer regions:

−GM

R(θ)
− 1

2
Ω2R2(θ) sin2 θ + sin2 θ

∫ R(θ)

Rp

r2(θ)Ω
dΩ

dr
dr =

GM

Rp

. (3.41)

This equation provides insight into how R(θ) varies based on Ω(r) in the external regions.

If dΩ/dr < 0 in the outer layers, this equation suggests that the actual oblateness of

the star is slightly more pronounced than that inferred using the Ω value observed at

the equator. Generally, in the outer stellar layers, the gradient dΩ/dr is relatively flat,

making the discrepancy from the conventional Roche surface rather small. Consequently,

this rationalizes the common practice of applying formulas for critical velocities derived

for solid body rotation even when dealing with shellular rotation.

3.1.6 Meridional Circulation

Physically, meridional circulation arises because the equipotential surfaces, or levels, are

closer together in the polar regions and more widely spaced in the equatorial regions due to

the centrifugal force in rotating stars. This varying spacing directly impacts the radiative

flux, which is proportional to the effective gravity and, consequently, to the distance

between equipotential surfaces. This scenario leads to an excess flux along the polar axis
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and a deficit near the equatorial plane, resulting in a thermal imbalance. This thermal

imbalance triggers global circulation patterns to develop in the meridian plane (Fig. 3.5).

However, we will focus on outlining the main characteristics and equations of this process

without delving into the derivations. The velocity of meridional circulation is the primary

Figure 3.5: Stream lines of meridional circulation in a rotating 20 M⊙ model with solar metal-

licity and vini = 300 km s−1 at the beginning of the H-burning phase. Taken from Meynet and

Maeder 2002.

quantity characterizing this phenomenon, and it can be decomposed into two components:

radial (Ur) and horizontal (Uθ). In cases of axial symmetry, such as shellular rotation,

these components can be represented using spherical functions. For our discussion, we’ll

limit the expansion of the Legendre polynomials to the second order5:

U = U2(r)P2(cos θ)er + V2(r)
dP2(cos θ)

dθ
eθ, (3.42)

Here, U2(r) represents the amplitude of the radial component of the meridional circulation

velocity. Similarly, V2(r) denotes the amplitude of the horizontal component. Interest-

ingly, these two parameters are linked by the condition:

1

r

d

dr

[
ρr2U2(r)

]
− 6ρV2(r) = 0. (3.43)

For our subsequent exploration of the vertical transport of angular momentum, our

focus lies on its vertical component, given by u(r, θ) = U2(r)P2(cos θ), where P2(x) is the

second Legendre polynomial.

5The reason we exclude zero-order polynomials is that P0 is a constant, preventing the velocity from

vanishing. Additionally, odd-order terms such as P3, P5, and so on, are not symmetric with respect to

the equator, and thus, they are set to zero.
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The formulation of the radial amplitude U2(r) was first established by Zahn 1992 and

then the effects of horizontal turbulence, chemical gradients and non-stationarity were

accounted for by Maeder and Zahn 1998:

U2(r) =
P

ρgCPT

1

[∇ad −∇ + (ϕ/δ)∇µ]
·
(
L

M∗
[EΩ + Eµ] +

CP

δ

∂Θ

∂t

)
. (3.44)

This comprehensive expression captures the fundamental features of meridional circu-

lation. Various quantities (P , T , ρg, EΩ, etc.) are evaluated at the specific level r.

Overlined terms represent the average density over the considered isobar, reflecting values

provided by equations of stellar structure for rotating stars. CP stands for the spe-

cific heat at constant pressure, and ∇ad refers to the adiabatic gradient. Furthermore,

M∗ = M
(

1 − Ω2

2πgρm

)
, where ρm is the mean density inside the considered level sur-

face and Θ = ρ̃/ρ represents the ratio of density variation to the average density on

an equipotential. Terms such as ϕ and δ are derived from the generic equation of state

(dρ = αdP
P

+ ϕdµ
µ
− δ dT

T
), while E∗

Ω and Eµ are components that dependent on Ω− and

µ−distributions, respectively and they have a quite long expression that is given in Ap-

pendix 7.1.

Figure 3.6: Circulation currents in a 20 M⊙ star in the middle of the H-burning phase. The

initial rotation velocity is 300 km/s. The inner loop is raising along the polar axis, while the

outer loop, the Gratton–Öpik circulation cell, is going up in the equatorial plane. Taken from

Maeder 2009.

A particularly significant term, ∇µ in Eq. (3.44), originates from the vertical chemical

gradient and the coupling between horizontal and vertical µ−gradients, driven by horizon-
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tal turbulence. The presence of ∇µ may considerably reduce the amplitude U2(r), as it can

be one or two orders of magnitude larger than ∇ad −∇ in certain layers. The horizontal

component V2 is defined by Eq. (3.43) at each level. A positive value of U2(r) indicates a

positive velocity, signifying an upward current along the polar axis and an inward motion

near the equatorial plane, as depicted by the inner loop in Fig. 3.6. As we approach the

surface, the term Ω2/(2πGρ) within E∗
Ω, reported in equation (7.1), becomes significant.

This can potentially reverse circulation, a phenomenon initially recognized by Gratton

1945 and Öpik 1951. This reversal leads to the emergence of an outer circulation cell,

referred to as the Gratton–Opik circulation cell, see Fig. 3.6. This outer cell rotates in

the opposite direction and facilitates the outward transport of angular momentum. This

circulation pattern significantly influences stellar evolution by enhancing surface rotation

through angular momentum transport within the interior.

3.1.7 Shear Turbulence

Differential rotation gives rise to shear turbulence at the interfaces of layers with varying

rotational velocities. Stability of a layer is maintained if the additional kinetic energy

resulting from differential rotation doesn’t overcome the buoyancy force, a criterion known

as the Richardson criterion. Shear turbulence becomes prominent as thermal dissipation

diminishes the buoyancy force. In this context, Maeder 1997 determined the coefficient

of diffusion due to shear turbulence as:

Dshear =
K

ϕ
δ
∇µ + (∇ad −∇rad)

· Hp

gδ

[
fenerg

(
9π

32
Ω
d ln Ω

d ln r

)2

− (∇′ −∇)

]
. (3.45)

Here, K = 4acT 3

3κρ2CP
represents the thermal diffusivity, while fenerg denotes the fraction of

excess energy in the shear contributing to mixing here taken equal to 1. Additionally, (∇′−
∇) is the difference between the internal non-adiabatic gradient and the local gradient,

which can often be neglected in most scenarios.

3.1.8 Horizontal Turbulence

Turbulent motions within a rotating star emerge due to the presence of differential ro-

tation, which leads to shear instabilities between layers with varying velocities. This

phenomenon results in the generation of turbulent flows. In stable radiative zones, the

turbulence tends to be more pronounced in the horizontal direction compared to the ver-

tical direction. This distinction arises because the stable thermal gradient and chemical

gradient in the vertical direction exerts stronger opposing forces against fluid motions

than in the horizontal direction. Specifically, the characteristics of horizontal turbulence
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are captured by a coefficient known as horizontal kinematic viscosity, denoted as νh. Re-

markably, this coefficient νh also serves as the coefficient Dh utilized to quantify horizontal

diffusion of elements. The relationship between the diffusion coefficient and the viscosity

arising from horizontal turbulence is described by Zahn 1992:

Dh ≈ νh =
1

ch
r|2V2(r) − αU2(r)|. (3.46)

In the equation above, U2(r) is the vertical component of the meridional circulation ve-

locity, while V2(r) represents the horizontal component. The constant ch is dimensionless

and typically around unity. Additionally, α is defined as α = 1
2
d ln r2Ω
d ln r

.

3.1.9 Transport of Angular Momentum

In the context of angular momentum transport, particularly for shellular rotation, the

equation describing the transport of angular momentum in the vertical direction, expressed

in Lagrangian coordinates, is given by Zahn 1992 and Maeder and Zahn 1998:

ρ
d

dt
(r2Ω)M(r) =

1

5r2
∂

∂r
(ρr4ΩU2(r)) +

1

r2
∂

∂r
(ρDr4

∂Ω

∂r
). (3.47)

Here, ρ represents the mean density, and Ω signifies the mean angular velocity on an

isobar at the level r. This equation automatically accounts for the effects of expansion

or contraction. Taking into consideration the detailed expression of U2(r) for meridional

circulation (described in Sect. 3.1.6), which involves terms up to the third spatial deriva-

tive of Ω(r, t), Eq. (3.47) becomes a fourth-order equation, requiring careful numerical

solutions. The term D in the equation stands for the total diffusion coefficient that en-

compasses various considered instabilities responsible for angular momentum transport,

including convection, semiconvection, and shear turbulence. Notably, a substantial dif-

fusion coefficient in convective regions implies a rotation law that closely resembles solid

body rotation.

The transport of angular momentum due to circulation has often been modeled as a

diffusion process (Endal and Sofia 1976; Pinsonneault et al. 1989; Heger et al. 2000). How-

ever, it is important to highlight the functional distinction between the terms involving

U (advection) and D (diffusion) in Equation (3.47). Physically, advection and diffusion

differ significantly: diffusion redistributes a quantity from regions of abundance to regions

of scarcity, while advection doesn’t necessarily adhere to this pattern. In fact, a circula-

tion with a positive value of U(r)—indicating upward motion along the polar axis and

downward motion at the equator—essentially results in an inward transport of angular

momentum (as shown for example by the inner circulation cell in Fig. 3.6). Consequently,

when this process is treated as a diffusion, particularly as a function of ∂Ω/∂r, the sign

of the effect might be incorrectly predicted.
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3.1.10 Mixing and Transport of Chemical Elements

An equation combining diffusion and advection, like Equation (3.47), should normally

be used to describe the transport of chemical elements. However, in cases where the

turbulent diffusion’s horizontal component, represented byDh in Equation (3.46), becomes

substantial, the combined effects of the advective vertical transport of chemicals and the

horizontal transport of chemicals by horizontal turbulence behave globally as a diffusive

process, as discussed by Chaboyer and Zahn 1992, with an effective diffusion coefficient,

denoted as Deff . Fig. 3.7 visually illustrates this concept, elucidating the consequences of

Figure 3.7: Schematic illustration of the combination of the effects of circulation and horizontal

turbulence. The very left column is moving up, at each time step the horizontal turbulence mixes

the layers. This makes a distribution like the error function, showing that the combination of

both motions acts as a diffusion as far as the mixing of elements is concerned. Taken from

Maeder 2009.

vertical movement and horizontal diffusion. Importantly, in line with Chaboyer and Zahn

1992, it’s worth noting that this idea doesn’t extend to the transfer of angular momentum.

The formula for Deff is expressed as:

Deff =
|rU(r)|2

30Dh

. (3.48)

Here, Dh represents the coefficient of horizontal turbulence, as defined in Equation (3.46).

In radiative zones, the primary mechanisms governing mixing are meridional circula-

tion and shear-induced mixing. Therefore, the vertical movement of chemical elements fol-
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lows a diffusion equation that not only includes macroscopic movement but also accounts

for the impact of vertical turbulent transport. This diffusion equation is formulated as:

ρ
dX i

dt
=

1

r2
∂

∂r

(
ρr2(Dmix)

∂X i

∂r

)
+

(
dX i

dt

)
nuc

, (3.49)

The second term on the right-hand side accounts for changes in composition due to nuclear

reactions. The coefficient Dmix is the sum Dmix = Dshear + Deff , with Deff determined

by Equation (3.48). The characteristic timeframe for the mixing of chemical species is

therefore tmix ≈ R2

Dmix
.

3.1.11 Equations of Stellar Evolution with Rotation

Four equations govern the structural evolution of a star, and within the framework of

shellular rotation, they can be expressed as follows (Meynet and Maeder 1997, Maeder

2009):

1. Hydrostatic Equilibrium:
∂P

∂MP

= −GMP

4πr4P
fP . (3.50)

2. Continuity Equation:
∂rP
∂MP

=
1

4πr2Pρ
. (3.51)

3. Energy Conservation:

∂LP

∂MP

= ϵnuc − ϵν + ϵgrav

= ϵnuc − ϵν − cP
∂T

∂t
+
δ

ρ

∂P

∂t
.

(3.52)

4. Energy Transport Equation:

∂ lnT

∂MP

= −GMP

4πr4P
fP min

[
∇ad,∇rad

fT
fP

]
. (3.53)

• In convective zones (in the case of abiabatic convection, valid in deep stellar

interiors):

∇ = ∇ad =
Pδ

TρcP
. (3.54)

• In radiative zones:

∇ = ∇rad =
3

16πacG

κL(P )P

M∗(r)T
4 . (3.55)
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Other variables are defined as:

fP =
4πr4P

GMPSP

1

⟨g−1
eff⟩

, (3.56)

fT =

(
4πr2P
SP

)2
1

⟨geff⟩⟨g−1
eff⟩

. (3.57)

Here, ⟨x⟩ represents the average of quantity x on an isobaric surface, while x represents

the average of quantity x in the volume between two consecutive isobars. The index P

pertains to the isobar with a pressure equal to P, and SP is the surface area of that isobar.

The rest of the variables maintain their conventional meanings. To solve these equations,

the following physical aspects are essential:

• Nuclear reaction rates to evaluate ϵnuc and ϵν .

• The equation of state to determine ρ and other relevant thermodynamic values.

• Opacities for calculating ∇rad.

• A convection treatment for computing the convective flux.

Furthermore, the equations governing the transport of angular momentum and chem-

ical element abundances must also be followed. When atomic diffusion is integrated into

the stellar model, equations describing the change in chemical composition due to diffusion

are necessary. The aforementioned developments enable the construction of equilibrium

models for rotating stars in one dimension, which is particularly valuable for generating

grids of evolutionary models for rotating stars. It’s crucial to emphasize that, in general,

the primary effects of rotation on evolution comes from internal chemical element mix-

ing, angular momentum transport, and the increased mass loss observed in massive stars.

These effects are explored in subsequent sections.

3.1.12 Interaction of Rotation and Radiation Effects

The total luminosity L(Ω) of a rotating star undergoes changes due to the alterations in

structure as described by Equations (3.52)-(3.53)-(3.56)-(3.57). In general, the luminosity

tends to decrease with rotation due to the expansion induced by rotation, leading to a

slight cooling effect and an increase in opacity. Figure 3.8 provides an illustration of the

typical variations of luminosity with rotational speed (ω). We can depict the luminosity

variation with rotation using the following expression:

L(ω) = L(0)(1 − bω2) (3.58)

For the stellar masses of 1, 3, 9, 20, and 60 M⊙, the models shown in Figure 3.8 yield

values of b = 0.23, 0.07, 0.065, 0.06, and 0.05 respectively.
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Figure 3.8: Relative variations of the total stellar luminosity for models of various masses on the

ZAMS at Z = 0.02 as a function of the rotation parameter ω = Ω/Ωcrit. Taken from Maeder

2009

.
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Chapter 4

Rotating Models

The above developments allow us to construct equilibrium models of rotating stars in

one dimension, which holds significant value when considering the generation of grids

of evolutionary models for rotating stars. Disregarding the impact of rotation on the

structural equations, even though it can serve as a reasonably good approximation in

several instances, still overlooks a fundamental physical process that, in other cases, can

exert a significant influence on the properties of stars.

For this study, we will utilize two stellar evolution codes, namely GENEC (Eggenberger

et al. 2008) and MESA (Paxton et al. 2011, Paxton et al. 2013, Paxton et al. 2015, Paxton

et al. 2018, Paxton et al. 2019). However, it is important to note that MESA’s treatment

of rotational effects differs notably from that of GENEC, particularly regarding the equa-

tion governing angular momentum transport. In MESA, angular momentum transport

is primarily addressed as a diffusive process, as described in Heger et al. 2000, leading

to substantial differences in the efficiency of rotational mixing. When considering fixed

stellar masses, the Geneva rotating models exhibit higher temperatures and luminosities

at the Terminal Age Main Sequence (TAMS) with respect to MESA rotating models. This

implies that rotational mixing is more efficient in Geneva models compared to that in

MESA models. For a more comprehensive discussion of these differences, refer to Choi

et al. 2016. As discussed in detail in the following sections, efficient rotational mixing

gives rise to hotter temperatures and higher luminosities due to larger core sizes and

increased µ in the envelope.

The MIST project (Choi et al. 2016) computed comprehensive set of stellar evolution-

ary tracks and isochrones using MESA including rotation. Notably, the default rotating

model in MIST experiences only a moderate extension in the Main Sequence (MS) lifes-

pan. In contrast, the GENEC model, with the same rotation, demonstrates an approximate

≈ 25% increase in the MS lifespan for stars exceeding 2 M⊙. Current observations are

not uniquely constraining, so we still do not have the possibility to rule out a treatment

in favour of another one.
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4.1 Reference Rotating Models

For the rest of this work, we will use GENEC models as our reference rotating models, as we

believe their advecto-diffusive treatment of rotation, due to all the previously discussed

reasons, better captures the nature of the physical process. In particular, we chose to

compute models using the prescriptions from the grid presented in Georgy et al. 2013.

This grid incorporates rotation using the advecto-diffusive treatment and covers the mass

range of 2RC stars, although with limited resolution. Additionally, it spans the interval

of 0.0 ≤ Ωini/Ωcrit ≤ 0.95 with good resolution and, most importantly, the efficiency of

rotational mixing is calibrated to reproduce the typical chemical enrichments observed at

the surface of solar-metallicity MS stars for a typical initial rotation velocity. Here we

will summarize, and in some cases describe in more detail, only the properties of these

models that are relevant for our discussion and we refer to Georgy et al. 2013 for additional

informations.

• The grid of models contains ten different masses: 1.7, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0, 9.0,

12.0 and 15.0 M⊙.

• Nine different initial rotation rates: Ωini/Ωcrit = 0.0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9,

0.95.

• Three different metallicities: Z = 0.014 (solar metallicity), Z = 0.006 (Large Mag-

ellanic Cloud metallicity) and Z = 0.002 (Small Magellanic Cloud metallicity).

• The models are evolved up to the helium flash (Mini ≤ 2 M⊙), the early asymptotic

giant branch (2.5 M⊙ ≤Mini ≤ 9 M⊙) or the end of central carbon burning (Mini ≥ 9

M⊙).

• The initial abundances of H, He, and metals are set to X = 0.720, Y = 0.266, and

Z = 0.014, obtained by calibrating a 1 M⊙ model.

• The mixture of heavy elements is assumed to be that of Asplund et al. 2005 except

for the Ne abundance, which is taken from Cunha et al. 2006.

• The convective zones are determined with the Schwarzschild criterion. For the H-

and He-burning phases, the convective core is extended with an overshoot parameter

dovsh/Hp = 0.10 from 1.7 M⊙ and above.

• The value of the overshoot parameter was calibrated in the mass domain 1.35 − 9

M⊙ to ensure that the rotating models closely reproduce the observed width of the

MS band when the same mean initial velocity on the ZAMS of vini/vcrit = 0.4 is

used for the different masses.
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• The outer convective zone is treated according to the mixing length theory, with a

solar calibrated value for the mixing-length parameter of the low-mass stars (αMLT ≡
l/Hp = 1.6467). For more massive stars, i.e. for stars with M > 1.25 M⊙, the

difference in the EOS implies a slightly lower value for this parameter: αMLT = 1.6.

• Rotation and rotational mixig are implemented as already discussed above. The

efficiency of the mixing (the fenerg factor in Eq. (3.45)) was calibrated to reproduce

typical chemical enrichments at the surface of solar-metallicity MS B-type stars for

a typical initial rotation velocity.

4.1.1 Mixing Efficiency

In Figure 4.1, we present the profiles of the diffusion coefficients that are responsible

for the transport of chemical species. This includes the effective diffusion coefficient

Deff which considers the combined effects of meridional circulation and strong horizontal

turbulence, the shear-mixing diffusion coefficient Dshear, and the total diffusion coefficient

Dmix = D + Deff (with D = Dconv + Dshear). These profiles are depicted around the

midpoint of the MS phase (XH,c = 0.3) for a 2.5 M⊙ model with an initial rotation rate of

Ωini/Ωcrit = 0.5. We can see that except near the edge of the convective core, where Deff
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Figure 4.1: Profiles of the diffusion coefficients Dmix, Deff and Dshear at roughly the middle of

the MS phase (XH,c = 0.3) for a 2.5 M⊙ model with an initial rotation rate Ωini/Ωcrit = 0.5.

The gray-shaded area is the convective core.
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dominates, shear mixing predominantly contributes to the transport of chemical species in

the majority of the radiative envelope. There’s a distinct trend when comparing different

initial masses with the same initial rotation rate (Ωini/Ωcrit) and the same metallicity

(Z). Both Deff and Dshear exhibit higher values for greater initial masses, as illustrated

in Figure 4.2. Conversely, as highlighted in Georgy et al. 2013, the coefficients show
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Figure 4.2: Profiles of the diffusion coefficients Dmix (solid), Deff (dashed) and Dshear (dotted)

of a 1.7 M⊙ (red), 2.0 M⊙ (green), 2.5 M⊙ (blue), 3.0 M⊙ (violet) models at roughly the middle

of the MS phase (XH,c = 0.3) for Ωini/Ωcrit=0.5.

negligible variations concerning metallicity. However, owing to lower opacities at lower

metallicities, stars with lower Z values are more compact. This leads to shorter timescales

for diffusion (τdiff ≈ R2/D) and consequently more efficient surface enrichment.

Another trend emerges when comparing models with different initial rotation rates

(Ωini/Ωcrit) while maintaining a fixed mass and metallicity. On average, both Dshear and

Deff tend to be higher for higher initial rotation rates. Although Deff displays a notably

slower rate of increase compared to Dshear, the rise tends to slow down for higher Ωini/Ωcrit

values. In some cases, for the fastest rotators (0.8, 0.9, 0.95 Ωini/Ωcrit), the increase can

even reverse, as shown in Figure 4.3. Furthermore, the mixing efficiency isn’t uniform

throughout the MS phase; it intensifies with lower XH,c values. Lower XH,c leads to higher

values for both Dshear and Deff , as demonstrated in Figure 4.4. One crucial observation

that will come in handy later when parameterizing the diffusion coefficient profiles for

MESA models is that despite the intricate behavior of these profiles - often showing spikes
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Figure 4.3: Profiles of the diffusion coefficients Dmix (solid), Deff (dashed) and Dshear (dotted)

of 2.5 M⊙ models at roughly the middle of the MS phase (XH,c = 0.3) for 0.3, 0.5, 0.6, 0.7, 0.8,

0.9 Ωini/Ωcrit. 0.1, 0.95 Ωini/Ωcrit are not plotted for a cleaner visualization, but they follow

the same trend.

and irregularities as seen in Figure 4.4 - their overall shape tends to remain consistent on

average, resembling the pattern shown in Figure 4.1. These deviations are transient and

short-lived during MS evolution.

In the post-MS phases preceding the QCHeB phase, the evolution is several orders of

magnitudes faster, while the values of Dmix remains of the same order, or even decrease

due to the slowdown of rotation, see Fig. 4.10. This means that τPoMS << τdiff (τdiff ≈
R2/Dmix), so rotational mixing is practically negligible during these phases. During the

QCHeB phase, the star’s evolution slows down again, requiring a closer examination of

how τQCHeB compares to τdiff . As illustrated in Figure 4.10, during this phase, only the

core experiences rotation while the envelope’s rotation is negligible. Consequently, we

shouldn’t expect substantial rotational mixing in the envelope. Furthermore, Any shear

mixing that could be expected at the core’s boundary, where strong differential rotation is

present, is inhibited by the steep chemical gradient ∇µ at the same location, as depicted in

Figure 4.5b and detailed in Section 3.1. As a result of these considerations, the influence

of rotational mixing becomes substantial primarily throughout the MS phase. The impact

of MS rotational mixing is clearly evident in Figure 4.5a. The µ profile of the non-rotating

model exhibits a steep decline and a sharp change of slope at the boundary of the Helium
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Figure 4.4: Profiles of the diffusion coefficients Dmix (solid), Deff (dashed) and Dshear (dotted)

of a 2.5 M⊙ model with an initial rotation rate of 0.5 Ωini/Ωcrit at different stages during the

MS: XH,c = 0.67 (red), 0.54 (green), 0.41 (blue), 0.27 (violet), 0.14 (gray), 0.01 (black).

core, generated by the receding convective core. In contrast, in the rotating models,

we observe that the sharp µ profile at the Helium core boundary is smoothed by the

rotational mixing near the core and further diffused outward by the extended diffusion

coefficient profile. This effect grows progressively with Ωini/Ωcrit until approximately

Ωini/Ωcrit ≈ 0.5, beyond which it remains relatively unchanged. For Ωini/Ωcrit > 0.5, the

primary difference lies in the increased efficiency of envelope mixing, while the near-core

mixing remains roughly constant. This leads to a slight decrease in µ nearer to the core

and an increase further in the envelope.

These rotational mixing effects at the TAMS stage bear consequences on the properties

of initial QCHeB models. As shown in Figure 4.6b, a prominent outcome is that the

constant envelope µ value increases with larger Ωini/Ωcrit until it tends to saturate around

Ωini/Ωcrit ≈ 0.5. This arises from the fact that as the convective envelope progressively

penetrates deeper during post-MS phases, in rotating models, it mixes regions with higher

µ (average mean molecular weight). Additionally, an effect can be observed on the size

of the Helium core. This influence on Helium core size is critical for the characteristics

of the secondary clump, a point that will be discussed in depth later, along with the

results of the complete model grid. The effects of rotational mixing are also discernible

in the smoothness of the chemical abundance profiles near the Helium core at TAMS, as
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Figure 4.5: Mean molecular weight profiles at TAMS (a) and at initial QCHeB (b) for 2.5 M⊙

models for 0.0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 Ωini/Ωcrit.

shown in Fig. 4.6a for a 2.5 M⊙ model with Ωini/Ωcrit = 0.5 with respect to the non

rotating model shown in Fig. 4.7a. It is important to note that the observed behaviors of

the diffusion coefficient profiles described in this section remain consistent across all the

GENEC models explored in this study.

4.1.2 HRD and Lifetimes

The effect of the centrifugal force governs the position of stars on, or near, the ZAMS:

rotating models behave similarly to lower-mass ones, leading to shifts in their tracks

towards lower values of both luminosity (L) and effective temperature (Teff ). This shift

arises from a combination of atmospheric distortions and a reduction in effective gravity,

as discussed in Section 3.1.12 and by Kippenhahn and Thomas 1970. This behavior is

evident in the downward shift of ZAMS models in Figure 4.11.

As stellar evolution progresses, rotational mixing introduces fresh hydrogen into the

core, thereby slowing down the convective core’s mass decrease. Furthermore, newly

generated helium is transported into the radiative zone, causing the model to evolve

along a bluer and more luminous track. In Figure 4.11, it is evident that the luminosity

achieved at the end of the MS, and consequently during the SGB, increases with the

rotation rate up to approximately Ωini/Ωcrit ≈ 0.6. Beyond this threshold, the luminosity

either stabilizes or even decreases, a trend also apparent in the HRD-crossing luminosity.

This behavior is directly related to the size of the convective core, which has a decisive
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Figure 4.6: Chemical abundances profiles at TAMS (a) and at initial QCHeB (b) for a 2.5 M⊙

model for a 2.5 M⊙ model with 0.5 Ωini/Ωcrit.

influence on the luminosity at the MS end. The evolution of the convective core size

during the MS is governed by two opposing physical processes associated with rotation.

Firstly, rotation introduces additional support against gravity due to the centrifugal force,

which works to reduce the core’s size and luminosity. The explanation for this effect will

be elaborated upon in the subsequent paragraph. Secondly, rotational mixing near the

core’s periphery progressively introduces fresh material into the core, increasing its mass

and, consequently, its luminosity. Both of these effects contribute to the non-monotonic

behavior of luminosity at the HRD crossing with respect to the initial rotation rate. As

depicted in Figure 4.8, rotational mixing extends the duration of the MS phase. For

the considered mass range and under solar metallicity conditions, this extension remains

relatively consistent across various initial masses. The increase amounts to approximately

15-25% for initial rotation rates of 0.3 and 0.5 times Ωcrit. For the fastest rotating stars,

this enhancement can reach values as high as 30-35%. Notably, the sensitivity of the 1.7

M⊙ and 2.0 M⊙ models is amplified due to their central temperature at the onset of core

hydrogen burning lying around 20 · 106 K. This temperature range corresponds to the

regime in which CNO-burning begins to dominate the pp-chain as the primary energy

production channel. High rotation rates cause the hydrostatic effects of rotation to lower

the central temperature, favoring the dominance of the pp-chain in energy production.

This leads to a smaller convective core during the initial part of the MS phase. As

evolution continues and central temperature rises, the convective core expands, reaching

sizes even greater than those observed in non-rotating models at the beginning of core
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Figure 4.7: Chemical abundances profiles at TAMS (a) and at initial QCHeB (b) for a 2.5 M⊙

model for a non-rotating 2.5 M⊙.

hydrogen burning.

It is important to highlight that, as demonstrated in Georgy et al. 2013, within the

low-mass range of the considered grid, changes in metallicity exert a more substantial

impact on MS lifetimes than variations in initial velocity. This discrepancy arises from the

reduced efficiency of rotational mixing in low-mass stars (as seen in Figure 4.13), coupled

with the fact that changes in opacity resulting from alterations in chemical composition

have a more pronounced effect at lower masses1.

4.1.3 Core Mass vs. Rotation

As mentioned earlier, the added support against gravity due to rotation leads to lower

central temperatures for higher initial velocities. Consequently, the size of the convective

core on the ZAMS diminishes with increasing initial rotation velocity. However, as stellar

evolution progresses, the more efficient mixing within more rapidly rotating stars serves

to enlarge their convective cores, see Fig. 4.9a and 4.9b. This effect becomes particularly

evident at the end of the MS phase, where the convective core’s size is directly proportional

to the star’s initial rotation rate.

1The opacity in the temperature range of the massive stars is dominated by electron scattering, which

is only marginally affected by a change in the chemical composition.
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Figure 4.8: MS duration enhancement as a function of the initial rotation rate for 1.7 M⊙ (red),

2.0 M⊙ (green), 2.5 M⊙ (blue), 3.0 M⊙ (violet) models.
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Figure 4.9: Evolution of the mass of the convective core Mcc during the MS for a 1.7 M⊙ (a)

and a 2.5 M⊙ (b) model.
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Figure 4.10: Angular velocity profiles of a 2.5 M⊙ model with Ωini/Ωcrit at ZAMS (red), middle

of the MS phase with XH,c = 0.3 (green), TAMS (blue), HRD crossing (violet), bottom of the

RGB (gray) and initial QCHeB (black) phases.
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Figure 4.11: Evolutionary tracks of the GENEC reference models from the grid presented in

Georgy et al. 2013. The gray shaded area represents the Cepheid instability strip.



4.1 Reference Rotating Models 51

4.1.4 Evolution of the Surface and Internal Rotation

As discussed extensively in previous research by Heger et al. 2000, pre-main-sequence

(PMS) stars achieve rigid rotation due to convection. Therefore, models are initialized at

the ZAMS with the assumption of solid body rotation, a simplification that is later relaxed

as the star evolves. When differential rotation is permitted, the star’s angular velocity

profile undergoes an adjustment (depicted in Fig. 4.10) to reach a quasi-equilibrium state.

The initial uniform angular velocity profile is not in equilibrium due to the influence of

meridional circulation. This explains the swift decline in equatorial velocity at the early

stages of evolution, as depicted in Fig. 4.12a.

Once the equilibrium profile is reached, the angular velocity within the star (and with

it the equatorial velocity) varies as a function of time because of three main physical

processes:

• Local conservation of angular momentum, which alters angular velocity during con-

tractions or expansions of the star.

• Internal transport mechanisms that redistribute angular momentum throughout the

stellar structure.

• Stellar winds that remove angular momentum from the stellar surface.

During the MS phase, these models develop an external meridional circulation cell known

as the Gratton-Öpik cell (described in Section 3.1.6). This circulation pattern transfers

angular momentum from the inner regions of the star to its surface, causing acceleration.

The efficiency of the meridional circulation is greater for higher masses, for higher initial

rotation rates and for higher metallicity. In contrast, the stellar mass loss due to radiative

winds tends to brake the stellar surface. Similar to the meridional circulation, stellar wind

strength increases with higher masses, initial rotation rates, and greater metallicity.

These opposing effects influence the evolution of the stellar surface velocity. In stars

with low to intermediate masses, the transport mechanisms are relatively inefficient. Si-

multaneously, mass loss is either absent or minimal, especially during the MS phase.

Consequently, these stars experience nearly constant equatorial velocities, as illustrated

in Fig. 4.12a. However, according to the relation in Eq. (3.18), the critical velocity

vcrit decreases throughout the MS phase due to the increasing radius Req. Consequently,

the ratio veq/vcrit rises, as demonstrated in Fig. 4.12b. After the MS, in these models,

the evolution of the angular velocity within the star is essentially governed by the local

conservation of angular momentum. The envelope expands significantly during the HRD

crossing and the RGB slowing down its rotation, while the core is slowly contracting and

therefore increasing its rotation. This explains the post MS profiles in Fig. 4.10 in which

the core tends to rotate much faster than the envelope.
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Figure 4.12: Evolution of rotation on the MS as a function of the central mass fraction of

hydrogen for models with Ωini/Ωcrit = 0.5 and masses of 1.7 M⊙ (red), 2.0 M⊙ (green), 2.5 M⊙

(blue), 3.0 M⊙ (violet). Left : evolution of the equatorial velocity veq. Right : evolution of the

veq/vcrit ratio.

Observations suggest that this picture is not complete, in fact some additional angu-

lar momentum transport is missing during these evolutionary phases (see Section 4.2).

However, as already pointed out, the properties of 2RC stars that we are interested in

are mainly affected on what happens during the MS, where despite some indications of

an additional angular momentum transport mechanism also in this phase, there are also

indications of differential rotation (see Section 4.2), preserving the significance of these

models for this application.

4.1.5 Surface Abundances

The variations in the surface abundances at the end of the MS are shown in Fig. 4.13.

We see that for a given Ωini/Ωcrit, the enrichment is stronger for higher masses. In Fig.

4.13 the shadowed area corresponds to a variation of 0.02 dex with respect to the initial

N/H ratio (corresponding roughly to the typical error bars in the APOGEE DR17). The

models evolving out of this area will therefore have a strong enough enrichment to be

observable.
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Figure 4.13: N/H ratio relative surface abundance at TAMS as a function of rotation for 1.7

M⊙ (red), 2.0 M⊙ (green), 2.5 M⊙ (blue), 3.0 M⊙ (violet) models. /The gray shaded area

corresponds to the typical uncertainty in APOGEE DR17 of 0.02 dex.

4.2 Magnetic Fields

In the reference models chosen for this work neither a dynamo mechanism in the stellar

interior, nor any strong fossil field that would impose solid body rotation is accounted

for. We know today that stellar models including only hydrodynamical processes fail to

reproduce the angular velocity of stellar cores in different evolutionary phases (e.g Eggen-

berger et al. 2012). In particular, the cores of stellar models on the lower RGB rotate

too fast by up to three orders of magnitude compared to expectations based on aster-

oseismic constraints. This indicates that at least one efficient additional AM transport

process must be at work in the interior of evolved stars, similarly to what is found for

the Sun (Eggenberger et al. 2019) or for the rotation rates of compact objects (Suijs

et al. 2008). Helioseismic measurements show that an efficient mechanism for angular

momentum transport in radiative zones is needed in addition to the transport of angular

momentum by meridional currents and the shear instability. Similar results are found for

solar-type stars (Eggenberger 2019). As shown by Bétrisey et al. 2023, in general for MS

stars in the colder part of the HR diagram (masses typically below ≈ 1.2 M⊙ at solar

metallicity) observations suggest a clear disagreement between the rotational properties

of models that only includes hydrodynamic processes and asteroseismic constraints, while

models with magnetic fields correctly reproduce the observations, similarly to the solar

case. For MS stars in the hotter part of the HR diagram (masses typically above ≈ 1.2

M⊙ at solar metallicity), models with hydrodynamic transport processes alone, and mod-

els with additional transport by magnetic instabilities are found to be consistent with
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measurements. For these stars, the combination of asteroseismic constraints and of the

surface rotation rate does not allow to conclude that an efficient AM transport is required

in addition to the transport by meridional circulation and shear instability alone (Bétrisey

et al. 2023).

It is evident that we still do not have a clear picture about the transport of AM and

internal rotation in stars both during MS and post MS phases. Especially it is not clear

wether these additional AM transport mechanisms, for which magnetic fields are cosidered

among the best candidates, are needed and how important they are during the MS phase

in the mass range considered in this work. The main reasons for introducing the effects

of internal magnetic fields is that they would ensure an additional efficient transport of

angular momentum. We choose to not consider the effects of magnetic fields in this work

because, as discussed above, the present knowledge of these processes is still far from be-

ing well established and it is currently a very active topic of research, and despite GENEC

models including these effects already exists (e.g. Moyano et al. 2023), due to the early

stage of this research topic, an extended and homogeneous grid of models with internal

magnetic fields and rotational mixing calibrated to reproduce the observed chemical en-

richment is still not available. Indeed, an efficient transport of angular momentum in

radiative zones results in a very low degree of radial differential rotation, which implies an

inefficient transport of chemicals by the shear instabilitiy. However, due to the additional

efficient transport of angular momentum related to magnetic fields, the transport of chem-

icals by the meridional circulation is increased when magnetic effects are accounted for.

This implies that the internal transport of chemicals can still be efficient in fast rotating

stars, despite the approximately flat rotation profile imposed by magnetic fields. In the

case of slowly rotating stars, the situation is different, since both the transport of chemi-

cals by the shear instability and meridional currents are inefficient when magnetic fields

are taken into account. This is typically the case of solar-type stars with an extended

convective envelope, for which the strong braking of the surface by magnetized winds

results in surface velocities that rapidly decrease during the first part of their evolution

on the main sequence (see Eggenberger et al. 2010 and Eggenberger 2019).
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Chapter 5

Effect of Rotation-Induced Mixing of

Chemicals on Secondary-Clump Stars

In this chapter, we’ll build upon the ideas discussed in the previous chapter to develop

methods for studying how the rotation-induced mixing of chemicals affects the observable

properties of secondary clump stars. These secondary clump stars, often referred to

as 2RC stars, represent a transitional phase between low- and intermediate-mass stars.

These stars go through a different evolution determined by the degree of degeneracy of

the environment in which helium begins to burn in their cores. It is crucial to analyze

the entire range of masses around this transition in order to properly probe the change

in the characteristics of their evolution. As highlighted by Girardi 1999, to accurately

characterize this group of stars, it is important to compute stellar evolutionary tracks

with a precise mass resolution of at least ∆M = 0.1 M⊙ across the entire relevant mass

range. This transition, as we will demonstrate, is influenced by various factors, including

metallicity, rotation, and more broadly, the effectiveness of near-core mixing mechanisms.

If the mass resolution is too low or the range of masses considered is too limited, there’s

a risk of focusing solely on one side of the transition or even overlooking the transition

entirely. Due to all these reasons, we have determined that a practical strategy for studying

this group of stars involves creating a grid of models. This grid will possess a fine mass

resolution, covering the complete range of masses relevant to the transition. We will

explore various initial rotation rates for these models within the grid. Our approach goes

beyond the examination of individual models; we are also interested in analyzing collective

properties. To do so, we will generate synthetic stellar populations using the grid of

models. This will enable us to investigate how the rotation-induced mixing of chemicals

impacts the 2RC feature in Hertzsprung-Russell diagrams of stellar populations.

As previously indicated in Section 4.1, the grid of GENEC models presented in Georgy

et al. 2013 has two issues that make it unsuitable for our study:
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• Insufficient mass resolution.

• The QCHeB phase is not computed for models with M < 2.5 M⊙, as these models

are computed only up to the He flash phase.

Moreover, the option of supplementing this grid by calculating more GENEC models to en-

hance mass resolution wasn’t feasible for our research objectives for several reasons. One

reason is related to the computational cost: considering the mass and rotation ranges

along with the necessary resolution, the models that need to be computed would amount

to several hundreds. After several tests we concluded that GENEC is not currently op-

timized for efficiently handling such a substantial number of models in this low mass

range, within a reasonable timeframe, given the available computational resources. Ad-

ditionally, a subset of these models requires computation of the He flash phase, which is

computationally demanding. Unfortunately, we concluded that GENEC is not optimized

and thoroughly tested for this particular phase. Furthermore, for our investigation into

the influence of asteroseismic indicators of rotational mixing of chemicals, we required a

straightforward interface with a stellar oscillation code, such as the one linking MESA and

GYRE (Townsend and Teitler 2013).

However, as discussed earlier, we believe that GENEC’s treatment of rotation through

an advecto-diffusive method more accurately captures the underlying physical processes.

Considering these factors, to compute our models we opted to use the MESA stellar evo-

lution code (Paxton et al. 2011, Paxton et al. 2013, Paxton et al. 2015, Paxton et al.

2018, Paxton et al. 2019). MESA is well-suited for calculating large grids of models, it

is optimized and thoroughly tested for models that include the He flash phase, and it

provides a direct interface with the GYRE stellar oscillation code.

To retain the effects of rotation-induced chemical mixing of the Geneva models from

the grid presented by Georgy et al. 2013 and examined in detail in Section 4.1, we decided

to compute non-rotating MESA models. We incorporated an additional diffusive mixing

into these models, calibrated and fine-tuned to replicate the level of rotational mixing

observed in the GENEC models within the grid.

5.1 Grid of Models

The stellar models that compose the grid were computed with the code MESA-r11701

(Paxton et al. 2011, Paxton et al. 2013, Paxton et al. 2015, Paxton et al. 2018, Paxton et al.

2019). These models are non-rotating models in which the effect of rotationally induced

mixing is introduced as an extra diffusive mixing parameterised and calibrated on GENEC

models described in Section 4.1. The grid covers a mass range between M = 1.7 − 3

M⊙, with a step ∆M = 0.025 M⊙, and rotationally induced mixing is calibrated for nine



5.1 Grid of Models 57

rotation rates on the zero-age main sequence (ZAMS): Ωini/Ωcrit = 0, 0.1, 0.3, 0.5, 0.6,

0.7, 0.8, 0.9, 0.95.

The following points summarize the relevant physical inputs used.

• The tracks were computed starting from the pre-main sequence (PMS) up to the

first thermal pulse of the asymptotic giant branch (TP-AGB).

• We adopt the Asplund et al. 2009 heavy elements partition and high- and low-

temperature radiative opacity tables were computed for these specific metal mix-

tures, the solar and alpha-enhanced1 ones.

• The initial He mass fraction Y depends on Z and was set using a linear He enrichment

expression:

Y = Yp +
∆Y

∆Z
Z (5.1)

with the primordial He abundance Yp = 0.2485 and slope ∆Y/∆Z = (Y⊙ − Yp) =

0.6969, where Y⊙ = 2.57706 · 10−1 at Z = Z⊙ is the initial value of Y necessary for

the solar calibrated model to set the input physics.

• A custom table of nuclear reaction rates was used (JINA; Cyburt et al. 2010).

• The atmosphere is taken according to the Krishna Swamy 1966 model.

• The convective zones are determined with the Schwarzschild criterion.

• Envelope convection is described by the mixing length theory (Cox and Giuli 1968);

the corresponding αMLT parameter, the same for all the grid, was derived from the

solar calibration with the same physics.

• Below the convective envelope, we added a diffusive undershooting (Herwig 2000)

with a size parameter f = 0.02 (see Khan et al. 2018).

• For the convective core overshooting during central H burning, we used a diffu-

sive exponential overshooting (Freytag et al. 1996 and Herwig et al. 1997) with an

fov parameter set according to Claret and Torres 2017 (who obtained the relation

αov/fov = 11.36 ± 0.22) in order to have a equivalent effect of an αov ≡ dovsh/Hp =

0.10 in the step overshooting formalism as used in GENEC models.

• Extra mixing over the convective core limit during the core He-burning phase was

treated following the formalism by Bossini et al. 2017.

1Alpha-enhanced stars exhibit elevated abundances of alpha-capture elements such as oxygen (O),

magnesium (Mg), silicon (Si), calcium (Ca), and titanium (Ti) with respect to the solar values.
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• Element diffusion, which includes the effects of radiative accelerations, has been

omitted from our models. This omission is due to the fact that during the main-

sequence phase, non-rotating or slowly rotating models would necessitate the in-

troduction of an artificial diffusion coefficient profile to prevent excessive metal de-

pletion in the surface layers. In practice, the use of these profiles would result in

a contamination of the effects of rotation. Therefore, we chose to exclude element

diffusion to avoid these difficulties. Additionally, it’s worth noting that element dif-

fusion and radiative acceleration have negligible impacts on giants, the category of

stars that we are primarily concerned with in this study.

• Rotation-induced mixing has been introduced as an extra diffusive mixing parame-

terised and calibrated on GENEC models described in Section 4.1. The parameteri-

sation and calibration of the MESA models is described in Section 5.1.1.

• Mass loss is not considered.

5.1.1 Implementation of Rotation-Induced Mixing of Chemical Species

As discussed in Section 3.1.10, the influence of rotational mixing on the distribution of

chemical species along the vertical direction can be described using a diffusion equation

(3.49). This equation involves a combined diffusion coefficient Dmix = Deff + D, where

D = Dshear +Dconv. The specific profiles and contributions to Dmix during the evolution

of stars with masses between 1.7 M⊙ and 3 M⊙ are explained in detail in Section 4.1. The

same equation is used to describe chemical species mixing in MESA. However, the diffusion

coefficient Dmix, calculated as the sum of individual mixing processes (Heger et al. 2000),

may not be exactly the same. This discrepancy is mainly due to the differing treatment

of rotational mixing compared to GENEC. Nonetheless, MESA allows for adjustments to be

made to the default behavior of the code, particularly through the run_star_extras.f

file. This provides the option to customize the value of Dmix as needed.

We took advantage of this opportunity to incorporate the impact of rotational mixing

from the GENEC models, as described in Section 4.1, into non-rotating MESA models.

This addition contributes to the overall Dmix. To achieve this, our initial task was to

find a way to represent the Dmix profile that could be added to Dmix. As explained

in Section 4.1, the Dmix profile depends on factors like initial mass M , initial rotation

rate Ωini/Ωcrit, and the star’s position on the main sequence (characterized by either age

or XH,c). Despite the complex behavior of these profiles – sometimes showing abrupt

changes and irregular patterns as illustrated in Figure 4.4 – their general shape tends to

stay somewhat consistent on average, similar to the pattern shown in Figure 4.1. It is

important to note that these deviations are temporary and short-lived during the main
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sequence evolution. Considering this observation, it makes sense to come up with a

generalized form that can match the average Dmix profile in a systematic way. This form

can then be scaled based on the values of mass M , initial rotation rate Ωini/Ωcrit, and

either age or XH,c.

Parameterization of the Dmix profile

We start by separating the various functional dependencies:

Dmix = Deff +Dshear. (5.2)

The last remark in the previous paragraph assures us that, with a good approximation,

the various dependencies can be factored as:

Deff = Deff (X1H,c, q,Ωini/Ωcrit,M) ≈ f(q)g(X1H,c)h(Ωini/Ωcrit)k(M), (5.3)

Dshear = Dshear(X1H,c,Ωini/Ωcrit,M) ≈ F (q)G(X1H,c)H(Ωini/Ωcrit)K(M), (5.4)

where q = Mr/M . Regarding Deff , as a first approximation for f(q), we can consider

f = f(q) = const. (see Fig. 4.1) and g(X1H,c) = g(X1H,c) as an ”effective value” for the

entire MS (see Fig. 4.4):

Deff ≈ f(q)g(X1H,c)h(Ω/Ωcrit)k(M) ≈ f · g(X1H,c)h(Ω/Ωcrit)k(M) ≈
≈ Deff (Ω/Ωcrit,M).

(5.5)

The values of Deff (Ω/Ωcrit,M) will be fixed for each value of Ωini/Ωcrit and M , using

the calibration technique presented later. For Dshear, as a first approximation, we can

consider G(X1H,c) = G(X1H,c) as an ”effective value” for the entire MS (see Fig. 4.4).

Also, F (q) is well approximated (see Fig. 5.1 to compare with the dotted line in Fig. 4.1)

by the following function:

F (q) ≈ σ · {[q − (qcc + ∆qovsh + δq)] + 10a·q−b}. (5.6)

Where ∆qovsh is the extension of overshooting from the convective boundary. Also:

σ ≈ G(X1H,c)H(Ω/Ωcrit)K(M) ≈ σ(Ω/Ωcrit,M), (5.7)

and its value will be fixed for each value of Ωini/Ωcrit andM using the calibration technique

presented later. Finally, a, b, δq are fine-tuned parameters, which work well for all masses
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Figure 5.1: Example of a profile given by (5.6): F (q) = 10000 · [x− 0.25 + 10(24x−23)].

and rotations2:

a = 24,

b = −23,

δq = 0.03.

(5.8)

So, ultimately, the Dmix profile is parameterized as follows:

Dmix = Deff if q ≤(qcc + ∆qovsh + δq) (5.9)

Dmix = Deff + σ · {[q − (qcc + ∆qovsh + δq)] + 10a·q−b} if q ≥(qcc + ∆qovsh + δq).

(5.10)

Essentially, Deff (Ωini/Ωcrit,M) sets the value of the near-core region of the profile (where

the dominant contribution comes from the combined effect of meridional circulation and

horizontal turbulence), while σ(Ωini/Ωcrit,M) scales the contribution of the shear.

Calibration of Deff (Ωini/Ωcrit,M) and σ(Ωini/Ωcrit,M)

Now we need to calibrate Deff (Ωini/Ωcrit,M) and σ(Ωini/Ωcrit,M) to reproduce the effects

of rotation-induced mixing of chemicals discussed for the GENEC models. In practice, we

2The fine-tuning of a, b, δq was performed by comparing the parameterized profile with Dmix profiles

shown in Section 4.1 at different points in the MS, for all masses and initial rotations. We adjusted a,

b, δq until the profiles were a good fit. Despite the apparent roughness of this technique, changes in the

values of these parameters have a minimal impact. Any differences can be automatically compensated

by slight changes in the parameters Deff (Ω/Ωcrit,M) and σ(Ω/Ωcrit,M)
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need to assign, for each value of M and Ωini/Ωcrit covered by the grid described in Section

4.1, a calibrated value of Deff and σ.

Since the Geneva reference models and the MESA models computed for this work comes

from two different evolutionary codes and with slightly different input physics, a direct

comparison of tracks/quantities isn’t a reliable calibration method. Such comparisons

could result in significant offsets due to these differences. To avoid these issues, we cali-

brate, for each mass value M and Ωini/Ωcrit, σ and Deff to replicate the relative changes

in quantities affected by rotation-induced chemical mixing between rotating models (for

each Ωini/Ωcrit) and non-rotating ones.

We define five parameters based on quantities sensitive to rotational mixing of chem-

icals during the MS:

1. The ratio between the total mass of 4He in the rotating model and the non-rotating

model at TAMS:

Π1 ≡M rot
tot,4He/M

norot
tot,4He at TAMS. (5.11)

This parameter is sensitive to rotational mixing because, between two models with

the same input physics, but one rotating and the other non-rotating, in the rotating

one, the rotational mixing during the MS continually brings fresh hydrogen into

the core. This results in a larger fraction of hydrogen transforming into helium at

TAMS. The advantage of this parameter, in contrast to others like the size of the

convective core at a specific MS stage, is its dependence only on the overall mixing

throughout the MS, making it more compatible with our chosen approach.

2. The ratio between the age at TAMS of the rotating model and the non-rotating one:

Π2 ≡ agerot/agenorot at TAMS. (5.12)

This parameter is sensitive to rotational mixing because, between two models with

the same input physics, but one rotating and the other non-rotating, in the rotating

one, the rotational mixing during the MS continually brings fresh hydrogen into the

core. The increased available fuel leads to a longer MS duration.

3. The ratio between the coordinate q = Mr/M at which the µ profile has the value

µ = 0.65 in the rotating model and the non-rotating one:

Π3 ≡ qrot|µ=0.65/q
norot
|µ=0.65 at TAMS. (5.13)

This parameter is sensitive to rotational mixing because it represents the coordinate

of the change in slope of the µ profile. As seen in Fig. 4.5a, this region of the µ

profile changes significantly with rotation due to helium being transported from the

convective core to the radiative envelope.
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4. The ratio between the surface abundance of 14N in the rotating model and the

non-rotating model at TAMS:

Π4 ≡14 N rot
surf/

14Nnorot
surf at TAMS. (5.14)

This parameter is sensitive to rotational mixing because, as the material is processed

by CNO cycle reactions in the core, the abundance of 14N relative to other elements,

like 1H or 12C, increases. Rotational mixing transports this processed material to

the surface.

5. The ratio between the surface abundance of 4He in the rotating model and the

non-rotating model at TAMS:

Π5 ≡4 Herotsurf/
4Henorotsurf at TAMS. (5.15)

This parameter is sensitive to rotational mixing for the same reasons as Π14Nsurf
. We

include a second parameter related to the surface abundances of elements sensitive to

rotational mixing to avoid potential problems due to abundance variations resulting

from processes unrelated to rotational mixing.

For each model from the grid described in Section 4.1, we computed the values of five

parameters ΠGENEC
i , where i = 1, 2, 3, 4. Additionally, approximately at the middle of

the MS, we determined the average value of the Deff profile near the core ⟨Deff⟩nc and

the value of σ by fitting a Dmix profile using the profile given by Equation (5.6) to use

as starting values Deff start and σstart for the calibration. For each combination of M and

Ωini/Ωcrit, we generated a grid of MESA models that were evolved up to the TAMS. In

this grid, we varied Deff and σ within intervals centered around Deff start and σstart, with

the limits being set by the maximum and minimum values of ⟨Deff⟩nc and σ attained

during the MS. The intervals [⟨Deff⟩min
nc , ⟨Deff⟩max

nc ] and [σmin, σmax] were divided into 25

equally spaced values, resulting in a calibration grid of 625 models. For each model in this

calibration grid, we calculated the values of ΠMESA
i (where i = 1, 2, 3, 4) and determined

the root mean square error (RMSE) compared to the corresponding parameters in the

reference GENEC model:

RMSE =

√∑4
i=1 (ΠMESA

i − ΠGENEC
i )2

4
. (5.16)

The calibrated model was chosen as the one in the grid with the minimum RMSE3.

If the model did not lie at the boundary of the intervals of Deff and σ covered by the

3After identifying the RMSE minimum, a refined calibration grid was constructed around the optimal

parameters, with the parameter range limited to the resolution of the previous grid. The minimization

process was repeated in this refined grid.
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Calibration Ωini/Ωcrit = 0.3 Ωini/Ωcrit = 0.5 Ωini/Ωcrit = 0.8

parameter

Π1 1.0600 1.0953 1.1123

Π2 1.1647 1.2544 1.3180

Π3 1.5554 1.8125 1.9649

Π4 1.0016 1.1206 1.4394

Π5 1.0000 1.0015 1.0055

Table 5.1: Reference calibration parameters Πi (i = 1, 2, 3, 4, 5) calculated for the 2 M⊙ reference

GENEC model.

grid, the grid was extended until the minimum was no longer located at the boundaries.

This minimization method, while not ensuring discovery of the global minimum in the

parameter space, facilitated identification of the local minimum closest to the initial values

calculated from the reference models. It’s noteworthy that this approach was usually

effective in locating the local minimum within a few steps of the grid from the starting

values.

Employing this method, each combination of (M,Ωini/Ωcrit) was matched with a MESA

non-rotating model of mass M , incorporating an additional mixing using a diffusion coeffi-

cient profile as described by Equations (5.9)-(5.10). This profile was calibrated to replicate

the rotational mixing of chemicals of a GENEC model with mass M and an initial rotation

rate Ωini/Ωcrit. Figure 5.2 displays the outcomes of the Deff and σ calibration for a 2.5

M⊙ model. The observed behaviors of these parameters correlate with the qualitative

observations derived from the diffusion coefficients µ profiles and tracks of the reference

models. Specifically, Deff , influencing the near-core region of the profile representing the

combined effect of meridional circulation and horizontal turbulence, demonstrated an in-

creasing trend with Ωini/Ωcrit, with a decreasing slope that tended to flatten and even

reverse for faster rotators (0.8, 0.9, 0.95 Ωini/Ωcrit). On the other hand, σ, primarily scal-

ing the shear contribution, exhibited a more linear increase, with a markedly pronounced

rise relative to Deff . Figures 5.3 and 5.4 showcase examples of Dmix profiles in our cali-

brated MESA models corresponding to different rotation rates for 2.5 M⊙ models, and to

different masses for a fixed Ωini/Ωcrit = 0.5 respectively.

With the calibration grid complete, the following step involved scrutinizing the results.

This consisted in verifying whether the calibrated rotational mixing models adequately

replicated the properties of the reference rotating models outlined in Section 4. Figure

5.5 shows the evolutionary tracks of the calibrated MESA models, presented in the same

format used for the reference Geneva models depicted in Figure 4.11. These calibrated

MESA models, being non-rotating models, of course does not include hydrostatic effects,
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Figure 5.2: Results of the calibration of the two parameters Deff and σ of the Dmix parametric

profile (5.9)-(5.10) for 2.5 M⊙ models a a function of initial rotational rate.
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Figure 5.3: Dmix profiles in our calibrated MESA models of 2.5 M⊙ corresponding to 0.3, 0.5,

0.6, 0.7, 0.8, 0.9 Ωini/Ωcrit.
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Figure 5.4: Dmix profiles in our calibrated MESA models of 1.7 M⊙ (red), 2.0 M⊙ (green), 2.5

M⊙ (blue), 3.0 M⊙ (violet) for a fixed Ωini/Ωcrit = 0.5.
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Figure 5.5: Evolutionary tracks of our MESA calibrated models for rotational mixing for models

with the same masses and rotation rates presented for the GENEC reference models.
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resulting in all tracks originating from the same ZAMS model. Consequently, unlike the

post MS phases, the MS phase in these tracks is not reproduced correctly in the HR

diagram. However, the effects of rotational mixing of chemicals were reasonably well

captured. Notably, if one aligns the initial point of each track from the reference models

on the ZAMS, approximately removing the hydrostatic effects, the trend of the tracks

in our MESA calibrated models closely follows the behavior of the tracks of the reference

models with increasing initial rotation. This alignment becomes even more evident post-

MS, when the hydrostatic effects become negligible.

Further validation of the efficacy of the rotational mixing calibration emerges from the

comparison of µ profiles and chemical abundances profiles at the TAMS and the initial

QCHeB phase. As showed in Figure 5.9, the profiles for different Ωini/Ωcrit values from our

calibrated MESA models are almost indistinguishable from those of the reference Geneva

models. Once the grid of calibrated MESA models was completed, we refined the mass
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Figure 5.6: Mean molecular weight profiles at TAMS (a) and at initial QCHeB (b) for 2.5 M⊙

MESA calibrated models for 0.0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 Ωini/Ωcrit.

resolution by computing additional models to obtain a mass resolution of ∆M = 0.025.

In order to do this we linearly interpolated the values of Deff and σ of the calibration

grid.

It is important to remark that this approach represents an approximation of the ro-

tational mixing effects in GENEC models. It relies on fitting an effective Dmix profile and

overlooks its evolution during the MS, as well as rotational mixing effects in post-MS

phases. This method was conceived as a workaround to circumvent the computational

challenges of generating extensive grids of models that pass through the helium flash using
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an evolutionary code like GENEC. Ideally, such a grid would have been constructed using

GENEC itself. Nevertheless, the profile was calibrated to replicate the consequences of

rotational mixing of chemicals in GENEC models, yielding an ”effective Dmix profile” that,

although possibly slightly deviating from the actual profile, still captures its primary fea-

tures and effectively reproduces the effects on the transport of chemicals. Additionally, we

remark that these models were calibrated solely to capture the effects of rotation-induced

mixing of chemicals, and they do not account for hydrostatic effects. Thus, they should

not be used to study the MS phase. Indeed, as demonstrated by Eggenberger et al.

2010., hydrostatic effects can significantly impact the MS phase, though they become

negligible during post-MS phases. Despite this limitation, our models remain suitable for

investigating post-MS phases, such as the red clump and 2RC.

5.2 Impact of Different Main Sequence Mixing Prescrip-

tions

5.2.1 Convective Core Overshooting

The effect of rotation on the transport of chemical species in 1D stellar models is known to

be similar, though not identical to, that of convective core overshooting. This is because

chemical gradients left by overshooting, either step or exponential, are different from

those produced by a diffusive process such as chemical transport in shellular rotation.

Eggenberger et al. 2010 investigated the differences between evolutionary tracks including

either diffusion or rotation in the colour-magnitude diagram. They conclude that the

main-sequence widening and the increase of the H-burning lifetime induced by rotation

are well reproduced by non-rotating models with an overshooting αov = 0.1, while the

increase of the stellar luminosity induced by rotational mixing (in particular during the

post-MS phase) is better reproduced by a non-rotating model with a larger value of the

overshooting parameter αov = 0.2.

It is interesting to study the difference between our models from the calibrated grid

described in Section 5.1 and models with the same input physics but without any ad-

ditional Dmix with an exponential overshooting calibrated to produce the same amount

of mixing present in the rotating reference models. We calibrated the fov with the same

minimization technique, but since overshooting is not able to transport chemicals far from

the boundary of the convective core, Π3, Π4, Π5 are essentially not affected (only Π3 is

mildly affected, but it doesn’t hold the same role) by overshooting. The approach that we

decided to use in this case is to calibrate only using Π1 and Π2, in order to calibrate only

the amount of mixing and not its extension in the envelope. The results of the calibration

of fov for a 2.0 M⊙ are shown in Tab.5.2, we can see how fov is increasing with Ωini/Ωcrit
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Ωini/Ωcrit fov

0.0 0.00000

0.1 0.00529

0.3 0.02114

0.5 0.02994

0.6 0.03346

0.7 0.03698

0.8 0.03698

0.9 0.03874

0.95 0.03874

Table 5.2: Result of the calibration of fov for 2.0 M⊙ models.

of the reference models up to around 0.5 reflecting the already mentioned saturation of

the effects of rotational mixing after Ωini/Ωcrit ≃ 0.5. In terms of mean molecular weight
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Figure 5.7: Mean molecular weight profiles at TAMS (a) and at initial QCHeB (b) for 2.0 M⊙

MESA models with the Dmix parametric profile in Eq. (5.10) (solid lines) and only overshooting

(dashed lines) calibrated to reproduce rotational mixing for different Ωini/Ωcrit.

profiles, it is evident that diffusive overshooting results in a distinctively steep and sharp µ

profile near the TAMS, especially when compared to rotational mixing (refer to Fig.5.7a).

During the initial QCHeB phase, this effect primarily influences the core size, while it has

a minimal impact on the average µ within the envelope.
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The effect on the evolutionary tracks is noticeable in Fig. 5.8, as there is a prolonged

main sequence (MS) phase due to the increased availability of fuel facilitated by over-

shooting, which is a more efficient near-core mixing process than rotational mixing. The

post-MS phases are primarily influenced by the difference in the size of the He core, which

is determined by the extent to which H has been transformed into He through nuclear

reactions. The tracks with only diffusive overshooting generally have lower luminosity,

primarily because the mean molecular weight (µ) within the envelope is reduced, as a

result of the absence of extended mixing like rotational mixing.

For instance, in the case of 2.0 M⊙ models, those with greater overshooting experience

a decrease in luminosity during the quiescent core helium burning (QCHeB) phase. This

decline occurs because the core is smaller at this stage, even though it is the opposite

at the turn-off of the main sequence (TAMS). This phenomenon arises because, for 2.0

M⊙ models, altering the value of the overshooting parameter, known as fov, can lead to

either degenerate or weakly/non-degenerate ignition of helium in the core. This choice,

in turn, influences the extent of core growth during the red giant branch (RGB) phase.

Should the core become degenerate, it can grow more (in mass) compared to a model of

similar mass, where the core remains weakly/non-degenerate. This concept is fundamental

to understanding the transition responsible for the emergence of secondary clump stars.

This effect is observed with rotational mixing as well, although it is somewhat mitigated

by the increased mean molecular weight (µ) in the envelope, resulting in an increased

luminosity.

5.2.2 Flat Dmix Profiles

An alternative method to the approach we have adopted in this study would involve

refraining from assuming a specific shape for the diffusion coefficient profile. Instead,

it would assume, as discussed in Section 3.1, that rotation induces an extended mixing

process from the core to the surface, effectively resulting in a flat diffusion coefficient

profile as done in Miglio et al. 2008. While this approach is more cautious as it avoids

making particular assumptions about transport processes that, as previously emphasized,

are still not well-understood, it does come with certain drawbacks. Namely, if the goal is

to conduct a study that provides quantitative predictions rather than qualitative insights,

a link between the values of Dmix and rotation rates is required. This link can only

be established through a calibration of Dmix based on some rotating models. Thus,

calibrating a flat profile against the existing reference models would yield a less accurate

representation of rotational mixing within the models.

Nonetheless, it remains interesting to compare this alternative approach with the one

chosen for this work, as it can help illustrate the impact of alterations to the Dmix profile.
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Figure 5.8: Evolutionary tracks of 2.0 M⊙ MESA models, calibrated for rotational mixing

at various rotation rates using the parametric Dmix profile (5.9)-(5.10), are depicted by the

solid lines. In contrast, the dashed lines represent models incorporating solely an exponential

overshooting with the calibrated parameter fov.
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In order to do the comparison we reapeated the calibration described in Section 5.1.1 on

Calibration Ωini/Ωcrit = 0.3 Ωini/Ωcrit = 0.5 Ωini/Ωcrit = 0.8

parameter parametric / flat parametric / flat parametric / flat

Π1 1.0612 / 1.0629 1.0926 / 1.0989 1.1114 / 1.1234

Π2 1.1433 / 1.1473 1.2104 / 1.2230 1.2491 / 1.2708

Π3 1.5760 / 1.5760 1.8295 / 1.8102 1.9449 / 1.9830

Π4 1.0000 / 1.0000 1.1048 / 1.0000 1.4443 / 1.0000

Π5 1.0001 / 1.0000 1.0007 / 1.0000 1.0042 / 1.0000

Deff 212.50 / 240.00 315.00 / 438.00 362.50 / 588.00

σ 2875.00 / 0.00 8333.33 / 0.00 12812.5 / 0.00

RMSE 0.0133 / 0.0122 0.0223 / 0.0558 0.0322 / 0.1979

Table 5.3: Calibration parameters Πi (i = 1, 2, 3, 4, 5) and RMSE calculated for our calibrated

MESA models with the parameteric and flat Dmix profiles.

models with a flat Dmix profile. In Tab.5.3 we show the results of the calibration of 2.5

M⊙ models for 0.1, 0.5 and 0.8 Ωini/Ωcrit with a parametric Dmix profile as described in

Section 5.1.1 and with a flat one, while in Tab. 5.2 we show the reference calibration

parameters calculated from the reference rotating models.

To achieve a flat Dmix profile, we set σ to zero and permit only Dmix to be adjustable

during the calibration process. The outcomes of this calibration are presented in Tab.5.3.

The calibration results in a higher value of Dmix which is necessary to compensate for

the absence of contribution from the F (q) profile. However, this adjustment leads to a

less accurate reproduction of the rotational mixing found in the reference model. This is

evident in the larger Root Mean Square Error (RMSE), indicating a less favorable match

between the calibrated model and the reference model’s rotational mixing properties.

Regarding the mean molecular weight profiles, the increased Dmix results in enhanced

near-core mixing, yet reduced mixing in the envelope. This leads to a more pronounced

steepening of the µ profile near the TAMS. During the initial QCHeB phase, this effect

primarily impacts the core size, while having a relatively smaller influence on the average

µ in the envelope. The effect on the evolutionary tracks as shown in Fig.5.10, remains

an extended main-sequence (MS) phase due to the augmented fuel supply caused by the

larger Dmix. The subsequent post-MS phases are shaped by both the variation in the He

core’s size, determined by the extent of H transformed into He through nuclear reactions,

and the higher mean molecular weight (µ) in the envelope. However, it’s important to

note that µ is smaller compared to the case with the parametric Dmix because of the

absence of the F (q) profile (which takes into account the extended envelope mixing due

to shear instability).
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Figure 5.9: Mean molecular weight profiles at TAMS (a) and at initial QCHeB (b) for 2.0 M⊙

MESA models with the Dmix parametric profile in Eq. (5.10) (solid lines) and a flat profile

(dashed lines) calibrated to reproduce rotational mixing for different Ωini/Ωcrit.
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Figure 5.10: Evolutionary tracks of 2.0 M⊙ MESA calibrated models for rotational mixing at

different rotation rates by using the parametric Dmix profile (5.10)-(5.10) (solid lines) and a flat

Dmix profile (dashed lines).
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5.2.3 General Considerations

In the preceding sections, we discussed the effects of different mixing prescriptions, in-

cluding a parametric profile, a flat Dmix profile, and solely diffusive overshooting. These

prescriptions were calibrated to match the mixing levels in the reference rotating GENEC

models. The key distinctions among these prescriptions lie in the relative efficiency of

near-core mixing and extended mixing in the envelope. This discrepancy is particularly

noticeable in the degree of surface nitrogen enrichment, denoted as [N/H] (a signature of

CNO-processed material).

Fig. 5.11 compares the [N/H] variation at the initial QCHeB stage with respect to

its initial value for 2.0 M⊙ models under the three different mixing prescriptions, as a

function of Ωini/Ωcrit. The figure clearly illustrates that the parametric Dmix profile,

which we adopt as the effective profile for capturing rotational mixing effects, leads to

a more substantial increase in [N/H] during the initial QCHeB phase due to its greater

efficiency in envelope-wide mixing. Another interesting aspect to investigate is how these
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Figure 5.11: [N/H] variation at the initial QCHeB stage with respect to its initial value for 2.0

M⊙ models under the three different mixing prescriptions, as a function of Ωini/Ωcrit.

mixing processes influence the position of the transition, denoted as MHef , which separates

stars that ignite helium in a degenerate core from those in a weakly or non-degenerate

core. It can be anticipated that increasing near-core mixing levels may shift MHef to

lower masses. This is because, for a given star mass, a more efficient near-core mixing

will render the core at the Terminal Age Main Sequence (TAMS) similar to that of a

higher-mass star. The envelope mixing, on the other hand, would affect the luminosity of

stars at the transition.
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In Fig. 5.12, various properties are plotted as functions of the mass of the star at

the QCHeB phase (at the clump), denoted as Mcl. It is evident that rotational mixing

(under the assumption of the parametric Dmix profile) shifts the transition, represented

by the dip in core mass, luminosity, or radius at the clump, to lower masses and higher

luminosities. This effect saturates typically around Ωini/Ωcrit ≃ 0.5. Such plots provide

valuable tools for predicting the properties of extended clumps, as discussed in Section

5.3. In Fig. 5.13, a similar plot is presented, but with only diffusive overshooting as an

additional mixing process. Here, the effect is to move the transition to lower masses while

leaving its luminosity unchanged, as there is no supplementary mixing in the envelope to

elevate its mean molecular weight (µ).
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Figure 5.12: Various properties as functions of the mass of the star at the QCHeB phase (at the

clump), denoted as Mcl for different values of Ωini/Ωcrit.
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Figure 5.13: Various properties as functions of the mass of the star at the QCHeB phase (at the

clump), denoted as Mcl for different values of diffusive overshooting parameter fov.
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5.3 Impact of Rotational Mixing on Synthetic Stellar Pop-

ulations

Given the potential of resolved stellar population studies in uncovering and constraining

processes influencing stellar evolution, we computed synthetic Simple Stellar Populations

(SSPs) from our grid of MESA calibrated models, incorporating varying distributions of

initial rotation. A Simple Stellar Population (SSP) represents the most fundamental pop-

ulation of stars, comprising objects born at the same time during a burst of star formation

activity with negligible duration and sharing the same initial chemical composition. Even

in an SSP, which finds its most precise manifestation in globular and open clusters, it

is reasonable to anticipate that the tumultuous and chaotic processes occurring during

star formation can yield a spread in initial rotation velocities. As detailed in preceding

chapters, different initial rotation rates can profoundly influence the evolutionary charac-

teristics of stars. Consequently, we expect that an extended distribution of initial velocities

within an SSP can generate significant effects on their HR diagrams and other properties.

To compute SSPs with varying distributions of initial rotation, we employed SYCLIST

(SYnthetic CLusters, Isochrones, and Stellar Tracks), as described in Georgy et al. 2014b.

SYCLIST was designed to generate single-aged stellar populations based on small grids

of GENEC models, similar to the reference grid we used. To achieve this, we developed an

interface to transform the output data from the grid of MESA models into the same format

as the GENEC model grids, facilitating the incorporation of our grid into SYCLIST.

We computed a series of Gaussian and bimodal distributions of Ωini/Ωcrit, varying

the combinations of medians and widths. We opted for bimodal distributions, not only

to explore a broader range of possibilities but also due to evidence of bimodal distribu-

tions in angular velocities of late B and early A-type main-sequence stars, which serve as

progenitors of secondary clump stars (as discussed in Royer et al. 2007). Such bimodal

distributions could potentially result in bimodal characteristics within SSP properties.

On top of the SSP outputs, we introduced random fluctuations to quantities such

as luminosity (L), effective temperature (Teff ), mass (M), surface abundances ([C/N ]

and [N/H]), and radius (R). These fluctuations were drawn from Gaussian distributions

with standard deviations equal in magnitude to the observational errors associated with

currently operational instruments. This was done to investigate the predicted features

that could potentially be observable. Specifically, the error values were extracted from

the catalog of Willett et al. (in preparation), encompassing asteroseismic parameters

from the pipelines of Mosser and Appourchaux 2009 and Elsworth et al. 2020, as well as

spectroscopically derived abundances from APOGEE DR17 (Abdurro’uf et al. 2022), and

five-parameter astrometric solutions from Gaia DR3 (Gaia Collaboration et al. 2023).

While we computed an extensive array of SSPs, encompassing all conceivable combi-
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nations of Ωini/Ωcrit distributions, we discovered that we could accurately describe all the

significant features with a few representative cases, which we elaborate on in the following

sections.

5.3.1 Stellar Populations with Extended Red Clumps

From the previous discussion in section 2.2.4, it becomes apparent that the occurrence

of dual or extended red clumps should be a widespread phenomenon within galaxy fields

encompassing stars of all initial masses (ages). This holds true as long as these distinct

features in the color-magnitude diagram (CMD) remain unaffected by factors such as

differential reddening4, errors in photometric measurements, and variations in metallicity

(Girardi 1999). Indeed, striking examples of faint secondary clumps are provided in the

Hipparcos solar-neighbourhood CMD (Girardi et al. 1998) and by the CMDs of some outer

Large Magellanic Cloud (LMC) fields (Bica et al. 1998; Piatti et al. 1998). Conversely,

it is evident that the existence of dual red clumps was not anticipated within individual

star clusters. This is due to the fact that, in the case of a single-age cluster, the variation

in turnoff masses is practically negligible and significantly smaller than the approximately

0.2 M⊙ necessary to account for the existence of dual red clumps (Girardi et al. 2000). A

few star clusters in the Magellanic Clouds exhibit composite structures in the red-clump

region of their colour–magnitude diagrams. There are also indications, despite still to

be verified, of galactic star clusters with extended red-clumps, for instance NGC 1817

and NGC 6811 (Sandquist et al. 2020), and several others with confirmed 2RC stars. An

exceptional example is observed in NGC 419, an intermediate-age star cluster (t ≈ 1.5

Gyr) situated in the Small Magellanic Cloud (SMC), where the red clump exhibits a

primary clump and a separate, identifiable secondary component, see Girardi et al. 2009

and Dresbach et al. 2023. It is established that this configuration is genuine and represents

the coexistence of stars that underwent electron degeneracy after the depletion of central

hydrogen and those that did not undergo this process.

The usual explanation for the existence of extended red clumps in clusters is based

on the idea of prolonged periods of star formation, as outlined by Girardi et al. 2000,

Girardi et al. 2009 and Girardi et al. 2010, that allow a variation in mass necessary to

account for the existence of dual red clumps. As highlighted in previous studies, the

presence of extended red clumps may be attributed to variations in helium content, CNO

element abundances, or overshooting efficiency among populations. While these possibil-

ities should not be dismissed and must be considered in future research, they represent

more complex alternatives when compared to the straightforward explanation of prolonged

4Differential reddening is the non-uniform extinction of starlight by interstellar dust along a line of

sight. It leads to variations in the observed colors and magnitudes of stars. Understanding and quantifying

differential reddening is crucial for accurate astrophysical investigations.
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periods of star formation. If these factors are assumed to be at play, then they should

be elucidated in terms of alternative physical processes. Another plausible explanation,

which, in our view, falls within the category of straightforward explanations for the exis-

tence of extended red clumps in clusters, has not been extensively investigated previously,

but was suggested for further exploration by Girardi et al. 2009. This explanation per-

tains to a spread in rotation rates during the main sequence (MS) evolution of stars in

the cluster, specifically in their initial rotation rates. It is reasonable to assume that even

within a single-aged cluster, the chaotic and turbulent processes during star formation can

result in a range of initial rotation velocities. Other authors (Girardi et al. 2009) already

emphasized the importance of clarifying whether rotation can induce the slight variation

in core mass at the end of the main sequence necessary to account for the extended red

clump phenomenon. In other words, differences in rotation velocities during the main

sequence must directly influence the mass of hydrogen-exhausted cores. In support of this

hypothesis, we draw attention to a recent spectroscopic investigation of the cluster NGC

419 turn-off stars conducted by Kamann et al. 2018. Their study identified variations in

the rotational velocity values between bluer and redder stars within the extended turn-

off. Furthermore, Wu et al. 2016 proposed that the morphology of the NGC 419 subgiant

branch does not align with the notion of an internal age spread, but rather suggests that

the rotation scenario could provide a more plausible explanation. Moreover Dresbach

et al. 2023 shows that there is no significant difference in the level of radial segregation of

stars populating different regions of the extended red clump and turn-off featres in NGC

419, which would exclude the age spread scenario.

As demonstrated in the preceding sections, our findings affirmatively indicate that a

distribution of initial rotation rates (assuming the validity of the rotational model) can

induce a significant variation in core mass at the end of the MS and, as shown in the

following paragraphs, give rise to extended red clumps within single-age clusters. We

found that, with a spread in initial rotation rates Ω/Ωcrit comparable to the one given

by a gaussian distribution with a standard deviation σ = 0.1, we have the appearance of

an extended red clump in the age range 8.700 < Log10(t/yr) < 9.200 (0.50 Gyr < t <

1.58 Gyr). Figure 5.14 illustrates a series of diagrams displaying the density of stars in

the HRD for single-age synthetic clusters containing 105 stars, with ages at Log10(t/yr) =

8.700, 8.850, 9.040, and 9.200, all at solar metallicity and featuring a Gaussian distribution

of Ωini/Ωcrit centered at 0.2, with a standard deviation of σ = 0.1.
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Figure 5.14: Density of stars in the HRD for single-age synthetic clusters containing 105 stars,

with different ages, Salpeter IMF, all at solar metallicity and featuring a Gaussian distribution

of Ωini/Ωcrit centered at 0.2, with a standard deviation of σ = 0.1.

This way of plotting enables us to pinpoint the regions within the HRD that we

expect to be statistically more populated. As depicted in Figure 5.14a, there is no

prominent clump structure apparent in the HR diagram for ages up to approximately

Log10(t/yr) ≈ 8.700 (corresponding to t ≈ 0.50 Gyr). This absence of structure

arises because He-burning objects within single-age clusters younger than this thresh-

old age exhibit progressively larger loops towards the blue. For older ages, specifically

at Log10(t/yr) = 8.850 and 9.040, as shown in Figures 5.14b and 5.23a respectively, a

dual/extended red clump becomes clearly discernible. However, this extended red clump

configuration transitions into a single red clump starting from Log10(t/yr) = 9.200 (equiv-

alent to t ≈ 1.58 Gyr) and continues for older ages. In clusters with ages exceeding
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Log10(t/yr) = 9.200, He-burning objects have all undergone He ignition within a degener-

ate environment. Consequently, the size of the He core, which governs luminosity, becomes

nearly independent of the core mass at the conclusion of the MS, and this originates a

regular/single red clump irrespectively of the spread in the size of the He cores at the

end of the MS. The age span within which we observe the emergence of an extended red

clump aligns with the age ranges reported by other researchers who documented extended

red clumps in the context of clusters undergoing prolonged star formation. For instance,

referring to works such as Girardi et al. 2000 and Girardi et al. 2009.

Now, we delve deeper into the characteristics of these dual/extended red clumps. The

two scenarios depicted in Figures 5.14b and 5.23a serve as examples representing distinct

regimes within the age range where dual or extended red clumps are observed. While a

cursory examination of their positions in the HR diagram may suggest similarities, except

for the fact that the two clumps in Figure 5.14b are nearly at the same temperature,

whereas the dimmer clump in Figure 5.23a is hotter than the brighter one, a more detailed

analysis of the stars populating them reveals that they possess contrasting properties. For

simplicity we will call the case depicted in Figure 5.14b young extended clump (YEC),

while the case depicted in Figure 5.23a as old extended clump (OEC).

5.3.2 Young Extended Clump (YEC)

In Figure 5.15, we present a detailed view of the extended clump observed in the YEC

scenario of Figure 5.14b. The left side displays a luminosity histogram, while the right

side shows individual stars superimposed on the density plot, color-coded according to

their Ωini/Ωcrit values. It becomes evident that, on average, the brighter clump is pre-

dominantly populated by stars with higher initial rotation rates, whereas the dimmer

clump primarily consists of stars with lower initial rotation rates. There is notable con-

tamination of non-rotating (or very slowly rotating) stars in the brighter clump, which

can be readily explained by the presence of slightly more massive stars in a slightly more

advanced evolutionary stage, leading to increased luminosity. This configuration aligns

with the predictions derived from the plot in Figure 5.12. Specifically, by examining

the bottom panel, one can identify the approximate mass at the red clump (Mcl) at

log10(t/yr) = 8.850 for different Ωini/Ωcrit values by locating the intersection of the hori-

zontal line at log10(t/yr) = 8.850 with various curves corresponding to different Ωini/Ωcrit

values. Once we determine the mass at the red clump (Mcl) at log10(t/yr) = 8.850 for

different Ωini/Ωcrit values, we can subsequently infer the luminosity, as shown in the sec-

ond panel from the top. Notably, the luminosity of stars in the red clump with higher

Ωini/Ωcrit values is greater than that of stars with lower Ωini/Ωcrit values. Regarding radii,

a discernible pattern emerges: on average, stars characterized by higher Ωini/Ωcrit values
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Figure 5.15: Focus on the extended clump observed in the young extended clump scenario

depicted in Figure 5.14b. The left panel displays the luminosity histogram of the extended

clump. The right panel showcases the density plot with single stars superimposed, color-coded

according to the value of Ωini/Ωcrit.

(which predominantly populate the brighter clump) exhibit larger radii. Regarding stellar

masses, while one might expect to observe a trend in which stars with higher Ωini/Ωcrit

values exhibit slightly larger masses, this trend does not appear to be distinguishable in

Fig.5.16. It’s important to consider that on top of these modelled data we added obser-

vational errors typical of current observations (taken from Willet et al. in preparation,

including data from Kepler, APOGEE DR17, Gaia DR3), and the margin of error on mass

measurements can be significant enough to obscure any discernible trend. One of the most
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Figure 5.16: Radius vs mass of the young extended clump sample of Fig. 5.15, colored according

to initial rotation.
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interesting characteristics is the gradient in the ratio of surface carbon and nitrogen abun-

dances, denoted as [C/N ]. As elucidated in preceding sections, we anticipate that this

parameter would be influenced by rotational mixing as it brings CNO-processed material

to the surface. More specifically, we would expect a smaller [C/N ] value for stars with

higher Ωini/Ωcrit values. This trend is distinctly evident in Figure 5.17. Consequently,

given that the brighter clump primarily consists of stars with higher initial rotation rates,

while the dimmer clump is predominantly populated by stars with lower initial rotation

rates, we anticipate observing a gradient in [C/N ], specifically, a decrease in this param-

eter from the brighter to the dimmer clump if a spread in rotation rates is responsible for

the extended clump.

This particular characteristic holds the potential to differentiate between the influence

of rotation and alternative factors, such as protracted phases of star formation, variations

in metallicity, or variations in the efficiency of convective core overshooting, all of which

can contribute to the existence of extended clumps. The distinction essentially hinges

on how profoundly these alternative processes can impact the surface [C/N ] value at the

red clump. For instance, we can confidently assert that different levels of overshooting

efficiency are incapable of generating such a pronounced spread in [C/N ]. This assertion

is substantiated by the observation that, as depicted in Fig. 5.7b, varying overshooting

primarily affects the core size, while the slight increase in µ in the envelope, stemming

from the transport of material processed by the CNO cycle to the surface, is practically

negligible. In the case of other potential mechanisms for producing extended clumps, ad-

ditional factors may be at play, exerting influence on [C/N ]. Investigating these intricacies

will be a pivotal focus in the ongoing phases of this research.
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Figure 5.17: [C/N] vs Log(L/L⊙) of the young extended clump sample of Fig. 5.15, colored

according to initial rotation.
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5.3.3 Old Extended Clump (OEC)

In Figure 5.18, we present a detailed view of the extended clump observed in the OEC

scenario of Figure 5.14b. In this scenario, the dual clump properties are the inverse of
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Figure 5.18: Focus on the extended clump observed in the old extended clump scenario depicted

in Figure 5.23a. The left panel displays the luminosity histogram of the extended clump. The

right panel showcases the density plot with single stars superimposed, color-coded according to

the value of Ωini/Ωcrit.

those observed in the previous one. On average, the brighter clump is primarily composed

of stars with lower initial rotation rates, while the dimmer clump consists mainly of stars

with higher initial rotation rates. There is noticeable contamination of faster-rotating stars

within the brighter clump, which can once more be explained by the presence of slightly

more massive stars in a slightly more advanced evolutionary stage, resulting in increased

luminosity. Following the same methodology as the previous case, this configuration aligns

with the predictions obtained from the plot in Figure 5.12.

Concerning radii, an inverse pattern emerges compared to the previous case: on av-

erage, stars characterized by higher Ωini/Ωcrit values (which predominantly populate the

brighter clump) exhibit smaller radii. Regarding masses, we should expect the same trend;

however, this trend is obscured by substantial uncertainties. The gradient in [C/N ] is op-

posite with respect to the previous case. As before we expect a smaller [C/N ] value for

stars with higher Ωini/Ωcrit values. This trend is distinctly evident in Figure 5.17. How-

ever, since in this case the brighter clump primarily consists of stars with lower initial

rotation rates, while the dimmer clump is predominantly populated by stars with higher

initial rotation rates, we anticipate observing an opposite gradient in [C/N ], specifically,

an increase in this parameter from the brighter to the dimmer clump if a spread in ro-
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Figure 5.19: Radius vs mass of the old extended clump sample of Fig. 5.18, colored according

to initial rotation.

tation rates is responsible for the extended clump. This reversal in the characteristics
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Figure 5.20: [C/N] vs Log(L/L⊙) of the old extended clump sample of Fig.5.18, colored according

to initial rotation.

of the extended clumps is clearly evident in Figure 5.12 and is a reflection of sampling

different sides of the transition (corresponding to the minimum in core mass at the clump)

at varying ages.

If these characteristics of the extended clumps could be validated in actual clusters,

it would not only serve to confirm that one possible origin of extended clumps could be
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a spread in initial rotation rates but also provide stringent constraints on the efficiency

of rotational mixing (and more broadly, near-core and envelope mixing). Additionally,

it would have implications for our models of rotation in stars. Furthermore, it would

impose rigorous constraints on the age determination of the clusters, contingent on which

configuration of the clump is being observed, be it the young extended clump or the old

extended clump.

5.3.4 Impact of Different Distributions of Initial Rotation Rates

In the examples shown in the previous paragraphs, we used a single distribution of initial

rotation rates, in particular a Gaussian distribution of Ωini/Ωcrit centered at 0.2, with a

standard deviation of σ = 0.1. This choice wasn’t random, in fact the range of rotation

rates covered by this distribution (from 0.0 to 0.5 Ωini/Ωcrit) is the range in which the

impact of different Ωini/Ωcrit is larger. As discussed in Section 4 and as clearly visible from

Fig. 5.12, the effects of rotation saturates around Ωini/Ωcrit ≈ 0.5, so we have that by

increasing Ωini/Ωcrit furtherdoes not impact the prediction significantly. This is evident

in Fig. 5.23 where it is clear that for Gaussian distributions of Ωini/Ωcrit with the same σ

but centerd at higher values of Gaussian distribution of Ωini/Ωcrit the clump is very close

to a normal single clump.

Moreover it is of interest to check wether a bimodal distribution has an appreciable

impact on the properties of the extended clumps, because, if this is the case, we could

have a potential method to discriminate between unimodal and bimodal distributions of

initial rotation rates. Unfortunately, as shown in Fig. 5.23c at least from the morphology

of the clumps in the HR diagram the only difference is a slightly more defined duality

in the double clump feature, but definitely not enough to safely discriminate between an

unimodal or a bimodal distribution covering the same range of Ωini/Ωcrit. The reason of

this is that the duality in the red clump originates from the transition in the properties

shown in Fig. 5.12, which is relatively sharp by itself, and it can arise even with a

smooth distribution of Ωini/Ωcrit provided that it sample the range of the transition at

a given age. Although the shape of the initial rotation distribution cannot be studied

solely from the clump’s morphology in the HR diagram, the same cannot be said for

[C/N ], which provides a closer reflection of the Ωini/Ωcrit distribution. In Fig. 5.21, we

present a detailed view of the extended clump with the bimodal distribution observed

in the old extended clump scenario depicted in Figure 5.23c, and it becomes evident

that there is minimal difference compared to the old extended red clump scenario with

the Gaussian distribution in Fig. 5.18. Fig.5.22 shows [C/N ] vs. Log(L/L⊙) for the

case of bimodal distribution in Fig.5.23c, here the bimodality in terms of [C/N ] is clear.

Therefore, assuming that our models are accurate and that no factors other than rotation
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Figure 5.23: Density of stars in the HRD for single-age synthetic clusters containing 105 stars,

with an age of log10(t/yr) = 9.040, Salpeter IMF, all at solar metallicity and featuring different

distributions of Ωini/Ωcrit.
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and the standard processes considered in our models influence [C/N ], we could employ

[C/N ] measurements to investigate the shape of the initial rotation distribution.
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Figure 5.21: Focus on the extended clump observed in the old extended clump scenario with a

bimodal distribution depicted in Figure 5.21. The left panel displays the luminosity histogram of

the extended clump. The right panel showcases the density plot with single stars superimposed,

color-coded according to the value of Ωini/Ωcrit.
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Figure 5.22: [C/N] vs Log(L/L⊙) of the old extended clump sample of Fig. 5.21, colored

according to initial rotation.
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5.4 Preliminary Comparison with Observations

Since this aspect of the secondary clump, particularly in these specific terms, has re-

mained relatively unexplored until now, a substantial portion of the work conducted thus

far has predominantly involved theoretical modeling. This effort aimed to establish the

theoretical framework and construct the necessary tools for initiating investigations into

various possibilities and expected outcomes. Nonetheless, even at this point, it is crucial

to assess whether we are heading in the right direction. This involves conducting compar-

isons, albeit not in a systematic manner and without any claim of exhaustiveness, with

observational data. A thorough and methodical comparison with observational data is an

imperative step, and it will constitute the primary focus of our future endeavors in this

research, along with further improvements to the models.

In this section we present a comparison of the properties of red clump stars in our

single-age synthetic clusters, characterized by spreads in initial rotation and solar metal-

licity, with red clump stars from the Galactic field and a selection of Galactic star clusters

that share solar metallicity and ages within the range where our models exhibit extended

clumps. The galactic field sample comes from the catalogue of Willett et al. (in prepara-

tion), which contains asteroseismic parameters from the pipelines of Mosser and Appour-

chaux 2009 and Elsworth et al. 2020, as well as spectroscopically derived abundances from

APOGEE DR17 (Abdurro’uf et al. 2022), and five-parameter astrometric solutions from

Gaia DR3 (Gaia Collaboration et al. 2023). Masses for fields stars are obtained using as-

teroseismic parameters from Kepler using the scaling relation 7.9, while radii are obtained

from luminosities and temperatures using the Stefan-Boltzmann equation 2.8. The data

for the cluster NGC 6866 is taken from Brogaard et al. 2023 while those for NGC 6811

from Sandquist et al. 2016. For this comparison, we adopt distributions of Ωini/Ωcrit taken

from Royer et al. 2007. In their work, they provide distributions of Ω/Ωcrit for late B and

early A-type main-sequence field stars in the early MS evolutionary phases, see Fig.5.24.

It’s worth noting that MS stars with spectral types ranging from B9 to A5 represent the

progenitors of secondary clump stars within the mass range considered in this study. We

proceed to compute synthetic clusters with ages Log(t/yr) = 8.700, 8.850, 9.040, 9.200,

assuming the corresponding distribution of Ω/Ωcrit based on the mass of the stars in

the red clump at a given age. As depicted in Figure 5.27, our synthetic clusters with

single-age populations occupy the same regions as observed stars in both field and cluster

environments, exhibiting a similar degree of dispersion. Notably, the synthetic clusters

with the specified ages encompass the entire transition region between the primary and

secondary red clumps (RC1/RC2) near a stellar mass of approximately 2.05 M⊙. Within

this mass range, stars belonging to both RC1 and RC2 are present, with the synthetic

cluster corresponding to Log(t) = 9.040 accommodating 2RC stars with a minimum radius
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Figure 5.24: Distribution of angular velocity Ω/Ωcrit for late B and early A-type main-sequence

field stars in the early MS evolutionary phases. Reprouced from Royer et al. 2007.

of approximately 8 R⊙. This observation reinforces the notion that the age span explored

in this study, assuming initial distributions of Ωini/Ωcrit from Royer et al. 2007, results in

dual or extended red clumps. The origin of these, in our models can be attributed solely

to variations in initial rotation rates. Certainly, in natural scenarios, various factors like

age or metallicity spreads can also contribute to the emergence of extended clumps. It

is imperative to thoroughly investigate these possibilities and their interactions with the

phenomenon of rotational mixing in the subsequent phases of this research.

In section 5.3, we emphasized the significance of the [N/C] ratio in distinguishing the

effects of rotation. Therefore, it is crucial to ascertain whether the predictions of our

models align with the observed values of this parameter. However, it is worth noting that

the quantity [C/N ] is recognized in the literature for displaying systematic discrepancies

between models and observations. These discrepancies can arise from factors such as

overly efficient or insufficient mixing, inaccurate assumptions regarding the initial abun-

dances of C, N, and O, or systematic errors in the APOGEE measurements (as discussed

in Vincenzo et al. 2021). It is not within the scope of this study to resolve these ”zero-

point problems” associated with [C/N ]. Instead, we restrict ourselves to observing that

our models yield [C/N ] values within the range of the observed values (refer to Figure

5.26), but we do not draw any absolute conclusion about the values at which the points

of the synthetic clusters lies for example in the M − [C/N ] plot of Fig.5.26. A more sig-

nificant observation is that our synthetic clusters are consistent with the observed spread

in [C/N ], which is not the case for instance for a synthetic cluster with a single value of

initial rotation, see Fig.5.27d. This implies that, assuming the validity of our models, the
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observed variation in [C/N ] among red clump stars in both field and cluster environments

can be attributed to the effects of rotational mixing. We do not assert that rotational

mixing is the exclusive explanation, as we have not yet thoroughly explored all potential

degeneracies. Nevertheless, we suggest that it presents a plausible explanation.

5.5 Future Prospects

Most of the results presented in this work, especially those regarding extended clumps are

in a certain sense exploratory, we showed that according to our models rotation-induced

mixing can generate double or extended red clumps with specific characteristics, especially

the gradient of [C/N ] between the two clumps could be a way to discriminate wether the

two clumps are generated by a spread in rotation and to put contraints on our rotating

models and on the age of the clusters.

However, we already mentioned that several causes other than rotation can contribute

to the appearance of double or extended clumps, such as prolonged star formation, metal-

licity, spreads in He abundance and different efficiencies of convective core overshooting

within the same population. In order to get a clear picture we need to carefully explore

all these degeneracies and find possible ways in order to break them. This is certainly one

of the most important directions of the future development of this work, and it involves

the computation and combination of synthetic stellar populations with all the possible

combinations of these factors that contribute to the formation of extended clumps.

Another very important aspect that must be carefully explored is the influence of

rotation-induced mixing of chemicals and of the other factors that affects secondary clump

stars in a similar way on asteroseismic properties. How rotational mixing can affect as-

teroseismic properties of secondary-clump stars is another possible way of discriminating

between the effects of rotation-induced mixing of chemicals and the other factors influ-

encing them in a similar way. Even though we did not have the possibility to expand

further on this for now, we can make some observations based on the results we obtained

up to now. Examining the µ profiles of our models in Fig. 5.9, we can observe that, as

previously noted, during the QCHeB phase, the only discernible signature resulting from

the rotational mixing of chemical species is a slight variation in the core size and a modest

increase in the µ level within the envelope. The details of the µ profile that could poten-

tially carry indications of specific mixing processes, as seen, for instance, in the TAMS

model, are obliterated by the deep penetration of the convective envelope during the red

giant phase. Consequently, significant signatures of rotation-induced chemical mixing are

not expected. In order to study these signatures we should focus on earlier evolution-

ary stages where a significant imprint of rotational mixing of chemicals is expected to be

visible, see for instance Miglio et al. [2008].
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One effect that may be observable within a single-age cluster featuring a spread in

initial rotation is related to the mass of the stars. As elaborated in Section 5, the pres-

ence of rotation extends the main sequence (MS) duration for a fixed mass, owing to

the augmented availability of hydrogen due to near-core mixing induced by rotation.

Consequently, within a single-age cluster, a spread in masses may exist at a particular

evolutionary stage, which could potentially be detected using asteroseismic methods as

those described in Appendix 7.3. However, it should be noted that in our tests, the

observed mass differences at the red clump fall within approximately 10%, which is on

the order of the accuracy associated with global asteroseismic mass determinations just

mentioned. For instance, the scaling relations such as 7.9 for solar-like oscillations in

low and intermediate-mass stars typically provides an accuracy of approximately 5%.

Nevertheless, more precise methods for mass determinations such as fitting individual os-

cillation modes (in contrast to solely relying on average quantities like ∆ν and νmax), as

demonstrated in Montalbán et al. 2021, along with measurements of a variation in surface

[N/C], could potentially distinguish between stars that have undergone varying levels of

rotational mixing due to differences in their initial rotation rates.

In Fig.5.28, we present the propagation diagrams (refer to Appendix 7.2) for two

red clump models with a mass difference on the order of those observed in a single-age

synthetic cluster exhibiting a spread in initial rotation rates. In Fig.5.29, we provide

propagation diagrams for another pair of red clump models possessing the same mass

but differing in initial rotation rates. Propagation diagrams are graphical representations

illustrating the two characteristic frequencies that govern the propagation of pulsation

modes within stellar interiors: the Lamb frequency Sl and the Brunt-Väisälä frequency N .

These diagrams display these frequencies as a function of either radius or mass coordinate,

serving to visualize where oscillation modes can propagate and what their character may

be, whether pressure modes, gravity modes, or mixed modes. For a brief introduction

to these concepts, please refer to Appendix 7.2. It is evident from figures 5.28 and 5.29

that, as expected from the previous considerations, rotational mixing, unlike the mass

difference, has almost no impact on the shapes of Sl and N . As a result we do not expect

a significant impact on the oscillation frequencies due to chemical gradients induced by

rotational mixing in red clump stars, but just an impact due to the different masses

determined by the efficiency of mixing during the MS.

Our models are non-rotating models with an additional mixing calibrated to reproduce

rotational mixing of chemical elements, so they are not able to reproduce the evolution of

the rotation profile, which instead is possible with GENEC models (however, it is currently

only possible for GENEC to follow the He burning phase only for masses larger than 2.5

M⊙), but at the current models fail to reproduce the core-rotation rates of red clump stars

suggesting the presence of a very efficient unknown angular momentum transport process.
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With that being noted, forthcoming models should possess the capability to replicate not

only the observed surface rotation, determined through spectroscopic methods but also the

internal rotation profiles, which can be derived from the impact of rotation on oscillation

modes probing the stellar interior. Indeed, asteroseismic observations of red giant stars

led to the determination of internal rotation of these stars, as demonstrated by studies

such as Beck et al. 2012, Deheuvels et al. 2015 and Deheuvels et al. 2020.
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Figure 5.25: Mass and radius (Stefan-Boltzmann equation) measurements for clusters NGC

6866 (Brogaard et al. 2023) and NGC 6811 (Sandquist et al. 2016) as well as field stars with

Kepler data from Willett et al. (in prep.) with superimposed single-age synthetic clusters having

distributions of Ωini/Ωcrit taken from Royer et al. 2007 according to the mass of the stars in the

clump.
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Figure 5.26: Mass M vs [C/N ] measurements for clusters NGC6866 (Brogaard et al. 2023) as

well as field stars with Kepler data from Willett et al. (in prep.) with a superimposed synthetic

cluster with Log(t) = 9.040 having distributions of Ωini/Ωcrit taken from Royer et al. 2007

according to the mass of the stars in the clump. This plot serves the purpose of illustrating that

the data points for the synthetic cluster fall within the range of observed values. Nonetheless, it

is crucial to acknowledge that inherent systematic errors in [C/N ] introduce complexities, and

as such, definitive physical conclusions should not be drawn solely from this plot.
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Figure 5.27: Histogram of [C/N ] normalized by its median value within the mass range of the

red clump stars in the single-age synthetic cluster. Data for the field stars (with Kepler data)

are taken from Willett et al. (in prep.). The superimposed single-age synthetic clusters have

distributions of Ωini/Ωcrit taken from Royer et al. 2007 according to the mass of the stars in the

clump and a Dirac delta distibrution centered at Ωini/Ωcrit = 0.5.
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(a) (b)

Figure 5.28: Propagation diagrams for two of our MESA models with masses of M = 2.250 M⊙

and M = 1.900 M⊙ and Ωini/Ωcrit = 0.0.

(a) (b)

Figure 5.29: Propagation diagrams for two of our MESA models a mass of M = 2.250 M⊙ and

0.0 and 0.5 Ωini/Ωcrit.
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Chapter 6

Conclusions

The primary objective of this work was to explore the effects of rotation-induced mixing on

secondary clump stars, both as individual stars and within single-age stellar populations.

Using models of rotating stars and incorporating them into single-age synthetic stellar

populations with varying distributions of initial rotation rates, we found that, assuming

the validity of the rotational model, a spread of initial rotation rates can induce substantial

variations in core mass at the conclusion of the main sequence. This is due to the mixing

induced by rotation and results in the emergence of extended red clumps within single-age

clusters. These extended clumps are observable in reality, although their origin remains an

open question and may arise from a combination of factors, including differing efficiencies

of rotational mixing due to variations in initial rotation rates.

Additionally, we proposed a simple method, leveraging the plot featured in Fig. 5.12,

to predict the properties of these extended clumps. Thanks to this method, we recognized

that our models predict an inversion in the properties of the extended clumps at a specific

age. If this inversion in properties could be confirmed in actual clusters, it would enable

precise age determinations.

The preliminary comparison conducted with field and cluster stars validates that our

single-age synthetic clusters encompass stars from both the conventional red clump and

the secondary clump. In our models, this diversity is achieved solely through a variance

in initial rotation rates, determined by distributions of initial rotation derived from obser-

vations as presented by Royer et al. 2007. Furthermore, we ascertained that the spread in

[N/C] predicted by our synthetic clusters, featuring distributions of initial rotation rates

derived from observations, aligns with the observed variability in field stars.
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Appendices

7.1 Expressions of E∗
Ω and Eµ
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We have presented these intricate expressions to provide a sense of some of the dependen-

cies. However, our intention is not to comprehensively detail the dependencies of these

terms. For an in-depth examination of these dependencies and their derivations, we direct

readers to Maeder 2009.

7.2 Basic Concepts in Asteroseismology

Asteroseismology uses the frequencies of the normal modes of pulsating stars as seismic

waves. The pulsation modes are waves in the stellar interior, just like the waves that

musical instruments resonate in. There is a large variety of normal modes that stars can

pulsate in. The simplest are radial modes: the star periodically expands and shrinks, and

its spherical symmetry is preserved. Pulsation in nonradial modes causes deviations from

spherical symmetry: the star changes its shape. There are two major restoring forces for

stellar oscillations that attempt to bring the star back in its equilibrium configuration:
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pressure and buoyancy (gravity). Because of this pulsation modes are also classified into

p pressure (p) modes and gravity (g) modes. The eigenfrequencies of stellar models, that

are dependent on their physical parameters and interior structures, are matched to the

observed ones. The propagation of pulsation modes in the stellar interior is governed by

two frequencies. One of these is the Lamb frequency Sl, which is the inverse of the time

needed to travel one horizontal wavelength at local sound speed. The other frequency

describes at what rate a bubble of gas oscillates vertically around its equilibrium position

at any given position inside a star; it is called the Brunt-Vaisälä frequency N . These two

quantities are defined as:

S2
l =

l(l + 1)c2s
r2

N2 = g

(
1

p0γ1

dp0
dr

− 1

ρ0

dρ0
dr

)
(7.3)

where l is the spherical degree, cs is the local velocity of sound, r is the radius, g

is the local gravitational acceleration, p0 and ρ0 are local pressure and density in the

unperturbed state, respectively, and γ1 = (ρdp
pdρ

)ad is the first adiabatic exponent. The

Lamb and Brunt-Vaisälä frequencies have the following implications: an oscillation with

a frequency higher than both experiences pressure as the main restoring force in the

corresponding part of the star. On the other hand, a vibration with a frequency lower

than both Sl and N is restored mostly by buoyancy. In other words, if we have a stellar

oscillation with an angular frequency ω, it is a p-mode wherever ω > Sl, N , and it is a

g-mode wherever ω < Sl, N . In stellar interior regions where ω lies between the Lamb

and Brunt-Vaisälä frequencies, the amplitude of the wave decreases exponentially with

distance from the p and g-mode propagation regions; such parts in the stellar interior

are called evanescent regions. If the evanescent region between a the p and g-mode

propagation regions is small, the mode is capable of ”tunnelling” through it, and the p

and g-mode couple giving rise to a mixed mode. In order to aid the visualization of this

discussion we use propagation diagrams, where Sl and N are plotted against the radial

coordinate or mass coordinate, an example of propagation diagram is shown in Fig. 7.1.

Stellar pulsations induce surface displacements and temperature fluctuations, giving rise

to observable variations. These variations cause alterations in luminosity, radial velocity,

and spectral line profiles. Pulsating stars offer a dual avenue for examination, allowing

for photometric and spectroscopic investigations through time-series observations.

Time-series data are subjected to frequency analysis, a process that involves the ex-

traction of constituent signals from the observed data. Frequently, this entails harmonic

analysis, wherein the time-series data is transformed into the frequency-amplitude do-

main. One common method for this transformation is the application of the Discrete

Fourier Transformation (DFT), represented mathematically as:
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(a) (b)

Figure 7.1: Propagation diagrams for two of our MESA models with masses of M = 2.250 M⊙

and M = 1.900 M⊙ and Ωini/Ωcrit = 0.0.

FN(f) =
N∑
k=1

x(tk)ei2πftk ,

Here, FN(f) signifies the transformed data in the frequency domain, while x(tk) rep-

resents the time-series measurements at discrete time intervals tk.

7.2.1 Driving Mechanisms

Stars maintain hydrostatic equilibrium, with gravitational forces on their constituent mass

elements balanced by gas pressure. Consequently, the initiation of self-excited pulsations

necessitates a driving mechanism capable of overcoming inherent damping, leading to

periodic oscillations. Four primary driving mechanisms have been posited.

The ϵ mechanism (Rosseland and Randers 1938) postulates variations in stellar nuclear

reaction rates: compression of a nuclear burning region elevates temperature and energy

production. This triggers expansion, causing a drop in pressure and energy generation,

thus reversing the motion and giving rise to oscillations.

Significantly more successful in elucidating stellar oscillations is the κ− γ mechanism

(Baker and Kippenhahn 1962 and references therein). It comes into play within layers

where opacity (κ) increases and/or the third adiabatic exponent, Γ3 = (∂ lnT
∂ ln ρ

)ad + 1,

decreases with rising temperature. These layers, typically linked to partial ionization of

specific chemical elements in the stellar interior, temporally store flux from inner regions.
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Energy accumulated during compression is subsequently released as the layer attempts

to reach equilibrium through expansion. Consequently, the star can expand beyond its

equilibrium radius, and when material recedes, energy is again stored, perpetuating the

cycle and giving rise to periodic stellar oscillations. This phenomenon is also referred to

as the ”Eddington Valve” and accounts for variability in most known classes of pulsating

stars.

Another mechanism, convective blocking (or convective driving), closely resembling

the ”valve” behavior, ensues when the base of a convection zone obstructs interior flux,

temporarily releasing stored energy during the subsequent expansion phase.

Lastly, the pulsations of the Sun and solar-like stars, which are intrinsically stable

and not considered self-excited, result from stochastic excitation caused by turbulence

in their surface convection zones. Vigorous convection in outer surface layers generates

acoustic noise across a broad frequency range, exciting solar-like oscillation modes. Due

to the multitude of convective elements on the surface, excitation is inherently random,

leading to temporal variability in oscillation amplitudes. The term ”solar-like oscillations”

encompasses oscillations excited stochastically by convection, presumably encompassing

all stars with outer convection zones, from the cooler boundaries of the classical instability

strip to red giants. Given the physical underpinnings of these driving mechanisms, the

existence of distinct instability domains in the Hertzsprung-Russell diagram naturally

follows.

7.3 Asteroseismic Masses

To deduce stellar masses, we employ key seismic parameters that characterize the spectra

of solar-like oscillations. These parameters include the average large frequency separation

(∆ν) and the frequency corresponding to the maximum observed oscillation power (νmax).

The large frequency separation is expected to scale as the square root of the star’s mean

density, expressed as:

∆ν ≃

√
M/M⊙

(R/R⊙)3
∆ν⊙ (7.4)

Here, ∆ν⊙ is approximately 135 µHz. The frequency of maximum power, denoted as

νmax, exhibits an approximate proportionality to the acoustic cut-off frequency (Kjeldsen

and Bedding 1995). Therefore:

νmax ≃ M/M⊙

(R/R⊙)2
√
Teff/Teff,⊙

νmax,⊙ (7.5)

Here, νmax,⊙ is approximately 3100 µHz, and Teff,⊙ is approximately 5777 K.



7.3 Asteroseismic Masses 105

These scaling relations serve as widely accepted tools for estimating the masses and

radii of red giants. The approach for deriving mass estimates from equations (7.4) and

(7.5) varies depending on the available observational constraints. When data on distance

or luminosity are lacking, which is common for field stars, equations (7.4) and (7.5) can

be solved to obtain estimates for both mass (M) and radius (R). This method has been

employed in studies such as Kallinger et al. 2010 and Mosser 2010, leading to the following

expressions:

M

M⊙
≃

(
νmax

νmax,⊙

)3(
∆ν

∆ν⊙

)−4(
Teff
Teff,⊙

)3/2

(7.6)

R

R⊙
≃

(
νmax

νmax,⊙

)(
∆ν

∆ν⊙

)−2(
Teff
Teff,⊙

)1/2

(7.7)

In cases involving clusters, additional constraints from independent methods, such as

isochrone fitting or eclipsing binaries, provide information about distance and luminosity.

This additional information enables mass estimation through either equation (7.4) or

equation (7.5) alone. The following equations (7.8), (7.9), and (7.10), which have no

explicit dependence on Teff , offer avenues for estimating mass:

M

M⊙
≃

(
∆ν

∆ν⊙

)2(
L

L⊙

)3/2(
Teff
Teff,⊙

)−6

(7.8)

M

M⊙
≃

(
νmax

νmax,⊙

)3(
L

L⊙

)(
Teff
Teff,⊙

)−7/2

(7.9)

M

M⊙
≃

(
νmax

νmax,⊙

)12/5(
∆ν

∆ν⊙

)−14/5(
L

L⊙

)3/10

(7.10)

see Miglio et al. 2012 for further details on this topic.
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falo, A. Gavel, P. Gavras, E. Gerlach, R. Geyer, P. Giacobbe, G. Gilmore, S. Girona,

G. Giuffrida, R. Gomel, A. Gomez, J. González-Núñez, I. González-Santamaŕıa, J. J.
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L. Gratton. Circolazione interna e instabilità nelle binarie strette. Mem. Soc. Astron. Ital-

iana, 17:5, Jan. 1945.

A. Heger, N. Langer, and S. E. Woosley. Presupernova Evolution of Rotating Massive

Stars. I. Numerical Method and Evolution of the Internal Stellar Structure. ApJ, 528

(1):368–396, Jan. 2000. doi: 10.1086/308158.

https://doi.org/10.1051/0004-6361/201220558


BIBLIOGRAPHY 113

F. Herwig. The evolution of AGB stars with convective overshoot. A&A, 360:952–968,

Aug. 2000. doi: 10.48550/arXiv.astro-ph/0007139.

F. Herwig, T. Bloecker, D. Schoenberner, and M. El Eid. Stellar evolution of low and

intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in

AGB stars. A&A, 324:L81–L84, Aug. 1997. doi: 10.48550/arXiv.astro-ph/9706122.

T. Kallinger, W. W. Weiss, C. Barban, F. Baudin, C. Cameron, F. Carrier, J. De Ridder,

M. J. Goupil, M. Gruberbauer, A. Hatzes, S. Hekker, R. Samadi, and M. Deleuil. Oscil-

lating red giants in the CoRoT exofield: asteroseismic mass and radius determination.

A&A, 509:A77, Jan. 2010. doi: 10.1051/0004-6361/200811437.

S. Kamann, N. Bastian, T. O. Husser, S. Martocchia, C. Usher, M. den Brok, S. Dreizler,
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F. Royer, J. Zorec, and A. E. Gómez. Rotational velocities of A-type stars. III. Velocity

distributions. A&A, 463(2):671–682, Feb. 2007. doi: 10.1051/0004-6361:20065224.

M. Salaris and S. Cassisi. Evolution of Stars and Stellar Populations. 2006.

E. L. Sandquist, J. Jessen-Hansen, M. D. Shetrone, K. Brogaard, S. Meibom, M. Leitner,

D. Stello, H. Bruntt, V. Antoci, J. A. Orosz, F. Grundahl, and S. Frandsen. The

Age and Distance of the Kepler Open Cluster NGC 6811 from an Eclipsing Binary,

Turnoff Star Pulsation, and Giant Asteroseismology. ApJ, 831(1):11, Nov. 2016. doi:

10.3847/0004-637X/831/1/11.



116 BIBLIOGRAPHY

E. L. Sandquist, D. Stello, T. Arentoft, K. Brogaard, F. Grundahl, A. Vanderburg,

A. Hedlund, R. DeWitt, T. R. Ackerman, M. Aguilar, A. J. Buckner, C. Juarez,

A. J. Ortiz, D. Richarte, D. I. Rivera, and L. Schlapfer. Variability in the Massive

Open Cluster NGC 1817 from K2: A Rich Population of Asteroseismic Red Clump,

Eclipsing Binary, and Main-sequence Pulsating Stars. AJ, 159(3):96, Mar. 2020. doi:

10.3847/1538-3881/ab68df.

M. Schönberg and S. Chandrasekhar. On the Evolution of the Main-Sequence Stars. ApJ,

96:161, Sept. 1942. doi: 10.1086/144444.

E. A. Spiegel and J. P. Zahn. The solar tachocline. A&A, 265:106–114, Nov. 1992.

M. P. L. Suijs, N. Langer, A. J. Poelarends, S. C. Yoon, A. Heger, and F. Herwig. White

dwarf spins from low-mass stellar evolution models. A&A, 481(3):L87–L90, Apr. 2008.

doi: 10.1051/0004-6361:200809411.

R. H. D. Townsend and S. A. Teitler. GYRE: an open-source stellar oscillation code based

on a new Magnus Multiple Shooting scheme. MNRAS, 435(4):3406–3418, Nov. 2013.

doi: 10.1093/mnras/stt1533.

F. Vincenzo, D. H. Weinberg, J. Montalbán, A. Miglio, S. Khan, E. J. Griffith, S. Has-

selquist, J. W. Johnson, J. A. Johnson, C. Nitschelm, and M. H. Pinsonneault. CNO

dredge-up in a sample of APOGEE/Kepler red giants: Tests of stellar models and

Galactic evolutionary trends of N/O and C/N. arXiv e-prints, art. arXiv:2106.03912,

June 2021. doi: 10.48550/arXiv.2106.03912.

H. von Zeipel. The radiative equilibrium of a rotating system of gaseous masses. MNRAS,

84:665–683, June 1924. doi: 10.1093/mnras/84.9.665.

X. Wu, C. Li, R. de Grijs, and L. Deng. First Observational Signature of Rotational

Deceleration in a Massive, Intermediate-age Star Cluster in the Magellanic Clouds.

ApJ, 826(1):L14, July 2016. doi: 10.3847/2041-8205/826/1/L14.

J. P. Zahn. Circulation and turbulence in rotating stars. A&A, 265:115–132, Nov. 1992.


	Introduction
	Stellar Evolution of Low- and Intermediate-Mass Stars
	Fundamental Equations of Stellar Structure Without Rotation
	Evolutionary Phases
	Main Sequence
	Sub Giant Branch
	Red Giant Branch
	Quiescent Core He Burning Phase (QCHeB)
	Asymptotic Giant Branch


	Rotating Stars
	Physical Description of Stellar Rotation
	Hydrostatic Equilibrium for Solid Body Rotation
	Stellar Surface and Gravity
	Breakdown of Radiative Equilibrium
	The Von Zeipel Theorem
	Shellular Rotation
	Meridional Circulation
	Shear Turbulence
	Horizontal Turbulence
	Transport of Angular Momentum
	Mixing and Transport of Chemical Elements
	Equations of Stellar Evolution with Rotation
	Interaction of Rotation and Radiation Effects


	Rotating Models
	Reference Rotating Models
	Mixing Efficiency
	HRD and Lifetimes
	Core Mass vs. Rotation
	Evolution of the Surface and Internal Rotation
	Surface Abundances

	Magnetic Fields

	Effect of Rotation-Induced Mixing of Chemicals on Secondary-Clump Stars
	Grid of Models
	Implementation of Rotation-Induced Mixing of Chemical Species

	Impact of Different Main Sequence Mixing Prescriptions
	Convective Core Overshooting
	Flat Dmix Profiles
	General Considerations

	Impact of Rotational Mixing on Synthetic Stellar Populations
	Stellar Populations with Extended Red Clumps
	Young Extended Clump (YEC)
	Old Extended Clump (OEC)
	Impact of Different Distributions of Initial Rotation Rates

	Preliminary Comparison with Observations
	Future Prospects

	Conclusions
	Appendices
	Expressions of E* and E
	Basic Concepts in Asteroseismology
	Driving Mechanisms

	Asteroseismic Masses


