Calvanese, Michele
(2023)
Ball tracking in Padel Videos using Convolutional Neural Networks.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
Abstract
The goal of the project is the development and evaluation of a deep-learning application for the reconstruction of the ball trajectory in a padel match, based on a video captured from a camera angle similar to the de-facto standard in padel streaming. The project will explore and evaluate different approaches to detect the ball in individual frames of the video, to discard false negatives, to reconstruct free flight segments, and finally to merge reconstructed flight segments into trajectories.
Abstract
The goal of the project is the development and evaluation of a deep-learning application for the reconstruction of the ball trajectory in a padel match, based on a video captured from a camera angle similar to the de-facto standard in padel streaming. The project will explore and evaluate different approaches to detect the ball in individual frames of the video, to discard false negatives, to reconstruct free flight segments, and finally to merge reconstructed flight segments into trajectories.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Calvanese, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Padel,CNN,Convolutional,Computer Vision,Video Analysis,Tracking,Ball Tracking
Data di discussione della Tesi
21 Ottobre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Calvanese, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Padel,CNN,Convolutional,Computer Vision,Video Analysis,Tracking,Ball Tracking
Data di discussione della Tesi
21 Ottobre 2023
URI
Statistica sui download
Gestione del documento: