Valanzano, Anna
(2023)
Challenging the Dynamics of Time: Generate and Evaluate Real-World Time Series to estimate NOx Emissions in a Turbo Machine.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (2MB)
|
Abstract
Estimating accurate NOx emissions is essential to monitor pollution and health condition
of a turbo machine. We use a virtual sensor to correctly estimate the particle pollution
value in real-time, leveraging modern machine learning approaches. It is well known
that machine learning heavily relies on data, but real-world applications encounter datarelated
issues. In this work, we address the cited business use case scenario where limited
data hamper an optimal regression quality. We investigate the application of time series
generative models, with a particular emphasis on evaluating their performance using
a comprehensive set of quantitative and qualitative metrics. We also conduct a critical
analysis of the evaluation metrics commonly employed in the literature for validating and
assessing the effectiveness of generative models. The analysis highlights the limitations
of these metrics, as they do not take into account the temporal dependencies present in
time series data and rely heavily on the specific implementation of the evaluation model.
Finally, task-specific metrics are proposed to assess the effectiveness of generated data
in supporting an industrial application. By delving into those pillars, this work aims
to contribute to the advancement of knowledge on temporal synthetic data generation,
showing how it can impact environmental care.
Abstract
Estimating accurate NOx emissions is essential to monitor pollution and health condition
of a turbo machine. We use a virtual sensor to correctly estimate the particle pollution
value in real-time, leveraging modern machine learning approaches. It is well known
that machine learning heavily relies on data, but real-world applications encounter datarelated
issues. In this work, we address the cited business use case scenario where limited
data hamper an optimal regression quality. We investigate the application of time series
generative models, with a particular emphasis on evaluating their performance using
a comprehensive set of quantitative and qualitative metrics. We also conduct a critical
analysis of the evaluation metrics commonly employed in the literature for validating and
assessing the effectiveness of generative models. The analysis highlights the limitations
of these metrics, as they do not take into account the temporal dependencies present in
time series data and rely heavily on the specific implementation of the evaluation model.
Finally, task-specific metrics are proposed to assess the effectiveness of generated data
in supporting an industrial application. By delving into those pillars, this work aims
to contribute to the advancement of knowledge on temporal synthetic data generation,
showing how it can impact environmental care.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Valanzano, Anna
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
NOx emissions,Regression,Time Series,Generation,GAN,VAE
Data di discussione della Tesi
21 Ottobre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Valanzano, Anna
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
NOx emissions,Regression,Time Series,Generation,GAN,VAE
Data di discussione della Tesi
21 Ottobre 2023
URI
Statistica sui download
Gestione del documento: