ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

DIPARTIMENTO DI INGEGNERIA CIVILE, CHIMICA, AMBIENTALE E DEI MATERIALI - DICAM

CORSO DI LAUREA MAGISTRALE

TESI DI LAUREA

in

Offshore Engineering: Offshore Energy Technologies

Productivity and Cost Analysis of a Mechanical Clamshell Dredging Vessel

CANDIDATO Bensaid Mohamed Cherif RELATORE: Prof. Renata Archetti

Anno Accademico [2022/23]

Sessione II

Abstract:

Dredging is essential for maintaining waterway accessibility and supporting maritime economies. This thesis focuses on clamshell mechanical dredging, analysing factors affecting production rates (equipment, sediment, and operations) and cost components (maintenance, fuel, labour). It develops Excel-based cost estimation models, enhancing efficiency and decision-making. These spreadsheets utilize an adjustable cycle time and bucket fill factor to estimate production rates, allowing for flexibility in production calculations based on the time required to complete one dredging cycle and the material's capacity to occupy the bucket. The findings of this study can contribute to the optimization of dredging operations, ensuring efficient resource utilization and informed decision-making in various industries that rely on clamshell mechanical dredging for sediment excavation and removal.

Key words: Dredging, Mechanical Clamshell, Cycle Time, Bucket Fill Factor

Acknowledgement

I would like to express my deepest gratitude to all those who have contributed to the successful completion of my master's thesis. This academic journey would not have been possible without the invaluable support, guidance, and encouragement.

First and foremost, I would like to acknowledge my thesis advisor, Professor Archetti Renata, for her unwavering support, expertise, and dedication. Her guidance throughout the research process.

I want to extend my heartfelt thanks to DEME Group, Ardu MAssimo and all the team working in SIDRA, Ravenna Office, for providing me with the opportunity to undertake an internship during my master's program. This internship not only enriched my academic experience but also allowed me to gain practical insights into the subject matter of my thesis.

Furthermore, I am indebted to my professors, administration and fellow students who offered valuable insights and feedback throughout the master's duration. Your constructive criticism and encouragement motivated me to strive for excellence in my work.

I extend my gratitude to my family and friends for their understanding, patience, and encouragement throughout this journey. Your unwavering belief in me was a constant source of motivation.

Thank you all for being a part of this significant milestone in my academic and professional journey.

Table of content

Abstract: i						
Acknowledgementii						
Table of	Table of contentiii					
List of fig	gures	v				
List of ta	ables	vi				
1. Intr	roduction	1				
1.1	Dredging definition and overview	3				
1.2	Overview of dredging types	4				
2 Pro	ject overview	12				
2.1	Field of application and objective	13				
2.2	Materials characteristics	13				
3 Lite	erature review and methodology	15				
3.1	Literature review	15				
3.2	Methodology	16				
4 Pro	duction estimation procedure					
4.1	Cycle time (Tc _{ycle}):					
4.2	Swing Angle (ϑ_{sw})					
4.3	Swing Speed ($\omega_{\scriptscriptstyle SW}$)					
4.4	Fall velocity (u _f)					
4.5	Grab Time (t _g)					
4.6	Lift velocity (u _l)	19				
4.7	Empty time (t _e)	19				
4.8	Depth (d)	19				
4.9	Freeboard Hight of the Barge or hooper(h_b)	19				
4.10	Bucket fill factor	19				
4.11	Production estimation and delay factors					
5 Cos	st estimation procedure					
5.1	Operation cost	29				
5.2	Fuel and lubricants	29				
5.3	Mobilization and demobilization	30				
5.4	Crew and Labour	30				
5.5	Maintenance and repairs	31				
5.6	Depreciation and insurance	31				
5.7	Overhead and Bonding	31				
5.8	Cost factors					

	5.9	Rental equipment	. 32
	5.10	Additional costs	. 32
6	Арр	lications	. 33
	6.1	Data entry and calculation	. 33
	6.2	Production estimation	. 35
	6.3	Cost estimation calculations	. 39
7	Com	parison and Sensitivity analysis	. 43
	7.1	Comparison	. 43
	7.2	Sensitivity analysis	. 50
8	Con	clusion and Recommendations	. 55
Bibliography			. 57
A	Appendices		

List of figures

Figure 1-1 classification of types of dredgers	4
Figure 1-2 Typical characteristics components of trailing suction hopper dredger	5
Figure 1-3 Dredging cycle of mechanical hopper clamshell dredger	7
Figure 1-4 scheme of a Grab hopper Dredger "GHD" type	8
Figure 1-5 Operation of a Clamshell Bucket (Key Components, Open Position, Closed Position)	8
Figure 1-6 hoisting operation of the clamshell dredger	9
Figure 1-7 Distribution of Bucket Sizes in the USA (Multiply by 0.765 for m3)	. 10
Figure 1-8 Flat plates clamshell	. 10
Figure 1-9 Orange peel and Cactus grab	. 11
Figure 2-1Management of the dredging areas of the Ravenna Port HUB project	. 13
Figure 2-2 General plan of areas subject to mechanical dredging and onshore management of	
materials	
Figure 4-1 Fill Factor for Mud	
Figure 4-2 Fill Factor for Loose Sand	
Figure 4-3 Fill Factor for Compact Sand	. 21
Figure 4-4 Fill Factor for Sand and Clay	. 22
Figure 4-5 Fill Factor for Stones	. 22
Figure 4-6 Fill Factor for Broken Rock	
Figure 4-7 Comparison of bucket fill factors	. 24
Figure 4-8Comparison of Predicted Amount of Sediment Excavated Using the Different methods	. 25
Figure 4-9 Fill Factor Comparison for Small Buckets	. 25
Figure 5-1 Dredge prism illustration	. 28
Figure 7-1 Total Cost comparison	. 47
Figure 7-2 Production Cost comparison	
Figure 8-1 Cost vs Sediment type	. 50
Figure 8-2 Cost vs Sediment type without stone and broken rock	. 51
Figure 8-3 Cost vs Bucket size	. 51
Figure 8-4 Cost vs small bucket size	. 52
Figure 8-5 Cost vs large bucket size	. 52
Figure 8-6 Cost vs Dredging depth	
Figure 8-7 Cost vs daily working hours	. 53

List of tables

Table 6-1 time registration for the three dredges	
Table 6-2 data related to the project	
Table 6-3 dredge characteristics	
Table 6-4 Sediment types and other factors	
Table 6-5 cycle time parameters	
Table 6-6 production rate estimation zone 1+2+3	
Table 6-7 production rate estimation zone 4	
Table 6-8 production rate estimation zone 5	
Table 6-9 Capital Cost	
Table 6-10 Fuel calcuation for the project	
Table 6-11 Fuel estimation with default values	
Table 6-12 Total daily cost	
Table 6-13 Total Project Cost	
Table 7-1 Projects information	
Table 7-2 Production rate estimation	
Table 7-3 Cost estimation	
Table 7-4 Projects comparison	
Table 7-5 Production cost comparison	48

1. Introduction

Since the dawn of civilization and the development of established communities, there has always been a necessity to move people, machinery, materials, and goods via water routes. Consequently, there arose a demand to deepen the channel depths of various water bodies to ensure accessibility to ports and harbours. Most major ports worldwide periodically require dredging to expand their entry channels and manoeuvring areas, as well as to maintain suitable water depths alongside their facilities. Additionally, these waterways often necessitate regular upkeep through dredging. In the context of river navigation, dredging is also essential for establishing and sustaining crucial connections to inland ports and amenities.

In essence, dredging has played and will continue to play a critical role in the economies of most countries across the globe. Maritime transportation remains the predominant mode for transporting a wide range of commodities and is continually growing. Navigation initiatives must keep up with the evolving demands of maritime transport to uphold and support local, national, and regional economies. (IADC, 2010).

Clamshell mechanical dredging is a specialized method used for excavating and removing sediments from water bodies, particularly in marine and coastal environments. This technique involves the deployment of hydraulic or mechanical dredges equipped with clamshell buckets, which allow for efficient and precise sediment excavation. As clamshell mechanical dredging continues to be a prevalent practice in various industries, understanding its production capabilities and associated costs becomes paramount for project planning and decision-making.

An important term, when discussing dredging projects is production. Production, also known as output, in the context of dredging, is the rate at which in-situ sediment is removed from the bottom, expressed in terms of unit volume per unit time (Paparis,2017). This definition of production is used throughout the thesis.

This thesis aims to explore the production rates and cost estimation considerations specific to clamshell mechanical dredging operations. By conducting a comprehensive analysis of the factors influencing production rates, including dredging equipment specifications, sediment characteristics and operational parameters, this research seeks to provide valuable insights into optimizing the efficiency of clamshell mechanical dredging operations. Additionally, by examining the various cost components associated with dredging projects, such as equipment

maintenance, fuel consumption and labour. This study aims to develop Microsoft excel spreadsheet readily available for individuals outside the government and contractors' community. Focusing on the use of an adjustable cycle time and bucket fill factor to estimate the production rate. The cycle time is the amount of time required to complete one dredging cycle. The approach also permits variations in production because it considers the material's capacity to completely occupy the available volume. of the bucket (fill factor).

The introductory section of this thesis establishes the foundation for the subsequent chapters, outlining the objectives, significance, and structure of the study. It also provides an overview of clamshell mechanical dredging, including, equipment specifications, and common applications across different industries.

Objectives:

The primary objective of this thesis is to assess the production rates and cost estimation considerations for clamshell mechanical dredging operations. Specific objectives include:

Investigating the factors influencing production rates, including dredging equipment specifications (e.g., bucket size), sediment characteristics (e.g., type of sediment, bulking factor) and operational parameters (e.g., dredge cycle time, water depth).

Examining the various cost components associated with clamshell mechanical dredging projects including equipment maintenance, fuel consumption and labour.

Developing accurate cost estimation models based on the identified cost components to facilitate project budgeting and evaluation.

By addressing these objectives, this thesis aims to provide a comprehensive understanding of the production capabilities and cost considerations of clamshell mechanical dredging. The findings of this study can contribute to the optimization of dredging operations, ensuring efficient resource utilization and informed decision-making in various industries that rely on clamshell mechanical dredging for sediment excavation and removal.

1.1 Dredging definition and overview

Dredging is the removal of bottom sediments from streams, rivers, lakes, coastal waters, and oceans, and the resulting dredged material is then transported by ship, barge, or pipeline to a designated placement site on land or in the water where it is placed. Dredges can either be mechanical or hydraulic. (Randall,2016).

The primary aim is to maintain navigation channels at proper depths to allow a safe passage of vessels through the navigation waterways (canals, rivers, and harbours). Another objective would be to deepen existing navigable waterways, for example, several ports on the East Coast and Gulf Coast of the US have ongoing or planned dredging projects to deepen the existing ports to accommodate larger vessel traffic in response to the Panama Canal expansion, and the trend in the shipping industry toward larger cargo vessels (Bhadury, 2016). Moreover, land reclamation, such as the Chinese government's efforts in the South China Sea (Johnson, 2016), or removal of contaminated sediments. Also, to construct dams, dikes, and other control works for streams and seashore and to recover subaqueous deposits or marine life having commercial value.

These objectives are achieved by four dredging works:

a) Initial dredging: it is a job that is needed in the manufacture of a new port. This work has big funds and is done for long-established sedimentation.

b) Maintenance dredging: done at an existing port, with the aim to maintain navigation requirements in the port shipping channel. For instance, if the port is shallow the ships cannot dock. Therefore, dredging is carried out regularly at the port shipping channel.

c) Reclamation: aiming to move soil on the seabed from the dredging area to the embarkment area with the intention of increasing the area of landfill or other engineering needs.

d) Environmental dredging: dredging with reason to improve the environment of a water location. Included in this is moving soil or sediments affected by pollution.

Prior to dredging, an investigative survey and data collection must be carried out. The purpose of hydrographic implementation is to find out whether the depth of the bottom of the shipping channel has reached the depth design limit in accordance with the provisions for the shipping channel along with calculating the volume of material that must be dredged.

Hydrographic surveys (positioning, depth measurement and water level) are carried out before, during and after work.

In the dredging implementation, must consider the following method:

- a) Dredging is carried out by not having a negative impact on the port environment and the surrounding environment.
- b) The method used is adapted to the type of material, hydrographic survey, ecosystem and environment around the dredging site and the location of the dump.
- c) The dredged material is prepared in such a way to prevent it from returning to the dredging area (resuspension).
- d) Dredging is carried out by referring to the laws and regulations, national standardization, criteria and norms and other applicable provisions. (IJCIET,2018).

1.2 Overview of dredging types

The selection of dredging equipment for the implementation of certain projects is based on the availability of the dredgers fleet owned by the contractor as a candidate for the project (Pullar and Hughes,2009), or it can be rented. Thus, there are several aspects to be considered.

- a) The effectiveness of dredging equipment adapted to the type of sedimentation.
- b) The ability of dredging equipment to transport sediment from the dredging area to the disposal site.
- c) The flexibility in the work of dredging related to the weather conditions at the project site.
- d) Considerations of environmental aspect at the disposal site.
- e) The efficiency of the project.

The dredgers, in general, are divided into two groups: hydraulic and mechanical, as demonstrated in figure 1-1.

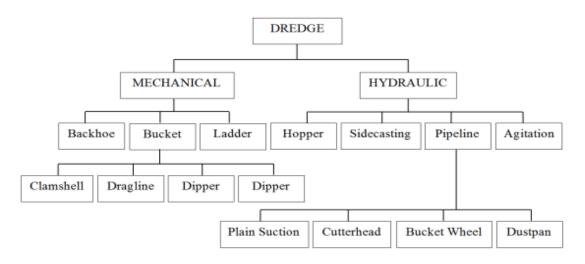


Figure 1-1 classification of types of dredgers

There are hopper dredgers, cutter head, dustpan, side casting and suction dredgers that use centrifugal pumps to pump such a dredged sedimentation and slurry from port and waterways. Meanwhile, for the mechanical dredgers, there are a bucket, clamshell bucket, backhoe, and dipper dredgers (Herbich, 1992),

Hydraulic dredgers

In the hydraulic dredging process, the force from the water jet can be directed toward the dredgers or away from the dredgers. The water jet will take the mixture of water and soil which is drawn by dredger. The process of soil lifted hydraulically/ pneumatic with a centrifugal pump, with a jet pump, by using the air (airlift) and with pump seabed. Centrifugal pump used to raise (vertical) and transport (horizontal). The dredging pump is not much different from the large water pumps, only impeller designed to allow large chunks to pass them. Jet-water at high pressure leads into the suction pipe. Jet-water flow with a mixture of water and soil (slurry) and tube venture-energy jet of water is converted into a "high-pressure water." The dredger effectiveness depends on the speed of the water jet and the characteristics of the material.

The dredger's effectiveness depends on the speed of the water jet and the characteristics of the material. Suction head shape assortment, includes:

a) Head-suction-flat as the Suction Dredger.

b) Ship-pull like the Trailing Suction Hopper Dredger. (Figure 1-2).

c) Dustpan head as in Dustpan Dredger. Sometimes ship-pull dustpan head was equipped with a jet of water to help the "exploitation" easier. (Hardy, T. P.,2016).

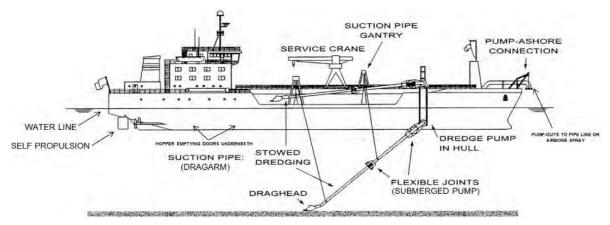


Figure 1-2 Typical characteristics components of trailing suction hopper dredger

Mechanical dredgers

They are suited for working in confined areas and are useful for removing the hand-packed material or debris, they are classified as dipper, bucket (clamshell), or bucket ladder dredges, depending on the means of excavation, with bucket dredges further classified as either clamshell, dragline, or backhoe, depending on equipment used.

Mechanical dredging is a preferred method for accomplishing environmental dredging as it extracts less water for a given in-situ sediment volume compared with hydraulic dredging methods. Most of the time, an environmental dredging project will use a specialised bucket that limits sediment resuspension during the dredging process. (Bergeron et al, 2000).

The main drawback of a mechanical dredge is its limited production rates. A hydraulic dredge generally can achieve sediment removal at a greater rate than a mechanical dredge.

The clamshell dredge has several advantages over its hydraulic counterparts. A mechanical dredge is well-suited for dredging in areas where manoeuvrability is restricted. It is also useful for projects with deep digging depths. Unlike a hydraulic dredge, whose digging depth is limited by the number of pumps and the length of the discharge piping, a mechanical clamshell dredge is limited by the length of the cable for raising and lowering the clamshell, also known as a grab. Therefore, for dredges of comparable size. A mechanical clamshell dredge has superior deep dredging capability (bray et al, 1997)

The clamshell mechanical dredge consists of a barge with a crane mounted on it: most clamshell dredges are not self-propelled and rely on tugboats for movement. However, to minimize the frequency of tugboat usage, most of non-propelled dredges will utilize spuds. A spud is a cylindrical or square pile that passes through the top of the dredge and can be lowered into the channel bottom. The spud allows the dredge to rotate about the point where the spud is lowered. A typical dredge will have three spuds, with one spud located towards the bow, and two towards the stern. The stern spuds are configurated, so they are symmetric about the centreline. Use of the spuds in conjunction with the ship's anchor allows the dredge to "walk" itself forward without the use of a tugboat (Randall,2016). The self-propelled clamshell dredgers the vessel has a hopper in which it can store the dredged material.

For grab (clamshell) dredgers the method of anchoring and the positioning system plays a key role for the effectiveness of the dredger. At every pontoon position an area as wide as possible will be dredged. Looking from the centreline, the volume to be dredged at the position decreases with the angle to the centreline.

The positioning is important to localize the bit of grab. This helps the dredge master to place the next bit after the fore going. Releasing the aft wires and pulling the fore wires does the movement of the pontoon. When the dredgers have the spud poles, this movement is done by a spud operation, which is more accurate than executed by wires. The dredging process is discontinuous and cyclic. (CEDA,2003)

The dredger excavates the sediments, loads them in the barge or hopper. In case of the hopper, the vessel sales to the placement site, it unloads the hopper and then goes back to the dredging site. Which is called the dredging cycle (figure 1-3). However, for the barge, the vessel stays in the dredging site, only the barge goes and returns from the placement site. So usually, there are two barges, to avoid wasting production time.

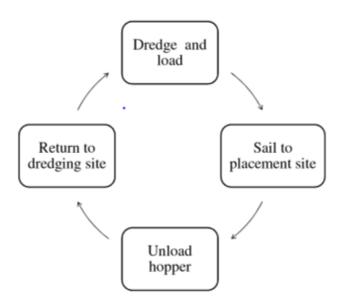


Figure 1-3 Dredging cycle of mechanical hopper clamshell dredger

Figure 1-4 is a scheme of a self-propelled Grab (Clamshell) Hopper Dredger GHD, that is used in Ravenna Port-Hub project. We can see the different essential components of the ship.

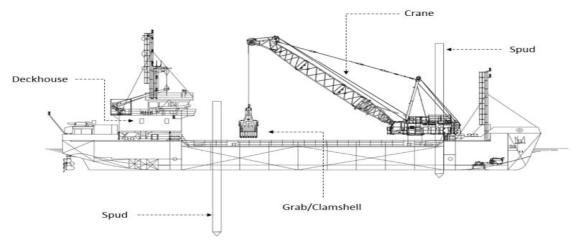


Figure 1-4 scheme of a Grab hopper Dredger "GHD" type

Figure 1-5 shows the various parts on a clamshell bucket. The hoist wire supports the weight of the clamshell and the sediment when it is full. The arm is what the actual bucket pivots around. During operation, the bucket is dropped or lowered into the sediment and then closed. The cutting edge penetrates and cuts the sediment. The bucket then closes and is lifted to the surface. There are some differences in clamshell buckets. The middle clamshell in the figure is a simple open bucket. Some buckets are closed with gaskets to prevent water from escaping. There are level cut clamshells such as the ones described by Bergeron (2000). These buckets are more useful for environmental dredging.

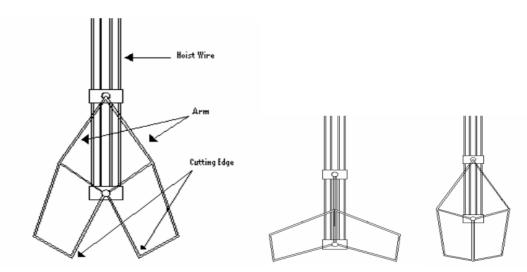


Figure 1-5 Operation of a Clamshell Bucket (Key Components, Open Position, Closed Position)

There are also other special buckets that are used for harvesting clams, these are made of mesh that allows sediments to escape. The figure displays the parts of a clamshell buckets as well as the bucket in the open and closed position. The bucket is lowered directly into the sediment in the open position. Once in the sediment, the clamshell is closed. Then, the bucket is lifted out of the sea floor of the waterway, and the sediment is then transported and placed in a barge or hopper in case a Grab Hopper Dredge (GHD). The right side of the figure shows the clamshell in the closed position. (Tsinker,2004)

The principle of this hoisting operation is given in the Figure 1-6 below. For a good craneworking behaviour the cable cranes have two motors:

• The hoisting motor, which drives the hoisting winch and

• The closing motor, which controls the closing and the opening of the grab. To avoid spinning of the clamshell a so-called tag wire is connected to the clamshell.

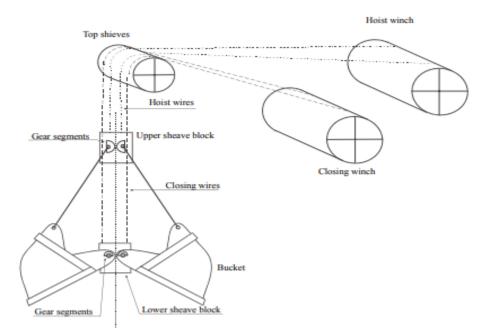
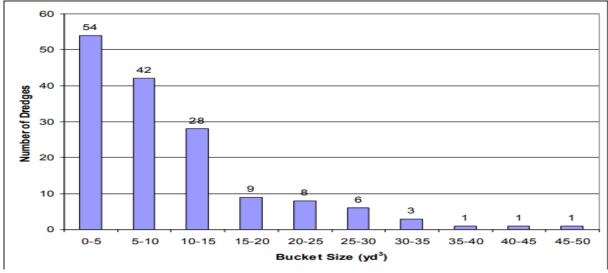
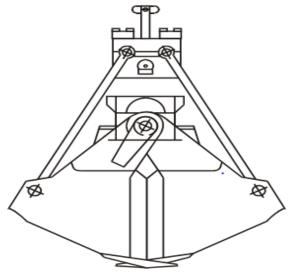



Figure 1-6 hoisting operation of the clamshell dredger


An important characteristic of mechanical dredges are the bucket and the bucket size, Figure 1-7 shows the distribution of bucket sizes for mechanical dredges for the United States in 2003 (IDR,2003). From the figure it is apparent that most buckets are smaller than 11 m³, and there are several buckets between 11 and 23 m³. After 23 m³ there are just a few buckets. The largest bucket found is 38 m³.

The clamshell most common and is used in are silty, clayey, and sandy materials. In mud the yaws in general have flat plates without teeth. In sand, clay and gravel, the yaws are fitted within each other grabbing teeth. As shown in the figure 1-8. The two halves, shells, rotate around a hinge in the lower sheave block and relate to the upper sheave block by rods.

The closure/hoist cable is referred several times between the head and the disc block to generate enough closing force. For the removal of the contaminated soil closed clamshells are used to avoid spillage.

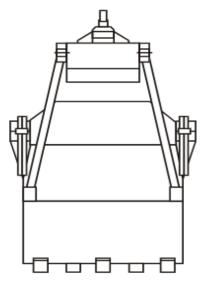


Figure 1-8 Flat plates clamshell

The orange peel grab is often used for the removal of large irregular pieces of rock and other irregular pieces. This type of grab has 8 yaws that in general do not close very well. The cactus bucket is used in the occurrence of both coarse and fine material at the same time. This grab has 3 or 4 yaws that close well in the closed position and form a proper bucket. The size of the bucket depends on the required production capacity of the crane. Both demonstrated in the figure 1-9 respectively.

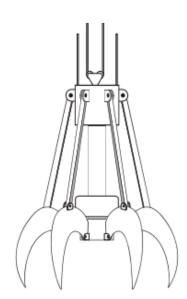
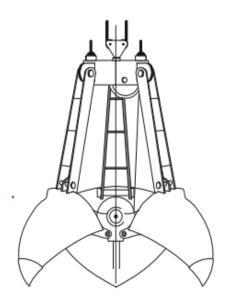



Figure 1-9 Orange peel and Cactus grab

2 Project overview

As part of the project "Port Hub of Ravenna of I phase" is planned to deepen the channels

Candiano (up to the San Vitale docks) and Baiona with reuse of the extracted material, the adaptation of the existing operating docks and the new Container Terminal, located in the Trattaroli peninsula in implementation of the P.R.P. in force in 2007.

The goal is to combine the development of the port with the need to create a depth uniform seabed, without altering the conditions of competitiveness of any of the terminal operators present in the port and at the same time producing a quantity of material resulting from the excavations compatible with current reuse capacity.

In particular, the project envisages, among other things, the deepening of the following areas:

- marine channel and outer port at -13.50 m a.s.l.
- Candiano canal at -12.50 m asl up to the San Vitale docks.
- Baiona dock up to -12.50 m a.s.l.
- evolution basin in the outer port and docks serving cruise traffic at -10.00 m.s.l.m.
- backdrops under the quays and on those whose interventions have been carried out based on existing projects previously authorized at levels -12.50 m/-11.50 m in relation to works carried out there.

In summary, the dredging of 4,742,000 m3 is expected in the final project (quantity on a natural desk) "Of which the immersion at sea is expected for 1,374,000 cubic meters; the remaining 3,368,000 cubic meters ..., like a final destination, for the filling - up to the highlighting - of some logistics areas on the ground ".

In the executive project, the outcomes of updated Bathymetric reliefs and a further campaign of characterization on the one hand have identified the suitability of the quality of the sediments for the immersion at sea for all the characterization cells (included between 379 and 402) of the Marine Canal of approach to the port of Ravenna - for a quantity of material equal to 1,200,000 m3 without O.D., and on the other, they determined the need to deposit all the remaining dredge material to the ground From the edge of the Foranee dams (cell 378) to the Darsena San Vitale in the port of Ravenna.

The overall dredging volume to be allocated to the ground is approximately 3,318,000 m3 Such the dredging will be implemented mechanically, through by self-propelled selfloading/unloading dredges "grab hopper dredger GHD" type. The material will be deposited in suitable modular tanks of provisional decanting and accumulation located long two different port plates. Depending on the type (parameters that fall within the limits of the "column A and B of Tab.1 ALL. 5 Title V Part IV of cited Legislative Decree no. 152/2006 ") The sediments will be located in different tanks.

2.1 Field of application and objective

The operational executive phases that are intended to implement/adopt for the dredging of deepening of the Candiano channel, of the Darsena Baiona, of the Evolution Basin in Avamporto and darsene at the service of traffic Cruise - by means of "GHD - Grab Hopper Dredger" type motor ships, equipped with Hydraulic rope excavator - material I tended for reuse in logistics areas on the ground (L2 and S3) and in "Cava la Bosca" are described. Therefore, not considering the dredging areas more external than the port (in -depth analysis at -13.50 m of the marine channel and the forefoot) as intended for immersion at sea. From the executive project approved the overall volume of the sediment to be subjected to mechanical dredging is approximately 3,318,000 m³ of silt - clay material located in different areas as part of the port of Ravenna. more exactly from the mouth of the breakwaters (area 1) to Darsena Sapir (zones 2 - 3 - 4 and 5).

2.2 Materials characteristics

To provide an updated picture of the quality status of the sediments, compared to previous one's investigations, dating back to 2014, which had not been carried out in accordance with the new sector regulations (Ministerial Decree n.173 of 15 July 2016 on the handling of marine sediments), In the 2019 a detailed characterization campaign of the dredged areas was carried out, in accordance with the provisions of the technical annex to the D.M. 173/2016, through the identification of n. 3 types of unit areas: typology 1 (50x50m mesh) close to the buildings inside the port, type 2 (100x100 mesh) in the central areas of the port; typology 3

Figure 2-1Management of the dredging areas of the Ravenna Port HUB project

(200x200 mesh) in the zones outside breakwaters. 403 unitary meshes were therefore identified.

The interpretation of the available analytical results of the characterizations of the dredged material intended exclusively for re-use on land, according to dredged sediment management options as by-products envisaged in Legislative Decree 152/2006 (pursuant to the criteria defined by article 184-bis), they have highlighted parameters that fall within the limits of "column A and B of table 1 Annex 5 Title V Part IV of the aforementioned Legislative Decree no. 152/2006".

Therefore, based on these investigations it is confirmed that the sediments to be dredged can be deposited on the ground in the logistics areas (L2 and S3) and in the "La Bosca" quarry. Only the material that will fall within the limits of "Table I column A of Annex 5 to Title V Part IV of Legislative Decree 152/06" will be used for the environmental restoration of the "La Bosca" quarry. These sediments, before being transferred to their final destination, will be "sample" characterized within the intermediate storage tanks (ref. PUT).

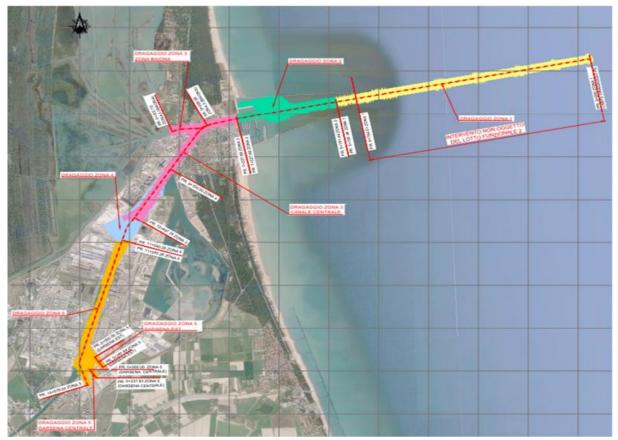


Figure 2-2 General plan of areas subject to mechanical dredging and onshore management of materials

3 Literature review and methodology

3.1 Literature review

Production of dredges is determined in several ways depending on the type of dredge. Bray et al (1997) first introduces production and cost estimating techniques that are available to the public and is useful in quantifying project costs that are not readily available. The authors approach dredge production estimating by identifying the dredge productive unit, dividing it by the appropriate cycle time-that is the amount of time required for the dredge to complete one cycle- and applying applicable modifications factors. The authors also provide techniques for calculating production rates for various dredge types, including the mechanical clamshell dredge. The production rate estimate methodology that this thesis relies on these techniques. And one of the focuses of this thesis is to determine the sensibility of production rate to cycle time.

Additionally, Bray et al (1997) explore the variety of costs one must consider when estimating a dredging project, and provide techniques for calculating these costs, such as mobilization and demobilization, plant capital costs, and plant running costs. Of a particular usefulness in developing the cost estimating program were the techniques for estimating fuel and lubricant costs, maintenance and repairs, capital costs of dredges, insurance, overhead, and financial charges.

The Center for Dredging Studies (CDS) developed the first publicly available general estimation program for dredges (Miertschin and Randall, 1998). This estimating program was developed for cutter suction dredges, and later expanded to include hopper dredges, (Belesimo, 2000) and clamshell dredges (Adair and Randall, 2006). Over the past twenty years, the CDS has built upon these estimating programs, with the completed program published by Wowtschuk (2016).

Adair (2004) used the techniques from Bray et al (1997) in developing the estimating program. It improves upon the concept of bucket fill factor, representing for the percentage of the bucket filled with sediments during a given dredge cycle, depending on the sediment type, bucket velocity, and fall velocity, this value can vary considerably. Dense or hard sediments make it difficult for the clamshell to close, and the sediment may contain large voids. Clays are difficult for a bucket to cut. If the bucket does not reach its maximum depth, it cannot fill completely. By applying the work of Bray et al (1997) as well as Emmons (2001) that did not allow for factors such as the rate of a bucket being raised or lowered, swing rate, as well as bucket opening and closing time. It is important to be able to vary the individual components

of the dredge cycle in mechanical clamshell dredging. In these projects it is common to limit the velocity that the clamshell is allowed to travel through the water column. Slowing down the bucket velocity reduces re-suspension and reduces the sediment from re-suspension when the bucket strikes the bottom. Besides bucket velocity, time to open the bucket, time to close the bucket, and the water depth. The combined time to complete all these tasks is the cycle time, which is combined with bucket volume to define production rate (m^3/h) .

Cycle time and fill factor are therefore the dominant parameters in mechanical dredge production. The cycle time provides the time required for each dredge cycle and the fill factor determines the amount of sediment removed each time. These factors are combined to estimate the maximum production rate for a clamshell dredge.

3.2 Methodology

This thesis will use a quantitative analysis method, by reviewing the implementation of the dredging project at the Port hub of Ravenna to deepen the channels Candiano (up to the San Vitale docks) and Baiona.

The procedure is divided into four phases. The first phase is estimating the cycle time. First, we must determine the parameters affecting the cycle time. These parameters are water depth, bucket fall and lift velocities, bucket close and open time, swing angle and swing velocity. (Adair, 2004).

Second, default values of these parameters are determined. For instance, the average swing angle is 120 degrees (Emmons, 2001). The method must allow the alteration of each parameter depending on the specification of the dredging operation. Accounting for particular cases such as environmental dredging, or a special bucket size. During an environmental project, the bucket ascends at one third of its normal rate. This provides a cycle time that works for both normal and particular cases.

The second phase for this method is to determine the bucket fill factor. The fill factor is the percentage of the total volume of the bucket that is filled with sediment. For certain materials, the bucket is not completely full. (Bray et al, 1997) provides limited data for fill factor for small dredges that are less than 8 m³. The fill factor for this method, which is developed by (Adair, 2004), comes from curve fitting these data points with limited data points for larger dredges. This provides the method for estimating production for a broad range of mechanical clamshell dredges. Accounting also for six different sediment classifications: mud, loose sand, compact sand, sand and clay, stones, and broken rocks. Mud refers to fine sediments

such as silts and clays, with a particle size of less than 0.075 mm (0.003 in), sands refer to particle sizes of 0.075 mm to 4.75 mm (0.003 in to 0.187 in), stones and broken rocks are particles larger than 4.75 mm (0.187 in) (Briaud, 2013). Once the production rate is determined, the project duration can be calculated by dividing the volume of sediment to be removed by the production rate. (Paparis,2017).

The third phase is to develop a cost estimating method that uses the output from the production calculations to determine project cost. For this phase standard estimation and values, used in previous related research and papers, are applied.

The final phase is to use the program to estimate the cost of other projects available to the public, compare it to the winning bid and the government estimation. A sensitivity analysis for the cost estimation program. The sensitivity analysis is done to determine how cost varies when influencing parameters are varied, such as bucket size, fill factor or the sediment type. Once the estimations are verified. The spreadsheet form can be used for a quick estimation of any mechanical clamshell dredging project.

4 **Production estimation procedure**

The production estimate determines how long it will take to complete a dredging project, given the equipment being used for the project, the conditions of the sediment being dredged, and the requirements for dredged material placement. Once the production rate is determined, the estimator can then determine the costs associated with the project (Bray, et al, 1997).

4.1 Cycle time (Tcycle):

The cycle time is the total time required for the dredge to empty, move to the desired location, fill the bucket, and empty it. With the increase of the cycle time, the project length will increase also the cost. The terms are defined as swing angle (θ_{sw}), swing angular velocity(ω_{sw}), bucket fall velocity (u_f), the time to close the bucket (t_g), the bucket lift velocity(u_l), the time to empty the bucket(t_e), the water depth (d), and the freeboard height of the barge (h_b).

$$Tcycle = 2*(\theta sw/\omega sw) + tg + te + uf(d + hb) + ul(d + hb)$$

$$4-1$$

4.2 Swing Angle (θ_{sw})

The first parameter is the swing angle. It is the difference between the location where sediment is dropped into the hopper and the location where the sediment is excavated. Swing angle is expressed in degrees for these calculations. An average value for swing angle is 120 degrees. This value is doubled when the total cycle tine is calculated to account for the swinging to and from the excavation site.

4.3 Swing Speed (ω_{sw})

swing speed is the rate that the mechanical clamshell dredge rotates to and from the excavation site and the hopper. This is consistent with the swing speed of large cranes, and a default value is 21 degrees per second.

4.4 Fall velocity (uf)

The rate or speed at which the bucket is lowered to the bottom is the fall velocity. The bucket can be dropped in freefall or lowered at a controlled rate.

4.5 Grab Time (tg)

The grab time is the time required to close the clamshell on the sediment and is given in seconds. A common grab time value is one second, and it can be adjusted for buckets of diverse sizes.

4.6 Lift velocity (u)

The velocity that the bucket is raised through the water column is the lift velocity. During environmental dredging, the lift velocity is decreased to control re-suspension. Re-suspension occurs when sediment leaves the bucket, sediment leaking out of the bucket, the impact of the clamshell of the bottom. This is a problem in environmental dredging where contaminated sediments are being excavated. A common value for the list velocity is about 0.3 m/s during environmental dredging is 1 m/s during normal dredging.

4.7 Empty time (t_e)

The empty time is the time required for the sediment to leave the bucket after opening. An average value is 2.6 seconds, which is the suggested default value.

4.8 Depth (d)

For cycle time the average depth is used. This the average excavation depth for the project. The depth is multiplied by the lift and the fall velocity to determine the amount of time the bucket is in the water column.

4.9 Freeboard Hight of the Barge or hooper(hb)

The barge freeboard height is the height above the free surface elevation that the bucket must be lifted. The freeboard height includes the height of the side of the barge plus any additional height necessary to clear the deck of the barge or hopper and any sediment. This freeboard height is then added to the depth to find the total distance that the bucket must travel vertically.

4.10 Bucket fill factor

(Adair, 2004) developed an exponential curve combining data from (Emmons, 2001) and (Bray, 1997). The factor stays below 1 for the bucket size up to 50 m3. If the fill factor values become greater than 1 it means the bucket is picking up a volume of sediments greater than its capacity. Since Adair (2004) classified the sediments into 6 categories, which are used to calculate bucket fill factor and bulking factor. The classifications are mud that consists of sediments such as loss silt, clays, and other fine-grained sediments. Loose sand that is not compacted. Compacted sand is dense that has been loaded or compacted. Sand and clay are a mixture of sands and clays. Stones are made of small rocks from gravel and cobbles. Broken rock is any sediment larger than cobbles. For these six categories, he developed respective equations:

The equation 4.2 is the bucket fill factor f_m related to the bucket size C for mud:

$$fm = 0.0474 * ln(C) + 0.7255$$
 4-2

With small buckets the fill factor is commonly between 75 and 85 percent. Once the bucket is 40 m³ or larger the fill factor is greater than 90 percent. The curve also fits the criteria that the fill factor is never greater than 1. It is also apparent from Figure 4-1 that it is important to be accurate with bucket size below 10 m³. The fill factor varies rapidly in this zone and can cause large errors in the production estimation program if an incorrect bucket size is used.

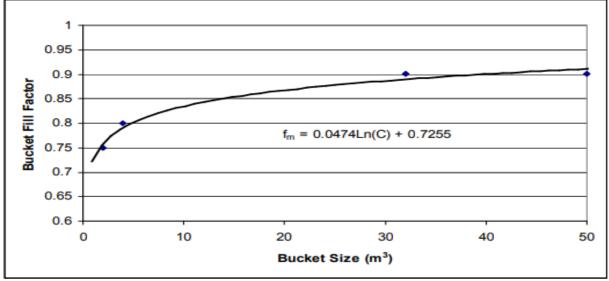


Figure 4-1 Fill Factor for Mud

Figure 4-2 is the fill factor curve for loose sand. Equation 4.3 is the bucket fill factor curve for loose sand: fm = 0.0614*Ln(C) + 0.6607 4-3

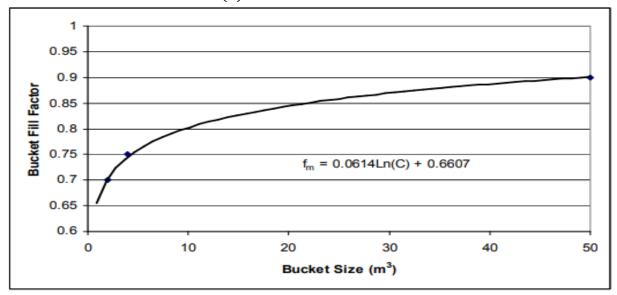


Figure 4-2 Fill Factor for Loose Sand

The curve begins at 0.65 and reaches 0.9 for 50 m³ buckets. One point is used at 50 m³ to keep the function below 1. It follows the same trend as the fill factor for mud with a very steep slope in the range with small buckets.

The fill factor curve for compact sand is displayed in Figure 4.3. Two additional points were used at 40 m³ and 50 m³ to keep the function below 1. The reason for this is that the initial slope is greater than the first two cases. With the two points the fill factor reaches 0.9 at 50 m³. The slope is relatively small once the bucket is larger than 20 m³. Equation 4.4 is the expression for compact sand:

fm = 0.0933*Ln(C) + 0.5517

4-4

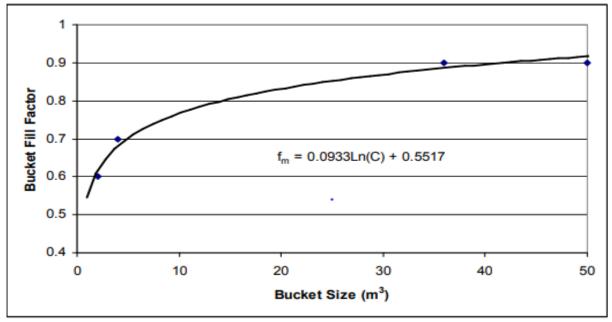


Figure 4-3 Fill Factor for Compact Sand

For sand and clay the fill factor reaches 0.9 in Figure 4-4. There is one point placed at 50 m³ to keep the curve below 1. The fill factor reaches 0.8 by 20 m³. Between 20 m³ and 50 m³ the slope is nearly linear. The sand/clay mixture continues the trend of rapid change between 0 and 20 m³. Equation 4.5 is the curve for sand and clay.

fm = 0.1228 * Ln(C) + 0.4214

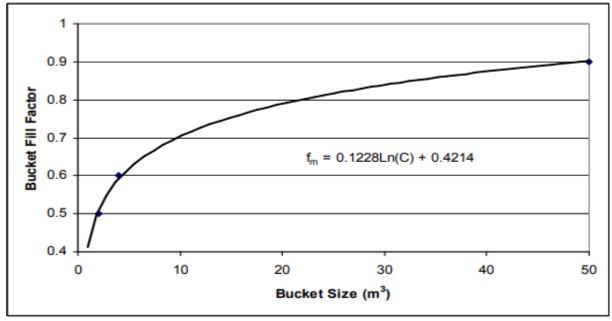


Figure 4-4 Fill Factor for Sand and Clay

The stone curve in Figure 4-5 is the first to not require an additional data point. When fitted to a natural log the fill factor stays below 1 from 0 to 50 m³ with the initial value as 0.25. Stones normally have a small fill factor for small buckets. The reason is that it is difficult for small light buckets to penetrate stones. The fill factor has a range from 0.25 at 0 to 0.81 at 50 m³. The expression for the stone fill factor curve is Equation 4.6:

$$fm = 0.1443*Ln(C) + 0.25$$

4-6

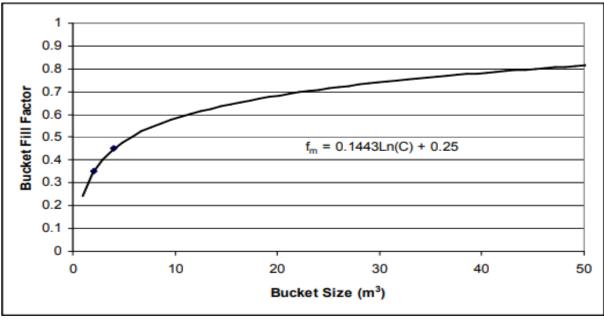


Figure 4-5 Fill Factor for Stones

Broken rock is the most difficult sediment type to excavate, and it is very irregularly shaped. This sediment type also contains the largest variation in sediment sizes. The third reason broken rock has a low fill factor is that large voids can form between rocks. Figure 4-6 shows the fill factor curve for broken rock. The initial value for broken rock is 0.1 and at 50 m³. The fill factor approaches 0.7. Like the stone curve it is not necessary to force the curve below 1. The equation for the broken rock bucket factor is Equation 4.7:

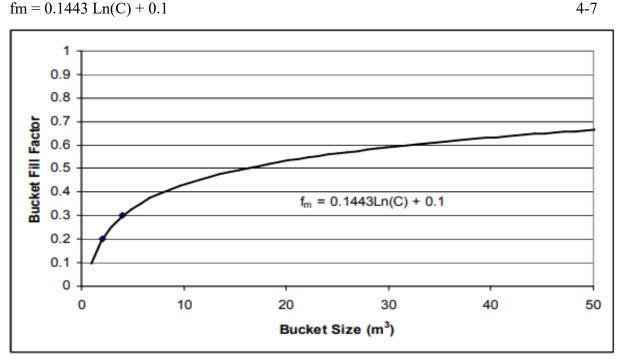


Figure 4-6 Fill Factor for Broken Rock

4.10.1 Comparison of methods for estimating bucket fill factor

Adair (2004) compared Bray (1997) method (1), which provides two values for fill factor for each sediment type. However, it is valid only for relatively small buckets (<10m³). Emmons (2001) method (2) that accounts for the bucket size and sediment type. And his method (3) that is already discussed previously. The method 1 and 3 use the same sediment classifications, which is also used in this thesis, the method 3 uses a slightly different classification. The three methods include sand, so the comparison is based on sand.

Figure 4-7 shows a comparison between the bucket fill factor and the bucket size, the range used for the comparison is up to 50 m³. From the graph we notice the method 2 begins above 1 and the drops below 1 at approximately 5 m³. The curve stays close to 1 up to 40 m³ and then starts decreasing to reach 0.9 around 50 m³. For the methods 3, it starts near 0.7 and

gradually increases to 0.9 from 30 to 50 m³. Method 1 is divided into two parts, method 1a which is the range of the small buckets, where it is effective. However, in the second part, Method 1b, once it passes that range it exceeds 1 and keep increasing. So, it is not designed to work past a certain point.

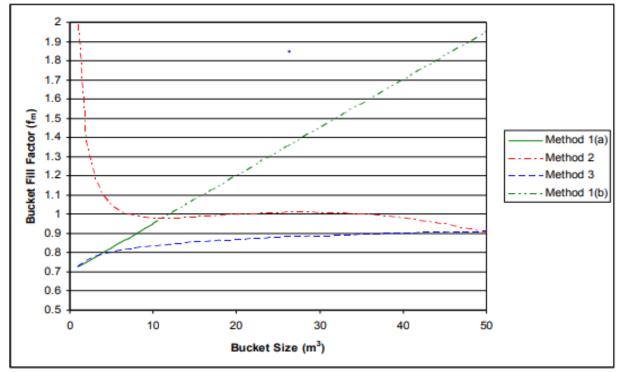


Figure 4-7 Comparison of bucket fill factors

Figure 4-8 is the relationship between the three fill factor methods. The purpose of the graph is to display the relationship between the size of the bucket, and the amount of sediment the methods predicts to be dredged. The graph is over a full range of bucket sizes up to 50 m³. The predicted amount of sediment dredged (Pe) is the fill factor (fm) for a specific method multiplied by the actual size (C). Equation 4.8 is the relationship between the predicted amount of sediment dredged and the fill factor.

$$Pe = (C)(fm)$$
 4-8

Whenever the curve for a method is less than the actual size curve the fill factor is less than 1, and when the curve for a fill factor is greater than the actual size the fill factor is greater than 1. All three methods appear to be collinear up to 20 m^3 . At about 20 m^3 method 1 begins to diverge from the actual bucket size, and it becomes unusable because the predicted amount of sediment dredged becomes larger than the actual size of the bucket. The other two methods function well to 50 m^3 .

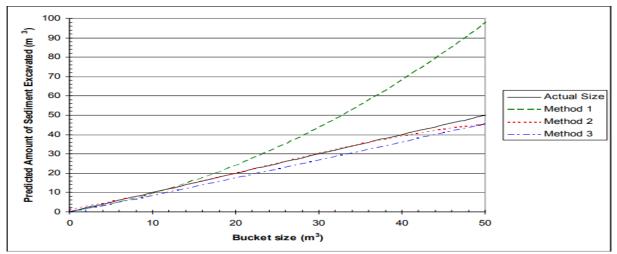


Figure 4-8Comparison of Predicted Amount of Sediment Excavated Using the Different methods.

Figure 4-9 demonstrates the relationship between the three methods and the actual size for buckets from 0 to 10 m³. Method 2 is nearly collinear with the actual size between 6 m³ and 10 m³, up to 6 m³ method 2 predicts the factored size to be greater than the actual size. Up to 5 m³ method 1 and method 3 are similar. Both methods stay well below the actual size in this range. At 5 m³ method 1 begins to approach the actual size curve. Method 3 stays significantly less than the actual size curve until after 10 m³ Method 3, developed by (Adair,2004), provides the best results for both large and small buckets.

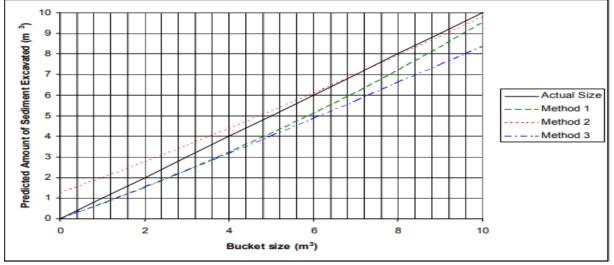


Figure 4-9 Fill Factor Comparison for Small Buckets

4.11 Production estimation and delay factors

Once cycle time (T_{cycle}) and bucket fill factor (f_m) are calculated, they are used to evaluate the nominal production (P_{nom}). Bray (1997) defines nominal production as:

$$P_{nom} = \frac{3600}{\text{Tcycle}} C f_m$$

Equation 4.9 is the nominal production m³ per hour. Nevertheless, the nominal production can be delayed for several reasons, for instance, the time required to empty the hopper or advance the dredge.

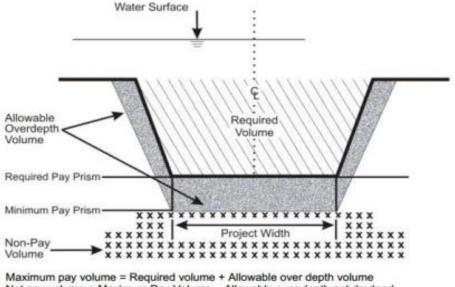
The first delay factor (f_a) to consider is the time to advance the dredge. (Bray et al, 1997) defines this as:

$$f_a = \frac{1}{1 + \frac{taPnomB}{zA}}$$
 4-10

in equation 4.10, t_a is the time required to advance the dredge, B is the bulking factor that is dependent on the sediment type and water content, A is the average area dredged, and z is the average thickness of the material. The second major delay is the time for changing hopper barge (f_h)

$$fh = \frac{1}{1 + \frac{tafaPnomB}{H}}$$
 4-11

All the variables in equation 4 11 are the same in equation 4.10 with the addition of the hopper capacity H in meters, and t_{he} is the time required to change the hopper. Once the delay factors are calculated, the actual production (P_{act}) can be calculated:


$$\mathbf{P}_{act} = \mathbf{P}_{nom} \mathbf{f}_a \mathbf{f}_h \tag{4.12}$$

 P_{act} is the actual production rate of the dredge (m³/h). However, it does not include delays due to harsh weather, passing vessels or equipment malfunction. (Bray et al, 1997) account for these factors and since these factors vary depending on the project, (Paparis, 2017) estimated 85%. The actual production rate used for developing the cost estimate is 85% of the calculated production rate.

5 Cost estimation procedure

The development of the cost estimate is based on the estimation of the production rate demonstrated previously. The estimated volume to be produced is divided by the daily production rate, in order, to determine the number of days needed for the project completion. We also need to determine the daily project cost. That includes crew and labour, fuel and lubricants, repairs and maintenance and mobilization/ demobilization. After multiplying the daily cost with the project length, we add depreciation, insurance bonding and profit, to estimate the total project cost. All that with the appropriate inflation, currency, and location factors.

The contact contains line items regarding the cost, dredge and dispose of certain in-situ volume of bottom sediment. Usually, there is one more option item, which allows the dredging for an additional volume of material, environmental monitoring, and deployment of environmental controls. The contract allows for an over-dredging allowance. The contractor is allowed a certain depth of removal beyond the target dredging depth, where the contractor will be paid on cubic meter basis. Figure 5-1 demonstrates this concept, known as the dredging prism. Since the purpose of dredging is primarily the maintenance or deepening of navigation channels, the dredging prism ensures that the desired channel depth is achieved without requiring a level of precision that is not feasible for a dredge to achieve. (US Army Corps of Engineers)

Net pay volume = Maximum Pay Volume – Allowable over depth not dredged Gross Volume = Net pay volume + non-pay volume

Figure 5-1 Dredge prism illustration

5.1 Operation cost

Operating costs are one of the most important costs to be determined, and they are the summation of costs associated with operating during the timespan of project execution. The duration of the project is determined by dividing the average production rate, which is measured in cubic meters per hour. By the estimated volume of sediments to be dredged. The operation costs are the summation of crew and labour, fuel and lubricants, maintenance and repairs, insurance, and depreciation. The information around these costs is not available to the public. However, Bray et al (1997) provide an insight into the capital costs of clamshell dredges, and present varied sizes and varieties of dredging plants, to provide an indication of the average relative costs. Also provide assumptions and parameters that can be applied to each of the cost factors estimations purposes.

It is necessary to convert prices from one currency to the other, depending on the inflation rate, year, and location. For that we need cost index. In this case, PPI index was chosen because the intent is to measure price changes related to shipbuilding costs.

To account for the inflation rate, a sub-index was used in the equation 5-1:

$$E = \frac{Inew-Iold}{Iold} * 100\%$$
 5-1

Where E is the inflation rate, I_{old} is old the index value, I_{new} is the new index value. For the current and old index values, the average values for the year 2022 and 2015 were used respectively, from Producer Price Index by Industry: Ship Building and Repairing.

After developing the exchange and inflation rates, they were applied to the capital cost data from Bray et al (1997) as follows in the equation 5-2:

$$CC_{\ell} = CCf^* \frac{1+E}{X}$$
 5-2

Where CC_{ε} is the current capital cost in euros, CC_{f} is the capital cost value from (Paparis, 2017), in Dollars, X is the exchange rate in terms of Dollars to Euros. Based on this formula, a capital cost of approximately 17,7 million euros was obtained for a clamshell dredge.

5.2 Fuel and lubricants

The cost of fuel and lubricants is a substantial portion of the operating costs for a dredging project. The process for determining the fuel and lubricants costs of a dredging project is based on the installed horsepower of the dredge. (Paparis,2017).

For this parameter, the dredges installed horsepower from the characteristic's brochure were used, the operating hours per day, a conversion factor that equates horsepower usage to fuel consumption, and the price of the MGO (Marine Gas Oil) fuel European annual average was obtained. To compare the results obtained by the program with other projects, a default installed horsepower value was established by using an average value of installed horsepower as reported in a directory of dredges (Richardson, 2016), and a fuel consumption rate of 0.182L/hr per installed horsepower was adopted (Bray et al, 1997). The MGO. Lubricant costs were assumed to be 10% of fuel costs. The result is the daily fuel and lubricants costs.

5.3 Mobilization and demobilization

Mobilization and demobilization cost is the price associated with the transportation of dredging equipment to and from the job site. (Wowtschuk,2016). These are difficult to predict for any given project. As Randall (2000) outlines, the difficulty comes from the fact that no two dredges are the same distance away from a job site or in the same readiness to mobilize. Moreover, the cost varies with the distance, time of year and type of contract. Most of clamshell dredges are not self-propelled, they need to be transported, and they may require set-up or tear down. There is also the cost of transporting personnel to and from the job site. Due to the variability of mobilization costs, Paparis (2017) developed a default value for dredging mobilization and demobilization, based on a review of eight clamshell dredging projects. The default value is a percentage of a winning bid value that was for mobilization/non-mobilization costs.

It was determined by taking the value of the mobilization/demobilization contract line item and dividing it by the total remaining contract value (e.g., total contract value minus the mobilization and demobilization costs). This process was applied for each of the eight contracts, and the median value of the results, 10,2%, was used.

5.4 Crew and Labour

Labour consists of personnel necessary for the operation of the dredge, it is another sizeable portion of a dredge's operation costs. The size of the crew varies depending on the project and job conditions. Typical crew size of a mechanical clamshell dredge, hourly wages rates were obtained from Department of Labour and Industrial relations or American Society of Professional Estimators. (Fricklas, R.L.,2013). For each hourly rate, a job-specific workman's compensation rate is applied to the "bare" wage rates, as well as an additional "wage overhead" rate to account for items such a payroll taxes, unemployment insurance, risk

insurance, and public liability costs. The result is a "burdened" hourly rate, which is then multiplied by the number of hours worked per day to develop a daily labour cost.

5.5 Maintenance and repairs

(Bray et al,1997) define maintenance needs in two categories: routine maintenance and running repairs, as well as major repairs and overhaul. Minor repairs entail work that can be done during operations with minimal interruption and recommended as a daily cost of 0.000130 time the capital cost of a mechanical clamshell dredge. The major repairs cost per operating day is 0.000250 of the capital cost.

5.6 Depreciation and insurance

Depreciation is the rate at which the dredge losses value over time and will depend on the owner's fiscal policy. For simplification, linear depreciation to zero is used with an assumed service life of 25 years. To calculate the daily depreciation in the program, the annual depreciation is then divided by the average number of working days per year. (Bray et al, 1997) recommend an average annual insurance premium of 2,5% of the insured value of the dredging plant. For the purposes of this estimating program, the insured value is assumed to be the same as the capital cost of the dredge. The annual insurance cost is then divided by the number of working days per year to obtain a daily insurance cost to use in a project estimate.

5.7 Overhead and Bonding

The additional operating expenses of a dredge that cannot be conveniently identified or traced are covered by overhead cost. Overhead costs include job office, engineering, quality control costs. (Fricklas, R.L.,2013). Naturally, overhead costs vary from contractor to another, but (Bray et al, 1997) recommend 9%. Bonding is a guarantee of performance of work and a protection against losses for the client, (Belesimo,2000) recommends a project bonding cost between 1 and 1,5 % of the operation cost. The overhead and bonding can be combined to be 10% of the operating cost. The profit is determined by the individual contractor, and it defers from one job to another. (Paparis,2017).

5.8 Cost factors

Fuels costs and wages are location and time dependents, they must be adjusted to reflect the location and year differences, as mentioned above, subindices were obtained for the specific industry (Ship Building and Repairing PCU336611336611), to be as accurate as possible. Whereas, the location factor, we need to change from the United States of America to Italy, and for that OECD price level indices were used. So, the total cost estimate may be adjusted to produce results more accurate to a specific location or time period. When it comes to

comparing the projects within the USA, yearly inflation and other location factor were used, that are more region related, since they belong to the same country, they were provided by the US Army corps of Engineers (USACE).

5.9 Rental equipment

Because of the large capital investment involved and the unique expertise required, it is not unusual for dredging contractors to rent some of their equipment, such as additional tugs, scows or even a dredger; in case one the contractor's dredger is not available.

5.10 Additional costs

There are additional costs that common to the dredging projects but do not fall into any of the above cost categories. These costs vary greatly from project to project and may include site surveys, environmental protection devices.

6 Applications

All the parameters mentioned above to calculate the production rate and the project cost are included in 4 spreadsheets, the first one for zone 1+2+3, the second for zone 4, third for zone 5 (both will be just an estimation since the production did not start yet), the final spreadsheet will be a comparison with data that were available publicly of other projects. The program is based on the limited information in dredging projects and default values that were estimated throughout the years. However, with the available data such as the volume to be dredged, the bucket size, depth, and hopper capacity, we can provide an estimation of the production rate and cost of the project. Since, location and yearly cost factors were implemented, we can study or estimate the output of any clamshell dredging project. Even with specific job, it would suffice just to modify the default values. The spreadsheets are colour coded, the yellow cells refer to the default values acquired as an average from other dredging projects when project related data are not known, the blue cells refer to the data of the project using clamshell dredge, collected from the company (DEME group). The light blue is for each dredger and the darker blue is for the three of them together. The green cell refers to the automated values based on the calculation explained in the previous sections. Finally, the light green cells are for the results that we are seeking.

6.1 Data entry and calculation

The calculations were based on the data provided for the month of April,2023 regarding the volume to be dredged and which zone to be dredged. As shown the table below. In this project three dredgers were used (Angelo B, Cavour, Gioacchino Bacheto), for the zone 1+2+3. For one the month of March, the delay includes, traffic, maintenance, and repairs, waiting for fuel, third party intervention shown the table 6-1 below.

Time registration(h)	Gioacchino Bacheto	Angelo B	Cavour
Sailing empty	0,46	0,37	0,47
Sailing loaded	0,48	0,37	0,52
Operations	1,62	1,49	1,46
Unloading	1,14	1,05	1,32
Hours per day	10,30	11,23	9,44
Delay %	23,90	11,26	27,14

Table 6-1 t	time registration	for the	three dredges
-------------	-------------------	---------	---------------

Table 6-2 data related to the project

	Volume to be dredged	Volume	Volume to be dredged	Depth
	(m^3)	dredged (m ³)	from 30 of April ^(m3)	(m)
Zone 1+2+3	1876000	602150	1428410	12
Zone 4	694000,00	0		12
Zone 5	748000,00	0		12

In the excel spreadsheet there is a drop-down list to choose which dredge to use for the calculations and the data will be auto filled from the table 6-3 below. The data were gathered from the characteristics brochure of each dredge provided by the company.

Table 6-3 dredge characteristics

	bucket	Hopper	Volume	daily		
	size	capacity	dredged	working	Horsepower	Fuel
Dredger type	(m^3)	(m^3)	(m^3)	hours (h)	(HP)	(L/day)
Angelo B	9,60	1000	402950	11,23	3202	1290
Cavour	5	500	92750	9,44	850	450
Giochino Bacheto	7,10	800	106450	10,30	2400	1050
total	21,70	2300	602150	10,32	6452	2790

After choosing which dredge, we need to choose what type of sediment is being dredged, it is one of the key factors, since it also affects the production rate. Therefore, the cost of the project. In the project the type of sediment is Clay, so in this thesis, Sand and Clay was chosen as a default value. It can still be modified depending on the specifics of the project. from there we will have the bulking factor, which is the amount of sediment is expected to swell (bulk) when it is excavated. This value is used to predict how often the hopper is filled. The fill factor, which is calculated for each type of sediment using the bucket size, and the capacity factor that accounts for the actual capacity of the bucket being used, multiplying it with the bucket size to obtain the adjusted capacity (C adjusted).

Soil type		В	Bulking factor (B)		Fill Factor (Fm)		capacity factor	
Mud	1		1,15		0,86		1	
Loose Sand	2		1,10		0,84		0,72	
Compact Sand	3		1,30		0,82		0,72	
Sand and Clay	4		1,25		0,78		0,72	
Stones	5		1,30		0,67		0,36	
Broken Rock	6		1,50		0,52		0,36	

The default values for cycle time parameters are based on values from (Adair,2004). Table 6-5 provides a summary of the default values used the estimation of production rate. Later on, there will be another column to the adjusted values, if the project data are available and different from the default ones.

	~ -			
lable	6-5	cycle	time	parameters

Factors	default	
average swing angle	120	Degree
swing speed	21	degree/s
lift velocity	1	М
grab time	1	S
fall velocity	1	m/s
time to empty clamshell	2,60	S
Height of freeboard	2	М

6.2 **Production estimation**

In the table 6-6 below, we have two calculation columns and one for the default values in case data is not available for a certain parameter or they can coincide. The first column is for a specific dredge that is selected from the drop-down list mentioned before, and the maximal daily production rate will be calculated, then the number of days needed to dredge the whole volume if the dredge operates alone.

The second column calculates the summation of the three of them, because they are used at the same time, an average is taken when needed (e.g., the daily working hours), the actual production rate is then calculated, and the number of days needed to finish the project.

In the table 6-6 we can find inputs that were not identified before, such as, (A) which is the area that the dredge can excavate before it has to more, or otherwise called cells (e.g., cell 345), because each zone is divided into cells. (z) is the thickness of the material to be dredged (h) is the freeboard height is the distance needed for the sediment to be emptied in the hopper. The delay factors that should be accounted for like; the time needed to advance the dredge (fa).

Table (6-6	production	rate	estimation	zone	1+2+3
---------	-----	------------	------	------------	------	-------

parameters	Value		Defaults	Units		
Sediment type	4	4	4			
А	10000	30000		m^2	average area dredged	
Ζ	2	2	2	М	thickness of material dredged	
Н	1000	2300		m^3	Hopper capacity	
С	9,60	21,70		m^3	Capacity of the bucket	
V	1428410,00	1428410,00		m^3	volume to be dredged	
D	12	12		М	depth	
Н	2	2	2	М	offboard height	
Та	0,33	0,33	0,33	Hrs	time to advance the barge	
Sa	120	120	120	Deg	average swing angle	
Th	1	1	0,25	Hrs	time to change the hopper	
В	1,25	1,25	1,25		Bulking factor	
					delay factor for advancing	
Fa	0,99	0,99			the dredger	
Fh	0,64	0,65			delay factor for changing the hopper	
Fm	0,78	0,78	0,78		fill factor	
Fc	0,72	0,72	0,72		Capacity factor	
C adjusted	6,91	15,62		m^3	modification factor	
Volume dredged	402950	602150		m^3	volume of sediments dredged	
СТ	43,03	43,03		seconds	Cycle time	
Pnom	451,07	1019,61		m^3/hr	Nominal production	
Pmax	286,73	653,12		m^3/hr	Max production	
	14795,38	33700,73		m^3/wee	k	
Total dredging						
time	4981,69	2187,07		Hrs		
	443,61	211,93		days		
		212				

This was for the ongoing project zone 1+2+3; the company estimation was 215 days. Therefore, we can say that is a good production rate estimation. There are two other zones, zone 4 and zone 5. Which, they were planned, estimated and to be executed in the future. For these two zones, the volume to be dredged in zone 4 is 694000 m3 and zone 5 is 748000 m3. the rest of the parameters are the same, regarding the sediment type, the dredgers used, the bucket size, as illustrated in the table 6-7 and table 6-8 respectively.

Value		Defaults	Units	
4	4	4		
10000	30000		m^2	average area dredged
2	2	2	Μ	thickness of material dredged
1000	2300		m^3	Hopper capacity
9,60	21,70		m^3	Capacity of the bucket
694000,00	694000,00		m^3	volume to be dredged
12	12		М	depth
2	2	2	М	offboard hight
0,33	0,33	0,33	Hrs	time to advance the barge
120	120	120	Deg	average swing angle
1	1	0,25	Hrs	time to change the hopper
1,25	1,25	1,25		Bulking factor
				delay factor for advancing the
0,991	0,99			dredger
				delay factor for changing the
0,64	0,65			hopper
0,78	0,78	0,78		fill factor
0,72	0,72	0,72		Capacity factor
6,91	15,62			modification factor
				volume of sediments actually
	602150		m^3	dredged
43,03	43,03		seconds	Cycle time
451,07	1019,61		m^3/hr	Nominal production
286,73	653,12		m^3/hr	Max production
14795,38	33700,73		m^3/wee	k k
2420,38	1062,60		Hrs	
215,53	102,97		days	
	103			

Table 6-7 production rate estimation zone 4

Table 6-8	production	rate	estimation	zone	5
-----------	------------	------	------------	------	---

Value		Defaults	Units	
4	4	4		
10000	30000		m^2	average area dredged
2	2	2	М	thickness of material dredged
1000	2300		m^3	Hopper capacity
9,60	21,70		m^3	Capacity of the bucket
748000	748000		m^3	volume to be dredged
12	12		М	depth
2	2	2	М	offboard hight
0,33	0,33	0,33	Hrs	time to advance the barge
120	120	120	deg	average swing angle
1	1	0,25	Hrs	time to change the hopper
1,25	1,25	1,25		Bulking factor
0.00				delay factor for advancing the
0,99	0,99			dredger
0,64	0,65			delay factor for changing the hopper
0,04	0,03	0,78		fill factor
0,78	0,73	0,78		Capacity factor
6,91	15,62	0,72		modification factor
0,71	10,02			volume of sediments actually
	602150		m^3	dredged
43,03	43,03		seconds	Cycle time
451,07	1019,61		m^3/hr	Nominal production
286,73	653,11		m^3/hr	Max production
14795,38	33700,73		m^3/wee	k
2608,71	1145,28		Hrs	
232,30	110,98		days	
	111			

The company estimation was 104 and 112 days for zone 4 and zone 5 respectively. So, again the program estimation was satisfactory. In the next part, we will start the cost estimation of the project based on the data obtain from these tables.

6.3 Cost estimation calculations

The data to estimate the cost of dredging project are not available to the public. However, a handful of papers, research and appendices form certain projects gave the opportunity for the calculation of the cost. Therefore, default values were used as per the production rate estimation. The program allows the change of data if accurate information were to be known.

We start by calculating the capital cost of a clamshell mechanical dredging project, (Paparis, 2017) estimated it to be 14,5 million dollars in 2015. To convert that amount to 2023, inflation was calculated using cost indices (I_{old} , I_{new}) for 2015 and 2022 respectively, obtained from the Bureau of Labour and Statistics Data, as explained in the cost estimation procedure section. Then, the currency was accounted for by changing from US Dollars to Euros based on the currency exchange in this year (0,93). The capital cost for a dredging project for the year 2023 is estimated to be around 17,7 Million euros, as shown in the table 6-9 below.

Table 6-9 Capital Cost

Capital cost		
I _{old}	203,89	2015
I _{new}	231,98	2022
inflation	0,14	
Capital cost	17715555,42	Euros

The second step was to calculate the fuel consumption. For this calculation as explained in the Fuel and Lubricants section, two tables are provided. One specific to this project as showed in the table 6-10, since the Fuel consumption per day was obtained, the working hours per day was calculated and the fuel price for the MGO (Marine Gas Oil) was obtained from the EMEA average Banker values (0,8635 Dollars/L), from these data the Fuel cost per day is estimated to be 2409,265 Dollars/day.

Table 6-10 Fuel calculation for the project

Fuel calculation		
Fuel consumption	2790	L/day
Fuel price	0,86	dollars/L
Fuel cost per day	2409,17	dollars/day

A second table using default values provided by (Bray et al, 1997), in the table 6-11. Where the consumption rate is estimated to be 0,0481 gal/HP-hr, an average installed horsepower of 2038 HP, and sixteen working hours per day. These calculations were made for the year 2015, so the price of the fuel back then was used, 2,74 Dollars. So, the fuel cost per day was 4297,5 Dollars/day. And this table will be used for the next section.

Fuel calculation		
Consumption rate	0,048	gal/HP-Hr
Average HP	2038	
	98,03	gal/hr
Fuel consumption	1568,45	gal/day
Fuel price	2,74	Dollars
Fuel cost per day	4297,54	dollars/day

Table 6-11 Fuel estimation with default values

Now, that we calculated the capital cost and fuel consumption, we can calculate the daily cost of the project first. The table 6-12 contains the costs that will be summed to estimate the total daily cost. The fuel is already calculated, for the lubricants and as pointed in a previous section, it is determined to be 10% of the fuel price per day. Next, Minor and Major repairs were evaluated by multiplying the capital cost by 0.000130 and 0.000250, respectively. For the daily insurance, the capital cost was multiplied by 25% and divided by the estimated number of days needed to dredge the total volume of sediments. A depreciation of 25 years of lifespan was estimated, and then divided by the working days per year. For this project we have a total of fourteen crew members working on board of the three dredges, defaults values were used to estimate the daily cost of the crew and labour. Finally, equipment rental, including the dredges was evaluated based on standard rental prices. All these costs were summed to obtain the operational cost. However, we need to account for other factors, such as, overhead and bonding. A rate of 10% (9% overhead and 1% bonding) was considered to be multiplied by the total cost. Another factor to be added is the profit, which was taken to be 10%. In the end we obtain the total daily cost of 61,50 thousand dollars per day.

Table 6-12 Total daily cost

Daily cost		\$
	Fuel	2409,17
	Lubricants	240,92
	Minor repairs	2303,02
	Major repairs	4428,89
	Insurance	2089,10
	Depreciation	2413
	Crew and Labor	11972
	Equipment Rental	25000
	Total	50856,09
	Overhead and bonding rate	0,10
	Overhead and bonding	5085,61
	Total cost with overhead and bonding	55941,70
	Profit	5594,17
Total daily cost		61535,87

Afterwards, we calculate the total cost for the duration of the project. First, we calculate the total production cost, by multiplying the total daily cost by the number of working days. Then, we need to account of the mobilization and demobilization. In order to do that, we multiply the total production cost by 10,2%. Form that, the total project cost is around 14,4 million dollars.

For the last part of the calculations, we need to use the cost factors for the year, since the project is in 2023, another cost factor for location, because the project is in Italy. The yearly cost indices are the same as the capital cost. For the location OECD data were used and after that it was multiplied by the currency exchange rate from dollars to euros (0,93).

In this case no additional costs were obtained so they were not accounted for. In other estimations if they were to be available, they can be added.

The final estimation of the total adjusted cost of the clamshell mechanical dredging project is about 9,86 million euros as shown in the table 6-13. Divided by the volume to be dredged gives us the cost of 6,9 euros/ m^3 .

Table 6-13 Total Project Cost

Total Production cost		ſ		13045604,48	
	Mob/ D	emob			
	rate			0,10	
Mob/Demob				1330651,66	
Total Project cost				14376256,14	
Year factor				1,14	
	Year ad	li Cost		16355723,48	Dollars
Location factor	-	J		0,60	2022
	Locatio	n Adj C	ost	9856613,20	Euros
Additional Costs					
	Rock/D	ebris rem	noval	0	
	Govern	ment-dire	ected standby time	0	
	Environ	mental N	Ionitoring	0	
	Other project-specifi		ecific costs	0	
Total Adjusted Cost				9856613,20	Euros

So far that was the application of the programme on the project of Port hub of Ravenna, the production estimation was close to the project's estimation. Whereas the cost, on the other hand, we cannot tell if the program's estimation was accurate or not since, data is not provided due to confidentiality. Therefore, in the next section, the program's estimation will be verified by comparing its results with other projects conducted in the United States of America, where their information was publicly available.

7 Comparison and Sensitivity analysis

7.1 Comparison

To check the validity of the program's results, it will be compared to other projects cost estimations and to a similar estimation made by (Paparis,2017). The data of these projects were obtained from (Paparis,2017), which gathered them from the US Army Corps of Engineers (USACE) that oversees most dredging projects in the United States. Specifically, from the Navigation Data Center (NDC), and these data include the listing of awarded dredging contracts, which contains information such as the type of dredge used, the amount of material estimated to be dredged, the government estimate the winning bid and contractor. For this comparison we will be using data related to the estimated volume to be dredged, year for the cost index and the government and winning bids.

For the average depth, (Paparis, 2017), used project information regarding channel layout and channel depth available through the USACE district websites and correlated with navigation chats that are available from the National Oceanic and Atmospheric Administration (NOAA) Office of the Coast Survey (OCS, 2017).

Eight dredging projects were selected from the NDC. These projects were selected based on availability of corresponding bid abstracts and completeness of information. The projects selected do not have any job specific tasks or extra costs (debris removal, standby time, etc).

The table 7-1 shows the projects location, four of them from Ohio but different harbours, each has a location factor calculated, we have the year of execution and its factor to account of the inflation. The volume to be dredged so we can calculate the days needed and then the cost of the projects, the depth of each project, and that also shows also, how it plays on the bucket size chosen, and ultimately on the cost of the project.

	location				yearly	Bucket
City	factor	Year	Volume	depth	factor	size
New York	1,13	2014	54283	3	0,99	4,50
Pennsylvania	1,14	2014	191139	7,60	0,99	11,50
Ohio	0,94	2014	229366	7,30	0,99	11,50
Ohio 2	0,94	2014	210253	8,50	0,99	11,50
Ohio 3	0,94	2014	126151	8,50	0,99	7,65
Ohio 4	0,94	2014	76455	8,50	0,99	7,65
Oregon	1,13	2015	198784	10,70	1	7,65
California	1,24	2015	133797	10,70	1	7,65

Table 7-1 Projects information

The same spreadsheet was used for this section too. Although only the default values were used, since they are average values based on several studies and dredging projects. Some were mentioned before, such as, the sediment type and the factors related to it (Table 6-4), the values used to calculate the cycle time (Table 6-5), and fuel consumption (Table 6-10).

For the production rate, California was taken as an example, to show the changes compared to the project we had in the last section. The Table 7-2 shows some changes. For instance, the average area dredged is 1142,7 m². Hopper capacity as 3440 m³. the values of the volume to be dredged changes with changing the location from the drop list, where we can choose the harbour.

parameters	Value	Defaults	Units
Sediment type	4		
А	1142,70	m^2	average area dredged
Z	2	М	thickness of material dredged
Н	3440	m^3	Hopper capacity
С	7,65	m^3	Capacity of the bucket
V	133797,00	m^3	volume to be dredged
D	10,70	М	depth
Н	2	М	offboard height
Та	0,33	Hrs	time to advance the barge
Sa	120	Deg	average swing angle
Th	0,25	Hrs	time to change the hopper
В	1,25		Bulking factor
Fa	0,94		delay factor for advancing the dredger
Fh	0,97		delay factor for changing the hopper
Fm	0,78		fill factor
Fc	0,72		Capacity factor
C adjusted	5,51	m^3	modification factor
Volume dredged	0	m^3	volume of sediments dredged
СТ	40,43	seconds	Cycle time
Pnom	382,57	m^3/hr	Nominal production
Pmax	346,59	m^3/hr	Max production
Total dredging time	386,04	Hrs	
	28,60	Days	
	29		

Table 7-2 Production rate estimation

the next step is to calculate the cost estimation. In this case also, default values were used. As shown in the table 7-3.

Table 7-3 Cost estimation

Daily cost			\$		
Fuel			4297,54		
Lubricants			429,75		
Minor repairs			1882,52		
Major repairs			3620,24		
Insurance	Insurance				
Depreciation	Depreciation				
Crew and Labor			8878		
Equipment Rental			5312		
Total			28040,05		
Overhead and bondin	g rate		0,10		
Overhead and bondin	g		2804,005		
Total cost with overh	ead and bo	onding	30844,05		
Profit			3084,41		
Total daily cost	Total daily cost				
Total Production cost			983925,34		
		-			
Mob/ Demob rate			0,11		
Mob/Demob			100360,38		
	1	1			
Total Project cost			1084285,72		
Year factor			1	0,99886	
Year adj Cost			1084285,72	0,77000	
Location factor			1,24		California
Location Adj Cost	1		1344514,29		Cumonia
			-		
Additional Costs					
Rock/Debris removal			0		
Government-directed standby time		0			
Environmental Monitoring			0		
Other project-specific	Other project-specific costs		0		
Total Adjusted Cost			1244514.20	Dollars	
Total Adjusted Cost			1344514,29		
Price per m3			10,0	Dollars/m ³	

The same estimation was generated for each project, tabulated as shown below in table 7-4, and compared to the winning bid, the government estimation and Paparis, that used the same estimation approach. This comparison will demonstrate the accuracy of the program and whether it is dependable or not.

Project	Winning	Government	Thesis (\$)	Paparis	Gov	Thesis	Thesis	Paparis
5	Bid (\$)	Estimate (\$)		(\$)	vs	vs	vs Bid	vs Bid
					Bid	Gov		
Barcelona	602,200	552,050	506,439	647,861	-8,33	-8,26	-15,9	7,6
Harbour								
Erie	868,980	1,330,700	1,064,419	1,123,416	53,13	-20,01	22,49	29,3
harbour								
Fairport	1,640,000	1,846,500	1,018,107	1,231,146	12,59	-44,86	-37,92	-24,9
Harbour								
Huron	1,165,150	1,231,800	983,000	1,192,673	5,72	-20,20	-15,63	2,4
Harbour								
Lorain	773,200	1,310,050	842,572	1,041,344	69,43	-35,68	8,97	34,7
Harbour								
Toledo-	436,700	736,600	526,607	632,245	68,67	-28,51	20,60	44,8
Maumee								
River								
Coos Bay	2,862,160	3,824,852	1,774,490	1,761,572	33,64	-53,61	-38	-38,5
Upriver								
Dredging								
Suisun	1,769,330	2,991,377	1,344,514	1,456,005	22,01	-37,72	-24,01	-17,7
Bay								
Total	10,117,720	12,991,377	8,060,149	9,086,262	28,40	-37,96	-20,34	-10,19
Mean Absol	ute Error	I	I		34,19	31,11	22,94	24,99

We start with Paparis compared to the winning bid, we notice that three of the Paparis estimations were within 20 percent of the winning bid, two were between 20 and 30 percent of the winning bid, three were between 30 and 40 percent of the winning bid. For the government compared to the winning bid, we see that three estimations were within 20 percent of the winning bid, one within 20 and 30 percent, one was between 30 and 40 percent, and the remining three varied from the winning bid by greater 50 percent. Finally, the thesis

program, it has three estimations within 20 percent of the estimation bid, three were between 20 and 30 percent and two between 30 and 40 percent of the winning bid.

From this comparison we can deduce that the government estimates are higher than the winning bid in seven out of the eight projects, due to the use of a more conservative estimate, because of regulations and funding purposes. To ensure the availability of an adequate funding once the project is approved and ready to be executed.

The thesis estimate is also compared to the government estimates, the thesis was always lower than the government estimate as expected. One within 20 percent, three within 20 and 30 percent, two within 30 and 40 percent and two more than 40 percent of the government estimation. A bar graph was plotted to illustrate better the differences between the four estimations in figure 7-1.

From the graph we can see that the thesis program estimation was lower in five projects out of eight than the winning bid, showing a significant difference in the Coos Bay Upriver and Fairport Harbour. The thesis is lower than Paparis estimation in seven out of eight projects.

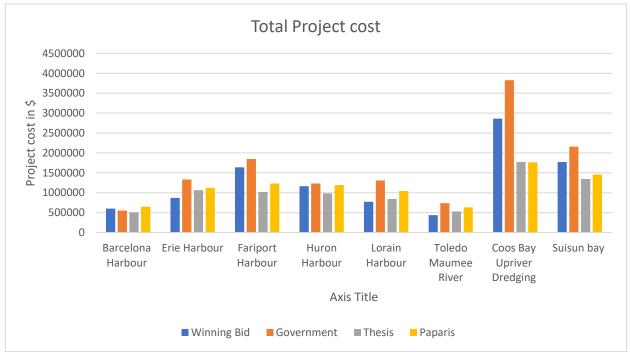


Figure 7-1 Total Cost comparison

To double check the validity of the program, we will compare this time, the production cost only, without accounting for the location, year, or mobilization/demobilization costs, just the production costs associated with contract line items on the bid abstracts that were dredging, and placement related. With the same four estimations as shown in the table 7-5 below.

Project	Winning	Government	Thesis (\$)	Paparis (\$)	Gov	Thesis	Thesis	Paparis
	Bid (\$)	Estimate (\$)			vs	vs	vs Bid	vs Bid
					Bid	Gov		
Barcelona	508,500	465,450	459,564	587,896	-8,47	-1,26	-9,62	15,6
Harbour								
Erie	832,000	1,186,000	965,898	1,019433	42,55	-18,56	16,09	22,5
harbour								
Fairport	1,559,000	1,739,000	923,872	1,117,193	11,55	-46,87	-40,74	-28,3
Harbour								
Huron	1,135,000	1,141,000	892,015	1,082,281	0,53	-21,82	-21,41	-4,6
Harbour								
Lorain	701,500	1,208,750	764,584	944,959	72,31	-36,75	8,99	34,7
Harbour								
Toledo-	398,000	679,500	477,865	573,725	70,73	-29,67	20,07	44,2
Maumee								
River								
Coos Bay	2,114,500	3,115,100	1,610,245	1,598,523	47,32	-48,31	-23,85	-24,4
Upriver								
Dredging								
Suisun	978,900	1,258,825	1,220,067	1,321,239	28,60	-3,08	24,64	35
Bay								
Total	8,227,400	10,793,625	7,314,110	8,245,249	31,19	-32,24	-11,10	0,22
Mean Abso	lute Error		1		35,26	25,79	20,68	26,16

Table 7-5 Production cost comparison

From the second comparison we notice a decrease in the absolute error in the thesis compared to the government from 31.1 percent to 25.8 percent. However, still lower in all the eight projects than the government estimation. Furthermore, compared to the winning bid, the absolute error was reduced from 22.9 percent to 20.7 percent with three projects within 20 percent, five within 20 and 30 percent and one 40 percent of the winning bid. The error between the thesis and the winning bid did not change more than 10 percent for individual projects apart from the Coos Bay Upriver project.

The government estimation absolute error increased by 1.2 percent compared to the winning bid. Paparis estimation absolute error increase from 24.9 to 26.2 percent. Finally, the government had four projects estimate close to the winning bid compared to just two in the total cost comparison. Nevertheless, there was an increase in the absolute error from 33.2 to 35.3 percent.

We can see also from figure 7-2, the bar chart plotted for the total production cost that the thesis program was lower in four projects than the winning bid, as the first comparison there is a significant difference with Fairport Harbour and Coos Bay Upriver. In both projects the mobilization and demobilization had a large portion of the bid. For instance, the Coos Bay Upriver, it was 25 percent of the project bid. The thesis program underestimated the total cost of the project by 38 percent and the total production cost by 23.8 percent, which is a significant difference, since we did not account for the mob/demob in the second comparison The thesis estimation was lower than Paparis estimation seven out of the eight projects.

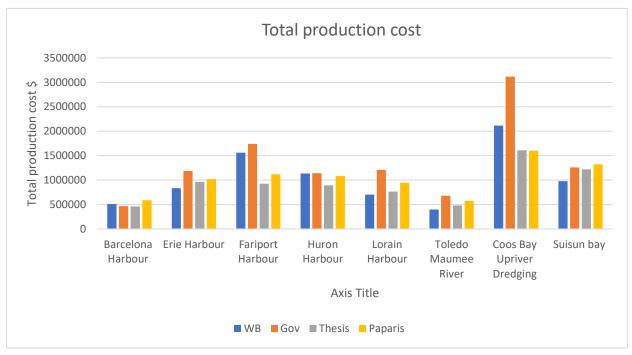


Figure 7-2 Production Cost comparison

7.2 Sensitivity analysis

Calculating the production rate and the total cost of the project included many variables such as the dredging depth, the bucket size and sediment type. The aim of the sensitivity analysis is to change these variables, one by one and keeping the other parameters constant, and see how they affect the total cost of a dredging project. We will apply the analysis on the case study in hand -the Ravenna port-hub project- with a volume of 1428410 m³, default sediment is sand and clay and 12 m of depth.

We change first the type of sediment, we choose in the program between the sediment input parameters: mud, loose mud, compact sand, sand and clay, stones, and broken rock. As demonstrated in the figure 8-1. keeping the other parameters constant (bucket size, hopper capacity, dredged depth).

The sediments type has a major effect on the total cost of the project because each sediment type has its own bulking factor, fill factor and capacity factor as shown in previous chapters, and that reduces the bucket capacity, which reduces the production rate, leading to longer dredging period, therefore, more cost. Specially the case of stones and broken rocks we can notice the sudden increase in the cost. For this reason, we omit stones and broken rocks from the sensitivity analysis, as shown in the figure 8-2. Nevertheless, the cost of the project is still affected if we deal with the other types of sediments.

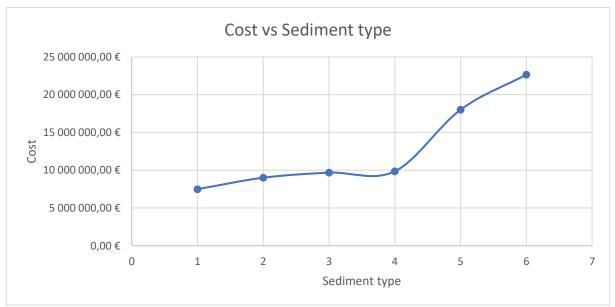


Figure 7-3 Cost vs Sediment type

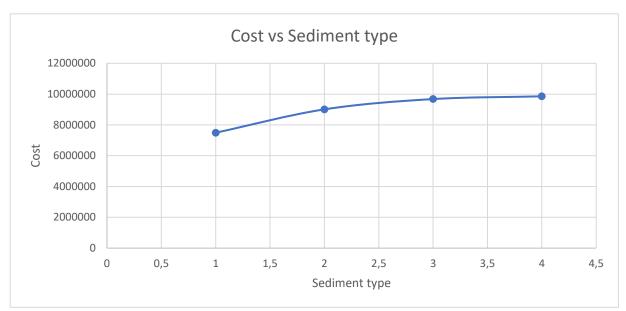


Figure 7-4 Cost vs Sediment type without stone and broken rock

The second sensitivity analysis will be related to the bucket size, keeping the other parameters constant (sediment type, hopper capacity, dredged depth). The bucket size will be varied from small to large sizes, starting from 2,32 to 4,6 m³ taken as small bucket sizes and from 5 to 38,1 m³ as large bucket sizes.

As we can notice in the figure 8-3, the cost is high when it comes to small bucket sizes, because it will take more time to dredge the required volume. The project went from costing 71.7 million euros using 2,32 m³ bucket size, to 12.5 million euros using 38.1 m³ bucket size.

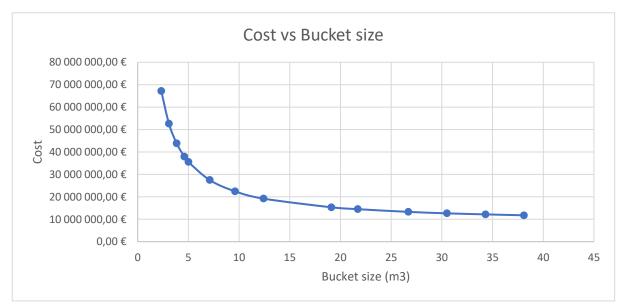


Figure 7-5 Cost vs Bucket size

In this study also, we separate the small bucket sizes, the small ones, and large ones, in the figures 8-4 and figure 8-5, respectively.

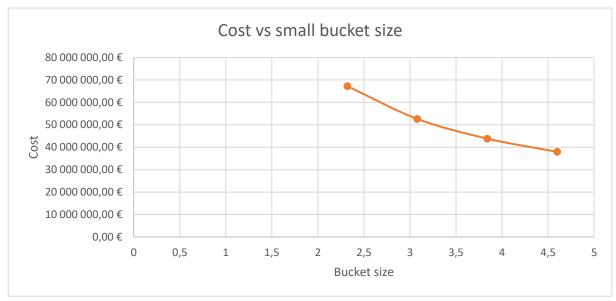


Figure 7-6 Cost vs small bucket size

the inflated cost and the quick reduction of the cost between small and large bucket sizes for the same sediment type, in this case sand and clay, is related to the bucket fill factor as mentioned in the equation 4-5. Demonstrated by (Adair,2004), the bucket fill factors are logarithmic functions of bucket size. Therefore, the smaller the bucket size the bigger the change. Thus, we can say that fill factor affects the sensitivity analysis.

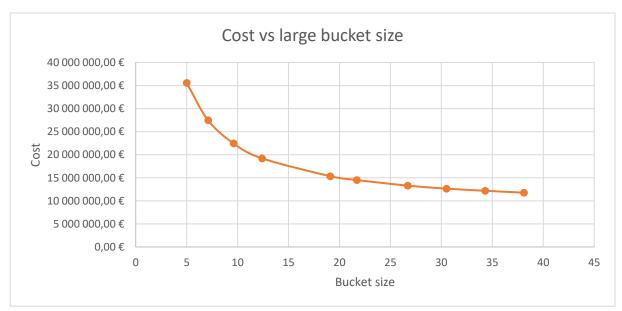


Figure 7-7 Cost vs large bucket size

The next parameter to analyse is the dredging depth, the study started from a 7,6 m depth to 16,8. And again, as the other studies, the other parameters were kept constant. The results in figure 8-6.



Figure 7-8 Cost vs Dredging depth

From the graph in figure 8-6 we can see that there is a linear relationship between the dredging depth and the cost. Since the dredging depth directly affects the cycle time. So, if we increase the depth we increase the cycle time, therefore, decreasing the production rate, leading to the increase of the project duration and eventually the total project cost.

The next and final sensitivity analysis is the working hours per day, we start with 8 hours to 24 hours, including 10.32 hours that is the estimated working hours per day for the project.

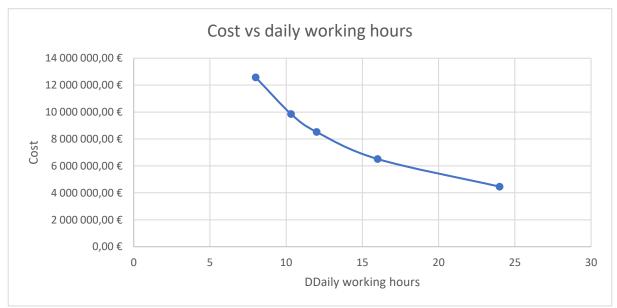


Figure 7-9 Cost vs daily working hours

From the figure 8-7 we can see that there is a noticeable reduction of the project cost. For instance, from 8 hours to 16 hours, we have a reduction of 50 percent. However, in this analysis we did not account for the efficiency reduction. Because, in the case of double shift or continuous dredging, the operating crew must do nightshifts, which adds a complexity to the operation. Moreover, the vessels will work non-stop, increasing the risk of malfunctioning. These factors may lead to a reduction of production rate and increase the cost of the project.

8 Conclusion and Recommendations

For any given project, planning and estimating the cost of the project is an important step to give a clear vision of the projects and their expenditures. In this thesis, we tried to implement an excel spreadsheet to estimate the production rate and the total cost of a mechanical clamshell dredging project.

The program structure followed previous estimating programs done by (Adair,2004), for the bucket fill factor and cycle time, which are essential to the calculation of the production rate of the clamshell dredger, for the cost estimation techniques by (Wowstschuk,2016), and (Paparis,2017) combined both works. Hellas, as mentioned in the previous chapters, when it comes to the cost estimation, some data is not available to the public, to compensate for that; the unknown data were replaced by default values based on previous clamshell mechanical dredging projects. However, if the data were to be found, the program gives the opportunity to use them for better accuracy.

The production rate method was developed by (Bray et al,1997), improved later by (Adair,2004), where he accounted for large bucket sizes and how the fill factor changes with the size change. The production rate estimation is influenced by sediment type, cycle time, hopper capacity. Moreover, other factors, such as bulking factor, bucket fill factor, delay factors, and the latter vary depending on the depth, the hopper capacity, the distance from the disposal site. Once the production rate is determined, we can calculate the number of days needed to complete the project, by dividing the production rate by the working hours per day. In the case of Ravenna Port-Hub project, the program estimation was 212 days, whereas the company estimation was 215 days. We can say that for this part, the results were satisfactory, from that we can estimate the daily cost and finally the total project cost.

Regarding the cost estimation, to verify the accuracy of the program, it was compared with the winning bid and government estimation of eight clamshell dredging projects from the United States. The program absolute error of the total cost of the project, when compared to the winning bid, was 22,94 %, whereas the government compared to the winning bid was 34,19 %. The program estimation was close to the one of the winning bids.

Afterwards, we did not account for mobilization/demobilization costs and other costs. Basically, a production cost comparison. We noticed that the absolute error between the program and the winning bid was reduced to 20,68 %. Nevertheless, the government estimate increased to 35,26%. Based on the results, we can say that the program was closer to the winning bid than the government estimated. However, in some projects, we underestimated the cost, it is recommended to overestimate the cost, to avoid any unpredicted events or delays.

The thesis program, based on the results obtained, is able estimate or predict clamshell mechanical dredging projects with reasonable accuracy. But the more data and information obtained about the project, we will have better estimation and better understanding of the cost.

Based on the sensitivity analysis, the bucket size is an important parameter. Therefore, the choice of the bucket size is crucial, and the program allows the insertion of different bucket sizes for a better comparison. It goes without saying, acquiring the appropriate data about the bucket size will give more accurate estimation. Another factor is the sediment type, which accounts for multiple factors, such as, the bulking factor, capacity factor, and the fill factor affecting the bucket size, affecting the cost of the project.

Most of the parameters were set as default values, due to the scarcity of data regarding these data due confidentiality. To have a more accurate and concise estimation of the production rate and the cost of the project, some parameters must be known. For instance, the crew size, always depend on the size of the project, we can put an average number of the crew members based on the usual tasks related to the clamshell mechanical dredging projects. However, it would be more beneficial to have the exact number and their daily cost, because the cost changes through the years and the jobs.

The capital cost would be more accurate and benefit from the up-to-date cost information that account for the increase of cost in dredging construction due to inflation, technological development. Nevertheless, the data and the approach made available by Bray et al (1997), is the best fitted to give an estimation and quantify these costs.

The spreadsheet can also be extended for backhoe mechanical dredgers. Using the same estimating methodology from Bray et al (1997) and other recourses, to make the program more diverse and versatile.

Bibliography

IADC,2010, Dredging for Development 6th edition.

Randall, R.E. (2016). "*Dredging and Dredged Material Placement*," OCEN 688 Course Notes, Texas A&M University, College Station, TX.

Bhadury, J. (2016). "Panama Canal Expansion and Its Impact on East and Gulf Coast Ports of U.S.A." Maritime Policy & Management, Vol. 43, No. 8, pp. 928-944.

Johnson, J. (2016) "Could a Tiny Islet in the South China Sea Be Key to Maritime Dominance by Beijing?" Japan Times, Sep. 08, 2016, Tokyo

Thomasonan Lutfie, Agus B Siswanto, Rahma Nindya A, and Pipit Skriptiana P. "Dredging is a Work to Change the Basic Form of Water, Towards Shipping Safety." International Journal of Civil Engineering and Technology, vol. 9, no. 10, 2018, pp.

Schiller, R. E. (1992). Sediment Transport in Pipes, Chapter 6. "Handbook of Dredging Engineering", Herbich Editor, McGraw-'Hill, Inc., 'New York, NY, pp 6. 39-6. 54.

Pullar, A., & Hughes, S. (2009). Project Next Generation Dredging Methodology and Disposal Alternatives. Port Otago Ltd.

Hardy, T. P. (2016). Analysis of productivity in dredging project A case study in Port of Tanjung Perak Surabaya – Indonesia. World Maritime University.

Bergeron, R. (2000). "The Cable Arm Clamshell: Development and Track Record for Environmental Dredging". Proceedings from WEDA XX and TAMU 32nd

Bray, R.N., Bates, A.D., and Land J.M. (1997). "Dredging: A Handbook for Engineers" 2nd Edition. Arnold: London.

CEDA,2003. "1. Introduction to Dredging Equipment."

Tsinker, G. P. (2004) "Port Engineering." Wiley, Hoboken, NJ.

IDR (2003) "IDR 2003 Directory of Dredge Owners & Operators Dredging Industry Buyer's Guide" IDR, Fort Collins, CO.

US Army Corps of Engineers, Engineering Technical Letter 1110-2-573, 30 Sep 08, Construction Cost Estimating Guide for Civil Works, Appendix D Miertschin, M.W. and Randall, R.E. (1998). "A General Cost Estimation Program for Cutter Suction Dredges". Proceedings 15th World Dredging Congress, WODCON. Las Vegas, NV, Vol. 2, pp. 1099-1114

Belesimo, F.J. (2000). "Cost Estimating Projects for Large Cutter and Hopper Dredges." MS Thesis, Texas A&M University, College Station, TX.

Adair, R.F. and Randall, R.E. "Method for Estimating Clamshell Dredge Production and Project Cost." Journal of Dredging Engineering, WEDA, Vol. 7, No. 1, pp. 2-19

Wowtschuk, B. M. (2016). "Production and Cost Estimating for Trailing Suction Hopper Dredge." MS Thesis, Texas A&M University, College Station, TX.

Emmons S.P. (2001). "Cost Estimating Process and Spreadsheet for Mechanical Dredges" Proceedings from WEDA XXI and TAMU 33 rd Dredging Seminar Proceedings, Houston, TX, pp. 209-222.

Briaud, J. L. (2013). "Geotechnical Engineering: Unsaturated and Saturated Soils." Wiley, Hoboken, N.J.

Paparis, Nicholas Alexander. "CLAMSHELL MECHANICAL DREDGE PRODUCTION AND COST ESTIMATION." Master's thesis, Texas A&M University, 2017.

Federal Reserve Bank of St. Louis. "Producer Price Index by Industry: Ship Building and Repairing (PCU336611336611)." FRED, Federal Reserve Bank of St. Louis,

Richardson, S., editor (2016). "48th Annual Directory of Worldwide Dredge Fleets, Suppliers, and Engineers, North America." World Dredging Mining & Construction, Vol. 50, No. 3/4 -3/16, pp. 23-40.

"Bunker Fuel Prices Today.", 2023, <u>EMEA Average Bunker Prices - Ship & Bunker</u> (shipandbunker.com)

Randall, R.E. (2000). "Dredging Costs and Cost Estimating," Appendix 9, Handbook of Dredging Engineering. 2nd Edition. Editor: J.B. Herbich, McGraw-Hill Book Co., New York, NY.

Department of Labor and Industrial Relations, State of Hawaii. "Wage Rate Schedule Bulletin No. <u>488." 2016</u>,

Fricklas, R.L. (2013). How to Estimate the Cost of Mechanical Dredging. American Society of Professional Estimators.

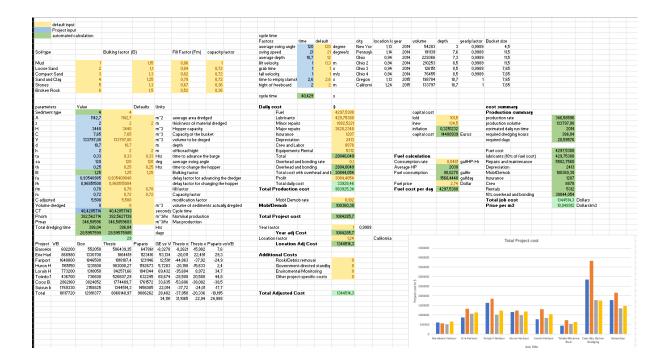
OECD. (2023). Price level indices. data.oecd.org/price/price-level-indices.htm#indicator-chart

U.S. Army Corps of Engineers Headquarters. "Area Cost Factors." *Cost Engineering*, U.S. <u>Army</u> <u>Corps of Engineers Headquarters</u>, Navigation and Civil Works Decision Support Center. "NDC Dredges." Institute for Water Resources, U.S. <u>Army Corps of Engineers, 2023</u>

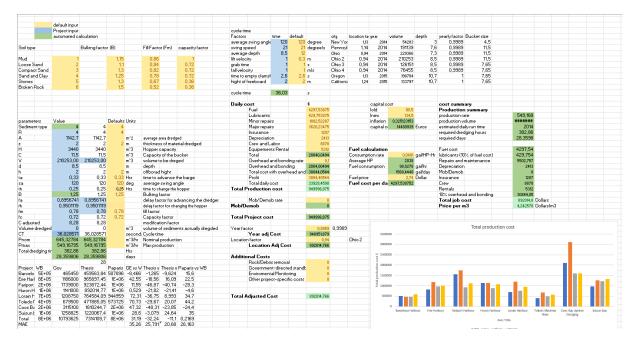
Appendices

Appendix A-1: calculation spreadsheet for zone (1+2+3). The figure below shows the calculations of the production rate and the cost related to the project of Ravenna Hub in the zone 1+2+3, including all the factors. As mentioned before, the spreadsheet in colour coded to differentiate the different inputs and outputs.

					default input		Dredge	rtupe	bucket size		Hopper	capacity	Volume dre-	daed	daily y or	Horse D	Fuel L/day					
	Based on the	data of April 2	023		Project input		Angelo		9.6		1000		402950	910	11.23							
					automated calcula	ation	Cayour	-	5		500		32750		9,438							
					Final resulst	5001		o Bachet			800		106450		10,3							
Angelo B					T Intelliestuist		total	io Dacriet	217		2300		602150		10.3227							
angelo D							total		41,7		2300		602100		10,5227	0402	2730					
Soil type		Bulking facto	. (P)		Fill Factor (Fm)	capacity factor																
on type		Dukingracko	1 (0)		Fill actor (Fill)	capacity ractor		cycle ti	mo													
1ud	1		1.15		0.86	1		Factors		time	default			capita	loort							
oose Sand	2		1.1		0.84	0.72			sving angle			dearee		lold	203,892	2015			ooct	ummarv		
Compact Sand			1.3		0.82	0,72		sving sp		21		degree/s		Inev	231.975	2022				ction summary		
Band and Clay	4		1,25		0,78	0,72		average		12	12			inflation		L.V.L.L				tion rate	33701	
Btones	5		1.3		0.67	0.36		lift veloci		1	0.3				18E+07	Euror				tion volume	12.00	
Broken Rock	ă		1.5		0.52	0.36		grab time		- i		s		Cupita			atistics Data	(bis apu)		ed daily run time	10.32	
STORETT BOOK					0,02	0,00		fall veloc				mis						(consider)		d dredaina hours	*****	
									mptv clamsł	2.6	2.6								require		211.9	
									reeboard	2,0		m							require		a.1,0	
								- age it of f											Fueto	net .	2409	
								cycle ti	ime	43.03		٩.		Fuel	alculatio	n				nts (10% of fuel cost		
parameters	Value		Defaults	Unite			Daily o				\$	-			nsumption		17dau			s and maintenance	6731.91	
Sediment type	4	4	d	Grad			Duny	Fuel			2409.17			Fuel pric				5% fee	Depres		2413	
or anner the type								Lubricar	vie –		240,917						dollars/day		Mob/D		1330652	
a.	10000	30000		m^2	average area dredge	d b		Minor rep			2303,02				ost per t		aonararaa,		Insurar		2089,1	
	2	2	2	m	thickness of mater			Major red			4428.85								Crev		11972	
	1000	2300		m°3	Hopper capacity			Insurance			2089.1								Bental		25000	
	9.6	21.7		m°3	Capacity of the bu	icket		Deprecia				25 vears								, erhead and bonding		
ĩ	1428410.00	1428410.00		m [°] 3	volume to be dream			Crev and				14 workers on the	3 drednes							iob cost	9856613 eu	iros
	12	12		m	depth				ents Bental		25000	in noncer on the	oareages							perm 3	6.90041 eu	
	2	2	2	m	offborad hight			Total			50856.1									,		
a	0.33	0.33	0.33		time to advance th	ne harne			ad and bondi	etston	0.1											
a	120	120		dea	average sving and				and bondi		5085.61											
h	1	1		Hrs	time to change the h				st with overh													
3	1.25	1,25	1.25		Bulking factor	wpps1		Profit		c da dria	5594.17											
a	0.9907824		1,400			vancing the dredge		Total dai	ikuoost		61535.9											
h	0.6415849					anging the hopper					13E+07											
m	0.78	0.78	0,78		fill factor																	
c	0.72	0.72	0.72		Capacity factor			Mob/ De	moh rate		0,102											
adjusted	6.912	15.624	0,12		modification factor		Mob/D				1330652											
/olume dredged		602150		m^3		nts actually dregded																
DT	43.028571				Cycle time	in accurry dregued		Project c	tost		14E+07											
Poom	451.06996	1019.6061			Nominal productio	0	curr				2.2.01											
Pmax	286,7321	653,1148766			Maxproduction		Yearfa	otor			1,13769											
	14795.3765	33700,72763		m ³ lves				Year a	di Cost			Dollars										
lotal dredgin		2187,07		Hrs			Locatio				0.60264	202	2									
. stat areaging	443,60538	211.92569		davs					on Adj Cos		9856613		-									
	444	212		/-																		
							Addini	nnal Cos	ats													
							un		sbris removal		0											
									nent-directe		0											
									ental Monitor		0											
									oiect-specif													
								pro	der shees													
								Adjusted			9856613											

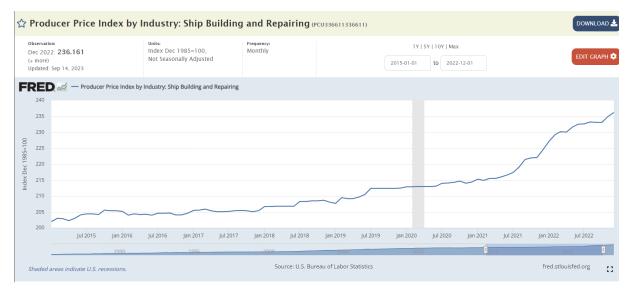

Appendix A-2: calculation spreadsheet for zone 4. Like the previous Appendix, with different input values related to the zone, such as, the volume to be dredged.

					default input			Dredger type	bucket size		Норрег	capacity	Volume drede	ned	dailu wor	Horse po	Fuel L/day							
	Based on the o	lata of April 2	023		Project input			Angelo B	9.6		100		402950		11.23									
					automated calc	lation		Cayour	5		50		92750		9,438									
					Final results			Giochino Bachet	. 7.1		80		106450		10.3									
Angelo B					T INGTO-PUICS			total	21.7		230		602150		10.323									
ingcio D								total			2000	-	002.00		10,020		2100							
ioil type		Bulking facto	r (B)		Fill Factor (Fm)	capacit	y factor																	
Aud	1		1.15		0.86		1		cycle time															
oose Sand	2		1,1		0,84	0.72	2		Factors		time	default												
ompact Sand	3		1,3		0,82	0,72			average swi	ina anale	12	120	degree			capital	cost							
and and Clay	4		1.25		0,78	0.72			swing speed		2		degreels			lold	203,892	2015			cost summary			
itones	5		1,3		0,67	0,36			average dep		1					Incur	231,975	2022			Production s			
Broken Rock			1.5		0.52	0.36			lift velocity				m			inflation		2022			production rate		33701	
Jional Poch			1,0		0,72	0,00			grab time				8				15255062	P			production volu		12,00	
													s m/s			capical			cs Data (bls.o				10,32	-
									fall velocity								Dureau or L	apor statisti	es Data (bis.g	220	esrimated daily r			
									time to emp		2/		0								required dredgin	ag hours		
									hight of free	eboard		2 3	m								required days		103	
parameters	Value		Defaults	: Units					cycle time		43.03	3	3								Fuet cost	+ +	2403	
Sediment type	4	4						Daily				ŧ.				Fael ca	Iculation				lubricants (10% c	of fuel cost		
D	-							,	Fuel			2409,16					sumption	2790	L/day		Repairs and main		5797	
	10000	30000		m*2	average area dr	da d			Lubricants			240.916				Fuel price			dollars/L	5% fee	Depreciation	incentioned	2413	
	2	00000		m	thickness of ma				Minor repai			1983,1580						2403,165	donarshe	DATE:	Mob/Demob		7E+05	
	1000	2300		m m^3			jea					3813,765404				r tei co	ost per da	2403,103			Insurance		3703	
1					Hopper capacit				Major repai	irs												_		
-	9,6	21,7		m^3	Capacity of the				Insurance			3702,684858									Crew	_	11972	
Y	694000,00	694000,00		m^3	volume to be dr	eged			Depreciatio			241									Rentals		25000	
d	12	12		m	depth				Crew and La				14 workers or	n the 3 c	dredges						10% overhead an		5153	
h	2	2		m	offborad hight				Equipement	o Rental		25000									Total job co:			curos
ta	0,33	0,33		Hrs	time to advance				Total			51534,6837									Price per m3		6,332	curosi
59 S	120	120		deg	average swing a				Overhead an			0,												
th	1	1		Hrs	time to change I	he hopper			Overhead an	nd bonding	,	5153,46837												
в	1,25	1,25			Bulking factor				Total cost y	with overhe	ad and													
fa	0,9907824	0,993039			delay factor for	advancing	the drede	er	Profit			5668,81587												
fh	0,6415843	0,6450463			delay factor for	changing t	he hopper		Total daily o	cost		62356,97463	1											
fm	0,78	0,78	0,78		fill factor				Production			6422768.388												
fc	0,72	0,72			Capacity factor																			
C adjusted	6,912	15,624			modification fac				Mob/ Demo	ob rate		0,102												
Volume dredged	0,016	602150		m^3	volume of sedin		llu droade	d Mob/	Demob	D T T T T		655122.3754												
CT	43,028571	43,028571			ds Cycle time	Circo accua	ny aregae					000100,010												
Paom	451.06336	1013,6061			Nominal produc	1		Tabal	Project co:	-		7077890,763												
Pmax	286,7321	653,11488			Max production			10(4)	Project co:			1011030,102												
/mex	14795,376	33700,728		m orni m*3/w				Year fo				1.137630044												
					eek			Tearre																
Total dredgin		1062,60		Hrs					Year adj	Cost		8052445,853												
	215,52785	102,36514		days				Locatio	n factor			0,60264												
		103							Location	Adj Cos	ŧ	4852725,963	Euros											
								Addi	ional Costs	-														
								Addit	Rock/Debri			(
									Government															
									Enviroments			-												
									Other proje	ct-specific	costs													
								Total	Adjusted C	oct		4852725.363	Euroc											
								Total	qusted G			4032123,000												


Appendix A-3: calculation spreadsheet for zone 5

					default input			Dredger tupe	bucket size	Hopper	capacitu	Volume dre	daed	daile worl	Horse p	FuelL/dag							
	Barad on the	data of April 2	023		Project input			Angelo B	3.6	100		402350		11.23		1230							
	Dared on the	data or reprine	020		automated calou	dation		Cayour	5	50		32750		3,438									
					Final resulst	and cont		Giochino Bachel		80		106450		10.3									
ingelo B					T mane saist			total	217	230		602150		10.3227									
(II) (II) (II) (II) (II) (II) (II) (II)								totai	20	250		602150	_	10,5221	0452	2100							
Goil type		Bulking factor	r (B)		Fill Factor (Fm)	capacit	ty factor		ogole time Factors	time	default												
Aud			1,15		0,86				average swing angle			0 degree			capital								
oose Sand			1.1		0.84	0.7;			sving speed			21 degree/s			loid	203.852	201				summary		
Compact Sand	6		13		0.82	0.7			average depth			t degreers			Inev	203,052	201				luction summary		
and and Clau			1,25		0,62	0.73			lift velocitu			3 m			inflation		2022				iction rate	3370	
	1																-						
itones	5		13		0,67	0,3			grab time		1	1 s			capital	15255062					ction volume	12,0	
Broken Rock	6		1,5		0,52	0,3	6		fall velocity		1	1 m/s				Burcau of Lal	oor Statistics	Data (bls.gov)			ated daily run time	10,32	
									time to empty clam:			.6 s									ed dredging hours	1145,2	
									hight of freeboard	3	2	2 m								require	ed days	110,9	,8
									oqole time	43.02	9	5								Fueto	ort	2409.	2
								Daily o		10,02	\$	-			Fuel ea	alculation					ants (10% of fuel cos		
arameters	Value		Defaults	Unite				Duny	Fuel		2403.1	ie .				sumption	0790	L/dau			rs and maintenance		
ediment tupe	4		A	Onica					Lubricants		240,91				Fuel pric			dollars/L	5% fee		ciation	241	
e annencigpe	4	4							Minor repairs		1983,158					 ost per da			0.4 199		Demob	70235	
·	10000	30000		m*2	overage area dredg				Major repairs		3813,76541				Fuerce	osc per ua	2403,103	8		Insura		3435/	
	2	30000			thickness of mat		4		Insurance		3435,8246									Crew	nce	1197	
	1000	2300		m m*3	Hopper capacity		agea		Depreciation		3435,6246									Benta	1.	2500	
1																							
	9,6	21,7		m^3	Capacity of the b				Crew and Labor			2 14 workers	on the 3	dredges							verhead and bonding		
	748000			m^3	volume to be dre	iged			Equipements Renta	1	250										i job cost		6 euros
	12			m	depth				Total		51267,82									Price	e per m3	6,355	sa eurosin
	2			m	offborad hight				Overhead and bond														
3	0,33		0,33		time to advance				Overhead and bond		5126,782												
a	120	120		deg	average swing an				Total cost with ove	rhead ani													
۱	1	1	0,25		time to change the l	hopper			Profit		5639,4612												
3	1,25		1,25		Bulking Factor				Total daily cost		62034,073												
a	0,99078244				delay factor for a				Production cost		6885782,1	14											
h	0,64158487	0,64504626			delay factor for c	hanging I	the hoppe	4															
m	0,78	0,78	0,78		fillfactor				Mobil Demobirate		0,1												
0	0,72		0,72		Capacity factor			Mob/E	lemob		702349,78	18											
Cadjusted	6,912	15,624			modification fact																		
olume dredged		602150		m^3	volume of sedim	ients actu	ually dreg	led Total	Project cost		7588131,3	6											
т	43,0285714				ds Cycle time																		
nom	451,06996	1019,60606			r Nominal product			Yearfac			1,13763004												
max	286,732103				r Max production				Year adj Cost		8632342,2												
	14735,3765			m^3łw	reek			Locatio			0,602												
otal dredgin		1145,28		Hrs					Location Adj Co	ost	5202556,3	B Euros											
	232,298028			days																			
		111						Additi	onal Costs														
									Rock/Debris remov			0											
									Government-direct		g	0											
									Enviromental Moni			0											
									Other project-speci	fic costs		0											
												-											
								Total	Adjusted Cost		5202556,3	Euros											

Appendix A-4: calculation spreadsheet for the comparison of the total cost estimation of different projects. This spreadsheet has an extra table and figure representing the difference between the thesis spreadsheet, Pararis (2017), the winning bid and the government estimation.

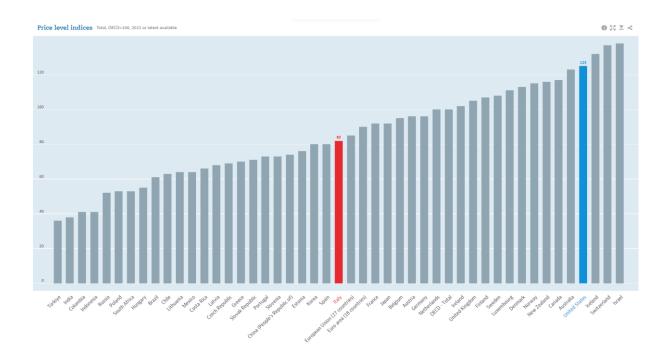

Appendix A-4: calculation spreadsheet for the comparison of the production cost estimation of different projects. In this spreadsheet and as mentioned in previous sections, the cost of mob/demob was not accounted for. Nevertheless, it is the same projects and procedure.

Appendix B: Producer price index by industry: Ship Building and Repairing.

The average values for the year 2022 and 2015 were obtained from the graph below.

203,892 and 231,975 respectively, to account for the inflation.

Appendix C: Department of Labor and Industrial Relations, State of Hawaii. "Wage Rate Schedule Bulletin No. <u>488." 2016</u>, For water front construction(dredging).


		Current			2016			2017			1		
Classification	Prevailing Wage Total	Basic Hourly Rate	Fringe Hourly Rate	Remarks See Pg 7-9									
ATER FRONT CONSTRUCTION (DREDGING):	9/19/16												
LAMSHELL OR DIPPER DREDGES:													
lamshell or Dipper Operator	\$72.60	\$42.69	\$29.91	-	-	-	-	-	-	-	-	-	11,13
lechanic; Welder; Watch Engineer	\$71.94	\$42.03	\$29.91	-	-	-	-	-	-	-	-	-	13
eckmate; Bargemate	\$71.54	\$41.63	\$29.91	-	-	-	-	-	-	-	-	-	13
ire Person; Oiler; Deckhand; Barge Worker	\$69.88	\$39.97	\$29.91	-	-	-	-	-	-	-	-	-	13
YDRAULIC SUCTION DREDGES:													
ever Operator	\$72.24	\$42.33	\$29.91	-	-	-	-	-	-	-	-	-	13
lechanic; Welder	\$71.94	\$42.03	\$29.91	-	-	-	-	-	-	-	-	-	13
atch Engineer (steam or electric)	\$72.09	\$42.18	\$29.91	-	-	-	-	-	-	-	-	-	13
ozer Operator	\$71.88	\$41.97	\$29.91	-	-	-	-	-	-	-	-	-	13
eckmate	\$71.54	\$41.63	\$29.91	-	-	-	-	-	-	-	-	-	13
/inch Operator (stern winch on dredge)	\$71.43	\$41.52	\$29.91	-	-	-	-	-	-	-	-	-	13
ire Person; Oiler; Deckhand (can operate anchor													
scow under direction of deckmate); Levee Operator	\$69.88	\$39.97	\$29.91	-	-	-	-	-	-	-	-	-	13
ERRICKS:													
perator: Derrick, Piledriver, Crane	\$72.60	\$42.69	\$29.91	-	-	-	-	-	-	-	-	-	13
eckmate; Saurman Type Dragline (up to & including 5 yds.)		\$41.63	\$29.91	-	-	-	-	-	-	-	-	-	13
aurman Type Dragline (over 5 cu. yds.)	\$71.94	\$42.03	\$29.91	-	-	-	-	-	-	-	-	-	13
ire Person; Oiler; Deckhand	\$69.88	\$39.97	\$29.91	-	-	-	-	-	-	-	-	-	13
OAT OPERATORS:													
laster Boat Operator	\$72.24	\$42.33	\$29.91	-	-	-	-	-	-	-	-	-	13
oat Operator	\$72.09	\$42.18	\$29.91	-	-	-	-	-	-	-	-	-	13
oat Deckhand	\$69.88	\$39.97	\$29.91	-	-	-	•	-	-	-	-	-	13
ATER WELL DRILLER:	9/19/16												
/ater Well Driller	\$39.68	\$31.00	\$8.68	-	-	-	-	-	-	-	-	-	1
/ater Well Driller Helper	\$25.58	\$18.00	\$7.58	-	-	-	•	-	-	-	-	-	
ELDER:													
se wages of craft to which welding is incidental, except r Chain-Link Fence Erector. See remark.													

From the table below, the average salaries of a dredging vessel workers were obtained.

Comments: Overtime must be paid at one and one-half times the basic hourly rate plus the hourly cost of required fringe benefits. * Indicates a wage, fringe benefit, remark, or title change from the previous bulletin.

Appendix D: OECD. (2023). Price level indices

the location factor, we need to change from the United States of America to Italy, and for that OECD price level indices were used. Italy (Red) 82 and United States of America (Blue) 125

