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Abstract

The field of pervasive healthcare relies heavily on mobile personal sensing
technology to identify everyday human activities. One company, eSteps Inc.,
headquartered in Bologna, Italy, with American origins, is actively working
to address the increasing motor disabilities affecting the lower limbs. They
provide comprehensive monitoring solutions that cover pre-hospitalization,
hospitalization, and post-hospitalization phases, all based on biomechanics
and telerehabilitation protocols. This paper’s main goal is to develop an
Artificial Intelligence (AI) model. The AI model’s purpose is to accurately
recognize the specific activities performed by individuals, whether they have
Multiple Sclerosis or are in good health. The model uses data collected from
eSteps’ innovative devices and aims to significantly enhance the quality of
care and support for patients with motor disabilities.
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Chapter 1

Introduction

Gait analysis plays a pivotal role in monitoring various diseases, with
Multiple Sclerosis (MS) being a prominent example. While the Expanded
Disability Scale Score (EDSS) has traditionally been the primary measure
of disability in MS studies, it has limitations in assessing motor disability.
Fortunately, recent technological advancements have enabled the collection
of data using wearable inertial sensors. These sensors, due to their small size,
portability, and affordability, can be used not only in laboratory settings
but also for real-world monitoring, offering valuable insights into patients’
daily lives.

By analyzing data from Inertial Measurement Units (IMUs), researchers
have identified significant differences in gait parameters between MS pa-
tients and healthy individuals. Moreover, these differences often correlate
with increasing EDSS levels, highlighting the critical role of gait analysis
in tracking disease progression and selecting appropriate therapies. The
importance of continuous monitoring of daily activities, supported by ef-
fective algorithms, becomes really important. In fact fewer daily steps are
associated with higher EDSS-measured disability.

Artificial Intelligence (AI) plays a crucial role in the continuous moni-
toring of diseases, With the help of AI, medical practitioners can effectively
track the progression of illnesses, allowing for earlier detection and inter-
vention. AI-driven system can detect patterns and anomalies that might
elude traditional diagnostic methods. This way, the incorporation of AI into
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CHAPTER 1. INTRODUCTION 3

disease monitoring, can lead, not only to the development of personalized
treatment plans, but to an effective healthcare system.

1.1 Problem

Deducing human actions from sensor data is a complex challenge. Designing
a robust activity recognition system involves various important factors.
Each of these elements plays a crucial role in creating a reliable system for
recognizing human activities. One of the most critical factors in Human
Activity Recognition (HAR) is the quality and relevance of the features
used to represent the data.

Imagine HAR as a puzzle where the goal is to identify and classify
various human activities accurately. The pieces of this puzzle are the data
collected from sensors, capturing information about movements, positions,
and environmental conditions. To assemble a complete picture, we need
to carefully select and craft these pieces – that’s where feature quality and
relevance come into play. Features are numerical representations of specific
aspects of the data, such as speed, orientation, or frequency patterns. Not
all features are equally useful for all types of activities and some of them
could be noisy, worsening the quality of these.

The second critical aspect is the choice the right model because it
determines how effectively the system can make sense of the data. Moreover,
the model’s architecture, whether it’s based on Machine Learning or Deep
Learning, impacts greatly the system’s performance.

In this paper we’ll explore the core components of this fascinating
discipline, from data acquisition and preprocessing to feature extraction
and model selection.

1.2 eSteps

eSteps Inc. has developed a sophisticated, customized device for monitoring
motor activity, assessing fatigue, and identifying injury risks in patients.
They’ve also created a specialized mobile app that allows data sharing
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among patients, caregivers, and medical specialists.

Our mission is to enhance the quality of life, manage symptoms,
and elevate overall well-being for individuals with neurodegener-
ative diseases, through innovative technology and personalized
care. We empower individuals to reclaim control over their
well-being and embark on a journey of progress.

1.3 Structure

• Chapter 1: This chapter offers a brief overview of the thesis topic,
what problem it aims to address, and the solution it proposes.

• Chapter 2: This chapter goes into the details of Multiple Sclerosis
(MS) as a disease and provide a review of the current research on
Human Activity Recognition (HAR).

• Chapter 3: This chapter explains the Machine Learning and Deep
Learning models used and the results obtained.

• Chapter 4: This chapter summarizes the most important discoveries
from the research and suggests areas for future studies.



Chapter 2

State of the art

2.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic autoimmune neurological and neurode-
generative disorder that affects the Central Nervous System (CNS) [1]. It is
characterized by an exaggerated immune response that mistakenly targets
components of the CNS as foreign invaders. This immune reaction results in
the damage of both axons, the nerve fibers transmitting electrical impulses
between neurons, and myelin, the protective sheath surrounding axons.
Oligodendrocytes, specialized cells responsible for myelin production, are
also attacked by the immune system. This process, known as demyelination,
can lead to chronic CNS inflammation. Demyelination can manifest initially
as plaques during the early stages of MS, where axons are demyelinated,
followed by periods of remyelination.

Repeated cycles of demyelination and remyelination can result in the
formation of scars in the white matter of the CNS leading to chronic
damage, which characterizes the sclerosis stage of the disease. The course
of MS can vary widely among individuals, and the disease is known for its
unpredictability [2].

In addition to the autoimmune response, which is the primary driver
of MS, there are various factors that can potentially trigger demyelination
in susceptible individuals, such as genetic predisposition, toxins, hormonal
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CHAPTER 2. STATE OF THE ART 6

factors, smoking and viral infections.
The degree of myelin and axonal destruction can vary, leading to different

categories or phases of MS:

• Relapsing-Remitting: This is the most common phase, character-
ized by periods of disease progression (demyelination) followed by
periods of remission (remyelination).

• Primarily Progressive: In this form of MS, symptoms steadily
worsen over time without periods of remission, occasionally plateaus
can occur.

• Secondarily Progressive: In some cases, individuals with relapsing-
remitting MS may experience a progression of the disease with or
without periods of remission. This phase may involve stabilization of
symptoms during plateaus (period in the disease’s progression where
the symptoms remain relatively stable without significant improvement
or worsening).

• Progressively-Relapsing: This is a rare form of MS in which the
disease continuously worsens from the beginning, with intermittent
flare-ups of symptoms. There are no periods of remission or plateaus.
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Figure 2.1: Multiple sclerosis phases

It’s important to understand these categories and the factors that con-
tribute to MS because it helps the creation of treatments and interventions
to meet the specific needs of individuals affected by MS. Detect MS is in fact
not an easy task. It typically involves a combination of clinical evaluation,
medical tests, and diagnostic criteria. Symptoms [3] of MS can vary among
patients, even within the same MS category. While numerous symptoms
can manifest, some of the most common ones include:

• Fatigue: Overwhelming tiredness and lack of energy are common in
MS.

• Numbness or Tingling: Patients may experience a sensation of
pins and needles, numbness, or tingling in various parts of the body.

• Muscle Weakness: Weakness in the limbs, making it difficult to
move or control muscles, is a typical symptom.

• Balance Problems: MS can affect balance and coordination, leading
to difficulty walking or maintaining stability.
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• Muscle Spasms and Stiffness: Involuntary muscle contractions
and stiffness are common.

• Vision Problems: Vision-related symptoms include blurred or dou-
ble vision, pain in the eyes, and difficulty focusing.

• Cognitive Changes: Memory problems, difficulty concentrating,
and alterations in cognitive processes.

• Bladder and Bowel Issues: MS can result in urinary urgency,
frequent urination, incontinence, and constipation.

• Emotional Changes: Mood changes, including depression, mood
swings, and heightened emotional sensitivity.

• Speech and Swallowing Difficulties: Speech difficulties and prob-
lems with swallowing can also manifest.

Ongoing research studies continue to explore these potential triggers
and their roles in the development of the disease as well as the distinct
phases of MS. It’s important to note that not all individuals with these risk
factors will develop MS.

2.2 Human Activity Recognition

2.2.1 Introduction

Human Activity Recognition (HAR) is the task of gathering, examining,
and categorizing human actions. It is a challenging research study with
significant interest for several reasons. First of all, it’s a significant field
of research because it has the potential to improve our interactions with
computers and plays a crucial role in monitoring our health., especially for
issues like motor diseases, as previously discussed.

HAR encounters specific challenges [4] that must be overcome to con-
struct high-performance systems. Initially, there are general challenges
common to most pattern recognition tasks, including variations within the
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same activity (intraclass variability), similarities between different activities
(interclass similarity), and the issue of identifying irrelevant activities (null
class problem).

Furthermore, HAR faces unique challenges:

• Clearly defining physical activities.

• Addressing class imbalances, where some activities occur more fre-
quently than others, requires careful handling of data.

• Ensuring accurate ground truth annotation.

• Thoughtful dataset design is essential to create effective and represen-
tative training and evaluation datasets.

2.2.2 Challenges

2.2.2.1 Intraclass variability

This situation, known as ”intraclass variability,” occurs when the same
activity can be executed differently, not only across various individuals
(inter-person variability) but also by the same individual on different occa-
sions (intra-person variability). Various factors, including the environment,
emotions, stress, and fatigue, contribute to these variations.

When HAR systems are exclusively trained on data from a single subject
(referred to as subject-dependent systems), they can enhance their ability to
handle intra-person variability simply by increasing the amount of training
data. Conversely, for HAR systems trained on data from multiple subjects
(referred to as subject-independent systems), which need to address inter-
person variability, it’s advisable to incorporate features that are not person-
specific. Regardless of the approach chosen, augmenting the volume of data
is always a beneficial strategy.

2.2.2.2 Interclass similarity

Conversely, there’s another challenge known as the opposite of intraclass
variability. This challenge arises when distinct activities share some similar-
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ities, complicating the recognition task. Overcoming these similarities is a
critical aspect of the feature extraction process.

2.2.2.3 Null class problem

This challenge highlights the issue that not all data acquired are useful for
tasks like HAR, where patterns need to be recognized. Among the data,
there are often activities that are irrelevant and can be easily misclassified,

These irrelevant activities are classified as part of the ”null class.” Iden-
tifying and managing this null class is a challenging problem because there
is currently no specific approach to avoid it. Detecting null activities can
be accomplished by studying and distinguishing signal variances.

2.2.2.4 Physical activity

Establishing a precise understanding of the unique characteristics of each
activity is fundamental to building more effective recognition systems. In
particular, some HAR systems may prioritize the quality with which the
activities are performed.

2.2.2.5 Class imbalance

When acquiring new data not all activities occur with the same frequency.
Typically, certain activities are more frequent than others. Consequently,
after the data collection phase, some activities may be underrepresented
compared to others.

To mitigate this issue, there are several approaches available. The
simplest method involves increasing the amount of data during the training
process, while also considering the removal of overrepresented data to
rebalance the dataset.

2.2.2.6 Ground truth label

Collecting annotated or ”ground truth labeled” training data is a resource-
intensive and laborious task. Annotators are required to meticulously label
the data in real-time, which can be both costly and time-consuming.
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2.2.2.7 Data collection

Unlike some other research domains like speech recognition or computer
vision, the HAR research community has yet to initiate a collective effort to
amass comprehensive and versatile datasets. Furthermore, acquire datasets
is challenging. Some factors substantially affect performance like high
data quality, multiple modalities or sensors, long-term recording durations,
or substantial participant numbers. It must be also considered a trade-
off between sensor ease of use and the time for preparing, conducting,
the experiment, and the logistical considerations for participants in the
experiment.

2.2.3 Vision based

Human Activity Recognition holds a crucial role in various Computer Vision
domains, including tasks such as identifying humans in videos, estimating
their poses, and tracking their movements. Vision-based systems in HAR
process data represented in a three-dimensional space-time framework,
rather than the conventional two-dimensional space.

It’s important to emphasize that the features extracted from images and
videos must capture any alterations in human movements. These video-
based systems are tied to the type of data and consequentially to features
extracted. To enhance the quality of recognition systems, it’s essential to
utilize only pertinent features. Feature representation and selection have
long been historical challenges in Machine Learning and Computer Vision.
However, there are two particularly aspects to take in considerations:

• Interaction recognition refers to situations where multiple action
and interactions occur within the same input sequence.

• Action detection it’s about determining when and where a particular
activity occurs within a sequence of data. Precisely, involves pinpoint-
ing the precise location of specific activities within the spatiotemporal
context of the input data.
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2.2.3.1 Approaches

In recent years, numerous approaches have been proposed to address this
challenge, including spatial-temporal features and features derived from
changes in motion and posture. These challenges underscore the need
for advanced techniques and models to accurately capture interactions in
complex real-world scenarios.

Vision-based Human Activity Recognition systems typically favor the
use of Deep Learning approaches over traditional Machine Learning or
unsupervised learning methods [5]. In fact, a considerable amount of
research is dedicated to improve neural networks. These networks are
commonly structured as a combination of Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs).

The main approaches consist of:

• Two-stream convolutional network [6]: optical flow informa-
tion is computed from the image sequence. The image and optical
flow sequences are then separately fed into two convolutional neural
networks (CNNs) during the model training phase. Fusion takes
place in the final classification layer of the network. The two-stream
network receives inputs consisting of a single-frame image and a multi-
optical flow frame image stack, and the network employs 2D image
convolution for processing. []

• 3D convolution network [7]: treats the video data as a 3D space-
time structure and employs a 3D convolution technique to extract
and learn features related to human actions.

• Spatiotemporal LSTM model [8] [9]: extending recurrent neu-
ral networks into spatiotemporal domains enables the analysis of
concealed sources of action-related information.

The preference for Deep Learning, particularly the combination of CNNs
and RNNs, is driven by its ability to effectively capture temporal patterns
and intricate spatial features in vision-based HAR systems. This approach
has proven to be highly efficient and capable of delivering accurate results
in classifying human activities from video and image sequences.
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2.2.3.2 Drawbacks

While Vision-based Human Activity Recognition has showcased the devel-
opment of robust and high-performance systems, it does come with certain
drawbacks.

• vision-based HAR systems necessitate the collection of data using
devices like cameras, which can be notably costly.

• the vision-based approach introduces additional complexity to the
image processing pipeline.

• in intricate scenarios, such as those captured by intelligent video
surveillance systems, abnormal actions are frequently linked to the
objects or attachments carried by individuals. This issue also intersects
with the challenge of interaction recognition.

2.2.4 Sensor based

Sensor-based Human Activity Recognition operates with data originating
from sensors. These wearable sensors can capture data from subjects and
are particularly suitable for capturing human movements.

Most of the sensors avaible for HAR consists in:

• Accelerometers

• Gyroscopes

• Magnetometers

• Barometers

• Temperature sensors
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Figure 2.2: MetaMotionS components

Accelerometers and gyroscopes, and sometimes magnetometers, are
often integrated into devices known as Inertial Measurement Units (IMUs),
which are widely used due to their cost-effectiveness.

Nowadays, these sensors are embedded in devices such as smartphones
and watches. Consequently, many HAR studies have leveraged smartphones.
Today there are many apps that collect this type of data. As smartphones
continue to grow as an extension of our daily lives, so will the expectation
that they have greater inclusion within our workspace.

2.2.4.1 Tradeoffs

Collecting data from sensors introduces some challenges for HAR researchers.
First of all, environmental conditions can affect the data acquisition process
making similar feature completely different. Secondly, failures in acquisition
process, being jumps in the data or complete turns off, can lead to a low
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performance. Furthermore, sensors embedded to specific devices could not
be able to acquire the best fluctuations in the data variance. Also, subtle
deviations over time, such as signal drift, can be far more challenging. Some
sensors are especially sensitive to environmental factors, like barometers
requiring frequent recalibration or magnetometers being susceptible to
ferromagnetic influences. Additionally, when sensors are incorporated into
portable devices such as mobile phones, they may be utilized in various
ways or positioned differently on the body.

For many real-world applications like gesture-based input, there’s a
need for real-time signal processing and classification. However, for tasks
like behavioral monitoring or trend analysis over extended periods, offline
data analysis and classification may suffice. Some HAR systems demand
low-latency classification and immediate feedback, while others can tolerate
higher latency. Embedded sensors, particularly those with limited processing
power, pose an additional challenge. One solution to address these challenges
is to introduce a central component in the experimental setup. This central
component aggregates, processes, and fuses information from different
sensors.

2.2.4.2 Methodology

There is no universal standard for the activities to be detected or how
they should be characterized. Therefore, some guidelines are based on key
considerations:

• Execution: Systems can record data for activity detection either in
a post-processing manner (offline) or in real-time (online).

• Generalization: Systems can be designed to work with various
subjects (subject-independent) or optimized for a specific subject
(subject-specific). They should also exhibit robustness to temporal
variations caused by external conditions.

• Recognition: Systems can automatically detect activities from the
input sequence or segment the input sequence and generate activity
labels corresponding to each segment.
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• Activity: Systems can detect periodic activities (e.g., walking, run-
ning), sporadic activities (e.g., gestures), or static activities (e.g.,
standing, sitting).

• System Model: Systems can employ an environmental model to
aid in activity detection (stateful), or they can rely solely on the raw
acquired data (stateless).

HAR offers more degrees of freedom in terms of system design and
implementation.

The activity recognition chain (ARC) [10] is a sequence of five sequential
stages:

• Data acquisition

• Preprocessing

• Data Segmentation

• Feature extraction

• Classification

The ARC ensure that HAR systems are robust and accurate in recognizing
various human activities.

2.2.4.3 Data acquisition

The process begins with the collection of data, which may come from sensors
like accelerometers, gyroscopes, cameras, or other sources. These sensors
capture information related to human movements and activities [11].
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Figure 2.3: MetaMotionS and MetaBase

2.2.4.4 Preprocessing

Collected data often require preprocessing to clean, filter, and format it for
analysis. This step involves removing noise, handling missing data, ensuring
data consistency and data outlier detection.

Noise in signal processing refers to unwanted and uncorrelated compo-
nents that introduce undesirable changes to the original signal.

Wavelet transform methods offer an effective approach to represent and
process signals. It’s able to extract meaningful information from noisy
signals. One of the key advantages of wavelet transformation is its ability to
preserve the essential coefficients of the original signal while removing noise
components. This is achieved through a process called thresholding, where
noise signals are identified and their coefficients are adjusted accordingly.
The choice of an appropriate thresholding scheme is crucial for achieving
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optimal noise reduction.
Imputation is an important preprocessing task in data analysis for

dealing with incomplete data. Many machine learning algorithms assume
that the data are complete. Since missing data are common, it can lead
to inaccurate or unreliable results. The first step is to determine why the
data is missing. Common reasons include poor network connectivity, faulty
sensor systems, environmental factors, and synchronization issues. Based
on the identified reasons and patterns, an algorithm to handling them is
constructed.

There are several algorithms commonly used to handle missing data:

• Mean, Median, or Mode: In this simple technique, missing values
are replaced with the mean (average), median (middle value), or mode
(most frequent value) of the observed data

• Interpolation: Interpolation methods estimate missing values based
on the values of adjacent data points.

• Gaussian Mixture model (GMM): GMM is a probabilistic model
used in machine learning and statistics that uses a soft clustering
approach for distributing the data points to different clusters. It
assumes that the probability distribution of the data is generated
from a weighted sum of multiple Gaussian distributions.

Filtering is a crucial signal processing technique in the context of
Human Activity Recognition. It facilitates the extraction of mean-
ingful features from raw sensor data. By attenuating high-frequency
components in the data, low-pass filtering effectively removes noise
and rapid fluctuations, allowing for a more precise analysis of the
data signal, helping the motion patterns recognition.

2.2.4.5 Data segmentation

Collected data are typically continuous streams of information. Data seg-
mentation involves breaking these continuous streams into discrete segments
or windows [12]. Each segment represents a specific timeframe during which
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an activity occurs. Accurate segmentation is essential to isolate individual
activities for analysis.

Often, the exact boundaries of an activity are difficult to define. In the
literature, several methods are available to address the challenge of data
segmentation.

• Sliding window segmentation involves dividing the continuous
data stream into overlapping or non-overlapping windows of fixed or
variable size. The window slides over the data at a predefined step size.
This method can capture detailed information within each window,
making it suitable for recognizing short and dynamic activities.

• Energy-based segmentation focuses on variations in signal energy
to detect activity boundaries. Changes in signal energy, often derived
from sensor data, that can indicate the start or end of an activity.This
can be effective when activities are characterized by distinct energy
patterns.

• Rest-position segmentation identifies periods of inactivity or rest
between activities. It assumes that during inactivity, the sensor data
remains relatively constant or falls within a specific range. This
method is valuable when recognizing activities with distinctive resting
or idle periods. For instance, it can be useful in monitoring activities
like sitting, standing, and walking, where the transitions between rest
and motion are significant.

2.2.4.6 Feature Extraction

Feature extraction involves identifying relevant patterns or features within
the data that can be used for activity recognition. These features may
include temporal, spatial, or frequency-domain characteristics of the data.

One approach is to automatically calculate features directly from the
sensor data. These features are typically derived using mathematical and
signal processing techniques. For example, features like mean, variance,
skewness, and kurtosis can be calculated to capture statistical characteristics
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of the data. Time-domain and frequency-domain features are also commonly
used.

In some cases, domain experts or researchers with expertise in the specific
activity domain may contribute to the feature extraction process [13]. They
can provide insights into which aspects of the sensor data are most relevant
for distinguishing activities.

Not all calculated or derived features may be equally informative for
activity recognition. Feature selection is the process of identifying the most
relevant features while discarding redundant or less informative ones. The
choice of features and feature extraction techniques depends on the nature
of the sensor data.

The selected features serve as a compact representation of the sensor
data, highlighting the most salient information for activity recognition.
These features may be organized as feature vectors, where each feature
corresponds to a specific aspect of the data. Feature vectors are then used
as input to machine learning models.

The dimensionality of the feature space has a significant impact on the
requirements of a system, in particular for the real monitoring ones.

• Training Data Requirement: As the dimensionality of the feature
space increases, a larger amount of training data is typically required
to effectively estimate the parameters of models, such as machine
learning classifiers. This is because higher-dimensional spaces have
more complex decision boundaries.

• Overfitting: In high-dimensional feature spaces, there is a risk of
overfitting, where the model performs well on the training data and
performs poorly on unseen data. Adequate training data is essential
to mitigate overfitting and ensure that the model can generalize on
different activities.

• Computational Intensity: Working with high-dimensional feature
spaces can be computationally intensive. Training and deploying
recognition models in such spaces may require more processing power
and memory capacity. This can be a challenge, especially for real-time
or resource-constrained applications.



CHAPTER 2. STATE OF THE ART 21

• Curse of Dimensionality: The curse of dimensionality refers to
the exponential growth in data sparsity as the dimensionality of
the feature space increases. This sparsity can make it challenging
to find representative training examples and can lead to increased
computational complexity.

2.2.4.7 Classification

Once the models are trained they have to predict the human activities being
performed. The system assigns labels to activities based on the patterns it
has learned during training.

In the field of Human Activity Recognition, several machine learning
models have been applied to achieve accurate and robust activity recognition.
Here’s an overview of some commonly used machine learning algorithms in
HAR:

• K-Nearest Neighbors (K-NN): K-NN is a simple and effective
algorithm used for classification tasks in HAR. It classifies activities
based on the majority class among the k-nearest neighbors of a data
point in feature space. It’s known for its simplicity and ability to
handle various types of data.

• Decision Trees: Decision trees are a popular choice for HAR due
to their interpretability and ease of visualization. They work by
recursively splitting the dataset based on features to create a tree-like
structure for classification. Decision trees are prone to overfitting, but
techniques like pruning can mitigate this issue.

• Random Forest: Random Forest is an ensemble learning method
that combines multiple decision trees to improve classification accuracy
and reduce overfitting. It works by aggregating the results of individual
decision trees. Random Forest is known for its robustness and ability
to handle large feature sets.

• Linear Perceptron: Linear Perceptron is a simple neural network
model used for binary classification tasks. In HAR, it can be used for
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distinguishing between two classes of activities, such as walking and
running. While it’s less complex than deep learning models, it can
still be effective for certain HAR applications.

• AdaBoost: AdaBoost is an ensemble method that combines multiple
weak classifiers to create a strong classifier. It iteratively adjusts
the weights of misclassified samples to focus on difficult-to-classify
instances. AdaBoost can be applied to improve the accuracy of HAR
models.

• Gaussian Naive Bayes: Naive Bayes is a probabilistic classifier
based on Bayes’ theorem. Gaussian Naive Bayes assumes that features
are normally distributed, making it suitable for continuous data, such
as sensor readings in HAR. It’s computationally efficient and can
handle high-dimensional data.

Additionally, distinct deep learning models have been deployed in this
research. Here, we present an overview of some frequently employed deep
learning architectures in the field of HAR:

• Fully connected layer

• Convolutional layer

• Batch Normalization layer

• Long Short-term Memory

• Attention layer

• Residual Learning

2.2.4.7.1 Fully connected layer
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Figure 2.4: Enter Caption

The Fully Connected layer, often referred to as the Dense layer, repre-
sents the most straightforward neural network architecture. It establishes
complete connections between every input neuron and each neuron within
the dense layer. These connections execute a weighted sum with a bias
term, and the outcome is subjected to an activation function to introduce
non-linearity, as expressed by the following formula:

y = σ(W · x + b) (2.1)

Fully connected layers are able to capture relationships within the data
and to extract hidden features.

2.2.4.7.2 Convolutional layer
The Convolutional layer is a fundamental building block of Convolutional
Neural Networks (CNNs) and is specifically designed to capture high-level
hidden features or patterns within data. Unlike dense layers, convolutional
layers are sparsely connected to a small portion of the input data, which
aids in local feature detection and helps reduce the number of trainable
parameters. The core operation of these layers is known as convolution,
which involves a weighted sum of the input data passed through a filter
(also referred to as a kernel) treated as a vector of weights. In practical



CHAPTER 2. STATE OF THE ART 24

terms, convolution operates using a sliding window approach, where the
kernel sldes on the input data.

It’s important to note that the dimension of the kernel dictates the
dimension of the convolution operation. Assuming a continuous 2D signal,
such as an image, a 2D convolution (represented as a matrix kernel) is
defined as follows:

(i ∗ h)[x, y] =
∞∑

k=−∞

∞∑
l=−∞

i[k, l] · h[x− k, y − l]

While the term ’convolutional layer’ might initially imply a direct appli-
cation of convolution, as traditionally understood in mathematical contexts,
it’s crucial to clarify that in deep learning field, these layers execute corre-
lation operations. This distinction derives from the fact that they do not
involve the flipping of kernels because it’s computationally more efficient..
The correlation formula is the following:

(i ◦ h)[x, y] =
∞∑

k=−∞

∞∑
l=−∞

i[k, l] · h[x + k, y + l]

So, while the formulas may appear identical, the practical application
of whether the kernel is flipped or not distinguishes convolution from
correlation in signal processing and deep learning contexts.

Still some properties hold to keep equivalences between correlation and
convolution:

(i ∗ h) = (h ∗ i) = (h ◦ i)

To speed up the MAD (multiplication and addition) operation computed
in convolutional layers, separabilty can be applied. The key advantage of
separable convolutions is that they break down a 2D convolution into two
1D convolutions. The convolution formula can the be rewritten as follow:

(is ∗ hx ∗ hy)[x, y] =
∞∑

k=−∞

hx[x− k]
∞∑

l=−∞

i[k, l] · hy[y − l]



CHAPTER 2. STATE OF THE ART 25

Figure 2.5: Graphical visualization of regular convolution and separable
convolution

2.2.4.7.3 Batch Normalization layer
Batch Normalization is a technique designed to mitigate the issues caused
by internal covariate shift. During the training phase, Batch Normalization
normalizes the input data across the batch dimension. This process com-
putes the mean and variance of the input data along the batch dimension.
The input data is first flattened, then normalized with a mean of 0 and a
variance of 1. Additional parameters are added allowing the network to
learn the appropriate scaling and shifting of the original input activation
values.

During the testing or inference phase of a neural network, the batch
parameters used in Batch Normalization are not updated. During testing,
the network operates on individual data samples, and there’s no concept
of mini-batches. Therefore, the mean and variance statistics remain fixed
at the values computed during training. This ensures that the network’s
behavior is consistent and deterministic during inference.

Training Phase:

1. Compute the mean and variance over the mini-batch:

µB =
1

m

m∑
i=1

xi
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2. Normalize the inputs within the mini-batch:

σ2
B =

1

m

m∑
i=1

(xi − µB)2

3. Scale and shift the normalized inputs:

yi = γx̂i + β

4. Update the moving average of mean and variance for later inference:

µmoving = momentum · µmoving + (1 − momentum) · µB

σ2
moving = momentum · σ2

moving + (1 − momentum) · σ2
B

Inference Phase:

1. During inference, the precomputed values (mean, variance, gamma,
and beta) from the training phase are used. The normalization step
is the same as in the training phase:

x̂i =
xi − µmoving√
σ2
moving + ϵ

2. And then the scaled and shifted output is computed:

yi = γx̂i + β

2.2.4.7.4 Long Short-term Memory
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Figure 2.6: LSTM

The Long Short-term Memory (LSTM) layer plays an importal role in
sensor-based Human Activity Recognition (HAR) due to its adeptness in
learning intricate patterns and dependencies within sequential time series
data. Functioning as a part of Recurrent Neural Network (RNN) modules,
LSTMs are proficient in analyzing sequential data and have the capacity
to capture long-term dependencies. They achieve this by maintaining an
internal memory that can selectively retain or forget information as they
process input sequences.

LSTMs operate sequentially on the input sequence, iteratively updating
their memory. The number of time steps in this process is determined by
the dimension of the input sequence, which also dictates the number of
outputs generated by the layer (refer to Fig 2.6). Key components of an
LSTM include:

• Forget gate: This gate regulates what content (comprising both
previous computations and new information) needs to be forgotten.
It does this by calculating the sigmoid of a weighted sum of inputs.
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• Input gate: Responsible for regulating the flow of previous informa-
tion that should be combined with the new content. This gate, also
referred to as the update gate, calculates both a sigmoid gate and a
candidate cell state.

• Cell state: The cell state is an internal long-term memory that tracks
portions of previous and current content information.

• Output gate: This gate controls the flow of output information and
calculates the output at each time step, forwarding the new content
information to the next time step.

In sequential time series a bidirectional approach could be more powerful,
thus leading to the creation of Bidirectional LSTMs (BiLSTMs). In a
bidirectional LSTM, two LSTMs operate operate together but in different
directions. One LSTM analyzes past dependencies from the beginning
of the sequence, while the second LSTM operates in reverse, examining
future information starting from the end of the sequence. These outputs
are concatenated at each time step.

2.2.4.7.5 Attention layer

The Attention layer [14], primarily employed in Natural Language
Processing (NLP) for tasks like Neural Machine Translation (NMT [15]), is
known for its ability to perform sequential reasoning by selectively focusing
on certain components while considering others. Although it’s commonly
used in NLP, this architecture is not limited to linguistic tasks and can be
effectively applied to input sequences unrelated to language processing. In
the context of HAR, the attention mechanism can help extract temporal
dependencies from time series data.
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Figure 2.7: Attention Core

The attention mechanism (refer to 2.7) involves two key inputs: the
context representation (K) and the query (q). These inputs are used to
calculate a dot-product, followed by a softmax activation function, resulting
in attention weights. These weights essentially represent the relevance of
each input element to the query.

In some cases, a second context representation (V) may be necessary.
To accommodate this, the attention mechanism can be generalized by
incorporating the previous computation (referred to as the attention core)
and introducing the second context representation (V). This architecture
enables a weighted sum operation on the second representation using the
attention weights, ultimately producing a context vector. This enhanced
model excels at extracting meaningful features and relationships among
different representations of the same context, even when K and V are
identical.
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Figure 2.8: Self Attention Model

Furthermore, this attention model can be applied to extract features
and relationships among individual elements of the same input sequence
(refer to 2.8). This approach, known as self-attention, involves computing
multiple attention mechanisms using the input sequence as context (K
and V) and each sequence component as the query. In the context of this
study, self-attention is employed to improve the extraction of time-relevant
information among window elements in the HAR application.

2.2.4.7.6 Residual Learning

Residual Learning, often referred to as ResNet, is a powerful architectural
innovation that has made a significant impact on deep learning and neural
network training. Originally developed for image classification tasks, ResNet
introduced the concept of residual blocks, which enable the training of
very deep neural networks while mitigating the vanishing gradient problem.
Although initially designed for computer vision tasks, the concept of residual
learning can be applied to various domains, including HAR.

In the context of HAR, residual blocks can enhance the learning of
complex temporal dependencies within time series data. By introducing
skip connections, or shortcuts, that allow gradients to flow directly through a
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block, ResNet enables the training of deeper networks without encountering
diminishing gradient issues. This is particularly advantageous when working
with HAR, as it involves the analysis of sequential data with intricate
patterns and dependencies.

The key idea behind residual learning is the residual mapping, which
aims to fit a residual rather than the actual desired mapping. This residual
is learned during training and then added to the input data to obtain the
final output. This approach allows the network to focus on learning the
difference between the input and the desired output, making it easier to
optimize deep architectures.

In summary, the adoption of residual learning in HAR can lead to more
effective feature extraction and better modeling of temporal relationships
within the data. This architecture has the potential to improve the accuracy
and efficiency of activity recognition systems, making them more robust in
real-world scenarios.

2.2.5 Evaluation

Evaluating the performance of an Activity Recognition Chain (ARC) is a
critical aspect. Activity recognition systems can encounter various types
of classification errors, including missing activities, confusing activities, or
falsely detecting activities that did not occur. These errors are commonly
categorized as follows:

• True Positives (TPs): Correctly recognized and classified activities.

• True Negatives (TNs): Correctly identified instances where activi-
ties did not occur.

• False Positives (FPs): Incorrectly detected activities that did not
occur.

• False Negatives (FNs): Missed or incorrectly unrecognized activi-
ties.

The objective of optimization can vary depending on the application. In
some cases, it may be more favorable to reduce FNs.



CHAPTER 2. STATE OF THE ART 32

To assess the performance of ARC systems, several performance metrics
are commonly used, including:

• Accuracy: Measures the overall correctness of activity classifications.

• Precision: Measures the ratio of correctly identified positive instances
(TPs) to all instances classified as positive (TPs + FPs).

• Recall: Measures the ratio of correctly identified positive instances
(TPs) to all actual positive instances (TPs + FNs).

• F1-Score: The harmonic mean of precision and recall, providing a
balance between the two metrics.

• Confusion Matrix: A tabular representation of classification results,
showing the counts of TP, TN, FP, and FN.

The choice of which metric to optimize depends on the specific application
and its requirements.
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Human Activity Recognition

3.1 Introduction

3.2 Contributions

This research was bring on by me and my colleague and friend Francesco
Palmisano. This research was based one Zarmina Ursino thesis [16].

Pair programming, a methodology well-known in software development.
It involves two researchers, myself and my colleague collaborating closely
on every aspect of the project. One of the defining characteristics of
our research process was the equitable sharing of responsibilities. We
engaged in regular discussions and brainstorming sessions. We both made
equal contributions to every aspect of our research, from the conception
of hypotheses to the experimental methodologies. These dialogues were
necessary in the direction our research would take. In fact, as a team, we
faced challenges head-on, looking for the best approaches and solutions.

In conclusion, our collaborative approach significantly contributed to
the success of our thesis project.

33
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3.3 eSteps insoles

eSteps Inc., an American company with its roots in Bologna, Italy, was
founded in 2020 under the leadership of Nidhal Louhichi, the current CEO.
The company is known for the creation of cutting-edge insoles designed to
capture and record data containing walking and running patterns. However,
eSteps Inc. is currently focused in the creation of systems that can help
the monitoring of Multiple Sclerosis. Today, through the help of smart
insoles., eSteps Inc. creates a direct connection between MS patients and
their medical practitioners.

Figure 3.1: eSteps insoles

These insoles facilitates the flow of information from the patient to the
doctor. This exchange of data provides a huge amount of data that can be
used to further improve the clinical picture of the patient. In each insole
lies an IMU device, MetaMotionS, embedded into a commercially insole.

3.3.1 Sensor specification

MetaMotionS is in fact a wearable device that offers real-time and contin-
uous monitoring of motion and environmental sensor data. What makes
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MetaMotionS stand out is the integration of sensors and a rechargeable
battery (70-100mAH) in a compact form of 27mm × 27mm x 4mm.

Figure 3.2: MetaMotionS components

The sensors utilized in our research are the gyroscope and the accelerom-
eter, both operating at a high sampling rate of 100Hz. The gyroscope,
with a precision of 2000 degrees per second, gives accurate measurements
of angular velocity, while the accelerometer, with a sensitivity of 16g (16
times the acceleration due to gravity), provides precise information on linear
acceleration along three axes (x, y, and z). The sensor is powered by a
reliable 3.7 V lithium-ion battery with a capacity of 100mAH, making it
easy to replenish using a standard micro-USB cable. This battery last for
approximately 2 weeks on a single charge. An energy-saving feature of this
sensor is the sleep mode functionality, which automatically activates when
the sensor remains stationary, preserving battery life efficiently.
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Figure 3.3: MetaMotionS spec.

3.4 Data acquisition

In this study, data were collected from a diverse group of 14 participants,
with various genders and ages, with a majority (70%) being male and the
remaining (30%) female, falling within the age range of 18 to 70 years. The
recorded activities consists of different kind of motions, including walking,
brisk walking, running, ascending stairs, descending stairs, and moments of
no movement.
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Notably, the data acquisition process was conducted separately for
each lower limb, offering several advantages. Firstly, it enabled a detailed
acquisition, allowing for the analysis of individual gait steps. Secondly,
this approach exhibited robustness regardless of of posture changes, as it
primarily focused on the dynamics of gait steps, resulting in a more accurate
method for detecting various types of motions.

During the data acquisition, participants followed a predefined proto-
col (ref to Fig. 3.4) designed to capture different activities within single
recordings. The protocol involved the following steps:

• Initiating the recording from a standing position.

• Performing the targeted activity for a duration of 10 to 30 seconds.

• Maintaining a standing position for 10 seconds, signifying moments
of inactivity.

• Repeating the activity for 10 seconds.

• This cycle continued until the recording was stopped.

Figure 3.4: Walking recording
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A crucial part of this research focuses on the creation of predictive
models capable of accurately categorizing a wide range of human activities.
The success of this classification task deeply depends on how individuals
carry out these activities.

The data were collected in smartphones devices which were connected
via Bluetooth.

Figure 3.5: Data acquisition

According to Gait Analysis principles, each activity follows the structure
of the gait cycle. Despite these activities sharing a common structure, they
exhibit variations in terms of style, behavior, and the duration of gait cycles.
Collecting data from a diverse range of individuals is very important since
each person has a unique style or pattern in performing activities. The
significance of gathering a diverse participant pool is a crucial aspect. In
particular, even though activities share a common structural foundation, the
way they are executed can differ significantly from one person to another. To
capture this rich diversity and create robust predictive models, we collected
data from individuals of various ages, genders, and backgrounds. By doing
so, we ensure that our models not only accurately classify activities but
also account for the inherent variability in human motion across different
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individuals.

Figure 3.6: MetaBase configuration

Participants were requested to repeat the same activity multiple times,
resulting in a rich repository of data points for each activity category. This
repetition helped not only to increase the amount of data but also allowed
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the model to notice small differences in how each person did the activities.
By doing the same thing over and over, our participants unknowingly helped
the model learn and understand their unique ways of moving. This careful
approach made the model better at recognizing activities, giving more
accurate results that match each person’s particular style.

Furthermore, a different data acquisition (ref to Fig. 3.7) was done by
performing specific activities for a duration of 10 seconds, followed by brief
10-second pauses before transitioning into a new activity.

Figure 3.7: Complete path consisting of: walking, brisk walking, running,
ascending stairs, descending stairs

3.5 Preprocessing

3.5.0.1 Data Cleaning

Once the data were acquired from the sensors and collected by the smart-
phone app, the next phase involved data refinement. Initially, the time
series generated through the acquisition protocol underwent interpolation
to address any gaps and missing data, ensuring uniformity in the sample
frequency.

Following this, a low-pass filter was applied to the accelerometer and
gyroscope signals. Our approach involves the implementation of a digital low-
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pass filter to effectively separate the AC (Alternating Current) component
from the DC (Direct Current) component within each time series of sensor
data. In the context of HAR, this separation is crucial, as it helps distinguish
dynamic motion-related activities (such as walking or running) from the
influence of gravity. To achieve this, we set the filter’s cutoff frequency
at 0.25 Hz and 0.125Hz for gyroscope and accelerometer respectively [17].
By applying this low-pass filter, we are able to isolate the gravitational
component and the body acceleration component along the three axes.
This separation is achieved by subtracting the low-pass filtered data from
the original signal along each axis. The result is distinct data streams
representing gravitational acceleration and body acceleration in different
directions. Our primary interest lies in body motion acceleration. Therefore,
we select the AC components.

3.5.0.2 Data labeling

Accurate labeling of activities in our dataset is very important. Labels
help us make sense of the raw sensor data and understand human activity
patterns. Precise labeling not only adds meaning to the data but also
enables us to build and test robust machine learning and deep learning
models. When we define the boundaries of different activities with precision,
we are able to distinguish between various movements effectively. Moreover,
these labels are essential for assessing how well our models perform, ensuring
that our activity recognition system functions at its best. In summary, the
quality and accuracy of our labeled data have a direct impact on the success
of our research, making labeling a vital part of our methodology.

Labeling datasets can be a difficult and time-consuming task, one that
cannot be fully automated, as it requires human intervention to ensure
accuracy. In the context of HAR, which deals with multiple activities
within the same recording session, a significant challenge is delineating data
points that demarcate activity regions accurately. This research proposes a
semi-automatic algorithm designed to enhance the control and precision
of activity labeling, offering a more efficient alternative to entirely manual
annotation. The algorithm draws inspiration from a proprietary Matlab
function, ”findchangepts,”. When re-implemented, this function returns
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a list of indices of possible points within the input signal that mark a
significant jump between different values. The most suitable metric to
identify the jumps in gait cycles is the Root Mean Square function. The
algorithm analyses the input signal and looks for any notable deviations
in behavior. If the residual error surpasses a predetermined threshold, it
indicates a change in the input signal’s behavior within that window. To
manage the complexity of the process, parameter such as the quantity of
point to analyse and simplier metrics are available. The threshold parameter
controls the quantity of change points produced as output. Lower thresholds
yield more change points, while higher thresholds reduce their number.

While this function shows promise in detecting change points, it does
come with certain limitations. Firstly, it may not identify the precise change
points for every signal. It necessitate parameter tuning for each signal data
recorded. Secondly, the time complexity of this function grows with very
long signals. By choosing the right amount of signal point to analyse, a
trade off between time complexity and accuracy can be set. The fewer
points the algorithm analyses the faster the computation.

Accelerometer and gyroscope data are collected simultaneously, ensuring
that the moments when an activity changes are synchronized between the
two sensors. Consequently, the ”findchangepts” algorithm was applied to
the accelerometer data only. This decision was made based on the fact
that the change points identified by the algorithm for the accelerometer
data correspond directly to those for the gyroscope data, thanks to their
simultaneous recording.

3.5.0.3 Data balancing

Balancing the data is a crucial step in the process of preparing a dataset
for activity recognition. Data balancing ensures that each class or activity
category within the dataset has an equal number of examples or instances.
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Figure 3.8: Number of point acquired on left foot

Figure 3.9: Number of point acquired on right foot
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3.6 Data segmentation

The next step is preparing the dataset set for the Machine learning and
deep learning models. To achieve this, a time-based windowing technique,
often referred to as a sliding window, was implemented for segmenting the
gathered data. Initially, a sliding window approach was employed within
each activity region, as depicted in figure 3.10.

Figure 3.10: Sliding window

This approach allows for a more detailed analysis by capturing temporal
dynamics within the dataset. By sliding the window through the dataset,
subsequences were extracted, each containing distinct temporal segments.

To manage computational complexity effectively, we made strategic
choices regarding window sizes, namely 100, 200, 300, 400, 700, 800, and
900. For each of these window sizes, a sliding shift was applied as a
percentage of the respective window size, specifically at intervals of 10%,
30%, 50%, 70%, and 100%.
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3.7 Feature extraction

Feature extraction is a crucial step in optimizing the performance of ma-
chine learning models, especially when dealing with high-dimensional data.
Differently from deep learning models that can learn hidden features, feature
extraction remains indispensable. In particular, is crucial to deal with the
curse of dimensionality during the training of ML models.

As the window size and the number of spatial axes and sensors increase,
the cardinality of inputs grows significantly. To effectively manage this issue,
Fourier Transformations were applied to each window for every spatial axis,
revealing the frequency domain characteristics embedded within the data.
This transformation retained only the real values, discarding the imaginary
component.

The resultant features were selected to significantly reduce dimensionality
as weel as keeping crucial information within the data.

• Mean Value: This feature calculates the average value of the raw
data vector, providing an indicator of central tendency.

• Standard Deviation: Calculating the standard deviation of the raw
vector gives insights into data stability.

• Median: The median of the transformed vector offers a robust
measure of central tendency, less sensitive to outliers.

• Lower Quartile: This feature denotes the 25th percentile of the
transformed vector, it delineates the lower range of data distribution.

• Upper Quartile: In contrast to the lower quartile, the upper quartile
represents the 75th percentile, highlighting the upper range of data
distribution.

• Skewness: Skewness measures the asymmetry of the transformed
vector’s distribution, showing its shape and symmetry.

• Kurtosis: The kurtosis of the transformed vector provides insights
into the distribution’s peakedness or flatness.
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3.8 Classification

In this research, all the models employ an inverted bottleneck structure
inspired by MobileNetV2 [18]. This structure consists of two Inverted
Residual (ID) separable convolutional layers. The first layer has 32 kernels,
followed by the second layer with 12 kernels, both with a dimension of
one. Following each convolutional layer, there is a batch normalization
layer to stabilize the distribution of hidden features. After the inverted
bottleneck structure, there is a series of fully connected (FC) layers with
a decreasing number of units. These layers, called also dense layers, use
the ReLU activation function, except for the last layer, which employs the
softmax activation function to produce the output probability distribution.
To prevent overfitting, each dense layer (except the last one) incorporates a
dropout process before activation. The ResNet architecture is applied to
the input data and integrated into the output of the bottleneck layer. This
integration is a common approach in deep neural networks, where residual
connections or skip connections are used to facilitate the flow of gradients
during training and enable the network to learn more effectively.

The models used in this research differ in the content of the bottleneck.
The baseline model (refer to Fig. 3.11) contains only two sequential dense
layers. In contrast, the second model (refer to Fig. 3.12) incorporates a
Self-Attention architecture followed by a Bidirectional Long Short-Term
Memory (BiLSTM) layer, repeated twice. Self-Attention helps capture
temporal relations and patterns among hidden features, while BiLSTM is
utilized to analyze complex temporal sequences. The third model (refer to
Fig. 3.13) consists of a single dense layer followed by a Self-Attention layer
with BiLSTM.



CHAPTER 3. HUMAN ACTIVITY RECOGNITION 47

Figure 3.11: ResnNet Baseline: 2xFC + Self Attention

Figure 3.12: ResnNet 2xBiLSTM + Self Attention
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Figure 3.13: ResnNet FC + BiLSTM + Self Attention

3.9 Evaluation

3.9.1 Robustness

In the context of HAR, achieving robust and accurate model performance
is very important. The conventional k-fold cross-validation approach is a
widely used technique for assessing model performance, where the dataset
is divided into subsets or ”folds” for training and testing. However, this
approach often has limitations to the subject-specific characteristics present
in the dataset. This can lead to models that are not robust when faced
with entirely new subjects during testing.

In many HAR scenarios, individuals may exhibit unique styles or vari-
ations in how they perform certain activities. When evaluating a HAR
model’s effectiveness, it’s essential to account for these variations to ensure
that the model can generalize well beyond the subjects used for training.

This is where Leave One Subject Out Cross-Validation (LOSOCV [19])
comes into play. LOSOCV is a specialized variant of k-fold cross-validation
that addresses the subject-specificity issue. Instead of dividing the dataset
into arbitrary folds, LOSOCV divides it into as many folds as there are
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individual subjects in the dataset. Each fold, in this case, consists exclusively
of data from a single subject.

By organizing the dataset in this manner, LOSOCV ensures that the
model’s performance is rigorously evaluated for each subject independently.
This approach allows for a more finer assessment of how well the model can
adapt to and recognize activities performed by different individuals.

In practical terms, LOSOCV provides a more realistic simulation of how
the HAR model will perform in the real world. It acknowledges that people
have distinct ways of performing activities, and the model must be robust
enough to handle these variations. By treating each subject as a separate
fold, LOSOCV allows the model to generalize across a diverse range of
individuals, regardless of the unique characteristics of different subjects..

Following the tuning process of all models with the LOSOCV methodol-
ogy, our analysis moved into assessing the robustness of each model through
an average accuracy calculation for each subject. This metric was chosen
as it provides a reliable indicator of overall performance.

3.9.2 Evaluation analysis

Our testing approach is composed of two distinct analyses: evaluation and
inference, by assessing both retrospective and real-time usage scenarios.
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3.9.2.1 Deep learning models

Figure 3.14: Evaluation of Deep Learning models on left limb

In the evaluation analysis, we assessed the quality of the models by con-
sidering precision, recall, and F1-Score metrics for each test subject, along
with assessing the robustness through the mean accuracy of subjects. The
analysis revolved around activity regions categorized by their labels. We
observed that as the window size was around 400 milliseconds, the quality
of results reached the best performance. This trend indicated that models
benefited from having access to context nor too small nor too large or
more information surrounding the input data during the evaluation process.
Indeed, by accessing to even greater window sizes the performances slowly
worsen.

Examining the confusion matrix of the best model (Resnet with fully
connected layers and BiLSTM)for the largest window size (refer to Fig. 3.14),
it’s evident that the model almost perfectly classified long-range activities,
segmented by the region detector during feature extraction, achieving 98%
F1-Score and accuracy. The same model with the smallest window got 97%
accuracy and F1-Score. Additionally, the accuracy mean obtained from
each subject utilized in the LOSOCV approach ranged from 81% to 89%
for the best model, further highlighting the robustness of our approach.
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Figure 3.15: Evaluation of Deep Learning models on right limb

The performance on the right foot (refer to Fig. 3.15) closely mirrors
that of the left foot, differing by just a minor 1-point variation. This
similarity highlights the consistency in the data collected from both limbs,
enhancing the overall reliability of our study’s results.
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3.9.2.2 Machine learning models

Figure 3.16: Evaluation of Machine Learning models on left limb

The results (refer to Fig. 3.16) consistently showed that the models tend to
perform better with larger window sizes. This observation suggests that
providing a broader context or more information surrounding the input data
during the evaluation process, enhances the models’ ability to make accurate
predictions. The increased window size allows the models to consider
more extensive information and context, leading to improved performance,
especially during the evaluation phase. A larger window enabled the model
to consider a wider context, potentially leading to superior performance
on the evaluation dataset. This highlight the importance of context in
accurately recognizing and classifying human activities, emphasizing the
utility of larger window sizes in achieving better model performance.
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Figure 3.17: Evaluation of Machine Learning models on right limb

Similarly to what we observed for deep learning models with the right
foot, the performance of machine learning models doesn’t exhibit significant
differences between the two limbs – left and right (refer to Fig. 3.17).
There’s only a marginal one-point variation in their performance. This
consistency in performance between the left and right limbs assesses the
robustness of our models in recognizing and classifying human activities,
regardless of whether they are performed with the left or right foot. It
further validates the effectiveness of our approach in achieving balanced
and accurate results across both limbs.
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3.9.3 Inference analysis

Figure 3.19: Inference of Deep Learning models on left limb

In the inference analysis, we evaluated models by simulating real-time
predictions made sequentially on the test data. The results revealed that
both deep and machine learning models tended to perform better with
smaller window sizes. This observation suggests that models benefits from
considering less context when making predictions on new data (as shown
in Fig. 3.19 3.20 3.21 3.22). Smaller context windows allowed the model
to focus on specific details pertinent to the input, such as the gait cycle,
leading to more accurate real-world predictions.
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Figure 3.20: Inference of Deep Learning models on right limb

This phenomenon can be attributed to the fact that smaller window
sizes enabled the model to capture finer details at boundary points, where
classification errors often occurred. In cases where an activity transitioned
directly into another (boundary activity) or when a single window included
multiple activities, larger windows made it challenging for the model to
discern precise boundaries, resulting in ambiguous predictions.
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Figure 3.21: Inference of Machine Learning models on left limb

After comprehensive analysis across multiple window sizes, it was de-
termined that windows between 1 and 2 seconds are an optimal balance
between the evaluation and inference phases. The confusion matrix of
the best model and window sizes indicated that the lowest result on the
main diagonal was associated with the void activity, as each activity was
consistently preceded and followed by a standing position (void activity).
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Figure 3.22: Inference of Machine Learning models on right limb
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(a) Evaluation of best model on left foot (b) Evaluation of best model on right
foot

(c) Inference of best model on left foot (d) Inference of best model on right foot

Figure 3.18: Confusion matrices



Chapter 4

Conclusions

4.1 Conclusions

This research studies in deep the task of classifying human activities through
the utilization of sensory data acquired via intelligent insoles. The dataset
utilized here consists of recordings obtained from a diverse group of healthy
subjects, each following distinct paths during the data collection process. To
prepare this data, a rigorous sequence of data cleaning, segmentation, and
feature extraction was performed. This systematic approach was designed
to enable machine learning to extract information and discern recurring
patterns.

In contrast, deep learning models were modelled to autonomously identify
and extract features directly from the raw input data. This methodology
eliminated the need for manual feature extraction. In the initial evaluation
phase, the model delivered remarkable results, with a mean accuracy rate of
89%, with a F1-Score of 98%. In the inference phase, the model continued
to demonstrate its robustness, maintaining a commendable accuracy rate
of 84%, supported by a F1-Score of 88%.

What became increasingly apparent was the influence of window size
on model performance. A window sizes of 400 milliseconds substantially
improved evaluation performance, whereas smaller windows proved invalu-
able in addressing boundary prediction challenges encountered during the
inference phase. The optimal window size was determined to fall within the

59



CHAPTER 4. CONCLUSIONS 60

range of 1 to 2 seconds, striking an effective balance between evaluation
accuracy and inference robustness. —— As a potential avenue for future
research, expanding the dataset to include a more diverse array of subjects,
characterized by varying attributes and activity styles, holds the promise of
further enhancing the model’s performance in real-world scenarios. This
study underscores the immense potential of intelligent insoles coupled with
advanced machine learning techniques in revolutionizing the field of hu-
man activity recognition. It sets the stage for continued exploration and
innovation in this dynamic domain.

4.2 Future works

This research serves as a solid foundation upon which future research can
be built, offering a multitude of promising directions for extension and
expansion. There are several promising directions for future exploration
and development:

• Model Refinement: A promising future step involves the creation of
a fully automatic region detector, further automating and optimizing
the activity recognition process.

• Multimodal Fusion: The integration of multiple sensor modalities,
such as synchronized sensors for each foot, opens up new possibil-
ities. Additionally, combining sensor-based data acquisition with
vision-based approaches can enrich the dataset, necessitating the de-
velopment of a front-end application for efficient and low-latency data
synchronization.

• Performance Enhancement: Fine-tuning performance evaluations
can lead to more robust models. Training on a more extensive dataset
including a diverse range of patient characteristics could significantly
improve system performance.

• Multiple Sclerosis Monitoring: Expanding the dataset to include
data from multiple sclerosis patients would enable the analysis of
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activity patterns in the context of a motor disease scenario, potentially
offering valuable insights for disease monitoring and management.

• Commercialization: As this research lays the groundwork for prac-
tical applications, future efforts can focus on the commercialization of
the product. Implementing a robust post-market monitoring system
will be essential to monitor the product’s performance and safety in
real-world healthcare settings.

Exploring these directions for future research will contribute to the
improvement of activity recognition systems. By doing so, we can enhance
the practicality of these systems, making them even more valuable in
real-world applications.
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