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1 Introduction

1.1 Context

The following context section provides an overview of the academic back-

ground and research collaboration pertinent to the thesis. It highlights the

affiliation with the University of Bologna, the experience as an exchange stu-

dent at the Universitat Politècnica de Catalunya (UPC) in Barcelona, and the

collaboration with Professor Carlos Andujar in the VirViG research group.

The academic journey leading to this master’s thesis began at the Univer-

sity of Bologna, renowned for its rich academic tradition and commitment to

excellence in higher education. As a student of Artificial Intelligence, I have

had the privilege of studying and engaging with a diverse range of subjects,

acquiring a solid foundation of knowledge in the latest developments in AI

and Computer Vision.

Furthermore, as part of my academic pursuits, I had the valuable oppor-

tunity to embark on an exchange program at the Universitat Politècnica de

Catalunya (UPC) in Barcelona. This immersive experience allowed me to

broaden my horizons, both culturally and academically, by exploring new per-

spectives and engaging with a vibrant academic community.

Throughoutmy time at theUPC, I had the privilege of collaborating closely

with my provessor, a highly regarded expert in the field of computer graphics.

He leads the VirViG research group at the UPC, known for their groundbreak-

ing research and innovative contributions in computer graphics and computer

vision. This collaboration has been instrumental in shaping the focus and di-

rection of my master’s thesis.
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By combining the academic resources and diverse perspectives of the Uni-

versity of Bologna, the enriching experience as an exchange student at the

UPC, this master’s thesis aims to delve into the usage of Deep Learning al-

gorithms to address the task of ball tracking in videos of Padel matches and

make meaningful contributions to the field of sports video analysis.

The subsequent chapters will explore the current State of the Art in ball

tracking in videos, the developed system, and a thorough evaluation of its per-

formance, providing a comprehensive analysis and discussion of the research

findings. The ultimate goal is to contribute to the existing body of knowledge,

foster academic discourse, and offer potential recommendations for future re-

search and practical implications.

1.2 Motivation

The motivation behind this research stems from the growing popularity of

Padel, particularly in Spain and Italy, and the need for advanced video anal-

ysis techniques in this sport. Padel, a racquet sport that combines elements

of tennis and squash, has experienced a remarkable surge in popularity over

the past decade, captivating enthusiasts and attracting a wide range of play-

ers. The game’s fast-paced nature, strategic elements, and accessibility have

contributed to its rapid expansion, making it an intriguing subject for research

and technological advancements.

In recent years, the availability of professional Padel matches on the inter-

net, with standard views and high-quality video footage, has presented a valu-

able resource for training and developing machine learning models. These

publicly accessible matches offer an excellent opportunity to collect large-

scale datasets and extract valuable insights from the gameplay. By leverag-

ing this wealth of data, researchers can advance the field of sports analytics
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and contribute to the overall understanding of Padel strategies, player perfor-

mance, and game dynamics.

While previous projects have focused on positional tracking of players in

Padel matches, this research specifically centers on the challenging task of ball

tracking. Tracking the ball in Padel poses unique difficulties due to its small

size and high speed, necessitating specialized techniques and algorithms. By

focusing on ball tracking, this study aims to provide a comprehensive analysis

of ball trajectories, interactions with players, and their impact on the over-

all game flow. Such insights can have far-reaching implications for coaches,

players, and even technology developers seeking to enhance training method-

ologies and improve player performance.

Moreover, the potential benefits of this research extend beyond profes-

sional matches. Amateur Padel clubs and players can also derive considerable

advantages from advanced video analysis tools. By accurately tracking the

ball’s movements and interactions in real-time, these clubs can gain valuable

feedback on their gameplay, identify areas for improvement, and enhance their

overall performance. The application of automated ball tracking systems can

empower players at all skill levels, facilitating a deeper understanding of the

game and helping them refine their strategies and techniques.

In summary, this research project aims to address the emerging needs in

the field of Padel analysis by focusing on the challenging task of ball tracking.

With the rising popularity of Padel in Spain, Italy, and beyond, the increasing

availability of professional match footage, and the potential benefits for both

professional and amateur players, this study seeks to contribute to the existing

body of knowledge in Padel analytics. By developing an accurate and efficient

ball tracking system, this research endeavors to provide valuable insights into

the game dynamics, assist in player training and development, and pave the

way for future advancements in Padel technology.
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1.3 Goal

The primary goals of this research project are to design, implement, and eval-

uate a comprehensive system for ball tracking in Padel matches. The system

aims to extract and analyze the trajectories of the ball from videos of amateur

matches captured from an overhead or standard view. The following goals

outline the specific objectives of this study:

• Develop a robust system: Design and implement a reliable and accurate

ball tracking system capable of handling the challenges posed by Padel

match videos. The system should effectively detect the ball and track

its movements throughout the duration of the match.

• Trajectory extraction: Retrieve the associated trajectories of the ball,

capturing its path between different events such as racket hits, wall in-

teractions, or ground bounces. The system should generate a model that

describes the behavior of the ball over time, providing a comprehensive

understanding of its movement patterns during gameplay.

• Output specifications: Define the specific outputs of the system, which

include the low-level detection of the ball in the video, a model of the

ball’s path between events, and ideally, a complete description of the

ball’s trajectory throughout the entire match duration. These outputs

will facilitate further analysis, strategic insights, and performance eval-

uation.

• Evaluation and validation: Assess the performance and effectiveness

of the developed system through rigorous evaluation methodologies.

Conduct comprehensive experiments and comparisons against ground

truth data to measure the accuracy, robustness, and reliability of the ball

tracking system.
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By achieving these goals, this research project aims to contribute to the

field of Padel analytics by providing a reliable and efficient system for ball

tracking. The outputs generated by the system will enable coaches, players,

and researchers to gain deeper insights into the game dynamics, improve train-

ing methodologies, and explore new possibilities for enhancing player perfor-

mance in Padel.

The system developed here focuses on representing the ball’s trajectory in

image space (2D). A future development is to consider the transition to 3D

space. By exploring the possibility of incorporating depth information, the

system can potentially enhance the accuracy and realism of the ball’s trajectory

representation.

1.4 System description

The system developed for ball tracking in Padel matches encompasses sev-

eral key components. The following description provides an overview of the

system’s architecture and functionality.

The core of the system utilizes a Convolutional Neural Network (CNN),

implemented using the PyTorch framework [1]. Specifically, the ball detec-

tion module employs the TrackNetV2 [2] architecture, which bears similarity

to the well-known UNet [3]. The output is a heatmap that indicates the like-

lihood of finding the ball at different positions within the frame. In terms of

tracking, two main variants of the input are tested. The first one uses multiple

consecutive frames as input. The second one functions akin to a recurrent neu-

ral network, utilizing one input frame and the output of the previous frames.

To optimize the detection performance, an ablation study is conducted, ex-

ploring these two input variants and different parameters such as the number

of input frames and the training schedule.
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Regarding trajectory fitting, the system employs a RANSAC-style method

for fitting parabolic curves [4]. The process initiates with the identification

of seed triplets across different frames. Subsequently, the trajectory is built

incrementally, employing the RANSAC-style method to accurately model and

describe the ball’s path. This approach ensures the system can capture the

ball’s behavior during gameplay, providing a comprehensive representation

of its trajectory.

Overall, the system integrates a CNN-based ball detection module, mul-

tiple tracking variants utilizing consecutive frames, and a trajectory fitting

mechanism employing a RANSAC-style approach. These components col-

lectively contribute to the system’s ability to robustly track the ball in Padel

matches, providing valuable insights into its movement patterns and behavior

during gameplay.

1.5 Structure of the document

This document will delve into the development of a ball tracking system,

specifically targeted at Padel, based on a Convolutional Neural Network that

detects the ball in a match video. On these detections, trajectories are then

fitted. The chapters are:

• Theory: some background on convolutional Neural Networks is given;

• State of the Art: a brief description of the current State of the Art in

sports analysis, and especially on ball tracking in various sports;

• System description: a thorough description of the developed system;

• Results: analysis of the performance of the system, and possible im-

provements;

• Final remarks and conclusions.
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2 Theory

2.1 Overview on Convolutional Neural Networks

Convolutional neural networks (CNNs) are a powerful family of neural net-

works that are specifically designed to handle image data efficiently. Unlike

traditional fully-connected MLPs (Multi-Layer Perceptrons), CNNs are able

to preserve the spatial structure of images by using convolutional layers and

pooling layers and use it at their advantage.

CNN-based architectures are now ubiquitous in the field of computer vi-

sion, and have become so dominant that hardly anyone today would develop

a commercial application or enter a competition related to image recognition,

object detection, or semantic segmentation without building off of this ap-

proach. The design of modern CNNs owes its inspiration to biology, group

theory, and a substantial amount of trial and error. Not only are they efficient

in achieving accurate models, but they are also computationally efficient be-

cause they require fewer parameters than fully-connected architectures, and

are easy to parallelize on GPUs.

CNNs are not limited to handling image data and have been successfully

adapted for use in other domains such as audio, text, time series analysis,

graph-structured data, and recommender systems. In fact, some clever adap-

tations of CNNs have brought them to bear on graph-structured data and in

recommender systems.

This chapter covers the basic operations of CNNs, which include convolu-

tional layers, padding and stride, pooling layers, the use of multiple channels

at each layer, and a brief discussion of the structure of modern architectures.
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Convolutional layers use filters to identify features in the input image and

generate a feature map. Padding and stride control the size of the feature map,

while pooling layers aggregate information across adjacent spatial regions to

reduce the dimensionality of the output and improve the efficiency of the net-

work.

In Chapter 3, the state of the art in object tracing will be explained, and in

Chapter 4 the specific architecture used in this project will be shown.

2.2 Why convolutions

Fully connected network are not well suited for learning representations of

images. The reason is that the number of parameters grows very fast with

image size and hidden dimension size: given an image X with dimensions

W × H , the hidden representation after the first fully connected layer of an

MLP and before the activation function looks like this:

hi = ui +
C∑

k=1
[W]i,k xk, i ∈ { 1, . . . , W · H }, (2.1)

where x is the flattened input image, h its flattened hidden representation,

W the weight matrix and u the bias vector. The number of parameters for the

weight matrix W is therefore C ·W ·H . For instance, a 100×100 pixel image

with a hidden representation of dimension 1000would require 107 parameters.

A system with these characteristics has a poor representation capability. Any

practical system would require a larger input image and a higher dimensional

hidden representation. This means that an enormous amount of memory, com-

putational resources and training data would be required to have satisfactory

results, which makes MLPs unsuited for processing images [5]. Figure 2.1

shows a weight matrix of a fully connected layer which is made for detecting

vertical egdes. As can be seen, a lot of entries in the weight matrix are 0 and
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are therefore not needed. This shows the inefficiency of MLPs when used

on images. In this example, just sliding the kernel [−1, 1] over the image is

equivalent, but with much lower resource consumption. This is the principle

behind convolutional neural networks (CNNs).

Flatten Image

-1 1
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-1 1

-1 1

-1 1

-1 1
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g     h     i
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b
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h

i

Matrix
multiplication

Weights

b - a

c - b

e - d

f - e

h - g

i - h

hidden representation
(vertical edges)

Figure 2.1: Weight matrix of the first a fully connected layer of an MLP
designed to detect vertical edges. The empty cells have value 0. The bias
vector is not shown. Image created by the author, based on the lectures of the
Machine Learning for Computer Vision course of prof. Samuele Salti.

2.2.1 Translation equivariance and locality

Images have the handy characteristics that it does not really matter where the

object of interest is exactly located for it to be recognizable. This means that

the the neural network should respond similarly to the same patch, regardless

of its specific location within the image. Additionally, the network response

sould shift accordingly. This principle is called translation equivariance, and

is shown clearly in Figure 2.2. In addition, the earliest layers should also

mainly focus on local regions, ignoring the more distant ones. This is the

locality principle. Eventually, these local representations can be aggregated

to make predictions on the whole image.

We want to exploit the spatial structure of the images to apply the princi-
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Figure 2.2: Translation equivariance. No matter where the dog is placed, the
system recognizes it in the same way.

ples of translation equivariance and locality. We start by re-indexing the terms

in equation (2.1) to have an unflattened representation of the images:

[H]i,j = [U]i,j +
∑

k

∑
l

[W]i,j,k,l [X]k,l. (2.2)

Now X is the (unflattened) input image, H its hidden representation, W the

weights and U the biases. Note that with this new indexing the weigh matrix

W becomes a fourth-order tensor W. This apparently cosmetic change is im-

portant, because neighboring indices now represent neighboring locations in

the image.

Translation equivariance

To apply translation equivariance, it is convenient to re-index theweight tensor

W as follows:

[H]i,j = [U]i,j +
∑

a

∑
b

[V]i,j,a,b [X]i+a,j+b, (2.3)

where [V]i,j,a,b = [W]i,j,i+a,j+b. The range of the indices a and b is now over

positive and negative offsets, so that i + a and j + b span the entire image.

To calculate the value of a specific hidden location [H]i,j , we perform a sum-

mation over the corresponding pixels in the input image X centered around
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(i, j), where each pixel is weighted by the corresponding value in [V]i,j,a,b.

Since we want translation equivariance, a shift in the input X should sim-

ply shift H by the same amount. This means that V and U must not depend

on the spatial location (i, j):

[V]i,j,a,b = [V]a,b

[U]i,j = u.

Equation (2.3) threfore becomes:

[H]i,j = u +
∑

a

∑
b

[V]a,b [X]i+a,j+b. (2.4)

Ignoring the bias u, this operation is a cross-correlation between the matrices

V and X. In the field of Deep Learning it is always referred to as convolution.

However, to formally be a convolution, one should use (i−a, j −b) instead of

(i+a, j +b) when indexing X. This misnomer is in fact practically irrelevant,

as the two notations can be matched by simply flipping V and the signs of a

and b.

Note that [V]a,b has much fewer parameters than [V]i,j,a,b. An illustration

of this operation is shown in figure 2.3.

Locality

As mentioned before, the locality principle states that locations far away from

(i, j) have no effect on the hidden representation. Therefore, we can impose

[V]a,b = 0 for any value |a| > ∆ and |b| > ∆. We can rewrite [H]i,j as:

[H]i,j = u +
∆∑

a=−∆

∆∑
b=−∆

[V]a,b [X]i+a,j+b. (2.5)
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Output Hi,jInput image Xi,j

i j i j

Figure 2.3: Illustration of a convolutional layer as in equation (2.4). The
kernel is the small dark square, and the bias is not shown. The indices (i, j)
refer to the spatial dimensions, alongwhich the kernel is slid. Image created by
the author. Image created by the author, based on the lectures of the Machine
Learning for Computer Vision course of prof. Samuele Salti.

This equation describes a convolutional layer. The matrix V is called convo-

lutional kernel, filter or simply as the layer weights. Together with the bias, it

is usually a learnable parameter.

2.2.2 Channels

In the definition given in (2.5) assumes the image X to be grayscale. This is

a major limitation for 2 main reasons:

• images are usually RGB and thus have 3 channels;

• only one hidden representation can be generated.

To solve the first problem, it is sufficient to add a channel dimension to

X, rendering it a third-order tensor. This means that we index it as [X]i,j,k.

Accordingly, the convolutional kernel will go from [V]a,b to [V]a,b,c. This is

shown in Figure 2.4.

The second problem can be addressed similarly, i.e. by adding channel

dimension to the hidden representation. This is shown in Figure 2.5. In this

12



Output Hi,jInput image Xi,j,c

i j

c

i j

Figure 2.4: Illustration of a convolutional layer in which the input image has
multiple channels. The kernel is the stack of darker squares, and bias is not
shown. The indices (i, j) refer to the spatial dimensions, along which the ker-
nel is slid. The index c refers to the channels of the input image. Image created
by the author, based on the lectures of the Machine Learning for Computer Vi-
sion course of prof. Samuele Salti.

way we go from [H]i,j to [H]i,j,d. Each element along the channel dimension

of H is called a feature map, and contains different representations of the in-

put. For example, there could be a feature map for all the vertical edges, one

for the horizontal edges, one for the corners and so on. We must also add this

additional output channel dimension to the convolutional kernel, which there-

fore becomes a fourth-order tensor [V]a,b,c,d. The bias becomes a vector ud

indexed on the output channel dimension. The final convolutional layer for

multiple channels therefore is:

[H]i,j,d = ud +
∆∑

a=−∆

∆∑
b=−∆

∑
c

[V]a,b,c,d [X]i+a,j+b,c, (2.6)

where (i, j) index the input and output spatial dimensions, and d indexes the

output channel.
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Convolutional kernel Vi,j,c,d
Bias ud

Output feature maps Hi,j,dInput image Xi,j,c

i j

c

i j

d

i j

c
d

Figure 2.5: Illustration of a convolutional layer with 3 input channels and 4
output channels. The indices (i, j) refer to the spatial dimensions, c to the
channels of the input image and d to the channels of the output image. Im-
age created by the author, based on the lectures of the Machine Learning for
Computer Vision course of prof. Samuele Salti.
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3 State of the Art
This chapter covers the state of the art of ball tracking in ball sports are cov-

ered.

Since Padel is a relatively new sport, there is not so much research in this

field. Other sports such as association football, basketball, volleyball and ten-

nis there have more research going towards them.

3.1 Existing products for sports analysis

There are various commercial systems that perform ball tracking. The two

most important ones are HawkEye and Clutch.

Hawk-Eye

The Hawk-Eye system [6] uses computer vision technology to track and visu-

alize the trajectory of a ball in various sports, such as cricket, tennis, football,

badminton, hurling, rugby union, association football, and volleyball.

The system uses multiple cameras, and calculates the 2D trajectory in the

image space of each one. It then combines the 2D tracks of each camera and

projects the tracks in 3D space using triangulation. Hawk-Eye operates on the

principle of triangulation, using visual images and timing data obtained from

a multitude of high-speed video cameras stationed around the playing field at

various positions and angles.

The system also creates a graphic depiction of the ball’s path and the play-

ing area. This information is quickly made available to referees, television

viewers, or coaching staff.
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Clutch

The Clutch [7] system is made for badminton, and provides a service that can

turn the phone to a badminton coach. It provides statistics of the game, with

the length of the rally lengths, winner and mistakes of the players. It also

employs a tracking system for the ball, which is necessary in order to get the

game statistics.
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4 System description

4.1 Overview

The system consists of two parts:

• ball detection: a convolutional neural network detects the position of

the ball in each video frame;

• trajectory fitting: parabolas in image space are fitted across multiple

frames and linked together. The procedure is explained more detail in

Sections 4.3.

The source code can be found in the repository in [8].

4.2 Ball detection

The detection of the ball is performed by a Convolutional Neural Network

(CNN). The goal is, given a sequence of n consecutive input frames, to extract

the position of the ball in the last frame. Two main approaches have been

tested:

• convolutional encoder architecture with a regression head, in the Reg-

NetY design space [9]. It takes as input a frame sequence and outputs

the (x, y) position of the ball in normalized pixel coordinates;

• convolutional encoder and decoder. Like before, it takes a frame se-

quence as input, but outputs a heatmap with the likelihood of finding

the ball in a given position. In this variant, the output of the previous h

17



frame sequences is also saved as an internal state, and given as input to

the network for the detection in the next frame.

The second architecture has proven to be the best performing one. More de-

tails about the results for each architecture with different hyperparameters are

shown in more detail in chapter 5.

4.2.1 Architecture

The encoder-decoder architecture used for this project is a Unet-style net-

work [3] with a VGG13 [10] encoder, called TrackNetV2 [2]. Its structure

can be seen in Table 4.1 and Figure 4.1.

Input

Conv2D + ReLu + BatchNorm2D

MaxPool

Nearest neighbor upsampling

Conv2D + Sigmoid

3n+h 64

128

256

512

256

128

64 1

Figure 4.1: Architecture of TrackNetV2 with n input frames and h heatmaps
of the previous position. The displayed number refers to the number of output
channels in each convolutional layer. For the final system, n = 2 and h = 0
has been chosen. Image created by the author.

The model takes as input a sequence of n consecutive video frames and the

heatmaps of the previous h detections, as previously mentioned. Since each

video frame is an RGB image, the model’s input consists of 3n + h channels.

The output is a heatmap where a 2D Gaussian distribution is centered around
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Table 4.1: Network Parameters of TrackNet. MaxPooling layers use a stride
of 2, and upsampling layers upsamle by a factor of 2, using neighrest neighbor
upsampling. Between the final convolution of each block and the upsampling
layer with the same resolution there is a skip connection, where the activations
are concatenated along the channel dimension.

Layer Kernel Size Depth Resolution Activation

Input - 3n + h 360 × 640 -

Conv1_1 3 × 3 64 360 × 640 ReLU+BN
Conv1_2 3 × 3 64 360 × 640 ReLU+BN

Pool1 2 × 2 - - max pooling

Conv2_1 3 × 3 128 180 × 320 ReLU+BN
Conv2_2 3 × 3 128 180 × 320 ReLU+BN

Pool2 2 × 2 - - max pooling

Conv3_1 3 × 3 256 90 × 160 ReLU+BN
Conv3_2 3 × 3 256 90 × 160 ReLU+BN
Conv3_3 3 × 3 256 90 × 160 ReLU+BN

Pool3 2 × 2 - - max pooling

Conv4_1 3 × 3 512 45 × 80 ReLU+BN
Conv4_2 3 × 3 512 45 × 80 ReLU+BN
Conv4_3 3 × 3 512 45 × 80 ReLU+BN

UpS1 2 × 2 - - upsampling

Conv5_1 3 × 3 256 90 × 160 ReLU+BN
Conv5_2 3 × 3 256 90 × 160 ReLU+BN
Conv5_3 3 × 3 256 90 × 160 ReLU+BN

UpS2 2 × 2 - - upsampling

Conv6_1 3 × 3 128 180 × 320 ReLU+BN
Conv6_2 3 × 3 128 180 × 320 ReLU+BN

UpS3 2 × 2 - - upsampling

Conv7_1 3 × 3 64 360 × 640 ReLU+BN
Conv7_2 3 × 3 64 360 × 640 ReLU+BN

Conv8 1 × 1 1 360 × 640 Sigmoid
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the ball position in the last frame of the input sequence. This approach enables

multiple detections, if multiple balls are present.

For training, a dataset containingmultiple videos is used, where each video

is accompanied by labeled information indicating the ball’s position in every

frame. These labels are represented in normalized pixel coordinates. The

dataset is split into a training set and a validation set. The training procedure

follows a fixed schedule, rendering a labeled test set unnecessary. However,

to assess the model’s robustness, an unlabeled video is employed for testing

purposes.

During training, two hyperparameters need to be set:

• The spatial resolution of the input;

• the width of the Gaussian on the target heatmap σ.

The input resolution is set to a fixed value of 360 × 640, and the width of

the target Gaussian to σ = 5 px.

Further details regarding the training and validation data can be found in

Section 5.1. Figure 4.2 provides an example visualizing the input data, tar-

get heatmap extracted from the validation set, and the corresponding output

produced by the model.

4.2.2 Extracting the ball position from the heatmap

Given a heatmap, the ball position must be extracted by finding its local max-

ima. This enables to detect multiple balls. The process involves the following

steps: First, a Gaussian blurring with a width of σs is applied to the heatmap to

reduce noise, and the resulting heatmap is rescaled to its original value range.

Next, each location in the blurred heatmap is compared to its neighboring ones,

the locations greater than all of their neighbors are selected. This comparison
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includes diagonal neighbors as well. Finally, among the identified local max-

ima, only those surpassing a threshold vth are kept. Fixed values of σs = 5 px

and vth = 0.1 chosen.

Table 4.2: Values for the fixed detection parameters. The input resolution is
640 × 360.

Parameter Value

input resolution 640 × 360
σ 5
σs 5
vth 0.1

4.2.3 Results overview

The encoder-only architecture did not achieve satisfactory performances. For

the TrackNetV2 architectures, variants with h = 0 and n = 2, 3, 4 and 6,

and with n = 1 and h = 3 have been tested. The one with h = 0 and

n = 3 performs best. The hyperparameters are summarized in Table 4.2.

For n = 3 and h = 0, the detection rate on the validation set is 93.0%. Of

the detected balls, the mean positioning error ∆pm is 1.42 px. The rate of

positioning error∆p < 1 px is 49.1%, for∆p < 5 px it is 96.9%, and for∆r <

10 px it is 98.5%. An example of ball detection can be seen in Figure 4.2.

A more detailed analysis of the results for each architecture can be seen in

Section 5.2.2.

4.3 Trajectory fitting

4.3.1 Fitting a parabola to each frame

The section explains the fitting of parabolic trajectories to position candidates

(which may include false positives) in each frame and is based on the paper
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Figure 4.2: Example of a training sample for a sequence length of n = 2
frames and resolution 640×360. The upper images show the two input frames
of the video. The lower left image shows the target heatmap superimposed on
frame 2. The width of the Gaussian is σ = 5 px. The lower right image shows
the output heatmap of the model superimposed on frame 2.

by Yan et al. [4].

The idea is to extract information about the ball trajectory, after having

detected its position in each frame using a CNN. After choosing a sliding win-

dow centered on a seed frame k and detection candidate, a parabolic model in

image space is fitted incrementally along it. The process works as follows:

1. detect all triplets of candidate detections in neighboring frames (seed

triplets), so that the distance between candidates of neighboring frames

is below a certain threshold distance r;

2. for each seed triplet fit a parabolic model, and compute the estimated

positions;

3. find the supports and the cost of themodel. The supports are the position

candidates close enough to the estimated positions;

4. fit a new parabolic model using the supports of the previous model, and
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compute the new estimated positions;

5. find the supports and the cost of the new model. If the number of sup-

ports does not increase or if the cost increases, keep the previous mo-

del. Otherwise, go back to point 4 and use the new model as the starting

point;

6. after having found a parabolic model for each seed triplet, filter implau-

sible models out and choose the one with the lowest cost.

A parabolic model is chosen, because it requires only 3 parameters and is a

good approximation of the true ball path, which is assumed to have a constant

acceleration due to gravity, air drag and ball spin. This incremental approach

is useful for the following two reasons:

• using only the seed triplet for fitting yields to poor results, as the relative

error of the detection position in neighboring frames is higher than in

frames that are further away in time;

• using frames further in time reduces the relative error, of the fitted mo-

del, but since each path has a different length, a criterion for finding the

furthest possible frames is necessary.

In the process described above, one parabolic model per frame is fitted. In

order to describe the final path of the ball, which might include bounces on

the ground and hits by the players, a strategy for connecting trajectories is

needed. This is further explained in 4.3.2.

Detection of the seed triplets

As previously mentioned, we already have position candidates for each frame.

The set of candidates in frame k is:

Ck = {cj
k}, j ∈ { 1, . . . , mk }, (4.1)
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where, mk is the number of candidates in frame k and cj
k is the jth candidate in

Ck. The sliding window has size 2N +1 and moves across the video sequence.

In this work, N = 10 is chosen.

72

77

78

74

7975

76

(a)

72

77

78

74

75

77

76

(b)

Figure 4.3: The squares denote the position candidates cj
k. The number inside

them denotes the frame k in which it belongs to. Here we consider a sliding
window centered on frame k = 76. A candidate cj

76 ∈ C76 is highlighted in
blue. The area Aj

76 is highlighted in blue, and is surrounded by the dashed
circle of radius r. In (a) no seed triplet is found: one candidate in C75 falls in
Aj

76 (green), but no candidate in C77 does (red). There is one candidate from
C79 within Aj

76 (black), but it is too far in time to be considered for a seed
triplet. In (b) a seed triplet is found, because there are candidates in both C75
and C77 that fall within Aj

76 (green). Image inspired by [4, Fig. 1].

A seed triplet consists of position candidates in neighboring frames k − 1,

k and k + 1, so that the distance between each neighboring candidate is less

than a specific threshold distance r. At time k, the interval Ik covers frames

from k − N to k + N . Within interval Ik, we focus on each cj
k, centered at the

candidate and with a radius r. We define a circular area Aj
k that encompasses

this region. We examine whether there exists at least one candidate from Ck−1

and at least one candidate from Ck+1 that fall within Aj
k (see Figure 4.3). Let’s

assume cj
k−1 ∈ Ck−1 and cj

k+1 ∈ Ck+1 are located inside Aj
k. If this condition

is met, we can utilize cj
k−1, cj

k, and cj
k+1 as a seed triplet to solve a constant

acceleration motion model (see Figure 4.3b).
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Fitting a parabolic model to a candidate triplet

Given three position candidates at the frame indices k0, k1 and k2, the parabolic

model that needs to be fitted is the following:

a = 2 ∆k0,1 (p2 − p1) − ∆k2,1 (p1 − p0)
∆k1,0 ∆k2,1 (∆k1,0 + ∆k2,1)

(4.2)

v0 = p1 − p0

∆k1,0
− a

2
∆k1,0, (4.3)

where p0, p1, p2 are the candidate positions at k0, k1 and k2, ∆k2,1 = k2 −k1,

∆k1,0 = k1 − k0, a is the acceleration and v0 is the velocity at time k0.

The estimated position at any time k can be calculated as:

p̂k = p0 + ∆k v0 + a
2

∆k2, (4.4)

where ∆k = k − k0. This can be used to calculate the trajectory along the

whole sliding window.

Finding the supports of a model

A position candidate cj
k is said to be a support of a model if it is consistent with

it. This is the case, if the distance between the candidate cj
k and the position

estimated by the model is smaller than a threshold distance dth:

d(p̂k, pj
k) < dth. (4.5)

This is shown in Figure 4.4. The set of all supports of a model is referred to as

S. Given a set of supports, we use it to find the frames and position candidates
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to use for fitting the next model. We define:

kmin = min k ∀cj
k ∈ S (4.6)

kmax = max k ∀cj
k ∈ S (4.7)

kmid = arg min
k

||kmax − k| − |kmin − k|| ∀cj
k ∈ S, (4.8)

where kmin is the first frame used for the new fit, kmid the middle one and

kmax the last one. In Figure 4.4a, the support set encompasses frames 74 to

78. According to the previous equations, in this case kmin = 74, kmid =

76 and kmax = 78. These frames are then used to fit a new model using

equations (4.2) and (4.3).
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Figure 4.4: The squares represent position candidates in various frames, and
the circles the estimated positions. In (a), a parabolic model is applied to the
seed triplet, represented by the blue and green squares. The solid red circles
indicate the positions estimated by the fitted model. The dashed red circles
have radius dth and are used to determine the support of the fitted model. The
support set encompasses frames 74 to 78. In (b), a secondmodel is fitted based
on the support obtained from the model in (a). Image inspired by [4, Fig. 2,
Fig. 3].
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Computing the cost of a model

The cost function of a trajectory fitted on a model is given by:

C =
i+N∑

k=i−N

∑
j

min
(
d2

th, d2(p̂k, pj
k)

)
, (4.9)

where dth is the threshold distancementioned before, p̂k the position estimated

by the model, pj
k the positions of the candidates and d(·, ·) the euclidean dis-

tance.

Filtering and extraction of the final model

After finding the optimized model for each seed triplet in a frame k, it is neces-

sary to choose the best fitting one. This is done by first applying some filtering

steps, and then choosing the trajectory with the lowest cost. There are three

filtering steps, not present in [4]:

• first, the models with an acceleration vector pointing upwards are fil-

tered out. This makes sense, because the ball is subjected to the force of

gravity. Since the models are computed in the image reference frame,

with the origin in the upper left corner, only the models with ay ≥ 0 are

kept;

• a second filtering step is that the magnitude of the acceleration must

have a minimum magnitude amin. The reason is the possible presence

of stationary balls on the floor. In that case, a parabola with a ≈ 0

and v0 ≈ 0 would be fitted, and would have a very low cost. This is

undesirable, therefore such trajectories are filtered out;

• the third and final filtering step imposes that the angle of the acceler-

ation vector with respect to the vertical must not be too large. This is
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necessary to filter out wall bounces, for which a parabola with a hor-

izontal acceleration vector might actually be the best fit. Therefore,

only accelerations with the ratio of the horizontal to vertical component
ax/ay ≤ g are kept. This parametrizes the maximum lateral acceleration

due to ball spin.

After these filtering steps, the trajectory with the lowest cost is picked for

frame k.

4.3.2 Linking trajectories

A trajectory T = { M, S } is defined as the union of a parametrized model

M and its support set S. Due to the optimization step explained earlier, each

frame k will have exactly one trajectory, which will be referred to as Tk =

{ Mk, Sk }.

The goal of this section is to explain how to link multiple trajectories to-

gether. If two frames a and b are far enough in time, there might be bounces

and hits between them. In addition, a fitted trajectory might not exactly span

the whole flying path of the ball due to approximations of the constant accel-

eration model. For this reason, it is necessary to find a way to link multiple

trajectories together in order to correctly describe the path of the ball. In order

to do this, a weighted directed graph, referred to as trajectory graph, is built.

The edges connect earlier trajectories to later ones, and the weights are given

by a specific distance function.

Distance between trajectories

In order to define a proper distance function, the concepts of overlapping and

conflicting trajectories must be defined first.

Two trajectories Ta and Tb, a < b, are said to be overlapping if kmax,a ≥

kmin,b, meaning that the end of the first trajectory occurs at the same time or
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after the beginning of the second one. Two overlapping trajectories are said

to be conflicting, if ∃k ∈ { kmin,b, . . . , kmax,a } such that:

(∃c′
k ∈ Sa ∧ ∄c′′

k ∈ Sb) ∨

(∃c′
k ∈ Sb ∧ ∄c′′

k ∈ Sa) ∨ (4.10)

(∃c′
k ∈ Sa ∧ ∃c′′

k ∈ Sb ∧ p′
k ̸= p′′

k).

This means that two trajectories are conflicting if a support of one trajectory is

not present in the other one or if two supports of the same frame have different

positions. Now we can properly define the trajectory distance. If Ta and Tb

are overlapping, their distance is:

D(Ta, Tb) =


0 if Ta and Tb are not conflicting;

∞ if Ta and Tb are conflicting.

(4.11)

If they are non-overlapping, their distance is given by:

D(Ta, Tb) = min d(p̂k,a, p̂k,b), kmax,a ≤ k ≤ kmin,b, (4.12)

where p̂k,a and p̂k,b are the estimated positions for trajectories Ta and Tb re-

spectively.

Building the trajectory graph

Using the trajectory distance defined in equations (4.11) and (4.12), a graph

connecting each trajectory can be built, referred to as the trajectory graph, as

shown in Figure 4.5. Since only candidates with a time difference of at mostN

are considered, for each trajectory Tk, the distances between it and the ones in

the range { k + 1, . . . , k + N } are computed. Each trajectory then constitutes

a node in the trajectory graph, with outgoing edges to trajectories later in time
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and weights equal to the distances between them. If the two trajectories are

conflicting (their distance is infinite), no edge is added.

807978777675747372

WCC 1 WCC 2

Figure 4.5: Example of a trajectory graph with 2 weakly connected com-
ponents (WCC). The weight of each edge corresponds to the distance of the
nodes it connects. Dijkstra’s algorithm is used on eachweakly connected com-
ponent to find the shortest path between its first and last nodes, shown in blue
and red respectively. In this example trajectories 74-75 and 77-78 are con-
flicting: they have infinite distance and have therefore no edge between them.
Image created by the author.

In order to find the best fitting path of the ball, Dijkstra’s algorithm is used.

This might pose an issue, because there might be disconnected components in

the trajectory graph (for instance, if the game is paused, or if the ball goes out

of frame, no trajectory will be found). Therefore, all the weakly connected

components (WCCs) in the trajectory graph are found first, and Dijkstra’s al-

gorithm is then applied between the first and last trajectory of each connected

component. This partly diverges from the one described in [4], in which no

mention of weakly connected components is made.

The result is a sequence of trajectories for each WCC.

Mapping each frame to a trajectory

After having found a trajectory sequence by applying Dijkstra’s algorithm

to the trajectory graph, the final mapping between frames and trajectories is

found. For a frame k, a mapping is possible if there exists a trajectory Tl such

that lmin ≤ k ≤ lmax. The set of possible trajectories is { Tl }. If a mapping is

possible, the trajectory Ta assigned to frame k will be the trajectory in { Tl }
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such that:

a = arg min
l

(k − lmin) ∀ Tl ∈ { Tl }. (4.13)

After this step, a trajectory can be uniquely assigned to a frame. This makes

it possible to estimate parameters such as the ball position and velocity in

image space at a given time step. Estimating the true trajectory in 3D space

would require triangulation from detections of different cameras angles. Since

a model for the ball path is obtained, the position in image space between

frames can be interpolated. The synchronization of the cameras at each frame

becomes therefore less critical.

4.3.3 Results overview

Examples of a successful and failed fit can be seen in Figure 4.6. Shots by both

the near and far team and bounces on the floor and on thewalls are successfully

detected. A more thorough evaluation of the fitting results can be seen in

Section 5.3.

31



(a) (b)

Figure 4.6: Examples of trajectory fits are illustrated in (a) and (b). In (a),
a successful trajectory fit is obtained, while in (b), the fit fails. The neural
network’s heatmap is superimposed on the frame, and the network’s detection
candidates are indicated as red dots. The past, current, and future trajecto-
ries are represented by the orange, white, and green lines, respectively. The
white boxes correspond to the kmin and kmax values of the fitted trajectory.
The table in the upper left displays frame index k, estimated position p and
velocity v, along with fit parameters p0, v0, and a, given in units of pixels,
pixels per frame, and pixels per frame squared, respectively. Trajectory fit-
ting is performed using the following parameters: N = 10, r = 40, dth = 10,
amin = 0.2, and g = 2, with a video resolution of 1280 × 720 pixels.

32



5 Results
In this chapter the results of the ball detection are discussed in more detail.

In particular, all the variants of the detector that have been tried are shown,

and an analysis of successes and failures of the trajectory fitting in different

scenarios are shown. An explanation of the training data is also provided.

5.1 Dataset

The dataset was partly provided by my supervisor and partly self-labelled. It

consists of six videos with a resolution of 1280 × 720, for a total of 9947

labelled frames. An overview of the sources of the data is shown in Table 5.1.

The labels are saved as CSV files, which contain the frame index and the

position of the ball in normalized pixel coordinates. The reason for the nor-

malization of the pixel coordinates is for making implementation easier, as the

video is scaled to a 640 × 360 resolution before being given as input to the

detector.

The model was also tested qualitatively on various freely available videos

of World Padel Tour matches.

Implementation details

The system is implemented in Python [12], version 3.9.7. The detector is writ-

ten in PyTorch [1], version 1.12.1. The trajectory fitting is also implemented

in Python, using the Numba JIT compiler [13], version 0.56.4.
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Table 5.1: Dataset overview. All videos come from the World Padel Tour and
are at 25 fps. The 2020 video is self-labelled, and is split between train and
validation set, and the others were labelled as a part of a previous project [11].

Source event frames split

2022 Vigo Open Men’s final 1456 train
2022 Estrella Damm Master 2022 Women’s Final 1959 train
2021 Estrella Damm Master Men’s Final 1492 train
2022 Circus Brussels Padel Open Men’s Semifinal 1445 train
2020 Estrella Damm Open Women’s Final 748 train

2022 Estrella Damm Open Women’s Final 2690 validation
2020 Estrella Damm Open Women’s Final 157 validation

5.2 Ablation study on the ball detection

Eight different configurations of models and training procedures have been

tested. A combination of model architecture, hyperparameters and training

procedure is referred to as configuration. The configurations are shown in

Table 5.2. The ones with ”tracknet” in their names use the TrackNetV2 archi-

tecture, as explained in Section 4.2. The other ones use the RegNetY design

space, as explained in [9], and are pre-trained on ImageNet [14]. Before being

given as input to the models, the video is scaled to a 640 × 360 resolution.

5.2.1 Training procedures

All the configurations use the Adam optimizer [15]. The parameters of the

optimizer are set to the default ones: lr = 10−3, β1 = 0.9, β2 = 0.999,

ϵ = 10−8. Only in tracknet_v2_rnn_s the learning rate is decreased during

training. The loss function is themean square error. The number of epochs and

batch size are shown in Table 5.2. The loss histories are shown in Figure 5.1.
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Figure 5.1: Loss histories for all the configurations. The training phases for
tracknet_v2_rnn and tracknet_v2_rnn_s are explained below.
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Table 5.2: Table with the training hyperparameters for the various configu-
rations. The number of input frames is n, the number of memorized previous
states is h. The Adam optimizer with the default values is used in all cases, ex-
cept for tracknet_v2_rnn_s, where the learning rate is decreased during train-
ing.

configuration n h epochs batch size

regnet_y_400mf 3 0 40 16
regnet_y_800mf 3 0 40 16

tracknet_v2_2f 2 0 20 8
tracknet_v2_3f 3 0 20 8
tracknet_v2_4f 4 0 20 8
tracknet_v2_6f 6 0 20 8

tracknet_v2_rnn 1 3 35 8
tracknet_v2_rnn_s 1 3 35 8

Training procedure for h ̸= 0

The training procedure is a bit more elaborated for the architectures with h ̸=

0, i.e. tracknet_v2_rnn and tracknet_v2_rnn_s configurations. Previously,

the training data was shuffled at each training epoch. Since now the model

gets as input the output of the previous frame, the video is given as input

sequentially. To handle batch sizes greater than 1, the parallel sequences are

started in different points in the video.

Training is divided in 3 phases. Before explaining them, some concepts

must be defined:

• Total clearing: when total clearing is performed, thememorized internal

states are set to zero. This forces the model to detect the ball using only

the input frame. At inference time, this corresponds to the situation

at the start of a video sequence. The probability of performing total

clearing in a training step is indicated as p(tc);

• Partial clearing: when partial clearing is performed, each memorized
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heatmap is cleared with a probability of 1/h, where h is the number of

input heatmaps. This forces the model to work with a missed detection

in the past frames. The probability of performing partial clearing is

indicated as p(pc);

• Ground truth input: this is pretty self-explanatory. With ground truth

input, the model is given ground truth heatmaps as input instead of its

own previous outputs. The probability of having ground truth input is

indicated as p(gt). The sampling of p(gt) is done independently for

each input heatmap, so there can be a mix of ground truth and previous

heatmaps as input to the model.

These actions are only performed at training time. Having defined the con-

cepts of total clearing, partial clearing and ground truth input, the training

phases can be defined:

1. Ground truth regime. In this phase, the model must learn to detect the

ball from the input frames only, without having to rely necessarily on

the previous detection. This is necessary to correctly initialize themodel

and make it capable of making the first detection of the ball. Initially

p(gt) is set to 1, and high values for p(tc) and p(pc) are used.

2. Hybrid regime. This is the transition phase from the ground truth regime

to the RNN regime. Here, p(tc) is set to 0, and intermediate values for

p(pc) and p(gt);

3. RNN regime: here the model is taught to use its own previous outputs

as input, therefore very low values of p(pc) and p(gt) are used.

Each training phase is divided in 2 sub-phases, in which the values for p(tc),

p(pc) and p(gt) are set closer to the ones of next phase. The exact values for

each phase and sub-phase are shown in Table 5.3.
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The only difference between tracknet_v2_rnn and tracknet_v2_rnn_s is

that in the former case the learning rate is kept constant, and in the latter case

it is decreased at each training phase. This is done, because the loss starts

spiking in phase 2 of tracknet_v2_rnn, and explodes completely in phase 3,

as shown in Figure 5.1. While lowering the learning rate stabilizes the loss, it

ultimately leads to overfitting.

Table 5.3: Table with the training procedure values for tracknet_v2_rnn and
for tracknet_v2_rnn_s. The lr column holds true only for tracknet_v2_rnn_s.
For tracknet_v2_rnn the learning rate is always 10−3.

Phase End Epoch p(tc) p(pc) p(gt) lr

1 1.1 10 0.8 0.1 1 10−3

1.2 15 0 0.5 0.8
2 2.1 20 0 0.33 0.5 10−4

2.2 25 0 0.2 0.2
3 3.1 30 0 1/30 1/30 10−5

3.2 35 0 1/200 0

5.2.2 Detection results

Table 5.4 shows the results of all the configurations on the validation set. The

histograms of the positioning error distributions are shown in Figure 5.3. The

positioning error is defined as the magnitude of the difference between the

ground truth positions and the positions estimated by the detector, calculated

on the 640 × 360 input resolution.

Both RegNetY architectures start overfitting after about 30 epochs, as

shown in Figure 5.1. Due to their design, even if the ball is completely oc-

cluded in all the input frames, they will try to predict its position. This is a

major limitation of their design. In addition, the mean positioning error is

quite high at 24.6 px and 25.8 px for regnet_y_400mf and regnet_y_800mf

respectively.
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Among the two training schedules of TrackNetV2 with h = 3 and n =

1, tracknet_v2_rnn starts overfitting in Phase 3, and tracknet_v2_rnn_s even

earlier in Phase 2. This is reflected on the validation set results, in which the

mean positioning errors are 9.42 px and 37.5 px respectively. The detection

rate is 92.7% and 99.4% respectively. The latter result is the highest of all the

configurations, but it results from a high number of false detections, as shown

in Figure 5.2b.

The TrackNetV2 architecture with h = 0 and n = 6 is not able to recog-

nize the ball at all. Its output always consists of a heatmap containing only

values very close to zero. This can also be seen in the loss function, which re-

mains constant from epoch 6 onwards (see Figure 5.1). A heatmap containing

only zeros represents a local minimum of the loss landscape, and the optimizer

is not able to exit out of it. This situation happens in the training of the config-

urations with n = 2, 3, 4 as well, but here the optimizer eventually exits from

that local minimum, which does not happen for n = 6. An example of output

from this architecture variant can be seen in Figure 5.2c.

The TrackNetV2 configurations with h = 0 and n = 2, 3, 4 have the best

results, and they all perform quite similarly. The configuration with n = 3 has

a detection rate of 93.0%, slightly higher than the 92.0% of the other two. The

mean positioning error is also the smallest among all configurations, having

a value of 1.41 px. However, the configurations with n = 2 and n = 4 are

close, at 1.42 px and 1.53 px respectively. The percentage of positioning errors

smaller than 1 px (i.e. exact detections) is also the highest for n = 3, at 49.1%.

All configurations have very high values for the percentage of positioning

errors smaller than 5 px and 10 px.

Looking at the loss history of the configuration with n = 2, the training

and validation loss start diverging after epoch 12. From there on, the training

loss continues to drop, and the validation loss stays stable around 6 · 10−4.
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(a) (b)
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Figure 5.2: These example heatmaps are generated by different configura-
tions of TrackNetV2. In (a) and (b), the configurations correspond to n = 1
and h = 3. Specifically, (a) represents tracknet_v2_rnn, and (b) represents
tracknet_v2_rnn_s, which uses a different training schedule. In (c), the con-
figuration is set to n = 6 and h = 0. Finally, (d) shows the result of the
configuration with n = 3 and h = 0. The heatmaps for n = 2 and n = 4
show a high degree of similarity.

From epoch 18 on, the loss seems to start fluctuating, which indicates that the

network is close to overfitting. In the loss history of the configuration with

n = 3 the validation loss and the training loss do not diverge significantly

until epoch 18. There is then a large spike in the validation loss at epoch 19.

The spike then disappears at epoch 20. This indicates that the optimizer is

close to a narrow local minimum of the loss landscape, and that the model

is close to overfitting as well. In the loss history of the configuration with

n = 4, the training and validation loss both decrease for the whole duration of

the training process.

Figure 5.2d shows examples of output heatmaps for the various Track-

NetV2 configurations on a sample frame of the validation set.
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Figure 5.3: The distributions of positioning errors for all configurations are
depicted. These errors are calculated based on a 640 × 360 frame, and only
consider actual detections. The histograms provide a comprehensive overview
of the entire error distribution, which is further summarized in Table 5.4.

Table 5.4: This table presents the results for all tested configurations. The
detection rate of regnet_y_400mf and regnet_y_800mf is intentionally omit-
ted, because it is 1 due to their design. For the TrackNetV2 configurations,
the detection threshold vth is set to 0.1, as specified in Section 4.2.2. The po-
sitioning error, expressed in pixels, is calculated based on a 640 × 360 frame
and is calculated exclusively on the frames where the ball was detected. The
results for tracknet_v2_6f show n/a as the model never detects the ball.

Positioning error

configuration detection rate mean std < 1 px < 5 px < 10 px

regnet_y_400mf 24.6 34.2 0.591% 13.1% 37.7%
regnet_y_800mf 25.8 30.4 0.148% 8.38% 25.1%

tracknet_v2_rnn 92.7% 9.42 30.8 45.4% 85.2% 88.6%
tracknet_v2_rnn_s 99.4% 37.5 64.1 36.2% 64.7% 65.7%

tracknet_v2_2f 92.2% 1.53 7.98 47.1% 97.0% 98.9%
tracknet_v2_3f 93.0% 1.41 5.14 49.1% 96.9% 98.5%
tracknet_v2_4f 92.2% 1.42 7.67 48.5% 96% 98.9%
tracknet_v2_6f n/a n/a n/a n/a n/a n/a
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5.3 Analysis of the trajectory fitting

The detector chosen to extract the position candidates for the analysis of the

trajectory fitting is TrackNetV2 with n = 3 and h = 0. On the position

candidates found by the detector, parabolic trajectories are fitted as explained

in Section 4.3.

5.3.1 Choosing the right fitting parameters

The right choice of the fitting parameters is crucial. The parabolic model of

the true flight path of the ball is an approximation, as it does not take into con-

sideration the fact that force exerted by air drag is dependent of the ball ve-

locity, or that ball spin does not provide a constant acceleration. For instance,

choosing a value too small for dth might make the fit miss some supports due

to the aforementioned approximations, but choosing it too large could lead

to wrong fits, especially during wall bounces or shots made by the far team.

Also, choosing a value for N might lead to similar results.

The finally chosen fit parameters shown in Table 5.5 provide satisfactory

results. As a reminder, they are chosen on a video of size 1280 × 720 with a

frame rate of 25 fps.

5.3.2 Analysis of different game situations

The trajectory fitting explained in Section 4.3 is useful to extract the veloc-

ity, position and acceleration of the ball in image space. This can be used to

analyze the speed of player shots, as it corresponds to the v0 parameter of the

parabola fitted on the shot. An example of this can be seen in Figure 5.4. The

fitted parabolas start the moment the players do a shot. Bounces on the floor

and on the wall are detected as well, as shown in Figure 5.4a.

Sometimes, the fitting of the parabolas fails. This can happen whenever
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Table 5.5: Parameter values used in the trajectory fitting process are displayed
in the table. The video resolution is 1280 × 720 pixels. The units for N , r,
and dth are pixels, amin is pixels per frame squared, and g is dimensionless.
N indicates the number of frames considered before and after the seed frame,
r represents the maximum radius considered for the initial seed triplet, dth

denotes the threshold between the estimated position by the fit and the near-
est position candidates, amin signifies the minimum magnitude of the fitted
acceleration, and g represents the maximum ratio between the horizontal and
vertical components of the fitted acceleration. For a more comprehensive ex-
planation, please refer to Section 4.3.

Parameter Value

N 10
r 40

dth 10
amin 0.2

g 2

the ball is occluded for a long time, usually when the trajectory goes across the

frame and the ball goes behind the two horizontal bars, as shown in Figure 5.5.

(a) (b)

Figure 5.4: Example of a shot for players of the near team (a) and the far
team (b). The heatmap produced by the neural network is superimposed on
the frame, and the detection candidates of the network are shown as red dots.
The orange, white and green lines represent the past, current and future trajec-
tories respectively. The white boxes correspond to kmin and kmax of the fitted
trajectory. The table on the upper left shows the frame index k, the estimated
position p and velocity v, and the fit parameters p0, v0 and a in units of pixels,
pixels per frame, and pixels per frame squared respectively.
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(a) (b)

Figure 5.5: Example of a failed fit. For the meaning of the colors of the
trajectories, refer to Figure 5.4. In addition to there, here the darker lines
represent the continuation of the fitted trajectories outside their support set.
What happens is this: in Figure (a) the detector fails to detect the ball for
3 consecutive frames (1496 to 1499). The position candidate in frame 1499
(Figure (b)) is then too far away from the estimated trajectory to be considered
in the supports, and therefore the previous path is not refined. In this frame,
the trajectory fitted by the seed triplet is too noisy, and is filtered out.

5.4 Discussion

There are various possible choices for the detector. At the end, using the pre-

vious output as input for detecting the ball in the next frame proved to be

counter-productive, and training the model to deal with it is challenging. The

RegNetY encoding-only performs poorly, and this is not surprising. The num-

ber of input frames does not affect much the performance of the detector, but

setting it too high might make it impossible to train. The original number of

3 input frames is probably the best choice. Regarding the trajectory fitting,

using the 2D image space is a starting point. Since a time-continuous position

estimation is possible, multiple cameras can be used and the position triangu-

lated.

44



6 Conclusion
This study has established that the proposed system is capable of identifying

and tracking the ball in a padel match video effectively. The highest perform-

ing detector was found to utilize two input frames, but taking three frames as

input dives similar performances.

A key strength of this system lies in its low rate of false positives, which

greatly enhances the efficiency of trajectory fitting. However, there’s room

for further exploration into different types of detectors, such as more compact

neural networks, which might reduce computational demand. A higher false

positive rate could result from such a detector, but the effect could bemitigated

during the trajectory fitting process.

This research opens avenues for more comprehensive analysis of trajec-

tories, specifically in detecting floor and wall bounces. Such analysis could

be realized by examining the angle of velocity vectors between neighboring

trajectories. Moreover, the performance and applicability of the system could

potentially be enhanced by combining views from multiple calibrated cam-

eras, and by projecting the ball’s position in 3D space. However, this would

demand additional hardware resources, and in such instances, established sys-

tems like Hawk-Eye may prove more appropriate.

In conclusion, this research contributes significantly to the field of ball

tracking and detection, providing valuable findings and opportunities for fu-

ture work. The methods investigated within this study could potentially be

commercialized and marketed to amateur padel clubs, providing them with a

reliable ball tracking system.
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